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Abstract 

With the rapid development of information technology, mining valuable information 
from multi-source data stream is essential for redundant data, particularly in image 
processing; the image is degraded when the image sensor acquires information. 
Recently, transformer has been applied to the image restoration (IR) and shown sig-
nificant performance. However, its computational complexity grows quadratically with 
increasing spatial resolution, especially in IR tasks to obtain long-range dependencies 
between global elements through attention computation. To resolve this problem, we 
present a novel hierarchical sparse transformer (HST) network with two key strategies. 
Firstly, a coordinating local and global information mapping mechanism is proposed 
to perceive and feedback image texture information effectively. Secondly, we propose 
a global sparse sampler that reduces the computational complexity of feature maps 
while effectively capturing the association information of global pixels. We have con-
ducted numerous experiments to verify the single/double layer structure and sam-
pling method by analyzing computational cost and parameters. Experimental results 
on image deraining and motion deblurring show that the proposed HST performs 
better in recovering details compared to the baseline methods, achieving an average 
improvement of 1.10 dB PSNR on five image deraining datasets and excellent detail 
reconstruction performance in visualization.

Keywords: Image restoration, Transformer, Global sparse attention, Stochastic sampler

1 Introduction
Data stream mining from multi-source, massive dynamic data to extract valuable fea-
tures is of significant importance. Especially in image processing, since some details are 
lost during imaging and transmission, data stream mining plays a key role in recovering 
clean images. Image restoration (IR) aims to reconstruct high-quality images by min-
ing useful information from degraded, disturbed, and detail-loss data (e.g., rainy image, 
blurry image). Images have a lot of redundant information in the process, such as simi-
lar lines and edges, symmetric local regions and consistent distribution of noise. There-
fore, mining useful features from replicated information at different scales to improve 
the image quality and relieve the computational burden, data stream mining is urgently 
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needed. This paper aims to process multiple image restoration tasks by extracting data 
features to form generalizable priors through a sparse transformer approach.

Recent methods [1–4] based on convolutional neural networks (ConvNets) show 
excellent performance compared with traditional prior-based methods on the basis of 
evaluation metrics such as PSNR and SSIM, attributed to the combination of model 
design and the local connectivity of convolutions. However, the convolution operation 
lacks perception of the long-distance dependence of pixels of the limited receptive field. 
To address this problem, an efficient self-attention mechanism is generated to associ-
ate global weights, and interact the pixels in the feature map directly. Transformer was 
first proposed in natural language tasks [5] and designed to solve sequence-to-sequence 
tasks, and then, the methods [6–9] explored its performance in image restoration tasks, 
where it exhibited remarkable performance in global textures, but the computational 
complexity grows quadratically with spatial resolution attributed to its unique compu-
tational approach. Whether ConvNets or transformer, learning sufficient generalization 
priors often need enormous model structures [2, 6, 9]; fortunately, the lightweight net-
works with outstanding advantages in inference speed and memory storage provided 
capable backbones for related vision tasks. Mobilenets [10] proposed depth separable 
convolution reduces the Multi-Adds of the model by about nine times; the lightweight 
transform network [11] combined the advantages of ConvNets and vision transformer 
(ViT) [12] to improve the inference speed and reduce the parameters. Then, the strategy 
was rapidly upgraded and optimized to be applied in multiple tasks such as object detec-
tion and image classification. [13–16].

In this paper, we aim to exploit the global perception capability of the self-attention 
mechanism for image restoration while reducing the computational effort. To this end, 
we propose a transformer-based image restoration structure hierarchical sparse trans-
former (HST) network. Existing transformer-based methods mostly use double-layer 
computational module, of course, although the equipment is advanced enough and more 
parameters can support to get better results, specific tasks inevitably encounter com-
putational bottlenecks and it is hard to achieve satisfactory experimental results with 
as few layers and parameters as possible. Therefore, we attempt to design a single-layer 
structure to reduce the amount of the parameters and get a good trade-off between per-
formance and complexity. Moreover, we have conducted extensive experiments to com-
pare the performance and found that our results are comparable to the current excellent 
methods, the overall number of parameters is reduced by about 48.1% and the training 
time is reduced by about 44.7% , compared to the double-layer model, it is simple and 
efficient.

Specifically, we present a three-stage scheme to recover high-quality images, which is 
achieved by optimally integrating self-attention and convolution to form a highly cost-
effective information exchange bottleneck. The first stage is local, local means local 
context aggregation, using efficient depth-wise convolutions to extract the spatial prox-
imity of local pixels. The next stage is global that uses sparse attention to global pixels; 
to alleviate the computational burden of the transformer through a sparse strategy while 
obtaining long-range dependencies, a suitable stochastic sampler is designed to form a 
sparse set of evenly distributed delegate tokens for long-range information exchange by 
self-attention. The last stage is local, meaning local propagation; the updated long-range 
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information in the previous stage is diffused from delegated tokens to non-delegated 
tokens in the local neighborhood via pixel-unshuffle operations. With the above three 
stages, the local interaction and global sparse strategies are functionally complementary 
and the model forms a refined hybrid of self-attention and convolution, while the experi-
mental data show a well balanced between lightweight and performance.

Secondly, we propose a global sparse attention (GSA) module to capture long-range 
pixel interactions and reduce the computational cost. Meanwhile, we design a stochas-
tic sampler as the core component in the GSA module to enhance the generalization 
ability. In this work, firstly, the stochastic sampler downsamples the feature maps with 
different ratios according to layers, which is considering the inherent property of spatial 
redundancy of images and that interpreting all elements is inefficient. Then, the module 
conducts self-attention on the activated elements. Specifically, at each sampling, the ele-
ments participating in the interaction are specified randomly, unlike some operations 
(e.g., maximum pooling, average pooling) that use fixed rules to activate elements, this 
strategy ensures that the global relationships between pixels are fully interacted while 
computing attention maps. The experimental results in several datasets prove that our 
approach is feasible. Furthermore, we compare the experimental results of our proposed 
method with other pooling operations, as an example shown in Fig. 1, and show that it 
outperforms other methods in terms of detailed preservation and has better generaliza-
tion capability.

Based on above components, we conduct extensive experiments to demonstrate the 
generalization performance of HST on eight benchmark datasets for image derain-
ing and image motion deblurring. The streamlined structural design shows satisfactory 
results while enabling a significant reduction in training time and computational cost. In 
addition, ablation experiments are carried out to illustrate architectural efficiency and 
component functionality.

Overall, the contributions of this work are summarized as follows:

• We propose HST, a pyramid transformer with a streamlined layer structure. It adopts 
the ethos of local–global information flow interaction for image restoration and 
exploits long-range dependencies by reducing global pixel density, followed by sparse 
attention.

• A stochastic sampler suitable for global sparse attention is presented. The sampler 
evenly stochastically samples spatial elements without using a single rule to cluster 
the elements, thereby obtaining generalized priors and relieving the global computa-
tional burden.

Rain image Max PoolingAverage Pooling Stochastic SampleTarget

Fig. 1 An example of the Rain12 dataset. Selected regions are zoomed-in and displayed in the bottom 
right corner of each image. Details of raindrops in the image, which can be better reconstructed with HST 
compared to other methods (combination of pooling and self-attention), while the image color is closer to 
the target
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• We design a global sparse attention module. The module forms a functional comple-
mentarity between stochastic sampler and self-attention mechanism by sparsely cap-
turing global context. Experimental results show that our method outperforms other 
combinations in terms of generalization and detail recovery

In the following sections of this paper, we discuss in Sect. 2 the application of the clas-
sical UNet structure to image restoration and variants of transformer for specific tasks. 
In Sect. 3, we give a detailed explanation of our approach. In Sect. 4, we describe the 
experimental details and compare our results with other methods for evaluation metrics 
and visualization, followed by a concluding statement in Sect. 5.

2  Related work
2.1  UNet‑based image restoration

Compared with traditional image restoration methods [17–20], deep learning based 
methods show outstanding performance and have become more and more popular in 
image restoration tasks [4, 21–23]. In terms of architecture design, UNet [24] exhibits 
an excellent perception of texture details in image segmentation tasks due to its elegant 
symmetric path. Subsequently, many efforts based on convolutional neural networks 
also use U-shaped architecture. DeblurGAN-v2 [25] applies this symmetrical structure 
as the core building block of the generator in the generative adversarial network for 
image deblurring, which greatly improves the deblurring efficiency and has high flex-
ibility in the quality efficiency spectrum, but the spatial details are not preserved well 
enough. To improve the spatial accuracy, MPRNet [2] constructs an encoder-decoder 
subnetwork to learn contextual information in each progressive stage of restoring 
degraded images. Besides, considering the inability of CNN to model the dependencies 
between distant pixels, some recent works explore combining efficient self-attention 
mechanism with U-shaped architecture to improve performance. Uformer [8] keeps the 
same overall architecture as UNet, modifying the convolutional layers into transformer 
blocks and using non-overlapping window-based self-attention to handle the image res-
toration task, thus reducing computational overhead, however, its window operation 
limits the interaction of SA in the global domain. For reducing the computational burden 
and applying to image reconstruction tasks involving high resolution images, Restormer 
[9] also employs a similar structure and computes the cross-covariance between feature 
channels, without decomposing them into local windows, thereby exploiting the distant 
image context. Therefore, a symmetric pyramid structure with skip connections is an 
effective method to extract deep texture information from images. In this paper, we also 
carry out related work on this benchmark.

2.2  Vision transformer

The self-attention mechanism [5] is proposed in natural language processing tasks; due 
to its excellent contextual relevance, it is rapidly applied in image classification [12, 26], 
object detection [27, 28], and image segmentation [29, 30]. A pioneering VIT [12] model 
divides the processing window and flattens patches, significantly reducing the computa-
tional cost for all elements of the entire feature map. IPT [6] first adopted this approach 
in image restoration, but this strategy lost the boundary pixel information of each patch. 
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To this end, a swin transformer [31] that can slide the divided window is proposed, 
which can use window shifting to aggregate the information flow of neighboring image 
patches. This method is quickly verified on the image restoration task [7], achieving 
state-of-the-art performance. However, these schemes restrict the operational domain 
of self-attention. In order to perform self-attention globally, Restormer [9] calculates 
attention in the feature channel dimension after transposition in the image restoration 
task, reducing computational complexity while capturing long-range dependencies. 
Most of the above work focuses on the contradictory problem of global context infor-
mation and computational complexity, and we notice that spatial redundancy in the 
feature map is unavoidable during calculation. Therefore, we design hierarchical sparse 
transformer to reduce the scale of continuous redundant regions, cooperating with a 
multilayer pyramid structure to gradually enrich long-range pixel relationships through 
multiple iterations.

2.3  Lightweight strategy

The research of lightweight image restoration based on deep learning has never stopped. 
Some methods use cascading and hierarchical architectures to optimize computational 
efficiency and memory consumption. Zhang [32] built a three-scale end-to-end network 
in which different convolution operations are associated with cascade and dense con-
nections, respectively, to achieve fast image dehazing; Fu [33] constructed a hierarchi-
cal pyramid network for image deraining with few parameters by introducing a mature 
Gauss-Laplace decomposition technique. There are methods to perform related work 
on the basic calculation modules. Avisek [34] based on image restoration by designing 
streamlined modules (1x1 pointwise convolution with compressed number of channels 
and parallel branching structure strategy) instead of the current commonly used compu-
tational blocks (e.g., 3x3 convolution), allowing significant reduction of parameters and 
FLOPs in the network. There are also approaches based on neural architecture search 
algorithms [35], such as Shen [36] proposed a joint search operation to hunt for efficient 
lightweight image restoration networks. Therefore, using lightweight models for lower-
level tasks is more elegant and efficient, and is a topic worth exploring.

3  Method
In this section, we firstly describe the overall architecture of the proposed hierarchi-
cally sampling global sparse transformer (HST). Then, we will introduce the details of 
the local–global interaction mechanism of the LGL block. Finally, we analyze the global 
sparse attention operation principle and the role of the stochastic sampler in the global 
long-range dependence tasks. The architecture of our proposed hierarchical sparse 
transformer (HST) network is shown in Fig. 2.

3.1  Overall pipeline

As shown in Fig.  2a, the overall structure of our model is a hierarchical network 
with a U-shaped pyramid structure that is connected across levels. Firstly, given a 
degraded image I ∈ R

C×H×W  , where H ×W  denotes the spatial dimension and C is 
the number of channels. Preprocessing is performed before inputting to the HST net-
work, where the images are randomly cropped and expanded into a 128× 128 square 
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image set for fast training and data enhancement. Subsequently, the network applies 
a 3× 3 convolutional and LayerNorm layer to learn low-level features and generate 
X0 ∈ R

C×128×128 . Then, we will go through K encoder stages, each of which contains 
an LGL block and a down-sampling layer. The LGL block can correlate local–global 
information and effectively reduce the computational burden through global sparse 
attention module. The down-sampling layer doubles the channel of the feature map 
and reduces the height and width by half through a convolution operation with a 
convolution kernel of 4 × 4 and stride 2. The encoder produces the feature maps in 

l-th stage Xl ∈ R
2lC× 128

2l
×

128

2l  . After the three-layer encode process, the deep features 
extracted hierarchically will be inputted to the bottom levels with the same LGL 
block.

The image features are reconstructed subsequently. It is a k-stage decoding path 
symmetrically distributed with the encoder, each of which contains an upsampling 
operations and an LGL block; a pixel-unshuffle operations [37] is used in the feature 
upsampling to halve the channels and double the dimension. Then, the skip connec-
tions concatenate the encoded features with the decoded features. To reduce the 
number of channels by half, the concatenation operation is followed by 1× 1 convolu-
tion. The multilayer architecture by fusion of high and low layer feature information 
is efficient for preserving the fine structure and texture details of the image. Finally, 
we reshape the dimensions of the image using 3× 3 convolution to obtain the residual 
image M ∈ R

C×128×128 . and add the residual image to the degraded image to acquire 

Fig. 2 The architecture of the hierarchical sparse transformer (HST) network. a Overview of the HST structure. 
b LGL transformer block. c Illustration of local–global information interaction operations, including sparse 
attention and stochastic sample. d Gated-Dconv feed-forward network (GDFN) [9]
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the restored image by the formula I′ = I+M , where I′ represents the restored image 
and I is the degraded image.

3.2  LGL block

Performing transformer on the global pixels would make the computational burden too 
heavy, and conducting the associated windowing operation on the feature map would 
limit the long-distance interaction between elements, the two have become an intrac-
table conflict. Inspired by the excellent performance of lightweight networks [38] in 
long-range handling relationships between a set of delegation tokens, we propose a 
local–global information interaction transformer block, which includes a core mod-
ule that performs self-attention computation after random sampling. In the block the 
local part captures useful local context, the global component models long-range pixel 
dependencies, and the local information and global information are exchanged with 
each other timely.

As shown in Fig. 2b, we build the block with three core designs: (1) local aggregation 
(LA); (2) global sparse attention (GSA); (3) local propagation (LP). The information flow 
of each computational module is element-wise addition. In the following, we elaborate 
three designs separately.

Local aggregation (LA): Neighboring pixel feature association is a vital information 
reference for image restoration tasks [8, 39]. Depth-wise convolution can decrease the 
number of parameters and improve the operation efficiency while ensuring the effect of 
feature extraction. Then, we introduce depth-wise and point-wise convolution in local 
aggregation to emphasize the local context. As shown in Fig. 2c, we use 1× 1 point-wise 
convolution at the beginning and end to control the dimension and provide depth-wise 
convolutions in the middle to capture local interaction information, the convolution ker-
nel size with 3× 3 , groups with dimension. An activation function LN is added after 
each convolutional layer. Local aggregation can be formulated as:

where ConvP,ConvD and LN denote pixel convolution, depth-wise convolution, and layer 
normalization.

Global Sparse Attention (GSA): Image features have so high redundancy that applying 
self-attention to global tokens is not cost-effective. On the other hand, the long-distance 
dependency between pixels is the crucial reference information for restoration work. 
Therefore, we have an idea for self-attention after reducing the scope of the tokens. We 
first define the feature information after local aggregation in the previous stage as a uni-
form area, then stochastically select elements in the area to form tokens instead of tak-
ing a single rule to activate the elements, and finally perform multi-head self-attention 
on the tokens. Given the feature maps X ∈ R

C×H×W  , the computational complexity 
drops from O(H2W 2C) to O((Hr )

2(Wr )
2C) = O(H

2W 2

r4
C) , where r represent the sam-

pling ratio, which is set differently in structures of different levels, compared to global 
self-attention, global sparse attention can significantly reduce the computational cost.

(1)X′

LA = ConvD(ConvP(LN (X)))

(2)X′′

LA = ConvP(LN (X′

LA))
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Local Propagation (LP): Feeding back the feature information from the global inter-
action to neighboring pixels is also an indispensable step, which converts the sampled 
feature map of dimension X ∈ R

C×H
r ×

W
r  to X ∈ R

C×H×W  . Figure 2c shows that we use 
3× 3 convolution to expand the feature dimension and then use the pixel-unshuffle 
operation [37] to feed back the fused contextual information and return the original 
scale. It can be expressed as:

To further capture the fine information of the image, we also employ the Gated-
Dconv Feedforward Network (GDFN) [9]. It enables the network to focus on recovering 
high frequency details with contextual information; we put it at the end of the block to 
complement the fine details. as shown in Fig. 2d, given an input feature X ∈ R

C×H×W  , 
GDFN can be expressed as:

where ConvP,ConvD and LN denote pixel convolution, depth-wise convolution, and layer 
normalization. The ability of GDFN to control the fine details of images has been dem-
onstrated in several restoration tasks [9, 40].

Overall, our LGL block effectively helps the network to obtain global contextual infor-
mation with less computational burden. The l-th stage of the LGL block can be formu-
lated as:

3.3  Global sparse attention

The computing overhead of the transformer is mainly concentrated in the self-attention 
operation. The memory complexity of query-key-value increases quadratically with the 
spatial resolution of the input. Therefore, applying self-attention to image restoration 
tasks requires high computing power platform support. To alleviate this issue, we pro-
pose a stochastic sampler to specify regions uniformly with a rate of r, take out a feature 
element per r × r region, and then reshape it into a token for multi-head self-attention, 
the number of factors after sampling:N =

HW
r2

 . The process can be formulated as follows:

(3)X′

LP = pixelunshuffler(Conv3×3(X))

(4)X1
G = GELU(ConvD(ConvP(LN (X))))

(5)X2
G = ConvD(ConvP(LN (X)))

(6)ZG = X1
G ⊙ X2

G

(7)Z = ConvP(ZG)

(8)X′
= LA(Xl−1)+ Xl−1

(9)X′′
= LP(GSA(LN (X′)))+ X′

(10)Xl = GDFN (LN (X′′))+ X′′
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Then, we generate the Q(query) , K(key) and V(value) projections, Q = W
Q
d W

Q
p X′ , 

K = WK
d WK

p X′ , V = WV
d WV

p X′ , where W (∗)

d  , W (∗)
p  denote 3× 3 depth-wise convolu-

tion, 1× 1 point-wise convolution. In the Following calculation of attention, inspired by 
advanced experience of predecessors [9], we add a lightweight learnable scale parameter 
β to the self-attention matrix mapping to control the magnitude after Q and K dot prod-
uct. Attention employs a multi-head processing mechanism and can be formulated as 
follows:

Since the dimensionality of the feature map is reduced layer by layer in the pyramid 
structure, and different sampling rates are provided in the computational module at each 
level to decrease the density of global elements, this greatly reduces the overall compu-
tational burden. With stochastic element attention, a given pixel in the feature map has 
the opportunity to calculate the weighted sum with all other pixels at all other positions 
during long training time, which make the model obtain more generalized priors.

3.4  Stochastic sampler

The image restoration task requires the restoration of texture details to be closer to 
the truth. However, the maximum pooling only focuses on the maximum value of the 
region, and the average pooling has insufficient ability to analyze the edge and con-
tour information of the image. These operations are unsuitable for restoration work 
with high requirements on texture features. For this reason, we design a stochastic 
sampler to enhance the generalization of model to various restoration tasks.

As shown in Fig. 3, after obtaining a complete feature map, different from the pre-
vious work [7, 8] to divide the window and then shift the window, our strategy is to 
set the sampling rate r, generate stochastic pointing numbers to sample elements in a 
square area with value r2 . This operation will generate N =

HW
r2

 highlighting factors 
in the full-size feature maps and the objects of each iteration are different; as shown 
in Fig.  3c, blue represents the feature set of the first iteration, and pink represents 
the next iteration. This strategy enables elements from different regions to have the 

(11)
X′

= Samplestochastic(X
C×H×W )

X′
∈ R

C×H
r ×

W
r

(12)Attention(Q,K,V) = V · Softmax(QKT/β)

Fig. 3 Illustration of information flow for stochastic sampler
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possibility to participate in the computation with constant iterations; the main steps 
of the scheme can be seen in Algorithm 1.

The stochastic sampler is able to associate global pixels with different combinations 
of sparse tokens at each indexing, so it plays a key role in maintaining long distance 
dependency and reducing the global computational burden.

4  Experiments
In this section, we discuss the experimental setup and our specific work on the two 
types of recovery tasks, showing the visualization results of HST and the performance 
comparison under the evaluation metrics. Finally, ablation studies analyze the effect of 
parameter settings on the overall performance.

4.1  Experimental setup

Preprocessing is performed before inputting to the HST network, where the images are 
randomly cropped and expanded into a 128× 128 square image set for fast training and 
data enhancement, and set the batch size to 32. Following the common training strat-
egy, we select Adamw optimizer [41] and the momentum terms of (0:9; 0:999), set the 
weight decay to 0.02, the initial learning rate is 0.0003, use the cosine decay strategy and 
reduce the learning rate. The network employs a 3-level encoder-decoder layer and a 
bottom layer, and the hierarchical structure corresponding transformer block number is 
[1,1,1,1], attention heads in GSA are [1; 2; 4; 8], the number of channels is [32, 64, 128, 
256]. All experiments are trained on an NVIDIA GTX 2080Ti GPU.

4.1.1  Structural variants and parameters

We apply two structural variants, shown in Table  1, HST-tiny and HST-double. The 
specific parameter details, number of parameters, and the computational complexity in 
each variant are as follows:
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The computational cost and the number of parameters of HST shown in Table 1 are 
in a low order of magnitude, which can complete the network training in a short time. 
The experimental results in the following tasks are all based on HST-tiny training. More 
details of the experimental comparison of the two structures are presented in Section 
Ablation Studies.

4.1.2  Evaluation metrics and datasets

We calculate restoration performance using the commonly used PSNR/SSIM [60] met-
rics. For deraining, we evaluate the PSNR/SSIM on the Y channel in the YCbCr color 
space. And in Table  2, we list the datasets used for training and validation, including 
deraining and motion deblurring.

4.2  Image deraining results

With the same dataset as [2, 9], we train HST on 13712 clean-rainy image pairs shown 
in Table 2. The original dataset was randomly cropped to generate a small size dataset 
with patch size 128× 128 for training. We train the deraining task for 250 epochs with 
the above settings and evaluate it on various testsets, including Rain100H [43], Rain100L 
[43], Test100 [42], Test2800 [44], and Test1200 [45].

We compare with 6 deraining methods: DerainNet [46], SEMI [47], DIDMDN [45], 
UMRL [48], RESCAN [49], PreNet [50]. As shown in Table  3, HST presents signifi-
cantly better performance. The gain improved by 2.97dB on individual datasets, e.g., 
Test100. Evaluation performance on multiple testsets proves the generalizability of 
the HST. In Fig. 4, we show the visualization results for the three datasets, where HST 
can successfully remove rain streaks and capture more local details compared to other 
methods.

Table 1 Parameter settings and corresponding size

HST Channel Depths Sample rate #params GMACs

Tiny 32 {1,1,1,1} {4,2,2,1} 5.53M 3.88G

Double 32 {2,2,2,2} {4,2,2,1} 10.66M 6.32G

Table 2 Dataset descriptions for two types of image restoration tasks

Tasks Datasets Training samples Testing samples Testset rename

Deraining Rain14000 [44] 11200 2800 Test2800

Rain1800 [43] 1800 0 –

Rain800 [42] 700 100 Test100

Rain100H [43] 0 100 Rain100H

Rain100L [43] 0 100 Rain100L

Rain1200 [45] 0 1200 Test1200

Rain12 [59] 12 0 –

Motion
Deblurring

GoPro [51] 2103 1111 –

HIDE [52] 0 2025 –

RealBlur [53] 0 1960 –
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4.3  Image deblurring results

We follow the previous method [2, 8] to train HST on the GoPro [51] dataset and test it 
on the four datasets: synthesized test set of GoPro [51] and HIDE [52], two real-world 
datasets (RealBlur-R [53], RealBlur-J [53]).

Table 3 Image deraining results on five datasets

Methods Test100 [42] Rain100H [43] Rain100L [43] Test2800 [44] Test1200 [45]

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DerainNet 
[46]

22.77 0.810 14.92 0.592 27.03 0.884 24.31 0.861 23.38 0.835

SEMI [47] 22.35 0.788 16.56 0.486 25.03 0.842 24.43 0.782 26.05 0.822

DIDMDN [45] 22.56 0.818 17.35 0.524 25.23 0.741 28.13 0.867 29.65 0.901

UMRL [48] 24.41 0.829 26.01 0.832 29.18 0.923 29.97 0.905 30.55 0.910

RESCAN [49] 25.00 0.835 26.36 0.786 29.80 0.881 31.29 0.904 30.51 0.882

PreNet [50] 24.81 0.851  26.77 0.858  32.44 0.950  31.75 0.916  31.36 0.911

HST 27.97 0.869 27.73  0.843 32.70  0.938 32.72 0.931 31.54 0.914

DerainNet / 14.60 dB SEMI / 16.33 dB DIDMDN / 17.87 dB

UMRL / 24.17 dBRESCAN / 23.78 dB PreNet / 24.97 dB

Rainy image / 13.55 dB

HST / 25.95 dB

Rain image
26.89 dB

DerainNet
26.98 dB

SEMI
26.16 dB

DIDMDN
23.56 dB

UMRL
28.86 dB

RESCAN
28.24 dB

PreNet
30.25 dB

HST
31.74 dB

UMRL / 25.52 dB RESCAN / 26.88 dB PreNet / 27.16 dB HST / 29.72 dB

DerainNet / 20.23 dB SEMI / 23.66 dBDIDMDN / 23.36 dBRainy image / 18.76 dB

Fig. 4 Visualize results on different datasets, including Rain100L, Rain100H, and Test100
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To validate the effectiveness of deblurring, we compare it with other excellent methods 
after training only on the GoPro dataset. The results are list in Table 4, which shows that 
our restoration method behaves well in real scenarios after training on synthetic data-
sets. Besides, we offer some visual results in Fig. 5, which shows that the restored image 
of HST is sharper and closer to the actual scene image compared with other methods 
(Table 4).

Table 4 Performance comparison of image deblurring

Method GoPro [51] HIDE [52] RealBlur‑R [53] RealBlur‑J [53]

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Xu et al. 
[54]

21.00 0.741 – 34.46 0.936 27.14 0.830

DeblurGAN 
[55]

28.70 0.858 24.51 0.871 33.79 0.903 27.97 0.834

Nah et al. 
[51]

29.08 0.914 25.73 0.874 32.51 0.841 27.87 0.827

Zhang 
et al. [56]

29.19 0.931 –  35.48 0.947 27.80 0.847

Deblur-
GAN-V2 
[25]

29.55 0.934 28.61 0.875 35.26 0.944 28.70 0.866

SRN [57] 30.26 0.934 28.36 0.915 35.66 0.947  28.56 0.867

Shen et al. 
[52]

– 28.89 0.930 – –

Gao et al. 
[58]

 30.90 0.935  29.11 0.913 – –

HST 30.94 0.934 29.29 0.913 33.93 0.943 27.63 0.867

Blurry image Nah et al. Zhang et al. HST

Fig. 5 Visualize results on image deblurring
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4.4  Ablation studies

In this section, we analyze the effect of GSA network variants on the restoration effect 
and the detailed analysis of the stochastic sampler in specific experiments. All the abla-
tion studies are conducted on a heavy rainy dataset [43] with 1800 rainy images for train-
ing and 100 rainy images (Rain100H) for testing.

4.4.1  Single or double

In our task, whether the double-layer model structure can significantly improve the 
restoration effect has always been a key problem. Therefore, we conducted an experi-
mental comparison between the double layer and single layer. The experiments only 
change the model single-double layer structure, input 36,000 patches of size 128× 128 
into the network for training, and other parameters are set the same as in the previous 
sections. The total training time and experimental results are shown in Table 5. It can 
be seen that the PSNR is not greatly improved, but the training time is significantly 
increased.

4.4.2  Stochastic sample, max pooling, and average pooling

Firstly, we conduct experiments to understand intuitively the feature maps involved in 
the computation under multiple iterations. We input the same image into the network, 
and under different sampling strategies, the position information of each activated 
pixel is recorded and accumulated with the number of iterations and finally plotted as 
a heat map. As shown in Fig. 6, the more frequently the relevant position is activated, 
the brighter the color is. It can be seen that the maximum pooling exercises a fixed 
rule and many elements in the feature map are not extracted to be involved in the 
computation, while our proposed stochastic sampling makes the overall activation of 
the pixels rise.

For the combination of stochastic sampler and self-attention mechanism, we replace 
this sampler with the maximum pooling and the average pooling for experimental 

Table 5 Results comparison of single/double layer structure

Patch size Channels Epoch GPUs PSNR Train time (h)

HST-tiny 128
2 32 200 1 29.17 12.6

HST-double 128
2 32 200 1 29.96 22.8

Fig. 6 Heat map of the degree of activation of the global pixels by the two approaches
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comparison. The experimental setup is based on a single-layer structure, replacing only 
the type of sampler. The experimental results are shown in Table  6. The visualization 
results of different strategies in image texture are shown in Fig.  7, and it can be seen 
that our proposed method is more generalized and restores images closer to the ground 
truth. We carefully observed the results of all raindrop removal experiments and found 
that stochastic sample had the best performance in areas with close pixel values to rain-
drops (e.g., sky, white walls, snow); in areas with significant color contrast to raindrops 
(black background, dark clothing, night sky), the maximum pooling operation was more 
effective in removing this part of raindrops, examples on the three datasets are shown in 

Table 6 Results comparison between pooling and sampling

 Method Rain100H [43] Rain100L [43] Rain12 [59] Train time (h)

PSNR SSIM PSNR SSIM PSNR SSIM

Max pooling 29.40 0.847 33.86 0.966 33.62 0.954 12.4

Average pooling 29.29 0.838 33.71 0.963 32.93 0.950 12.5

Stochastic sample 29.27 0845 34.21 0.967 33.65 0.956 12.6

TargetRain image SA + Max PoolingSA + Average Pooling SA + Stochastic Sample

Fig. 7 The visualization results of the three combined operations for image textures

TargetRain image SA + Max PoolingSA + Average Pooling SA + Stochastic Sample

Fig. 8 The results of the three combined operations on different areas of the image



Page 16 of 18Shi et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:51 

Fig. 8; and for the subjective perception of the visualization results in terms of chroma-
ticity, stochastic sample is closer to the target.

5  Conclusion
In this paper, we perform multi-source data stream mining in image restoration and 
propose a transformer network HST. The hierarchical pyramid structure can effec-
tively keep the texture details; the sparse attention strategy enables to capture long-
range pixel interactions; the randomly specified delegation token approach enhances 
the model generalization. The above works reduce the computational complexity and 
achieves fast training and image restoration.

We design the key approach for the core components of the transformer block. The 
stochastic sampler plays a critical role in the trade-off between generalizability and 
computational burden. Experimental results demonstrate that the stochastic sampler 
has excellent generalization performance, and HST is validated on eight datasets for 
image deraining and deblurring tasks, achieving excellent performance.

Abbreviations
IR  Image restoration
HST  Hierarchical sparse transformer
LGL  Local–global–local
GSA  Global sparse attention
GDFN  Gated-Dconv feedforward network
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