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Spectral response functions are central quantities
in the analysis of quantum many-body states,
since they describe the response of many-body
systems to external perturbations and hence directly
correspond to observables in experiments. In this
paper, we evaluate a momentum-averaged dynamical
density structure factor for the fermionic ν = 1/3
fractional quantum Hall (FQH) state on a torus,
using the continued fraction method to compute
the dynamical correlation function. We establish the
scaling behaviour of the screened Coulomb structure
factor with respect to interaction range, and expose
an inherent self-similarity of structure factors in
the frequency domain. These results highlight the
statistical properties of spectral response functions for
FQH states and show how they can be efficiently
approximated in numerical models.

1. Introduction
One of the key observables yielding insights into
interacting quantum systems is the dynamical structure
factor S(q, ω), which captures the complete momentum-
and energy-resolved spectrum of particle excitations.
Apart from its central role in the dynamics of
quantum many-body systems, the structure factor has
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a number of appealing properties that stimulate a broad range of research. In particular, we
focus on its application in fractional quantum Hall (FQH) systems, which have been known for
several decades to host a rich spectrum of collective modes [1–4], and have been extended to
both lattice models [5,6] and effective field theories [7,8]. Since the structure factor is directly
related to the correlation function, it can be computed in a variety of ways, such as via Feynman
diagram resummation [3] or continued fractions [9]. Moreover, the structure factor can be directly
probed in two-dimensional electron gases, e.g. via surface acoustic waves [10,11], and analysed
using Raman scattering to reveal additional spin properties [12]. Despite its rich structure and
experimental applicability, however, numerical studies that systematically investigate the spectral
response of FQH states have only recently gained traction [5,8,13–17].

In this paper, we study a type of dynamical density structure factor1 for the ν = 1/3 fermionic
Laughlin state on a torus, using the continued fraction method to compute the dynamical
correlation function. In particular, two aspects of the structure factor are investigated: (i) the
effect of interaction range and (ii) self-similarity. We start by tuning between the V1 and
screened Coulomb interactions to reveal the scaling behaviour of the structure factor with
respect to interaction range. Then, motivated by the fractality of continued fraction Green’s
functions [19,20], we study the self-similarity of structure factors for long-range interactions in
the frequency domain. In both cases, we present systematic exact diagonalization computations,
which we scale with system size. Our results expose the scaling behaviour of the structure
factor with respect to interaction range, which reflects the functional form of the interaction.
Moreover, we reveal that FQH dynamical structure factors are statistically self-similar fractals in
the frequency domain, across several orders of magnitude. Apart from providing a deeper insight
into the spectral properties of FQH systems, these results may be exploited to compute response
functions more efficiently.

The outline of the paper is as follows. In §2, we define our FQH system, and in §3, we
describe the method for computing and analysing the structure factors. Subsequently, in §4, we
present our exact diagonalization results. In §4a, we tune the structure factors between the V1 and
Coulomb interactions and study the effect of screening. In §4b, we examine the self-similarity of
the Coulomb structure factor as the frequency domain is rescaled. Finally, in §5, we discuss the
implications with respect to future numerical investigations.

2. Model
We consider a two-dimensional system of Nf spin-polarized fermions of mass mf and charge qf in
a perpendicular magnetic field B on the xy-plane with periodic boundary conditions. Building on
earlier work [4,21–23], the torus geometry has recently experienced a revival of interest [5,6,24–
29], which motivates our choice. We consider the Landau gauge such that the momentum ky is
a good quantum number. The energy spectrum of this FQH set-up is split into Landau levels,
the lowest of which we fill up to a filling factor ν = Nf /NΦ , where NΦ is the number of flux
quanta in the system. Moreover, we focus on the regime where the interaction is weak compared
with the Landau level spacing (given by the cyclotron frequency ωc = qf B/mf ). Hence, to a good
approximation, we may project the interaction Hamiltonian to the lowest Landau level (LLL),
such that

H = Hkin +
Nf∑
i<j

PLLLV(|ri − rj|)PLLL, (2.1)

where Hkin is the constant kinetic part of the Hamiltonian, PLLL is the LLL projection operator, V
is the interaction potential and ri is the displacement of particle i. The relevant length scale in the

problem is the magnetic length lB = 1/
√

qf B.

1We note that the dynamical density structure factor is also known as the density-density response function [18] or spectral
function of the density operator [8] in related works.
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In this paper, we consider the Coulomb VC(r) ∼ r−1 and Yukawa VY
λ (r) ∼ r−1 e−λr interactions

explicitly by diagonalizing the Hamiltonian directly in Fourier space, where λ is the Yukawa mass.
However, we note that it is not always necessary or desirable to directly account for a long-range
interaction in this way. Haldane showed that for systems with a translation and rotation invariant
two-body interaction, the interaction Hamiltonian may be written as

Hint =
∑
i<j

∑
L

VLPL
ij, (2.2)

where VL are the Haldane pseudopotentials, L is the relative angular momentum quantum
number between particles i and j, and PL

ij is the corresponding projection operator. This simplifies
a certain class of long-range interactions into a simple sum of projectors, which has found a
diverse set of applications from accelerating early numerical computations on the sphere, through
to modelling realistic semiconductor heterojunctions [24]. Consequently, we complement our
analysis by using a Haldane pseudopotential formalism in Sec. SI of the electronic supplementary
material.

Throughout our study, we focus on the primary Laughlin state defined at the filling factor
ν = 1/3. Laughlin famously proposed a wave function ansatz for the ground state of a FQH system
with particles interacting via the Coulomb potential in a 1/m-filled LLL, where m is an odd integer.
Although the Laughlin ansatz is a successful description of the problem, since it is in the correct
universality class, it is not the exact ground state for the Coulomb interaction. Rather, it was later
shown to be the unique, highest-density, zero-energy state for the V1 Haldane pseudopotential.
In this paper, we investigate the ν = 1/3 state in both limits. When we discuss the ‘Laughlin state’,
we refer to the general ground state solution to a FQH system with a 1/m-filled LLL and not the
Laughlin ansatz wave function, in particular.

3. Method
In this section, we outline our numerical method. In §3a, we introduce the continued fraction
algorithm for computing dynamical structure factors and in §3b, we define fractals and self-
similar distributions.

(a) Structure factors
In order to efficiently find the eigenspectrum of the many-body Hamiltonian in equation (2.1),
we employ the Lanczos algorithm [9]. This method uses an orthogonal Krylov basis, in which the
original Hamiltonian H is transcribed to a tridiagonal form Ȟ, to compute the eigenbasis

H |Ψi〉 = Ei |Ψi〉 with i = 0, . . . , N − 1 (3.1)

and
Ȟ |Ψ̌j〉 = Ěj |Ψ̌j〉 with j = 0, . . . , M − 1, (3.2)

where the check marks denote the Krylov representation, N is the dimension of the original
Hamiltonian H and M ≤ N is the dimension of the Lanczos Hamiltonian Ȟ. Tridiagonlization
in the Krylov space is rapid, since many degrees of freedom are simultaneously used in the
optimization, and memory efficient, since only two vectors of length N need to be stored.2

Moreover, there is typically good agreement between extremal eigenvalues in the Krylov
representation Ěj and those in the original system Ei, even for M � N [9,30,31]. Further details
of the method are presented in Sec. SII of the electronic supplementary material.

The Lanczos algorithm was later extended by Haydock et al. and applied to compute
observables in physical systems with a large number of particles [32–37]. In particular, Haydock
showed that the resolvent of the Hamiltonian can be efficiently computed using a continued
fraction expansion, which is useful for calculating local quantities, such as the single-particle

2An additional third vector may be stored to restart the algorithm from a specific point.
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density matrix and the density of states. Crucially, when the original Hamiltonian H is written
as a tridiagonal Hamiltonian Ȟ in the Krylov basis, the problem is effectively reduced to a chain
of length M, which expedites the computation. The algorithm is consequently a widely used
approach in large-scale exact diagonalization computations for quantum many-body systems and
has been optimized to diagonalize sparse matrices as large as dim(H) ∼ 109 [38–40].

For our system, we work in momentum space and consider the zero-temperature dynamical
correlation function for the operator Oq in the Lehmann representation, which using the Krylov
basis may be approximated as

ǦO(q, z) =
M−1∑
j=0

| 〈Ψ̌j|Oq|Ψ0〉 |2
E0 + z − Ěj

(3.3)

= 〈Ψ0|O†
q

1

E0 + z − Ȟ
Oq|Ψ0〉 , (3.4)

where q ≡ (qx, qy) are the Fourier components of the O operator, z ≡ ω + iε, ω is the frequency
and ε is a small parameter used to avoid poles in the expansion. From this formula, it is
straightforward to show that for the symmetric tridiagonal Hamiltonian Ȟ, with (bj)aj along the
(sub)diagonal, the correlation function may be written as a continued fraction

ǦO(q, z) =
〈Ψ0|O†

qOq|Ψ0〉
E0 + z − a0 − b2

1/(E0 + z − a1 − b2
2/. . .)

, (3.5)

which terminates at −b2
M−1/(z − aM−1). This form of the correlation function converges rapidly to

machine precision [31].
Specifically, we focus on the density-density correlation functions arising from the density

operator

ρq ≡
∫

dr eiq·rc†(r)c(r), (3.6)

where r ≡ (x, y) is the position operator conjugate to q. Given our choice of Landau gauge with
definite momentum ky, we are particularly interested in resolving the qy Fourier components of
the density operator. We therefore choose to integrate out the qx modes on the torus to avoid an
additional free variable and consider the qx-momentum-averaged density operator, setting

Oqy ≡ ρ̄qy =
NΦ−1∑
m=0

ρqx=(2πm/Lx),qy , (3.7)

where Lx × Ly are the system dimensions. We have separately verified, by evaluating at specific
qx values, that the density operator is only weakly dependent on qx. The full derivation of the
momentum-averaged density operator is presented in Sec. SIII of the electronic supplementary
material. Finally, we may use this operator to compute the corresponding dynamical density
structure factor

Ǐρ̄ (qy, ω) = − 1
π

lim
ε→0

Im Ǧρ̄ (qy, ω + iε), (3.8)

which we often refer to simply as the ‘structure factor’. The crucial property of the continued
fraction expansion is that the structure factor in the Krylov representation Ǐ accurately reproduces
the moments of the structure factor in the Hilbert representation I, and so we now drop the check
marks [9].

(b) Fractals and self-similarity
In this work, we investigate the self-similarity of the structure factors Iρ̄ (qy, ω). Fractals and self-
similarity appear in many contexts in condensed matter physics, such as the Hofstadter spectrum
of energy levels for electrons hopping in a periodic potential [41], the Haldane hierarchy of stable
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FQH filling fractions [42], and the statistical analysis of time series [43]. Moreover, they have
several important characteristics that can often be leveraged in theory and simulations.

A fractal is defined as an object with a fractal dimension D that is greater than its topological
dimension d [44]. The fractal dimension may be computed in a variety of ways, however is
traditionally defined via n ≡ s−D, where n is the number of units in the whole object and s is the
scale factor. One of the distinctive properties of fractals is their scale-invariance, also known as
self-similarity, where subregions of a structure are identical to the whole. However, we note that
not all self-similar objects are fractals. For example, a square is a self-similar object with D = d = 2,
whereas a Koch curve is a fractal with D = log(4)/ log(3) > d [45].

As for the fractional dimension above, self-similarity may also be defined differently
depending on the context. Exact self-similarity holds on all scales, and in this case the various
definitions of the fractal dimension coincide. However, quasi- or multi-fractal self-similarity is
more common, with lower and upper bounds on where this behaviour applies. In functional
analysis, self-similarity occurs when a subsection of a function statistically resembles the entire
function. Specifically, for a function of one variable I(ω), this occurs when

I(ω) ≡ sκ I
(ω

s

)
, (3.9)

where s is a scale factor and κ is the self-similarity parameter [46]. In equation (3.9), ‘≡’ implies
that the distributions on both sides of the equation are statistically identical. However, in practice,
this is approximated by examining the first and second moments [46–48].

In contrast to geometric analysis, a general function of one variable is in a two-dimensional
space where each axis represents different physical quantities. Consequently, two magnification
factors are required to quantify self-similarity, such that

κ ≡ log My

log Mx
, (3.10)

where Mi is the magnification factor of the i-axis. Note that this takes an analogous form to
the definition of fractal dimension discussed above, albeit with a different interpretation. The
fractional dimension of a function is often difficult to quantify. However, since the demonstration
of self-similarity for any non-trivial curve indicates detail across many orders of magnitude,
which precludes an integer dimension, this is taken as evidence to show that a curve is a fractal
with respect to the axes on which the magnification occurs.

4. Results
In this section, we present our exact diagonalization results [49]. In §4a, we investigate the scaling
of structure factors as we tune from the V1 to the screened Coulomb interaction, and in §4b, we
expose a statistical self-similarity of structure factors in the frequency domain.

(a) Tuning the interaction range
We compute the momentum-averaged dynamical density structure factor Iρ̄ for the ν = 1/3
Laughlin state stabilized by a linear superposition of the V1 Haldane pseudopotential [42]
and an explicit VY

λ (q) Yukawa interaction. In this system, the interaction Hamiltonian is given
as Hint = (1 − α)HV1 + αHVY

λ
, where α ∈ [0, 1]. The tuning parameter α allows us to interpolate

between two common ground state solutions in the same universality class, and the Yukawa
mass λ enables us to vary the interaction range and recover the Coulomb limit.

In figure 1a,b, we start by computing the structure factors corresponding to the two most
common approaches for stabilizing the ν = 1/3 Laughlin state, via the V1 and Coulomb
interactions. We present our initial results for all qy momentum sectors. Since the structure factor
defined in equation (3.8) conserves particle number, these plots show the coupling of the ground
state to gapped excitations and consist of a spectrum of peaks at finite frequency. As expected: the
structure factor corresponding to the V1 interaction yields a broader spread of frequencies, due to
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Figure 1. Tuning the structure factor with respect to interaction range. Structure factors Iρ̄ (qy ,ω) as a function of angular
frequency offset by theground state energyω − ω0, for theν = 1/3 FQH state on a torus,withNf = 6particles andNΦ = 18
flux quanta, stabilized by (a) theV1 = 1 pseudopotential, (b) the exact Coulomb interactionVC and (c–e)Hint = (1 − α)HV1 +
αHVYλ , in the LLL. In (a,b), the spectra are resolved with respect to their qy momentum sector, whereas in (c–e) qy = 0. The
mean, μ, and standard deviation, σ , of offset angular frequencies coinciding with spectral peaks, ωpeak, are shown as a
function of (c)α and (d)λ. (e) Finite-size scaling of theα = 1 curve from (d). The transition points between the two regimes
are marked with crosses. The computations were performed with a resolution of (a,b)ω = 10−5,I = 10−5, ε = 10−4

and (c–e)ω = 10−7,I = 10−4, ε = 10−6.

the normalization of the V1 = 1 pseudopotential [14]; the relative peak amplitudes are consistent
in the two cases, owing to the dominant V1 component of the Coulomb interaction [13,16]; and
the shape of both distributions is unimodal, according to the theory for Laughlin states.3 Up to

3In the literature, these collective peaks are typically qx-momentum-resolved and may sometimes be referred to simply as
peaks [14,15], or collective modes [13,16] in certain contexts.
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slight variations in the number and heights of the peaks, the overall shape of the envelope holds
for all runs and for all qy, and there is a close resemblance between the structure factors of these
two FQH states.

Motivated by the effect that interaction range has on the form of the structure factors, in
figure 1c,d, we tune Iρ̄ (0, ω) from figure 1a,b, with respect to α and λ, at the increased resolution
of ω = 10−7 and ε = 10−6.4 We note that decreasing ε has the auxiliary effect of proportionally
increasing the peak amplitudes and decreasing the peak widths. We present the evolution of the
first two moments of the distribution: the mean (top panels) and standard deviation (bottom
panels). In this case, we consider the offset angular frequencies coinciding with spectral peaks,
ωpeak, and use their mean, μωpeak , and standard deviation, σωpeak , as quantifiers of centre and
spread, respectively.5

From the constant gradient of the first two moments in figure 1c, we can see that the structure
factor scales linearly with the tuning parameter α. This is expected, since we are effectively
multiplying the Yukawa interaction by a scale factor modulo a correction from the V1 term.
Subsequently, in figure 1d, we plot the scaling of the structure factor on different axes, to clearly
show the influence of λ. As α → 0, the structure factor does not depend on λ, since there is a
vanishing component of the Yukawa interaction in the Hamiltonian. Similarly, the influence of λ

increases linearly with α. Most notably, however, we observe two non-trivial scaling regimes for
the structure factor as α → 1. For log λ � −1, the structure factor is approximately independent of
λ, whereas for log λ > −1, the centre and spread exponentially diminish to zero. This behaviour
reflects the exponential suppression of the Yukawa interaction potential at large Yukawa mass,
which correspondingly restricts the domain of the response functions.

To investigate this transition in detail, in figure 1e, we illustrate the finite-size scaling of the
α = 1 curve from the top panel of figure 1d on a log-log plot. Here, we see explicitly that the
continuous connection between α and λ translates to a non-trivial scaling with respect to λ, with
two regimes. Connecting lines of best fit from these two regions yields a transition point at log λ ≈
0. Using equation (3.10), with Mx corresponding to λ and My corresponding to μωpeak , we obtain
the self-similarity parameters κμ = 0.00116 and −2.67 for log λ � 0 and log λ > 0, respectively. This
reflects the asymptotic scaling of the Yukawa interaction potential in the small and large λ limits.
Note that we used a linear scale for α in figure 1c, since this corresponds to linearly interpolating
between two Hamiltonians, whereas we use a logarithmic scale for λ, to analyse a wide scope of
interaction ranges.6

In this section, we have established the scaling of structure factors with respect to α and λ

in the framework of statistical self-similarity, and showed that it reflects the functional form of
the interaction. Moreover, the scaling is not exactly self-similar, since the combined effect of peak
fluctuations due to microscopic details of the Hamiltonian, and numerical noise due to sample
aliasing, yields approximately 1% fluctuations in peak number and amplitude.

(b) Rescaling the frequency domain
Previously, we demonstrated that the structure factor scales trivially with respect to a linear
interpolation between the V1 and screened Coulomb interactions, and non-trivially with respect
to interaction range, reflecting the functional form of the interaction. In both cases, this scaling
is the result of tuning parameters; namely, α and λ. In this section, we investigate a form of self-
similarity with respect to the frequency domain, which cannot be explicitly linked to a tuning
parameter.

In figure 2, we investigate the distribution of the peak magnitudes, Ipeak, in the Coulomb
structure factor from figure 1b, as we scale the frequency domain. For clarity, we denote

4Although the evolution is shown only for qy = 0, this analysis holds for all momentum sectors.

5In figure 1, we chose to study the self-similarity of {ωpeak} with respect to the α and λ axes. However, analogous relations
also hold for {Ipeak}.
6The interaction matrix elements are too small for λ ≥ 103 to reliably stabilize the fermionic Laughlin state.
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Figure 2. Rescaling the structure factor in the frequency domain. Structure factor Iρ̄ (0,ω) for the ν = 1/3 FQH state on a
torus, with Nf = 6, 7, 8, 9 particles, stabilized by the exact Coulomb interaction VC , in the LLL. For comparison, we overlay
the Nf = 9 data at qx = 0 with half opacity. (a) Mean, μ, and standard deviation, σ , of the peaks of the structure factor,
Ipeak, as we symmetrically scale the Ω0 domain about its midpoint ωmid = (ωmin + ωmax)/2, by a scale factor γ ≡
range(Ω )/range(Ω0). The initial frequency domain,Ω0, is chosen to span the entire structure factor. For each iteration, we
correspondingly scale ε, to reduce the widths of the peaks, andω to increase our numerical resolution. The lines of best fit
for the Nf = 9 data in the linear regions are drawn in black and the self-similarity parameters are given by the gradients of the
slopes. (b) Themagnitude of theΩ domain reduction between successive steps,range(Ωi)≡ range(Ωi) − range(Ωi−1),
where i is the frequency domain index, and the average separation betweenωpeak values,μωpeak . (c) The number of peaks,
n({Ipeak}), and (d) the average peakmagnitude,μIpeak , as we scaleΩ . The first computation withΩ = Ω0 was performed
with a resolution ofω = 10−5,I = 10−5 and ε = 10−4.

angular frequencies with a lower-case ω and a set of angular frequencies with an upper-
case Ω ≡ {ω}. We consider an initial frequency domain Ω0 with range(Ω0) = ωmax − ωmin,
which we scale symmetrically about its midpoint ωmid = (ωmin + ωmax)/2, by a scale factor
γ ≡ range(Ω)/range(Ω0). We choose Ω0 to span the entire structure factor, although we note
that the precise choice is arbitrary. In order to keep the scaling numerically consistent, we
correspondingly scale the frequency resolution, ω, and the ε value in our simulations. In
figure 2a, we plot the first two moments of the distribution against the domain scale factor to
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compute the self-similarity parameters. We additionally scale this with system size up to Nf = 9
particles. We find that there is a contiguous linear region, which grows with system size, and has
a correlation coefficient of R2 > 0.99,7 which indicates a statistical self-similarity of the Coulomb
structure factor with respect to frequency domain rescaling. This behaviour also holds for the
qx-momentum-resolved dynamical density structure factor, as demonstrated for Nf = 9, qx = 0.
The self-similarity parameters for the mean and standard deviation are κμ = −0.97 ± 0.00706 and
κσ = −0.000769 ± 0.0528. As mentioned in §4a, since a reduction of ε increases the heights of the
peaks, it is consistent that the self-similarity parameter κμ ≈ −1. Finite-size scaling shows that
the self-similarity parameter for the standard deviation holds deeper into the domain rescaling
procedure with increasing system size, and maintains a constant value across the entire procedure
for Nf = 9, up to sampling effects at small Ω . In figure 2b, we compare the magnitude of the
frequency interval reduction between successive steps, range(Ωi) ≡ range(Ωi) − range(Ωi−1),
where i is the frequency domain index, with the average spacing between the peaks, μωpeak . Since
the frequency domain scaling requires a finite section of structure factor peaks to be truncated
on each iteration, this allows us to verify the continuity of the procedure. We observe that the
average spacing between the peaks is initially smaller than the size of the frequency interval being
removed, up to γ ≈ 2−3.5. For smaller values of γ , breakdowns in the rescaling continuity become
more likely, as observed for the σIpeak , Nf = 9 data in figure 2a. However, the average spacing
between the peaks remains constant, independent of particle number, which shows that this is not
the cause of numerical breakdown for small system sizes. In figure 2c, we examine the number
of peaks in the structure factor, n({Ipeak}), with frequency domain rescaling. Since the moments
of a distribution are sensitive to the sample size, this is another validity test for the self-similar
scaling. We find that the number of peaks in the structure factor decreases exponentially with
frequency domain reduction, which holds independently of system size, up to the influence of
initial conditions at Ω ≈ Ω0. Nevertheless, for γ � 2−5.5, we find that for smaller particle numbers,
there are slightly fewer peaks in the spectrum, which may be a contributing cause of the numerical
breakdown for small system sizes, since the number of peaks is already extremely low. Finally, in
figure 2d, we analyse the average magnitude of spectral peaks, μIpeak , as we shrink the frequency
domain. Since the height of the peaks increases linearly with decreasing ε, we expect that μIpeakε

is constant in the linear region. This holds approximately for larger system sizes, up to initial
conditions at Ω ≈ Ω0. However, for smaller systems, and particularly Nf = 6, we see that the
mean amplitude of the peaks fluctuates during the procedure, which shows that the influence
of peak fluctuations and numerical noise is too great for a reliable scaling.

In general, structure factors for the Yukawa interaction are statistically self-similar with respect
to frequency domain rescaling, for all values of screening. This is quantified by the linear
scaling of their first two moments, as shown for λ = 0 in figure 2. However, since the mean and
standard deviation of the structure factors approaches zero as λ → ∞, as shown in figure 1, this
self-similarity is most apparent for long-range interactions.

5. Discussion and conclusion
In this paper, we studied numerically the momentum-averaged dynamical density structure
factors Iρ̄ (equation (3.8)) for the ν = 1/3 Laughlin state on the torus, using the continued fraction
method. Our main result is the discovery of a statistical self-similarity of the structure factor in the
frequency domain. Specifically, in §4b, we showed that the peak distribution has fractal properties
across several orders of magnitude. This self-similar nature is realized most precisely and across
the largest range of frequency scales in the thermodynamic limit, for systems stabilized by long-
range interactions. In addition, in §4a, we established the scaling behaviour of the structure factor
with respect to interaction range. This dependence is determined by the asymptotic behaviour of
the Yukawa interaction with respect to the screening parameter λ.

7The R2 value is defined as the square of Pearson’s correlation coefficient for the lines of best fit. Note that R2 cannot be
computed when the gradient κσ ≈ 0.
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Physically, the structure factor Iρ̄ (qy, ω), with qy fixed, corresponds to the energy-resolved
spectrum of particle excitations. The amplitudes and fine structure in the spectrum of peaks
are consequently related to the probability distribution of many-particle excitations in the
system. In §4a, we showed that an increase in the interaction range proportionally increases
the centre and spread of particle excitations, which is a direct result of the increased average
interaction amplitude, as well as the number of interaction permutations. Furthermore, in §4b,
we demonstrated the fractality of the structure factors with respect to the energy axis, which
reflects the continued chain of possible many-particle interactions with diminishing amplitudes,
and is especially prevalent for systems stabilized by long-range interactions. Building on this,
we expect that these properties also hold in the dynamical structure factors of other strongly
correlated phases of matter with Coulomb-type interactions, such as superconductors [50] or
transition metal oxides [51].

Our results highlight the effect of interaction range on, and the self-similarity of, dynamical
structure factors Iρ̄ for FQH systems. However, statistical self-similarity is a more general
property of response functions in condensed matter systems, and beyond. In particular,
there have been a wealth of studies on the self-similarity, fractality and chaos of continued
fractions in a mathematical context [19,20], and this is reflected in a wide class of observables
derived from Green’s function. We have explicitly demonstrated the fine structure of spectral
response functions in the frequency domain, which stems in part from their continued fraction
representation. This leaves scope for further manifestations of self-similarity due to this
recurrence relation, as well as potential applications. For example, there is a natural limitation
to the achievable energy resolution of structure factors derived from experiments, such as
inelastic X-ray scattering and photoemission spectroscopies [52,53], which may be numerically
enhanced using statistical interpolation. Moreover, dynamical quantum simulators have recently
been proposed as a method to compute structure factors [54,55], which may be expedited
using self-similarity relations. On a more pragmatic level, our results offer a way to efficiently
approximate the Coulomb structure factor. Specifically, for systems stabilized with long-range
interactions, the structure factor may be readily derived by diagonalizing a short-range Yukawa
interaction Hamiltonian in Fourier space. Large λ yields a short-range interaction that is efficient
to implement, and, provided the simulation resolution is sufficiently high, this result can be
smoothly tuned to the long-range Coulomb limit.

To complement these results, in the electronic supplementary material, we examined the
behaviour of dynamical structure factors for FQH states that are stabilized by Haldane
pseudopotential interactions, which contrasts the effects of tuning the interaction range via the
Yukawa mass, and truncating two-body interactions with large relative angular momenta. We
showed that Haldane pseudopotentials are not designed to model long-range interactions on
the torus at the system sizes currently accessible, however a reasonable approximation may be
achieved, provided that the interactions are modulated to be sufficiently short-range relative
to the system size. Using the example of the Coulomb structure factor from figure 1b, we
found that the optimal approximation was recovered at pseudopotential order β ∼ NΦ/2 with
a weakly screened form of the interaction. This demonstrates that, provided sufficient care is
taken, Haldane pseudopotentials provide another route to approximate dynamical structure
factors for systems stabilized with long-range interactions, at a significantly reduced numerical
cost.

There are several ways in which this work could be extended in the future. First, it would be
interesting to build on this analysis of ground states in the same universality class at ν = 1/3, to
other FQH filling factors, and in particular, ground states that do not share a universality class
and inherently require a long-range interaction to be stabilized [56,57]. Second, it would be useful
to analyse the trade-off between interaction range/frequency window and simulation resolution
using this approach to find the optimal efficiency benefit for a series of FQH states. Finally, there
is current motivation to leverage this method and compute the full density-density response
function, to identify collective excitations in FQH systems, and guide the latest experimental
techniques, including spin wave spectroscopy in graphene [11].
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