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Network Effects on Strategic Interactions: A Laboratory Approach 

 

Yang Zhang1, Xiaomin Du 
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yangzhanguser@mail.tsinghua.edu.cn, dxm16@mails.tsinghua.edu.cn 

 

We examine the effect of interaction structure (network) on two classes of collective activities, 

herding and shirking, respectively referring to the situation where a player’s incentive to take a 

certain action increases and decreases if more of her network neighbors follow the same action. In 

our experiment, we find that subjects do not act according to theoretical equilibrium, and their 

frequencies of making the socially beneficial choice in herding and shirking games are inversely 

influenced by the number of network neighbors they have. Moreover, the observed local network 

effect is stronger in shirking games, while the global network effect is more significantly present in 

herding games. We explain the behavioral regularities through a hybrid learning model, which  

extends SEWA learning into a network context. As such, our learning model provides a foundation 

for the observed dynamics, disequilibrium behavior, as well as the local and global network effects. 

 

Keywords: social networks, game theory, strategic complement, strategic substitute, behavioral 

experiment, learning. 
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1. Introduction 

Social and economic networks serve as platforms for trade and information exchange, and 

correlate the activities of separate individuals (Sundararajan et al. 2013). Activities of users of 

online networking sites, such as liking and following a movie or subscribing to a club, can generate 

considerable influences on their peers. This gives rise to positive correlations of demands of similar 

products or services across friends (Aral and Walker 2011, Oestreicher-Singer and Sundararajan 

2012a, 2012b). In other occasions, social networks help coordinate the individual choices, such as 

vaccination against viruses (Rao et al. 2007), the study of foreign languages (Galeotti et al. 2010), 

and software compatibility between coworkers (Lee et al. 2006). By means of laboratory 

experiments, this paper studies how the decentralized interaction of networked agents is affected 

by the network structure, which indicates “who interacts with whom”. While the problem is 

generally difficult to tackle in both theory and empirical research, we are able to decompose 

multiple sources of network effects on agent activity in our experiment due to the incomplete 

information setting we consider. Our research goes beyond the linkage between aggregate network 

configurations and collective economic consequences, and inspect how the network affects 

activities at individual level (rather than group level). In this line, our study reveals how boundedly 

rational agents make use of the network information and adjust their strategies through learning, 

which shapes the aggregate observations. 

In this paper, we represent decentralized activities in networks by two classes of games, 

herding / shirking, referring to the case where a player’s incentive to take a certain action increases 

/ decreases if more players in her network neighborhood follow the same action. Typical 

applications include technology adoptions under network effects (herding), and voluntary reduction 

of pollution (shirking). These concepts are illustrated by the examples that follow this paragraph. 

From the viewpoint of management and social planning, it is crucial to understand: How does the 

network structure leverage the outcomes of herding and shirking, and foster socially beneficial 

behavior in strategic contexts? Why does the network exhibit the observed effect on behavior?  

Example 1. Product adoption under network effects (herding). In the classical models for 

products with network effect (e.g. Katz and Shapiro. 1992, 1986, 1985), it is assumed that user 

adoptions of the product are affected by the entire user network size. Sometimes, however, a user’s 

benefit from buying a product depends on the adoption decisions from a subset of agents in the user 

network, with whom he/she/it needs that product to interact. For example, suppose a firm decides 

whether to adopt the RFID (Radio Frequency Identification) system which carries readers and tags 

only working for the same type of system. For the system to function, the firm has to coordinate its 



  

installation decision with its business partners, but obviously it does not need to coordinate its 

adoption with every other firm. If we connect each company with the partners it needs to exchange 

data with RFID, we have obtained a network. In this language, Katz-Shapiro models studied the 

case where the network is complete (everyone connected to everyone else), whereas we concentrate 

on situations where each firm or customer only coordinates with a subset of the user population.  

Example 2. Pollution reduction (shirking). In many cases, pollution in one region yields a 

negative impact on the environment of all adjacent regions. Examples include water contamination, 

air pollution, among others. As such, the costly effort of reducing pollution made by the 

administration of one region can also benefit neighboring regions, giving rise to a shirking problem: 

Every region aspires to clean environment, but at the same time wants to free ride on neighbor’s 

pollution reduction. The collective outcome of pollution reduction and its environmental 

consequence will then depend on the connection structure – “whose neighbor is whom”.   

In our experiment, subjects have incomplete information of the network structure. To be 

specific, subjects know about the number of their network neighbors, but have only distributional 

knowledge about the network structure outside their neighborhood. The setting of incomplete 

network information captures agents’ cognitive limitation in large social networks, and gives rise 

to monotonic network effects in theory for both herding and shirking games (Galeotti et al. 2010, 

Sundararajan 2007). In our experiment we observe some of the network effects inspired by the 

theory, and suggest a set of simple topological measures (e.g. degree, density) that provide 

sufficient predictions for strategic behavior in networks. 

A major contribution of this paper lies in the behavioral model established to answer the 

research question. The model extends the SEWA learning paradigm (Chong et al. 2006, Ho et al. 

2007) into a network context, and explains the emergence of network effects, deviation from 

equilibrium, and behavioral dynamics as a consequence of individual level learning. We show that 

it is the same type of learning that governs both herding and shirking in networks, despite the 

opposite appearances of the two games. The effectiveness of the proposed behavioral model is 

demonstrated through comparisons with alternative models of adaptive learning and learning 

towards equilibrium.  

In Section 2, we review the relevant literature. Section 3 introduces the experimental design 

and empirical hypotheses. In Section 4 we outline the basic findings from our data. Then in Section 

5, the learning model is developed to characterize the individual-level behavior. Section 6 

concludes with further discussions.   



  

2.  Literature Background 

Decentralized interactions in networks have been gaining attention in economics and 

operations research in recent years. Theoretical models can be classified by the nature of games 

being studied and the settings of information. Assuming agents have full information about the 

network layout, Ballester et al. (2006), Bramoullé  and Kranton (2007) and Bramoullé et al. (2014) 

investigate games with linear best replies. The games they explore exhibit strategic 

complementarity or strategic substitutability, which correspond to the notion of herding or shirking 

referred in our paper. Another stream of theoretical literature embraces incomplete information of 

the network structure, including Sundararajan (2007) on strategic complementary games, and 

Galeotti et al. (2010) on both games of strategic complements and strategic substitutes. Galeotti 

and Goyal (2010), Cho (2010), Hojman and Szeidl (2008) examine games of submodular nature, 

but with networks endogenously formed by the players. For more information on the literature of 

network games, we refer the readers to the recent surveys: Jackson (2008), Ioannides (2012), 

Jackson and Zenou (2015), and Jackson et al. (2017). Most existing works in this area draw upon 

standard game theory, assuming players are perfectly rational. In contrast, our paper takes an 

experimental approach which allows for the examination of bounded rationality.  

In terms of experimental research, traditional laboratory games on collective activities have 

been focusing on the case where subjects interact globally, e.g. Van Huyck et al (1990) and Weber 

(2006) for coordination (herding) game, and Ledyard (1997) for public goods (shirking) game. In 

more recent works, the concept of social network is introduced into the experiment (see Kosfeld 

(2004) for a review). Keser et al. (1998), Berninghaus et al. (2002), Cassar (2007), Corbae and 

Duffy (2008) study the role of interaction structures in shaping the outcomes of coordination, 

cooperation, and equilibrium selection. Due to complexity of network structures, these works above 

only consider bilateral games played between each pair of connected players. Our game adopts a 

multilateral setup, which allows us to embed network configurations into the equilibrium 

predictions (see Section 3).2 Closer to our work, Judd et al. (2010) and Rosenkranz and Weitzel 

(2012) analyze network experiments of coordination game and public goods game respectively, 

and Charness et al. (2014) studies the network game experiments under various informational 

                                                      
2 With bilateral games, the player collects payoff from separate games played with each of her connected 

partners (referred as neighbors) in the network. In our game however, the player reaps profit from one unified 

game played multilaterally with all her neighbors. While in both cases (bilateral and multilateral games) the 

player has to take into account all neighbors’ actions simultaneously, our setup allows us to decompose the 

effect of one’s local connectivity and that of global network density on subject behavior under incomplete 

information.       



  

conditions. Compared to those works, our paper is unique in the proposed learning model, which 

bridges the individual-level behavior and aggregate experimental observations. Our model embeds 

SEWA learning theory into the network context. In that way, our paper draws connections between 

network games and the experimental literature on learning (see Fudenberg and Levine 1998, Erev 

and Roth 1998, Camerer and Ho 1999, Camerer et al. 2002, Chong et al. 2006, Ho et al. 2007, 

among others).  

While individual learning consists of an integral part of our analysis, we are aware of the 

separate empirical literature on social learning in network environments, such as Foster and 

Rosenzweig (1995), Conley and Udry (2001), Miguel and Kremer (2003), Munshi (2004), Mobius 

et al. (2007), Rao et al. (2007), etc. The main body of this research focuses on how the agent learns 

the values of her choices (e.g. receiving a vaccine, adopting an agricultural technique) through 

social networks, rather than the coordination of agent choices in networks, which is what we choose 

to study. Also, most empirical works in this area lack the analysis of comparative statics that 

describe the way equilibria change with the network configuration, which we are able to test in our 

experiment.  

Our paper is practically motivated by the management science literature on strategic customer 

behavior. This stream of research broadly inspects the gaming between consumers and the selling 

firm, or between consumers themselves, in the purchase of certain products or services. In a broad 

sense, the afore-mentioned examples of decentralized product adoption under network effect (Katz 

and Shapiro 1992, 1986, 1985, Riggins et al. 1994, Lee and Mendelson 2008, etc.) can be classified 

as studies of strategic customer behavior. In the domain of revenue management, there is research 

that concentrates on the inventory and pricing policies of the firm when selling to strategic 

customers: Elmaghraby et al. (2008), Aviv and Pazgal (2008), Su and Zhang (2008, 2009), Cachon 

and Swinney (2009, 2011), among others. As pointed out by Liu and van Ryzin (2008), however, 

strategic interactions among customers may be constrained by the physical or social locations of 

individuals. As a result, an individual consumer in the marketplace might base her decision on the 

acts of people who hold some certain ties with her (i.e. being physically or socially around her). In 

that sense, our research has potential implications on how strategic customers coordinate their 

purchases in networked environments, which could inspire further studies on the resultant sales 

strategy of the firm. 

3. Experimental Design and Hypotheses 

3.1. Network 



  

In our experiment, subjects are connected according to the network structures 𝐺𝑙 , 𝐺ℎ in Figure 

1. Directly connected players are neighbors. The number of one’s neighbors is her degree. Subjects 

do not know the structure of network they live in (i.e. either network in Figure 1). Instead, each 

subject knows her own degree, and perceives neighbor degrees as random variables, for which the 

distribution is known to the subject. As discussed in Section 1, the setting of incomplete network 

information reflects the potential cognitive limitation that players have regarding the network 

institution (e.g. I know how many friends I have, but am uncertain about the number of friends of 

my friends).  

     

Figure 1. Network structures used in experiments 

That said, what are the distributions of neighbor degrees in our laboratory networks? In the 

experiment, the subjects are randomly assigned over the network positions conditional on their 

degrees in an equally likely manner. This leads to the following neighbor degree distributions 

conditional on one’s own degree (Table 1).    

Table 1. The neighbor degree distributions for 𝐺ℎ and 𝐺𝑙 

𝐺ℎ 𝐺𝑙 

If the player is degree-2, 

probability 
No. degree-3 

neighbors 

No. degree-2 

neighbors 
probability 

No. degree-3 

neighbors 

No. degree-2 

neighbors 

   1/2   1 1  2/3 1 1 

   1/2   2 0  1/3 0 2 

If the player is degree-3, 

probability 
No. degree-3 

neighbors 

No. degree-2 

neighbors 
probability 

No. degree-3 

neighbors 

No. degree-2 

neighbors 

   1/2   2 1 1 1 2 

   1/2   1 2       

𝐺𝑙 𝐺ℎ 



  

Under incomplete network information, one’s own degree characterizes her local network, 

while her neighbor degree distribution (conditional on her own degree) measures the network 

outside her neighborhood. Specifically, the set of conditional neighbor degree distributions defines 

network density in a comparative sense: If every degree type in the network faces stochastically 

higher conditional neighbor degree distribution, then the overall network density is higher (Galeotti 

et al. 2010). In this paper we use network density as a measure of the global network. It is easy to 

show in Figure 1 (and confirm our intuition) that 𝐺ℎ has higher density than 𝐺𝑙 (see Remark A-1, 

Appendix A). Formal definitions of neighbor degree distribution and network density are found in 

Appendix A.  

It is worth pointing out that, the design of networks in our experiment is simple yet not 

restrictive. Note that the topological measures in our design, degree and network density, are 

independent of the network size and connection details. Under incomplete network information, 

subjects are informed of degree and network density, rather than the network size or specific 

patterns of connectivity (i.e. 𝐺ℎ or 𝐺𝑙). Therefore, their behavior (as well as formal equilibrium) 

should not be sensitive to the specific network size or connectivity being used in the laboratory. 

Proposition A-1 and A-2 in Appendix A elaborate how the equilibria of the game are determined 

by degree and network density, which forms the basis of our hypotheses in Section 3.3.   Alternative 

network designs, such as using random graphs (c.f. Bollobas 1985, Erdos and Renyi 1960) or scale 

free networks (Barabási and Albert, 1999) as the underlying network structures, would not provide 

the same degree of control and conciseness as does the incumbent design (which features fixed 

degree support and intuitively comparable density). 

3.2. Game 

In our experiment, subjects play the games of herding and shirking as shown in Table 2 and 3. In 

any game the subject faces a binary choice (0 as low action, or 1 as high action), and her profit 

depending on her own choice and choices of neighbors. As shown in Table 2 and 3, as the number 

of neighbors who select 1 increases, the best response of the player in question switches from 0 to 

1 (from 1 to 0), reflecting the nature of herding (shirking). Notice that, in the context of this paper, 

the incentives for herding and shirking are respectively similar to those present in tacit coordination 

games (Van Huyck et al 1990) and public goods game of threshold structure (Cadsby and Maynes, 

1999), with which we will frequently draw analogy when discussing our results. In both settings of 

herding and shirking, Choice 1 leads to higher social welfare than Choice 0 (see Remark 1 below). 

Therefore, Choice 1 (or Action 1) is called socially beneficial choice. The existence of socially 



  

beneficial choice is common in many collective activities, such as coordination (herding) games in 

Van Huyck et al. (1990), Harsanyi and Selten (1988) and public goods (shirking) games in Fehr 

and Gächter (2000). It also allows us to conveniently evaluate the system performance by the 

society-wise rate of adopting the socially beneficial choice (see Section 4). Also to be noted is our 

control for economic returns in the experiment: The rows of payoffs in Table 2 and 3 are exactly 

inversed, so that the two games under examination only differ in the direction, rather than the 

amount, of payoff difference between actions associated with each level of neighbor actions.  

Table 2. The herding game 

Your Profit 
Number of Your Neighbors who Choose 1 

0 1 2 3 

Your 

Choice 

1 0 100 275 335 

0 100 175 225 260 

Note: The payoff table presented here is used for degree-3 subjects. Degree-2 subjects shall see 

the same payoff table except for the last column excluded. See the instruction in Appendix C.  

Table 3. The shirking game 

Your Profit 
Number of Your Neighbors who Choose 1 

0 1 2 3 

Your 

Choice 

1 100 175 225 260 

0 0 100 275 335 

Note: The payoff table presented here is used for degree-3 subjects. Degree-2 subjects shall 

see the same payoff table except for the last column excluded. See the instruction in Appendix 

C. 

To summarize, our experiment manipulates the network structure and the type of game that 

happens on the network. Each factor takes on two levels in a fully crossed 2×2 factorial design 

(high and low network density, herding and shirking games), yielding a total of four treatments, 

Gl_Herd, Gh_Herd, Gl_Shirk, Gh_Shirk, as recorded in Table 4. Each treatment consists of 5 

cohorts, each of which has 8 subjects connected into 𝐺𝑙or 𝐺ℎnetwork (depending on the treatment). 

Each cohort is a statistically independent observation3. The total 20 cohorts are labeled from N1, 

N2…N20.  

 

                                                      
3 To see, notice we use a between-subjects design, and subjects across different cohorts do not interact (The 

afore-mentioned mechanism of randomizing subjects over network positions is implemented within each 

cohort). Therefore, the independence of data across different cohorts is maintained. 



  

Table 4. Summary of experimental design 

Treatments 
Network Structure 

𝐺𝑙   𝐺ℎ 

Game  
Herding Gl_Herd Gh_Herd 

Shirking Gl_Shirk Gh_Shirk 

Note: between-subjects design  

REMARK 1. In all treatments of the experiment, the efficient outcomes (which maximize the total 

expected payoff of players) are that both degree types take action 1 with probability 1. 4 

The experiment is constituted by a repetition of the herding / shirking game for 20 rounds. The 

degree of each subject is predetermined (either 2 or 3) and kept unchanged throughout the 

experiment. In each round we randomize each cohort of 8 subjects over the network positions given 

their degrees.5 On the one hand, this ensures that the partnerships constantly change and every 

round resembles a one-shot game. On the other hand, repeating the play will allow subjects to learn 

about the (one-shot) game, while fixing one’s degree facilitates more effective learning and 

convergence of behavior. 6  Meanwhile, it seems implausible that subjects under incomplete 

information update their prior belief on network structures during the game, given the limited 

information provided to them.  

In the herding (shirking) game described in Table 2 (3), we explicitly instructed subjects that 

their optimal choice is to choose 1 when there are more than or equal to (less than) 2 neighbors that 

execute the option 1. This eliminates the noise in the play attributed to not understanding the base 

game, so that the remaining variation in behavior is explained by the design factors (social network 

structure, type of game). After each round, players are informed of neighbors’ decisions, while 

anonymity is maintained for all players. Sample instructions are found in the Appendix C. 

In total, the data was collected from 160 subjects from March through April 2016, at a major 

public university in China. Subjects are primarily undergraduate students, recruited from an online 

                                                      
4 The proof of Remark 1 is found in Appendix B. 
5 For illustration, denote the set of degree-3 nodes and that of degree-2 nodes in network 𝐺ℎ  by 𝐻𝐺ℎ , 𝐿𝐺ℎ  

respectively. Then for each cohort of 8 subjects on 𝐺ℎ, there will be a half of people randomized equally likely 

over the nodes in  𝐻𝐺ℎ  and the other half randomized equally likely over the nodes in  𝐿𝐺ℎ , in each round of 

the game. 
6 In our game, if the subject’s own type changes, the type distribution of her opponents will also change (see 

Table 1). Therefore, fixing one’s degree substantially reduces one’s mental burden in the game play. We thank 

an anonymous editor in suggesting this design feature to us.  



  

information system. Cash is the only motivation for experimental participation. Subjects are paid 

proportional to their performance in the game. The software is programmed in zTree (Fischbacher 

2007). Sample software screenshots are attached in Appendix D.  

3.3. Hypothesis 

The experimental game is of incomplete information, with player’s degree as her private type 

and neighbor degree distribution as distribution of partner types. For such a Bayesian game, we 

focus on symmetric strategy 𝜎, mapping from player’s degree to her probability distribution over 

actions: 𝜎: 𝑘 →  (𝑝𝑘  ,1 − 𝑝𝑘), where 𝑝𝑘 is the probability that the degree-k player assigns to action 

1 (hence 1 − 𝑝𝑘  the probability of taking action 0). A strategy is non-decreasing (non-increasing) 

if  𝑝𝑘 weakly increases (weakly decreases) with 𝑘 (𝑝𝑘 ≤ (≥)𝑝𝑘+1∀𝑘). The solution concept to our 

game is Bayesian Nash equilibrium (Gibbons 1992, Osborne and Rubinstein 1994, etc.), which we 

simply refer as equilibrium. Attributed to Galeotti et al. (2010), the background theory for our game 

in Appendix A yields a series of predictions under full rationality, from which we draw the 

hypotheses for our experiment. Specifically, our hypotheses inspect the following aspects of subject 

behavior: 1) pointwise prediction: Does the actual play of the game converge to its equilibrium? 2) 

directional prediction: Does the actual play of the game change with the social network structure 

in line with the predicted network effects? 

HYPOTHESIS 1. Equilibrium play. In each treatment, the actual pattern of play is consistent with 

one of the theoretical equilibria prescribed in Table 5 below. 

Table 5. Equilibrium structure7 

Treatment 
 equilibrium 

(𝑝2, 𝑝3) 

Gh_Herd  (0, 0), (0.2, 1), (1, 1) 

Gl_Herd  (0, 0), (0.68, 1), (1, 1) 

Gh_Shirk  (1, 0.094) 

Gl_Shirk (1, 0) 

 

                                                      
7 The derivation of these equilibria is found in Appendix B. It can be shown in general that the Bayesian Nash 

equilibrium is unique in the shirking game defined in this paper, but not so in the herding game (as observed 

in Table 5). We will not explore this aspect further, and refer any interested reader to Galeotti et al (2010). 



  

HYPOTHESIS 2. Network effects. a. local network effect. In any given network, players with more 

neighbors choose 1 with higher (lower) probability in the herding (shirking) game. b. global 

network effect. For both herding and shirking games, players of any given degree type choose 1 

with higher probability in denser networks.  

Both our hypotheses are made according to the theoretical predictions (Proposition A-1 and A-

2 in Appendix A). In Hypothesis 2, we refer to local network effect as the pattern that one’s action 

changes with her degree, and global network effect as the manner that the overall network density 

influences the choice of individuals. As implied by Hypothesis 2, we disentangle the two sources 

of network effects in our laboratory experiment: (Other things equal) 1) We compare the game 

plays of different degree types within the same network, so as to separate out the effect of local 

network while fixing the global network. 2) We analyze the data from the same degree type but in 

different networks, so as to identify the effect of global network while controlling that of local 

network.  

4. Aggregate-level Results 

In this section, we report the basic findings from our data. Define 1-rate as the percentage of 

subjects who chose action 1 in a given setting (e.g. a treatment). Due to Remark 1 in Section 3, we 

can conveniently measure the system performance by 1-rate.8 The notations in Table 6 below as 

well as those in previous sections apply to our dataset. In order to support the dataset decomposed 

in multiple ways, we flexibly combine the notations to designate any particular subset of data: For 

instance, d3_Gl_Shirk denotes the data generated by degree-3 players (d3) in low density network 

(Gl) for the shirking game (Shirk). The level of statistical significance is 5% unless specified 

otherwise. 

 

 

 

 

 

 

                                                      
8 There are two primary reasons to use 1-rate as the indicator of system performance in our game: First, 1-rate 

is a simple measure as it is single-dimension. Second, 1-rate could be understood as the aggregated probability 

of individuals choosing 1, and thus has a link to the player strategy on the individual level. 



  

Table 6. Notations for our dataset 

Notation Interpretation 

Gh,Gl Network 𝐺ℎ , 𝐺𝑙 

d3, d2 degree-3, -2 

Herd,Shirk herding, shirking 

round  round of the game, taking values of 1,2… 20. 

OBSERVATION 1. In none of the cases the exact pattern of play is consistent with the equilibrium 

prediction. 

Table 7. 𝜒2 tests on equilibria as null hypotheses 

Treatment 
 (𝑝2, 𝑝3)** 

observed 1-rate equilibrium 1-rate 

Gh_Herd (0.905, 0.92)  

 (0, 0)* 

 (0.2, 1)* 

 (1, 1)* 

Gl_Herd (0.607, 0.74)  

 (0, 0)* 

 (0.68, 1)* 

 (1, 1)* 

Gh_Shirk (0.748, 0.353)  (1, 0.094)* 

Gl_Shirk (0.667, 0.355) (1, 0)* 

* p-value<0.05, two-tailed. 

** Recall that 𝑝𝑘 denotes the probability that degree-𝑘 type chooses 1, or 

empirically, the 1-rate for degree-𝑘 players.   

We conduct 𝜒2 goodness of fit tests on whether the observed frequencies of choosing 1 by 

degree types in each treatment are consistent with the equilibrium strategies. While the details of 

the tests are found in Appendix E, all the equilibria in Table 5 taken as null hypotheses are turned 

down by the data at 5% significance level (see Table 7). Hypothesis 1 is therefore rejected. This 

outcome could be viewed as a confirmation of some account on behavioral game theory which 

indicated that normative equilibrium, especially in mixed strategy, may not be the exact predictor 

of the game (e.g. Brown and Rosenthal 1990). That said however, the failure of pointwise equilibria 

does not entirely dismiss the value of normative theory. As we will see, the directional predictions 

regarding some of the network effects inspired by the theory remain to hold.  



  

OBSERVATION 2. LOCAL NETWORK EFFECT The frequency of implementing socially beneficial 

choices significantly increases (decreases) with player degree in the herding (shirking) games 

except for Gh_Herd, where different degree types play a uniformly high level of action. The 

observed local network effect is stronger in shirking games than in herding games.  

  

 

Figure 2. Local network effect  

In all treatments except Gh_Herd, we observe a separation of actions by subjects’ degree types. 

Furthermore, the player actions are separated in opposite directions in herding and shirking games 

– a pattern consistent with the local network effects in theory. See Figure 2 for illustration. However, 

the play is less separated in herding games than that in shirking games. The average difference in 

1-rate between two degree types is 13.3% for treatment Gl_Herd, against those being 39.5% [31.2%] 

for Gh_Shirk [Gl_Shirk]. In other words, the pattern of behavior is more uniform across different 

degree types in herding games than in shirking games. Moreover, the separation tends to vanish in 

Gh_Herd. The average difference in 1-rate between two degree types is 1.5% for treatment 

Gh_Herd, against a base 1-rate of 90.5% for low-degree players in that treatment. Binomial tests 

using individual level data on the equality of probability of choosing 1 by degree-2 and degree-3 



  

subjects located in the same network yield a p=0.155 for Gh_Herd, and 0.000 for the other 

treatments.9 

It is also worth a note on the linkage between the observed local network effect in our study 

and the findings in Judd et al. (2010), which suggest that some aspect of network structure, such as 

long distance connectivity, exerts opposite influences on behavior in consensus and coloring (which 

correspond to herding and shirking in our paper). Different from the approach of Judd et al. (2010), 

we concentrate on the roles of one’s degree in altering her choices in network games.  

OBSERVATION 3. GLOBAL NETWORK EFFECT. In all cases except for d3_Shirk, players 

implement the socially beneficial choice with significantly higher frequency in higher density 

networks. The observed global network effect is stronger in herding games than in shirking games.  

Figure 3. Global network effect 

The global network effect in line with the theory is observed in herding treatments, where 

subjects in high density networks excel those under low network density in their frequency of 

                                                      
9 The Binomial tests we used for Observation 2 [3] are one-sided. The null hypotheses of the tests are that, 

other things equal, subjects in different degree types [under different levels of network density] choose 1 with 

equal probability; and the local [global] network effect in Hypothesis 2a [2b] are taken as the alternative 

hypotheses. 



  

choosing the socially beneficial option. The average difference in 1-rates by network density is 

0.298 for d2_Herd and 0.18 for d3_Herd. In shirking games however, less evidence is found to 

support the global network effect that exists in principle. The average difference in 1-rates by 

network density is 0.081 [0.002] for d2_Shirk [d3_Shirk]. Binomial tests using individual level data 

on the equality of probability of choosing 1 by players located in networks with different density 

but having the same degree type produce p =0.000 for both d2_Herd and d3_Herd, and 0.000 [0.562] 

for d2_Shirk [d3_Shirk].   

OBSERVATION 4. DYNAMICS OF BEHAVIOR In herding games, the direction of coordination is 

shifted by network density. The levels of action of both degree types increase [decrease] over time, 

under higher [lower] network density. In shirking games however, the behavior of both types 

exhibits an oscillating pattern over time, regardless of network density.   

At treatment level, Figure 2 presents the evolution of subject behavior over time. In herding 

games, the 1-rates of both high and low degree types move upward [downward] in high [low] 

density networks as the game proceeds. At the aggregate level, the increase of connectivity boosts 

the level of successful coordination in herding. In shirking games, the behavior is stable on average, 

but exhibiting significant variation. Because the incentive in shirking is to differentiate actions with 

each other, the observed behavior might be driven by “avoiding” the choices of opponents. This 

point is made more apparent with the individual level analysis in Section 5, which suggests 

adaptation to neighbor activities as a primary module of subject behavior. Finally, note that the 

current observation on behavioral dynamics is drawn on the aggregate level, and that an analysis 

of individual level behavior will follow in Section 5.  

To summarize the results, our experiment finds that both herding and shirking in social 

networks are leveraged by the underlying network structure. Specifically, subject choices in both 

games are affected by their local network (degree), yet in opposite directions, and this local network 

effect stronger in shirking games than in herding games. On the contrast, the global network effect, 

which predicts higher 1-rates in denser networks for both degree types, is more visible in herding 

games than in shirking games. The subject choices do not converge to pointwise equilibria in either 

herding or shirking games. These findings partially support the set of experimental hypotheses, 

which are inspired by the formal theory. In order to explain the places where the standard theory 

fails, we develop a behavioral model in the next section, which generalizes the concept of 

experience-weighted attraction (EWA) learning under incomplete information into a network 

environment. 



  

5. Behavioral Model & Individual-level Results   

In testing the foregoing hypotheses on equilibrium and network effects, we find systematic 

deviations from rational play on the aggregate level. In this section, we shall investigate behavior 

at the individual level, which serves as a “root cause” of aggregate anomalies. More specifically, 

we shall characterize the kind of bounded rationality that underlies individual decision making in 

both herding and shirking through a unified, learning-based model. Inspired by Chong et al. (2006), 

we capture subject behavior by a network-embedded SEWA (Self-tuning Experience-Weighted 

Attraction) model under incomplete information, which nests two types of behavior as special cases: 

1) adaptive learning, meaning that subjects evaluate the attractiveness of options upon past realized 

neighbor actions, and 2) equilibrium learning, in which subjects act upon the expectation of 

neighbor actions (and eventually reach the equilibrium). 10  Subjects update their beliefs (in a 

Bayesian manner) throughout the game regarding the extent to which their opponents learn towards 

equilibrium, and that to which they learn adaptively. We also relate the results of the learning 

models to the aggregate-level observations discussed in the previous section. 

In this section, we construct our behavioral model based on Chong et al. (2006), which develops 

the standard SEWA framework (Ho et al. 2007) into a context of incomplete information. We 

further integrate the model into a network context. For purposes of exposition and comparison, we 

will introduce models of adaptive learning and equilibrium learning as the building blocks to the 

general model that follows. The fit of our behavioral model to the data will be examined in the 

subsequent section. 

5.1. Adaptive learning  

Consider bounded rational players who optimize noisily. The probability perceived by player 

𝑖 at round 𝑡 + 1 that a generic degree-𝑘 player chooses Action 1 is given by the logit function below.  

                                                       𝑝𝑖,𝑡+1,𝑘
𝑎 =

𝑒𝜆𝑖 𝐴𝑖𝑡𝑘
𝑎 (1)

𝑒𝜆𝑖 𝐴𝑖𝑡𝑘
𝑎 (1)+𝑒𝜆𝑖 𝐴𝑖𝑡𝑘

𝑎 (0)
,                                          (1) 

where 𝐴𝑖𝑡𝑘
𝑎 (𝑥) is the attraction of action 𝑥 ∈ {0,1} to a generic degree-𝑘 player, as perceived by 

player 𝑖 at round 𝑡 under adaptive learning. 11As in (1), options with higher attraction shall be 

                                                      
10 The mix of learning and equilibrium is essential in the construction of the SEWA model in Chong et al (2006). 

We extend this framework into a network setting, which allows us to study hybrid learning behavior in 

networks.    
11 We focus on beliefs consistent with one’s own action. That is, if player 𝑖 happens to have a degree of 𝑘, she 

herself will choose 1 with probability 𝑝𝑖𝑡𝑘
𝑎  at round 𝑡 under adaptive learning.  



  

picked up with higher probability. In addition, larger the value of 𝜆𝑖 , more concentrated is the 

choice distribution around the exact option that is most attractive. In that way, the parameter 𝜆𝑖  

captures the degree of rationality of player 𝑖 in decision making.  

Determining the attraction of options is a central issue to the family of experience-weighted 

attraction (EWA) learning, which we will illustrate below. Let 𝑥𝑖𝑡 , 𝑘𝑖𝑡 , 𝑁𝑖𝑡respectively be the action, 

degree, and the set of neighbors of player 𝑖 at round 𝑡. 𝑦𝑖𝑡 ≔ Σ𝑗∈𝑁𝑖𝑡𝑥𝑗𝑡 represents the number of 𝑖’s 

neighbors choosing 1 at round 𝑡. Then the attraction 𝐴𝑖𝑡𝑘
𝑎 (𝑥) under adaptive learning is determined 

as follows. 

                         𝐴𝑖𝑡𝑘
𝑎 (𝑥) = (1 −

1

𝑛𝑖𝑡
)𝐴𝑖,𝑡−1,𝑘

𝑎 (𝑥) +
1

𝑛𝑖𝑡
𝛥𝑖𝑡
𝑎 (𝑥)𝑣𝑖(𝑥, 𝑦𝑖𝑡),                                 (2) 

where 𝑣𝑖(𝑥, 𝑦) is the payoff of player 𝑖 if she had chosen 𝑥 ∈ {0,1} in a certain round, given 𝑦 as 

the number of neighbors who played 1 in that round; 𝛥𝑖𝑡
𝑎 (𝑥) = 1 if either of the following two 

conditions is met: 1) 𝑥 was chosen by player 𝑖 in round 𝑡, or 2) 𝑥 was not chosen but player 𝑖 could 

be better off choosing it in round 𝑡. If neither condition was satisfied, 𝛥𝑖𝑡
𝑎 (𝑥) = 0. The parameter 

𝑛𝑖𝑡 (𝑛𝑖𝑡 ≥ 1) controls the relative weight that the player assigns to the latest experience against that 

assigned to the historical attraction in the updating procedure. For brevity, we leave the update of 

𝑛𝑖𝑡  in Appendix E. To initialize the learning process, notice that 𝑝𝑖1𝑘
𝑎 =

1

1+𝑒−𝜆𝑖 Δ𝐴𝑖0𝑘
𝑎  , where 

Δ𝐴𝑖0𝑘
𝑎 ≔ 𝐴𝑖0𝑘

𝑎 (1) − 𝐴𝑖0𝑘
𝑎 (0) is left as a variable for estimation.  

The adaptive learning has its root in the classical reinforcement dynamic based on the past 

history of game. At the same time, by assigning reinforcement to better forgone options, the 

adaptive learning also entails a local best responding dynamic. Noticeably, the adaptive learning 

uses only information within one’s neighborhood, as adaptive learners only adjust their strategies 

against immediate neighbors. 

5.2. Equilibrium learning 

Under the framework of equilibrium learning, the player iterates the quantal response to 

neighbor strategy over rounds until it reinforces the belief. Similar to adaptive learning, the player 

choice involves random noise, which weakens the rationality required for the standard game-

theoretical model. Specifically, the probability perceived by player 𝑖 at round 𝑡 + 1 that a generic 

degree-𝑘 player chooses Action 1 in equilibrium learning is given by  

                          𝑝𝑖,𝑡+1,𝑘
𝑞

=
𝑒
𝜆𝑖 𝐴𝑖𝑡𝑘

𝑞
(1)

𝑒
𝜆𝑖 𝐴𝑖𝑡𝑘

𝑞
(1)
+𝑒

𝜆𝑖 𝐴𝑖𝑡𝑘
𝑞

(0)
.                                  (3) 



  

where 𝜆𝑖 captures the degree of rationality in discerning payoff differences across multiple options. 

In contrast to adaptive learning, players under equilibrium learning base their decisions on the 

expected payoff, which is determined from the network density joint with the opponent’s strategy. 

As such, both one’s local network and the global network have influences on the equilibrium 

learning. The specific form of the attraction of option 𝑥 ∈ {0,1} to a generic degree-𝑘 player as 

perceived by player 𝑖 at round 𝑡 is given by 

                                               𝐴𝑖𝑡𝑘
𝑞 (𝑥) = 𝑈(𝑥, 𝜎𝑖𝑡, 𝑘, 𝐺𝑖) ,                                                       (4) 

in which 𝐺𝑖 = 1(0)  if the network that player 𝑖  resides in has a high (low) density 12 , and 

𝑈(𝑥, 𝜎𝑖𝑡, 𝑘, 𝐺𝑖) is the expected payoff of a degree-𝑘 individual who plays 𝑥 under network density 

𝐺𝑖 given perceived neighbors strategy 𝜎𝑖𝑡: 𝑘 → (𝑝𝑖𝑡𝑘
𝑞
, 1 − 𝑝𝑖𝑡𝑘

𝑞
). The expression of 𝑈(𝑥, 𝜎, 𝑘, 𝐺) is 

provided as (A-5) in Appendix A. Denote Δ𝑈(𝜎𝑖𝑡 , 𝑘, 𝐺𝑖) ≔ 𝑈(1, 𝜎𝑖𝑡, 𝑘, 𝐺𝑖) − 𝑈(0, 𝜎𝑖𝑡 , 𝑘, 𝐺𝑖). To 

initialize the learning, let Δ𝐴𝑖0𝑘
𝑞

∶= 𝐴𝑖0𝑘
𝑞 (1) − 𝐴𝑖0𝑘

𝑞 (0), whose value will be left for empirical 

estimation. To close the loop, we assume that the strategy implemented by player 𝑖 is consistent 

with her belief. That is, player 𝑖 herself in round 𝑡 will execute Action 1 with probability 𝑝𝑖𝑡𝑘𝑖
𝑞

. If 

the beliefs converge, this process will ultimately lead to a logit quantal response equilibrium as 

defined in McKelvey and Palfrey (1995) – see Proposition 1 below, whose proof is found in 

Appendix E. As such, equilibrium learning elaborates how individual activities approach a 

prescribed equilibrium over time. 

PROPOSITION 1. The equilibrium learning converges to a quantal response equilibrium if 

𝜆𝑖 ∑ |
𝜕Δ𝑈(𝜎𝑖𝑡,𝑘𝑖,𝐺𝑖)

𝜕𝑝
𝑖𝑡𝑘
𝑞 |𝑘 < 4,∀𝑖, 𝑡. 

5.3. Hybrid learning  

Equilibrium models are standard arguments of game theory, and have the advantage of self-

reinforcement. Learning models differentiate from equilibrium models in that they allow players to 

accustom themselves to the game by a sequence of suboptimal moves.  The hybrid learning model 

in this section combines the features of equilibrium and learning, so as to capture the behavior in 

networks that falls between the two paradigms. More specifically, the probability perceived by 

player 𝑖 at round 𝑡 that a generic degree-𝑘 player chooses Action 1 under hybrid learning is 

                                                      
12 Recall that in our experiment, each subject plays in a fixed cohort through all rounds. Therefore, 𝐺𝑖 does not 

vary with 𝑡. 



  

                                          𝑝𝑖𝑡𝑘
ℎ = 𝑟𝑖𝑡𝑘𝑝𝑖𝑡𝑘

𝑞
+ (1 − 𝑟𝑖𝑡𝑘)𝑝𝑖𝑡𝑘

𝑎 ,                                                   (5) 

where 𝑟𝑖𝑡𝑘 denotes the probability that the generic degree-𝑘 player follows the equilibrium learning 

(1 − 𝑟𝑖𝑡𝑘 the probability that she adopts adaptive learning), as perceived by player 𝑖 in round 𝑡.13 14 

Given her own degree 𝑘𝑖, player 𝑖 updates her belief on 𝑟𝑖,𝑡+1,𝑘𝑖 in a Bayesian manner (shown as 

(6) below). As one’s degree is fixed in the experiment (a design feature discussed before), she does 

not have experience in playing a strategy upon another degree; thus we assume the player’s belief 

on  𝑟𝑖𝑡𝑘 for 𝑘 ≠ 𝑘𝑖 sticks to its initial values 𝑟𝑖0𝑘. 

                                  𝑟𝑖,𝑡+1,𝑘𝑖 =

{
 
 

 
 

𝑝𝑖,𝑡+1,𝑘𝑖
𝑞

𝑟𝑖𝑡𝑘𝑖

𝑝𝑖,𝑡+1,𝑘𝑖
𝑞

𝑟𝑖𝑡𝑘𝑖+𝑝𝑖,𝑡+1,𝑘𝑖
𝑎 (1−𝑟𝑖𝑡𝑘𝑖)

, 𝑥𝑖𝑡 = 1

(1−𝑝𝑖,𝑡+1,𝑘𝑖
𝑞

)𝑟𝑖𝑡𝑘𝑖

(1−𝑝
𝑖,𝑡+1,𝑘𝑖

𝑞
)𝑟𝑖𝑡𝑘𝑖+(1−𝑝𝑖,𝑡+1,𝑘𝑖

𝑎 )(1−𝑟𝑖𝑡𝑘𝑖)
, 𝑥𝑖𝑡 = 0

                           (6) 

The model of hybrid learning entails the foregoing models as special cases: If 𝑟𝑖𝑡𝑘 = 0, it 

reduces to adaptive learning. If 𝑟𝑖𝑡𝑘 = 1, the model degenerates into equilibrium learning, which 

may converge to quantal response equilibrium per Proposition 1 (further to Bayesian Nash 

equilibrium if 𝜆𝑖 → ∞ 15). Next, we shall evaluate the empirical fit of the proposed learning models, 

and develop further ties between the results of learning analysis and the aggregate-level findings in 

Section 4.  

5.4. Individual behavior 

In this section we fit the learning models with our data. In particular, we will identify the most 

plausible model for the individual-level behavior based on the empirical fit. For that purpose, we 

will estimate the parameters that characterize the learning models, i.e. 𝜆𝑖 , Δ𝐴𝑖0𝑘
𝑎  for adaptive 

learning, 𝜆𝑖, Δ𝐴𝑖0𝑘
𝑞

 for equilibrium learning, and 𝜆𝑖, 𝑟𝑖0𝑘, Δ𝐴𝑖0𝑘
𝑎 , Δ𝐴𝑖0𝑘

𝑞
 for hybrid learning. To 

maintain the frugality of the model, we restrict to the case where different degree types do not a 

priori differ in the preference over options, i.e. Δ𝐴𝑖02
𝑥 = Δ𝐴𝑖03

𝑥  , 𝑥 ∈ {𝑎, 𝑞} . We consider the 

“cohort-specific” version of each model with each parameter above taking the same value across 

                                                      
13 Alternatively, 𝑟𝑖𝑡𝑘 could be interpreted as the proportion of equilibrium learners in the population of degree-

𝑘 players (the rest of degree-𝑘 population being adaptive learners), as perceived by player 𝑖 at round 𝑡.  
14 We focus on beliefs reinforced by one’s own action. That means, player 𝑖 at round 𝑡 will choose 1 with 

probability 𝑝𝑖𝑡𝑘𝑖
ℎ . 

15 In McKelvey and Palfrey (1995), the definition of QRE bears some relation with Bayesian Nash equilibrium. 

However, the two equilibrium notions are not structurally equivalent in our paper, as the payoff function of 

players cannot be rearranged to separate out a private disturbance.  



  

individuals within the same cohort, which improves both parsimony and consistency (in terms of 

agent beliefs) 16 as elaborated in Appendix E.3. The estimation approach is illustrated in detail in 

Appendix E.4. 

Table 8. Comparison of behavioral models
†
 

cohort-specific model LL* 𝜒2 (d.f.)** 𝑝-value** 

hybrid learning -466.46 - - 

adaptive learning -565.28 197.64(60) 0.000 

equilibrium learning -881.21 829.50 (60) 0.000 

† 
based on the entire dataset that includes all treatments 

* log likelihood (LL) produced by maximum likelihood estimation (MLE). 

** null [alternative] hypothesis of likelihood ratio test: The reduced model 

(adaptive learning or equilibrium learning) is more [less] efficient than the full 

model (hybrid learning) in fitting the data. 

As suggested by Table 8, the hybrid model outperforms its special cases in fitting the data, with 

both P-values of 0.000 from likelihood ratio tests against equilibrium learning and adaptive learning 

(thereby rejecting the null hypotheses which favor the respective special cases). As a result, we 

conclude that the hybrid model is the most appropriate one in explaining our observations.    

Table 9. Results of hybrid learning* 

treatment 

𝑟𝑖𝑡𝑘 averaged over  

all periods** 

𝑟𝑖𝑡𝑘 averaged over the  

last five periods** 

𝑟3̅ 𝑟2̅ 𝑟3̅ 𝑟2̅ 

Gh_Shirk 
0.17 0.39 0.19 0.40 

(0.108) (0.175) (0.108) (0.206) 

Gl_Shirk 
0.35 0.45 0.36 0.49 

(0.136) (0.127) (0.134) (0.150) 

Gh_Herd 
0.25 0.27 0.26 0.25 

(0.173) (0.215) (0.166) (0.206) 

Gl_Herd 
0.28 0.31 0.29 0.30 

(0.414) (0.269) (0.413) (0.292) 

* cohort-specific model, estimated by MLE 

** calculated based on the estimated 𝑟𝑖0𝑘, Δ𝐴𝑖0𝑘
𝑎 , Δ𝐴𝑖0𝑘

𝑞
, and 𝜆𝑖  

The statistics in the table are mean and standard deviation (the latter shown in 

parentheses).  

                                                      
16 For the hybrid model, recall that 𝑟𝑖𝑡𝑘 is defined upon the perception of the player in question regarding her 

neighbors’ types of learning. Therefore, a model that imposes the same 𝑟𝑖𝑡𝑘 within the same cohort ensures 

that the perceptions of players in the same cohort are consistent. We do not need to seek such consistency 

across cohorts though, since cohorts are independent with each other by the experimental design.  



  

The parameter estimation results for hybrid learning can be found in Table E-3, Appendix E. Here 

we shall center our discussion on 𝑟𝑖𝑡𝑘 17. In order to get a sense of stabilized beliefs, we calculate 

the time-averages of 𝑟𝑖𝑡𝑘 (denoted by 𝑟�̅�) over the last quarter (Period 16-20) of the experiment, 

and those over the whole experiment, for each degree type 𝑘 = 2,3 in each cohort. Table 9 provides 

the mean and standard deviation of 𝑟�̅� in each treatment (which consists of five cohorts, thus five 

data points for 𝑟�̅�) under the estimated parameters (𝑟𝑖0𝑘, Δ𝐴𝑖0𝑘
𝑎 , Δ𝐴𝑖0𝑘

𝑞
, 𝜆𝑖). From Table 9, one can 

see that there is no noteworthy difference between 𝑟�̅� over all experimental rounds and that over 

the last five rounds, indicating stable beliefs over time. Furthermore, the treatment-averages of 𝑟�̅� 

never exceed 50%, and in five out of eight cases are less than 1/3 (in either case with all-rounds-

average or last-quarter-average). The values of 𝑟�̅� being low implies that the hybrid learning is 

primarily led by its adaptive component. This suggests that subjects in all treatments have primarily 

focused on their immediate neighborhoods, thus giving rise to the observed local network effect 

(Observation 2, Section 4). Furthermore, the local adaptation may drive the herding in different 

directions, under different network density: In the high [low] density networks, since players are 

more likely to have high [low] degree neighbors. Thus they tend to observe higher [lower] action 

played by their neighbors. As a result, the focal player is induced to raise [reduce] her action level 

over time, which displays an inclining [declining] level of action for both degree types (Observation 

4, Section 4). In the extreme case, the difference in action vanishes between different degree types, 

and the local network effect is replaced by pooled coordination (as in the case of Gh_Herd, 

Observation 2, Section 4). In the shirking games, players under high [low] network density tend to 

observe lower [higher] neighbor actions; then local adaptation makes them raise [reduce] their own 

action. As such, agents in shirking games have a tendency to invert the previous play, which leads 

to the oscillating behavioral pattern (Observation 4, Section 4) and dampens the effect of global 

network on the behavior (Observation 3, Section 4). Finally, the equilibrium component of hybrid 

learning appears to be weak (evidenced by low 𝑟�̅� values), which explains why the play does not 

converge to the equilibrium (Observation 1, Section 4).    

We have three additional remarks for Table 9 regarding the learning style of subjects. In 

shirking treatments: First, the estimated 𝑟�̅� is higher for lower degree types, implying that lower 

degree players execute more equilibrium learning – the kind of learning that is based on expectation. 

To understand why, note that fewer neighbors mean fewer sources of strategic variability for a 

                                                      
17 𝑟𝑖𝑡𝑘 calibrates the nature of learning and is thus the focus of our parameter estimation. The rest of parameters, 

𝜆𝑖 and the initial values, are useful mainly in the sense of calculating stabilized beliefs (time-averages of 𝑟𝑖𝑡𝑘 

or  𝑟�̅�). See Table 9 for illustration.       



  

player to cope with. So plausibly, players with fewer connections are able to form more accurate 

expectations about neighbor actions and use these expectations to make decisions. Second, 𝑟�̅� is 

higher in lower density treatments. That implies, other things equal, that the degree of equilibrium 

learning is higher under lower network density. To understand this, notice that in low density 

networks one’s neighbors are more likely to have low degree, and that these neighbors will make 

more predictable, expectation-based decisions (see the first point). That, in turn, would allow the 

player in question to form more accurate expectation in his or her own learning under lower network 

density. Third, the estimates of 𝑟�̅� for herding treatments display the same patterns as do they in 

shirking (i.e. decreasing in density, decreasing in degree), but less significantly so – The respective 

differences are much smaller in herding than in shirking. In other words, individuals demonstrate 

more uniform behavior in herding than in shirking. This uniformity of behavior may stem from the 

alignment of objectives and the existence of win-win improvement in herding games.  

To sum up, we find that the individual level behavior in the network games is primarily driven 

by the adaptation to realized neighbor actions rather than the expectation of opponent activities 

(whereas the latter leads to equilibrium). Moreover in shirking games, the extent of equilibrium 

learning decreases in subject degree, and decreases in network density. In herding games on the 

contrast, the learning styles are more homogeneous across degree types and networks. That 

accounts for the aggregate-level observations in Section 4, including the patterns of local and global 

network effects, the lack of equilibrium play, and the heterogeneity and dynamics of subject 

behavior.  

6. Conclusion & Discussion 

We examine in the laboratory two types of collective activities in social networks, herding and 

shirking, respectively referring to the case where a player’s incentive to take a certain action 

increases and decreases if more of her network neighbors choose the same action. The set of 

relationships indicating “whose action affects whose payoff” defines the social network. Our 

experiments shed light on how the network structure leverages the outcome of interactions and 

facilitates socially beneficial behavior. Our experiment decomposes and tests the local and global 

network effects inspired by the theory – Players with more social ties make more [fewer] socially 

beneficial choices in herding [shirking] games, and the rate of making socially beneficial choices 

increases with the density of network. We find that the subject choices in herding and shirking 

games are not consistent with theoretical equilibria; the local network effect is stronger in shirking 

games than in herding games. Global network effect, in contrast, is considerably present in herding 



  

but less so in shirking. On the individual level, we explain the behavioral rationale behind both 

herding and shirking by a unified learning-based model, which is embedded into the underlying 

network structure. We find through our learning model that subjects primarily adapt to their local 

neighbor activities rather than acting upon expectation (while the latter is essential in making the 

equilibrium). That leads to the observed dynamics, off-equilibrium behavior, as well as the local 

and global network effects. 

In terms of implications for practice, our findings suggest the role of network structure that a 

manager or administrator should understand when dealing with strategic agents in social networks. 

For instance, the observed local network effect implies that those who are well connected are able 

to generate considerable externalities by their decisions and thereby exert substantial influence on 

other’s decisions and social welfare. Thus for a firm which provides technologies or devices whose 

demand is subject to the network effect, it is important to promote the product to the appropriate 

“social hubs” in the network, in order to achieve the desired outcome of consumer herding. For 

state governments interested in improving the environment in the presence of externality, the 

geographic proximity of countries or regions might help predict the probable outcome of pollution 

reduction and identify the key contributors to the social surplus. In addition, the pattern of learning 

and adaptation displayed in the game suggests to the firm / social planner the importance of one’s 

past experience in shaping her strategy. That is to say, for example, the access to the historical 

records of customers in similar network activities can be helpful in predicting the likelihood of their 

consumption in the network. As such, it would be an important avenue for future research to 

incorporate the above consideration into the marketing policy of firms that sell to strategic 

customers in network settings. 

Social and economic networks in practice usually have large sizes. Will the same conclusion 

we draw upon laboratory networks hold in networks of much larger scale? Note when the network 

is large, the information that individuals have about the network structure is likely to be incomplete. 

In this case, it seems one could anticipate the same network effects as in Hypothesis 2 (which are 

independent of network size) for larger networks. If the information setting is altered (e.g. more 

network information becoming available), it will then be important to examine the robustness of 

the conclusions in this paper with varying network sizes. 

The network effects explored in this paper are related to those studied in sociology: The 

egocentric analysis focuses on one’s personal ties and its effect on the individual behavior, while 

sociocentric analysis examines how the performance of a group is affected by the interaction 

architecture within that group (Chung et al. 2005). Commonly used network measures for 



  

egocentric and sociocentric analyses include degree, closeness centrality and betweenness 

centrality (Marsden, 2002). In our paper, however, we characterize one’s local network and global 

network by degree and network density, correspondingly, and investigate the network effects in a 

strategic context (under incomplete information). Despite these differences, it remains to be 

interesting to study the efficacy of other sociological measures of network effects in our settings of 

collective activities. 

  



  

Due to the page limit, Appendix will be separated from the paper and posted online. The notations 

in the Appendix inherit from those the main text, unless otherwise clarified.   

Appendix A. 

The Background Theory 

This section presents the theoretical results of our game that are relevant to the establishment 

of experimental hypotheses in Section 3, the main text. Unless otherwise noted, the theoretical work 

in this section is attributed to Galeotti et al. (2010).  

A.1. Network 

Let 𝑁𝑖 be the set of player 𝑖’s neighbors and 𝑘𝑖 be 𝑖’s degree (number of neighbors), the latter 

being the private information of player 𝑖 (or her type). The set of feasible degree values in a size 𝑁 

network is denoted by 𝜅:= {1,2,…𝑁 − 1}. 𝑘 (𝑘) is the lowest (highest) degree value in a given 

network. Let 𝐺(𝐤|𝑘)  be the probability that neighbor degrees are (k-dimensional vector) k, 

conditional on one’s own degree being k. Describe network density 𝐹  as the collection of 

conditional neighbor degree distributions 𝐺(⋅ |𝑘)  for every degree type k, i.e. 𝐹 ≔

{[𝐺(𝐤|𝑘)]𝐤∈𝜅𝑘}𝑘∈𝜅 . Let 𝐸𝐺(⋅|𝑘)[𝑓] ≔ Σ𝐤∈𝜅𝑘𝐺(𝐤|𝑘)𝑓(𝐤) , where 𝑓: 𝜅𝑘 → ℝ  is a non-decreasing 

mapping. For comparison consider another network 𝐹′,  𝐹′ ≔ {[𝐺′(𝐤|𝑘)]𝐤∈𝜅𝑘}𝑘∈𝜅 .  𝐹′ is said to 

have higher density (or denser) than 𝐹, if for any non-decreasing f 

                               𝐸𝐺′(⋅|𝑘)[𝑓] >  𝐸𝐺(⋅|𝑘)[𝑓], ∀𝑘.                                                     (A-1) 

That is, if one network allows, for every degree type, higher neighbor degree distribution than 

does the other, then the former network is denser. That said, one can readily compare the density 

between the two networks used in our experiment (Figure A-1): 

     

Figure A-1. Network structures used in experiments (reproduced from Figure 1) 

 

REMARK A-1. 𝐺ℎ is denser than 𝐺𝑙.  

𝐺𝑙 𝐺ℎ 



 

Proof. For the networks 𝐺ℎ and 𝐺𝑙, neighbor degree distributions conditional on one’s own degree, 

𝐺ℎ(⋅ |𝑘) and 𝐺𝑙(⋅ |𝑘), are shown in Table A-1. Therefore we have 

𝐸𝐺ℎ(⋅|2)[𝑓2] =
1

2
𝑓2(2,3) +

1

2
𝑓2(3,3) >

2

3
𝑓2(2,3) +

1

3
𝑓2(3,3) >

2

3
𝑓2(2,3) +

1

3
𝑓2(2,2) = 𝐸𝐺𝑙(⋅|2)[𝑓2],  

𝐸𝐺ℎ(⋅|3)[𝑓3] =
1

2
𝑓3(2,3,3) +

1

2
𝑓3(2,2,3) > 𝑓3(2,2,3) = 𝐸𝐺𝑙(⋅|3)[𝑓3], 

for any 𝑓𝑘 (𝑘 = 2,3) that is non-decreasing in its argument. Applying the definition of network 

density (A-1) completes the proof. ∎ 

Table A-1. The neighbor degree distributions for 𝐺ℎ and 𝐺𝑙 (reproduced from Table 1) 

𝐺ℎ 𝐺𝑙 

If the player is degree-2, 

probability 
No. degree-3 

neighbors 

No. degree-2 

neighbors 
probability 

No. degree-3 

neighbors 

No. degree-2 

neighbors 

   1/2   1 1  2/3 1 1 

   1/2   2 0  1/3 0 2 

If the player is degree-3, 

probability 
No. degree-3 

neighbors 

No. degree-2 

neighbors 
probability 

No. degree-3 

neighbors 

No. degree-2 

neighbors 

   1/2   2 1 1 1 2 

   1/2   1 2       

A.2. Game 

Let 𝑥𝑖 be player 𝑖’s (binary) decision, 𝑥𝑖 ∈ {0,1}. Player i’s payoff, denoted by 𝑣𝑖(𝑥𝑖; 𝒙𝑁𝑖), is 

determined by her own decision 𝑥𝑖  and actions of her neighbors, 𝒙𝑁𝑖 ≔ (𝑥𝑗)𝑗∈𝑁𝑖
. The player 

payoff exhibits a herding [shirking] nature, if for any 𝑖 and any 𝑘𝑖-dimension vector 𝒙 ≥ 𝒙′  

                           𝑣𝑖(1; 𝒙) − 𝑣𝑖(0; 𝒙) ≥ [≤]𝑣𝑖(1; 𝒙
′) − 𝑣𝑖(0; 𝒙′).                                            (A-2) 

That is, action 1 becomes more [less] appealing to the player if more of her neighbors take action 

1. In other words, the player is always incentivized to follow [avoid] the choice of majority. The 

resultant game is called a herding [shirking] game. By (A-2), it is straightforward to verify the 

herding and shirking nature of games in Table 2 and 3 in the main text, respectively. The following 

properties are assumed. 

ASSUMPTION A-1. 𝑣𝑖(𝑥𝑖; (𝒙, 0)) = 𝑣𝑖(𝑥𝑖; 𝒙) ∀𝑖.                                                                  (A-3) 



 

ASSUMPTION A-2. In the herding [shirking] game, 

 𝑣𝑖(1; 𝟏) − 𝑣𝑖(0; 𝟏) > [<]0, 𝑣𝑖(1; 𝟎) − 𝑣𝑖(0; 𝟎) < [>]0 ∀𝑖 ∈ 𝑁                                          (A-4) 

Assumption A-1 indicates that having a neighbor who takes action 0 is payoff-equivalent to 

not having that neighbor. As discussed in Galeotti, et al. (2010), Assumption A-1 is satisfied in 

many economic models including those where one’s profit depends on the sum of neighbor actions 

(which is the case we focus on in the main text). Assumption A-2 sets the boundary conditions for 

the games to be well-behaving: In the extreme case where all neighbors follow action 1 (0), the 

player in question should optimally choose 1 (0) [0 (1)] in a herding [shirking] game. Assumptions 

A-1 and A-2 are both met in our experiment (Section 3, main text).  

In our game, degree is the player’s private type, neighbor degree distribution is the distribution 

of the player’s partner types. For such a Bayesian game, we focus on symmetric player strategy 𝜎, 

mapping from player’s degree to her probability distribution over actions, 𝜎: 𝑘 →  (𝑝𝑘  ,1 − 𝑝𝑘), 

where 𝑝𝑘  is the probability that the degree-k player assigns to action 1 (hence 1 − 𝑝𝑘  the 

probability of taking action 0). A strategy is non-decreasing (non-increasing) if  𝑝𝑘  weakly 

increases (weakly decreases) with 𝑘 (𝑝𝑘 ≤ (≥)𝑝𝑘+1∀𝑘). The solution concept to our games is 

Bayesian Nash equilibrium (Gibbons 1992, Osborne and Rubinstein 1998, etc.), which we simply 

refer as equilibrium. Galeotti et al. (2010) has extensively studied the existence of monotonic 

equilibrium in herding and shirking games, and their results rely on some structural properties of 

the network game, which we will introduce below.  

Let  

        𝑈(𝑥𝑖 , 𝜎, 𝑘𝑖, 𝐺) ≔  ∫ 𝑣𝑖(𝑥𝑖; 𝒙𝑁𝑖)d𝜙(𝒙𝑁𝑖 , 𝜎, 𝑘𝑖, 𝐺)𝒙𝑁𝑖
    (A-5) 

be the expected payoff of degree type 𝑘𝑖 choosing 𝑥𝑖 in network 𝐺 when neighbors are playing the 

strategy 𝜎, where 𝜙(⋅, 𝜎, 𝑘𝑖, 𝐺) is the probability distribution over neighbor actions induced by the 

neighbor degree distribution and the neighbor strategy. The payoff exhibits degree substitution 

[degree complementarity] if for any non-increasing [non-decreasing] 𝜎, 

        𝑈(1, 𝜎, 𝑘, 𝐺) − 𝑈(0, 𝜎, 𝑘, 𝐺) ≤ [≥]𝑈(1, 𝜎, 𝑘′, 𝐺) − 𝑈(0, 𝜎, 𝑘′, 𝐺), ∀𝑘 > 𝑘′.                   (A-6) 

Degree substitution (complementarity) implies that a higher degree type will have less (more) 

incentive to choose 1 under non-increasing (non-decreasing) strategy, which essentially extends 

the notion of shirking (herding) into an incomplete information scenario.  

 



 

PROPOSITION A-1 (Galeotti et al. 2010). There exists a non-decreasing (non-increasing) 

equilibrium in the game that exhibits degree complementarity (degree substitution).  

The proof of Proposition A-1 can be found in Galeotti et al. (2010) (as Proposition 1). To 

understand the intuition behind the proposition: Under Assumption A-1, having one more neighbor 

who plays action 0 yields the same payoff to the player in question as not having this neighbor. 

Thus, a lower degree player is essentially dealing with the same number of neighbors as a higher 

degree player does, but with some of them playing action 0. Consequently, in a herding [shirking] 

game, the lower degree type would become more prone to action 0 [1], relative to a higher degree 

type. This gives rise to the monotonicity in the equilibrium. As shown in Remark A-2 below, our 

experimental games admit degree complementarity or degree substitution, and therefore possess 

the respective monotonic equilibria (which can be found in Table 5 in the main text). 

REMARK A-2. The games in treatments Gh_Herd and Gl_Herd (Gh_Shirk and Gl_Shirk) exhibit 

degree complementarity (degree substitution).  

Proof. For each treatment, define Δ𝑈(𝜎, treatment) ≔  𝑈(1, 𝜎, 3, 𝐺) − 𝑈(0, 𝜎, 3, 𝐺) −

(𝑈(1, 𝜎, 2, 𝐺) − 𝑈(0, 𝜎, 2, 𝐺)), where 𝐺 represents the network structure used in that treatment. In 

order to obtain degree complementarity [substitution] in respective treatments, we need to show 

the following: 

{

Δ𝑈(𝜎, 𝐺ℎ_𝐻𝑒𝑟𝑑) ≥ 0
𝑝2 ≤ 𝑝3

𝑝2, 𝑝3 ∈ [0,1]
 , {

Δ𝑈(𝜎, 𝐺𝑙_𝐻𝑒𝑟𝑑) ≥ 0
𝑝2 ≤ 𝑝3

𝑝2, 𝑝3 ∈ [0,1]
,{

Δ𝑈(𝜎, 𝐺ℎ_𝑆ℎ𝑖𝑟𝑘) ≤ 0
𝑝2 ≥ 𝑝3

𝑝2, 𝑝3 ∈ [0,1]
, {

Δ𝑈(𝜎, 𝐺𝑙_𝑆ℎ𝑖𝑟𝑘) ≤ 0
𝑝2 ≥ 𝑝3

𝑝2, 𝑝3 ∈ [0,1]
 . 

Because the payoff matrices for herding and shirking games in our experiment (Table 2 and 3) are 

exactly reversed from each other, it easily holds that Δ𝑈(𝜎, 𝐺ℎ_𝐻𝑒𝑟𝑑) = −Δ𝑈(𝜎, 𝐺ℎ_𝑆ℎ𝑖𝑟𝑘), and 

Δ𝑈(𝜎, 𝐺𝑙_𝐻𝑒𝑟𝑑) = −Δ𝑈(𝜎, 𝐺𝑙_𝑆ℎ𝑖𝑟𝑘). Hence, it suffices to show that 

{
Δ𝑈(𝜎, 𝐺ℎ_𝑆ℎ𝑖𝑟𝑘) ≤ 0

𝑝2, 𝑝3 ∈ [0,1]
 , {
Δ𝑈(𝜎, 𝐺𝑙_𝑆ℎ𝑖𝑟𝑘) ≤ 0

𝑝2, 𝑝3 ∈ [0,1]
, 

which can be easily verified to hold in our experimental setting. Take Gh_Shirk for example: 

Applying the expressions of 𝑈(⋅) elaborated in (B-1) and (B-2) in Appendix B, one can obtain 

                                    Δ𝑈(𝜎, 𝐺ℎ_𝑆ℎ𝑖𝑟𝑘) = 25𝑝2 (−1 − 6𝑝3 + 4𝑝3
2 + 𝑝2(−2 + 4𝑝3)),         

which is non-positive for any 𝑝2, 𝑝3 ∈ [0,1] . Similar derivations also suggest that 

Δ𝑈(𝜎, 𝐺𝑙_𝑆ℎ𝑖𝑟𝑘) ≤ 0 for 𝑝2, 𝑝3 ∈ [0,1].  ∎ 



 

Proposition A-1 establishes the equilibrium structure on the class of games we study. In order 

to seek for more insights, we shall next investigate the comparative statics of equilibrium with 

respect to the underlying network structure. 

PROPOSITION A-2. Consider the herding (shirking) game played in two networks 𝐺, 𝐺′. 𝐺  is 

denser than 𝐺′ . Then compared to any non-decreasing (non-increasing) herding (shirking) 

equilibrium 𝜎′ that exists for 𝐺′, there exists a non-decreasing (non-increasing) equilibrium 𝜎 in 

𝐺, where the probability of choosing 1 is weakly higher for each degree type. 

Proof. The shirking game part of the result is proved by Proposition 5 of Galeotti et al. (2010). For 

the herding game part, first observe that there exist a greatest and a least equilibria in the order of 

stochastic dominance (Theorem 14, Van Zandt and Vives 2007). Moreover, viewing neighbor 

degree distribution as the (joint) type distribution of opponents, one can readily apply Proposition 

16 of Van Zandt and Vives (2007) to show that the greatest equilibrium weakly increases (in the 

sense of stochastic dominance) with the network density. In other words, for each non-decreasing 

herding equilibrium in the original network, one can find a greater equilibrium of the same 

monotonicity in a denser network. Then the desired result follows. ∎ 

For Proposition A-2, it is easy to see its intuition in case of the herding game: By definition, 

higher network density means stochastically higher neighbor degrees (in the sense of stochastic 

dominance in neighbor degree distribution) for every degree type involved. If we conjecture that 

the level of action of each degree type increases with the network density, then the neighbor actions 

will ex ante increase under the maintained conjecture joint with the non-decreasing strategy used 

by neighbors. The player in question should thus increase the level of her own action, as a result of 

herding. This confirms our conjecture, implying the existence of the equilibrium in the denser 

network with higher action for every degree type. The theoretical arguments behind Proposition A-

2 for the shirking game are trickier and involve a contradiction. First note in the binary action 

context, non-increasing strategy is characterized by a threshold 𝜏, where players have more [less] 

degree than 𝜏 play pure action 0 [1] and the degree type-𝜏 randomizes. Start with the hypothesis 

that the equilibrium threshold is strictly lowered in the denser network. Since denser network 

indicates that any player’s neighbor will ex ante have more neighbors, the neighbors of the player 

in question should lower their actions (given more neighbors they have, the maintained hypothesis, 

and the non-increasing-ness of their strategy). In response, the player in question should increase 

her action as a result of shirking, which contradicts with the maintained hypothesis. Therefore, we 

conclude the opposite of the hypothesis, which suggests weakly higher equilibrium threshold in 



 

denser network. In other words, every degree type weakly increases her action in a shirking 

equilibrium under higher network density.  

We interpret the above theoretical results as the effects of network structure on agent behavior. 

To see, notice that Proposition A-1 specifies how equilibrium action changes with one’s degree and 

Proposition A-2 is about how equilibrium as a whole is shifted by the underlying network topology. 

In the main text, Hypothesis 2a and 2b are respectively built on Proposition A-1 and A-2, but differ 

from the theory in that they are constructed upon general, not-necessarily-equilibrium states 18. In 

that sense, Hypothesis 1 and 2 can be tested unconfoundedly, without any joint condition such as 

equilibrium. 

Appendix B. 

THE DERIVATION OF EQUILIBRIA FOR TABLE 5. Table 5 in the main text contains equilibria of 

games in all treatments. This section illustrates how these equilibria are derived. In what follows, 

we calculate the equilibrium for treatment Gh_Shirk (c.f. Table 4). The equilibria of games of other 

treatments can be worked out similarly. 

Represent the player payoff in the experimental shirking game (Table 3) by the following 

matrix, 𝑉 ≔ [
100 175 225 260
0 100 275 335

] , whose components are denoted by 𝑉𝑖,𝑗  ( 𝑖 = 1,2; 𝑗 =

1,2,3,4). Applying the neighbor degree distributions shown in Table A-1, and the 𝑈-notations 

defined in (A-5), we have: 

𝑈(1, 𝜎, 2, 𝐺ℎ) − 𝑈(0, 𝜎, 2, 𝐺ℎ) = 1 2⁄ (𝑝3
2(𝑉1,3 − 𝑉2,3) + 2𝑝3(1 − 𝑝3)(𝑉1,2 − 𝑉2,2) + (1 − 𝑝3)

2(𝑉1,1 − 𝑉2,1)) +

1 2⁄ (𝑝2𝑝3(𝑉1,3 − 𝑉2,3) + ((1 − 𝑝2)𝑝3 + 𝑝2(1 − 𝑝3))(𝑉1,2 − 𝑉2,2) + (1 − 𝑝2)(1 − 𝑝3)(𝑉1,1 − 𝑉2,1)),                 (B-1) 

𝑈(1, 𝜎, 3, 𝐺ℎ) − 𝑈(0, 𝜎, 3, 𝐺ℎ) = 1 2⁄ (𝑝2(𝑝3
2(𝑉1,4 − 𝑉2,4) + 2𝑝3(1 − 𝑝3)(𝑉1,3 − 𝑉2,3) + (1 − 𝑝3)

2(𝑉1,2 − 𝑉2,2)) +

(1 − 𝑝2)(𝑝3
2(𝑉1,3 − 𝑉2,3) + 2𝑝3(1 − 𝑝3)(𝑉1,2 − 𝑉2,2) + (1 − 𝑝3)

2(𝑉1,1 − 𝑉2,1))) + 1 2⁄ (𝑝3(𝑝2
2(𝑉1,4 − 𝑉2,4) +

2𝑝2(1 − 𝑝2)(𝑉1,3 − 𝑉2,3) + (1 − 𝑝2)
2(𝑉1,2 − 𝑉2,2)) + (1 − 𝑝3)(𝑝2

2(𝑉1,3 − 𝑉2,3) + 2𝑝2(1 − 𝑝2)(𝑉1,2 − 𝑉2,2) +

(1 − 𝑝2)
2(𝑉1,1 − 𝑉2,1))).                           (B-2) 

Based on that, we now check for potential equilibria in different scenarios. For example, if 

there exists an equilibrium where the low degree type chooses 1 and the high type is indifferent 

between the choices, then the equilibrium must be the solution to the following system:  

                                                      
18 To see that, notice that equilibrium is a prerequisite to Proposition A-1 and A-2, but it is not required in the 

statement of Hypothesis 2.  



 

 {

𝑈(1, 𝜎, 2, 𝐺ℎ) − 𝑈(0, 𝜎, 2, 𝐺ℎ) > 0

𝑈(1, 𝜎, 3, 𝐺ℎ) − 𝑈(0, 𝜎, 3, 𝐺ℎ) = 0
𝑝2 = 1, 0 < 𝑝3 < 1

 ,                                                                         (B-3) 

Solving (B-3) gives us an equilibrium 𝑝2 = 1, 𝑝3 = 0.094. Furthermore, it can be checked that 

Gh_Shirk does not have any other equilibrium.  

PROOF OF REMARK 1. We compute the efficient allocation, denoted by (𝑝2
∗, 𝑝3

∗)  (which 

maximizes the ex ante social welfare), for treatment Gh_Shirk. The efficient allocation for other 

treatments can be analogously worked out. Let 𝑈𝑘,𝐺ℎ
𝜎 = 𝑝𝑘𝑈(1, 𝜎, 𝑘, 𝐺ℎ) + (1 − 𝑝𝑘)𝑈(0, 𝜎, 𝑘, 𝐺ℎ). 

Then (𝑝2
∗, 𝑝3

∗) is the solution to the following problem. 

                           max
𝑝2,𝑝3

1

2
𝑈2,𝐺ℎ
𝜎 +

1

2
𝑈3,𝐺ℎ
𝜎 , 𝑠. 𝑡. 𝑝2 ∈ [0,1], 𝑝3 ∈ [0,1].                                         (B-4) 

Then it is easy to find that 𝑝2
∗ = 1, 𝑝3

∗ = 1 for treatment Gh_Shirk. ∎ 

Appendix C. 

Experimental Instruction 

We present the experimental instruction for treatment Gh_Shirk in this appendix. The 

instruction can be straightforwardly adapted to Gl_Shirk with only change of the neighbor degree 

distribution, and to the herding treatments by the change of payoff values and labels. 

****************************** Instruction: Gh_Shirk ****************************** 

General. Welcome and thank you for participating in this experiment. In this experiment you will 

earn money. From now on until the end of the experiment, please do not communicate with other 

participants. If you have any question, please raise your hand. An experimenter will come to your 

place and answer your question privately. 

The Game. In the Experiment we use ECU (Experimental Currency Unit) as the monetary unit. 

The profits you make during the experiment will be added to this account in ECU. At the end of 

the experiment, the balance of the account will be converted from ECUs into Chinese yuan 

according to the conversion rate stated below, and paid out in cash after the experiment. 

The experiment lasts for 20 rounds. In each round, participants will be organized in a network. 

In this network, you are connected to either two or three people, who are your neighbors. Every 

round your neighbors will be different people, but you will have the same number of neighbors. 

You know the number of neighbors whom you are connected, but you will not know their identity. 

Specifically, 

If you have two neighbors, 



 

• With 1/2 chance, one of your neighbors has 2 neighbors (including yourself) while the other 

has 3 neighbors (including yourself). 

• With 1/2 chance, each of your neighbors has 3 neighbors (including yourself). 

If you have three neighbors, 

• With 1/2 chance, one of your neighbors has 2 neighbors (including yourself) while the other 

two neighbors have 3 neighbors each (including yourself). 

• With 1/2 chance, one of your neighbors has 3 neighbors (including yourself) while the other 

two neighbors have 2 neighbors each (including yourself). 

At the beginning of each round, each person in the network chooses one of the two options: A, 

B. Each does so without any knowledge of what any other person decides. The profit you earn 

depends on how many neighbors you have, the option you choose, and how many of your neighbors 

choose A. Specifically, 

If you choose A and you have two neighbors then 

• If both neighbors choose A, your profit is 225 ECU. 

• If exactly one neighbor chooses A your profit is 175 ECU. 

• If neither neighbor chooses A your profit is 100 ECU. 

If you choose B and you have two neighbors then 

• If both neighbors choose A, your profit is 275 ECU. 

• If exactly one neighbor chooses A your profit is 100 ECU. 

• If neither neighbor chooses A your profit is 0 ECU. 

This is summarized in Table 1 as below, also shown on your computer screen during your play. 

Your Profit 
Number of Your Neighbors who Choose A 

2 1 0 

Your 

Choice 

A 225 175 100 

B 275 100 0 

Table 1. Two-Neighbor Payoff Table 

If you choose A and you have three neighbors then 

• If all three neighbors choose A your profit is 260 ECU. 

• If exactly two neighbors choose A, your profit is 225 ECU. 

• If exactly one neighbor chooses A your profit is 175 ECU. 

• If no neighbor chooses A your profit is 100 ECU. 

If you choose B and you have three neighbors then 

• If all three neighbors choose A your profit is 335 ECU. 



 

• If exactly two neighbors choose A, your profit is 275 ECU. 

• If exactly one neighbor chooses A your profit is 100 ECU. 

• If no neighbor chooses A your profit is 0 ECU. 

This is summarized in Table 2 as below, also shown on your computer screen during your play. 

Your Profit 
Number of Your Neighbors who Choose A 

3 2 1 0 

Your 

Choice 

A 260 225 175 100 

B 335 275 100 0 

Table 2. Three-Neighbor Payoff Table 

There are a few tips to keep in mind, which will help you earn more profits: 

 I earn more profit by choosing B if two or more than two of my neighbors choose A. 

 I earn more profit by choosing A if none or one of my neighbor chooses A. 

The conversion rate is 1 ECU=0.01 Chinese Yuan. Before the game starts, you are required to 

complete a quiz, which covers the important knowledge about the game. The quiz will be shown 

on your computer screen. You will start to play the game only after you correctly answer all the 

questions in the quiz. 

Consent Forms. Please read the consent form that is delivered to you before the start of the 

experiment. 

************************************************************************************** 

Appendix D. 

The Experimental Software Interface  

This section provides snapshots of the experimental software. The software is programmed 

with zTree (Fischbacher, 2007). Subjects began with a quiz testing their understanding of the game, 

with no earning accumulated to the game. The quiz screens are shown in Figure D-1. The actual 

decision making interfaces are found in Figure D-2. For conciseness, we only include the interfaces 

for d2_Gl_Shirk (which means the screens shown to degree-2 players in treatment Gl_Shirk). The 

other cases not covered in the screenshots were presented to the subjects in an analogous way. 



 

 

Figure D-1. Quiz 

 

 

Figure D-2. Decision making 

 

 



 

Appendix E.  

Data Analysis 

E.1. Test of the equilibrium hypothesis 

In Section 4, we have noted the ineffectiveness of formal equilibrium in representing the 

subject behavior (Observation 1). This section will elaborate in detail the 𝜒2 goodness of fit test 

we used to reach the above conclusion. Denote by 𝐼𝑑2, 𝐼𝑑3 the numbers of degree-2 and degree-3 

players who choose 1 in a cohort, respectively, and 𝑁𝑑𝑖  the number of degree-𝑖 players in the 

cohort19. Then the category of the test consists of the dyad (𝐼𝑑2, 𝐼𝑑3). The expected frequency at 

each category (𝐼𝑑2, 𝐼𝑑3 ) is given by ℕ∏ (𝑁𝑑𝑖
𝐼𝑑𝑖
) 𝑝𝑖

𝐼𝑑𝑖(1 − 𝑝𝑖)
𝑁𝑑𝑖−𝐼𝑑𝑖

𝑖=2,3 , under the equilibrium 

strategy (𝑝2, 𝑝3)20 and the sample size ℕ. The sample size for the test in each treatment is 5 cohorts 

× 20 periods = 100 (realized outcomes of the treatment game). That is, ℕ = 100. Then collecting 

the observed frequency at each category and comparing it with the expected one will yield the 𝜒2 

test statistics 

𝜒2 = ∑
(observed frequency−expected frequency)2

expected frequency categories ,                     (E-1) 

with the degree of freedom = (𝑁𝑑2 − 1)(𝑁𝑑3 − 1). As such, the test is methodologically consistent 

with that used in Brown and Rosenthal (1990) for mixed strategy equilibria, except that the players 

in our game are identified by their degree types. For illustration purpose, Table E-1 details the test 

for treatment Gh Shirk, where the unique equilibrium is that 𝑝2 = 1, 𝑝3 = 0.094. The tests of other 

equilibria can be done in a similar fashion. As a result, all the equilibria are rejected with p-value 

of 0.000. 

 

 

 

 

 

 

 

 

 

                                                      
19 In our experiment, 𝑁𝑑𝑖 differs by the network density. In high density network (𝐺ℎ), 𝑁𝑑2 = 𝑁𝑑3 = 4, while 

in low density network (𝐺𝑙), 𝑁𝑑2 = 6,𝑁𝑑3 = 2 (Refer to Figure 1 in the paper). 
20 Recall that 𝑝𝑘 is the probability of degree-𝑘 players choosing 1 at the equilibrium. 



 

Table E-1. 𝜒2 goodness of fit test on the Gh Shirk equilibrium  

Ho: 𝑝2 = 1, 

𝑝3 = 0.094 𝐼𝑑3 
𝐼𝑑2 0 1 2 3 4 

0 1(0) 0(0) 0(0) 0(0) 0(0) 

1 0(0) 2(0) 0(0) 0(0) 2(0) 

2 3(0) 5(0) 11(0) 2(0) 1(0) 

3 5(0) 17(0) 7(0) 6(0) 6(0) 

4 8(67.38) 1(27.96) 14(4.35) 4(0.30) 5(0.01) 

   𝜒2(9) = ∞ 0.000*  

      
The statistics in the table are the observed frequency and the expected frequency 

by equilibrium (the latter shown in parentheses) 

sample size=100  

* p-value 

The exact testing of equilibria in our treatment games tends to be challenging, since every 

equilibrium involves at least one degree type choosing some action with probability 1 (c.f. Table 5, 

main text). That leaves some category for which the expected frequency is 0. If the observed 

frequency in that category is not 0 (such as the many cases in Table E-1), it will result in some 

infinitely large 𝜒2 test statistic and reject the null hypothesis unambiguously. Practically speaking, 

the extreme predictions of formal equilibria are very unlikely to survive in reality; thus the rejection 

of the equilibrium hypothesis by our data gives no surprise.  

In Section 5, we also attempt an individual-level explanation on why subjects fail to reach 

equilibrium – It happens because subjects do not very much follow the equilibrium learning. In fact, 

we depict their pattern of learning as a combination of equilibrium learning and adaptive learning, 

and the latter being a stronger component as suggested by the data. This learning-based approach 

accounts for not only the dismissal of formal equilibrium, but also the findings with regard to the 

network effects and dynamics on the aggregate level. See Section 5 for details.  

E.2. Learning: Model 

Adaptive learning 

Section 5 presents the learning model we used to analyze individual behavior. The model 

resembles features of SEWA (Chong et al. 2006, Ho et al. 2007) model, and is extended by us into 

the network setting. While the main construct of the model is provided in Section 5, we are left 

with details regarding the functional parameter (𝑛𝑖𝑡) that coevolves with the game. To proceed, let 

                                                                 𝑛𝑖𝑡 = 𝜙𝑖𝑡𝑛𝑖,𝑡−1 + 1,                                                   (E-2) 



 

where the initial value 𝑛𝑖0 = 0, and 𝜙𝑖𝑡 is computed as follows (in the new index): 

                           𝜙𝑖𝑡 = 1 −
1

2
(∑ [

∑ ∑ 𝐼(𝑥,𝑥𝑗𝜎)𝑗∈𝑁𝑖𝜎
𝑡
𝜎=𝑡−1  

2𝑘𝑖
−
∑ ∑ 𝐼(𝑥,𝑥𝑗𝜎)𝑗∈𝑁𝑖𝜎
𝑡
𝜎=1

𝑡𝑘𝑖
]
2

𝑥 ) ,                  (E-3) 

in which 𝐼(𝑥, 𝑥𝑖𝑡) = {
1, 𝑥 = 𝑥𝑖𝑡
0, 𝑥 ≠ 𝑥𝑖𝑡

.  

The definition of 𝜙𝑖𝑡 involves comparing the rate of each action being chosen within one’s 

neighborhood averaged over the most recent two periods, to that averaged over all periods until 

now. A lower value of 𝜙𝑖𝑡 hence indicates higher variability of the learning environment, which 

reduces the value of 𝑛𝑖𝑡 and means that the update of choice attraction (c.f. (2) in the main text) 

will bend towards the most recent experience.  

Equilibrium learning 

The rest of Appendix E.2 deals with equilibrium learning, which is introduced in Section 5.2 

in the main text. Specifically, we shall prove the result that the equilibrium learning indeed leads 

to equilibrium (Proposition 1, Section 5.2).  

Proof of Proposition 1. Define a vector-valued function 𝑝𝑖𝑡
𝑞
≔ (𝑝𝑖𝑡𝑘

𝑞
)
𝑘∈𝜅

. Then the equilibrium 

learning implies the following quantal response iteration, 𝑝𝑖,𝑡+1
𝑞

∶= 𝑝𝑖,𝑡+1
𝑞

(𝑝𝑖𝑡
𝑞
) , where each 

component 𝑝𝑖,𝑡+1,𝑘
𝑞

=
𝑒𝜆𝑖 𝑈(1,𝜎𝑖𝑡,𝑘,𝐺𝑖)

𝑒
𝜆𝑖 𝑈(1,𝜎𝑖𝑡,𝑘,𝐺𝑖)+𝑒

𝜆𝑖 𝑈(0,𝜎𝑖𝑡,𝑘,𝐺𝑖)
, ∀𝑘 (c.f. (3) and (4) in Section 5). Then each entry 

of the Jacobian matrix 
𝜕𝑝𝑖,𝑡+1

𝑞

𝜕𝑝
𝑖𝑡
𝑞  takes the following form: 

                      
𝜕𝑝𝑖,𝑡+1,𝑘

𝑞

𝜕𝑝
𝑖𝑡𝑘′
𝑞 =

−𝑒
𝜆𝑖 (𝑈(0,𝜎𝑖𝑡,𝑘,𝐺𝑖)−𝑈(1,𝜎𝑖𝑡,𝑘,𝐺𝑖))𝜆𝑖

(1+𝑒
𝜆𝑖 (𝑈(0,𝜎𝑖𝑡,𝑘,𝐺𝑖)−𝑈(1,𝜎𝑖𝑡,𝑘,𝐺𝑖)))

2

𝜕(𝑈(0,𝜎𝑖𝑡,𝑘,𝐺𝑖)−𝑈(1,𝜎𝑖𝑡,𝑘,𝐺𝑖))

𝜕𝑝
𝑖𝑡𝑘′
𝑞 , ∀𝑘, 𝑘′.                   (E-4) 

Applying the ∞-norm (denoted by ‖⋅‖), one obtains 

 ‖
𝜕𝑝𝑖,𝑡+1

𝑞

𝜕𝑝
𝑖𝑡
𝑞  ‖ 

= max
𝑘
{∑ |

𝜕𝑝𝑖,𝑡+1,𝑘
𝑞

𝜕𝑝
𝑖𝑡𝑘′
𝑞 |

𝑘′
 } 

=⏟
(E−4)

max
𝑘
{∑ |

−𝑒𝜆𝑖 (𝑈(0,𝜎𝑖𝑡,𝑘,𝐺𝑖)−𝑈(1,𝜎𝑖𝑡,𝑘,𝐺𝑖))𝜆𝑖

(1 + 𝑒𝜆𝑖 (𝑈(0,𝜎𝑖𝑡,𝑘,𝐺𝑖)−𝑈(1,𝜎𝑖𝑡,𝑘,𝐺𝑖)))
2

𝜕(𝑈(0, 𝜎𝑖𝑡 , 𝑘, 𝐺𝑖) − 𝑈(1, 𝜎𝑖𝑡 , 𝑘, 𝐺𝑖))

𝜕𝑝
𝑖𝑡𝑘′
𝑞 |

𝑘′
   } 



 

= max
𝑘
{

𝑒𝜆𝑖 (𝑈(0,𝜎𝑖𝑡,𝑘,𝐺𝑖)−𝑈(1,𝜎𝑖𝑡,𝑘,𝐺𝑖))

(1 + 𝑒𝜆𝑖 (𝑈(0,𝜎𝑖𝑡,𝑘,𝐺𝑖)−𝑈(1,𝜎𝑖𝑡,𝑘,𝐺𝑖)))
2 𝜆𝑖∑ |

𝜕(𝑈(0, 𝜎𝑖𝑡 , 𝑘, 𝐺𝑖) − 𝑈(1, 𝜎𝑖𝑡 , 𝑘, 𝐺𝑖))

𝜕𝑝
𝑖𝑡𝑘′
𝑞 |

𝑘′
  } 

In order for the quantal response to be a contraction mapping, we need to have the norm of the 

Jacobian sufficiently bounded. For that purpose, observe 0 <
𝑒
𝜆𝑖 (𝑈(0,𝜎𝑖𝑡,𝑘,𝐺𝑖)−𝑈(1,𝜎𝑖𝑡,𝑘,𝐺𝑖))

(1+𝑒
𝜆𝑖 (𝑈(0,𝜎𝑖𝑡,𝑘,𝐺𝑖)−𝑈(1,𝜎𝑖𝑡,𝑘,𝐺𝑖)))

2 ≤ 
1

4
. 

Thus, we will have ‖
𝜕𝑝𝑖,𝑡+1

𝑞

𝜕𝑝
𝑖𝑡
𝑞  ‖ < 1if 𝜆𝑖 ∑ |

𝜕(𝑈(0,𝜎𝑖𝑡,𝑘,𝐺𝑖)−𝑈(1,𝜎𝑖𝑡,𝑘,𝐺𝑖))

𝜕𝑝
𝑖𝑡𝑘′
𝑞 |𝑘′ < 4. It then follows that 𝑝𝑖𝑡

𝑞 (⋅) 

constitutes a contraction mapping, of which the iteration over 𝑡 converges to a quantal response 

equilibrium (𝑝𝑖,⋅
𝑞
)
𝑖=1,2…𝑁

 by Banach fixed point theorem. ∎ 

E.3. Learning: Results  

In Section 5, we have examined the performance of learning models with cohort-specific 

parameterization. While the cohort-specific version of the models imposes the desired consistency 

on agent beliefs (see footnote 15 in the main text), this section will demonstrate its efficiency in 

fitting the data against the individually parameterized model (referred as individual-specific model). 

As suggested in Table E-2, the cohort-specific model is favored by the likelihood ratio test over the 

individual-specific model in all cases, where the 𝑝-value of the test is 1.000 for hybrid learning, 

and 1.000, 0.944 for equilibrium learning and adaptive learning, correspondingly. 21 Thus, our 

further comparisons of the behavioral models in Section 5 are based on their cohort-specific form.  

 

 

 

 

 

                                                      
21  Our estimations for cohort- (individual-) specific models are conducted independently across cohorts 

(subjects). This is the natural approach for estimating the cohort-specific model, given the cohorts are 

independent by design (Section 3.2). To see why this approach also works appropriately for the individual-

specific model, note that the estimation may not be done in simultaneous equations across subjects because 

the network information is incomplete and neighborhoods vary all the time, which largely removes the 

associations of player identities in the game (i.e. Players are recognized by their degree types rather than 

individual identities). Hence, it would be proper to estimate the individual parameters independently. That 

said, the independence of parameter estimation substantially reduces the computational effort required for 

fitting our models, which involve large numbers of parameters – To see, there are 100 (800), 40 (320), and 40 

(320) parameters for the cohort- (individual-)specific version of hybrid learning, adaptive learning, and 

equilibrium learning, correspondingly.  



 

Table E-2. Comparison of behavioral models
†
 

 hybrid learning 
adaptive 

learning 

equilibrium 

learning 

LL (individual-specific)* -322.29 -443.59 -829.48 

likelihood ratio test (𝑝-value)**                                 
𝜒2(700)=288.34 𝜒2(280)=243.38 𝜒2(280)=103.46 

 (1.000) (0.944) (1.000) 

† 
based on the entire dataset that includes all treatments 

* log likelihood (LL) produced by maximum likelihood estimation (MLE). 

** null [alternative] hypothesis: The reduced (cohort-specific) model is more [less] efficient than the full 

(individual-specific) model in fitting the data. 

In the main text we focused on examining the estimation of 𝑟𝑖𝑡𝑘 and its associated derivations 

(𝑟�̅�), as they are crucial to the interpretation of learning behavior. For the sake of completeness, we 

shall in Table E-3 below provide the estimation results of the original parameters of the hybrid 

model.   

Table E-3. Results of hybrid learning (continued) 

treatment 
cohort-specific model, estimated by MLE 

𝜆𝑖22 𝑟𝑖03 𝑟𝑖02 Δ𝐴𝑖0𝑘
𝑞

 Δ𝐴𝑖0𝑘
𝑎  

Gh_Shirk 
0.037 0.09 0.26 116.3 292.5 

(0.008) (0.117) (0.149) (74.9) (21.5) 

Gl_Shirk 
0.038 0.32 0.23 85.1 246.9 

(0.020) (0.174) (0.115) (67.3) (97.0) 

Gh_Herd 
0.427 0.20 0.34 87.6 72.6 

(0.879) (0.238) (0.255) (75.6) (144.5) 

Gl_Herd 
0.040 0.276 0.34 20.2 335.1 

(0.018) (0.418) (0.291) (31.2) (76.6) 

mean (standard deviation)  

E.4. Learning: Estimation Approach  

This appendix will elaborate in detail the estimation strategy in Section 5.4, with the hybrid 

learning model as an example. The estimations of other learning models in our paper work out in a 

similar way. For the ease of understanding, we decompose hybrid learning in Figure E-1 below, 

and we massage the notes and references into the figure to make it self explanatory.  

                                                      
22 It has to be noted that the seemingly low estimated values of 𝜆𝑖  per se do not automatically imply high 

irrationality of the subjects involved, for the following reason: In determining the choice probabilities in the 

hybrid model, 𝜆𝑖 is not directly linked to the attraction of any action (c.f. (5) in the main text). Therefore, unlike 

in the models of equilibrium learning and adaptive learning, the estimate of 𝜆𝑖 in Table E-3 cannot be readily 

interpreted as the degree of rationality in hybrid learning, and thus mainly serves to calculate other measures 

of interests (e.g. 𝑟�̅� in the main text). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E-1. Estimation approach of hybrid learning: A graphical illustration 

Overall, the hybrid learning is composed of equilibrium learning and adaptive learning, each 

of these components evolving in a recursive manner. As shown in Figure E-1, we estimate the initial 

values 𝑟𝑖02, 𝑟𝑖03, Δ𝐴𝑖0𝑘
𝑞
, Δ𝐴𝑖0𝑘

𝑎   (which kick off the dynamics), and the sensitivity parameter 𝜆𝑖 

(which controls the convergence). The maximal likelihood estimation then produces the results we 

𝑝𝑖𝑡𝑘
ℎ = 𝑟𝑖𝑡𝑘𝑝𝑖𝑡𝑘

𝑞
+ (1 − 𝑟𝑖𝑡𝑘)𝑝𝑖𝑡𝑘

𝑎  

𝑟𝑖,𝑡+1,𝑘𝑖 =

{
 
 

 
 

𝑝𝑖,𝑡+1,𝑘𝑖
𝑞

𝑟𝑖𝑡𝑘𝑖

𝑝𝑖,𝑡+1,𝑘𝑖
𝑞

𝑟𝑖𝑡𝑘𝑖 + 𝑝𝑖,𝑡+1,𝑘𝑖
𝑎 (1 − 𝑟𝑖𝑡𝑘𝑖)

,              𝑥𝑖𝑡 = 1 

(1 − 𝑝𝑖,𝑡+1,𝑘𝑖
𝑞

)𝑟𝑖𝑡𝑘𝑖

(1 − 𝑝𝑖,𝑡+1,𝑘𝑖
𝑞

)𝑟𝑖𝑡𝑘𝑖 + (1 − 𝑝𝑖,𝑡+1,𝑘𝑖
𝑎 )(1 − 𝑟𝑖𝑡𝑘𝑖)

, 𝑥𝑖𝑡 = 0

 

∎ For 𝑘 ≠ 𝑘𝑖, 𝑟𝑖𝑡𝑘 sticks to its initial value 𝑟𝑖0𝑘. 

∎ The initial values 𝑟𝑖02, 𝑟𝑖03 are to be estimated. 

 

𝑝𝑖,𝑡+1,𝑘
𝑞

=
1

1 + 𝑒−𝜆𝑖Δ𝐴𝑖𝑡𝑘
𝑞  

∎ Δ𝐴𝑖𝑡𝑘
𝑞
≔ 𝐴𝑖𝑡𝑘

𝑞 (1) − 𝐴𝑖𝑡𝑘
𝑞
(0) 

𝑝𝑖,𝑡+1,𝑘
𝑎 =

1

1 + 𝑒−𝜆𝑖Δ𝐴𝑖𝑡𝑘
𝑎  

∎ Δ𝐴𝑖𝑡𝑘
𝑎 ≔ 𝐴𝑖𝑡𝑘

𝑎 (1) − 𝐴𝑖𝑡𝑘
𝑎 (0) 

 

∎ 𝜆𝑖 is to be estimated. 

 

Δ𝐴𝑖𝑡𝑘
𝑞
= ∆𝑈(𝜎𝑖𝑡 , 𝑘, 𝐺𝑖) 

 

𝐴𝑖𝑡𝑘
𝑎 (𝑥) = (1 −

1

𝑛𝑖𝑡
)𝐴𝑖,𝑡−1,𝑘

𝑎 (𝑥)

+
1

𝑛𝑖𝑡
Δ𝑖𝑡
𝑎 (𝑥)𝑣𝑖(𝑥, 𝑦𝑖𝑡) 

∎ ∆𝑈(𝜎𝑖𝑡 , 𝑘, 𝐺𝑖) (see equations 

(B-1) and (B-2) above) is a function 

of 𝑝𝑖𝑡2, 𝑝𝑖𝑡3. 

∎ Δ𝐴𝑖0𝑘
𝑞

 is to be estimated. 

∎ 𝑛𝑖𝑡 , 𝑣𝑖(𝑥, 𝑦𝑖𝑡), Δ𝑖𝑡
𝑎 (𝑥) are solely 

determined by the realized data. For 𝑛𝑖𝑡 , see 

equations (E-2) and (E-3) above. For 

𝑣𝑖(𝑥, 𝑦𝑖𝑡) and Δ𝑖𝑡
𝑎 (𝑥), see Section 5.1.   

∎ Δ𝐴𝑖0𝑘
𝑎  is to be estimated. 



 

presented in Table E-3 and in Table 9.  
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