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FlexE is envisioned for the provisioning of different services and hard slicing of the Xhaul in 5G and
beyond networks. For efficient bandwidth utilization in the Xhaul, traffic prediction for slot allocation in
FlexE calendars is required. Further, if coordinated multipoint (CoMP) is used, the allocation of users to
remote units (RUs) with an Xhaul path of lower latency to distributed/central unit (DU/CU) will increase
the achievable user bit rate. In this paper, the use of multi-agent deep reinforcement (DRL) learning for
optimal slot allocations in a FlexE-enabled Xhaul, for traffic generated through CoMP, and for offloading
users among different RUs is explored. In simulation results, the DRL agent can learn to predict input
traffic patterns and allocate slots with the necessary granularity of 5 Gbps in the FlexE calendar. The
resulting gains are expressed in terms of the reduction of mean over-allocation of slots in the FlexE
calendar in comparison to the prediction obtained from an autoregressive moving average (ARIMA) model.
Simulations indicate that DRL outperforms ARIMA-based prediction by up to 11.6% © 2023 Optica Publishing

Group

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

The network architecture of future 5G networks incorporat-
ing Xhaul and coordinated multipoint beamforming (CoMP)
is shown in Figure 1. The network segment between the re-
mote unit (RU) and distributed unit (DU) is termed fronthaul
while the segment between DU and central unit (CU) is termed
mid-haul [1] [2]. The processing functions performed by each of
these units depend on the functional split being deployed, with
different tradeoffs between the requirements of latency, data rate
and coordination gain [3],[4],[5]. Generally, and especially in
cases where there is some converged deployment, this part of
the transport network is referred to as the Xhaul [1]. Further,
the Xhaul will also be a vital part of the future distributed and
cell-free MIMO networks [6]. Under this paradigm, an RU is en-
visioned as an access point (AP) and the DU/CU is envisioned
as the central processing unit (CPU). The variation in the bit
rate in the Xhaul will depend on factors such as the type of
beamforming being used, user mobility, user allocation to RUs
and thus to different paths in the Xhaul, and resource allocation
in both the radio access network (RAN) and Xhaul. Delays in
the Xhaul will influence the achievable beamforming gains and
achievable user bit rate [7],[8].

If the transport segment of the Xhaul networks comprises

Fig. 1. 5G network architecture with Xhaul and CoMP.
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Flexible Ethernet (FlexE) [9], then the available bandwidth in the
physical layer (PHY) links can be allocated in steps of 5Gbps to
media access control (MAC) clients having different data rates.
The PHY links would normally be standard Ethernet link PHY
rates e.g., 10Gbps to 400 Gbps. The bandwidth allocation with
5Gbps granularity results in improved bandwidth efficiency as
well as isolation of multiple input streams/sources in hardware
[10], [11].

With FlexE [9] incorporated into the Xhaul, the achievable
user bit rate will depend on the over and under-allocation of
slots in the FlexE calendar, as this will affect serialization and
buffering delays and, in turn, the Xhaul’s total latency. The
Xhaul latency affects the delay in feeding back-channel state in-
formation via uplink to the DU/CU where beamforming vectors
are computed, especially if coordinated multi-point (CoMP) is
employed [8], [12]. Therefore, to maximize the achievable user
bit rate, a resource allocation scheme that can anticipate the traf-
fic in advance and appropriately allocate resources is required.
This will enable efficient utilization of the available bandwidth
and minimization of packet loss in the Xhaul. Further, some
coordination of control between RAN and Xhaul is desirable to
maximize achievable user bit rates through the selection of low-
latency paths over the Xhaul. For this, a mechanism to offload
users from RUs with higher Xhaul latency to those with lower
latency will contribute to the maximization of the achievable
user bit rate.

Recently there have been several studies that have addressed
the latency in the Xhaul (in fronthaul, midhaul or both) as a con-
straint for optimising the operational expenditure (OPEX) [13],
[14] as well as finding optimal routes through the Xhaul [15]. In
[13] and [14], the model for latency only considered the queuing
delays in RUs. The research mainly focused on using integer
linear programming (ILP) and mixed integer linear program-
ming (MILP) techniques for optimisation. Such optimisation
techniques require full knowledge of the values of the environ-
ment variables as well as the constraints. In contrast to these
limitations, in deep reinforcement learning (DLR), the agents
observe the environment’s variable values and then take actions
to achieve a reward defined by the user. Therefore, agents do
not require any prior knowledge of environment variable values.
Exploiting the benefit of this autonomy, DRL has been demon-
strated for optimal selection of functional splits and routes in
fronthaul [16] and including fronthaul with software-defined
networking control [17], under the constraints of latency. DRL
has also been used for resource allocation in an ultra-reliable
low latency (uRLLC) network [18] and in Fog RAN networks
[19], [20] under the constraints of latency.

The aforementioned studies omitted any mechanism for han-
dling the allocation of users to RUs under the constraints of
latency of their paths in the Xhaul, as a means of maximization
of their achievable bit rate. Also, the models for latency in these
studies were based either on propagation delay, serialization de-
lay, mean queuing delay or a priori end-to-end delay, and thus
did not consider the combined effect of all possible sources of
delays in their models. They further omitted any consideration
of percentile delays due to buffering of data at the destination
nodes of Xhaul paths. None of the aforementioned studies con-
sidered a resource allocation scheme for Xhaul, that is enabled
by FlexE for efficient bandwidth utilization or its influence on
the latency constraint.

So, in this paper, a combined RAN/Xhaul network is mod-
elled for which achievable user bit rate is maximized while em-
ploying efficient bandwidth allocation in the Xhaul, comprising

Fig. 2. Network architecture for DRL-based optimisation of
RAN.

Ethernet and FlexE aggregation nodes. The efficient bandwidth
allocation is performed using Deep-Q learning on each FlexE
aggregation node to enable predictions of input traffic and to
allocate slots accordingly. These allocations attempt to minimize
over-allocation as well as under-allocation which would increase
Xhaul latency and reduce the achievable user bit rate. On the
RAN side, achievable user bit rate maximization is performed
by using Deep-Q learning for offloading users from RUs with
higher Xhaul latency to those with lower latency, based on a
target for achievable user bit rate maximization. End-to-end
latency constraints on Xhaul paths are modelled in terms of 99.9
percentile delays. The use of multiple DRL agents (in the Xhaul
and RAN) results in a multi-agent-based optimisation system
for RAN [21].

In Section 2 of this paper, the network model under consid-
eration is described. In Section 3, the wireless channel model
incorporating CoMP, and the model for latency in Xhaul are
presented. In Section 4, the simulation parameters for the wire-
less model and the model for latency based on percentile delay,
the hyperparameters of the deep-Q network and the reward
functions for the two DRL agents are described. In Section 5,
simulation results for the predictions of input traffic patterns are
discussed. These are compared with predictions from a more
classical estimation technique based on autoregressive moving
average (ARIMA) [22]. In Section 6, the results for the maximiza-
tion of the achievable user bit rate by offloading UEs between
RUs are discussed. Finally, Section 7 presents conclusions and
discussion for future work.

2. NETWORK MODEL

For analysis of the achievable user bit rate affected by the la-
tency of the Xhaul, the envisioned network architecture based
on Figure 1 is shown in Figure 2. In the network, we assume that
CU and DU are co-located, so the portion of Xhaul under anal-
ysis in the paper is only between RU and DU. In this network,
users are connected to RUs via CoMP beamforming [7],[8]. Each
RU is located at a different geographical location on the (x,y)
coordinate plane. Additionally, due to user mobility, users may
enter or leave the range of RUs, possibly resulting in a better
rate if associated with the closer RU. The RUs in one group are
connected to the same Ethernet aggregation node. The traffic
is then transported over the Xhaul. The traffic in the Xhaul is
higher than user traffic due to RAN protocol overheads added
by the RUs (these will be dependent on functional split) [22] and
background traffic from other sources in the network. The traffic
from RUs is further aggregated by Ethernet aggregation nodes
at level-1 (labelled a, b in Figure 2) in the Xhaul. The link rate
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Fig. 3. Agents and environment in FlexE(a) node in Figure 2.

between the RUs and these Ethernet nodes is assumed to be 4 x
100 Gbps. Further, background traffic from other sources in the
network is aggregated with the RU traffic by FlexE aggregation
nodes at level-2 (also labelled a, b in Figure 2). These FlexE
aggregation nodes need to allocate slots in their calendars suffi-
cient for the incoming traffic, in an efficient manner. Then, the
traffic from the level-2 FlexE aggregation node is aggregated by
a level-3 FlexE aggregation node (labelled c in Figure 2), which
connects to the DU/CU. The FlexE aggregation nodes are linked
by 4 x 100 Gbps PHY links.

Each RU will be equipped with Ethernet interfaces. So, the
RUs and Ethernet aggregation nodes in Xhaul will introduce
queuing and serialization delays to the user traffic being aggre-
gated. It is assumed that the Ethernet aggregation nodes operate
with a FIFO scheduling scheme in the queues. The Ethernet and
FlexE nodes are equipped with buffers to hold packets when
there is port contention at the output ports. These buffers will
result in delay variations. In the FlexE aggregation nodes, the
buffers would hold the packets if the rate allocated in the FlexE
calendar is less than the input traffic [23]. For the uplink, the
destination DU/CU will also be equipped with buffers to absorb
the delay variations. The size of these buffers will be determined
by the percentiles of delays that are absorbed by the buffers.
Large buffer sizes will ensure a higher percentile delay variation
absorption but increased buffering delay [24].

Within each FlexE aggregation node of Figure 2, there is
a separate calendar for traffic flows in different directions, as
shown in Figure 3. A FlexE aggregation node, therefore, has
a separate DRL agent for the slot allocation for each calendar.
The FlexE agents in Figure 3 receive the traffic from the Ethernet
aggregation nodes and the background traffic from other sources
in the network as input observations. Based on the observations
and reward calculations, the FlexE agents perform actions in
the form of slots with a granularity of 5Gbps. The actions and
observations are updated every 4ms which is the delay for the
reconfiguration of the FlexE calendar. The slot allocations for
the incoming traffic are calculated using Deep-Q learning from
past actions and rewards in an experience buffer [25]. Deep-
Q learning was used since it observes input traffic both from
RAN and other sources in the network. This traffic has large

Fig. 4. Agent and environment for DU/CU in Figure 2.

variations making it impossible for conventional Q-table-based
reinforcement learning agents to relate observations to actions.
In this way, the FlexE agent pre-configures the calendar in the
aggregation node, to help reduce any buffering delay of packets
due to the under-allocation of 5Gbps slots, while maintaining
efficiency.

Note that if it is assumed that the FlexE aggregation nodes
are equipped with bandwidth variable transponders (BVTs) [26],
which can adjust the bandwidth of the PHY links dynamically
then the current DRL solution would also be able to operate with
that (with very minor changes to reflect any different granular-
ity).

Within the DU/CU there is a separate agent, termed the
“controller agent”, as shown in Figure 4. Among the different
functions of a controller agent in the DU/CU, such as routing
traffic in the Xhaul network, the focus in this paper is the control
over offloading of users among RU-groups to improve the total
achievable user bit rate. In Figure 4, the controller agent receives
the total achievable user bit rate and its variations, of the RU-
groups as an observation. If the path between the RU and the
DU/CU causes large delays, this has the effect of reducing the
achievable bit rate of the RU-group due to the reduced accu-
racy of channel state information (CSI). Thus, the action of the
controller agent should be to offload users from the RU-group
with higher Xhaul latency to the group with lower latency, in
its attempt to maximize the achievable user bit rate. Like the
FlexE agent, the controller agent was also trained using Deep-Q
learning due to the large observation space of the RU bit rate and
its variations. This would further help the agent, to generalize
the transition from state to action. The actions are the number of
UEs to be offloaded.

3. COMP AND LATENCY MODEL.

For modelling the achievable user bit rate allocated to RUs in-
corporating CoMP, the signal-to-interference noise (SINR) γk of
a user is modelled as follows,

γk =
∑j

∣∣∣hH
j,k f j,k

∣∣∣2
∑j ∑i ̸= k

∣∣∣hH
j,k f j,i

∣∣∣2 + σ2
(1)

where hH
j,k is the known channel information for user k from

RU, j delivered to the distributed/central unit (DU/CU) for
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processing, and f j,k is the resulting beamforming vector given
as follows,

f j,k =
(

hH
j,khj,k

)−1
hj,k. (2)

In Equation 1, each user is equipped with a single antenna
and Zero-Forcing (ZF) beamforming is used to reduce inter-
ference between beams generated by the RUs [19]. As in [27],
channel estimation is modelled with delay effects, that is, a per-
fect channel is not known but is instead estimated and denoted
as ĥ (t) with error η (t), which satisfies a complex normal dis-

tribution CN
(

0, σ2
η

)
, with zero mean and variance σ2

η given as
follows,

σ2
η =

1
(SNR) d

+ 2

[
π fDTs

(
2L − d − 1

2

)2
]

. (3)

Estimation error has the same dimension as h (t); if SNR
during channel estimation is decreased, channel accuracy is
impacted negatively, which can be mitigated by an increased
pilot training length d; this, in turn, affects the total length of
payload L. Other significant terms are the Doppler frequency fD
which depends on the parameters of user mobility, and sampling
time Ts of the receiver [28]. The complete channel estimate h (t)is
given as follows,

h (t) = ĥ (t) + η (t) . (4)

Due to fronthaul and computational delay D, the channel
estimate in Equation 3 is altered, given as follows,

ĥ(t) = ρĥ (t − D) + ϵ (t) (5)

where ρ = J0 (2π fDD) is the channel correlation vector af-
fected by user mobility, and ϵ (t) is the CN

(
0, σ2

ϵ

)
error vector,

with variance σ2
ϵ given as follows,

σ2
ϵ = σ2

ĥ

(
1 − |ρ|2

)
. (6)

Then the channel model in Equation 5 is substituted in Equa-
tion 1 for the estimation of SINR. The estimated SINR is then
used to estimate the resulting achievable bit rate of a user RZF
in the uplink via the Shannon capacity model [29], is given as
follows,

RZF =
K

∑
k=1

log2

1 +
|
(√

ρĥT
k +

√
σ2

ϵ,k + σ2
η,k

)
fk|

2

∑i ̸=k |
(√

ρĥT
k +

√
σ2

ϵ,k + σ2
η,k

)
fi|

2
+ σ2

n

 .

(7)
It is also assumed that the users join and leave the RU-groups

with arrival modelled by a Poisson distribution. The traffic
generated by users is first received at RUs that add encapsula-
tion overheads dependent on the split option being used. Then
further overheads are added by the Ethernet and FlexE-based
aggregation nodes in Xhaul. It was assumed that an intra-PHY
functional split option 7.2 [3] in Xhaul was assumed that resulted
in upscaling or an increase in the user data rate. The functional
split upscaling factor Fsplit is calculated using the relation given
as follows [30],

Fsplit =
2 ∗ Nant ∗ Nbit ∗ Nsc

Ts

Nant ∗ log2(M) ∗ BW
(8)

where Nant is the number of antenna elements, Nbit is the
sampling width (no of bits per sample), Nsc is the number of data
subcarriers comprising the OFDM symbol, M is the modulation
order, BW is the bandwidth of the signal transmitted by a UE and
Ts is the OFDM symbol length in time. Note that the calculations
in Equation 8 ignore the encapsulation overheads.

The achievable bit rate of the users is reduced due to the
latency in Xhaul discussed in Section 2 and indicated by the
factor of D in Equation 5. For the modelling of latency, percentile
delay was selected as a benchmark. This was done to model the
worst-case scenario of latency instead of mean queuing delay
which is orders of magnitude (1 and 2) less than percentile delays
[31]. Also, as mentioned in Section 2, the destination nodes in
Xhaul will be equipped with buffers to absorb the percentile
delays. The latency, defined in terms of percentile delay of
99.9%, is then substituted as the delay term ‘D’ in Equation 5
to the wireless channel model. Percentile delays smaller than
99.9% were not estimated due to the limited statistics that could
be gathered in network simulations.

For the estimation of percentile delays of a path in the Xhaul,
first, the mean queuing delay of packets Tq,x, in RUs Ethernet
interface and Ethernet aggregation nodes are estimated using
the G/G/1 queueing model given as follows [32],

Tq,x ≈ 1
µr

ρest

(1 − ρest)

Ca
2 + Cr

2

2
(9)

where x denotes the node in the Xhaul, ρest is the estimated
load on aggregation nodes, λt is the arrival rate of packets, µr
is the packet service rate, Cr is the coefficient of variation of the
service time, and Ca is the coefficient of variation of the inter-
arrival time. The mean of the delay T̄ of a path in the Xhaul in
Figure 2 is given as follows,

T̄ = Ts,RU + Ts,E + 2 Ts,F + Ts,F + Tq,RU + Tq,E (10)

where Ts,RU , Ts,E and Ts,F are the fixed serialization delays in
the RU’s Ethernet interface, Ethernet aggregation node and two
FlexE aggregation nodes in a path in Xhaul. Tq,RU and Tq,E are
the waiting times in the RU’s Ethernet interface and Ethernet
aggregation node of the path in Xhaul. The distribution of the
total delay of a path is then modelled by a log-normal distribu-
tion using the total mean delay in Equation 10. This distribution
was selected after analysis of packet traces via simulations in
NetSim®. From the log-normal distribution, the 99.9 percentile
delay is extracted. The fabrication delays are ignored in the
analysis.

4. SIMULATION PARAMTERS

Simulink MATLAB® was used to model wireless communica-
tions based on CoMP as described in Section 3. The parameters
for the wireless system are listed in Table 1. The CoMP model
was initialized by assuming 15 users in each RU-group (a total
of 30 users in the two groups). Each RU was modelled to trans-
port 16 independent layers/beams of user data in Xhaul. The
locations of users were uniformly distributed over the 200x200m
grid, shown in Figure 5, to maintain a balance of achievable bit
rate between the RU-groups. The locations of RUs were in a
hexagonal formation with a radius of 50m so that the RUs are
equidistant from each other and on average equidistant from
UE locations.

Equal background traffic of 110 Gbps was added into the
paths from both RU-groups to DU/CU, resulting in a balanced
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Fig. 5. RU coordinates in x,y plane (Case-1).

Table 1. Simulation Parameters.

Number of users per RU-group 15

Avg bit rate of RU-groups 117.04 Gbps

Functional split factor 10.5

Avg background traffic 110.7 Gbps

Number of RUs Groups 2

Number of RUs per Group 3

SNR per User 13 dB

Antennas per RU 16

Power Constraint per RU 40 W

Bandwidth per user 50 MHz

User Mobilities 6 m/s

Rate of Arrival 10−6

Rate of Departure 4x10−6

Table 2. Functional split upscaling parameters.

Number of antenna elements Nant 15

Number of bits per symbol Nbit 8

Number of subcarriers Nsc in 50 MHz 250x12

Modulation level (M) 16

Interval of the OFDM symbol Ts 66.7 µs

Table 3. Deep-Q Network Parameters.

Learning Rate 0.01

Gradient Threshold 1

Number of Hidden Layers 6

Number of Neurons per Layer 98

Sample Time 4 × 10−3

Experience Buffer length 40 x 6000

Mini batch size 2048

Epsilon 1

Epsilon Decay factor 0.005

Number of steps to look ahead

FlexE agent 8

Controller agent 32

Discount factor

FlexE agent 0.7

Controller agent 0.99

impact of latency in the two paths. The total achievable bit rate
for both RU-groups was found to be 22.3 Gbps. This data rate
was upscaled by a factor of 3.5 using Equation 8 and parameters
from Table 2. Further upscaling by a factor of 3 was carried out
to accommodate the fact that there are three RUs in an RU-group.
This upscaling resulted in a load of 234.089 Gbps in the Xhaul.

The underlying background traffic pattern was extracted
from the WIDE MAWI project packet traces repository [33]
specifically for the date of 08/04/2020. WIDE MAWI project is
an online repository of packet traces that have been collected by
monitoring/measuring the traffic from a backbone optical net-
work operated in Japan. The traces contain information about
packets such as packet types, packet header and data lengths,
packet source and destination IP addresses, and packet arrival
and departure times at the node. The traces were collected at a
node within the network with a 10 Gbps link. The traces were
also used in [34], for the prediction of traffic patterns as well as
slot allocations. The average bit rate of the traffic was 6 Gbps
which is presumed less than the expected aggregate background
and user traffic in future 5G Xhaul networks. Therefore, the
traffic patterns were increased by multiplication with discrete
upscaling factors (5∼11) to emulate a high load on the Xhaul
aggregation nodes.

The parameters for the deep-Q network, given in Table 3,
were fine-tuned, adjusting the discount factor, number of steps
lookahead, mini-batch size, experience buffer length, number
of hidden layers and neurons per layer. The discount factor
for the FlexE agent was 0.7, the number of steps lookahead
was 8 and the experience buffer length spanned over the total
number of steps of 40 episodes. These parameters ensured that
the earned average reward increased monotonically with each
training episode and stabilized until the end of the training
process. The large experience buffer ensured that the agent did
not suffer from catastrophic forgetting which may lead it to take
steps that earn negative rewards after earning positive rewards
[35]. On the other hand, the discount factor for the controller
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agent was 0.99 and the number of steps to look ahead was 32.
Also, the minibatch size parameter for both the FlexE agent
and controller agent was set to 2048 as a compromise between
simulation speed and accuracy of convergence of the deep-Q
network [36].

The parameters for modelling the latency using the G/G/1
queuing model are listed in Table 4. It was assumed that the
average packet length was 735 bytes, considering the minimum
and maximum size of Ethernet frames. It was also assumed
that the length of Ethernet frames had a Gaussian distribution
with a standard deviation of 300 bytes. The inter-arrival times of
packets at source RUs had a Gaussian distribution with a mean
set to give the required load and standard deviation of 300µs.
Normal distribution was selected since its standard deviation is
independent of mean interarrival times, which were varied to
vary the load.

Table 4. Queuing Delay Parameters.

Average packet length 735 bytes

Standard deviation of packet length 300 byes

Output links rate 400 Gbps

Standard deviation of inter-arrival time of packets 300µs

Distance of optical links 1 km

A. Reward Function and training of FlexE Agent
For the FlexE agent, it was assumed that the action space for the
FlexE agent is discrete and limited to 80 slots with a granularity
of 5 Gbps since it was assumed that each FlexE node will support
a total of 400 Gbps output line rate. In any DRL-based system,
designing the reward functions is the most significant challenge.
Different reward functions will force the RL system either to
converge to the desired performance or force it to converge to a
local minimum, which may not result in the desired performance
[37]. Both discrete and continuous rewards were compared in
terms of performance and convergence [38]. Of the different
reward functions that were tested for the FlexE agent, the reward
function achieving the least standard deviation of the difference
between input traffic and allocated traffic is given as follows,

RFlexE =


−20 + ((S − Ri)− 20) ∀ 0 ≤ S − Ri ≤ 20

−1000
(

1 − e−1∗(S−Ri)
)

∀ S − Ri > 0

−1000
(

1 − e(S−Ri)
)

∀ S − Ri < 0

(11)

where S is the bit rate allocated in the FlexE calendar and Ri
is the observed input traffic bit rate. The reward function for the
FlexE agent is also plotted in Figure 6.

The FlexE agent was trained using deep-Q learning in the
reinforcement learning toolbox in MATLAB®. It was trained to
predict the combined traffic patterns from the WIDE project
repository [33] (with an upscaling factor of (5∼11) and the
user traffic patterns from each RU-group. The FlexE agent was
trained for 40 episodes. Each episode spanned 24 seconds with
a step size of 4ms, (reconfiguration time frame of the FlexE cal-
endar) [39]. After training, the agent having the highest reward
was deployed, which in our case was after 34 episodes.

B. Reward Function and training of FlexE Agent
The ‘controller agent’ was trained simultaneously with the FlexE
agents, also using deep-Q learning in the reinforcement learning

Fig. 6. Reward vs difference of allocated slots and input traffic
demand.

toolbox in MATLAB®. The controller agent aims to maximize
the total achievable bit rate of the two RU-groups by offloading
users from a path with higher latency to a path with lower
latency in the network. The actions of the controller agent are
the offloading commands for each RU group, of integer values
ranging from 0 to 5. In any training step, the number of users
offloaded was limited to 5 users. This resulted in a monotonically
increasing average reward earned by the controller agent during
the training. The reward function for the controller agent is
given as follows,

Rctr = 500 (R̄sum)
2 +

(
−5x105

) (
R̄′

sum
)

(12)

where R̄sum is the averaged value over 5 samples of the total
achievable bit rate for the two RU-groups and R̄′

sum is the differ-
ence in the bit rate in consecutive timesteps of 4ms, indicating
the variations in the total achievable bit rate of the RU-groups.
It is given as follows,

R̄′
sum = R̄sum (t)− R̄sum (t − 0.004) . (13)

Due to the second term in Equation 12 involving R̄′
sum the

controller agent is negatively penalized. This also triggers the
agent to carry out offloading of users to compensate for the
resulting decline in the average value of the total achievable bit
rate R̄sum and reward Rctr.

The training process of the controller agent for the RU posi-
tion in Figure 5 is depicted in Figure 7(b). It shows the first eight
seconds of a training episode which spans over twenty-four sec-
onds in the simulations. The resulting total achievable bit rate
of the two RU-groups is shown in Figure 7(a). From Figure 7 (b),
it can be observed that the controller agent constantly swaps the
users from one RU-group to another, as it learns to maximize
the total achievable bit rate of the two RU-groups. It can also
be observed in Figure 7(a), that the total achievable user bit rate
decreases when the difference in the number of users in the two
RU-groups increases. Also, there are variations in the total num-
ber of users in the two RU groups, which is an artefact of the
random arrival and departure in the number of users in the two
RU-groups.
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Fig. 7. Training results of controller agent, total achievable
bit rate (a), number of users in RU-groups (b) for RU-group
positions in Figure 5.

Fig. 8. FlexE Agent slot allocation (a), input traffic (b).

5. RESULTS FOR FLEXE AGENT

The results for the deployment of the trained FlexE agent are
shown in Figure 8. The input traffic pattern is upscaled by
a factor of 10 and normalized to the output rate of the FlexE
aggregation node. Figure 8(b) shows the input traffic and Figure
8(a) shows the number of slots allocated to the input traffic.
From the analysis of Figure 8(a), it can be observed that the
agent attempts to track the input traffic and allocated slots.

The performance of the FlexE agent was also analyzed, for
various upscaling factors of the input traffic patterns with pre-
dictions from the autoregressive integrated moving average
(ARIMA(8,1,1)) model approach [34] and fixed allocations based
on the highest traffic demand. The coefficients for the (ARIMA
(8,1,1)), were calculated using the same training patterns for
which the FlexE agent was trained. Since ARIMA estimates
the average values based on past observations, this will result
in under-allocation in the FlexE calendar. To overcome this
shortcoming, the predictions from ARIMA (R̂ARMA) were nor-
malized by a multiplication factor (αR̂ARMA : α > 1), using a

Fig. 9. MOAs for different upscaling factors and allocation
schemes (for the same CUA at upscaling factor of 10).

similar approach in [34]. This normalization also ensured that
the predictions from ARIMA resulted in the same cumulative
probability of under allocation (CUA) (Pr (S − RD) < 0) as that
from the FlexE agent’s predictions, for the input traffic that was
upscaled by a factor of 10.

Then, the results for the three approaches were compared
in terms of mean over-allocation (MOA) of traffic as a measure
of bandwidth over-consumption in the Xhaul. The mean-over
allocations were calculated by averaging the positive difference
between the allocated rate by the FlexE agent and input traffic
((S − RD) > 0) over 24 seconds. The mean over-allocations for
upscaling factors of 5 to 11 of the input traffic are shown in Figure
9. It can be observed in Figure 9 that at an upscaling factor of
10, the mean over-allocations from DRL-based predictions are
11.6 % less than the mean over-allocation from ARIMA-based
predictions and 58% less than from fixed allocations. For the
other upscaling factors of the input traffic patterns, the mean
over-allocation using DRL is also generally less than the mean
over-allocations from ARIMA and fixed allocations (except for
the case of an upscaling factor of 5, where ARIMA gave better
performance).

Afterwards, to compare the performance of the three ap-
proaches in terms of CUA, the predictions from ARIMA
(R̂ARMA) were normalized by a positive multiplication factor
(αR̂ARMA : α > 1) so that they result in the same MOA as that
from the FlexE agent’s predictions. The resulting CUAs for the
upscaling factors of 5 to 11 of the input traffic are shown in Fig-
ure 10. The CUAs for fixed allocation are not shown in Figure 10
since they are very low in comparison to CUAs from DRL and
ARIMA. It can also be observed in Figure 10 that at an upscaling
factor of 10, the CUAs from DRL are 25% less than the CUAs
from ARIMA-based predictions. Therefore, DRL can outperform
ARIMA-based predictions both in terms of efficient bandwidth
consumption and minimal delays in Xhaul.

6. RESULTS FOR CONTROLLER AGENT

The deployment results for the controller agent that was trained
for 36 episodes are shown in Figure 11 with the RU positions
shown in Figure 5. The average background traffic added to the
paths of the two RU groups was the same and around 110 Gbps.
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Fig. 10. CUAs for different upscaling factors and allocation
schemes (for the same mean over-allocation at upscaling factor
of 10).

Fig. 11. Controller agent deployment results, total achievable
bit rate (a), number of users in RU-groups (b) for RU positions
in Figure 5).

The results in Figure 11(a) show the total achievable bit rate of
the two RU-groups is around 234.09 Gbps after applying the
functional split factor of 10.5. The results in Figure 11(b) show
the total number of users in two RU-groups, along with users in
the individual RU-groups. It is apparent from Figure 11(b) that
the initial number of users in the two RU-groups was 13 and
17 as a non-ideal starting distribution of users. The agent then
offloads users so that both RU-groups have the same number of
users. This is so because the total achievable bit rate is maximum
when the two RU-groups have the same number of users.

The results in Figure 11 are also summarized in case-1(a) of
Table 5. In case-1(b), higher background traffic of 285 Gbps was
added in the path of RU-group-1. Then the trained controller
agent in case-1(a) was deployed. It can be observed in case-
1(b), that agent does not offload users from RU-group-1 to RU-
group-2. This resulted in a reduction of the total bit rate of the
RU-groups from 234.1 Gbps to 201.8 Gbps. This shows that the
addition of higher background traffic results in higher latency

Table 5. RU-group bit rates for different positions and back-
ground traffics.

RU

positions

Background

traffic (Gbps)

Number

of users

Bit rate

(Gbps)

Total

bit rate

(Gbps)

RU-group RU-group RU-group

1 2 1 2 1 2

1
a 110 110 15 15 117.04 117.04 234.1

b 285 110 15 15 86.16 115.8 201.8

2

a 110 110 15 15 113.3 115.8 229.1

b 114 111 14 16 107.8 121.2 229

c 250 110.7 9 21 77.25 145 222.3

d 285.5 105.67 7 23 62.9 153.5 216.5

e 331.5 111.5 3 27 31.38 166.67 198.5

f 113 265.26 19 11 125 100.2 225.2

Fig. 12. RU coordinates in x,y plane (Case-2).

which then causes the reduction of the total bit rate.
Then, the positions of RUs were changed such that they have

non-ideal positions and more non-uniform distances to the users
distributed over the grid of 200x200m. The coordinates of the
RUs are shown in Figure 12. This configuration resulted in a
higher average distance to users from RU-group-1 than from
RU-group-2. Note that the controller agent was retrained for the
new configuration of RU positions.

The background traffic added to the paths of the RU-groups
was also varied with their values listed in case-2(a∼f) of Table 5.
These values represent the average background traffic over the
deployment period of 24 seconds. The variation of background
traffic in RU-group-1’s path was higher than the RU-group-2
path from case-2(a) to case-2(f). The background traffic in the
RU-group-2 path varied around 110 Gbps. The bit rate and the
number of users in each RU-group from the deployment of the
trained controller agent are also listed for case-2(a∼f). It can be
observed that for case-2(a) with the same background traffic of
110 Gbps in the two paths, the users in RU-group-2 had a higher



Research Article Journal of Optical Communications and Networking 9

bit rate than RU-group-1 since the users on average are closer to
RU-group-2. Despite this, the agent did not offload users from
RU-group-2 to RU-group-1. It only carried out the offloading
from RU-group-1 to RU-group-2 when more background traffic
was added in the path of RU-group-1, and increasingly so as
shown from case-2(b) to case-2(e). It can also be observed that
as the background traffic is increased, due to the increase in
latency, the bit rate of RU-group-1 as well as the total bit rate
of the two RU-groups also decreases. This indicates that the
impact of latency in the terms of reduction of the total bit rate
of RU-groups is more pronounced than the impact of unequal
distance of users from RU-groups.

Also, by observing case-1(b) and case-2(d) which have the
same background traffics in both paths of the RU-groups, the
total bit rate in case-2(d) (216.5 Gbps) was higher than in the
case-1(b) (201.8 Gbps) by up to 7.3 %. This shows that the trained
controller through offloading users among RU groups can im-
prove the achievable bit rate of the system. In case-2(f), more
background traffic was added to RU-group-2’s path. This re-
sulted in offloading of users from RU-group-2 to RU-group-1
by the trained controller agent. This proves that the system has
symmetry, and the trained controller agent can also learn to
offload users in both directions

7. CONCLUSION

A combined mechanism for user and resource allocation based
on DLR has been demonstrated as a promising way of achieving
user bit rate maximization in future 5G or beyond networks.
For this, a RAN using CoMP was implemented. The transport
segment was assumed to comprise Ethernet and FlexE nodes.
The achievable user bit rate was degraded by the latency in the
Xhaul, as it added delay in the CSI sent to the DU/CU. The
end-to-end latency in the Xhaul was modelled by 99.9 percentile
delay instead of mean delay, to address the effect of buffering in
the destination node in Xhaul, which in this case was DU/CU.

DRL was used for the prediction of traffic and slot allocation
in FlexE calendars in the Xhaul. From the results it can be con-
cluded that DRL can more efficiently allocate resources in FlexE-
based Xhaul, outperforming more classical approaches based
on ARIMA-based allocation schemes both in terms of under-
allocation and over-allocation of available resources. Further,
the FlexE agent could learn a wide variety of traffic patterns with
different properties of mean and variance, to the least, and was
able to predict underlying patterns in incoming traffic. While on
the other hand, ARIMA-based methods would require recalcula-
tion of model parameters every time statistical properties of the
input traffic patterns change.

It was also demonstrated that DRL can effectively circumvent
the effects of latency in Xhaul via user offloading. The controller
agent was able to constantly offload users from the RU group
with the path having higher latency in Xhaul to the path having
low latency. This offloading boosted the achievable user bit rate.
The controller agent also learnt to symmetrically offload users
in two directions depending on the load on the paths in Xhaul.
Overall, both the controller agent and the FlexE agent were able
to concurrently improve the system performance albeit without
having a priori knowledge of the environment variable values.
So it can be concluded that DRL can enable the network to au-
tonomously improve its resource utilization as well as achievable
user bit rate.

For future work, it is proposed that the computation time
and memory resources for training the DRL agents can be mod-

elled. Further to improve the utilization of memory the size of
the experience buffers can be optimised by selecting a tradeoff
between memory resources and the probability of catastrophic
forgetting of the agents during the training process. Lastly, the
research presented in this paper focused on a multi-agent sys-
tem, in which the agents optimise the systems independently,
so the performance of the system can be further improved via
sharing of the learned experiences and earned rewards among
agents.
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