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ABSTRACT Gait trajectory prediction models have several applications in exoskeleton control; they can
be used as feed-forward input to low-level controllers and to generate reference/target trajectories for
position-controlled exoskeletons. In our study, we implement four deep learning models (LSTM, FCN, CNN
and Transformer) that perform one-step-ahead gait trajectory prediction after training on gait patterns of
typically developing children. We propose a methodology that optimises for stability in long-term forecasts,
and evaluate the performance of the models on typically developing (TD) and Cerebral Palsy (CP) gait
during recursive prediction of 200 time-steps in the future (which may lead to propagation of errors) and
in the presence of varying levels of Gaussian noise (1%-5%). Results on TD gait show that the FCN and
Transformer, with mean absolute errors (MAEs) for one-step-ahead predictions between 1.17◦-1.63◦, are the
most suitable for the intended application. We also proposed an approach for generating adaptive trajectories
that can be used as reference trajectories for position-controlled exoskeletons. Gait patterns from children
with Cerebral Palsy were fed into gait trajectory prediction models trained on typically developing gait only,
to generate corrective patterns. Preliminary results show that the gait patterns of typically developing children
were introduced onto the generated trajectories.

INDEX TERMS Artificial intelligence, cerebral palsy, children, deep learning, exoskeletons, forecasting,
gait, prediction, rehabilitation.

I. INTRODUCTION
Cerebral Palsy (CP) is the most prevalent motor disability
in children [1], affecting approximately 2.11 per 1,000 live
births [2]. CP is a lifelong non-progressive condition as a
result of a lesion to the brain [3]. The static lesion can be
due to a brain injury that occurs before, during, or after birth,
or due to an abnormality throughout fetal development [4].
CP is characterised by motor disability [3], yet the specific
form of CP depends on the level of motor impairments, their
type, and location [4]. CP can affect one side of the body
(hemiplegia), lower extremities (diplegia), or both sides of
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the body including upper and lower extremities (quadriple-
gia) [3].

CP is non-curable, with 50% of children losing their ambu-
latory capacity by adulthood [5]. However, available treat-
ments target motor disabilities to minimise their impact on
an individual’s life [3]. Interventions include botulinum toxin
injections, orthopaedic devices, orthopaedic surgery, casting,
and occupational therapy [6].

Technological innovation in the field of rehabilitation has
led to the development of devices such as robot-assisted gait
trainers and powered exoskeletons, that can benefit children
with CP. These devices have aided in ‘massed practice’,
a type of training whereby a patient performs exercises with
reduced number and duration of breaks in-between, in one
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rehabilitation session [1], [7]. Massed practice can optimise
motor learning while reducing the strain on the therapist [1].

Several exoskeletons have been developed specifically for
children with CP [8]. Sarajchi et al. present a comprehensive
literature review on this topic [8]. Promising results have been
reported on the effectiveness of exoskeletons in improving CP
gait when used in rehabilitation. Benefits include: a reduc-
tion in metabolic cost during ambulation, improvements in
knee extension and a reduction in crouch gait during stance,
increased mean velocity, and increased cadence [1], [5], [9].
There are about fifteen single-joint andmulti-joint lower limb
exoskeletons primarily designed for children with Cerebral
Palsy [8], including HAL [10], P-LEGS [11], Trexo [12],
CPWalker [13], EExRoLEG [14] and WAKE-up [15].

Exoskeletons move and interact with the user and the
environment based on a control strategy, often consisting
of a 3-level hierarchy: high, mid, and low level of con-
trol [16]. Having knowledge of future gait trajectories can
enhance the performance of the exoskeleton, by being used
as feed-forward input to the low-level controllers rather than
utilising feed-back input only [17]. This can lead to better
tracking of the movement of the exoskeleton, and compensate
for the control time-delays [17]. Several probabilistic and
machine learning based methods have been used to predict
future gait trajectories [17], [18], [19], [20], [21], but they are
yet to be evaluated for stability in their predictions, that can
be impacted due to measurement or controller noise, as well
as during signal acquisition and transmission.

Furthermore, many exoskeletons follow a fixed gait tra-
jectory, which is often the mean trajectory of a healthy
population [22]. However, this may not be the most suited
trajectory for the user, since it may not take into account
their individual parameters, such as height and limb length,
which have all been shown to influence gait [23]. Several
studies worked on generating normalised gait cycles based
on body parameters [24], [25]; while this approach provides
more individualised gait trajectories to follow, it does not take
into consideration the stride-to-stride variability during gait
nor the asymmetry between the left and right joints.

Motivated by the current limitations, in this paper we
present several novel contributions. Firstly, we develop sta-
ble deep learning models that predict one-step-ahead kine-
matic trajectories (flexion-extension angles) of the hip, knee,
and ankle joints of both legs. We present a methodology
for optimising for the long-term stability of those models,
using dynamic time warping (DTW) distance metric for early
stopping during training. The stability was evaluated by: (1)
recursive forecasting (where predictions are used as input to
the models, leading to propagation of errors), and (2) the
addition of varying levels of Gaussian noise to the input
of the model (1-5%). We evaluate the performance of the
models in predicting TD and CP gaits. Finally, we propose
an approach for generating continuous individualised, and
corrective reference trajectories for children with CP, that
take the stride-to-stride variability and asymmetry of gait
into consideration. This approach involves training the deep

learning models on gait from typically developing children
only, feeding the models with CP gait as input, and then
using the predictions from the trained models as potential
reference trajectories for exoskeletons. We hypothesise that
these models can learn features of ‘healthy’ gait patterns.
When CP gait patterns are used as input, these models can
‘correct’ CP patterns by introducing TD gait patterns, while
still considering the individual features of the child and the
asymmetry of their gait. We specifically focus on predicting
pediatric gait patterns, and implement the above using a
variety of deep learning models including long-short-term-
memory (LSTM), fully connected network (FCN), convolu-
tional neural network (CNN), as well as Transformers which
have never been investigated for gait trajectory prediction.

II. BACKGROUND
Forecasting gait trajectories has several uses in exoskele-
ton control. Future trajectories can be used as feed-forward
input to the controllers, allowing for better tracking of the
exoskeleton’s movement [17], and compensating for delays
in controller response times [17], [26]. Future trajectories can
also be used as target trajectories, as a guide for users to
follow [22].

Several approaches have been used for the gait trajec-
tory forecasting task, including probabilistic models [17] and
deep learning models such as LSTMs and CNNs [19], [20].
These approaches vary in the number of time-steps predicted,
either single or several time-steps in the future. The predicted
trajectories were in the form of joint angles, linear accel-
erations or angular velocities. Another difference amongst
the approaches is the input parameter or sensors used to
collect the data to develop the models which included motion
capture systems [19], [27], [28], [29], IMUs [26], [30],
encoders [31], and surface electromyography (sEMG) [20],
[32]. A summary of some approaches in literature is pre-
sented in Table 1. Predictive models operating in real-time are
prone to receive noisy inputs, during signal acquisition and
transmission. Therefore, models predicting gait trajectories
for exoskeleton control need to be robust to noise and stable
in their predictions. While the accuracy of these models has
already been evaluated, the stability of these models is yet to
be investigated.

In addition to using predictive model outputs as
feed-forward to controllers, predicted gait trajectories can be
used as reference trajectories for exoskeletons [22]. Exoskele-
tons that operate based on position control have a reference
trajectory, often based on healthy individuals, which dictates
the position the joints need to be in during a gait cycle. This
reference trajectory is used to correct pathological gait [33],
but it does not take into consideration several parameters
that influence gait, including speed, gender, and anthro-
pometrics [23]. Gaussian process regression and recurrent
neural networks (RNNs) have been used to address this issue,
by generating healthy gait trajectories based on parameters
such as speed, gender and anthropemtrics [24]. These models
learn the mapping between body parameters and healthy
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gait cycles, allowing the generation of the most appropri-
ate reference trajectory for each individual. Individualised
gait trajectories used for gait rehabilitation have resulted in
improvements in energy efficiency, measured by an increase
in heart rate and reduction in peripheral capillary oxygen
saturation (SpO2), compared to generalised trajectories [34].

While these approaches provide more individualised tra-
jectories, they are fixed for all gait cycles and do not consider
the inherent cycle-to-cycle variability during gait. Children
with spastic CP, have been shown to have higher within-day
and between-day variability in comparison to typically devel-
oping children, which can be due to the limited range of
motion caused by their spasticity [35], [36]. An online adap-
tive trajectory generation is needed to accommodate for the
cycle-to-cycle variability. Vallery et al. [33] use comple-
mentary limb motion estimation (CLME) for hemiparetic
individuals, that rely on the trajectories of the healthy leg
for the online estimation of the reference trajectory for the
pathological leg. Using CLME was more efficient, led to
EMG patterns that were closer to unperturbed gait than when
using a fixed reference trajectory and avoided out-of-phase
walking, which can be generated by using a fixed reference
trajectory [33]. Nevertheless, this approach is restricted to
hemiparetic individuals and not those who have both limbs
affected. Meanwhile, Zhou et al. [25] use RNNs to generate
normalised gait trajectories based on anthropometrics, as well
as gait speed, yet their approach doesn’t accommodate for the
kinematic asymmetry of the left and right joints.

These limitations were the motivation behind our current
study which presents one-step-ahead kinematic trajectory
prediction models that are optimised for stability in their
long-term predictions, and are evaluated for their robustness
in the presence of added noise. This study also presents an
approach to generate adaptive target/reference trajectories for
children with CP, that vary from cycle-to-cycle, and take into
account the asymmetry of the left and right joints, since a
separate trajectory will be generated for each joint of the
left and right sides. A similar approach has been done by
Endo et al. [37], which train the GaitForMer network based
on healthy gait patterns for human motion forecasting, and
then retrain the model that learned gait mappings to predict
the severity of gait impairment of patients with Parkinson’s
disease, based on the Movement Disorder Society Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS).

III. METHODOLOGY
A. OVERVIEW
Our approach involves developing end-to-end kinematic tra-
jectory prediction models, that perform one-step-ahead pre-
diction of joint angles of the hip, knee and ankle for both legs,
based on 100 time-points of past joint angles (equivalent to
1000ms for a sampling frequency of 100Hz). These models
are trained to optimise for long-term stability in their pre-
dictions, by using dynamic time warping distances (DTW),
in addition to validation loss, as metrics to end training of the

models. We implement four deep learning models (LSTM,
FCN, CNN and transformer) that, importantly, are trained on
the gaits of typically developing children; we then evaluate
their stability in long-term-forecasting of 200 time-steps in
the future, which is twice the length of the input size. The
stability of the four models is evaluated by: (1) performing
recursive prediction which can lead to the propagation of
errors, and (2) by adding varying levels of Gaussian noise
to the input (1-5%). Finally, we use the four models to pre-
dict future trajectories (200 time-steps ahead) when using
100 time-points of CP gait as input. We hypothesise that the
predictions of the models that learned the patterns of the gait
of typically developing children could be used as an aid to
correct the gait of CP children.

B. DATA
A dataset containing recordings of gaits of typically devel-
oping children and children with Cerebral Palsy was used
to train and evaluate the models of this study. The dataset
consists of flexion-extension angles of the hip, knee and ankle
measured simultaneously in the sagittal plane, for the right
and left legs. The data has been collected and provided by
Canterbury Christ Church University, and Chailey Clinical
Services.

1) METHODOLOGY OF DATA COLLECTION
The gait of typically developing (TD) children and children
with Cerebral Palsy (CP) was recorded while they walked at
self-selected speeds. Several trials were conducted for each
child, who were asked to walk a distance of 8 meters per
trial. Data were collected using the ISEN inertial motion
capture system (STT Systems, Spain) which uses six inertial
measurement units (IMUs) to capture the gait. Raw inertial
measurements collected by IMUs were exported to and pro-
cessed by the accompanying ISEN software, which derives
the flexion-extension angles for the hip, knee, and ankle, for
the left and right legs. The data were collected at a sampling
frequency of 100Hz.

2) DEMOGRAPHICS
The participants included 10 typically developing (TD) chil-
dren and 11 children with Cerebral Palsy (CP) (see Table 2).
TD children were between 4 and 13 years old, while children
with CP were between 8 and 12 years old with a Gross Motor
Function Classification Scale (GMFCS) between I-II. The
anthropometrics and demographic details of the participants
are included in Figure 1 and Figure 2 respectively.

C. PRE-PROCESSING
The data of typically developing children were divided into
3 subsets: training, validation and testing sets. We split those
data at a subject level (i.e. data from 8 children were used for
training, data from the other 2 children for testing and data
from 1 child for validation). The children for each set were
selected at random. This was done to avoid testing the models
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TABLE 1. Summary of the results of the papers that implement trajectory prediction.
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TABLE 2. Distribution of the children in the dataset.

FIGURE 1. Box plot of the anthropometrics of Typically Developing (TD)
children and children with Cerebral Palsy (CP).

FIGURE 2. Demographics of Typically Developing children and children
with Cerebral Palsy (in percentages). (a) and (b) report the gender of
typically developing children and children with Cerebral Palsy
respectively, (c) is the type of CP, and (d) is the Gross Motor Function
Classification of children with CP.

on samples from a child used for training and therefore ensure
the generalisability of the models.

Each one of these sets was pre-processed by firstly seg-
menting the trials into samples; each trial is a recording of
the flexion-extension angles of the hip, knee, and ankle joints
while walking for 8 meters. Each sample constitutes of an
input matrix xin, which is made of the joint angle values for
100 time-steps, and a target vector yout , which is made of
the joint angle values for one following time-step. The input
window size was specifically chosen to be 100 time-steps
because this corresponds to 1000ms (for a 100Hz sampling
frequency), which is equivalent to the length of one full

gait cycle since the average length of a gait cycle for TD
school-aged children is 980-990ms [39]. This means that a
model can make a prediction based on one full previous cycle
of an exoskeleton user. In a previous study we conducted,
we investigated the effect of varying the length of the input
window on the accuracy of predicting trajectories in the form
of Euler angles [21]. The range of input window sizes used in
that study were 50, 100, 200, 400, 600, 800, and 1000 ms.
Results showed that for short-term predictions, the size of
the input window does not have a significant influence on
accuracy, while for long-term predictions, larger input win-
dow sizes result in better performance. This further supports
our choice to set the input window size to 100 time-steps
(equivalent to 1000ms).

For n samples in a set, Xin ∈ Rn×lin×f , where lin (set
to 100) is the number of input time-steps and f (set to 6)
is the number of features that we input to the models (hip,
knee and ankle angles for the left and right leg). Similarly,
Yout ∈ Rn×lout×f , where n is the number of samples, lout
(set to 1) is the number of target time-steps, while f (set to
6) is the number of features. The samples were generated
using the sliding window method [21]; the stride value was
set to 1 to maximize the number of training samples that can
be generated from each trial. For the typically developing
gait data, the training, testing, and validation sets had 41120,
7316, and 4832 samples, respectively.

In addition to these 3 main sets, we generated two addi-
tional long-term prediction validation and testing sets. These
sets have the same input size as in Xin (i.e. 100 time-steps).
However, they have an output size (lout ) of 200 time-steps.
These additional sets were generated to evaluate the feasi-
bility and stability of recursive long-term forecasts of the
trainedmodels (see section III-E2 and section III-F for further
details).
All the data from children with CP were used only for

testings the models, for one-step-ahead prediction and long
term predictions. The datawere processed in the samemanner
as the data for typically developing children.

After their generation, the sets were normalised using
min-max normalization, such that Xin ∈ [0, 1] and Yout ∈

[0, 1]. The testing and validation sets are normalised accord-
ing to the normalisation factors (i.e. min and max values)
used during training. The min-max values were chosen to
accommodate for the min-max values of both the TD and CP
distributions with an additional safety boundary. The reason
for this is to ensure that the models are capable of handling
test data from subjects that have slightly different joint angle
ranges, so the input of the models remains bounded between
0 and 1. Also, this is to accommodate for differences in
CP and TD gait data distributions which can be shown in
Figure 3.

D. ONE-STEP-AHEAD TRAJECTORY PREDICTION MODELS
We implemented four deep learning models that perform one
step ahead prediction of gait trajectories, including a Fully
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FIGURE 3. Probability density distribution of the hip, knee, and ankle
angles (in degrees) for TD and CP gait data before processing. The blue
and yellow lines correspond to CP and TD probability density
distributions, respectively.

Connected Neural Network (FCN), a Long Short-TermMem-
ory (LSTM), a Convolutional Neural Network (CNN), and
a Transformer. In this study, the four sequence-to-sequence
models are trained to make one-step ahead predictions based
on a 100 time-step input window of joint angles, specifically
the hip, knee and ankle angles of the left and right foot (see
Figure 4). The models’ g(X ) learns the mapping between
input X (made of a 100 time-steps) and the output Ŷ (one-
step ahead prediction), to minimise the difference between
the estimated output Ŷ and the true output Y . For n number of
samples, lin input window length, lout output window length,
and f features, the input of the model is matrix X , where
X ∈ Rn×lin×f , and the output of the model is matrix Ŷ , where
Ŷ ∈ Rn×lout×f . In the following subsections, the architecture
of each of the models will be described.

1) FULLY CONNECTED NETWORK (FCN)
The Fully Connected Network (FCN) consisted of a series of
fully connected linear layers with ReLU activation functions
in between, and a final sigmoid layer as an output. The
2-dimensional inputR100×6 (given that we have 6 joint angles
and a 100 time-step input window) has been flattened to a
1-dimensional vector R600 before passing it through the fully
connected layers. We use a total of five linear layers, with the
architecture shown in Figure 5.

FIGURE 4. Illustration of one-step-ahead gait trajectory prediction
models. Based on a 100 time-step window of six input features (f1-f6), the
models make one-step-ahead-predictions for each feature. The features
are the flexion-extension angles of the hip, knee, and ankle for both legs.

FIGURE 5. Architecture of the Fully Connected Neural Network (FCN).

FIGURE 6. Architecture of the Long-short-term-memory (LSTM) Network.

2) LONG-SHORT-TERM-MEMORY NETWORK (LSTM)
The LSTM is a type of gated recurrent neural network that has
been frequently used with time-series data, since it processes
the data sequentially. Each unit of an LSTM containing an
input, output, and a forget gate, controls how information
is passed through the network, with the parameters of these
gates set during the training process [40]. For our imple-
mentation, we use a neural network that contains 2 layers,
and 100 hidden units per layer. The last hidden state of the
final layer is then passed onto a fully connected layer before
reshaping the output into the desired shape. The architecture
of the LSTM network is shown in Figure 6.

3) CONVOLUTIONAL NEURAL NETWORK (CNN)
While CNNs are most commonly used with 2-dimensional
inputs such as images, several studies have used them with
1-dimensional series, whereby the 2D convolution operation
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FIGURE 7. Architecture of the Convolutional Neural Network (CNN).

is replaced with the 1D convolution operation [41]. The CNN
architecture we implemented contained two pooling and four
convolution layers, followed by a fully connected linear layer
at the end. A ReLU activation function was used after each
convolution layer. The architecture of the CNN is illustrated
in Figure 7.

4) TRANSFORMER
Transformers have become increasingly popular, outperform-
ing CNNs and LSTMs in several applications as shown
in [42]. Transformers rely on attention mechanisms rather
than on recurrence or convolutions. The transformer archi-
tecture we implement is based on the one proposed by
Vaswani et al. [43]. The transformer contains one encoder
layer and one decoder layer. The input which consists of
100 time-steps of six joint angles (hip, knee, and ankle
flexion-extension angles for both legs) is fed into a linear
layer that expands the dimension from R100×6 to R100×80.
Expanding the input dimension is necessary to be able to
set the number of multi-dimensional heads of the encoder
model to 8. The output of the linear layer is concatenated
with positional encodings, which are used to inform the
model of the order of the sequence [43]. The result of the
concatenation is fed into the encoder, which is a single layer
consisting of 8 multi-attention heads, and a 100-unit feed-
forward network. Meanwhile, the last time-step of the input
is fed to a linear layer that expands the dimension from R1×6

to R1×80. The decoder receives two inputs: the output of the
decoder’s linear layer which is concatenated with positional
encodings, and the output of the encoder (which is the output
of the feedforward network added and normalised with a
residual connection) [43]. The output of the decoder goes
through a fully connected layer and then a sigmoid activation

FIGURE 8. Architecture of the Transformer Network.

function. The positional encodings had a dropout rate of 0.2,
while the encoder and decoder had a dropout rate of 0.1. The
architecture of the Transformer implemented is illustrated in
Figure 8.

E. MODEL OPTIMISATION
The following subsections describe how we trained and opti-
mised the LSTM, FCN, CNN and Transformer.

1) HYPER-PARAMETERS
All models were trained using the Adam optimiser, with the
mean squared error (MSE) between one-step-ahead predic-
tions and true values used as the loss function to update
the weights of the models. The models were trained up to
40-50 epochs. We stored the models at the epoch where
the DTW distance between the recursive predictions of the
200 time-steps and the true joint angles of the validation set
was the lowest. To select the optimal hyperparameters for the
models in this study, we have started with hyperparameters
that have been selected in one of our previous studies [21].
Those hyperparameters were selected based on a hyperpa-
rameter search that uses the tree-structured Parzen estimator
algorithm, a type of Bayesian hyperparameter sampler, and
optimised for the prediction of trajectories in the form of
Euler angles for children with CP. Details on the search space
are included here [21]. We have then fine-tuned those hyper-
parameters to optimise the performance of the models on
this dataset. The batch sizes for the FCN, LSTM, CNN, and
Transformer were 32, 256, 256, and 512 respectively. The
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FIGURE 9. Plot of the loss curves during training of a model. (a) shows
the training and validation MSE loss on one-step-ahead predictions, and
(b) shows the dynamic time warping (DTW) distances between
200 recursively predicted outputs and the true outputs of the validation
set.

learning rate was set at 0.0001 for the FCN, LSTM and CNN,
and at 0.001 for the Transformer.

2) DYNAMIC TIME WARPING DISTANCES AS EARLY
STOPPING CRITERIA
In our study, we use mean square error (MSE) between
the one-step-ahead predictions and the true values as the
loss function, with the models being trained to minimise
the loss. While this ensures low errors on one-step-ahead
predictions, it does not guarantee that the models are not
over-fit to short-term forecasting, and are capable of making
long-term recursive forecasts. Therefore, after each epoch
of training, we calculate the dynamic time warping (DTW)
distance between 200 recursively predicted time steps and
the true gait values of the validation set. The validation loss
wasmonitored to ensure themodel is learning and performing
well on short-term prediction, and the DTW distance on the
validation set was used to determine when to end the training
of the model to avoid overfitting and ensure the stability
of the models in long-term forecasting. In Figure 9 we plot
an example of the training and validation MSE loss as well
as the DTW distance measured for each epoch during the
training of one of the models. Figure 9 shows that during the
beginning of training, both validation loss and DTW distance
decrease, but after a certain number of epochs, the DTW
distance increases, indicating a worsening performance in the
ability of long-term recursive forecasting. Therefore, during
the training of our models, we optimise for low one-step-
ahead MSE validation loss as well low DTW distance in

long-term recursive forecasting. This approach is illustrated
in Figure 10.

3) FRAMEWORK
The Pytorch machine learning framework has been used
to implement our deep learning models. We utilised sev-
eral additional libraries including Numpy, Matplotlib, SciPy,
Seaborn, and Scikit-learn. DTWpython package was used for
calculating dynamic time-warping distances [44]. Computa-
tion was run on an Nvidia Geforce RTX 2070 GPU.

F. LONG-TERM RECURSIVE TRAJECTORY FORECASTING
Recursive forecasting is an approach that reuses one-step-
ahead predictions made by the model as input to the model.
In this study, this method has been used to evaluate the feasi-
bility of long-term recursive forecasts (see section III-G), but
is also used during training as a metric for early stopping to
optimise for long-term stability (see section III-E2). We used
the one-step-ahead prediction models developed in section
III-D for recursive forecasting.

G. EVALUATING STABILITY
We evaluate the stability of the networks using two meth-
ods. The first method involves long-term recursive predic-
tion. A stable network would be able to make long-term
predictions using recursive input, without being significantly
affected by noise resulting from the propagation of error.
We evaluate the stability of the networks by recursively pre-
dicting 200 time-steps in the future, equivalent to approx-
imately two gait cycles, and is twice the length of input
times-steps used by the model. For the first 100 recursive
predictions, the input to the model will be a combination of
true and predicted values, while the next 100 recursive predic-
tions will all be based on predicted values only. We compare
the long-term predictions to the true values by calculating the
errors between them.

The second method we use to assess the stability of the
networks was the addition of Gaussian Noise to the pre-
dictions. Used in-conjunction with the long-term recursive
prediction described above, this method involves the addition
of varying levels of Gaussian noise (1-5%) to each prediction
before using it as input to the model. We recursively predict
200 time-steps with Gaussian noise in the future and calculate
the errors compared to the true gait values.

H. CEREBRAL PALSY GAIT CORRECTION
Position-controlled exoskeletons often guide users to follow
a reference/target trajectory, based on the mean trajectories
of a healthy population, which results in corrections to their
pathological gait patterns [22], [33]. Our study proposes an
approach for generating an adaptive target/reference trajec-
tory. Our approach involves training one-step-ahead trajec-
tory prediction models on the gait of typically developing
children only. We then feed these models with CP gait, and
the models’ predictions are used as proposed reference/target
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FIGURE 10. Strategy for optimising the stability of the models for the long-term gait prediction task. Dynamic time warping distances are calculated
between 200 recursively predicted time-steps and the true gait values after each training epoch. This procedure is repeated after each epoch on the
validation set. The weights that lead to the lowest DTW distances are saved for inference.

FIGURE 11. Methodology for generating adaptive reference/target
trajectories for children with CP by training the deep learning models on
the gait patterns of TD children. The blue lines correspond to the model’s
input, the green lines to the model predictions, and the red lines to the
actual gait values.

trajectories for that CP child (see Figure 11). Our models
make predictions based on input from both the right and left
limbs, and produce separate output predictions for the right

and left limbs, instead of the same trajectory for both limbs.
This allows accommodating for the asymmetry and slight
differences in right and left limb trajectories, especially for
children with unilateral CP, where only one side is affected.
We hypothesise that these models will learn the mappings of
‘healthy’ trajectories and the inter-joint couplings, and will
introduce the TD patterns onto CP gait when CP gait is used
as input.

Specifically, once themodels have been trained on TD gait,
we feed them with 100 time-steps of CP gait and recursively
predict 200 time-steps in the future. We then compare the
predictions to the natural evolution of CP gait to see whether
the models introduced TD patterns to the predictions.

I. PERFORMANCE METRICS
In this study, we evaluate the predictive performance of
the models in short-term (one-step-ahead) and long-term
predictions using mean squared error (MSE) and mean abso-
lute error (MAE) between the predictions and true values.
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These metrics were calculated after the de-normalisation of
the predictions. Given n testing samples, f features, and lout
prediction length (set to 1 for one-step-ahead predictions and
set to 200 for long-term-predictions), the equations of the
MSE and MAE are shown below.

Mean absolute error (MAE):

MAE =
1

n.f .lout

n∑
i=1

f∑
j=1

lout∑
k=1

|yi,j,k − ŷi,j,k | (1)

Mean absolute error (MAE) standard deviation:

σMAE =

√√√√√ 1
n.f .lout

n∑
i=1

f∑
j=1

lout∑
k=1

(|yi,j,k − ŷi,j,k | −MAE)2

(2)

Mean squared error (MSE):

MSE =
1

n.f .lout

n∑
i=1

f∑
j=1

lout∑
k=1

(yi,j,k − ŷi,j,k )2 (3)

Mean squared error MSE) standard deviation:

σMSE =

√√√√√ 1
n.f .lout

n∑
i=1

f∑
j=1

lout∑
k=1

((yi,j,k − ŷi,j,k )2−MSE)2

(4)

IV. RESULTS
In this section, we present the results of the predictive perfor-
mance of the four models, in the short-term (one-step-ahead,
section IV-A) and the long-term (200 time-steps, section IV-
B). We also report the effect of noise on gait predictions
(section IV-C), and show illustrative examples of CP gait
trajectory corrections (section IV-D).

A. PERFORMANCE ON SHORT-TERM (ONE-STEP-AHEAD)
PREDICTIONS
Four deep learning networks (LSTM, FCN, CNN and Trans-
former) were trained for the task of one-step-ahead gait trajec-
tory prediction based on a 100 time-step input (see Figure 12
and Figure 13). The trajectories include 6 features, which
are the hip, knee, and ankle angles in the sagittal plane for
both legs. The deep learning models were trained on the gait
patterns of typically developing (TD) children. We assess the
predictive performance of the model on the test set, which
are data from two TD children withheld from training, and
calculated the mean square errors (MSE) and mean abso-
lute errors (MAE) between the predictions and true values.
We also test these models (trained on TD gait only) on data
from 11 children with Cerebral Palsy (CP). The results are
reported in Table 3.

Results in Table 3 show that theMAE of the LSTM for one-
step-ahead prediction of TD gait is the lowest (0.87◦), fol-
lowed by the Transformer (1.17◦) and then the FCN (1.63◦).

FIGURE 12. One-step-ahead prediction of the hip, knee and ankle
flexion-extension angles based on a 100 time-step input window. The
blue line corresponds to the model’s input, the green and red markers
correspond to the predicted and actual gait values, respectively. The
figure shows TD gait.

TABLE 3. MAEs and MSEs for one-step-ahead gait trajectory predictions
for typically developing children and children with Cerebral Palsy (in
degrees).

The CNN has the worst performance (4.05◦). The MAEs of
the predicted values and true values for children with CP are
higher compared to TD children.

B. PERFORMANCE ON LONG-TERM RECURSIVE
PREDICTIONS
We use the models that perform one-step-ahead predic-
tions and are trained on typically developing children,
to perform long-term forecasting, by recursively using the
one-step-ahead predictions as input (see Figure 14). We pre-
dict a total of 200 time-steps in the future. The results are
reported in Table 4. For long-term predictions of TD gait,
the LSTM has the lowest MAE (9.36◦), followed by the FCN
(10.03◦), the Transformer (10.31◦) and the CNN (10.72◦). For
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FIGURE 13. One-step-ahead prediction of the hip, knee and ankle
flexion-extension angles for 200 time-steps. The blue line corresponds to
the model’s input, the red line to the actual gait values, and the green
markers correspond to the predicted values. Each prediction (green
marker) is based on a 100 time-step window of the actual/measured gait
values (i.e. without recursive input). The figure shows TD gait.

TABLE 4. MAEs and MSEs for long-term (200 time-step) recursive
predictions for typically developing children and children with Cerebral
Palsy (in degrees).

long-term predictions, the models have similar performance,
with differences in errors between the different models
smaller in long-term predictions than the differences in errors
between the models in short-term predictions.

C. EFFECT OF GAUSSIAN NOISE ON THE STABILITY OF
THE MODELS
Recursive predictions, generated by using on-step-ahead pre-
dictions as inputs to the models, are a way to assess the
stability of the networks since the predictions will contain a

FIGURE 14. Long-term (200 time-step) recursive predictions of the hip,
knee, and ankle flexion-extension angles based on a 100 time-step input
window. The blue line corresponds to the model’s input, the green line to
the recursive predictions, and the red line to the actual gait values. The
figure shows TD gait.

level of error whichwill be continuously propagated.We have
evaluated the performance of recursively predicting 200 time-
steps in the future based on a 100 time-step input (see sec-
tion IV-B for details). To further investigate the effect of
noise, we add Gaussian noise to the predictions (between
1-5% of the predicted value) before using it as a recur-
sive input, and then we measure the errors for long-term
(200 time-step) predictions (see Figure 15 where we illustrate
the impact of noise on the prediction of hip flexion-extension
angles). Note that noise has been added to all joint angles, and
its effect is evaluated in TD and CP gait predictions.

Figure 16 reporting the effect of Gaussian noise
(levels 1-5%) on the MAEs for long-term prediction of TD
gait, shows that errors increase linearly with increasing noise
levels. LSTM is themost affected by noise. The noise affected
the performance of the FCN and Transformer slightly more
than the CNN, but much less than the LSTM. Overall results
show that the CNN, FCN and Transformer are more stable in
the presence of noise compared to the LSTM. A similar trend
is noted for CP gait predictions with noise (see Figure 17).

D. GENERATING ADAPTIVE REFERENCE TRAJECTORIES
FOR CEREBRAL PALSY GAIT
We present an approach that suggests corrections to CP gait
trajectories, that we propose can be used as target/reference
trajectories for position-controlled rehabilitative exoskele-
tons. After training the deep learning models on TD gait only,
we observe the long-term predictions (200 time-steps) when
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FIGURE 15. Effect of varying Gaussian noise levels (1%-5%) on the
long-term recursive prediction of the hip flexion-extension angle. The
blue line represents the gait input, the red line represents the actual
values, and the orange line represents the predictions with added noise.

FIGURE 16. Effect of varying Gaussian noise levels (1%-5%) on MAEs for
TD gait predictions.

CP gait is used as input. Results reported in Figure 18 show
that the models seem to be introducing TD patterns onto the
predicted CP gaits. Preliminary observations show that the
predicted trajectories are ahead of the actual CP trajectories
which indicates that themodelsmay be imposing a higher gait
speed. This is illustrated in Figure 18(a) and Figure 18(b),
where there is a decrease in the stride time in the predicted
corrections, measured by a shorter peak-to-peak distance.
The stride time in Figure 18(a) reduces from 137 time-steps
in the CP gait trajectory without intervention to 85 time-
steps in the predicted correction. Similarly, the stride time

FIGURE 17. Effect of varying Gaussian noise levels (1%-5%) on MAEs for
CP gait predictions.

in Figure 18(b) was also reduced by 57 time-steps in the
corrected intervention.

Furthermore, the predicted corrections seem to show an
increased range of motion, such as increasing knee flexion,
making it more similar to TD gait. This is illustrated in
Figures 18(c), 18(d), 18(e) where the range of motion of the
joint angles increased by 28.4◦, 13.97◦, and 19.32◦ respec-
tively, in the predicted corrections compared to the CP gait
without intervention.

These observations follow desired CP rehabilitation out-
comes which include increased mean velocity and improve-
ment in knee extension [1], [5], [9]. While these results
are encouraging, they are preliminary observations and the
effectiveness of the generated trajectories in enhancing the
rehabilitation outcomes (such as reducingmetabolic cost, and
increasing gait speed), and the comfort of users should be
evaluated in a clinical setting.

V. DISCUSSION
This study focused on developing end-to-end deep learning
models for the task of gait trajectory prediction (flexion-
extension angles of the hip, knee, and ankles of both right
and left legs). The intended application of these models is
exoskeleton control, specifically, rehabilitative exoskeletons
for children with Cerebral Palsy (CP). We trained four deep
learning models (LSTM, FCN, CNN and Transformer) for
the task of one-step-ahead predictions based on a 100 time-
step input window. To the best of our knowledge, this is
the first time Transformers have been evaluated for gait tra-
jectory forecasting. These models have been trained on the
gait patterns of typically developing (TD) children. We pro-
posed a methodology that optimises for long-term stability
during training. This methodology involves using dynamic
time warping (DTW) distances between long-term recur-
sive predictions and true values as an early stopping metric
(described in section III-E2). This has prevented the models
from over-fitting on one-step-ahead predictions, at the cost of
long-term stability.
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FIGURE 18. Examples of corrections to Cerebral Palsy gait predicted by a
model trained on the gait patterns of typically developing children only.
The blue line represents the CP gait input, the red line represents the
actual CP values, and the green line represents the predicted corrections
to CP gait. (a) and (b) show a decrease in the peak-to-peak distance in
predicted correction compared to CP gait without intervention, suggesting
that the models are imposing higher speeds. (c), (d), and (e) show an
increase in the range of angles in predicted corrections compared to CP
gait without intervention indicating that the models are imposing a larger
range of motion.

We first assessed the performance for one-step-ahead pre-
dictions using four deep-learning models. The MAEs for pre-
dictions of typically developing gait patterns ranged between
(0.87◦ to 4.96◦) across all models. The LSTM had the lowest
errors followed by the Transformer, the FCN and then the
CNN. We can see that the performance gap is quite large
between the CNN and the other three models. As for long-
term recursive predictions (200 future time-steps), the MAEs
on the TD gait test set ranged between (13.41◦ to 14.93◦). The
differences in performance across all models are narrower in
long-term predictions, yet LSTM still had the lowest errors
and CNN the largest errors.

It is difficult to directly compare the findings of our study
to what has been reported in the literature since no prior
studies investigated the use of AI trajectory predictionmodels
on pediatric gait or on the gait of children with CP. Fur-
thermore, previous studies investigated different kinematic
or kinetic parameters, such as predicting linear acceleration,
angular velocity, or joint moment instead of joint angles or
captured their data using different modalities such as using
EMG or a motion capture system. Despite these differences,
we can still make some broad comparisons of our models’

results with what has been done in the literature. Our results
show that the CNN has the worst performance, as shown
previously by us [21], but different to what was reported
by Moreira et al. [45] who performed ankle joint torque esti-
mation based on kinematics, speed, and anthropometry, and
found the CNN to be more robust. They didn’t however
compare the performance to FCN or transformers. On the
other hand, a study by Molinaro et al. [46] found that the
LSTM outperforms the FCN in joint moment prediction,
which is similar to the result of our study, where the LSTM
outperforms the FCN in one-step-ahead predictions.

We have also investigated the stability of the models by
adding Gaussian noise. When comparing how varying levels
of Gaussian noise (between 1%-5% of the predicted value)
impacted performance, we saw a linear increase in MAEs.
The LSTM, which had the lowest short-term and long-term
errors, was affected the most by Gaussian noise, as shown by
the largest increase inMAE. On the contrary, the CNN, which
had the largest short-term and long-term errors, appeared to
be the most stable in the presence of Gaussian noise show-
ing the smallest increases in MAEs with increasing noise
levels. The response of the Transformer and FCN to added
noise was similar; they were impacted slightly more than the
CNN network, but less significantly compared to the LSTM
network. The results of this study stress the importance of
reducing noise from the system, due to its influence on the
predictions. This should be considered during the design of
the exoskeletons.

Based on the results obtained, using the Transformer and
FCN seem to be the most appropriate deep learning mod-
els for trajectory predictions for exoskeleton control since
they combine low errors in short-term (one-step-ahead) and
long-term prediction tasks while being more stable in the
presence of added noise.

In this study, we have also proposed an approach that
generates adaptive target/reference trajectories for children
with Cerebral Palsy. We hypothesised that a trajectory fore-
casting model trained on the gait of typically developing
children only, will learn their representations, and introduce
corrections to CP gait patterns when used as input. We have
shownwith our preliminary results that themodels introduced
TD patterns to CP gait. While these results are encouraging,
the effectiveness of using these gait patterns as reference
trajectories on the rehabilitation outcomes and comfort of
users will need to be assessed.

There have been a few limitations to our study. Firstly,
the dataset we have used consists of 21 children (10 TD
and 11 CP). We believe that a larger sample of TD chil-
dren, with a wider anthropometric distribution, is needed
to train the model; ideally, the anthropometrics of children
with CP and of TD children used in this study should
have had a more similar distribution, with a larger sam-
ple and more gait variability. Additionally, the models have
been trained on flexion-extension angles collected from IMU
sensors rather than encoders, which are typically used in
exoskeletons. As future work, we plan to incorporate the
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trajectory-generating models into the control strategies of
exoskeletons that rehabilitate children with Cerebral Palsy,
as a high-level controller. We will test how well exoskele-
tons perform using the proposed trajectories as reference
trajectories, and how effective they are in the rehabilitation
of children with Cerebral Palsy. The influence of using the
generated adaptive trajectories as reference gait trajectories in
exoskeletons on the rehabilitation outcomes, metabolic cost,
speed, and comfort of children with Cerebral Palsy, and how
they compare to fixed trajectories needs to be investigated.
Furthermore, as future work, it’s possible to use reinforce-
ment learning to generate reference trajectories, based on
the patient’s capacity and considering parameters such as the
range of motion of their limbs and the spasticity of their
muscles.

VI. CONCLUSION
In this study, we implement four deep learning algo-
rithms trained on the gait of typically developing children,
for the task of one-step-ahead prediction of gait trajecto-
ries. The intended application of this implementation is to
aid in the control of exoskeletons that are used for the reha-
bilitation of children with Cerebral Palsy. We proposed a
methodology that optimises for the stability of long-term
predictions. We evaluated the performance of the models
under the presence of noise, with results suggesting that the
Transformer and Fully Connected Network (FCN)may be the
most suited for the intended application due to their stability
and low errors. We also proposed an approach that generates
adaptive reference/target trajectories for position-controlled
exoskeletons, with models using learned representations of
typically developing (TD) gait to ‘correct’ Cerebral Palsy
(CP) gait. Preliminary results show that these models intro-
duce TD patterns to CP gaits, andwe need to test the effective-
ness of using these adaptive patterns as reference trajectories
on the outcomes of rehabilitation and user comfort in future
studies.

ACKNOWLEDGMENT
This study is part of the MOTION (Mechanised Ortho-
sis for Children with Neurological Disorders) project. The
authors would like to thank Canterbury Christ Church Uni-
versity, Canterbury, U.K., especially Markus Hunt, and
Chailey Clinical Services, Sussex, U.K. (both partners in the
MOTION project) for collecting the gait data of typically
developing children and children with Cerebral Palsy.

REFERENCES
[1] L. R. Bunge, A. J. Davidson, B. R. Helmore, A. D. Mavrandonis,

T. D. Page, T. R. Schuster-Bayly, and S. Kumar, ‘‘Effectiveness of powered
exoskeleton use on gait in individuals with cerebral palsy: A systematic
review,’’ PLoS ONE, vol. 16, no. 5, May 2021, Art. no. e0252193.

[2] M. Oskoui, F. Coutinho, J. Dykeman, N. Jette, and T. Pringsheim,
‘‘An update on the prevalence of cerebral palsy: A systematic review and
meta-analysis,’’ Develop. Med. Child Neurol., vol. 55, no. 6, pp. 509–519,
2013.

[3] F. Miller, Physical Therapy of Cerebral Palsy. Berlin, Germany: Springer,
2007.

[4] (2013). Cerebral Palsy: Hope Through Research. [Online]. Available:
https://www.ninds.nih.gov/health-information/patient-caregiver-
education/hope-through-research/cerebral-palsy-hope-through-research

[5] Z. F. Lerner, D. L. Damiano, and T. C. Bulea, ‘‘A lower-extremity exoskele-
ton improves knee extension in children with crouch gait from cerebral
palsy,’’ Sci. Transl. Med., vol. 9, no. 404, Aug. 2017, Art. no. eaam9145.

[6] I. Novak, S. Mcintyre, C. Morgan, L. Campbell, L. Dark, N. Morton,
E. Stumbles, S.-A. Wilson, and S. Goldsmith, ‘‘A systematic review of
interventions for children with cerebral palsy: State of the evidence,’’
Develop. Med. Child Neurol., vol. 55, no. 10, pp. 885–910, Oct. 2013.

[7] Y. H. Kwon, J. W. Kwon, and M. H. Lee, ‘‘Effectiveness of motor sequen-
tial learning according to practice schedules in healthy adults; Distributed
practice versus massed practice,’’ J. Phys. Therapy Sci., vol. 27, no. 3,
pp. 769–772, 2015.

[8] M. Sarajchi, M. K. Al-Hares, and K. Sirlantzis, ‘‘Wearable lower-limb
exoskeleton for children with cerebral palsy: A systematic review of
mechanical design, actuation type, control strategy, and clinical evalua-
tion,’’ IEEE Trans. Neural Syst. Rehabil. Eng., vol. 29, pp. 2695–2720,
2021.

[9] M. Hunt, L. Everaert, M. Brown, E. Hatzidimitriadou, and K. Desloovere,
‘‘Effectiveness of robotic exoskeletons for improving gait in children with
cerebral palsy: A systematic review,’’ Gait Posture, vol. 90, pp. 108–109,
Oct. 2021.

[10] H. Kawamoto, T. Hayashi, T. Sakurai, K. Eguchi, and Y. Sankai, ‘‘Devel-
opment of single leg version of HAL for hemiplegia,’’ in Proc. Annu. Int.
Conf. IEEE Eng. Med. Biol. Soc., Sep. 2009, pp. 5038–5043.

[11] D. Eguren, M. Cestari, T. P. Luu, A. Kilicarslan, A. Steele, and
J. L. Contreras-Vidal, ‘‘Design of a customizable, modular pediatric
exoskeleton for rehabilitation and mobility,’’ in Proc. IEEE Int. Conf. Syst.,
Man Cybern. (SMC), Oct. 2019, pp. 2411–2416.

[12] M. Maggu, R. Udasi, and D. Nikitina, ‘‘Designing exoskeletons for chil-
dren: Overcoming challenge associated with weight-bearing and risk of
injury,’’ inProc. Companion ACM/IEEE Int. Conf. Human-Robot Interact.,
Mar. 2018, p. 39.

[13] C. Bayón, T. Martín-Lorenzo, B. Moral-Saiz, Ó. Ramírez,
Á. Pérez-Somarriba, S. Lerma-Lara, I. Martínez, and E. Rocon, ‘‘A robot-
based gait training therapy for pediatric population with cerebral
palsy: Goal setting, proposal and preliminary clinical implementation,’’
J. NeuroEng. Rehabil., vol. 15, no. 1, pp. 1–15, Dec. 2018.

[14] M. A. H. M. Adib, S. Y. Han, P. R. Ramani, L. J. You, L. M. Yan,
I. M. Sahat, and N. H. M. Hasni, ‘‘Restoration of kids leg function using
exoskeleton robotic leg (ExRoLEG) device,’’ in Proc. 10th Nat. Tech.
Seminar Underwater Syst. Technol. Cham, Switzerland: Springer, 2019,
pp. 335–342.

[15] F. Patané, S. Rossi, F. Del Sette, J. Taborri, and P. Cappa, ‘‘WAKE-up
exoskeleton to assist children with cerebral palsy: Design and preliminary
evaluation in level walking,’’ IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 25, no. 7, pp. 906–916, Jul. 2017.

[16] R. Baud, A. R. Manzoori, A. Ijspeert, and M. Bouri, ‘‘Review of control
strategies for lower-limb exoskeletons to assist gait,’’ J. NeuroEng. Reha-
bil., vol. 18, no. 1, pp. 1–34, Dec. 2021, doi: 10.1186/s12984-021-00906-3.

[17] K. Tanghe, F. De Groote, D. Lefeber, J. De Schutter, and E. Aertbelien,
‘‘Gait trajectory and event prediction from state estimation for exoskele-
tons during gait,’’ IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 1,
pp. 211–220, Jan. 2020.

[18] R. Kolaghassi, M. K. Al-Hares, and K. Sirlantzis, ‘‘Systematic review of
intelligent algorithms in gait analysis and prediction for lower limb robotic
systems,’’ IEEE Access, vol. 9, pp. 113788–113812, 2021.

[19] C. Zhu, Q. Liu, W. Meng, Q. Ai, and S. Q. Xie, ‘‘An attention-based
CNN-LSTM model with limb synergy for joint angles prediction,’’ in
Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatronics (AIM), Jul. 2021,
pp. 747–752.

[20] L. Jia, Q. Ai, W. Meng, Q. Liu, and S. Q. Xie, ‘‘Individualized gait trajec-
tory prediction based on fusion LSTM networks for robotic rehabilitation
training,’’ in Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatronics (AIM),
Jul. 2021, pp. 988–993.

[21] R. Kolaghassi, M. K. Al-Hares, G. Marcelli, and K. Sirlantzis, ‘‘Perfor-
mance of deep learning models in forecasting gait trajectories of children
with neurological disorders,’’ Sensors, vol. 22, no. 8, p. 2969, Apr. 2022.

[22] M. F. B. Miskon and M. B. A. J. Yusof, ‘‘Review of trajectory generation
of exoskeleton robots,’’ in Proc. IEEE Int. Symp. Robot. Manuf. Autom.
(ROMA), Dec. 2014, pp. 12–17.

VOLUME 11, 2023 31975

http://dx.doi.org/10.1186/s12984-021-00906-3


R. Kolaghassi et al.: Deep Learning Models for Stable Gait Prediction Applied to Exoskeleton Reference Trajectories

[23] R. L.McGrath,M. Pires-Fernandes, B. Knarr, J. S. Higginson, and F. Sergi,
‘‘Toward goal-oriented robotic gait training: The effect of gait speed and
stride length on lower extremity joint torques,’’ in Proc. Int. Conf. Rehabil.
Robot. (ICORR), Jul. 2017, pp. 270–275.

[24] C. Glackin, C. Salge, M. Greaves, D. Polani, S. Slavnic, D. Ristic-Durrant,
A. Leu, and Z. Matjacic, ‘‘Gait trajectory prediction using Gaussian
process ensembles,’’ in Proc. IEEE-RAS Int. Conf. Humanoid Robots,
Nov. 2014, pp. 628–633.

[25] Z. Zhou, B. Liang, G. Huang, B. Liu, J. Nong, and L. Xie, ‘‘Individu-
alized gait generation for rehabilitation robots based on recurrent neural
networks,’’ IEEE Trans. Neural Syst. Rehabil. Eng., vol. 29, pp. 273–281,
2021.

[26] B. Su and E. M. Gutierrez-Farewik, ‘‘Gait trajectory and gait phase pre-
diction based on an LSTM network,’’ Sensors, vol. 20, no. 24, p. 7127,
Dec. 2020.

[27] B. Ren, Z. Zhang, C. Zhang, and S. Chen, ‘‘Motion trajectories prediction
of lower limb exoskeleton based on long short-term memory (LSTM)
networks,’’ Actuators, vol. 11, no. 3, p. 73, 2022.

[28] A. Zaroug, D. T. H. Lai, K. Mudie, and R. Begg, ‘‘Lower limb kinematics
trajectory prediction using long short-term memory neural networks,’’
Frontiers Bioeng. Biotechnol., vol. 8, p. 362, May 2020.

[29] A. Zaroug, A. Garofolini, D. T. H. Lai, K.Mudie, and R. Begg, ‘‘Prediction
of gait trajectories based on the long short term memory neural networks,’’
PLoS ONE, vol. 16, no. 8, Aug. 2021, Art. no. e0255597.

[30] V. Hernandez, D. Dadkhah, V. Babakeshizadeh, and D. Kulic, ‘‘Lower
body kinematics estimation from wearable sensors for walking and run-
ning: A deep learning approach,’’ Gait Posture, vol. 83, pp. 185–193,
Jan. 2021.

[31] D.-X. Liu, X. Wu, C. Wang, and C. Chen, ‘‘Gait trajectory prediction for
lower-limb exoskeleton based on deep spatial–temporal model (DSTM),’’
in Proc. 2nd Int. Conf. Adv. Robot. Mechatronics (ICARM), Aug. 2017,
pp. 564–569.

[32] Z.-Q. Ling, G.-Z. Cao, Y.-P. Zhang, H.-R. Cheng, B.-B. He, and S.-B. Cao,
‘‘Real-time knee joint angle estimation based on surface electromyograph
and back propagation neural network,’’ in Proc. 18th Int. Conf. Ubiquitous
Robots (UR), Jul. 2021, pp. 256–263.

[33] H. Vallery, E. H. F. van Asseldonk, M. Buss, and H. van der Kooij,
‘‘Reference trajectory generation for rehabilitation robots: Complementary
limb motion estimation,’’ IEEE Trans. Neural Syst. Rehabil. Eng., vol. 17,
no. 1, pp. 23–30, Feb. 2009.

[34] Z. Guo, J. Ye, S. Zhang, L. Xu, G. Chen, X. Guan, Y. Li, and Z. Zhang,
‘‘Effects of individualized gait rehabilitation robotics for gait training on
hemiplegic patients: Before-after study in the same person,’’ Frontiers
Neurorobotics, vol. 15, p. 194, Mar. 2022.

[35] G. Steinwender, V. Saraph, S. Scheiber, E. B. Zwick, C. Uitz, and K. Hackl,
‘‘Intrasubject repeatability of gait analysis data in normal and spastic
children,’’ Clin. Biomechanics, vol. 15, no. 2, pp. 134–139, Feb. 2000.

[36] Y. Moon, J. Sung, R. An, M. E. Hernandez, and J. J. Sosnoff, ‘‘Gait
variability in people with neurological disorders: A systematic review and
meta-analysis,’’ Hum. Movement Sci., vol. 47, pp. 197–208, Jun. 2016.

[37] M. Endo, K. L. Poston, E. V. Sullivan, L. Fei-Fei, K. M. Pohl, and E. Adeli,
‘‘GaitForeMer: Self-supervised pre-training of transformers via human
motion forecasting for few-shot gait impairment severity estimation,’’ in
Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. Cham,
Switzerland: Springer, 2022, pp. 130–139.

[38] S. A. A. Moosavian, A. Kiani, V. Akbari, M. Nabipour, and S. Ghanaat,
‘‘RoboWalk trajectory planning based on the human gait prediction using
LSTM,’’ in Proc. 9th RSI Int. Conf. Robot. Mechatronics (ICRoM),
Nov. 2021, pp. 433–438.

[39] E. Gieysztor, M. Kowal, and M. Paprocka-Borowicz, ‘‘Gait parameters
in healthy preschool and school children assessed using wireless inertial
sensor,’’ Sensors, vol. 21, no. 19, p. 6423, Sep. 2021.

[40] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[41] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman,
‘‘1D convolutional neural networks and applications: A survey,’’ Mech.
Syst. Signal Process., vol. 151, Apr. 2021, Art. no. 107398.

[42] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszko-
reit, and N. Houlsby, ‘‘An image is worth 16×16 words: Transformers for
image recognition at scale,’’ 2020, arXiv:2010.11929.

[43] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 30, 2017, pp. 1–11.

[44] T. Giorgino, ‘‘Computing and visualizing dynamic time warping align-
ments in R: The dtw package,’’ J. Stat. Softw., vol. 31, no. 7, pp. 1–24,
2009.

[45] L. Moreira, J. Figueiredo, J. P. Vilas-Boas, and C. P. Santos, ‘‘Kinematics,
speed, and anthropometry-based ankle joint torque estimation: A deep
learning regression approach,’’Machines, vol. 9, no. 8, p. 154, Aug. 2021.

[46] D. D. Molinaro, I. Kang, J. Camargo, M. C. Gombolay, and A. J. Young,
‘‘Subject-independent, biological hip moment estimation during multi-
modal overground ambulation using deep learning,’’ IEEE Trans. Med.
Robot. Bionics, vol. 4, no. 1, pp. 219–229, Feb. 2022.

RANIA KOLAGHASSI (Graduate Student
Member, IEEE) received the B.Eng. degree in
biomedical engineering from the University of
Kent, Canterbury, U.K., in 2019, where she is
currently pursuing the Ph.D. degree. She is a mem-
ber of the Robotics and Assistive Technologies
Research Group and the Kent Assistive Robotics
Laboratory (KAROL), School of Engineering,
University of Kent. Her research interests include
gait analysis, exoskeletons, human–robot inter-

action, and machine and deep learning for medical and rehabilitative
applications.

GIANLUCA MARCELLI is a Senior Lecturer of
biomedical engineering with the University of
Kent. The main contribution of his multidisci-
plinary research lies in biomechanics. He has
developed computational models to understand
biomedical systems.

KONSTANTINOS SIRLANTZIS is a Professor
of Applied Artificial Intelligence at the School
of Engineering, Technology and Design, Canter-
bury Christ Church University (CCCU), Canter-
bury, U.K. Previously he served as an Associate
Professor of Intelligent Systems at the School of
Engineering, University of Kent, where he was the
Head of the Robotics and Assistive Technologies
Research Group and Founding Director of Kent
Assistive Robotics Laboratory (KAROL). He has

a strong track record in artificial intelligence and neural networks for image
analysis and understanding, robotic systems with an emphasis in assistive
technologies, and pattern recognition for biometrics-based security applica-
tions. He has authored over 130 peer-reviewed papers in journals and con-
ferences. He has organized and chaired a range of international conferences
and workshops.

31976 VOLUME 11, 2023


