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Abstract
We initiate the study ofmodel structures on (categories induced by) lattice posets, a subjectwe
dub homotopical combinatorics. In the case of a finite total order [n], we enumerate all model
structures, exhibiting a rich combinatorial structure encoded by Shapiro’s Catalan triangle.
This is an application of previous work of the authors on the theory of N∞-operads for
cyclic groups of prime power order, along with new structural insights concerning extending
choices of certain model structures on subcategories of [n].
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1 Introduction

AQuillenmodel structure is a framework inwhich one can perform abstract homotopy theory
within a category of interest. At its core, the theory ofmodel structures is designed to solve the
problem of formally inverting a chosen class of morphismsW called weak equivalences in a
categoryC. It achieves this through theuseof extra structure coming fromachoice offibrations
and cofibrations which satisfy various topologically–inspired compatibility axioms. Indeed,
potentially the most familiar example of a model structure is the one on the category Top of
topological spaces and continuousmapswhere theweak equivalences are theweak homotopy
equivalences, the fibrations are the Serre fibrations, and the cofibrations are thosemaps which
are retracts of relative cell complexes.

Fix a categoryC. It is natural to ask ifwe can enumerate or determine structural properties of
the collection Q(C) of all Quillenmodel structures on C. It turns out that the behaviour of Q(C)
can be wildly different based on the choice of C. Even when fixing the weak equivalences,
we can exhibit a range of behaviours.

To see this, consider the category sSet of simplicial sets and natural transformations
between them. The weak equivalences in the standard Kan–Quillen model structure on sSet
are thosemorphisms f : X → Y such that the geometric realization | f | : |X | → |Y | is aweak
homotopy equivalence of spaces. The fibrations are the Kan fibrations and the cofibrations
are the monomorphisms [19]. One may wonder if there is another model structure on sSet
with these weak equivalences but with different fibrations and cofibrations. Beke answers
this question in the positive by proving the existence of an infinite collection of such model
structures [5].

On the other end of the spectrum, consider the category Cat of small categories and
functors between them. The natural choice of weak equivalences being equivalences of
categories leads to a model structure on Cat where the fibrations are the isofibrations and
the cofibrations are the functors which are injective on objects [21]. Amazingly, this is the
only model structure on Cat with these weak equivalences, in stark contrast to the case of
simplicial sets [23].

Therefore, we have seen that even when fixing the weak equivalences, there could be a
whole range of behaviours for choices of fibrations and cofibrations. The only classification
result for Q(C) that we are aware of is the full description of model structures on the category
Set of sets and functions between them. One can explicitly prove that there are exactly nine
model structures on Set, that is, #Q(Set) = 9 [3].

In this paper, we initiate the systematic study of model structures on categories induced
by lattices. Here a lattice P is a partially ordered set admitting finite meets and joins, and the
induced category P has objects P and a unique morphism p → q if and only if p ≤ q in
P . Since model structures encode homotopy theories and lattices are of fundamental interest
in combinatorics, one can think of our work as an initial investigation into homotopical
combinatorics.1

1 At the same time, combinatorial homotopy theorymight be an appropriate appellation since we will expose
the rich combinatorial structure undergirding model structures on lattices. Beware, though, that combinatorial
model structures already exist in the literature and have a rather different flavor.
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Our main result is a full classification of model structures on finite total orders. That is, for
a fixed n ∈ N we consider the poset [n] = {0 < 1 < · · · < n} as a category, and classify the
structure of all model structures on [n]. As [n] has finitely many objects and finitely many
morphisms, it follows that Q([n]) is a finite set and as such can be enumerated. We prove
the following.

Theorem (Theorems 4.10 and 4.13) Let Q([n]) be the collection of Quillen model structures
on [n]. Then

#Q([n]) =
(
2n + 1

n

)

and, for 0 ≤ k ≤ n, exactly

2(k + 1)

n + k + 2

(
2n + 1

n − k

)

of these model structures have homotopy category isomorphic to [k].
This enumeration result follows from a surprising link to the theory of N∞-operads, which

are a tool from equivariant homotopy theory concerning the classification of different types
of homotopy commutativity. The first and fourth authors, along with D. Barnes, proved an
enumeration result for N∞-operads up to weak equivalence for the cyclic groups Cpn . In
particular it was shown that

#N∞(Cpn ) = Cat(n + 1) = 1

n + 2

(
2n + 2

n + 1

)

whereCat(n+1) is the (n+1)-thCatalan number. It was then observed by the second and third
author and collaborators in [11] that there is a bijection between the set of weak equivalence
classes of N∞-operads on Cpn and the set of model structures on [n] = Sub(Cpn ) where all
morphisms are weak equivalences. This is the key insight that led to the development of this
paper.

The second main result appearing in this paper is a full description of the Bousfield lattice
of [n]. Starting from any model structure, one can consider adding more weak equivalences.
If this is done in a way that preserves the cofibrations (resp., fibrations) then the process is
called left (resp., right) Bousfield localization.

In general it is a very hard problem to decide which model structures can be obtained from
other others through a process of left and right localizations. In the case of [n], we obtain a
full classification.

Theorem (Theorem 5.12) Every model structure on [n] can be obtained via a sequence of
left and right Bousfield localizations starting at the trivial model structure, where only the
isomorphisms are weak equivalences and all maps are fibrations and cofibrations.

Alongside these theorems, we prove a plethora of results regarding model structures on
general finite lattices and [n] including the relation to premodel structures and the existence
of an involution on the collection of model structures.

Relation to other work

Model structures on posets have been studied in a non-enumerative fashion by Droz and
Zakharevich [9]. While we make use of several of their structural results in Sect. 2, their
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emphasis (proving that extending to a model structure is not a first-order property) is quite
different from ours.

We also note that the homotopy theory of the category of posets has been studied in [20].
Our focus on the homotopy theory of poset categories is only similar linguistically.

Outline

In Sect. 2 we recall the relevant information regarding model categories, with a particular
focus on reductions that can be done when the underlying category is a finite lattice.

The main structural result appears in Sect. 3, which proves that to uniquely define a model
structure, it is enough to define a collection of contractible submodels. This immediately
leads to the aforementioned enumeration result which is the subject of Sect. 4.

In Sect. 5, we prove that every model structure on [n] can be obtained through a zig-zag
of left and right Bousfield localizations starting from the trivial model structure. Finally, in
Sect. 6, we provide a list of potential directions for further exploration.

2 Recollections onmodel categories

2.1 Model categories

We begin by recalling some basic definitions and conventions about model categories. Many
readers may be familiar with these, but it will be beneficial to collect the necessary tools for
our results in one place. We refer the reader to [10, 14] or [1] for further details, as well as
the original reference of [19].

Definition 2.1 For any two morphisms i : A → B and p : X → Y in a category C, we say
that i has the left lifting property (LLP) with respect to p, or p has the right lifting (RLP)
property with respect to i , if for all commutative squares of the form

A

i

X

p

B Y

(1)

there exists a lift h : B → X which makes the resulting diagram commute. If i lifts on the
left of p we write i � p. For any class S of morphisms in C we write

S� = {g ∈ Mor(C) | f � g for all f ∈ S},
�S = { f ∈ Mor(C) | f � g for all g ∈ S}.

Note that S ⊆ �T if and only if T ⊆ S�. We write S � T when this holds.

Definition 2.2 A model category is a category C equipped with three distinguished classes
of morphisms, namely

• weak equivalences—W—whose elements we will represent as X
∼

Y ,

• fibrations—F—whose elements we will represent as X Y ,

• cofibrations—C—whose elements we will represent as X Y ,
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each of which is closed under composition. Amorphism in AF := W∩F (resp., AC := W∩C)
is said to be an acyclic fibration (resp., acyclic cofibration). These distinguished classes of
morphisms and the category C are required to satisfy the following axioms.

(MC1) The category C has all finite limits and colimits. In particular, there is an initial object
∅ and terminal object ∗.

(MC2) The classW satisfies the two-out-of-three property.
(MC3) The three distinguished classes of morphisms are closed under retracts in the arrow

category.
(MC4) Given a commutative diagram of the form (1) above, a lift exists when either i is a

cofibration and p is an acyclic fibration, or when i is an acyclic cofibration and p is
a fibration.

(MC5) Each morphism f in C an be factored in two ways:

1. f = pi , where i is a cofibration and p is an acyclic fibration.
2. f = pi , where p is a fibration and i is an acyclic cofibration.

If objects X and Y lie in the same weak equivalence class then we shall write X 
 Y .

Lemma 2.3 Let C be a model category. Then W = AF ◦ AC (i.e., those maps that can be
written as the composition of an acyclic cofibration and an acyclic fibration).

Proof As the weak equivalences are closed under composition, we have that any element
of AF ◦ AC is in W. Conversely, let f ∈ W. Then by the factorization axiom we can write
f = pi where p is an acyclic fibration and i is a cofibration. By the 2-out-of-3 property of
weak equivalences it follows that i is is a weak equivalence, and hence an acyclic cofibration
as required. �
Remark 2.4 It follows from the axioms of a model category along with the above lemma that
the data of a model structure is over-determined, as, for example, the cofibrations can be
recovered using only the weak equivalences and fibrations via lifting properties. Explicitly,
we have �AF = C, i.e., the cofibrations are exactly those morphisms with the LLP with
respect to all acyclic fibrations (and the dual statement for fibrations).

Following similar reasoning, it is sufficient to provide just the data of the cofibrations and
weak equivalences, which then uniquely determines the fibrations. We will repeatedly use
this fact as we will naturally define our model structures via their weak equivalences and
acyclic fibrations.

Definition 2.5 Let C be a model category. An object X in C is said to be

• fibrant if the unique morphism X → ∗ is a fibration,
• cofibrant if the unique morphism ∅ → X is a cofibration,
• bifibrant if it is both fibrant and cofibrant.

For any object X in a model category C it is possible to approximate X—up to weak
equivalence—by a (co)fibrant object using the factorization axiom. In particular, for every
X there is a choice of

• Anobject X f and an acyclic cofibration X
∼

X f .We say X f is a fibrant replacement
of X .

• Anobject X c and an acyclic fibration X c ∼
X .We say X c is a cofibrant replacement

of X .

123
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The selling point formodel categories is that they provide a framework inwhich to perform
localizations of categories with respect to a class of weak equivalences, and the bifibrant
objects play a pivotal role in this. In particular, given a model category C, one wishes to form
the universal category C[W−1] in which the weak equivalences have been formally inverted.
This is a model for the the homotopy category as we now define.

Definition 2.6 Let C be a model category. Then its homotopy category Ho(C) is the category
C[W−1] obtained from C by formally inverting the weak equivalences.

Remark 2.7 In general, given a categoryC, and a class ofmorphismsW inC, formally inverting
W leads to requiring zig-zags of morphisms of potentially arbitrary length, so one does not
obtain a category with small hom-sets. A key feature of the theory of model categories is that
the homotopy category can be constructed using zig-zags of lengthmost two, soDefinition 2.6
is well defined.

We have, on occasion, reason to want to compare model structures. That is, we would
like a notion of functors f : C → D between model categories which descend to a functor
between the associated homotopy categories. These are exactly the Quillen functors as we
now define. The fact that they have the desired properties can be found in, for example [14,
Section 1.3].

Definition 2.8 Let C and D be model categories. An adjoint pair of functors

F : C � D : U
is a Quillen pair if the left adjoint F preserves cofibrations and the right adjointU preserves
fibrations. We say that F is a left Quillen functor and U is a right Quillen functor.

We finish this section by highlighting a helpful fact regarding the behaviour of isomor-
phisms in a model category. This will be of use when discussing model structures on lattices
where the only isomorphisms are the identity morphisms.

Lemma 2.9 Let C be a model category. Then a morphism f : X → Y is an isomorphism if
and only if it is in all three classes of mapsW, F and C.

Proof Suppose f : X → Y is in all three classes of maps. Then we can form a commutative
diagram

X
idX

f

X

f

Y
idY

Y .

A priori the left vertical map is an acyclic cofibration, and the right vertical map is a fibration.
Thus there is a lift h : Y → X rendering the two triangles commutative, that is, f ◦ h = idY
and h ◦ f = idX , showing that f is an isomorphism as required.

For the converse statement, assume that f : X → Y is an isomorphism with inverse f −1.
Then we note we can solve any lifting problems of the form

X

f

A A X

f

Y B B Y
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simply bymaking use of the inverse f −1. In particular, f : X → Y lifts on the leftwith respect
to any fibration (resp., lifts on the right with respect to any cofibration) and is therefore an
acyclic cofibration (resp., acyclic fibration). As such, f is in all three classes of maps. �

2.2 Weak factorization systems

Although Definition 2.2 is the definition of a model category that one will usually see in the
literature, for the purposes of this article it will be more convenient to instead consider model
categories through the lens of weak factorization systems and premodel structures.

Definition 2.10 Let L andR be classes of morphisms in a category C. Then the pair (L,R)

is a weak factorization system if

(1) every morphism f in C can be factored as f = pi with i ∈ L and p ∈ R,
(2) L � R,
(3) L andR are closed under retracts.

It is immediate from the definitions that every model structure on C gives rise to two weak
factorization systems, (C,AF) and (AC, F). Conversely, one sees that model categories can
be completely characterized in terms of weak factorization systems, as was noted in [15].

Theorem 2.11 Let C be a category with all finite limits and colimits, and let W, C, and F be
three classes of morphisms. Then W, C, and F determine a model category structure on C if
and only if

(1) W satisfies the 2-out-of-3 property, and
(2) (C,AF) and (AC, F) are weak factorization systems on C.

The idea of premodel structures as introduced in [4] (which are also called Quillen struc-
tures in [17]) is that asking for the 2-out-of-3 property for the weak equivalences is counter
intuitive in certain situations such as when taking (co)limits of model categories. Instead,
one may just ask for a compatible pair of weak factorization systems.

Definition 2.12 A premodel category is a category C with all finite limits and colimits
equipped with four classes of maps C, AC, F and AF such that the pairs (C,AF) and (AC, F)
are weak factorization systems on C, and AC ⊆ C (equivalently, AF ⊆ F).

Note that any model structure is a premodel structure, as follows directly from Lemma 2.3
and Theorem 2.11, but the converse does not hold ex consilio.

2.3 Model structures on lattices

In Sect. 2.1 we have introducedmodel categories for general categories C. However, our focus
in this article will be the category arising from the poset [n], i.e., the poset whose objects are
{0, 1, . . . , n} and with order relation i ≤ j inherited from the ordering of N.

As we require our categories to have all small limits and colimits, we are therefore only
interested in those posets with all limits and colimits. These posets are complete lattices, and
any finite lattice is complete. As such we will simply call a finite complete and cocomplete
poset a lattice. We recall that the limits are computed via meets ∧ (i.e., the greatest lower
bound) and colimits are computed via joins ∨ (i.e., the least upper bound). In the case of [n]
the meet operation corresponds to min while the join operation corresponds to max.

123
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Wewill now collect several relevant reductions to the basic properties of model structures
that can be made in the case that C = P is a lattice from [9].

Explicitly, by a lattice we mean a skeletal category P such that for all objects X and Y ,
# HomP(X , Y ) ≤ 1 which admits all finite limits and colimits. Given a classical lattice P ,
we define a category P with ob(P) = P and

HomP(X , Y ) =
{

{∗} if X ≤ Y ,

∅ else.

Note that in a lattice there are no non-trivial retracts so axioms regarding retracts are vacuous
in this setting.

The first result regarding model structures on lattices is that the weak equivalences nec-
essarily satisfy a stronger property than 2-out-of-3. We begin with a definition.

Definition 2.13 A class E of morphisms in a category C is decomposable if f ∈ E with
f = gh for some g, h ∈ Mor(C) implies that both g and h are in E.

Lemma 2.14 [9, Proposition 1.8] Let P be a lattice. Then the weak equivalences of any
model structure on P are decomposable.

The second result that we will make use of is a restriction on the number of bifibrant
objects in any given weak equivalence class.

Lemma 2.15 [9, Lemma 1.6] Let P be a lattice equipped with a model structure. Then each
weak equivalence class has a unique bifibrant object.

In the case of a countable lattice, the homotopy category as defined in Definition 2.6
admits a much simpler description.

Lemma 2.16 [9, Theorem 5.4] Let P be a countable lattice equipped with a model structure.
Then Ho(P) is equivalent to the full subcategory on the bifibrant objects.

Remark 2.17 We highlight that Lemmas 2.14, 2.15 and 2.16 do not hold for an arbitrary
model category, and the proofs critically use the fact that we are working in a lattice. For
Lemma 2.14 one can cook up a simple counter example in a category using retracts. For
Lemmas 2.15 and 2.16 it is enough to observe that there are model structures in which all
objects are bifibrant, and such that theweak equivalences aremore than just the isomorphisms.
A classical example of such a model structure is the Strøm model structure on Top [27].

We now introduce terminology for two extremes ofmodel structures thatwewill encounter
in subsequent sections.

Definition 2.18 Let C be a complete and cocomplete category equipped with a model struc-
ture.

• If all morphisms in C are weak equivalences, then we say that the model structure is
contractible.

• If only the isomorphisms in C are weak equivalences, then we say that the model structure
is trivial.

Remark 2.19 We shall see that for an arbitrary lattice that there are many contractible model
structures, however, there is only one trivial model structure on any given category. Indeed,
if only the isomorphisms are weak equivalences, then it is an instructive exercise to check
that all maps must both be fibrations and cofibrations so that the required factorizations exist.
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The terminology of Definition 2.18 is justified by the following consequence of Lemma
2.16.

Corollary 2.20 Let P be a lattice equipped with a model structure.

• If P is a contractible model structure then Ho(P) is equivalent to the category with a
single object and only the identity morphism.

• If P is a trivial model structure then Ho(P) is equivalent to P.

Remark 2.21 Every weak factorization system (L,R) on an arbitrary category C determines
a contractible model structure by letting

• W = all,
• F = R,
• C = L.

In fact, every contractible model structure arises as such. In other words, there is a bijection
of sets

{weak factorization systems on C} {contractible model structures on C} .

There is yet another way to classify the contractible model structures on C in the case that
C is a finite lattice. We begin with a definition.

Definition 2.22 A transfer system in a category C is a wide subcategory of C which is closed
under pullbacks by arbitrary morphisms in C.

(Here a subcategory of C is wide when it contains all the objects of C.)
The next result tells us that the data of a transfer system is exactly the data of a weak

factorization system when P is a finite lattice. In particular, one needs to only provide the
right (or left) set. In the following result, we consider poset structures on transfer systems
and weak factorization systems. The order on transfer systems is by inclusion, and the order
on weak factorization systems is given by inclusion of the right class.

Proposition 2.23 [11, Proposition 4.11, Theorem 4.13] Let P be a finite lattice and R a
transfer system on P. Then there is a unique weak factorization system (L,R) on P. In
particular the assignment

R ←→ (�R,R)

is an isomorphism between the poset of transfer systems on P and the poset of weak factor-
ization systems on P.

This result is powerful as not only does it give a simple characterization of the right class,
the left class admits an explicit combinatorial description as we now recall.

Lemma 2.24 [11, Proposition 4.15] For a transfer systemR on a lattice P, the set L is given
by E(R)c. Here, E(R) is the downward extension ofR, defined as

E(R) = {z → y | there exists x ∈ P such that z ≤ x < y and x → y ∈ R }
and E(R)c is the complement of E(R) in P.
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To conclude, in the situation of a finite lattice Pwe have the following triple of bijections

{transfer systems on P}

{weak factorization systems on P} {contractible model structures on P}.

Example 2.25 Consider the lattice [1] := • • . To determine a model structure on
this lattice, we need only determine the status of the single non-identity morphism, that is,
decide if it is in W, C or F. By Lemma 2.9 we know that this map can only be in two out of
the three distinguished classes of maps (as the map is not an isomorphism).

The non-trivial morphism has to be either a fibration or cofibration (or both), as otherwise
(MC5) would not be satisfied. If it is not a weak equivalence, we are in the trivial model
structure, so then it has to be both a fibration and a cofibration at the same time.

By [14, Example 1.1.5] for any category C admitting all limits and colimits we always
have the existence of the following model structures in addition to the trivial one.

• F = iso,W = C = all,
• C = iso, F = W = all.

And indeed, we have seen that these are all the cases taken care of, so the total number of
possible model structures on [1] is 3, where one is trivial and the other two are contractible.
We can represent these model structures as follows.

• ∼ • • • • ∼ •
contractible trivial contractible

3 Extending contractible submodels

In this section we will prove a structural result regarding model structures on the lattice [n]
which will lead to the desired enumeration result in the next section. The main insight is that
it is enough to define certain contractible submodel structures which then uniquely determine
a model structure on [n]. We will repeatedly use the fact that in the lattice [n] the pushout of
the span

X Z Y

is computed as max(X , Y ). Dually the pullback of the cospan

X Z Y

is computed as min(X , Y ).

3.1 Contractible submodels

We begin by determining the possible structure of weak equivalences in a model structure
on [n]. By the fact that the weak equivalences are decomposable, if the morphism X → Y is
a weak equivalence, then so are the morphisms X → Z and Z → Y for all X ≤ Z ≤ Y . As
such, the weak equivalence classes determine and are determined by an interval partition of
[n] as we will now define.
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Definition 3.1 An interval partition of [n] is a partition p of [n] into intervals of form

[0, a1] � [a1 + 1, a2] � · · · � [ak + 1, n]
where we allow ai + 1 = ai+1.

Remark 3.2 It should be noted that the interval partitions of [n] are naturally in bijection with
ordered partitions (or compositions) of the integer n + 1. As such, there are exactly 2n such
interval partitions. We have chosen to work with interval partitions as it makes the link to the
lattice [n] more apparent.

The following result is immediate from the decomposability and 2-out-of-3 property for
the weak equivalences.

Lemma 3.3 There is a bijection between weak equivalence structures on [n] and interval
partitions on [n].

We are now in a position to define what wemean by a selection of contractible submodels.

Definition 3.4 Let [n] be equipped with an interval partition p = [0, a1] � [a1 + 1, a2] �
· · ·� [ak +1, n]. Then a choice of contractible submodels on [n] (relative to p) is a choice of
a contractible model structure on each interval [ai +1, ai+1] ∼= [ri ]where ri = ai+1−ai −1
and i = 1, . . . , k + 1.

A choice of contractible submodels on [n] therefore picks the classes W, AF and AC for
a unique (potential) model structure on [n] (cf., Remark 2.4). In the next section we will
show that this indeed always defines a model structure. For now we observe that any model
structure on [n] gives rise to a choice of contractible submodels by restriction.

Proposition 3.5 Any model structure on [n] induces a model structure on each weak equiv-
alence class.

Proof Let p = [0, a1] � [a1 + 1, a2] � · · · � [ak + 1, n] be the interval poset for the
weak equivalence structure associated to the model structure on [n]. We need to show that
the restriction of the model structure to each interval [ai + 1, ai+1] provides a contractible
submodel. By construction all maps in this restricted model structure are weak equivalences,
as such it suffices to show that the restriction to the interval gives a weak factorization system.
The factorization of a morphism f : X → Y in [ai +1, ai+1] follows from the factorizations
in the model structure in [n]. Similarly, we note that for a commutative diagram of the form

A

i

X

p

B Y

if both i and p are in the interval [ai +1, ai+1] then so is the lift B → X . As such, the liftings
are also taken care of by the model structure on [n] as required. �

3.2 The existence result

Definition 3.6 Let [n] be equipped with a contractible model structure, and X ∈ [n]. We
denote by Rmax(X) the necessarily unique maximal object such that X → Rmax(X) is
an acyclic cofibration. Similarly, denote by Qmin(X) the unique minimal object such that
Qmin(X) → X is an acyclic fibration.
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The following lemma highlights the choice of notation as being a maximal fibrant (resp.,
minimal cofibrant) replacement. In particular this gives a functorial choice of fibrant and
cofibrant replacement.

Lemma 3.7 For every X ∈ [n] as above, the object Rmax(X) is fibrant. Dually, the object
Qmin(X) is cofibrant.

Proof We need to show that for any commutative diagram of the form

A

∼

Rmax(X)

B ∗
there is a lift B → Rmax(X). Assume that there is not. Then there is a map Rmax(X) → B,
and we can construct a pushout

A

∼
Rmax(X)

B B

As pushouts of acyclic cofibrations are acyclic cofibrations, we have that Rmax(X) → B is
an acyclic cofibration which contradicts the maximality of Rmax(X).

A dual argument using that pullbacks of acyclic fibrations are acyclic fibrations gives a
proof that Qmin(X) is cofibrant. �
Corollary 3.8 For every X ∈ [n] the object Rmax(X) is a functorial choice of fibrant replace-
ment in a contractible model structure. Dually, the object Qmin(X) is a functorial choice of
cofibrant replacement in a contractible model structure. �
Remark 3.9 It follows from the above corollary that the object Rmax(Qmin(X)) =
Qmin(Rmax(X)) picks out the unique bifibrant object in a contractible model structure on
[n].

We are now equipped to prove the main result of this section.

Theorem 3.10 Any selection of contractible submodels on [n] can be uniquely extended to a
model structure on [n].
Proof The selection of contractible submodels gives us a set AF of acyclic fibrations and
AC of acyclic cofibrations, and by construction and properties of weak equivalences on [n]
we have that W = AF ◦ AC satisfies 2-out-of-3. As such, it is enough to show that the pairs
(AC,AC�) and (�AF,AF) are compatible weak factorization systems. In particular we need
to show for each pair (L,R) that

(1) every morphism admits a factorization as f = pi for i ∈ L and p ∈ R,
(2) L � R,
(3) L andR are closed under retracts,

and additionally the compatibility relation that

(4) AF ⊆ AC� (equivalently that AC ⊆ �AF).
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Condition 2 is immediate by construction, as is Condition 3 as we have no non-trivial retracts
in a poset. Thus, it remains to prove Conditions 1 and 4.

We begin with Condition 1. Let f : X → Y in [n]. If Y ≤ Rmax(X) (where Rmax(X) is
taken in the contractible submodel in which X lives in), then we are working in a contractible
submodel, and the factorization exists by assumption. Therefore, assume that Rmax(X) < Y .
We will factor f as

X
∈AC−−−−→ Rmax(X)

∈AC�−−−−→ Y .

We need to show that the map Rmax(X) → Y is in AC�, that is, it admits lifts for all
commutative diagrams of the form

A

∼

Rmax(X)

B Y .

Weassume no such lift exists, that is, there is amorphism Rmax(X) → B. In this casewe have
A < Rmax(X) < B and as such we are within one of our contractible submodel structures;
in particular, by the decomposition property of weak equivalences, the maps A → Rmax(X)

and Rmax(X) → B are weak equivalences. As such, we construct a pushout of the following
form

A
∼

∼

Rmax(X)

∼

B B.

As pushouts of acyclic cofibrations are acyclic cofibrations (again, noting that the above
diagram takes place purely within a contractible submodel), we have that Rmax(X) → B
is an acyclic cofibration which contradicts the maximality of Rmax(X). As such, we have
constructed the required factorization. A dual argument takes care of the other factorization
using Qmin(X). This concludes the proof of Condition 1.

We now move to proving Condition 4. We shall show that AF ⊆ AC�. Let f : X → Y be
in AF. We wish to show that for any acyclic cofibration A → B we have a lift

A

∼

X

∼

B Y .

Assume such a lift does not exist. This means that A ≤ X < B, which implies by decompo-
sition property that A 
 X and X 
 B. By 2-out-of-3 we have B 
 Y , and as such the entire
diagram lives in a contractible submodel. It follows that B ∼= X as we know this diagram
must admit a lift in the contractible submodel. This means that we have proved Condition 4.

Finally, the uniqueness of themodel structure is guaranteedby the fact that anymodel struc-
ture is uniquely determined by its acyclic fibrations and acyclic cofibrations (Remark 2.4).

�
Remark 3.11 Alternatively, one could use the language of transfer systems as introduced in
Definition 2.22 to provide a more economical proof of Theorem 3.10. Indeed, the selection
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Fig. 1 A selection of contractible
submodels on the poset [1] × [1]

of contractible submodels is equivalent to giving a disjoint collection of transfer systems on
[n]. One can check that the disjoint union of transfer systems is indeed a transfer system, in
particular, we obtain a single transfer system on [n]. We know that this then gives rise to a
weak factorization system by Proposition 2.23. A similar argument for the left class gives
the other weak factorization system. In particular this covers Conditions 1–3 required in the
above proof. We have chosen to present the above proof as it is entirely self contained.

Corollary 3.12 There is a bijection of sets

{model structures on [n]} ∼= {choices of contractible submodels on [n]}.

Proof The ⊆ direction is given by Theorem 3.10 while the ⊇ direction is Proposition 3.5.

�

Corollary 3.13 Every model structure on [n] determines and is determined by an interval
partition and a choice of transfer system on each connected component. �

Remark 3.14 Immediately fromCorollary 3.12 we can obtain results regarding the homotopy
category of any model structure on [n]. Suppose [n] is equipped with a model structure with
associated interval partition p = [0, a1] � [a1 + 1, a2] � · · · � [ak + 1, n]. Then we claim
that Ho([n]) ∼= [k] where the k here corresponds to the k appearing in the final term of the
interval partition. Indeed, we know that in a poset each weak equivalence class has a unique
bifibrant object, and the interval partition tells us that we have k weak equivalence classes.
The result then follows from Lemma 2.16.

Remark 3.15 The proof of Theorem 3.10 critically hinges on the shape of the category [n],
and the proof cannot be generalised to other lattices, which we now give an explicit example
of. Consider the lattice [1] × [1] and fix a contractible submodel as in Fig. 1. That is, we
choose a contractible model structure on the subcategory consisting of the top objects and
the morphism between them.

Then we cannot extend this selection of contractible submodels to a model structure. For
this to be a model category the bottom morphism must be a fibration for the factorization
axiom to hold. Indeed, the bottom morphism must factor as a fibration followed by an
acyclic cofibration, and this can only happen when the morphism is a fibration (as all weak
equivalences have been selected). However, it cannot be a fibration as it does not admit a lift
against the acyclic cofibration due to the shape of the poset.
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3.3 Properties of model structures on [n]

We finish this section by proving some properties that an arbitrary model structure on [n]
possesses. Although none of these properties will be overly surprising to experts given the
simple nature of the category [n], it is nonetheless instructive to exhibit their proofs. As a
consequence of what we prove in this section, it will follow that one can always take left and
right Bousfield localizations. We will revisit this in the final section of the paper.

Recall that a model structure is called left proper if the weak equivalences are preserved
by pushouts along cofibrations. Dually, it is called right proper if the weak equivalences are
preserved by pullbacks along fibrations. Amodel structure which is both left and right proper
is said to be proper.

Lemma 3.16 Let [n] be equipped with a model structure. Then the weak equivalences of [n]
are stable under pushouts and pullbacks along arbitrary maps. As such every model structure
on [n] is proper.
Proof We shall prove stability under pushouts, with the statement regarding pullbacks fol-
lowing from a completely dual argument. We have a pushout diagram

X

∼

A

Y B.

From the construction of the pushout in [n] we have that B = max(A, Y ). If Y ≤ A then our
diagram is

X

∼

A

Y A

where we use the fact that an isomorphism is in particular a weak equivalence. In the other
case that A < Y our diagram is

X

∼

A

Y Y .

By the decomposition property of weak equivalences in [n] it follows that in fact all mor-
phisms in this diagram are weak equivalences. �

Another important property of model categories that will be of use to us is cofibrant
generation. This boils down to asking that there is a suitable set of maps I and J that
generate the cofibrations and acyclic cofibrations under suitable constructions. When the
underlying category of the model structure is moreover locally presentable, we say that the
model structure is combinatorial. The following result is clear from the definition.

Lemma 3.17 Every model structure on [n] is combinatorial.
As [n] is a categorywith all products and coproducts, it follows that it admits twomonoidal

structures:
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• the cartesian monoidal structure with X ⊗ Y = min(X , Y ) and unit n;
• the cocartesian monoidal structure with X ⊗ Y = max(X , Y ) and unit 0.

Recall that a model structure on amonoidal category (C,⊗, I) ismonoidal if the following
hold.

(1) (Pushout-product axiom) For every pair of cofibrations f : X → Y and f ′ : X ′ → Y ′,
their pushout-product

f � f ′ : (X ⊗ Y ′)
∐
X⊗X ′

(Y ⊗ X ′) → Y ⊗ Y ′

is also a cofibration. Moreover, it is an acyclic cofibration if either f or f ′ are.
(2) (Unit axiom) For every cofibrant object X and every cofibrant resolution I

c → I of the
monoidal unit, the induced morphism I

c ⊗ X → I ⊗ X is a weak equivalence.

We will now show that all model structures on the poset [n] interact well with both of its
natural monoidal structures.

Lemma 3.18 Let [n] be equipped with a model structure. Then [n] is a monoidal model
category with respect to the cartesian monoidal structure. Similarly, [n] is a monoidal model
category with respect to the cocartesian monoidal structure.

Proof The pushout-product axiom takes the form

f � f ′ : max(min(X , Y ′),min(Y , X ′)) → min(Y , Y ′).

There are several cases to be checked, but representative are the cases of

f � f ′ = f : X → Y ,

f � f ′ = g : X ′ → Y ,

f � f ′ = idY : Y → Y .

The first case occurs when we have morphisms X ′ → X → Y → Y ′. By hypothesis f is
a cofibration. If f ′ is an acyclic cofibration, then by the decomposition property, f is also
acyclic as required.

The second scenario occurs when we have morphisms X → X ′ → Y → Y ′. The map g
is a cofibration whenever f is, as it is possible to construct a lift as follows

X

f X ′ A

Y B,

using that the lift exists for f : X → Y . Again this morphisms is moveover acyclic when
either f or f ′ are by using the decomposition property.

The third case happens when we have morphisms X → Y → X ′ → Y ′. Clearly this is
always an acyclic cofibration as it is an isomorphism.

For the unit axiom, we note that it is enough to check for the cofibrant replacement
Qmin(n). If min(Qmin(n), X) = X then we are done. If min(Qmin(n), X) = Qmin(n) then
there are morphisms

Qmin(n) → X → n
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where the composite is a weak equivalence. By the decomposition property we see that
Qmin(n) → X is a weak equivalence as required.

The cocartesian monoidal structure is proved in a similar fashion, so we exclude the proof.
�

4 Homotopical combinatorics of [n]
We now undertake the enumeration of model structures on [n] and produce full information
regarding the homotopical combinatorics of these lattices. To do so, we first recall transfer
systems and their relation to contractible model structures in Sect. 4.1. In Sect. 4.2, we work
out the example of [2], which motivates the techniques of Sect. 4.3 where our main theorems
are proved. We place these results in the context of premodel structures in Sect. 4.4.

4.1 Transfer systems

In the previous section we proved that to understand model structures on [n] it is enough to
consider collections of contractible submodels. Therefore, to proceed with a classification of
model structures on [n] it is enough to have a classification of contractible model structures
on [k] for all 0 ≤ k ≤ n, which is equivalent to classifying all weak factorization systems on
[k]. In light of Proposition 2.23 this is in turn equivalent to classifying all transfer systems
on [n].

This latter classification was achieved in [2]. The starting point is the study of N∞-operads
for finite groups G in the sense of Blumberg–Hill [7]. These operads capture varying classes
of multiplicative norm maps supported by equivariant ring spectra, and encode levels of
homotopy commutativity in the equivariant setting. It was proved in [2] and independently
in [22] that these objects of interest are equivalent to the combinatorial data of G-transfer
systems as we now define.

Definition 4.1 Let G be a finite group and let Sub(G) denote its lattice of subgroups. Then a
G-transfer system is a relationR on Sub(G) that refines inclusion and satisfies the following.

(1) H R H for all H ≤ G,
(2) K R H and LR K implies LR H ,
(3) K R H implies that (gKg−1)R (gHg−1) for all g ∈ G,
(4) K R H and M ≤ H implies (K ∩ M)RM .

Example 4.2 There are 5 Cp2 -transfer systems. These can be found in [2, Example 14], and
we will recall them in the next section in Table 1.

One then observes that a G-transfer system for G Abelian is equivalent to a transfer
system in the sense of Definition 2.22 on Sub(G). In the case that G = Cpn , the lattice of
subgroups is exactly [n], our lattice of interest. As such, a classification of Cpn -N∞-operads
leads directly to a classification of transfer systems, whence contractible model structures,
on [n].
Proposition 4.3 ([2]) Let G = Cpn . Then there are Cat(n + 1) many G-transfer systems,
where Cat(n + 1) is the (n + 1)-th Catalan number.

Combining Proposition 4.3 and Proposition 2.23 we arrive at the following classification
result for contractible model structures on [n] as required.

123



   40 Page 18 of 35 S. Balchin et al.

Fig. 2 The general picture for the operation X � Y . We highlight that the last vertex in X occurs at position
i , the pivot point is in spot i + 1, and the first vertex of the shift of Y occurs at position i + 2. Note that we
allow either X or Y to be empty

Fig. 3 The poset [2]. The
minimal element 0 is at the top,
and then we go counter-clockwise
around the diagram

Corollary 4.4 There are Cat(n + 1) many contractible model structures on [n]. The edges of
the transfer system correspond to the acyclic fibrations of the model structure. �

Remark 4.5 At this point it is worth discussing the following method, as features of it will
appear in Sect. 5 when we discuss Bousfield localizations, and is the key input in the proof
of Proposition 4.3. We will denote by Tr([n]) the collection of all transfer systems on [n]. A
key ingredient to studying transfer systems is an operation

�: Tr([i]) × Tr([ j]) → Tr([i + j + 2]).
By taking the outlook of a transfer systems as a certain subgraph of [n], we can pictorially
represent this operation as in Fig. 2.

We refer the reader to [2, Section 3.2] for a detailed description of this operation. Essen-
tially, we take the two directed graphs for each transfer system, and glue them together using
a pivot point. A simple counting exercise shows that this must be a subgraph of [i + j + 2].

The proof of Proposition 4.3 follows from identifying the recurrence relation for the
Catalan numbers together with the recurrence relation for Tr([n]) coming from the following
proposition.

Proposition 4.6 ([2]) Let X ∈ Tr([i]) and Y ∈ Tr([ j]). Then X � Y ∈ Tr([i + j + 2]).
Moreover, the converse is true, that is, if Z ∈ Tr([n]), then there exist unique i , j , X ∈ Tr([i])
and Y ∈ Tr([ j]) such that n = i + j + 2 and Z = X � Y .

4.2 An example

Before we get any further into our enumeration efforts, let us illustrate the theory alongside
an example.Wewill study first non-trivial total order that wewill consider, namely [2], which
we will diagrammatically represent as follows (Fig. 3).
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By Corollary 3.13 we first need to determine the possible weak equivalence patterns on
[2]. These are

W1 = {isos}, W2 = {isos, 0 → 1}, W3 = {isos, 1 → 2}, W4 = {all},
which correspond to the four interval partitions

p1 = [0, 0] � [1, 1] � [2, 2], p2 = [0, 1] � [2, 2], p3 = [0, 0] � [1, 2], p4 = [0, 2].
We now equip each of the interval partitions pi with a selection of contractible submodel

structures.

(p1) Here we must chose three contractible model structures, each on the trivial lattice
[0]. There is only one transfer system on [0], and as such there is a unique choice of
contractible model structure with interval partition p1. Of course, this is unsurprising
as this is exactly the trivial model structure.

(p2) In this situation we need to pick a contractible sub model on a [0] and a [1]. There are
two choices of transfer system on [1], and as such there are two model structures for
the interval partition p2.

(p3) This situation is analogous to the one in p2, and as such we obtain 2 more model
structures here.

(p4) We now need to pick a transfer system on [2], of which there are five. These are the
contractible model structures on [2].

Concluding the above discussion, we see that there are

1 + 2 + 2 + 5 = 10

model structures on [2]. Let us summarise the construction that we will use to form explicit
descriptions of all of the model structures on [2].
Construction 4.7 (1) Find all transfer systems on [2].
(2) Construct the weak factorization system with those transfer systems as right sets.
(3) Find all pairs of transfer systems (L1,R1) and (L2,R2) with R1 ⊆ R2.
(4) Those pairs now give us premodel structures with

(L1,R1) = (C,AF) and (L2,R2) = (AC, F),

with weak equivalences given byW = AF ◦ AC.

(5) Finally, identify those premodel structures where W satisfies 2-out-of-3. These are all
possible model structures on [2].

Remark 4.8 We note that this recipe would work on any other finite poset, but as the examples
of [n] show, doing so by hand will quickly become unmanageable, as would the enumeration.

The five transfer systems and their corresponding left class, denoted as (L,R) on [2], are
listed in Table 1. The circled numbers are only decoration so that we may refer to specific
right classes.

From Table 1 we can now read off all possible premodel structures by considering those
pairs (L1,R1), (L2,R2) such that R1 ⊆ R2. Specifically, the lattice of inclusions for the
right class takes the form depicted in Fig. 4.

One then reads off all possible elements in the interval lattice of Fig. 4, of which there are
13. We list the resulting premodel structures in Table 2, where the numbering corresponds
to the interval we are considering.
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Table 1 All possible weak
factorization systems on the poset
[2]

Fig. 4 The lattice of inclusions
for transfer systems on [2]
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Table 2 The 13 possible premodel structures on the poset [2]

The arrows use the decoration introduced in Definition 2.2. The shaded bottom cells represent premodel
structures which are not model structures

Of the 13 premodel structures appearing in Table 2, we see that the three in the bottom row
do not satisfy the 2-out-of-3 property for weak equivalences (that is, they do not correspond
to interval partitions of [2]). As such, we (re)conclude that there are 10 model structures on
the lattice [2].

4.3 Enumeratingmodel structures

We will now state and prove the enumeration result for Q([n]). Recall from Corollary 4.4
that we already have an explicit enumeration of the size of W ([n]), the collection of weak
factorization systems of the poset [n].We can now use this in conjunction with Corollary 3.12
to prove the promised enumeration result. First, we require an intermediary lemma. We also
note that this lemma can be extracted from [24], but we provide an independent proof that is
of interest in creating an explicit bijection between Q([n]) and the collection of monotonic
functions from [n] to itself. See Remark 4.12 for further discussion of this.

Lemma 4.9 [24, Propositions 3.1 and 3.3] For every positive integer n,

(
2n − 1

n

)
=

n∑
k=1

∑
i1+···+ik=n

k∏
j=1

Cat(i j )

where the second sum runs over ordered k-tuples of positive integers summing to n.

Proof Consider the lattice paths on the grid [0, n] × [0, n] that begin with a step from (0, 0)
to (0, 1), end at (n, n), and only take steps up or to the right by one unit; by choosing which
steps go to the right, we see that there are precisely

(2n−1
n

)
of these. Each such path determines

an ordered partition of n according to when it crosses (not just touches) the diagonal.
Now consider all paths that produce a particular ordered partition

i1 + · · · + ik = n.
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Fig. 5 An east-north lattice path
from (0, 0) to (7, 7) beginning
with a step from (0, 0) to (0, 1),
as in the first proof of Lemma
4.9. The diagonal changes styles
when the path crosses it, yielding
the ordered partition 3 + 2 + 2 of
7. There are a total of
Cat(3)Cat(2)Cat(2) such paths
corresponding to this partition

Such paths consist of a 2i1-step path (weakly) above the diagonal, followed by a 2i2-step
path (weakly) below the diagonal, etc., with the total number of possibilities counted by

k∏
j=1

Cat(i j ).

(See Fig. 5 for a graphical depiction. Our count uses the well-known fact that there are Cat(k)
Dyck paths of length 2k.) Adding up these terms over all ordered partitions of n gives the
identity. �

We are now in a position to prove the main theorem.

Theorem 4.10 Let Q([n]) be the collection of model structures on the poset [n]. Then

#Q([n]) =
(
2n + 1

n

)
.

Proof By Corollary 3.12, there is a bijective correspondence between Q([n]) and choices
of contractible submodels on [n]. We may partition the latter objects according to interval
partitions, and then assign a contractible model structure to each block. Given an interval
partition p = [0, a1] � [a1 + 1, a2] � · · · � [ak + 1, n] of [n], set a0 = −1, ak+1 = n, and
define

Cp :=
k+1∏
i=0

Cat(ai+1 − ai ).

By Corollaries 3.13 and 4.4, there are Cp many contractible submodels on [n] with compo-
nents p. Thus the total number of contractible submodels on [n] is

∑
p

Cp
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where the sum runs over interval partitions of [n]. It remains to show that this sum of products
of Catalan numbers equals

(2n+1
n

)
, which follows from Lemma 4.9 using Remark 3.2, which

tells us such partitions are in bijective correspondence with ordered partitions of the integer
n + 1. �

Example 4.11 Let n = 4, then there are are
(9
4

) = 126 model structures on [4]. These model
structures are given in Fig. 6.

Remark 4.12 We can describe an explicit bijection

� : Q([n]) −→ End([n])
whereEnd([n])denotes the set ofmonotonic functions [n] → [n].We represent the latterwith
staircase paths on the grid [n+1]×[n+1] including the edge (0, 0) → (0, 1) ending at (n, n).
Beginning with a model structure M on [n], record its contractible submodels M0, . . . , Mk .
We now know that each of the contractible submodels is determined by a transfer system.
The Catalan enumeration result of Remark 4.5 implies that there is a bijection between
transfer systems and Dyck paths, i.e. staircase paths strictly above the diagonal. Let Di

denote the Dyck path corresponding to the transfer system determining Mi , and let D denote
the reflection of a Dyck path over the diagonal. Then the concatenation of paths

P = D0D1D2D3 · · ·
is an east-north lattice path from (0, 0) to (n + 1, n + 1) that begins with a step (0, 0) to
(0, 1). Define a function f : [0, n] → [1, n + 1] so that f (k) is the highest point on P in the
column {k} × [0, n + 1]. We finally set

�(M) := f − 1 ∈ End([n]).
For example, if M is a model structure on [6] inducing the path P of Fig. 5, then the

associated endomorphism of [6] takes the values
1, 2, 2, 2, 3, 6, 6

in order.

By restricting our attention to lattice paths that cross the diagonal exactly k times, we can
produce refined statistics on Q([n]) counting model structures with a particular homotopy
category [k].
Theorem 4.13 There are

2(k + 1)

n + k + 2

(
2n + 1

n − k

)

model structures on [n] whose homotopy category is isomorphic to [k].
Proof By the proofs of Theorem 4.10 and Lemma 4.9 and the bijection of Remark 4.12, we
see that a model structure on [n] with homotopy category [k] corresponds to an east-north
lattice path on [0, n + 1] × [0, n + 1] that begins with a step from (0, 0) to (0, 1) and ends
at (n + 1, n + 1) which crosses the diagonal exactly k times. There are precisely

∑
i1+···+ik+1=n+1

k+1∏
j=1

Cat(i j )
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Fig. 6 The 126 uniqueQuillenmodel structures on the poset [4]. An orange arrow indicates aweak equivalence,
and a larger, blue vertex indicates a bifibrant object
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Table 3 Shapiro’s Catalan
triangle, indexed so that the (k, n)

entry corresponds to the number
of model structures on [n] with
homotopy category isomorphic to
[k]

n k
0 1 2 3 4 5 Total

0 1 1

1 2 1 3

2 5 4 1 10

3 14 14 6 1 35

4 42 48 27 8 1 126

5 132 165 110 44 10 1 462

The first column displays the (shifted) Catalan numbers, corresponding
to contractible model structures. The final column displays the row sum,
i.e., the total number of model structures on [n]

such paths, where the sum is over length k+1 ordered partitions of n+1. By [24, Propositions
2.1 and 3.3], we know that this sum is precisely

2(k + 1)

n + k + 2

(
2n + 1

n − k

)

as desired. �
Example 4.14 Table 3 gives the number of model structures on [n] with homotopy category
[k] for 0 ≤ k ≤ n ≤ 5. It can be found elsewhere in combinatorial literature and is (up to an
indexing shift) sometimes called Shapiro’s Catalan triangle after [24].

Remark 4.15 Shapiro arrives at the results of [24] by considering pairs of non-intersecting
east-north lattice paths. The distance between such paths ending at (a, b) and (c, d) is defined
to be |a − c|. It turns out that the number of model structures on [n] with homotopy category
[k] is equal to the number of pairs of non-intersecting east-north lattice paths of length n + 1
and distance k + 1. We leave it as an open question whether there is a natural bijection
between these structures.

Remark 4.16 To conclude this subsection, we mention that there are two additional classes
of model structures which we can count. First, consider those model structures on a lattice
P for which all morphisms are fibrations. The rest of the model structure is then uniquely
specified by a choice of acyclic fibrations satisfying the 2-out-of-3 property. These are given
by so-called saturated transfer systems, which are studied in [12]. A consequence of the
main theorem of that paper is that when P = [n], there are exactly 2n such model structures
with F = All. (In fact, a saturated transfer system on [n] is completely determined by the
covering relations in the system. Since there are n covering relations in [n], this explains the
count 2n .)

By the standard duality on model structures, it is also the case that there are 2n model
structures on [n] with C = All.

4.4 Relation to premodel structures

In Definition 2.12, we defined model categories to be premodel categories such that the weak
equivalences satisfy the 2-out-of-3 property. In Sect. 4.2 we used this description and saw
that we had 13 premodel structures, of which 10 were model structures.
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In the general case of [n], we shall now see that it is possible to always enumerate the
number of premodel structures. To do so, we need to know all compatible pairs (L1,R1),
(L2,R2) of weak factorization systems on [n] with R1 ⊆ R2. The first observation that
we will need is that we fully understand the lattice structure of W ([n]), the set of weak
factorization systems on [n].

We recall that the (n+1)-Tamari lattice (also sometimes called the (n+1)-associahedron)
is the classical lattice one obtains for example, by considering binary trees with n+1 leaves,
ordered by tree rotation operations [25, 26]. We will denote byA(n+ 1), the (n+ 1)-Tamari
lattice.

Proposition 4.17 ([2]) The poset W ([n]) under inclusion of the right class is isomorphic to
A(n + 1).

Example 4.18 In the case of n = 2 we obtain the 3-Tamari lattice as already displayed in
Fig. 4.

As such, we need only understand the cardinality of the lattice of intervals of the Tamari
lattice to obtain a count of premodel structures on ([n]). Such an analysis has been achieved
by Chapoton.

Proposition 4.19 ([8]) Let In be the set of intervals of the n-Tamari lattice. Then

#In = 2

n(n + 1)

(
4n + 1

n − 1

)
.

By combining the two above propositions (and noting the index shift required), we arrive
at the following corollary.

Corollary 4.20 Let P([n]) be the collection of (unique) premodel structures on the poset [n].
Then

#P([n]) = 2

(n + 1)(n + 2)

(
4n + 5

n

)
.

�
As such, we have closed formulas for both the number of premodel structures and the

numbers of model structures. We now record an observation about the relation between these
enumerations.

Proposition 4.21 Quillen model structures and premodel structures on [n] satisfy the asymp-
totic relationship

#Q([n])
#P([n]) ∼ c2dnn2

where

c = 243
√
3/2

1024
≈ 0.290638,

d = 3 log2(3) − 6 ≈ −1.24511.

In particular, we have

lim
n→∞

#Q([n])
#P([n]) = 0.

Proof This follows from Stirling’s approximation for n! (see, for instance, [16, §1.2.11]),
Theorem 4.10, and Corollary 4.20. �
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5 Bousfield localizations

Bousfield localizations are a way of formally adding weak equivalences to an existing model
structure. Left Bousfield localizations retain the original cofibrations while adding weak
equivalences, while right localizations retain the original fibrations. We will show in this
section that every model structure on [n] can be created from the trivial model structure via
a zig-zag of left and right Bousfield localizations.

Let us first recap some basic definitions. These are very general, but we will soon see that
they simplify considerably when the underlying category is [n]. Before we begin, we need
to point out that the definitions make use of homotopy mapping spaces. A mapping space
Map(X , Y ) is a simplicial set with π0(Map(X , Y )) = [X , Y ]. We refer the reader to [14,
Chapter 5.2] for more details. Fortunately, when the underlying category is [n], the mapping
spaces become very simple indeed.

Lemma 5.1 Let [n] be equipped with a model structure. Then for any two objects X , Y ∈ [n]
we have

Map(X , Y ) =

⎧⎪⎨
⎪⎩

{∗} if X 
 Y ,

{∗} if X �
 Y , X < Y ,

∅ if X �
 Y , X > Y .

Proof Firstly, we recall that the n-simplices of the simplicial set Map(X , Y ) are given by

Map(X , Y )n = Hom(X c ⊗ �n, Y f)

where A ⊗ K is the tensor of the object A with a simplicial set K . To form this tensor, we
replace a cofibrant object A with the constant cosimplicial object with A in every degree, and
then use the fact that the category of cosimplicial objects in amodel category has a tensor with
simplicial sets. In particular, for any cosimplicial object A•, we have that A• ⊗ �n = An .

One can compute that as simplicial sets,

Map(X , Y ) 
 Hom(X c, Y f).

In particular, we see that

Map(X , Y ) 
 Hom(X cf , Y cf).

If X and Y are weakly equivalent, they have the same (unique) bifibrant replacement by
Lemma 2.15. If they are not, then the bifibrant replacement of X will be smaller than the
bifibrant replacement of Y if and only if X < Y . This proves the claim. �
Remark 5.2 Note that although a mapping space for a model structure on [n] is not a partic-
ularly complicated object, it does come with some hidden subtleties. It is possible to have
Hom(X , Y ) = ∅ but Map(X , Y ) = {∗} (although not vice versa). For example, consider
the category [1] equipped with the model structure where the single non-identity map is an
acyclic fibration. Then Hom(1, 0) = ∅ but Map(1, 0) = {∗} as both objects have the same
bifibrant replacement (namely 0).

We now introduce the general definitions required to discuss Bousfield localization. We
will then go further and show how these definitions can be explicitly described in the case
where the base category is [n].
Definition 5.3 Let C be a model category andW a class of morphisms in C.
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• A fibrant object Z ∈ C isW-local if for all f : X −→ Y ∈ W the map

f ∗ : Map(Y , Z) −→ Map(X , Z)

is a weak equivalence of simplicial sets.
• A morphism g : A −→ B is a W-equivalence if

g∗ : Map(B, Z) −→ Map(A, Z)

is a weak equivalence of simplicial sets for allW-local objects Z .

The definition of W-equivalences implies that all elements of W are W-equivalences, as
are all weak equivalences of C. In general, the class of W-equivalences is much larger than
W itself. However, in our case the answer is much simpler for many of the properties.

Lemma 5.4 For any model category, the W-equivalences satisfy 2-out-of-3. On [n], the W-
equivalences are decomposable.

Proof The first point follows from the fact that the 2-out-of-3 property holds between the
mapping spaces involved.

As for the second point, let us assume that Z is W-local, A −→ C is a W-equivalence
and A ≤ B ≤ C . Thus, both Map(A, Z) and Map(C, Z) are either empty or a point.

If they are both empty, then A > Z , C > Z , A �
 Z and C �
 Z . Thus, we also
have to have B > Z . Furthermore, B cannot be weakly equivalent to Z , because otherwise
decomposability of weak equivalences would imply that A is also weakly equivalent to Z ,
which would be a contradiction. We therefore have Map(B, Z) = ∅, as required.

If Map(A, Z) and Map(C, Z) are both equal to a point, then we have the following cases.
If B 
 Z , then Map(B, Z) is also a point. If B �
 Z , then we have to show that B < Z . This
again breaks up into the following cases.

• Z 
 C :Thismeans that Bmust be smaller thanbothC and Z , otherwise decomposability
of weak equivalences would imply that B 
 Z .

• Z �
 C : This means that C < Z , and therefore B < Z too, as required.

�
As the name suggests, right Bousfield localizations, also called colocalizations (or cellu-

larizations), are a dual concept to left Bousfield localizations. As they are not as commonly
used as left localizations, we will recall the definitions and just state the technical lemmas
without proof.

Definition 5.5 LetW be a class of morphisms in a model category C.

• A cofibrant object Z ∈ C is W-colocal if

f∗ : Map(Z , X) −→ Map(Z , Y )

is a weak equivalence for all f : X −→ Y in W.
• A morphism g : A −→ B is a W-coequivalence, if

g∗ : Map(Z , A) −→ Map(Z , B)

is a weak equivalence for all W-colocal Z ∈ C.
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Again, we go from a class of morphisms W to colocal objects and then to W-
coequivalences. TheW-coequivalences contain bothW and the weak equivalences of C.

In the case of C having underlying category [n] we get the following analog of Lemma
5.4.

Lemma 5.6 For any model category, the W-coequivalences satisfy 2-out-of-3. On [n], the
W-coequivalences are decomposable. �

The main purpose of both left and right localizations is to add weak equivalences to an
existing model structure. The following result provides an existence result for these localiza-
tions.

Proposition 5.7 [13, Chapter 3.3] Let C be a combinatorial and proper model category, and
let W be a set of morphisms in C.
• There is a model structure LWC on C such that

– the weak equivalences of LWC are the W-equivalences,
– the cofibrations of LWC are the same as the cofibrations of C.

We call LWC the left Bousfield localization of C with respect to W.
• There is a model structure RWC on C such that

– the weak equivalences of RWC are the W-coequivalences,
– the fibrations of RWC are the same as the fibrations of C.

We call RWC the right Bousfield localization of C with respect toW.

We see from the definitions of LWC and RWC that the identity gives a left Quillen functor
C −→ LWC and a right Quillen functor C −→ RWC. Furthermore, the fibrant replacement
in LWC gives a W-equivalence between any object X and a W-local object LWX . Dually,
the cofibrant replacement in RWC gives a W-coequivalence between a colocal object RWX
and any object in X in C.

Left localization also satisfies the following universal property: if F : C −→ D is a left
Quillen functor sendingW to weak equivalences inD, then F factors as a left Quillen functor
F : LWC −→ D. This implies the following.

Corollary 5.8 Let [n] be equipped with a model structure. Then the W-equivalences and
the W-coequivalences are the smallest subcategory of [n] satisfying decomposition and
containing W and the weak equivalences of [n]. �

Our goal in this section is to show that every model structure on [n] can be obtained from
the trivial one via a sequence of left and right Bousfield localizations.

We know from Corollary 3.13 that a model structure on [n] is uniquely determined by
a selection of contractible submodels, that is, by an interval partition and the choice of a
transfer system on each component of the partition.

As the elements of the transfer system provide the acyclic fibrations of themodel structure,
to obtain our main result of this section we therefore start by considering the effect of left and
right localizations on the acyclic fibrations. In particular, we shall explore what happens to
the acyclic fibrations when left and right localizing at the single map i → i + 1. We denote
the corresponding localization and colocalization by

Li = L{i−→i+1} resp., Ri = R{i−→i+1}.

By Corollary 5.8 we know that the only new weak equivalence resulting from the above is
indeed i → i + 1 and any required composites. In particular we have the following.
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Corollary 5.9 Let C be a model structure on [n] with corresponding interval partition

p = [0, a1] � [a1 + 1, a2] � · · · � [ak + 1, n].
Suppose 0 ≤ i < n. Then the interval partition p′ for the model structures LiC and RiC are
as follows.

• If i −→ i + 1 is already a weak equivalence then p′ = p.
• If i −→ i+1 is not a weak equivalence then in pwe can find · · ·�[m, i]�[i+1, j]�· · ·

(where it is possible that m = i or i + 1 = j ). Then p′ is obtained from p by replacing
this block with [m, j].

�
Proposition 5.10 Let C be a model structure on [n] with corresponding interval partition
p = [0, a1]� [a1 + 1, a2]� · · ·� [ak + 1, n]. Suppose 0 ≤ i < n and that i −→ i + 1 is not
a weak equivalence. Then the model structures LiC and RiC are characterised as follows.

• The weak equivalences for LiC are described by the interval partition p′ as above. The
acyclic fibrations of LiC are the same as the acyclic fibrations of C.

• The weak equivalences for RiC are described by the interval partition p′ as above. The
acyclic fibrations of RiC are the acyclic fibrations of C with the addition of the arrows
m′ → j ′, where

i < j ′ ≤ j,

and where m′ → i are acyclic fibrations in the old model structure. In particular, all the
arrows of the form i → j ′, i < j ′ ≤ j are new acyclic fibrations.

Proof We start with considering Li . The claim about the interval partition is the subject of
Corollary 5.9. As a left Bousfield localization does not change the cofibrations, it also does
not change the acyclic fibrations (which are determined via lifting from the cofibrations).
One observes that the we therefore require the transfer system on the block [m, j] to be the
disjoint union of the transfer systems on [m, i] and [i +1, j]. This is indeed a transfer system
as required.

Now let us look at Ri . With the previous notation, we would like to determine the acyclic
fibrations on the block [m, j]. By definition, any acyclic fibration between m and i and
between i + 1 and j after right localization must have also been an acyclic fibration before
right localization.

Let us begin with finding the largest � ≥ i such that i → � is a new acyclic fibration.
We will show that � = j by proving that i → j was a fibration in the old model structure

before right localization (and thus is an acyclic fibration after right localization). We show
that the map i → j has the right lifting property with respect to all acyclic cofibrations in
the old model structure. By writing out the lifting square, this translates to there being no
acyclic cofibration a → b such that

a ≤ i < b ≤ j .

And indeed there is not—if there were, then a and b would be in different blocks of weak
equivalences before right localization. But as a → b is in particular a weak equivalence, this
would be a contradiction. Thus we can conclude that i → j is a fibration in the old model
structure and therefore an acyclic fibration in RiC. This means that Ri adds the edges i → j ′
for all j ′ between i and j to the acyclic fibrations of C.
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In addition to this, any acyclic fibrations m′ → i will create some new fibrations via
composing with the i → j ′ and then applying restrictions. Conversely, note that if m′ → j ′
is an acyclic fibration after localization, then so is m′ → i by restriction, and hence m′ → i
must have been an acyclic fibration before localization. Therefore, all in all, the new acyclic
fibrations are precisely the maps m′ → j ′, where i + 1 ≤ j ′ ≤ j , and m′ → i is an acyclic
fibration in the old model structure. �

Recall the operation � on transfer systems as discussed in Remark 4.5 which allows us
to inductively build any transfer system. The key point is that the Bousfield localizations Li

and Ri allow us to model this operation. The following lemma can be seen from comparing
the description in Proposition 5.10 with the description of � in [2].

Lemma 5.11 Let C be a model structure on [n]. Assume the corresponding interval partition
contains

· · · � [m, i − 1] � [i, i] � [i + 1, j] � · · · .

Then, using the notation tr([a, b]) for the corresponding transfer system on [a, b], we have
the following.

• Li−1C models tr([m, i − 1]) � ∅ to obtain a transfer system on [m, i].
• RiC models ∅ � tr([i + 1, j]) to obtain a transfer system on [i, j].
• Li−1RiC models tr([m, i − 1]) � tr([i + 1, j]) to obtain a transfer system on [m, j].

�
We now have all of the ingredients to state and prove the main result of this section.

Theorem 5.12 Every model structure on [n] can be obtained by a sequence of left and right
Bousfield localizations of the form Li and Ri .

Proof We will argue by induction on the maximal size of the blocks in weak equivalences. If
that size is 1, then we have the trivial model structure. Let us assume that we can obtain any
transfer system on any choice of contractible submodels with a fixed maximal block size. If
we would like to create a transfer system on a bigger block, then this transfer system can be
obtained via the � operation from Lemma 5.11, which allows us to iteratively build larger
transfer systems from smaller ones (see Proposition 4.6). �
Example 5.13 Let us return to our usual example of [2]. Below are two composites of a
left and right localization, which, in particular, display the fact that one cannot in general
commute left and right localizations.

L1−−−−−−−→

∼

R0−−−−−−−→ ∼ ∼

∼

R0−−−−−−−→ ∼ L1−−−−−−−→ ∼ ∼

∼
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Fig. 7 The collection of model structures on [2], where an arrow indicates that the identity functor is left
Quillen. We have used an orange arrow to indicate a weak equivalence

Figure7 is a diagram of all 10 of the model structures on [2] and the left Quillen functors
between them. From this one can identify the required left and right Bousfield localizations
starting from the trivial model structure to acquire the remaining model structures.

Remark 5.14 We have described a way of adding in single weak equivalences at a time using
left and right localizations. One may hope that a single left Bousfield localization followed
by a single right Bousfield localization (or the other way around) may do the trick.

One can verify that there are 2 · 3n possible ways of obtaining model structures on [n]
using only two localizations. One then observes that 2 · 3n <

(2n+1
n

)
for n > 5, so by a

cardinality argument such a construction cannot work. As such we are forced into a position
where we have to use zig-zags of localizations.
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For a particular instance of this phenomenon consider the following model structure on
[3].

∼
∼

∼∼

∼

∼
This model structure can be obtained via the composite of localizations L2R0L1 applied

to the trivial model structure. It is instructive to verify that this model structure cannot be
obtained as Li R j or R j Li for any i, j .

6 Further directions

We conclude with a list of further directions and questions that would advance our under-
standing of homotopical combinatorics.

(1) Address Remark 4.15 regarding model structures on [n] and pairs of non-intersecting
east-north lattice paths. Separately or in parallel, provide a conceptual explanation for
the recurrence relation

Qn,k = Qn−1,k−1 + 2Qn−1,k + Qn−1,k+1

where Qn,k is the number ofmodel structures on [n]with homotopy category isomorphic
to [k].

(2) We have seen that premodel structures P([n]) are in bijection with the interval poset of
the Tamari lattice, but that Q([n]) is only a tiny piece of P([n]). Is there a natural way to
identify the Tamari intervals corresponding to model structures on [n]? What structure
does Q([n]) have as a subposet of P([n])?

(3) Relatedly, in [6], a bijection between Tamari intervals and triangulations (rooted planar
maps in which all faces have three vertices) of a fixed size is given. Is there a direct
bijection between P([n]) and triangulations which identifies Q([n])with a special class
of triangulations?

(4) In Remark 4.12 we described a bijection between Q([n]) and End([n]). It would be
instructive to understand this bijection further, and to see what structures are preserved.
For example, End([n]) is a monoid under composition; does this monoid structure trans-
late to a natural monoid structure on Q([n])?

(5) Following Remark 4.16, we can interpret the results of [12] as an enumeration of model
structures on [m] × [n] for which all morphisms are fibrations. Indeed, there are

m+2∑
j=2

(−1)m− j
{
m + 1
j − 1

}
j !
2
jn

such model structures, where

{
k
�

}
is the Stirling number of the second kind counting �

block partitions of a set with cardinality k. What is the full structure of Q([m] × [n])?
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(6) For what other latticesP can one enumerate or determine structural properties of Q(P)?
(7) Extend the results of Sect. 5 to other lattices. For which lattices are all model structures

connected by a zig-zag of left- and right-Bousfield localizations?
(8) By the construction at [18, Tag 02MC], every (∞, 1)-category is the localization of a

poset category P at a set of morphismsW. By [9, Theorem B], we have a criteria under
when such a pair (P,W) extends to amodel structure. It would be of interest to determine
structural and enumerative properties of the collection of model structures on lattices
(or on a particular lattice) which present a given locally presentable (∞, 1)-category.
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