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Abstract
Topology captures the essence of what remains unchanged under a transformation. This study was motivated by a newly 
found topological invariant called super conformality that leads to local activity of a higher-integral-order electric element. 
As a result, the traditional periodic table of the electric elements can be dramatically reduced to have only six passive ones 
(resistor, inductor, capacitor, memristor, meminductor, and memcapacitor), in contrast to the unbounded table predicted 
40 years ago. Our claim was experimentally verified by the fact that the two higher-integral-order memristors in the famous 
Hodgkin–Huxley circuit are locally active with an internal battery.

Keywords Computational electronics · Electric element · Topology · Differential manifold · Homeomorphism

1  Introduction: topology in computational 
electronics

Based on the two fundamental attributes (electric charge q 
and magnetic flux φ) [1–4], we found that all the (two-ter-
minal) electric elements are topologically homeomorphic [5] 
in terms of physically interacting charge q (or its αth-order 
variant q(α)) and flux φ (or its βth-order variant φ(β)), in which 
� or � can even be a fraction to reflect the fractional coupling 
between electricity and magnetism. Figure 1 describes such 
a topological homeomorphism, in which “genus” represents 
a class, kind, or group marked by common characteristics or 
by one common characteristic.

As a mathematical study of the structural properties of 
objects, topology is motivated by the fact that some scientific 
problems depend not on the exact geometric shape of the 
objects involved, but rather on the way they are organised 
and interconnected together [5]. As shown in Fig. 1, a sphere 
and a cube have a property in common: both separate the 
space into two parts, the part inside and the part outside. 
Homeomorphism is the isomorphism in the category of top-
ological spaces [5]—that is, two objects are homeomorphic 
if one can be continuously deformed into the other. Refer-
ring to the change in size or shape of an object, (continuous) 

deformation includes stretching and bending but excludes 
cutting or gluing.

In order to describe the physical charge-flux interaction in 
an electric element in Fig. 2b and then predict the behaviour 
of a real device, we used the LLG equation:

where MS is the saturation magnetization, H ∝ i is a mag-
netic field along z, g is the Gilbert damping parameter and 
ϒ is the gyromagnetic ratio [6, 7]. The following expression 
was deduced:

in which m(t) = Mz(t)∕MS (Mz is the Z component of MS), 
SW is a switching coefficient and C is a constant of integra-
tion such that C = tanh−1m0 (m0 is the initial value of m) if 
q(t = 0) = 0 (no accumulation of charge at any point).

By Faraday’s law, the induced voltage v(t) across the two 
terminals of the conductor is:

where μ0 is the permeability of free space and S is the cross-
sectional area.
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From Eq. 2, we obtain

(3)� = �0SM + C� = �0SMSm + C�,

where C′ is another constant of integration.
Assuming �(t = 0) = 0 , we have C�

= −�0SMSm0
 , so

A typical q-φ curve with m0 = − 0.964 is depicted in 
Fig. 6b, which agrees with those experimentally observed 
q-φ curves [9–11]. By nature, it is nonlinear, continuously 
differentiable, and monotonically increasing (the three ideal-
ity criteria [2]). Hence, Eq. 4 is reasonably used as one of 
the two exemplified constitutive curves for an ideal element 
[q(α), φ(β] that is defined based on the q-φ interaction.

The article is structured as follows. In Sect. 1, we intro-
duce topology and identify its potential applications in com-
putational electronics. In Sect. 2, we prove that the constitu-
tive space of an electric element is a differential manifold. 
In Sect. 3, we highlight that topology captures the essence 
of what remains unchanged and report super conformality 
is such a topological invariant. In Sect. 4, we point out that 
the periodic table of the electric elements can be dramati-
cally reduced to have only six passive electronic elements 
based on our newly found super conformality. In Sect. 5, we 
prove a theorem that an electric element is locally active if 
its mid-point is nonzero. In Sect. 6, we mention an experi-
mental verification in the famous Hodgkin–Huxley circuit 
and summarize our study.

2  The constitutive space of an electric 
element is a differential manifold

Topologically, the constitutive q-φ space of an electric ele-
ment is a differential manifold (a type of manifold that is 
locally similar enough to a vector space to allow one to do 
calculus [12]) because it is globally defined with a differ-
entiable but possibly complex structure (especially when 
characterising a higher-integral-order element).

As a topological space that locally resembles Euclidean 
space near each point, a manifold (with a possibly complex 
structure) is something similar to a globe (a 3D spherical 
model of the Earth), which cannot be unfolded onto a 2D 
plane without distorting its surface due to the curvature. 
However, as shown in Fig. 3, the surface of a globe can 
be approximated by a collection of 2D maps (also called 
charts), which together form an atlas of the globe. Although 
no individual map is sufficient to cover the entire surface of 
the globe, any place in the globe will be in at least one of 
the charts [12].

In topology, each map (chart) locally resembles a linear 
space near each point, as shown in Fig. 4. These Euclidean 
pieces can be patched together to form the original manifold. 
A manifold can be described by two charts U1 and U2. If the 

(4)�(q) = �0SMs

[
tanh

(
q

SW
+ tanh

−1 m0

)
− m0

]
.

Fig.1  Topology is rooted in electric elements. We found that all the 
two-terminal electric elements are topologically homeomorphic with 
a genus of 2 (the number of holes is 2) in terms of physically inter-
acting electric charge q (or its αth-order variant q(α)) and magnetic 
flux φ (or its βth-order variant φ(β)). Intuitively, either electricity or 
magnetism can be represented by a circle in the sense that a moving 
charge (current) generates a circular magnetic field and a spin gener-
ates a circular magnetic flux (see Fig. 2b). As a quantity associated 
with topological space that do not change under continuous deforma-
tions of the space, a topological invariant is the number of holes in a 
surface (genus)

Fig. 2  a A Feynman diagram depicts vividly the interaction of suba-
tomic particles such as electron (e−), positron (e+), photon (γ), quark 
(q), antiquark (q̄), and gluon (g) [8]; b To give a similar visualiza-
tion of what would otherwise be arcane and abstract formulas, a pair 
of entangled circles depicts the charge-flux interaction in a structure 
with a current-carrying conductor and a magnetic lump. The moving 
charge q (the current i) generates the magnetic field H that rotates the 
magnetization m inside the lump and consequently the switched flux 
φ induces a voltage v across the conductor, thereby defining a generic 
“state-dependent Ohm's law” for all the (charge-controlled) two-ter-
minal electric elements
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transition ( f1 ∙ f −12
 or f2 ∙ f −11

 ) from one chart to another is 
differentiable, then computations done in one chart are valid 
in any other differentiable chart.

Topologically, the constitutive space of an electric ele-
ment is a differential manifold as shown in Fig. 5. Some 
practical (nonideal) devices exhibit a double-valued q-φ 
curve, and a pinched i-v curve is asymmetric against the 
origin [13]. This is a generic case for an electric element 
in terms of physically interacting electric charge q (or its 

αth-order variant q(α)) and magnetic flux φ (or its βth-order 
variant φ(β)).

The mapping function (f1 or f2) can be the so-called 
conformal differential transformation when characteris-
ing a 0th-order element [1, 2] or a more complex trans-
formation [4] when characterising a higher-integral-order 
element.

Actually, the projection from the q-φ plane to the i-v 
plane in Fig. 5 is based on the following theorem.

Theorem I: (Conformality theorem) The fractional differ-
ential transformation that covers both integer-order and 
fraction-order is conformal.

Proof 
Where d

−Ω

dt−Ω
 is the fraction-order calculus operator ( 0 ≤ Ω ≤ 1

)
The introduction of fraction-order calculus dealing with 

any order of derivatives or integrals [14, 15] here describes 
some nonideal memristors whose charge-flux coupling is 
fractional. This theorem indicates that the differential trans-
formation in the fraction-order still preserves angles in the 
same way as the (traditional) integer-order transformation 
does [1, 2, 4].

Obviously, the (differential) memristance of a point on the 
q-ϕ curve equals the chord memristance of the correspond-
ing point on the i-v curve in the fractional transformation. 

Ψ = arctg

�
dΩ�̂�(q)

dqΩ

�
= arctg

⎛
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⎝
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dtΩ
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v(t)
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�
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(a) A globe (a 3D spherical model of the Earth);

(b) A collection of 2D maps (charts) forms the 3D globe. 

Fig. 3  A 3D globe can be approximated by a collection of 2D maps 
(charts)

Fig. 4  Mapping  f1 or  f2 is a special type of relation in which one 
element of one domain is paired with another element of another 
domain. The transition map relates the coordinates defined by the 
two charts to one another: f1 ∙ f −12

 and f2 ∙ f −11
 . To induce a global 

differential structure on the local coordinate systems induced by the 
homeomorphisms, their composition on chart intersections ( U1 ∩ U2 ) 
in the atlas must be differentiable functions on the corresponding lin-
ear space [12]

Fig. 5  Topologically, the constitutive space of an electric element is 
a differential manifold so that the two branches in the global struc-
ture can be mapped to the two local coordinate systems and analysed. 
Both points P and Q that join the two branches are projected to the 
origins of the two coordinate systems. Such a zero-crossing feature is 
a fingerprint of an ideal memristor [1, 2]. A generic (nonideal) mem-
ristor has two q-φ characteristic branches and a pinched i-v hysteresis 
loop [13]
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This chord resistance actually defines a generic “state-
dependent Ohm's law” for all the electric elements as 
follows:

Theorem II: symmetry theorem An ideal memristor has an 
odd-symmetric voltage-current hysteresis loop and a sym-
metric memristance hysteresis loop if it is driven by an odd-
symmetric periodic excitation current.

Proof If and only if the two branches (U1 and U2) in the q-φ 
plane (Fig. 5) overlap and the two smooth mapping func-
tions (f1 and f2) are the same, i.e. if and only if U1 = U2 and 
f1 = f2 , the two i-v loops [ ̂v1(i)andv̂2(i) ] in the local coordi-
nate systems will become identical:

or 

After rotating the  2nd coordinate system in Fig. 5 by π, 
an odd-symmetric voltage-current hysteresis loop arises. 
Based on this theorem, an ideal electric element with mem-
ory should be characterised by a single-valued, unique and 
time-invariant constitutive curve complying with the follow-
ing three criteria [2, 13]: 1. Nonlinear; 2. Continuously dif-
ferentiable; 3. Strictly monotonically increasing. Note that 
a curve is single-valued if it is strictly monotonic increas-
ing. We need to unambiguously exclude the special case, in 
which a nonideal memristor has a doubled-valued, strictly 
monotonic-increasing q-φ curve. Furthermore, the “single-
valued” feature vividly depicts Noether's theorem [16] in the 
sense that every differentiable symmetry of the action of a 
physical system (that is the aforementioned odd-symmetry 
of the voltage-current hysteresis loop) has a corresponding 
conservative quantity (that is the number of the constitutive 
curve in this case).

In mathematics, conformality means the condition (of 
a map) of being conformal. Conventional conformality 
( � = �

�

, � = �
�

, � = �
�

, � = �
� ) exists as a topological invari-

ant under the conformal differential transformation from the 
constitutive (q, φ) plane to its first-order differential ( q̇,�̇� ) 
plane for an element.

From the concept of local passivity (the origin-crossing 
of the v-i loci) [17], the following local passivity theorem 
is reasoned:

Theorem III: (Local passivity theorem) The first-order elec-
tric element is locally passive.

(5)v(t) =
dΩ�̂�(𝛽)(q)

dq(𝛼)Ω
i(t)

(6)v̂1(i) = f1
(
U1

)
= f2

(
U2

)
= v̂2(i)

(7)v̂1(i) = f1f
−1
2

(
v̂2(i)

)
= v̂2(i)

Proof Criteria 4 (strictly monotonically increasing) means 
that, if A < B, f(A) < f(B) by monotonicity, thus the slope of 
�̂(q) is nonnegative ( f �

(
xt
)
≥ 0 ); hence, this ideal memrisor 

is locally passive at each point on the φ–q curve. If the order 
“ ≤ ” in the definition of monotonicity is replaced by the 
strict order “ < ”, then one obtains a strictly monotonically 
increasing function. Note that f �

(
xt
)
= 0 only at those iso-

lated points, rather than any continuous range, otherwise it 
violates the definition of monotonicity.

The origin-crossing signature leads to local pas-
sivity, which can be proved by contradiction: a cell is 
said to be locally active at a cell equilibrium point ℚ if, 
and only if, there exists a continuous input time func-
tion i

�
(t) ∈ ℝm, t ≥ 0 , such that at some finite time 

T , 0 < T < ∞ , there is a net energy flowing out of the cell 
at t = T  , assuming the cell has zero energy at t = 0, namely, 
w(t) = ∫ T

0
v
𝛼
(t) ∙ i

𝛼
(t)dt < 0 , for all continuous input time 

functions i
�
(t) and for all T ≥ 0 , where v

�
(t) is a solution of 

the linearized cell state equation about ℚ with zero initial 
state v

�
(t) = 0 and vb(t) = 0 [17]. If i = 0, v ≠ 0 or vice versa, 

we should have an intersectional point crossing the i = 0 or 
the v = 0 axis, which implies that the v-i curve must inevi-
tably enter either the second or the fourth quadrant of the v-i 
plane. Therefore, a cell with i = 0, v ≠ 0 or vice versa must 
be locally active since i(t) and i(t) always have opposite signs 
in the second or the fourth quadrant of the v-i plane hence 
w(t) = ∫ T

0
v
𝛼
(t) ∙ i

𝛼
(t)dt < 0.

3  Super conformality as a topological 
invariant

In this section, super conformality in the generic form (x, y) 
was proposed based on strict mathematical deduction and 
reasoning. In Fig. 6, (x, y) represent the two constitutive 
attributes for an electric element. Taking a  2nd-order mem-
ristor (α = − 2, β = − 2) as an example, beyond the  1st-order 
setting, it requires double-time integrals of voltage and cur-
rent, namely, x = ∫ qdt = ∬ idt, ẋ = q = ∫ idt, ẍ = i and 
y = ∫ 𝜑dt = ∬ vdt, ẏ = 𝜑 = ∫ vdt, ÿ = v.

A  3rd-order ideal inductor [3] should be characterized by a 
time-invariant ∫ q − ∬ � curve, thus x = ∫ qdt, ẋ = q, ẍ = i 
and y = ∬ 𝜑dt, ẏ = ∫ 𝜑dt, ÿ = 𝜑.

A  3rd-order ideal capacitor [3] should be charac-
terized by a time-invariant ∬ q − ∫ � curve, thus 
x = ∬ qdt, ẋ = ∫ qdt, ẍ = q and y = ∫ 𝜑dt, ẏ = 𝜑 = ∫ vdt , 
ÿ = v.

From yt = fxt (xt) in the x + jy plane in Fig. 5, we have
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Actually, Eq. 8 verifies Theorem I (Conformality Theo-
rem) between the x + jy plane and the ẋ + jẏ plane (not shown 
in Fig. 6): the line tangent f � (xt) to the yt = f (xt) curve at 
any operating point ( xt, yt ) in the x + jy plane is equal to the 
(chord) slope of a straight line connecting the projected point 
( ẋt, ẏt ) to the origin in the ẋ + jẏ plane [1, 2, 4].

Observing Eq.  8, we should obviously have 
żt = ẋt + jẏt= j ∙ f

�

xt

(
xt
)
∙ ẋt = j ∙ 0 when ẋt = 0 . That is, the 

(8)żt = ẋt + jẏt = ẋt + j
df
(
xt
)

dt
= ẋt + jf

�

xt

(
xt
)
ẋt

curve in the ẋ + jẏ plane must go through the origin, as 
stated in Theorem III: (Local Passivity Theorem).

Furthermore, we can use differentiation-by-parts to obtain

That is, when ẍt(t) = 0 , we obtain

Equation 10 is a key finding of this topological electron-
ics, which bridges the constitutive x + jy complex plane 
and its second-order differential ẍ + jÿ complex plane.

Next, let us use proof-by-contradiction [19] to prove that 
f
′′

xt

(
xt
)
≠ 0 . If f ��

xt

(
xt
)
= 0 at every operating point, we should 

have f �
xt

(
xt
)
= k where k is an arbitrary constant and conse-

quently fxt
(
xt
)
= kxt + C where C is another arbitrary con-

stant. Obviously, fxt
(
xt
)
= kxt + C is a linear function, which 

is in contradiction to Criterion 1 (nonlinearity) for an ideal 
electr ic element defined in Sect.  2. Therefore, 
ÿt = f

��

xt

(
xt
)
∙ ẋ2

t
≠ 0 under any excitation ẋt ≠ 0.

The following local activity [17] theorem for a  2nd-order 
or higher-integral-order electric element can then be 
obtained from Eq. 10:

Theorem IV: (Local activity theorem) A second-integral-
order or higher-integral-order electric element is locally 
active.

If we assume that an excitation xt(t) = 1 − cost , we 
should have ẋt(t) = sint = 1 and ẍt = cost = 0 when 
t =

�

2
,
3�

2
,… . From Eq.  10, we obtain the coordinate 

ÿt = f
��

xt

(
xt
)
∙ ẋ2

t
= f

��

xt

(
xt
)
 when the second differential curve 

ÿt(t) = h(ẍt) crosses the y axis, i.e. ẍt(t) = cost = 0 . There-
fore, the following super conformality theorem is reasoned 
from Eq. 10:

Theorem V: (Super conformality theorem) The second deriv-
ative f ��

xt
(xt) at the mid-point ( xt = 1, yt ) of the yt = fxt (xt) 

curve in the x + jy complex plane is equal to the slope of a 
straight line connecting the point z̈t = ẍt + jÿt = −1 to the 
point z̈t = ẍt + jÿt = j ∙ f

��

xt
(1) in the ẍ + jÿ complex plane.

This super conformality theorem is vividly depicted in 
Fig. 6. A critical angle f ��

xt
(xt = 1) is preserved between the 

constitutive x + jy complex plane and its second-integral-
order differential ẍ + jÿ complex plane.

(9)y
t
=

dẏt

dt
= f

��

xt

(
xt
)
ẋ2
t
+ f

�

xt

(
xt
)
x
t

(10)z
t
= x

t
+j y

t
= jf

��

xt

(
xt
)
ẋ2
t

Fig. 6  Super conformality was found to preserve a critical angle 
f
� �

xt
(xt = 1) between the constitutive x + jy complex plane and its sec-

ond-order differential ẍ + jÿ complex plane. In this instance, “super” 
means that the conformality under the transformation from z = x + jy 
to z̈ = ẍ + jÿ should be superior to the conventional conformality 
from x + jy to ẋ + jẏ . This newly found super conformality leads to 
local activity z̈t = ẍt + jÿt = 0 + jÿt = j ∙ f

��

xt
(xt ) ∙ ẋ

2

t
≠ j ∙ 0 [17] of 

a second-integral-order or higher-integral-order electric element. A 
polynomial y = x +

1

3
x3 [2] and a logistic function described in Eq. 4 

were used in (a) and (b), respectively, to draw the graphs here without 
losing generality since the proof in the main text is carried out in the 
generic form (x, y). Modelling the exponential growth of a popula-
tion, a logistic function represents a type of constitutive relation in 
terms of self-limiting [18]. The concave-convex orientation of the 
constitutive x–y curve determines the winding direction of the ẋ − ẏ 
loop and the concave-convex orientation of the ẍ − ÿ curve
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4  A reduced periodic table of only six 
passive electric elements

Finding a correct, accurate electric element table in elec-
trical/electronic engineering is similar to the discovery of 
Mendeleev’s periodic table of chemical elements [20]. An 
electric element table would help understand the complex 
world of modern electronics and request rewriting the elec-
trical/electronic engineering textbooks. Unfortunately, the 
previous unbounded table predicted 40 years ago [21, 22] 
has an infinitive number of electric elements, as shown in 
Fig. 7.

Based on our newly found Theorem IV (Local Activity 
Theorem) and Theorem V (Super Conformality Theorem), 
a reduced periodic table (in green) of six electric elements 
is also displayed in Fig. 7. In contrast, the Standard Model 
of elementary particles counts six flavours of quarks and 
six flavours of leptons [23]. Such a periodic table may help 
reveal the deep physical origin of elements, categorise the 
existing elements and predict new elements.

5  Mid‑point theorem

Our study can be simplified to the following mid-point theo-
rem when xt(t) = 1 − cost:

Theorem VI: (Mid‑point theorem) If and only if the sec-
ond-derivative at the mid-point of the constitutive curve 
is nonzero for a two-terminal electric element, it is locally 
active.

Actually, this theorem vividly describes our finding: all 
higher-integral-order passive memory electric elements 
[memristor (α ≤ − 2, β ≤ − 2), higher-integral-order memin-
ductor (α ≤ − 3, β ≤ − 2), and higher-integral-order memca-
pacitor (α ≤ − 2, β ≤ − 3)] must have an internal power source 
(Fig. 8).

According to the mid-point theorem, the passive version 
of a higher-integral-order electric element should not exist 
in nature. Even if it had existed, it would have degenerated 
into a zeroth-order negative nonlinear element. Nevertheless, 
the active version of a higher-integral-order electric element 
may still be found in nature (with either an electric, optical, 
chemical, nuclear or biological power source). For example, 
both the first-state-order potassium memristor and the sec-
ond-state-order sodium memristor in the Hodgkin–Huxley 
circuit are higher-integral-order memristors with an internal 
power source [24, 25]. The active version may also be built 
as an artefact in the laboratory with the aid of transistors, 
operational amplifiers, and/or power supplies.

By coincidence, this phenomenon is quite similar to 
Mendeleev’s periodic table of chemical elements, in which 
a chemical element with a higher atomic number is unstable 
and may decay radioactively into other chemical elements 
with a lower atomic number [20].

Fig.7  Chua and Szeto predicted that most of the higher-integral-order 
electric elements [q(α), φ(β] are active and the only passive nonlinear 
candidates are on the three diagonals (in blue) [21, 22]. The four-ele-
ment torus (resistor, inductor, capacitor and memristor) was used as 
a seed to generate all other elements endlessly [1, 2]. In this work, 
a reduced table (in green) was proposed to include only six electric 
elements: resistor, inductor, capacitor, memristor, meminductor, and 
memcapacitor. This new reduced table represents a big leap from an 
infinity in Chua’s table [21, 22] to a bound of six only

Fig. 8  Mid-Point Theorem. From Theorems IV and V, it can be rea-
soned that the mid-point of the constitutive curve for a two-terminal 
electric element is locally active [17]
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6  Conclusion and discussions

Topology is such a subject that examines geometric objects 
and captures the essence of what remains unchanged when 
they smoothly, continuously transform into one another. To 
date, topology has been used in many applications, such as 
biology, computer science, physics, robotics, games and puz-
zles, and fibre art. For example, the 2016 Nobel Prize in 
physics was awarded for theoretical discoveries of topologi-
cal phase transitions of matter [26].

Motivated by the above achievements, in this work, we 
used topology as a powerful tool to categorize the elec-
tric elements via a pair of integer/fraction numbers ( �, � ). 
When an electric element is described by the right pair of 
numbers ( �, � ), we found a brand new feature that is super 
conformality. As a result, a reduced periodic table of only 
six passive electric elements was then proposed, includ-
ing resistor [27], inductor [28], capacitor [29], memristor 
[1], meminductor [3], and memcapacitor [3]. In our opin-
ion, this reduced table reveals the topological homeomor-
phisms of the electric elements.

Our claim that all the higher-integral-order (≥ 2) elec-
tric elements must be active was experimentally verified 
by the fact that both higher-integral-order memristors in 
the famous Hodgkin–Huxley circuit are locally active [24]. 
Here, it is worth clarifying the relationship between an 
ideal electric element (normally in theory) and those real 
devices (in practice) belonging to the same family led by 
that ideal electric element [4]. An analogue in Chemistry 
is that Mendeleev predicted the existence of the (pure, 
ideal) chemical elements in his periodic table of chemical 
elements [20] and other chemists kept claiming they had 
found those elements one by one in spite of their purities 
are less than 100% in the real world. In 1971, to link flux 
φ and charge q, Chua predicted an ideal memristor, whose 
state variable is q or φ [1]. 37 years later, HP announced 
“The missing memristor found” [29]. As a real device that 
is highly unlikely to be ideal, the HP memristor is not 
ideal as its state variable is the width "w" of the active 
 TiO2 domain (doped with ions), which is still a function 
of charge q (as well as other factors). Simply speaking, 
the state variable of the HP memristor is still q (with the 
“purity” less than 100%). Despite its non-ideality, the HP 
memristor is still well-recognized as the first physical 
 (1st-order) memristor since it exhibits the zero-crossing 
signature as predicted [1]. That is, the  1st-order memristor 
is passive. Similar to the physical HP memristor, both the 
 1st-state-order potassium memristor and the  2nd-state-order 
sodium memristor (in practice) are not ideal as their state 
variable are ionic gate probabilities, which are still a func-
tion of q (with the “purity” less than 100%). The important 
thing is that these two higher-integral-order memristors 

are active with an internal battery [24], which agrees with 
our claim.

By coincidence, this dramatically reduced number of 
electric elements with memory as key building blocks 
of modern electronics is analogous to a many-awards-
winning breakthrough in mathematics: the bounded gap 
between two primes has been reduced from 70,000,000 to 
6 [30]. Actually, two primes that differ by six are called 
sexy primes since “sex” is the Latin word for “six” [31]. 
In a similar way, this reduced periodic table of only six 
passive electric elements may also be called a sexy table.
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