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We construct microscopical models of one-dimensional noninteracting topological insulators in all of the
chiral universality classes. Specifically, we start with a deformation of the Su-Schrieffer-Heeger (SSH) model
that breaks time-reversal symmetry, which is in the AIII class. We then couple this model to its time-reversal
counterpart in order to build models in the classes BDI, CII, DIII, and CI. We find that the Z topological index
(the winding number) in individual chains is defined only up to a sign. This comes from noticing that changing
the sign of the chiral symmetry operator changes the sign of the winding number. This freedom to choose the
sign of the chiral symmetry operator on each chain independently allows us to construct two distinct possible
chiral symmetry operators when the chains are weakly coupled—in one case, the total winding number is given
by the sum of the winding number of individual chains, while in the second case, the difference is taken. We
also find that the chiral models that belong to Z classes, AIII, BDI, and CII are topologically equivalent, so
they can be adiabatically deformed into one another without the change of topological invariant, so long as the
chiral symmetry is preserved. We study the properties of the edge states in the constructed models and prove
that topologically protected edge states must all be localized on the same sublattice (on any given edge). We
also discuss the role of particle-hole symmetry on the protection of edge states and explain how it manages to
protect edge states in Z2 classes, where the integer invariant vanishes and chiral symmetry alone does not protect
the edge states anymore. We generalize our results to the case of an arbitrary number of coupled chains, by
constructing possible chiral symmetry operators for the multiple chain case, and briefly discuss the applications
to any odd number of dimensions.

DOI: 10.1103/PhysRevB.107.075422

I. INTRODUCTION

Topology plays a central role in diverse parts of physics,
ranging from superfluid He to elementary particles [1–3]. In
the context of electronic solid-state physics, the topological
numbers first arose in the integer quantum Hall effect. The
perpendicular magnetic field breaks time-reversal symmetry
and induces Landau quantization that opens a gap in the bulk
spectrum of a two-dimensional metal. The closing of the gap
at the boundary is imposed by the nontrivial first Chern num-
ber [4] and leads to the protected chiral modes on the edge
of the sample. The topological nature of these modes ren-
ders them robust against disorder and enforces conductance
quantization.

It was more than 20 years later before it was realized that
the Chern number was only one of many possible topological
invariants that could be used to classify phases in gapped
noninteracting electronic systems. The key was in identifying
the role of symmetry—the quantum Hall state is indeed the
only state (in fewer than four spatial dimensions) that truly
cannot be smoothly deformed to a trivial insulator. However,
if one imposes a symmetry such as time reversal, then it is
possible to have different topologically distinct phases that
can not be deformed to the trivial insulator without break-
ing the time-reversal symmetry or closing the gap. Such a
state was first proposed by Kane and Mele in 2005 for a

two-dimensional system without a magnetic field but with
strong spin-orbit interactions [5]. More realistic models of
materials [6,7] along with experimental verification [8] fol-
lowed soon afterwards. In these systems, the edge modes are
helical rather than chiral and only protected against disorder
scattering so long as time-reversal symmetry remains unbro-
ken. It was also quickly realized that, unlike the quantum hall
state, this new time-reversal symmetric topological insulator
has an analog in three dimensions and much theoretical and
experimental work followed [9–18].

Alongside this work on specific materials and models, a
classification scheme emerged [19,20] on what topological
indices are possible in given systems. It was discovered that
this depended only on the number of spatial dimensions d ,
along with which symmetries were present or not in the
system—time-reversal symmetry, particle-hole symmetry, or
the combination of the two known as chiral symmetry. The
topological indices were either Z, as in the Chern number in
the quantum Hall effect, or Z2 as in the newly discovered
time-reversal symmetric topological insulators in two and
three dimensions.

Within this classification scheme, one-dimensional (1D)
models are special because they can be realized experimen-
tally, and at the same time are simple enough to allow an
intuitive picture to emerge. The best-known model of a one-
dimensional topological insulator is the Su-Schrieffer-Heeger
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(SSH) model [21,22] of polyacetylene. Similar models were
recently realized in experiments with ultracold atoms [23,24].
In addition, a toy model of a one-dimensional topological
superconductor was proposed by Kitaev [25]. It describes the
simplest one-dimensional p-wave superconductor and turns
out to have the same Hamiltonian as the SSH model with
the fermions replaced by Majorana fermions.1 This model
hosts zero-energy Majorana edge modes that are discussed in
the context of topologically protected quantum computation
[26,27].

Both the SSH model and the Kitaev model fall in the
universality class BDI, which has a Z topological index in one
dimension. This class has chiral symmetry, along with time-
reversal symmetry and particle-hole symmetry. It is worth at
this point noting that some authors classify the Kitaev chain
as belonging to the D class, which has particle-hole symmetry
but not time-reversal or chiral symmetries. The reason for
this is that the time-reversal symmetry in the Kitaev model
is not a real time reversal—although it obeys the maths of
a time-reversal operator (which we detail shortly), it is not
clearly related to actually reversing time. There is therefore
no reasons to expect that perturbations to the model would
also obey this “fictitious” time-reversal symmetry. For the
purposes of this work, we will not worry about this aspect
of topological insulators and classify models according to all
of the symmetries they have.

In this paper, we investigate how one may use the SSH
model as a building block to construct toy models in other
universality classes. This follows a very similar recipe that
was used by Kane and Mele [5] to construct the first model
in 2D of a time-reversal symmetric topological insulator. One
begins with two copies of an earlier model by Haldane [28].
One of these models has Chern number of +1 while the other
is the time-reversal counterpart of the first and has Chern
number of −1. They are coupled together in a way that then
respects time-reversal symmetry. This coupled model has a
Chern number of 0, however in this case one can form a
different Z2 index characterising the topological nature of the
state.

In our case, our starting point is a deformation of the SSH
model that breaks time-reversal and particle-hole symmetries,
leaving only chiral symmetry (this is the AIII universality
class). We then couple such a model to its time-reversed
counterpart to create a new model with time-reversal sym-
metry restored. There is a major difference however between
following this procedure in two dimensions and one: in
one dimension, we deal with the winding number, not the
Chern number. While the Chern number is odd under time-
reversal, the winding number is not. This means that the two

1Technically, the mapping from the Kitaev chain to the SSH model
happens only at the point in the Kitaev chain where the hopping is
equal to the superconducting order parameter, w = � in the notation
of the original paper. Away from this point, there is an extra longer
range hopping in the Majorana representation that is not present in
the SSH model. However, this model with an extra hopping term falls
in the same universality class as the SSH model so this technical
difference has no important consequences for the purposes of this
work.

subcomponents of the model before coupling both have a
winding number ν = 1. However, rather surprisingly, once
the two models are weakly coupled (without closing the gap
and retaining chiral symmetry), the winding number is not
necessarily 2—it is also possible for it to be 0 depending on
exactly how the two models are coupled.

The reason for this unexpected result is rather simple—
the winding number is odd under a relabelling of the atoms
within the unit cell. We will show in the next section that
this relabelling can be equivalently thought of as changing
the sign of the chiral symmetry operator. As this labeling is
entirely arbitrary and has no physical consequences, the wind-
ing number is only defined up to a sign—in other words, there
is no difference between winding number +1 and −1. This
means that if one takes two models with winding numbers
ν1 and ν2, there are two distinct classes of allowed coupling
terms respecting chiral symmetry. One of these will lead to a
resulting total winding number νtot = ν1 + ν2, while the other
will give νtot = ν1 − ν2.

In this paper, we derive and explain this sign ambiguity
in the winding number. We then use the procedure outlined
above to construct simple microscopic models of noninteract-
ing topological insulators and superconductors in all of the
classes with chiral symmetry in one-dimension. Though the
topological properties of noninteracting gapped models have
been fully classified [19,20], we find that certain simplifica-
tions occur. In particular, we show that systems that belong to
the different chiral symmetry classes with a Z classification
are in fact topologically equivalent—for example, models in
the BDI class have time-reversal and particle-hole symmetry
in addition to the chiral symmetry, however, any deformation
that respects the chiral symmetry (but may break time-reversal
and particle-hole) will not gap the zero-energy edge states.

While we derive such results for specific models, we also
show they are true in general in any odd dimension. It is
worth mentioning, that similar results were obtained in the
context of disordered quasi-one-dimensional wires [29–31].
It was shown that for all chiral classes the RG flows to the
same fixed point, with an identical number of protected edge
states and the Anderson insulating bulk. The particular type of
the chiral class plays no role at the infrared fixed point.

We discuss the general properties of the edge states in
chiral symmetric systems with integer classification. We show
in this case that the edge states are localized on only one of the
sublattices (on any given edge), and furthermore if there are
multiple protected edge states, they must all be localized on
the same sublattice. We also discuss the role of particle-hole
symmetry in the protection of the edge states and demonstrate
that due to antiunitarity, the particle-hole symmetry protects
either none or only one from an odd number of edge states,
depending on whether it squares to −1 or +1 correspondingly.
We discuss how it is related to the Z2 classification in the D
and DIII classes in 1D.

The paper is organized as follows. In Sec. II, we briefly
review the topological classification of one-dimensional sys-
tems and review an analytical expression for the winding
number that allows us to compute the index without diago-
nalizing the Hamiltonian. We also discuss the sign ambiguity
of the winding number and topological equivalence of chiral
symmetric models belonging to different classes. In Sec. III,
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TABLE I. Summary of the chiral classes and their topological
classification in one dimension.

Class T 2 P2 C Topological index in 1D

AIII 0 0 1 Z
BDI 1 1 1 Z
CII −1 −1 1 2Z
DIII −1 1 1 Z2

CI 1 −1 1 0

we illustrate our ideas by explicitly constructing minimal real-
space models of chiral topological insulators by coupling two
SSH models. We compute their topological indices in case of
coupling weak enough that it doesn’t close the gap. And we
also discuss the symmetry properties of edge states in those
models. In Sec. IV, we focus on the general properties of
the edge states in chiral symmetric systems. We also discuss
the edge states in the presence of particle-hole symmetry. In
Sec. V, we generalize our results for the multiple coupled
chains and evaluate the winding number in the weak coupling
limit.

II. WINDING NUMBER OF ONE-DIMENSIONAL
GAPPED SYSTEMS

Here we briefly discuss the general aspects of topological
classification of noninteracting topological phases important
for the rest of the paper. All noninteracting topological sys-
tems fall into ten topological classes, depending on three
symmetries. These are time-reversal symmetry T , particle-
hole symmetry P, and chiral symmetry C [32,33]. In the
single-particle Hilbert space, symmetries T and P are antiu-
nitary, and thus they can be represented as T = UTK and
P = UPK, where UT and UP are unitary matrices and K is
complex conjugation.

By definition, the system with the Hamiltonian H pos-
sesses these symmetries if the following holds:

Time-reversal: U −1
T H∗(−k)UT = H (k);

Particle-hole: U −1
P H∗(−k)UP = −H (k); (1)

Chiral: U −1
C H (k)UC = −H (k).

Note, that as time-reversal and particle-hole symmetries are
antiunitary they square either to +1 or −1. If the system
possesses both P and T symmetries it is also chiral symmetric
C = P · T . Thus, depending on the type of time-reversal and
particle-hole symmetries, there are four chiral classes: BDI,
CI, CII, and DIII, see Table I. However, as the presence of
chiral symmetry alone does not guarantee that a system is
particle-hole and time-reversal symmetric, there is also a class
AIII that possesses only chiral symmetry. Like time-reversal
and particle-hole symmetries, applying the chiral symmetry
operator twice does not change the state so is proportional
to the identity. However, as the chiral symmetry is unitary as
opposed to antiunitary, one can always remove the phase here
by a gauge choice—so U 2

C = 1 by definition—see Ref. [34]
for more details.

While fixing U 2
C = 1 is almost enough to uniquely define

the chiral symmetry operator UC , there is still a sign ambi-
guity as UC → −UC clearly also satisfies this condition. The
essence of this paper is exploring the consequences of this
ambiguity.

The chiral symmetry is equivalent to a sublattice symmetry.
To see this, define two operators

PA(B) = 1
2 (1 ± UC ). (2)

These satisfy PA + PB = 1 and PAPB = 0, therefore they may
be considered as projection operators onto A and B sublattices
under a bipartite division of the lattice (in some basis). If the
chiral symmetry operator is not diagonal, this natural basis for
the sublattices may not be physically transparent, however the
bipartite sublattice division is always present in models with
chiral symmetry. We also note that under a change of sign of
the chiral symmetry operator UC → −UC , the labeling of the
sublattices swap PA ↔ PB which follows directly from Eq. (2).
Depending on the context, it is sometimes more useful to think
of a change of sign of the chiral symmetry operator and other
times better to think of a re-labelling of the sublattices. Having
shown these are equivalent, we will use these two descriptions
interchangeably throughout this work.

The anticommutation of UC with Hamiltonian (1) in mod-
els with chiral symmetry implies

PAHPA = PBHPB = 0. (3)

Hence in this basis, there is no direct coupling through the
action of the Hamiltonian from A sites to A sites or B sites
to B sites. This means the Hamiltonian written in momentum
space may be written in a block off-diagonal form:

Ĥ =
∑

k

c†
k ĥ(k)ck, (4)

ĥ(k) =
(

0 �̂(k)
�̂†(k) 0

)
, (5)

The winding number may then be defined via the formula

ν = −i

2π

∫
BZ

∂kiφ(k)dk, (6)

where φ(k) is defined through the expression

det �(k) = r(k)eiφ(k), (7)

i.e., φ(k) is the complex phase of det �(k). This expression is
well known for the case of two-bands (see, e.g., Ref. [35]).
For N band model, expression (6) for the winding number
is given in Ref. [36], however without detailed derivation.
In Appendix A, we derive that formula explicitly and show
that by adding the determinant this expression is equivalent
to that derived via Q operators in Ref. [37] for a multiband
system. We also note that instead of using iφ(k) in Eq. (6),
one could replace this with ln det �(k) as the real parts will
always cancel in the integral—however, we find it physically
more intuitive to think of this integral as involving the phase
only.

Thus the value of topological index ν for a concrete model
is determined by the number of poles of f (k) = ∂kφ(k) as a
function of a complex variable z = eik , that lie inside a unit
circle—hence the name “winding number” as it counts how
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many times det �(k) winds around the origin in the complex
plane. This formula is basis independent, and allows to com-
pute the topological index without diagonalizing Hamiltonian.
Note that the expression that directly relates the winding num-
ber to Hamiltonian was also derived in Ref. [38].

Clearly, the topological index cannot change via adia-
batic deformation without det �(k) = 0 for some value of
k—which would correspond to the gap closing. Hence this
index is a Z topological index protected by chiral symme-
try. The chiral symmetry is important, as the definition of ν

requires the off-diagonal structure of the Hamiltonian in the
sublattice basis, which in turn requires chiral symmetry. Note
however that no other symmetry plays a direct role in this
definition—as long as chiral symmetry is present, ν cannot
be changed via any adiabatic deformation that doesn’t close
the gap. As we demonstrate in the subsequent sections, the
presence of additional symmetries may restrict the value of
the winding number. In particular, the winding number can be
zero due to the symmetry constraints, and thus we obtain a
trivial model or a model that characterized by Z2 invariant.
However, we would like to emphasize that in this case the
winding number is a still well-defined invariant as long as
the chiral symmetry is preserved. This discussion has been
specific to one dimension, however the arguments may be
generalized to all odd dimensions—some details of this are
described in Appendix B.

Sign ambiguity

By relabelling sublattice A as B and vice versa, Hamilto-
nian (4) becomes

ĥ(k) =
(

0 �̂†(k)
�̂(k) 0

)
, (8)

Under this transformation, the det �̂(k) in Eq. (7) be-
comes det �̂†(k) = (det �̂(k))∗. This changes the com-
plex phase φ(k) → −φ(k) and hence the winding number
changes sign

ν → −ν. (9)

As this change of labels has no physical consequences, we
can conclude that the winding number ν is defined only up to a
sign. In Appendix B, we show that the same is true in all odd
dimensions where the winding number can be defined.

Let us make two comments here.
(1) Note that the sign ambiguity of the winding number

is different from the ambiguity of the Chern number, which
represents Z index in even dimensions. To demonstrate this
let us compare a set of two-dimensional uncoupled Chern in-
sulators to the set of the one-dimensional chains. In the former
case, the Chern number for each individual plane corresponds
to its Hall conductance σxy, and the total Chern number cor-
responds to the total Hall conductance. While the sign of
Chern number for an individual plane makes no sense, the
relative signs are uniquely defined. Building the set of parallel
or antiparallel planes correspond to physically distinguishable
situations, that have different symmetries and physical prop-
erties. For example, by coupling two parallel Hall bars at the

filling ν = 1 one gets a Hall sample with filling factor ν = 2.
The system of two antiparallel Hall bars with filling factors
ν = 1 and −1 preserves time-reversal symmetry and has zero
Hall conductance. That represents a standard way to construct
Quantum Spin Hall state that obeys Z2 classification [5]. The
ambiguity of the Chern number differs from the ambiguity of
the winding number in the one-dimensional case where the
sign on each chain can be changed by the relabeling of the
sublattices. This clearly has no physical significance.

(2) There is a different well-known ambiguity related to
topological indices in one-dimension. Rather than using wind-
ing number, one could focus on the Zak phase [39] which
is the Berry phase of a particle in a path in k space through
the Brioullin zone. The Zak phase is related to a physical
quantity: the polarization per unit cell [40–42]. The Zak phase
is however not gauge-invariant, and the polarization depends
on the choice of unit cell [43]. For instance, we may consider
a one-dimensional periodic chain consisting of positively and
negatively charged ions with the charges ±e. The unit cell of
such a system can be chosen such as a positively charged ion
labeled as A and a negatively charged ion as B. Then the po-
larization of the unit cell is �P = e(�rB − �rA), where the vectors
�rA/B characterize the position of ions along the chain. If we
now shift the position of the unit cell by a/2, where a is the
distance between the atoms, we will get another unit cell with
exchanged positive and negative ions, thus the polarization of
a unit cell switches its sign − �P. However, this is very different
from the ambiguity in the sign of the winding number—which
exists for a given unit cell.

In our work, we construct models of topological insulators
with chiral symmetry by coupling two spinless SSH chains.
The fact that the winding number is defined up to a sign
suggests that there are two ways of coupling the chains while
preserving chiral symmetry. We discuss them in the next
section.

III. MICROSCOPIC MODELS OF ONE-DIMENSIONAL
CHIRAL TOPOLOGICAL INSULATORS

A. Uncoupled one-dimensional chains

Before we discuss how to construct models that represent
chiral topological classes by coupling two SSH chains, we
first focus on topological properties of an uncoupled system.
The uncoupled model consists of two SSH chains that are
time-reversal counterparts to each other. This is not the only
possible choice of the model, however, it corresponds to the
same logic as in the construction of a quantum spin Hall
insulator. The uncoupled system is described by the following
Hamiltonian in the basis cT

n = {cA,1,n, cB,1,n, cA,2,n, cB,2,n}:

Ĥ0 =
(

ĥSSH 0
0 ĥ∗

SSH

)
, (10)

where ĥSSH is a Hamiltonian of an SSH model, given by

ĥSSH = w

N∑
n=1

ĉ†
A,nĉB,n + v

N−1∑
n=1

ĉ†
B,nĉA,n+1 + H.c., (11)

where amplitudes w, v ∈ C. If w and v are real, ĥSSH has time-
reversal symmetry and is in the class BDI—conventionally
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when people talk about the SSH model in this context, it is
this case they mean. If however we allow w and or v to be
complex, time-reversal symmetry is broken and ĤSSH belongs
to the AIII universality class [44]. There is a slight subtlety
here that even with complex hoppings v and w, one can ap-
ply a gauge transformation cn → eiαncn to make the hopping
amplitudes real again. In other words, even with complex v

and w, the model has time-reversal symmetry, so long as one
defines the time-reversal operator correctly. One can remove
this subtlety by adding longer range hopping terms. However,
once two such models are coupled as we will do, the time-
reversal symmetry may be truly broken as well, therefore this
subtlety is unimportant for our purposes.

The winding number (modulo sign) of a single SSH chain
is ν = 1, if |w| < |v| and ν = 0 if |w| > |v|. As was discussed
in the previous section, the sign of the winding number can be
switched by A ↔ B relabeling of the sublattices. One way of
viewing this is as a “choice” of chiral symmetry operators—in
the former case, we have C = Sz acting in the sublattice basis;
while in the latter we have C = −Sz. From Eq. (2), we see that
this simple change of sign switches the projections onto the A
and B sublattices. Obviously, for a single chain, this change
of sign makes no difference—however, when multiple chains
are coupled, one has this individual choice on each chain, and
the relative sign of them does matter.

To illustrate this, we start with the Hamiltonian of two
uncoupled chains (10). If we choose the chiral symmetry
operator to have the same sign on both chains, the combined
chiral symmetry may be written C1 = Szσ0 where σ0 acts in
chain space. Using this chiral symmetry operator, the total
winding number is ν1 + ν2, which may be 0 or 2 depending on
the relative magnitude of |w| and |v|. However, if we choose
the chiral symmetry operator to have the opposite sign on each
chain, the combined chiral symmetry may be written C2 =
Szσz. In this case, the total winding number is ν1 − ν2 which is
always 0 for the form of model we have chosen. While it may
seem disconcerting that the total winding number can not be
uniquely defined, this is because the model is block diagonal,
i.e., has an additional unitary symmetry leading to individual
conservation of charge in each chain. When this symmetry is
removed by coupling the chains, the winding number is once
again uniquely defined (up to a sign).

As there are two possible choices for chiral symmetry,
there are also two possible types of coupling terms. One of
them preserve chiral symmetry C1 = Szσ0 and the other pre-
serves C2 = Szσz. These two configurations are illustrated in
Fig. 1. By rephrasing the chiral symmetry in terms of the sub-
lattice symmetry (2), the construction physically corresponds
to connecting atoms belonging to different sublattices, but
zero coupling between the same sublattice. In Fig. 1, we illus-
trate two types of sublattices A/B and A′/B′ corresponding to
the chiral symmetries C1 and C2. The difference between the
two chiral operators is a relabelling of the sublattice on the
lower chain.

Without any further symmetry constraints on the inter-
chain coupling, the two pictures illustrate two inequivalent
topological models belonging to the AIII class. Applying fur-
ther constraints to the interchain coupling allows us to fulfill
symmetry requirements for models of CI, CII, DIII, and BDI

FIG. 1. Two ways of constructing AIII topological class by cou-
pling SSH chains. (a) illustrates a system with chiral symmetry
C1 = Szσ0 and (b) illustrates the coupling structure corresponding to
C2 = Szσz. Labels A and B denote the ‘natural’ choice of the sublat-
tices, according to the chiral symmetry C1, and A′ and B′ denote the
sublattices defined according to C2. Corresponding projectors onto
those sublattices are defined in (2).

classes. In the next sections, we construct microscopic models
that represent these classes.

B. Time-reversal and particle-hole symmetries

We have discussed at length the chiral symmetry (and am-
biguity therein) of two uncoupled chains, Hamiltonian (10).
Let us now turn to the issue of time-reversal symmetry.

We have very specifically formulated our SSH model with
complex hopping terms, so that ĤSSH �= Ĥ∗

SSH—meaning that
each individual chain does not possess time-reversal symme-
try. However, in our construction, the second chain is the
time-reversal counterpart of the first. This means that the over-
all model of two chains should obey time-reversal symmetry.
From the basic definition, Eq. (1), the time-reversal symmetry
operator is a unitary operator times the complex conjugate
operator that commutes with Hamiltonian (10). It turns out
that there are two different operators satisfying this that one
could write—one squaring to +1 and the other squaring
to −1.

T 2 = +1 : T+ = U +
T K,U +

T = S0σx

T 2 = −1 : T− = U −
T K,U −

T = iS0σy. (12)

The structure of these can be interpreted physically—in order
to satisfy time-reversal, one needs to swap the chains, i.e., the
time-reversal operator must be proportional to σx or σy. It is
however somewhat perplexing that there is two distinct time-
reversal operators that are both symmetries of the decoupled
two-chain system. Like the choice of chiral operators, this
is due to the block diagonal structure and hence additional
unitary symmetry the decoupled model exhibits. As soon as
one breaks this symmetry by an interchain coupling, this am-
biguity will evaporate.

We can play the same game with particle-hole symmetry
operators—from Eq. (1), this should be a unitary operator
times the complex conjugate operator that anticommutes with
the Hamiltonian (10). Again, calculation reveals two such
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operators:

P2 = +1 : P+ = iU +
P K,U +

P = Szσx

P2 = −1 : P− = U −
P K,U −

P = −iSzσy. (13)

While we have previously discussed the chiral (sublattice)
symmetry operator in isolation, let us now recall that it origi-
nally was defined as the combination of particle hole and time
reversal—C = P · T . By taking different choices of T and P
symmetries, we find an alternative way to reproduce the two
different C operators we previously discussed:

C1 = P+T+ = P−T− = Szσ0 BDI, CII classes

C2 = P−T+ = P+T− = Szσz CI, DIII classes. (14)

While in the case with no additional symmetries, the choice of
chiral operator was motivated only by how the sublattices are
divided, we see now that this has implications on what other
symmetries may or may not be present. We will discuss this
further as we discuss each of the universality classes in turn.

We can also see from this that the decoupled model
may be classified in any one of four different universality
classes—BDI, CII, CI, or DIII. While this ambiguity is indeed
explained by the extra symmetry that will be broken when
a coupling is added, it is quite curious as the topological
classification of each of these cases is not the same—BDI
and CII are Z topological insulators; DIII is a Z2 topological
insulator, and CI is topologically trivial. We will resolve this
seeming paradox in the next sections as we discuss some
concrete models.

To deeper understand and resolve these ambiguities, we
now construct models by coupling the chains. In the presence
of interchain coupling, the Hamiltonian of two chains (10)
becomes

Ĥ =
(

ĥSSH Ŵ
Ŵ † ĥ∗

SSH

)
. (15)

The off-diagonal block Ŵ describes the coupling between the
chains. Note that for physical transparency, we are using a ba-
sis cT

n = {cA,1,n, cB,1,n, cA,2,n, cB,2,n} corresponding to a block
structure in chain space; not in sublattice space. Reordering
the basis would give the block off-diagonal structure (8) that
makes explicit the chiral symmetry.

Our goal is to build the coupling Ŵ that is compatible with
firstly chiral symmetry, but also time-reversal and particle-
hole symmetries in order to construct models in different
chiral universality classes.

C. Real-space realizations of one-dimensional
topological insulators

1. Classes BDI and CII

Let us first consider the case where the chiral symmetry
operator is C1 = Szσ0—meaning that the chains are coupled
according to Fig. 1(a). According to (14), this includes models
in the BDI and CII universality classes. The minimal lattice
model for this would have all couplings identical (general
model is described in Appendix C):

Ĥ1 = Ĥ0 + V̂1, (16)

where Ĥ0 is given by (10) and the coupling between chains is

V̂1 = a
∑

n

(c†
A,1,ncB,2,n + c†

A,2,ncB,1,n

+ c†
B,1,ncA,2,n+1 + c†

B,2,ncA,1,n+1) + H.c. (17)

The strength of the coupling is given by the parameter a. It is
straightforward to show that if a is real, then this Hamiltonian
is symmetric under T+ and P+ meaning that the model falls
in the BDI universality class, while if a is imaginary, the
Hamiltonian is symmetric under T− and P−, so the model is
in the CII class. In the case where a is complex (i.e., neither
real nor imaginary), the model has no additional symmetry
beyond the chiral symmetry, and hence is in universality class
AIII.

Let us suppose that the coupling between chains |a| is
small—specifically small compared to |v| − |w| so that the
gap does not close. Then the winding number is given by
the sum of the winding numbers of the decoupled chains
ν = ν1 + ν2. Therefore, in this limit, the model (17) has the
following phases:

νtot =
{

2, if |w/v| < 1
0, if |w/v| > 1 . (18)

This can be verified by a direct calculation of νtot through
Eq. (6).

Therefore, for weakly coupled chains, there are two phases
possible: topologically trivial and ν = 2. Notice that this cal-
culation of winding number is independent of the complex
phase of the coupling a, i.e., it is independent of whether the
system lies in universality class AIII, BDI or CII. In other
words, the gapped phases in these three universality classes
are all topologically equivalent in one dimension. One can
take a path a = |a|eiθ from θ = 0 to θ = π/2 and the zero-
mode edge states will remain for the entire path.

There is a slight subtlety here that the T− symmetry leads to
all states have a Kramers partner. This means that the winding
number in CII must be even—the classification is 2Z rather
than Z. This means that a model with an odd winding number
may never be in the CII class—however, for any model with
an even winding number, it may be adiabatically deformed to
the CII class without closing the gap and without affecting the
edge states.

Let us now turn to the edge states—to be concrete we will
focus on a left edge of a semi-infinite chain, the calculation for
the right edge is analogous. In Appendix D, we show that the
left edge states for model (16) is localized on the A sites only
(i.e., the amplitude on the B sites is zero) and may be written
in the basis (A1 A2) as

ψ±(n) = λn
1u1 ± λn

2u2, (19)

where λ1,2 are the complex eigenvalues of a transfer matrix
and u1,2 are the corresponding eigenvectors. The edge states
are normalizable when |λ1,2| < 1 which corresponds to the
topological phase. As the two edge states are degenerate, one
can take any linear combination, however, our choice of ψ±
is useful to demonstrate some properties of these edge states.

For generic complex a (the AIII universality class), there is
no particular relationship between λ1 and λ2—both the ampli-
tude and phase of these complex numbers will be different,
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FIG. 2. Amplitudes and absolute value of phases for the eigen-
values of transfer matrix λ1 and λ2 defined in (19). The phase θ of
interchain hopping parametrizes the path between two topological
classes BDI and CII.

meaning there are two edge states with (slightly) different
decay lengths and different wavevectors for oscillation. How-
ever, if one goes to one of the points with time-reversal
symmetry, i.e., a is real corresponding to the BDI class or a is
imaginary corresponding to the CII class, we see that λ1 = λ∗

2.
This is shown in Fig. 2.

Ultimately, this relationship between the constants λ illus-
trates something about time-reversal symmetry. For the BDI
class, we see that

T+ψ± = ±ψ±, (20)

i.e., each edge state is itself time-reversal symmetry. For the
CII class, however, we see that

T−ψ± = ±ψ∓, (21)

which shows that the two edge states form a Kramers doublet.
We emphasise that the result (19) for the edge states is valid
for any complex a, i.e., the edge states evolve continuously
as one takes a path between universality classes, from BDI
through AIII to CII. The only difference one finds in the edge
states between these classes is the time-reversal properties—if
the universality class has time-reversal symmetry, so do the
edge states. This is summarized in Table II.

Let us now briefly consider what may happen if the cou-
pling between the chains is no longer weak. By increasing
the coupling strength a in the model (17), one may close the
gap. At this point, the system undergoes a phase transition

TABLE II. A summary of the properties of the edge states in the
three Z classes.

Universality class property of edge states

BDI Edge states are time-reversal symmetric. N.B. there can
be a phase factor ±1 so one may need the correct linear
combination of degenerate edge states to see this.

AIII Edge states have no symmetry properties
CII Edge states from Kramers pairs which are time-reversal

partners of each other.

to a different topological phase. For instance, in the case
when the coupling parameter a is real (BDI class), the gap
closes if a = ±(|v| − |w|)/2, so when the coupling strength
becomes of the order of the gap in the uncoupled system. At
this transition point the winding number changes by 1. In the
case when the parameter a is imaginary, which corresponds to
the CII class, the winding number is determined only by the
ratio |w/v|. As in the case of weakly coupled chains (18), the
winding number ν = 2 if |w/v| < 1 and ν = 0 if |w/v| > 1.

2. Classes DIII and CI

Let us now construct the classes that correspond to the
second type of coupling, see Fig. 1(b), corresponding to a
chiral symmetry operator C2 = Szσz. In this case, direct cou-
plings between the two chains on the same site are allowed
(the dotted blue lines in Fig. 1), but it turns out to be more
useful for us to consider this coupling to be zero and take a
minimal model to include the interchain coupling b between
next-nearest neighbors. This model may be written

Ĥ2 = Ĥ0 + V̂2,

where Ĥ0 is given by (10) and the coupling between chains is

V̂2 = b
∑

n

(c†
B,1,ncB,2,n+1 + c†

B,2,ncB,1,n+1

+ c†
A,1,ncA,2,n+1 + c†

A,2,ncA,1,n+1) + H.c. (22)

If the interchain coupling b is imaginary, then this model is
symmetric under T− and P+, leading to the DIII classifica-
tion; if b is real then the model is symmetry under T+ and
P− leading to the CI classification, while if b is any other
complex number, there are no additional symmetries and the
classification is AIII. Note that the Hamiltonian (22) is not the
most general, more terms compatible with the symmetries can
be added, see Appendix C.

As discussed in the general introduction, if |b| is small, the
winding number for this type of coupling is νtot = ν1 − ν2 =
0—again, a direct calculation confirms this.

While the winding number is necessarily zero for this
choice of couplings, in the case of DIII where we have T−
symmetry, we can define a Z2 invariant. This is given by parity
of the winding number of one of the Kramers partners [45]. As
weakly coupled chains are topologically equivalent to a pair of
noncoupled chains with Hamiltonians related by time-reversal
symmetry, their eigenstates are Kramers partners, thus the Z2

index is determined by a winding number of one of the chains,
and is given by

p = (−1)νSSH ,

νSSH =
{−1, if |w/v| < 1

1, if |w/v| > 1 . (23)

The case with p = −1 hosts edge states and thus corresponds
to a topologically nontrivial phase. The phase with p = 1 does
not have edge modes and therefore is topologically trivial.
When the interchain coupling amplitude b becomes large, i.e.,
of the order of the gap in uncoupled system, the gap might be
closed. In particular, when one starts with the topologically
nontrivial phase, |ω| < |v|, by increasing the parameter b one
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drives the system to topologically trivial phase. In the trivial
phase when |ω| > |v|, the gap does not close as one tunes b.

Note that in contrast to the BDI, CII, and AIII cases, the
existence of zero energy edge states of the DIII model is
not protected by chiral symmetry, as the winding number
vanishes. As we will discuss below in the broader context
of generic models, other symmetries (time-reversal T− and
particle-hole P+) are needed to protect the degeneracy of the
edge states. We confirm that statement by explicitly comput-
ing the edge states of the DIII model in Appendix D. We find
the following properties of the edge states.

(a) In the basis (A′1 A′2), one of the edge states may be
written as

ψ±(n) = λn
1ψ0,1

− λn
2ψ0,2

, (24)

where λ1,2 = eδ1,2 are certain (complex) eigenvalues of a trans-
fer matrix with magnitude less than 1 given by Eq. (D32), and
ψ

0,1(2)
are the corresponding eigenvectors, given in Eq. (D34).

(b) This edge state is localized on the A′ sublattice. The
other edge state is the time-reversal (Kramers) partner, which
in this case is localized on the B′ sublattice. This is in sharp
contrast to the case of CII where both Kramers partners were
localized on the A sublattice. We will discuss this difference
in detail in the next section.

(c) If one perturbs away slightly from the DIII point in
phase space [i.e., perturb away from the case where the pa-
rameter b in Hamiltonian (22) is purely imaginary], one can
no longer find normalizable zero-energy states satisfying the
boundary conditions—in other words, the topologically pro-
tected edge states require the extra symmetries beyond chiral.
It is worth noting in passing that the exponentially decaying
solutions still exist, just they do not satisfy the simple bound-
ary conditions implied by the end of a chain without splitting
a unit cell.

Having now seen the properties of the edge state of a spe-
cific DIII model in contrast to specific models in the classes
AIII, BDI or CII, we go on to show that the majority of these
properties are not model-specific and are in fact general for all
models of these classes.

IV. GENERAL PROPERTIES OF THE EDGE STATES

A. Chiral symmetric models

It is well known that the edge states of the SSH model
are localized on the A sublattice of the left edge (and the
B sublattice on the right edge). We have shown that this
continues to be true for our model with the first type of chiral
symmetry C1, which has nonzero winding number (classes
AIII, BDI, and CII). For the second type of chiral symmetry
C2, the story is slightly more complicated—each edge state is
still confined to only one sublattice, so long as one defines
the sublattice in accordance with the chiral symmetry, i.e.,
through Eq. (2). In this case, however, one of the left edge
states was on sublattice A′ while the other was on sublattice
B′. This happens for class DIII, where the winding number
is zero. The difference between this case and the first is that
in the first, the left edge states belong only to sites on the A
sublattice, while in the second case one of the left edge states

is localized on sublattice A′ while the other left edge state is
on sublattice B′.

It is quite simple to prove that any 1D model with chiral
symmetry must have the property that the edge states are
localized only on one of sublattices. From Eq. (2), we can
write the chiral symmetry in terms of the sublattice projectors

UC = PA − PB. (25)

We also know that UC acting on an eigenstate of the Hamilto-
nian will give a state with negative the energy UC |E〉 = |−E〉,
this is a direct consequence of the anticommutation between
UC and the Hamiltonian. Hence UC acting on a state within
the zero-energy subspace (the space of edge states in a gapped
model) will remain within this subspace. From the structure of
UC above, Eq. (25), we can also see that UC acting on an edge
state on the left edge must create another edge state on the left
edge and similarly for the right edge.

Let us start with a model with one edge state on the left
edge (e.g., the SSH model). This state must therefore be an
eigenstate of UC . By the structure UC = PA − PB, we see that
the only way this can happen is if PA|ψ〉 = 0 or PB|ψ〉 = 0,
i.e., the state must be localized on one sublattice. Which one
will depend on details of the model and the edge.

We can extend this to models with more than one edge state
on the left edge. In this case, one can find linear combinations
of these states such that they are all eigenstates of UC because
the left edge states are a closed subspace under the chiral
symmetry operator as we have just discussed. One can then
apply the same logic to each edge state—each one must be
localized on either the A or B sublattice.

Furthermore we can prove that the edge states protected
by chiral symmetry are localized on the same sublattice.
Consider two edge states |�1〉 and |�2〉 such that both
of them are eigenstates of the chiral symmetry operator,
C|�1,2〉 = α1,2|�1,2〉, where the eigenvalues α1,2 are each
±1 (because U 2

C = 1). We can add some perturbation V̂ that
acts within this subspace and preserves chiral symmetry,
i.e., {V̂ ,C} = 0. In this case, the matrix element 〈�1|V̂ |�2〉 =
α1α2〈�1|C†V̂C|�2〉 = −α1α2〈�1|V̂ |�2〉. This matrix ele-
ment vanishes if the edge states are the eigenstates of the
chiral symmetry operator with the same eigenvalue, i.e., if
α1 = α2. Therefore, if the states are topologically protected,
they must be localized on the same sublattice.

In the case of symmetry class DIII, we can therefore see
clearly that the edge states are not protected by chiral sym-
metry alone—the addition of a weak perturbation respecting
chiral symmetry (but breaking the other ones) can hybridize
the edge states. This is consistent with the winding number of
zero.

B. Particle-hole symmetry

Chiral symmetry and particle-hole symmetry have a sim-
ilar property. They both anticommute with the Hamiltonian,
however an important difference between them is that chiral
symmetry is represented by a unitary operator and particle-
hole is antiunitary. This is manifested in the fact that the
classes with particle-hole symmetry only (D and C) have
different classification rather than the class AIII with chiral
symmetry. In particular, class D obeys a Z2 classification and
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C is topologically trivial. Here we would like to explain those
differences.

First we focus on the case of P+ symmetry. This symmetry
may protect a single zero-mode edge state. To prove this, we
rely on the fact that like for chiral symmetry, P+|E〉 ∝ |−E〉;
hence a single zero-energy state remains pinned to zero energy
as long as P+ remains a symmetry.

Now consider the case of two edge states, and recall that
chiral symmetry would protect these so long as they are both
localized on the same sublattice. We now prove this is not the
case for the P+ symmetry.

As a basis in this two-dimensional space, we can choose an
orthogonalized pair of eigenstates of P+ (note that eigenstates
of an antiunitary operator are not necessarily orthogonal,
but in this case they are). One can easily show that the
particle-hole symmetry operator in this basis has the following
representation:

P+ =
(

α+ 0
0 α−

)
K, (26)

where α± are the eigenvalues of P+. While P2
+ = 1, the fact

that P+ includes the complex conjugation operator means
that these eigenvalues satisfy only the requirement |α±| = 1.
From P2

+ = 1 it follows that |α±| = 1. Next, we consider some
generic perturbation that respects the P+ symmetry:

P+V̂ P+ = −V̂ . (27)

Let us suppose that this operator can hybridize the two edge
states, so we write it as

V =
(

0 b
b∗ 0

)
. (28)

By doing the matrix multiplication,

P+V̂ P+ =
(

0 b∗α∗
−α+

bα−α∗
+ 0

)
, (29)

we see that the particle-hole symmetry condition is satisfied if

b∗α∗
−α+ = −b. (30)

From here one can determine the phase of b if we denote b =
|b|eiφb, α± = eiφ± :

φb = (φ+ − φ− − π )/2. (31)

Hence we have shown that for any two edge states localized
on the left edge at zero energy, we can find an operator
that respects particle-hole symmetry that hybridizes these two
edge states. In other words, these edge states can not be
topologically protected by the P+ symmetry alone. It is easy to
extend this argument to show that if there are an odd number
of edge states, one of them will not be hybridized, while an
even number will have no protection. This explains the Z2

classification of topological insulators in the D universality
class in 1D.

Let us note that one can follow a similar argument for chiral
symmetry—however, in this case, we do not get the complex
conjugate, and hence the case α+α− = 1 would mean b = 0,

i.e., there is no operator with the correct symmetry that one
can write that would hybridize the two edge states.

Now we turn to the class C with P−. An equivalent argu-
ment to Kramers theorem tells us that in this case the edge
states must come in pairs with energies ±E . A minor exten-
sion of the above argument shows that one can always write
a small perturbation with the P− symmetry that hybridizes a
pair of edge states with E = 0. Hence there can never be any
topologically protected edge states in this class.

C. The case of DIII

The class DIII has chiral symmetry but zero winding
number. We have shown in this case that there is a pair of
zero-energy edge states on the left edge, one localized on the
A’ sublattice and the other on the B’ sublattice. We know that
a generic perturbation respecting only chiral symmetry will
hybridize these.

This class also has the P+ symmetry, but we have just
shown that this symmetry alone will protect only one edge
state; not a pair of them.

Hence the pair of edge states in the class DIII require all
symmetries to remain unhybridized and pinned to zero energy.
One way to think of this is that the T− symmetry enforces
states to come in Kramers pairs with the same energy. The
P+ symmetry requires states to come in pairs with ±E . With
a single pair, the only way to satisfy both these conditions is
E = 0, but we emphasise that both time-reversal and particle-
hole symmetry are crucial in this case.

V. CONSTRUCTION OF N-CHAIN CHIRAL
SYMMETRIC MODEL

One can iteratively extend the scheme of constructing topo-
logical models by coupling two chains to an arbitrary number
of pairwise coupled chains. This allows for the construction
of a generic 2N band AIII model of 1D topological insulators
with a given winding number. We consider a set of N chains.
Next, we want to build all possible inequivalent chiral sym-
metry operators.

One can choose l = N/2 + 1 inequivalent chiral symmetry
operators if N is even and l = (N + 1)/2 if N is odd, as
follows:

Ci = Mi ⊗ Sz, i = 1, 2, . . . , l.

Mi =
(−Ii 0

0 IN−i

)
, (32)

here Sz acts in a space of sublattices A and B and Mi acts in the
chain basis. Ii denotes an identity matrix of the size i × i. In
addition, an arbitrary permutation of chains generates a valid
symmetry operator Mi, that corresponds to the permutations
of the elements 1 and −1 on the diagonal. This corresponds
to additional m = (N

i

)
nonequivalent ways of coupling for a

fixed i. We will therefore assign an additional index to the
chiral symmetry operator: Ck

i , where k = 1, . . . , m.
The corresponding winding number in case of generic

weak coupling that is compatible with chiral symmetry Ck
i is
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FIG. 3. Possible coupling structure of three SSH chains and cor-
responding winding numbers for each type of coupling, according to
(34) and (33).

given by

ν i =
∑
j∈M+

ν j −
∑
j∈M−

ν j, (33)

ν i ∈ [0, max[i, N − i]].

Thus the winding number is the difference between the wind-
ing number of chains with the chiral operators Sz and with
operator −Sz. Thus the largest winding number of a set of N
coupled chains is ν = N in the case of i = 0 and the minimal
is ν = 0. Here we denoted by M+ a set of chains with a chiral
symmetry C = Sz and by M− set of chains with C = −Sz. To
illustrate these general statements on a simple example, we
focus on the case of N = 3 chains.

Example: Three coupled chains

As a first step, we explicitly write all possible chiral sym-
metry operators determined by the matrix Mi according to
(32)

M1
0 =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, M1

1 =
⎛
⎝1 0 0

0 1 0
0 0 −1

⎞
⎠,

M2
1 =

⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠, M3

1 =
⎛
⎝1 0 0

0 −1 0
0 0 1

⎞
⎠. (34)

We schematically illustrate corresponding coupling struc-
tures in Fig. 3 for three coupled SSH chains with arbitrary
in-chain hopping amplitudes vi and ωi. We evaluate cor-
responding winding numbers for each type of coupling
according to (33)

ν0 = ν1 + ν2 + ν3, ν0 ∈ [0, 3];

ν1 =
⎧⎨
⎩

ν1 + ν2 − ν3

−ν1 + ν2 + ν3

ν1 − ν2 + ν3

ν1 ∈ [0, 2]. (35)

Figure 3(a) corresponds to the chiral symmetry C1
0 =

M1
0 ⊗ Sz and the winding number is given by ν0 [see

Eq. (35)]. Figure 3(b) illustrates the chain models with chiral
symmetries C1

1 = M1
1 ⊗ Sz, C2

1 = M2
1 ⊗ Sz, and C3

1 = M3
1 ⊗

Sz. The winding number of these models is given by ν1 in
(35).

Systems with a larger number of chains can be constructed
iteratively. One can formulate a general rule for coupling two
neighboring chains: if two neighboring chains are assigned
different signs in the operator Ck

i , they should be coupled
according to Fig. 1(b) and if they have the same sign, one
should couple them according to Fig. 1(a). Thus we demon-
strated how to construct a generic chiral symmetric multichain
system and evaluated its winding number in the case when the
coupling is weak.

VI. EXPERIMENTAL REALIZATION

So far we have been focusing on purely theoretical models.
To observe the above-studied effects, one needs to realize
these models in experiments. Right now, the SSH model has
been studied experimentally with ultracold atoms [23,24].
However, it remains to connect a possible experimental re-
alization with microscopic models described in our paper for
all choices of symmetry classes. It seems to be feasible in cold
atomic settings.

Concretely, the coupled SSH chains can be viewed as
models for spinful fermions. In that case, coupling terms
correspond to spin-orbit interaction and Zeeman terms, with
staggered amplitudes. One can realize these types of terms
within cold atomic setups, by extending the existing scheme
for SSH potential by taking atoms with additional internal de-
grees of freedom. The staggered magnetic field can be realized
by creating an inhomogeneous magnetic field with the period
half of the lattice constant and spin-orbit terms emerge when
one couples internal degrees of freedom by additional lasers
[46–49]. Moreover, also the phases of the parameters in the
Hamiltonian can be controlled independently [50,51].

VII. DISCUSSION AND CONCLUSION

We studied one-dimensional noninteracting topological in-
sulators with chiral symmetry. We build our models from
coupled one-dimensional chains. Each of the uncoupled
models is described by a two-band Hamiltonian with two sub-
lattices A and B and is characterized by an integer topological
invariant—the winding number. We showed that switching the
labels of sublattices A ↔ B switches the sign of the winding
number, this may also be thought of as switching the sign of
the protecting chiral symmetry operator. We use this ambigu-
ity to demonstrate that there are multiple ways of constructing
the coupled system with chiral symmetry, that correspond to
inequivalent types of coupling between the chains. By choos-
ing the specific type of coupling, one removes the freedom of
relabeling of the sublattices in the individual chains (although
it remains overall in the coupled system) and defines the
choice of chiral symmetry operator (up to a sign). The latter
determines the total winding number. In the weak-coupling
limit, it may range between the sum and differences of the
winding numbers of individual chains.

We also find that the other symmetries of the coupling,
such as particle-hole and time-reversal symmetries are not
relevant—as the winding number of a weakly coupled system
is determined only by the chiral symmetry. From this, we
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conclude that the Z classes (BDI, AIII, CII) are topologically
equivalent in one dimension as far as gapped systems are
concerned. It means that the Hamiltonians of these classes
can be adiabatically connected by a continuous path without
the change of topological index. The only difference between
the edge states in these models is related to the symmetries
that may or may not be there—for example, if the model has
time-reversal symmetry, so will the edge states, but they will
be equivalent to those of a model without the time-reversal
symmetry in every other way.

In these classes, we have proved that the edge states are
all localized on a single sublattice—and if there are multiple
edge states on a given edge, they all must be localized on the
same sublattice. This is in contrast to the class DIII, where
while it has chiral symmetry, the other symmetries force the
winding number to be zero. In this case, the Kramers’ pair
of edge states (on, e.g., the left edge) has one on the A
sublattice and the other on the B sublattice. In this case, one
requires time-reversal and particle-hole symmetry in order for
the edge states to remain pinned to zero energy (the middle
of the gap). We also explicitly proved that the topological
phase of DIII class cannot be continiously deformed to the
topologically nontrivial phase of the class D, which also
has Z2 classification.

It is worth observing in the case of DIII that if one looked at
the edge-state Hamiltonian alone, one finds a single Kramer’s
pair which can not be gapped by any perturbation respecting
time-reversal symmetry. One might then come to the erro-
neous conclusion that time-reversal symmetry alone is all that
is needed to protect such an edge state in 1D, which is clearly
not true as the AII class in 1D has a trivial topological clas-
sification. A further symmetry is required to pin these edge
states to zero energy, which is not be seen in the edge-state
Hamiltonian alone.

To end this section, we reiterate the major results of the
manuscript. (a) We constructed microscopical lattice models
that realize chiral symmetric topological classes in one di-
mension. (b) We studied the sign ambiguity of the winding
number, associated with the relabeling of the sublattices. (c)
We proved the existence of the adiabatic path, that connects
the Z classes AIII, BDI, and CII without changing the topo-
logical index. (d) We proved that there is no such path that
connects Z2 classes, i.e., D and DIII. (e) We have found that
the edge states of one-dimensional models belonging to Z
classes localized only on one of the sublattices.

VIII. OUTLOOK

We plan to extend this approach to three dimensions, where
we expect to be able to construct lattice realizations of models
in all of the universality classes. We expect that for the gapped
phases the chiral symmetry and sign ambiguity in winding
number will play the same crucial role as they play in one
dimension.

We also plan to study the effect of interactions on the topo-
logical properties of these 1D systems. The set of toy models
constructed above will serve as a convenient framework from
which interactions may be added. We will employ this to
study realistic systems that can not be mapped onto standard
spin-chain models studied in the literature [52–54].
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APPENDIX A: PROOF OF EQ. (6)

In order to prove Eq. (6), we consider an arbitrary 2N band
one-dimensional chiral Hamiltonian brought to block-off di-
agonal form:

Ĥ =
(

0 �̂

�̂† 0

)
. (A1)

Next we go into basis where �̂ is diagonal:

�̂ =

⎛
⎜⎜⎜⎝

ε1eiθ1 0 0 . . .

0 ε2eiθ2 0 . . .

0 0 ε3eiθ3 . . .
...

...
...

. . .

⎞
⎟⎟⎟⎠, (A2)

where εi > 0. The eigenstates of (A1) can be constructed as

�±
j = eiα

√
2

(
χ j

±e−iθ j χ j,

)
, (A3)

where χ j is a unit N component vector with χ i
j = δi j and

α is an arbitrary phase. The eigenstates �±
j correspond to

eigenvalues ±ε j . Next we construct the projector onto a band
with energy −εa using (A3). For a = 1, it has the following
structure:

P1 = (�−
1 )†�−

1 = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . −eiθ1 0 . . .

0 0 . . . 0 0 . . .
...

. . .
...

...
...

−e−iθ1 0 . . . 1 0 . . .

0 0 . . . 0 0 . . .
...

...
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A4)

Thus, for an arbitrary a, the nonzero elements are Paa
a =

Pa+N,a+N
a = 1 and Pa,N+a

a = (PN+a,a
a )∗ = eiθa . Now we sum

up over all the filled states (states with negative energy) and
get

P =
∑

a

(�−
a )†�−

a = 1

2

(
IN −�̄

−�̄∗ IN

)
, (A5)

where IN is an identity matrix and block �̄ is given by

�̄ =

⎛
⎜⎜⎜⎝

eiθ1 0 0 . . .

0 eiθ2 0 . . .
...

...
. . .

...

0 . . . . . . eiθN

⎞
⎟⎟⎟⎠. (A6)

In order to construct the winding number, we follow [37]
and consider the operator Q expressed through the projector
P onto the filled bands: Q(k) = 1 − 2P(k). This operator is
chiral symmetric, i.e., {C, Q} = 0, thus in the basis where the
operator C is block-diagonal i.e., C = λ̂σz, where λ̂ is some
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unitary matrix, the matrix Q(k) has the block off-diagonal
form:

Q(k) =
(

0 q(k)
q†(k) 0

)
. (A7)

In our case, the block q(k) = �̄ as follows from (A5). The
determinant of the block q(k) = �̄ is given by

det[q(k)] = exp

⎡
⎣i

∑
j

θ j

⎤
⎦ ≡ eiφ. (A8)

As tr[q−1∂kq] = ∂k ln det[q(k)] = i∂kφ, we obtain the follow-
ing expression for the winding number:

ν = i

2π

∫
BZ

dktr[q−1∂kq] = − 1

2π

∫
BZ

dk∂kφ. (A9)

Now we express the phase φ through the determinant of q:

φ = arctan

[
Im det[q(k)]

Re det[q(k)]

]
. (A10)

As according to (A2) det[�(k)] = ∏
j

ε jeiφ , we can rewrite

expression (A10) in terms of det[�(k)] by dividing and mul-
tiplying the argument of arctan by

∏
j

ε j and get

φ = arctan

[
Im det[�(k)]

Re det[�(k)]

]
. (A11)

Rewriting this expression in a slightly more physically trans-
parent way gives us Eq. (6).

APPENDIX B: SIGN AMBIGUITY OF A WINDING
NUMBER IN ODD DIMENSIONS

Here we prove that the winding number for the N-band
chiral model in odd dimensions is defined up to a sign. To do
that, we consider an expression for a winding number in an
odd-dimensional d = 2n + 1 space [37]:

ν =
∫

BZd=2n+1
ω2n+1, (B1)

where the winding number density ω2n+1 is defined as

ω2n+1 = (−1)nn!

(2n + 1)!

(
i

2π

)
εα1α2...αd

× tr[q−1∂α1 q · q−1∂α2 q . . . q−1∂αd q]d2n+1k, (B2)

where εα1α2...αd is a d dimensional Levi-Civita symbol and
∂αi ≡ ∂ki . We remind the reader, that the matrix q is a block
of another chiral symmetric hermitian matrix Q, constructed
through a projector onto filled bands:

Q(k) =
(

0 q(k)
q†(k) 0

)
. (B3)

Here k = k1, k2, . . . , kd . This matrix is written is the ba-
sis �T = {�1, �2, . . . �N/2, �N/2+1, . . . �N }. Now, we can

TABLE III. Momentum space structure of the coupling matrix
Ŵ (15) in different classes. Here fe(k) and ge(k) are arbitrary even
functions of k, and fo(k) and go(k) arbitrary odd functions of k.

Class T 2 P2 Ŵ (k)

BDI 1 1 fe(k)Sx + fo(k)Sy

CII −1 −1 fo(k)Sx + fe(k)Sy

DIII −1 1 fo(k)S0 + g0(k)Sz

CI 1 −1 fe(k)S0 + ge(k)Sz

rearrange the components of the spinor and write it as
�T → �T = {�N/2+1, . . . �N , �1, �2, . . . �N/2}. This corre-
sponds to the unitary transformation of the form U = σx Î ,
where Î is a N

2 × N
2 unit matrix. In the new basis, the matrix Q

is still off block-diagonal, however, under this transformation
its block transforms as q → q†. Matrix q is unitary, therefore

∂αi (q
†q) = q†∂αi q + q∂αi q

† = 0. (B4)

This implies

tr[q∂α1 q−1 · q∂α2 q−1 . . . q∂αd q−1]

= (−1)d tr[q−1∂α1 q · q−1∂α2 q . . . q−1∂αd q]. (B5)

We apply this property to the winding number density and
use that as d is odd, i.e., (−1)d = −1 and therefore we prove
that the winding number density (B2) and correspondingly
the winding number (B1) change the sign under a unitary
transformation of a basis.

APPENDIX C: GENERAL MODELS

1. Construction of models in k space

The general Hamiltonian that describes coupled chains is

Ĥ =
(

ĥSSH Ŵ
Ŵ † ĥ∗

SSH

)
. (C1)

In order to construct models that represent chiral symmet-
ric topological classes, we study how the coupling matrix
Ŵ transforms under symmetry operations (12) and (13). For
simplicity we do that in k space. We obtain the following prop-
erties on the matrix Ŵ (k) by imposing symmetry constraints
and taking into account that in Fourier space the operator K
reverses the sign of momentum k → −k:

T− : Ŵ (k) = −Ŵ T(−k);

T+ : Ŵ (k) = Ŵ T(−k);

P− : SzŴ (k)Sz = Ŵ T(−k);

P+ : SzŴ (k)Sz = −Ŵ T(−k).

By taking into account these conditions, we obtain the general
form of the matrix Ŵ (k) for symmetry classes with chiral
symmetry, see the Table III. The real-space structure of the
matrix Ŵ depends on the choice of the even and odd func-
tions fe(k), fo(k), ge(k), and go(k). If we focus on hopping
terms up to the nearest neighbor, the possible k dependence

075422-12



ONE-DIMENSIONAL NONINTERACTING TOPOLOGICAL … PHYSICAL REVIEW B 107, 075422 (2023)

of the odd functions fo(k) and go(k) is sin(k), and for the
even functions fe(k) and ge(k), we can choose either constant
(corresponds to on-site terms) or cos(k).

2. Classes BDI and CII

The general Hamiltonian belonging to the class AIII with
chiral symmetry C1 = Szσ0 reads

Ĥ1 = Ĥ0 + V̂1,

V̂1 =
∑

n

ĉ†
A,n[v · σ]ĉB,n + ĉ†

B,n[ω · σ]ĉA,n+1 + H.c.,

v = {vx, vy, 0}, ω = {ωx, ωy, 0}, (C2)

where σ is the vector of three Pauli matrices acting in chain
basis. The case of real coupling amplitudes corresponds to the
topological class BDI, while the case of imaginary couplings
describes the class CII. By setting vy = ωy = 0 and vx =
ωx = a, we obtain the minimal model (17) that we studied
in the main text.

3. Classes DIII and CI

Now consider the general Hamiltonian belonging to the
class AIII with chiral symmetry C2 = Szσz:

Ĥ2 = Ĥ0 + V̂2,

V̂2 =
∑

n

ĉ†
A,n[βA · σ]ĉA,n+1 + ĉ†

B,n[βB · σ]ĉB,n+1

+
∑

n

ĉ†
A,n[δA · σ]ĉA,n + ĉ†

B,n[δB · σ]ĉB,n + H.c.,

βA/B = {βA/B,x, βA/B,y, 0}, δA/B = {δA/B,x, δA/B,y, 0}. (C3)

The case of imaginary amplitudes βA/B and δA/B = 0 corre-
sponds to the class DIII and the case of real amplitudes βA/B
describes the model of trivial topological class CI.

APPENDIX D: EDGE STATES

In order to obtain the edge states solution, we use the
Heisenberg picture. In this picture, the fermionic creation
operator ĉ†

A/B,m,σ obeys the time evolution determined by the
commutator with the Hamiltonian of a model:

−i
d

dt
ĉ†

A/B,m,σ = [Ĥ, ĉ†
A/B,m,σ ], (D1)

where the operators ĉ†
A/B,m,σ are related to the components of

the wave function �A/B,m,σ as

ĉ†
A/B,m,σ =

∑
ε

�A/B,m,σ eiεt ĉ†
ε,A/B,σ ≡

∑
ε

ĉ†
ε,A/B,σ (m). (D2)

If we substitute this ansatz to the Heisenberg equation (D1),
we obtain the following stationary equations:

εĉ†
ε,A/B,σ (m) = [Ĥ , ĉ†

ε,A/B,σ (m)]. (D3)

From here one can obtain the corresponding wave function
�A/B,m,σ .

1. Edge states in CII and BDI classes

The Hamiltonian with the chiral symmetry C1 is given by
(16) and (17):

H1 = w

N∑
n=1

c†
An1cBn1 + v

N−1∑
n=1

c†
Bn1cA,n+1,1

+ w∗
N∑

n=1

c†
An2cBn2 + v∗

N−1∑
n=1

c†
Bn2cA,n+1,2+

+ a
∑

n

(c†
An1cBn2 + c†

Bn1cA,n+1,2 + c†
An2cBn1

+ c†
Bn2cA,n+1,1) + H.c. (D4)

If a is real the Hamiltonian describes a model that belongs to
BDI class and if a is imaginary, the model belongs to CII class.
We will focus on the topological phase with ν = 2, i.e., there
are two edge states. The equation of motion for this model
(D3) yields the following equation for the wave function of
the model:

w∗�Am1 + v�A,m+1,1 + a�A,m+1,2 + a∗�Am2 = ε�Bm1

w∗�Am2 + v�A,m+1,2 + a�A,m+1,1 + a∗�Am1 = ε�Bm2

w�Bm1 + v∗�B,m−1,1 + a�Bm2 + a∗�B,m−1,2 = ε�Am1

w�Bm2 + v∗�B,m−1,2 + a�Bm1 + a∗�B,m−1,1 = ε�Am2.

(D5)

If we are looking for the midgap states (ε = 0), the equa-
tions for sublattices A and B decouple. As we discussed in the
main text, the two protected edge states should be localized on
the same sublattices. Therefore, if we consider a half-infinite
system, we can look for solutions localized on the left edges.
Thus atoms A on the left edge decouple and �B,m,σ = 0. In
this case, we are dealing with the following system:

v�A,m+1,1 + a�A,m+1,2 = −(w∗�Am1 + a∗�Am2), (D6)

a�A,m+1,1 + v∗�A,m+1,2 = −(a∗�Am1 + w�Am2) (D7)

what we have produced here is a recurrence relation that gives
us the wave function for the next cell based on its value on the
current cell. Express as matrices,(

v a
a v∗

)(
�A,m+1,1

�A,m+1,2

)
= −

(
w∗ a∗
a∗ w

)(
�Am1

�Am2

)
. (D8)

By introducing the matrix C that represents the 2 × 2 matrix
on the left side, and the matrix D on the right side, we obtain

ψ
A,m+1

= −C−1Dψ
Am

, (D9)

we can define the “transfer” matrix T, by combining C and D
matrices T = C−1D:

ψ
A,m+1

= −T ψ
Am

,

T = 1

|v|2 − a2

(
w∗v∗ − |a|2 v∗a∗ − aw

va∗ − w∗a wv − |a|2
)

. (D10)
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In order to construct the exponentially decaying states, we find
the eigenvalues of the transfer matrix:

λ1,2 = 1
2 (−(2|a|2 − w∗v∗ − wv) ± i

√
|�|),

� = 8|a|2Re[wv] − 2Re[(wv)2] + 2|w|2|v|2

− 4(|v|2(a∗)2 + |w|2a2). (D11)

We can also define the logarithm of those eigenvalues δ =
ln(λ). Real part of δ describes the decaying length of the edge
states and the imaginary part describes the oscillating part
of the wave function. Note that at “high-symmetry points,”
where the parameter a is real or imaginary, the eigenvalues are
related by complex conjugation: λ1 = λ∗

2. The eigenvectors
u1,2 of the transfer matrix are given by

u1,2 =
[

1
wv − w∗v∗ ± i

√|�|
2(v∗a∗ − aw)

]
. (D12)

The most generic solution of the equation (D8) can be written
as

ψ
A,m

=
∑

i

βi(−λi )
mui, (D13)

where β1/2 ∈ C. Expanding,

ψ
A,m

=
(

�Am1

�Am2

)
= β1(−λ1)mu1 + β2(−λ2)mu2. (D14)

Since both eigenstates are degenerate, we can take any linear
combination however the choice of a symmetric and antisym-
metric combinations is useful to demonstrate some properties
of the edge states. In order to do that consider β1 = ±β2 and
have the following definitions:

ψ+ ⇒ β1 = β2,

ψ− ⇒ β1 = −β2.
(D15)

Refine the equation to a simpler notation where the minus has
been incorporated into the eigenvalues (λi):

ψ± = (λ1)nu1 ± (λ2)nu2. (D16)

Note that the states are normalizable if they decay into the
bulk, i.e., |λ1,2| < 1.

The symmetry properties of the model (D4) must be re-
flected in the properties of the edge state wave functions. We
can demonstrate analytically the properties of these states by
studying how they transform under the action of time-reversal
symmetry. Our conjecture is that for the BDI class with the
time-reversal symmetry T 2

+ = +1, application of the TRS will
transform the state back to itself. For the CII class, to comply
with Kramers theorem, the state will transform to its counter-
part:

BDI T+ψ± ∝ ψ± T+ = S0σxK,

CII T−ψ± ∝ ψ∓ T− = iS0σyK.
(D17)

Let us demonstrate those properties explicitly. To do that
we study how the time-reversal symmetry acts on the

eigenvectors u1,2:

T+u1 = S0σxK

(
1

w∗v∗−wv+i
√|�|

2(v∗a∗−wa)

)

=
(

wv−w∗v∗−i
√|�|

2(va−w∗a∗ )
1

)
= u2.

(D18)

It is easy to check then that T+ψ− = −ψ−. Thusly
T+ψ± = ±ψ± which is consistent with our conjecture (D17).

By acting T− on the eigenstates u1 and u2, we get

T−u1 = iS0σyK

(
1

w∗v∗−wv+i
√|�|

2(v∗a∗−wa)

)

=
(

wv−w∗v∗−i
√|�|

2(va−w∗a∗ )
−1

)
= −u2.

(D19)

Thus our conjecture (D17) also holds for the time-reversal
symmetry of CII class since operating on one of the eigen-
vectors gives a minus sign needed to transform ψ+ to ψ−.
This follows from the fact that operating twice on the state
should return the negative of the original state. Therefore the
characteristic feature of CII class is that the edge states can
be chosen to form a Kramers doublet. If the time-reversal
symmetry is broken, the eigenvectors are not related to each
other by any symmetry transformation. This is illustrated in
the Fig. 2 of the main text.

2. Edge states in DIII class and their protection

Here we derive the edge states of the model that has the
chiral symmetry C2:

H2 = w

N∑
n=1

c†
An1cBn1 + v

N−1∑
n=1

c†
Bn1cA,n+1,1 + w∗

N∑
n=1

c†
An2cBn2

+ v∗
N−1∑
n=1

c†
Bn2cA,n+1,2 + b

N−1∑
n=1

(c†
B,1,ncB,2,n+1

+ c†
B,2,ncB,1,n+1 + c†

A,1,ncA,2,n+1 + c†
A,2,ncA,1,n+1) + H.c.,

(D20)

where b = |b|eiφ . If φ = π/2, Hamiltonian (D20) has time-
reversal symmetry and belongs to the class DIII. For any other
φ �= π/2, the time-reversal symmetry is broken and the model
belongs to the trivial class CI. Equations of motion for this
model are

w�Bm1 + v∗�B,m−1,1 + b�A,m+1,2 + b∗�A,m−1,2 = ε�Am1

w∗�Am1 + v�A,m+1,1 + b�B,m+1,2 + b∗�B,m−1,2 = ε�Bm1

w∗�Bm2 + v�B,m−1,2 + b�A,m+1,1 + b∗�A,m−1,1 = ε�Am2

w�Am2 + v∗�A,m+1,2 + b�B,m+1,1 + b∗�B,m−1,1 = ε�Bm2.

(D21)

In this case, the equations for sublattices A and B do not
decouple if we focus on zero energies ε = 0. However, they
decouple if we define new sublattices A′ and B′ according
to the operator C2 as A → A′, B → B′ on the first chain and
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A → B′, B → A′ on the second. In order to solve the equa-
tions, we take the following ansatz:

ψ
m

= ψ
0
eδm,

ψ
m

=

⎛
⎜⎜⎝

�A′m1

�A′m2

�B′m1

�B′m2

⎞
⎟⎟⎠, ψ

0
=

⎛
⎜⎜⎝

cA′,1
cA′,2
cB′,1
cB′,2

⎞
⎟⎟⎠, (D22)

where the coefficients ci are complex numbers. Note that for
convenience we use here the parameter δ and not the exponent
of it λ = eδ as in the previous subsection. As always, real part
of δ corresponds to the decaying length of the edge states (if
δ < 0) and imaginary part describes the oscillating part. We
substitute (D22) to Eqs. (D21) and obtain two independent
sets of equations:

(i)

{
cB′,1(w + v∗e−δ ) + 2cB′,2 cosh(δ + iφ)|b| = 0
cB′,2(w + v∗eδ ) + 2cB′,1 cosh(δ + iφ)|b| = 0

; (ii)

{
cA′,1(w∗ + veδ ) + 2cA′,2 cosh(δ + iφ)|b| = 0
cA′,2(w + v∗e−δ ) + 2cA′,1 cosh(δ + iφ)|b| = 0

. (D23)

We can write them in a compact matrix form, if we in-
troduce two vectors c1 = (cB′,1, cB′,2) and c2 = (cA′,1, cA′,2).
With these notations the equations can be written as

(i) M1c1 = 0,

(ii) M2c2 = 0, (D24)

where the matrices M1 and M2 are given by

M1 =
(

w + v∗eδ 2|b| cosh(δ + iφ)
2|b| cosh(δ + iφ) w + v∗e−δ

)
, (D25)

M2 =
(

w∗ + veδ 2|b| cosh(δ + iφ)
2|b| cosh(δ + iφ) w∗ + ve−δ

)
. (D26)

From the condition det M1,2 = 0, we can obtain δ. Let us write
those two equations explicitly:

det M1 = 0 → w2 + (v∗)2 + 2wv∗ cosh(δ)

− 4|b|2 cosh2(δ + iφ) = 0, (D27)

det M2 = 0 → (w∗)2 + (v)2 + 2w∗v cosh(δ)

− 4|b|2 cosh2(δ + iφ) = 0. (D28)

Our goal is to demonstrate that in the absence of time-reversal
symmetry, there are no zero-energy edge state solutions. In
order to do that we assume that the time-reversal symmetry
is weakly broken, so we can represent φ = π/2 + α, where
α � 1, and we do perturbation theory in α:

δ = δ0 + δα + o(α2), |δα| � 1. (D29)

By substituting this ansatz to the equations (D27) for δ, we
obtain the following expression for the correction δα:

δα = −4i|b|2x0

v∗w + 4|b|2x0
α. (D30)

Here we write the correction to the roots of det M1 = 0. The
correction to det M2 = 0 can be obtain by replacing v∗w →
vw∗. By x0 = cosh[δ0], we denote the solutions for φ = π/2,
i.e., for the time-reversal symmetric case. In the limit φ =
π/2, Eqs. (D27) become simple quadratic equations with the
following solutions:

x0,1(2) = −2vw ±
√

4w2v2 − 16|b|2(−4|b|2 + v2 + w2)

8|b|2 ,

x0,1(2) = cosh[δ0,1(2)]. (D31)

As it is hard to work with a generic expression, we can focus
on a simple limit, where we know that the edge states exist.
This corresponds to the limit |w| < |v| and |b| < |v| − |w|.
One can express explicitly δ0,(1)2 and obtain the following
simple expressions:

δ0,1(2) = ln

(
±i

b

v∗

)
± iw

2b
. (D32)

Similarly, one can consider the equations for the sublattice A′
and corresponding δ0,3(4) = (δ0,1(2))∗ as expected in the time-
reversal symmetric case. By using (D30), we construct the
solution when the time-reversal symmetry is weakly broken.
In this case, the solutions δ are not related by time-reversal
symmetry anymore, so they do not form Kramers pairs. The
general solution of (D21) has the following form:

ψ
m

= β1ψ0,1
eδ1m + β2ψ0,2

eδ2m + β3ψ0,3
eδ∗

1 m + β2ψ0,4
eδ∗

2 m.

(D33)

Here the eigenvectors ψ
0,i

[see definition (D22)] have the
following structure:

ψ
0,(1,2)

=

⎛
⎜⎜⎝

0
0

XB(δ1,2)
1

⎞
⎟⎟⎠, ψ

0,(3,4)
=

⎛
⎜⎜⎝

XA(δ3,4)
1
0
0

⎞
⎟⎟⎠, (D34)

where XA,B(δ) are given by

XA(δ) = −2|b| cosh(δ + iφ)

w + v∗eδ
,

XB(δ) = −2|b| cosh(δ + iφ)

w∗ + veδ
. (D35)

The coefficients βi need to be chosen according to the bound-
ary conditions at m = 0. Similarly to the case of BDI/CII
classes, at the boundary the wave function must vanish
ψ

m=0
= 0. This can be satisfied if β1 = −β2 and β3 =

−β4, as follows directly from (D33) and (D34). Therefore
XB(δ1) = XB(δ2) or XA(δ3) = XA(δ4). One can check that for

075422-15



POLINA MATVEEVA et al. PHYSICAL REVIEW B 107, 075422 (2023)

the time-reversal symmetric case those conditions are satis-
fied, and when the symmetry is broken φ = π/2 + α, the
difference between the two parts of the equality is nonzero
and is given by (in the limit, we are focused on):

XB(δ1) − XB(δ2) = −2iαbw

(v∗)2
,

XA(δ3) − XA(δ4) = −2iαbw∗

v2
. (D36)

Therefore the boundary conditions for the edge states cannot
be satisfied if the time-reversal symmetry is broken. More-
over, one can demonstrate that in the time-reversal symmetric
case, the edge states form Kramers pairs. We notice that
T−ψ

0,1
= ψ

0,3
and T−ψ

0,3
= −ψ

0,1
. Similarly, T−ψ

0,2
=

ψ
0,4

and T−ψ
0,4

= −ψ
0,2

. Therefore the following pair of
states forms a Kramers’ pair (up to a normalization constant):

ψ± = (ψ
0,1

eδ1m − ψ
0,2

eδ2m) ± (ψ
0,3

eδ∗
1 m − ψ

0,4
eδ∗

2 m).

(D37)
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