
Guo, Yuting, Li, Baojiang, Spanogiannopoulos, Sotiris, Wang, Haiyan and Bai, 
Jibo (2023) DDPG-based controlling algorithm for upper limb prosthetic shoulder 
joint.  International Journal of Control, 97 (5). pp. 1083-1093. ISSN 1366-5820. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/101038/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1080/00207179.2023.2201644

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
CC BY-NC (Attribution-NonCommercial)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/101038/
https://doi.org/10.1080/00207179.2023.2201644
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tcon20

International Journal of Control

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tcon20

DDPG-based controlling algorithm for upper limb
prosthetic shoulder joint

Yuting Guo, Baojiang Li, Sotirios Spanogiannopoulos, Haiyan Wang & Jibo Bai

To cite this article: Yuting Guo, Baojiang Li, Sotirios Spanogiannopoulos, Haiyan Wang &
Jibo Bai (2023): DDPG-based controlling algorithm for upper limb prosthetic shoulder joint,
International Journal of Control, DOI: 10.1080/00207179.2023.2201644

To link to this article:  https://doi.org/10.1080/00207179.2023.2201644

Accepted author version posted online: 14
Apr 2023.

Submit your article to this journal 

Article views: 19

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tcon20
https://www.tandfonline.com/loi/tcon20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207179.2023.2201644
https://doi.org/10.1080/00207179.2023.2201644
https://www.tandfonline.com/action/authorSubmission?journalCode=tcon20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tcon20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00207179.2023.2201644
https://www.tandfonline.com/doi/mlt/10.1080/00207179.2023.2201644
http://crossmark.crossref.org/dialog/?doi=10.1080/00207179.2023.2201644&domain=pdf&date_stamp=2023-04-14
http://crossmark.crossref.org/dialog/?doi=10.1080/00207179.2023.2201644&domain=pdf&date_stamp=2023-04-14


Publisher: Taylor & Francis & Informa UK Limited, trading as Taylor & Francis Group 

Journal: International Journal of Control 

DOI: 10.1080/00207179.2023.2201644 

 
Equation Chapter 1 Section 1DDPG-based controlling algorithm for 

upper limb prosthetic shoulder joint 

Yuting Guoa,b, Baojiang Lia,b*, Sotirios Spanogiannopoulosc, Haiyan 

Wanga,b and Jibo Baia,b 

aThe School of Electrical Engineering, Shanghai DianJi University, Shanghai, China. 

bIntelligent Decision and Control Technology Institute, Shanghai Dianji University, 

Shanghai, China 

cElectronic Engineering with specialization, University of Kent (UK), Canterbury, 

England 

*Corresponding author(s). E-mail(s): libj@sdju.edu.cn. 206001010403@st.sdju.edu.cn., 

sotiris.spanogianopoulos@gmail.com. wanghaiyan@sdju.edu.cn. 

206001010303@st.sdju.edu.cn.  

Abstract: 

The development of intelligent prostheses has effectively improved the life of amputees. 

However, the current prosthetics mainly focus on restoring the basic mobility of amputees, 

without considering the use habits of the wearer and the diversity of arm movements, which 

makes the unknown interference and complex control requirements in daily life an obstacle 

to the use of prosthetics. To solve this problem, this paper proposes a combination method 

of adaptive control algorithms of bionic arm shoulder joint based on DDPG to realize 

intelligent control of the shoulder joint of upper limb prosthesis. Based on using adaptive 

control to reduce the interference of external variables, the accuracy of the joint module 

system is improved through reinforcement learning. The results show that the controller 

has a good effect on improving the dynamic performance of the mechanical system and 

can be widely used in bionic mechanical control. 

Keywords: Reinforcement learning, Bionic arm, Adaptive control, Joint module 
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1. Introduction 

The absence of arms often makes it difficult for upper limb amputees to take care of 

themselves in life and work. In recent years, the progress of technology has aroused great 

interest in intelligent prostheses and has made great progress in structural design and 

control methods(Precup et al, 2020), but for patients with self-shoulder amputation, 

which the bone joint has been lost humerus or part of the scapula, the function of the 

entire arm has been lost. Some prostheses are not suitable for such amputees (Yang et al, 

2021), which has prompted research into bionic prostheses to replace the entire upper 

extremity.  

The shoulder carries the movement of the whole arm. The load capacity and control 

accuracy of this position determines whether the bionic arm can operate normally. In this 

context, the joint module has the characteristics of high torque and small volume, 

providing a new idea for the modular design of new bionic machinery (Lee et al, 2018). 

Taking the joint module as the power source of the bionic arm can solve the problems of 

low flexibility and large weight of the bionic arm (Vincitorio et al, 2020). The joint 

module driven by a permanent magnet brushless DC (BLDC) motor can better fit with 

the human body and become the power source of the bionic arm because of its lower 

noise and excitation loss, higher output torque (Kumar et al, 2016). Compared with 

traditional synchronous motors, BLDC has the advantages of a simple structure, reliable 

operation, and high efficiency. but BLDC is also a complex object with multiple 

variables, strong coupling, and nonlinear and variable parameters. In order to complete 

the matching between the joint module and human joint, and obtain better control 

performance to maximize the restoration of limb function, it is necessary to design the 

joint module controller reasonably.  

Another function of the arm joint is to move the hand flexibly to the target position in 

continuous motion. In fact, the human arm is often accompanied by a rapid change of 



action and the sudden change of load in daily life. When reflected on the joint module, it 

shows the rapid change in speed and the sudden change of load torque (Kim et al, 2012; 

Lee et al, 2018 ). But the complex structure, insufficient system modeling, disturbance of 

torque change, friction coefficient, and other system parameters (Zhen et al, 2021) will 

affect the application of the joint module. For these problems, the traditional 

controller(Preitl et al, 2006; Carlucho et al, 2020) only be applied to the linear control 

system with low requirements for control performance. For the upper limb prosthetic, 

which is a controlled system with real-time change of controlled parameters or uncertain 

initial quantity, the traditional control algorithm often has large inaccuracy and often 

causes overshoot and oscillation, which cannot meet the requirements of control 

performance. The control with learning ability can simulate the actions and mechanisms 

of organisms, and better restore the functions that can be performed by the missing body 

parts.  

Since the development of machine learning, reinforcement learning (RL), as a branch 

of machine learning, has achieved vigorous development. Unlike supervised learning and 

unsupervised learning(Bengio et al, 2013; Schmidhuber, 2015), reinforcement learning 

emphasizes that agents get the maximum reward in the process of interaction with the 

environment, to continuously improve the strategy until it reaches the optimal (Gheibi et 

al, 2020). Reinforcement learning is between supervised learning and unsupervised 

learning. It is called approximate dynamic programming or neuro dynamic programming 

(Su et al, 2018). Its essence is that agents collect data in the process of interacting with 

the environment and learn from the data to obtain the optimal strategy. At present, 

reinforcement learning has been widely used in the field of robot control. Xie et al. (2019) 

used deep reinforcement learning to jointly train the gait of the biped robot Kasi. Kasi 

gained the ability to walk in different scenes in a short time, including up and down steps, 



jumping on the ground, walking, etc. Through deep reinforcement learning, the Kasi robot 

can also maintain walking balance by adjusting the size and frequency of its steps in the 

face of various unexpected events.  

The adaptive control algorithm can modify its characteristics to adapt to the changes 

in the dynamic characteristics of the object and disturbance, which is the appropriate 

choice of the artificial limb controller. Chen et al. (2022) constructed an adaptive 

backstepping control scheme to improve the dynamic tracking performance of human-

robot training mode in the presence of recognition error. Based on adaptive control, once 

the movement relationship between the environment of the reinforcement learning 

network and human motion is established, we can establish humanoid motion planning, 

arm power output, etc. At the same time, we can adjust the influence of the fuzzy 

processing of adaptive control, such as the reduction of the control accuracy of the system, 

through the reward and punishment mechanism. In our research, we proposed a basic 

adaptive feedback control based on the Lyapunov method (Spyros G. et al, 2014), then 

the Deep Deterministic Policy Gradient (DDPG) algorithm in reinforcement learning is 

introduced to design the control algorithm of the joint module, which can update the 

control strategy according to load disturbance, effectively improve the anti-interference 

ability of the system and reduce speed signal tracking error.  

Based on the kinematic and dynamic analysis of the bionic arm, the main contributions 

of our work can be summarized as follows: 1)The mathematical model of joint modules 

under unknown disturbance is further studied in this paper. 2)A DDPG-based 

composition approach to the adaptive control (RLAC) algorithm is presented by 

collecting and judging the parameters of the joint module system. 3) The effectiveness of 

the proposed algorithm is analyzed through an evaluation experiment, and the uncertainty 

of human shoulder joint movement caused by external interference is fully considered. 



Experiments show that the proposed algorithm can achieve excellent track tracking and 

is robust for variable loads in practice.  

This article is organized as follows. Section 2 introduces related works in machine 

learning and intelligent control. In Section 3, it describes the shoulder joint module 

system structure and dynamic model. In Section 4, The stability analysis for RLAC 

algorithm is introduced in detail. Section 5 presents numerical Simulation and 

experimental results analysis. conclusions are given in Section 6.  

2. Related Work 

In the past few decades, the research of modern dynamic control algorithms has made 

great progress (Rigatos et al, 2022), Saadaoui et al. (2017) adopted sensorless speed 

control based on sliding mode observer and estimated the PMSM rotor position and speed 

according to the back electromotive force voltage. Yin et al. (2019) optimized the 

integrated position and velocity loop of PMSM by sliding mode control. Zhou et al. (2019) 

designed a drive system for a series of manipulators based on orthogonal fuzzy PID 

control. Wang et al. (2021) present a nonlinear optimal finite-time tracking controller 

based on a state-dependent equation for the multi-motor driving system. Fang et al. (2021) 

proposed a robust tracking control for a magnetic wheel mobile robot based on adaptive 

dynamic programming. Lu et al. (2020) realized the humanoid motion of the robot arm 

by mapping the joint angle of the robot arm to the corresponding joint angle of the human 

arm. The joint angle is calculated by an inverse kinematics algorithm based on elbow 

constraint. The T/P method can make the robot arm effectively obtain the humanoid 

motion path. However, when the robot arm needs to move to a new target point, the 

problem that the robot arm cannot independently generate the humanoid motion path will 

arise, and a new T/P operation is required. This method lacks flexibility and is suitable 

for limited scenarios. Chen et al. (2022) designed a variable admittance controller to 



reduce the real-time interaction torque of human exoskeletons. At the same time, the 

extended state observer with backstepping iteration is used to compensate for the 

unmeasured system state, model uncertainty, and the unmodeled dynamics of the lower 

limb exoskeleton.  

Since the development of artificial intelligence, researchers have been trying to 

combine motion control with neural networks to improve performance, and used BP 

neural network (BPNN) or convolutional neural network (CNN) to achieve better control 

effect (Yang et al, 2019; Khan et al, 2020). EI-Sousy et al. (2018) proposed a nonlinear 

robust optimal control scheme for an uncertain two-axis motion control system based on 

adaptive dynamic programming and neural network. Liu et al. (2022) studied the real-

time cooperative control of multiple robots in a distributed scene based on a dynamic 

neural network. Su et al. (2019) used a new depth convolution neural network structure 

to reconstruct the relationship between the pose and rotation angle of the robot arm. The 

anthropomorphic motion of the redundant manipulator is realized by rotating motion. 

Zamfirache et al. (2022) proposed a new control method based on reinforcement learning, 

using Policy Iteration and a meta-heuristic Grey Wolf Optimizer algorithm to train the 

neural network. Cho et al. (2012) projected teaching data into potential space and the 

gaussian mixture model. With the increase of data obtained, the gaussian mixture model 

is gradually optimized. With this method, the robot arm can more accurately reproduce 

the human arm movement.  

Reinforcement learning obtains rewards through the environment and guides the 

system’s behavior, providing another way to solve problems for the perception and 

decision of a complex environment. In recent years, more and more researchers have 

participated in the research progress of deep reinforcement learning. Not only put forward 

many improvement strategies but also began to apply the research results of deep 



reinforcement learning to practical engineering applications(Han et al, 2019; Chai et al, 

2020). Zhang et al. (2019) used the reinforcement learning method to realize robot vehicle 

navigation path smoothing and tracking control. Chen et al. (2018) proposed a speed 

servo system control strategy based on a Reinforcement learning algorithm, which 

effectively overcomes the inertia mutation and torque disturbance of the DC motor. Song 

et al. (2021) study the deep reinforcement learning speed control strategy for the PMSM 

servo system. Liu et al. (201) studied the internal reward function of human-computer 

cooperative safety interaction of industrial robots based on deep reinforcement learning. 

However, most of the existing research has studied humanoid motion in an obstacle-free 

environment and has not involved the influence of joint control on humanoid motion. 

Based on the depth analysis of the dynamic performance of the joint module of the upper 

limb prosthesis, this paper introduces the depth deterministic strategy gradient algorithm, 

focusing on the impact of the speed and load changes caused by the environment on the 

joints, which is more suitable for the control application of the upper limb prosthesis.  

3. System description 

Although the characteristics of reinforcement learning do not require a given model in 

advance, to obtain accurate motion control and reduce the difficulty of training, it is still 

necessary to extract the physical parameters of the joint module as accurately as possible. 

In order to achieve low cost and popularization, we describe the mathematical modeling 

of joint modules as comprehensively as possible and consider the abnormal vibration of 

joints caused by sudden load changes.  

3.1. Shoulder system 

We place the joint module on the shoulder to replace the pitching motion of the human 

arm. The shoulder is the connection between the human arm and the trunk, the load and 



speed change of the whole arm is finally gathered here. Simply, the action of the lower 

arm of the shoulder joint can regard as a connecting rod with changing torque and speed. 

Therefore, the load capacity and control accuracy of the joint module directly determine 

the dynamic performance of the bionic arm. The position of the joint module is shown in 

Figure 1.  

3.2. Mathematical model of joint module 

The joint module consisted of a Driver, brushless DC motor, brake, harmonic reducer, 

etc. (Figure 1). In the dynamic analysis, the action of the lower limb of the shoulder is 

simplified as the moment of inertia with the constant change of centroid. The 

mathematical model of the joint module is as follows. Firstly, the expression of the BLDC 

is:  
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  (1) 

 0a b ci i i+ + =   (2) 

where au , bu , cu are phase voltages of the three-phase winding, respectively. ai , bi , ci  are 

phase currents of the three-phase winding, respectively. ae , be , ce are respective back 

electromotive forces of the three-phase winding, respectively. sR is the phase resistance 

of the BLDC. oL  is the equivalent inductance of the BLDC.  

 o SL L M= −   (3) 

where SL  is the self-inductance of each phase winding, and M  is the mutual 

inductance between each winding.  

When the two-stage three-phase BLDC is running, only two phases of the three-phase 

winding are conducted. we can get the electromagnetic torque of the BLDC as:  



 a a b b c c

r

e i e i e i




+ +
=   (4) 

r is the angular velocity of the BLDC. So, Eq. (4) can be written as:  

 
2 a a

r

e i



=   (5) 

Since the phase voltage is related to the number of winding turns, there are:  

 a ee k n=   (6) 

where ek  is a constant, and the relationship between the angular velocity of the BLDC 

and the number of coil turns is:  

 
2

60
r

n
 =   (7) 

Therefore, Eq. (5) can be rewritten as:  

 
2 60e a
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r
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k is a constant. Then the torque of the BLDC is proportional to the phase current.  

According to the effects of the harmonic reducer:  

 
L lpT T=   (9) 

where LT  is the torque of the whole bionic arm system acting on the shoulder joint. to 

the joint module,  is the reduction ratio, and   is the transmission efficiency. The 

dynamic model of the joint module is:  

 L
r r f

T
J B T  


+ + + =   (10) 

where J  is the moment of inertia of the rotor of the BLDC, B  is the viscous friction 

coefficient of the BLDC, and 
fT  is the friction torque in the harmonic reducers.  



In order to facilitate adaptive control, the a-b-c three-phase must be converted to the d-

q reference frame. According to Kirchhoff laws, there has 0a b cU U U+ + = , the 

composite space vector tU  can be expressed as:  
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j

t a b c mU U U e U e V e
 
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The mV  is maximum phase voltage,   is the angle of the rotor. According to the 

Clark transform, the constant amplitude conversion is written as:  
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here 
2

3
k = . In order to facilitate control and calculation, Park transform is calculated as:  
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the voltage expression can be obtained as:  
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qu  and du  are the phase voltages of the reference coordinate system, 
qi and di are phase 

currents, are the flux linkages produced by the permanent magnets of the BLDC.  

According to the field-oriented control (Rezaei et al, 2017; Zhao et al, 2019), 0di = , 

Eq. (14) is rewritten as:  
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
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The friction torque is nonlinear and has a great impact on the dynamic performance of 

the joint module system. Scholars used model friction forces to calculate the influence of 

different friction forces on mechanical systems and proposed different friction models to 



eliminate the influence of friction (Pennestrì et al, 2016). Here we combine it with the 

load torque. Define:  

 L
o f

T
T T


= +   (16) 

In the d-q reference frame, the relationships between the angular velocity of the joint 

module and the phase current are:  
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where, p is the number of pole pairs of the BLDC.  

Combining Eq. (15) and Eq. (17), the state space of the joint module system is obtained 

as:  
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  (18) 

4. Controller design 

4.1. Adaptive control 

In order to detect variables and adapt to changes in work and life, adaptive control is 

designed. Firstly, the tracking error of angular velocity is defined as:  

 1 rd re  = −   (19) 

Hence, 1e  is calculated as:  
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where 
qi  is the controlled quantity. Currently, consider oT  as the known quantity. In 

order to obtain stable feedback, take 
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Here 
23

2

p

J


 = , 1 1 1e k e= − . When the arm moves, 

oT  and 
fT  change and become 

unknown, the estimated value ˆ
LT  is used to replace LT  to maintain the desired 

performance. Eq. (16) is redefined as:  
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Eq. (21) become:  
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Redefine the error signal containing the estimated variable as:  
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Hence, Eq. (20) can be written as:  
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where ˆ
o o oT T T= −  is the estimation error. Through the adjustable gain adaptation rate, 

the dynamic equation 2e  is:  
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To keep the expected performance of the joint module under the influence of unknown 

resistance, an adaptive feedback controller is proposed for the system Eq. (18).  



Theorem 1: Considering the estimated variables Eq. (19) and Eq. (24), there exists 

1 2 0k k   and Tk    such that the following controller stabilizes the joint module 

system.  
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Therefore, the closed-loop joint module system constituted of Eq. (21) and Eq. (27) is 

shown in Figure 2.  

Proof: Define a Lyapunov function as:  
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The eV is positive definite. Then take:  
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From Eq. (25) and Eq. (26), we can get:  
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Substituting Eq. (21) and Eq. (27), it is obtained that:  

 2 2

1 1 2 2 0eV k e k e= − −    (31) 

Therefore, the Lyapunov stability condition is fully satisfied. It can be concluded that 

the state variables of the system would converge to zero in finite time.  



4.2. DDPG algorithm 

The DDPG algorithm follows the Actor-Critic architecture, in which the actor network 

learns the parameterized strategy through the policy gradient algorithm, and the critic 

network learns the value function to evaluate the state action obtained from the algorithm. 

A multi-layer fully connected layer is used to build an action network and evaluation 

network which is more suitable for continuous action space. DDPG absorbs the 

advantages of a single-step update of strategy gradient in Actor-Critic while retaining the 

skills of Q value estimation in DQN, which can achieve more effective learning while 

performing actions in the continuous time domain.  

The main function of the actor network is to input the status ts  into the policy network 

  to output an action ta . For continuous actions, the activation function of the output 

layer generally uses the Tanh function or Sigmoid function. The policy network is mainly 

responsible for generating actions, and its gradient can be calculated as follows:  

 ( ) ( ) ( ), ,Q

i a i i

i

s s s Q s a s s a s 



 
     =  =  = =   (31) 

The critic network is based on the value function to fit the state action-value function. 

In state ts , the actor network executes the action selected by the agent according to the 

action policy ( )t ta s=  . The expected state-action value obtained by the agent is 

expressed as:  

 ( )( ) ( )( ) ( )( )1 1, , ,Q Q

t t t t t tQ s s E r s s Q s s     + +
 = +
 

  (32) 

The update process of the value function network is as follows. First enter state ts  and 

action ta , The critic network outputs ( ),t tQ s a , which is part of the input loss function 

module. At the same time, 1ts +  is input to the target strategy network and is input to the 

target value function network together with the expected action a  expected to be 



performed in the next step. ( )1,tQ s a+
   is output as another part of the loss function 

module. The network structure diagram is shown in Figure 3.  

4.3. RLAC algorithm 

Aiming at the requirements of adaptive and self-learning ability of control algorithm 

for joint module system, an adaptive controller based on DDPG is proposed in this paper. 

The controller learns the system model according to the input and output, the actor 

network realizes the optimal expression of the strategy, and the critic network realizes the 

optimal approximation of the value function.  

By analysing the input and output data of the system, the controller trains the simulation 

agent with batch data, and finally obtains the agent that can make decisions according to 

the changes of the environment. The agent adjusts the parameters of the adaptive 

controller in real time, and finally improves the accuracy of the joint module system. 

The reinforcement agent is composed of policy initialization error ( )1e t , ( )2e t , error 

integral ( )1e t ， ( )2e t and feedback ( )r t , and the state vector ts is used to represent 

the state characteristics of the reinforcement agent system at the current time.  

 ( ) ( ) ( ) ( ) ( )1 2 1 2, , , ,
T

t rs e t e t e t e t t =      (33) 

In the initial state, an enhanced agent action output ta is mapped according to the 

current actor online strategy   and the random process noise. After the execution of the 

controlled object, the reward value tr and next moment state 1ts +  will constitute the next 

enhanced agent action.  

 ( ) ( ) ( ) ( ) ( )1 2 1 2, , , ,
T

t rs e t e t e t e t t =      (34) 

The actor-network stores this state transition ( )1, , ,t t t ts a r s +  process in memory M. 

Random sampled in the memory M as a small round training data of the online network. 



After the system completes the N-step sampling, the target network Q− and  − are 

obtained to calculate the critical target network value as follows:  

 ( )( )( )1 1, e

i i t iy r Q s s    
− −−

+ += +   (35) 

The discount factor   value range as 0 1  , then the critical network is updated 

by minimizing the loss L .  

 ( )( )
21

, Q

i i i

i

L y Q s a
N

= −   (36) 

The estimated value of the critical output state and the minimum loss L  is an 

important basis for judging the decision-making degree of the actor network. actor 

network is constantly updated according to the loss gradient J . After several 

iterations of self-learning and self-tuning, a suitable reinforcement learning agent is 

obtained.  

 ( ) ( ) ( )1

1
, ,

t

Q

a
s

i

J Q s a s s a s s
N



       = =    (37) 

Considering the influence of system error and feedback value range on system control 

performance, the reward function is defined as:  

 ( ) ( )1 1 2 2tr r t r t = +   (38) 

1 , 2 are the reward coefficients limiting the error value range, and ( )1r t , ( )2r t are the 

error value range and feedback value range respectively, which are defined as:  

 ( ) 2 2

1 1 1 2 2( ) ( )r t c e t c e t= − −   (39) 

 ( ) 1 2

2

0

1

r r r
r t

else

   

−

  (40) 

1c , 2c are reward parameter, which is set according to the importance of error value, 

1r
 , 

2r
 are the upper and lower limits of the speed. The DDPG-based composition 



approach to the adaptive control algorithm is shown in Figure 4. The upper part of the 

dotted line is a parameter regulator based on reinforcement learning, which is composed 

of a reinforcement learning agent, and the lower part of the dotted line is composed of a 

controller and controlled object as the interactive object of the agent environment.  

5. Simulation and experiment 

In order to verify the effectiveness of the proposed algorithm and avoid potential risks 

to the human body, this study uses the method of evaluation experiments to analyze the 

control performance under different control algorithms, and then more accurately 

evaluate the adaptability of module joint. We choose different reference signals to 

simulate and experiment under the action of different load changes and compare them 

with the PID control. The selection of system parameters is shown in Table 1.  

5.1. Parameters Selection 

Reasonable parameters can balance the control effect and control cost, which play an 

important part to improve the control performance.  

 1) Selection of value k : The parameter k  will determine the convergence speed of 

the control and the range of the convergence. The larger value k  selected the faster the 

convergence rate is, but the control cost will also increase. That is to say, in actual 

applications, the response time of the system and the steady-state error should be 

weighed.  

2) Selection of value di : In theory, the change of the internal flux linkage of the motor 

will affect the di , and then affect du . But this slight change is often ignored in the 

manufacturing and actual application of the brushless DC motor. So 0di =  was taken in 

the simulation.  



3) Selection of reinforcement learning parameters: the parameters of reinforcement 

learning mainly act on the reward function, the definition of reward and punishment 

mechanism is different in environments, and the reward and punishment function 

involved will also change; The error value coefficient under the same definition also 

needs to be changed according to the importance of the weight.  

5.2. Simulations 

Generally, the training of reinforcement learning is uncertain. In order to reduce the 

unknown influence of experimental training on the equipment and test the convergence 

and effectiveness of the controller, we designed the simulation of the joint module system 

under the change of speed and load in MATLAB/Simulink. Compare with the waveform 

change with reinforcement learning adaptive controller and PID controller, we analyzed 

the performance of RLAC.  

In order to make the simulation of the joint module closer to the cooperative application 

in real life, we use a sinusoidal signal and step signal as reference speed and use the step 

function to simulate the sudden change of load in cooperation. The parameters of the two 

controllers are shown in Table 2.  

In the simulation environment, for the reinforcement learning agent, the model 

simulation time 0.2fT s=  and the sampling time 0.001sT s= . During training, set the 

maximum number of Episodes to 2000. When the trained Episode gets the maximum 

reward value, the obtained optimal RL Agent will be saved and applied to the simulation 

and experiment.  

Figure 5 shows the start-up operation of the joint module under the initial load. The 

joint module can start quickly and reach the rated speed and run more smoothly than the 

PID control. The torque output under this condition is shown in Figure 6. It can be seen 

that RLAC is more stable than the torque output under PID control.  



In order to test the anti-interference ability of the joint module system, the simulation 

speed is initially set at 300 m/s, and when t = 0.5 s, the load disturbance of 5 N/m is added. 

The speed comparison of fuzzy PID control and reinforcement learning adaptive control 

is shown in Figure 7. The torque output adapted to torque variation under this condition 

is shown in Figure 8. It can be seen that expect for stabilizing the speed, it also plays a 

certain role in balancing the internal vibration of BLDC by square wave drive.  

The normal operation of the bionic arm often changes with the speed and load torque 

at the same time. In order to test the following performance of the system, the simulation 

speed input is a sinusoidal signal, and the speed following simulation results controlled 

by RLAC is shown in Figure 9. It can be seen from the velocity waveform that the 

adaptive control after reinforcement learning has excellent following performance.  

5.3. Experimental verification 

We can see that the design of the RLAC algorithm does not involve some complex 

sensors. To test the implementation ability of the designed controller, we improve the 

generated code of MATLAB and build the experimental platform combined with the 

simulation results and the parameters of the actual equipment. In order to make the 

experiment more suitable for combination with the human body. We keep the 

reinforcement learning controller running on the PC side, directly transmit the control 

signal to the driver through serial communication, set the DC voltage source to 30V, 

stm32f429 arm controller, communicate through CAN-bus, and the brake motor provides 

variable load torque. The experimental device is shown in Figure 10.  

The experiment mainly tests the control effect of the controller on the speed change 

and load change of the joint module. Figure 11 showed the comparison of experimental 

results of the proposed controller and PID controller under step response. Figure 12 

showed the comparison between the proposed RLAC algorithm and the sinusoidal signal 



tracking experimental results of PID control under a given load. The control performance 

of the RLAC algorithm is better than that of PID control. In addition, when the joint 

velocity change rate of the two controllers is the largest, the maximum tracking error will 

appear. It may be caused by the backlash of the harmonic reducer, Coulomb friction, and 

sensor error.  

One of the main uncertainties in the motion of a bionic robot arm is the sudden change 

of motion speed. The change of the external environment often needs the movement of 

the arm to adjust, which indicates that the joint module often needs to face a sudden 

change of speed, which will inevitably lead to an uncertain change in the parameters such 

as friction or dynamics of the system. Therefore, the closed-loop performance is verified 

by large positive and negative changes. The experimental comparison results are shown 

in Figure 13.  

Under the requirements of continuous forward and reverse output changes, RLAC 

control has a smaller amplitude and faster convergence than PID control, which further 

proves the performance of the proposed RLAC algorithm. In addition, in the operation of 

the joint module, the changes in system parameters such as friction coefficient caused by 

the holding brake of the joint module and harmonic reducer will also have a nonlinear 

impact on the system output, but it still can be seen that the proposed RLAC algorithm 

has better robustness to the centralized uncertainty caused by the external environment.  

6. Conclusion 

In order to optimize the performance index of the joint module, this paper designed a 

DDPG-based composition approach to the adaptive control algorithm to solve the 

intelligent control problem of shoulder joint upper limb prosthesis. Considering the 

changes in load torque and moment of inertia caused by human motion, the depth 

deterministic strategy gradient algorithm is integrated into the adaptive control. The 



motion state of the joint module is judged through the network, which improves the 

control accuracy and anti-interference ability of the joint module. Both simulation and 

experimental results show that the proposed RLAC algorithm can enhance the robustness 

of the joint module to load disturbances and improve the tracking performance of the 

speed control system. In practical application, the parameters of the control algorithm can 

be adjusted according to the habits of prosthetic subjects, which can greatly reduce the 

discomfort of amputees and realize the two-way coordination between human and 

intelligent prosthetics. This provides a novel method and idea for subsequent scientific 

research and industrial engineering applications.  
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Table 1 The variables and parameters of the joint module system 

Definition Notation Value Unit 

Moment of inertia of joint module system J  
31.6 10−  

2
kg m  

Equivalent inductance  
SL  83.97  mH  

Phase resistance  
SR  0.687    

Coefficient of viscous friction B  
38 10−  / /Nm rad sec  

Rotor flux   0.48  Wb  

Number of pole pairs p  4  −  

The transmission ratio of harmonic reducer   100  −  

Transmission efficiency of harmonic reducer   0.95  −  

 

 

Table 2 The parameters of control algorithms 

Control algorithm Control parameters 



RLAC  1 2 100k k= = 4Tk =  

PID  50 3 10p i dk k k= = =  

 

 

 

Figure 1. Joint module for upper limb prosthesis 

 

Figure 2. Structure of adaptive controller 

 



Figure 3. Network structure of reinforcement learning strategy 

 

Figure 4. Structure of RLAC 

 

Figure 5. Speed comparison between RLAC and PID (speed step) 

 

Figure 6. Torque comparison between RLAC and PID (speed step) 



 

Figure 7. Speed comparison between RLAC and PID (torque step) 

 

Figure 8. Torque comparison between RLAC and PID (torque step) 

 

Figure 9. Performance of RLAC speed following 



 

Figure 10. Experimental devices 

 

Figure 11. Experimental comparison of RLAC and PID (step response) 

 

Figure 12. Experimental comparison of RLAC and PID (sinusoidal tracking) 



 

Figure 13. Experimental comparison of RLAC and PID (positive conversion) 

 


