

# **Kent Academic Repository**

Hoque, Sumaiya, Pinto, Pedro, Ribeiro, Cláudia A., Canniere, Evi, Daandels, Yvonne, Dellevoet, Martine, Bourgeois, Anne, Hammouma, Ourida, Hunter, Paul, Gentekaki, Eleni and others (2023) *Follow-up investigation into Cryptosporidium prevalence and transmission in Western European dairy farms*. Veterinary Parasitology, 318. ISSN 0304-4017.

**Downloaded from** <u>https://kar.kent.ac.uk/100753/</u> The University of Kent's Academic Repository KAR

The version of record is available from https://doi.org/10.1016/j.vetpar.2023.109920

This document version Author's Accepted Manuscript

**DOI for this version** 

Licence for this version CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

**Additional information** 

# Versions of research works

# **Versions of Record**

If this version is the version of record, it is the same as the published version available on the publisher's web site. Cite as the published version.

# **Author Accepted Manuscripts**

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in *Title of Journal*, Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

# **Enquiries**

If you have questions about this document contact <u>ResearchSupport@kent.ac.uk</u>. Please include the URL of the record in KAR. If you believe that your, or a third party's rights have been compromised through this document please see our <u>Take Down policy</u> (available from <u>https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies</u>).

# Highlights

- Prevalence of *Cryptosporidium* ranged from 23.3% to 25%, across dairy cow farms from Belgium, France and the Netherlands
- *Cryptosporidium parvum* was associated with pre-weaned calves
- Subtyping of *gp60* gene revealed nine subtypes circulating among the farms
- We report for the first time a novel subtype: IIdA14G2R1
- Vertical transmission was not a major contributor to *Cryptosporidium* spread









| Country         Farm         Providence %<br>(positive of matrix)         C. parsiant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Farm         | Prevalence %<br>(positives/ total<br>screened) | Cryptosporidium spp. present (no. isolates identified) |          |           |                 |                                              |                                               |                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------|--------------------------------------------------------|----------|-----------|-----------------|----------------------------------------------|-----------------------------------------------|--------------------------------|
| BEI         25% (5/20)         5         -         -         -         -         IntAlSCR1 (5)           BE3         45% (9/20)         9         -         -         -         -         IntAlSCR1 (7)           BE5         38.0% (718)         3         3         1         -         -         -         IntAlSCR1 (7)           BE5         38.0% (718)         3         3         1         -         -         IntAlSCR1 (7)           BE7         20% (4/20)         4         -         -         -         IntAlSCR1 (7)           BE81         45% (9/20)         8         -         -         1         -         -         IntAlSCR1 (7)           BE10         25% (4/20)         2         1         1         -         -         IntAlSCR1 (7)           BE11         25% (7/20)         4         -         -         1         IntAlSCR1 (7)           BE14         5% (7/20)         1         1         -         -         IntAlSCR1 (7)           BE14         5% (7/20)         1         1         -         -         IntAlSCR1 (7)           BE14         5% (7/20)         1         1         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Country                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                | C. parvum                                              | C. bovis | C. ryanae | C.<br>andersoni | C. parvum/<br>C. bovis<br>(co-<br>infection) | C. parvum/<br>C. ryanae<br>(co-<br>infection) | C. parvum gp60<br>subtypes     |
| BE2         Soft (5/0)         3         1         1         -         -         -         IntalSCR1 (7)           BE4         0% (0/9)         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         IntalSCR1 (8)         BE1         BE3         -         -         1         -         -         -         IntalSCR1 (7)         BE3         -         -         IntalSCR1 (7)         BE3         -         -         IntalSCR1 (7)         BE3         -         -         IntalSCR1 (7)         -         -         IntalSCR1 (7)         -         -         IntalSCR1 (7)         -         -         -         IntalSCR1 (7)         -         -         -         IntalSCR1 (7)         -         -         -         -         -         -         -         -         -         IntalSCR1 (7) <th< td=""><td rowspan="8"></td><td>BE1</td><td>25% (5/20)</td><td>5</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>IIaA15G2R1 (5)</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BE1          | 25% (5/20)                                     | 5                                                      | -        | -         | -               | -                                            | -                                             | IIaA15G2R1 (5)                 |
| BE3         45% (9/20)         9         -         -         -         -         -         -         IIIISCRI (7)           BE5         38.9% (7/18)         3         3         1         -         -         -         IIIIAISCRI (7)           BE5         38.9% (7/18)         3         -         -         -         IIIIAISCRI (7)           BE6         20% (4/20)         4         -         -         -         IIIIAISCRI (7)           BE8         45% (9/20)         8         -         1         -         -         IIIIAISCRI (7)           BE10         20% (4/20)         3         -         1         -         -         IIIIAISCRI (7)           BE11         20% (4/20)         3         -         -         1         IIIIAISCRI (7)           BE12         33.3% (7/21)         2         3         1         -         -         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BE2          | 50% (5/10)                                     | 3                                                      | 1        | 1         | -               | -                                            | -                                             | IIaA15G2R1 (3)                 |
| BE4         0% (0/19)         -         -         -         -         -         -         -         IIIAJSGRI ()           BE5         38.9% (1/8)         3         -         -         -         1         IIIAJSGRI ()           BE7         20% (4/20)         4         -         -         -         -         IIIAJSGRI (3)           BE9         20% (4/20)         2         1         1         -         -         -         IIIAJSGRI (3)           BE10         25% (5/20)         4         -         -         1         -         -         IIIAJSGRI (3)           BE11         20% (4/20)         3         -         -         1         IIIAJSGRI (3)           BE13         29.4% (5/17)         1         2         -         -         2         IIIIAJSGRI (3)           BE14         5% (1/20)         -         1         -         -         IIIIAJSGRI (3)           BE14         5% (7/20)         4         2         -         -         IIIIAJSGRI (3)           BE17         35% (7/20)         4         2         -         -         IIIIAJSGRI (3)           FR1         10% (2/20)         -         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BE3          | 45% (9/20)                                     | 9                                                      | -        | -         | -               | -                                            | -                                             | IIaA15G2R1 (7)                 |
| BE5         38.9% (7/18)         3         3         1         -         -         IBALSGRI (3)<br>IBALTGIRI (1)           BE6         20% (4/20)         3         -         -         -         1         IBALSGRI (3)<br>IBALTGIRI (1)           BE8         45% (9/20)         8         -         1         -         -         -         IBALSGRI (3)           BE8         45% (9/20)         2         1         1         -         -         -         IBALSGRI (2)           BE10         25% (5/20)         4         -         -         1         -         -         IBALSGRI (2)           BE12         33.3% (7/21)         2         3         1         -         -         IBALSGRI (2)           BE13         29.4% (3/17)         1         2         -         -         IBALSGRI (3)           BE14         5% (7/20)         4         2         -         -         IBALSGRI (3)           BE16         5.3% (7/20)         4         2         -         -         IBALSGRI (3)           FR1         10% (2/20)         -         1         -         -         IBALSGRI (3)           FR2 <th10% (6="" 17)<="" th="">         5         -</th10%>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BE4          | 0% (0/19)                                      | -                                                      | -        | -         | -               | -                                            | -                                             | -                              |
| BE6         20% (4/20)         3         -         -         -         1         IIIAAISG2R (5)<br>IIIAISG2R (6)           BE7         20% (4/20)         2         1         1         -         -         IIIIAISG2R (6)           BE9         20% (4/20)         2         1         1         -         -         IIIIAISG2R (7)           BE10         25% (5/20)         4         -         -         1         -         -         IIIIAISG2R (7)           BE12         33.3% (721)         2         3         1         -         -         IIIIAISG2R (7)           BE13         29.4% (5/17)         1         2         -         -         2         IIIIAISG2R (1)           BE13         29.4% (5/17)         1         1         -         -         -         IIIIAISG2R (1)           BE15         20% (4/20)         1         3         -         -         -         IIIIAISG2R (1)           BE17         35% (7/20)         4         2         -         -         IIIIAISG2R (1)           BE17         10% (2/20)         1         -         -         -         IIIIAISG2R (3)           BE17         35% (7/20)         1         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BE5          | 38.9% (7/18)                                   | 3                                                      | 3        | 1         | -               | -                                            | -                                             | IIaA15G2R1 (1)                 |
| BED         20% (4/20)         3         -         -         -         -         -         Imaring and angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DEC          | 2004 (4/20)                                    | 2                                                      |          |           |                 |                                              |                                               | IIaA15G2R1 (3)                 |
| BE7         20% (4/20)         4         -         -         -         -         IBA15GR1 (8)           BE8         45% (9/20)         8         -         1         -         -         IBA15GR1 (8)           BE9         20% (4/20)         3         -         -         1         -         -         IBA15GR1 (1)           BE12         33.3% (721)         2         3         1         -         -         IBA15GR1 (1)           BE13         29.4% (517)         1         2         -         -         2         IBA15GR1 (1)           BE13         29.4% (517)         1         2         -         -         2         IBA15GR1 (1)           BE15         20% (4/20)         1         3         -         -         1         IBA15GR1 (3)           BE17         35% (7/20)         4         2         -         -         1         IBA15GR1 (3)           BE17         10% (2/20)         1         -         -         1         IBA15GR1 (3)           FR1         10% (2/20)         1         -         -         1         IBA15GR1 (3)           FR2         10% (5/17)         5         -         -         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BE0          | 20% (4/20)                                     | 3                                                      | -        | -         | -               | -                                            | 1                                             | IIaA17G1R1 (1)                 |
| BER         45% (9/20)         8         -         1         -         -         -         IBA15G2R (8)           BEI0         25% (5/20)         4         -         -         1         -         -         IBA15G2R (7)           BEI1         25% (5/20)         4         -         -         1         -         -         IBA15G2R (7)           BEI2         33,3% (7/21)         2         3         1         -         -         -         IBA14G2R (7)           BEI3         29.4% (5/17)         1         2         -         -         2         -         IBA14G2R (7)           BEI6         53% (1/20)         -         1         -         -         -         IBA15G2R (7)           BEI7         35% (7/20)         4         2         -         -         1         -         -         IBA15G2R (7)           FR1         10% (2/20)         1         -         -         1         -         -         IBA15G2R (7)           FR3         45.5% (5/17)         5         -         -         -         IBA15G2R (7)           FR4         29.4% (5/77)         5         -         -         -         IBA16G2R (7) </td <td>BE7</td> <td>20% (4/20)</td> <td>4</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>IIaA15G2R1 (4)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BE7          | 20% (4/20)                                     | 4                                                      | -        | -         | -               | -                                            | -                                             | IIaA15G2R1 (4)                 |
| BE9         20% (4/20)         2         1         1         -         -         -         I         -         I         -         I         -         I         I         -         I         I         I         -         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BE8          | 45% (9/20)                                     | 8                                                      | -        | 1         | -               | -                                            | -                                             | IIaA15G2R1 (8)                 |
| BEI0         25% (5/20)         4         -         -         1         -         -         IIA15G2RI (1)           BEI1         20% (4/20)         3         -         -         I         -         IIA115G2RI (2)           BE13         29.4% (5/17)         1         2         -         -         IIA143G2RI (1)           BE14         5% (1/20)         -         1         -         -         IIA143G2RI (1)           BE15         20% (4/20)         1         3         -         -         -         IIA143G2RI (1)           BE16         5% (1/20)         -         1         -         -         -         IIA15G2RI (3)           BE17         35% (7/20)         4         2         -         -         IIA15G2RI (3)           FR1         10% (2/20)         1         -         -         IIA15G2RI (3)           FR3         45.5% (5/11)         5         -         -         -         IIA16G2RI (3)           FR4         2.9.4% (5/17)         5         -         -         -         IIA16G2RI (3)           FR5         35% (7/20)         6         -         1         -         IIA16G2RI (3)           FR4 <td>E</td> <td>BE9</td> <td>20% (4/20)</td> <td>2</td> <td>1</td> <td>1</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BE9          | 20% (4/20)                                     | 2                                                      | 1        | 1         | -               | -                                            | -                                             | -                              |
| BE11         20% (4/20)         3         -         1         -         IBA14GR1 (1)<br>IBA14GR1 (1)           BE12         33.3% (7/21)         2         3         1         -         -         1         IBA14GR1 (1)<br>IBA14GR1 (2)           BE13         29.4% (5/17)         1         2         -         -         2         -         IBA14GR1 (2)           BE15         29.4% (5/17)         1         2         -         -         1         IBA14GR1 (2)           BE15         20% (4/20)         1         3         -         -         -         IBA15GR1 (1)           BE16         5.3% (1/19)         -         1         -         IBA15GR1 (2)         -         -         IBA15GR1 (2)           FR1         10% (2/20)         1         -         -         -         IBA15GR1 (2)         IBA15GR1 (2)           FR4         45.% (5/11)         5         -         -         -         IBA15GR1 (2)           FR4         45.% (5/17)         5         -         -         -         IBA15GR1 (2)           FR4         25.% (5/20)         2         1         1         -         IBA15GR1 (2)           FR7         25% (5/20) <td< td=""><td></td><td>BE10</td><td>25% (5/20)</td><td>4</td><td>-</td><td>-</td><td>1</td><td>-</td><td>-</td><td>IIaA15G2R1 (1)</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BE10         | 25% (5/20)                                     | 4                                                      | -        | -         | 1               | -                                            | -                                             | IIaA15G2R1 (1)                 |
| BE12         33.58 (7/21)         2         3         1         -         1         IbaA13G2R1 (1)<br>IbAA13G2R1 (1)           BE13         29.4% (5/17)         1         2         -         -         2         IbaA13G2R1 (1)<br>IbAA13G2R1 (1)           BE14         5% (1/20)         -         1         -         -         -         -         IbaA13G2R1 (1)           BE15         20% (4/20)         1         3         -         -         -         -         -         -         IbaA15G2R1 (3)           BE17         35% (7/20)         4         2         -         -         1         -         IbaA15G2R1 (3)           FR1         10% (2/20)         1         -         -         1         -         IbaA15G2R1 (3)           FR2         10% (2/20)         -         1         1         -         -         -         IbaA15G2R1 (3)           FR4         29.4% (5/17)         5         -         -         -         -         -         IbaA15G2R1 (3)           FR4         29.4% (5/17)         5         -         -         -         -         -         IbaA15G2R1 (3)           FR4         29.4% (5/17)         3         - <td>in the second se</td> <td>BE11</td> <td>20% (4/20)</td> <td>3</td> <td>-</td> <td>-</td> <td>1</td> <td>-</td> <td>-</td> <td>IIaA15G2R1 (2)</td> | in the second se | BE11         | 20% (4/20)                                     | 3                                                      | -        | -         | 1               | -                                            | -                                             | IIaA15G2R1 (2)                 |
| BEI2         33.3% (7/21)         2         3         1         -         -         1         TRAIGGRI (1)<br>IBAI4GRI (2)           BEI3         29.4% (5/17)         1         2         -         -         2         -         IBAI3GGRI (1)           BEI5         20% (4/20)         1         3         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ĕ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                |                                                        |          |           |                 |                                              |                                               | IIaA14G1R1 (1)                 |
| BE13         29.4% (5/17)         1         2         -         -         2         -         IBA14GTR (2)<br>IBA13GR1 (1)           BE14         5% (1/20)         -         1         -         -         -         -         IBA15GR1 (1)           BE15         20% (4/20)         1         3         -         -         -         -         -         IBA15GR1 (1)           BE17         35% (7/20)         4         2         -         -         1         -         IBA15GR1 (1)           FR1         10% (2/20)         1         -         -         1         -         IBA15G2R1 (1)           FR2         10% (2/20)         1         -         -         1         -         IBA15G2R1 (2)           FR4         29.4% (5/17)         5         -         -         -         IBA15G2R1 (2)           FR4         29.4% (5/17)         5         -         -         1         -         IBA15G2R1 (2)           FR6         27.3% (3/11)         3         -         -         1         -         IBA16G2R1 (2)           FR7         25% (5/20)         2         1         1         -         IBA16G2R1 (2)           FR10 </td <td></td> <td>BE12</td> <td>33.3% (7/21)</td> <td>2</td> <td>3</td> <td>1</td> <td>-</td> <td>-</td> <td>1</td> <td><math>II_{a}A13G2R1(1)</math></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BE12         | 33.3% (7/21)                                   | 2                                                      | 3        | 1         | -               | -                                            | 1                                             | $II_{a}A13G2R1(1)$             |
| BE13         29.4% (5/17)         1         2         -         2         -         IbaA13G2R1 (1)           BE14         5% (1/20)         -         1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         IbaA15G2R1 (1)         -         -         -         -         IbaA15G2R1 (3)         -         -         -         -         IbaA15G2R1 (3)         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                |                                                        |          |           |                 |                                              |                                               | $II_{2}A14G1R1(2)$             |
| BE14         5% (1/20)         1         3         -         -         -         -         -         IIIIIISCER (1)           BE15         20% (4/20)         1         3         -         -         -         -         IIIIIISCER (1)           BE17         35% (7/20)         4         2         -         -         1         -         IIIIIIIIIIIIIIII           FR1         10% (2/20)         1         -         -         1         -         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BE13         | 29.4% (5/17)                                   | 1                                                      | 2        | -         | -               | 2                                            | -                                             | $\Pi_{2}\Delta_{13}G2R1(1)$    |
| BE15         20% (420)         1         3         -         -         -         IBA15G2R1 (1)           BE16         5.3% (1/9)         -         1         -         -         -         -         -         -         -         -         -         IIAA15G2R1 (1)           BE17         35% (720)         4         2         -         -         1         -         -         IIAA15G2R1 (1)           FR         10% (220)         -         1         1         -         -         -         -         -         -         IIAA15G2R1 (1)           FR3         45.5% (5/11)         5         -         -         -         -         IIAA16G2R1 (5)         -         -         -         IIAA16G2R1 (5)           FR4         29.4% (5/17)         5         -         -         -         -         IIAA16G2R1 (5)           FR6         27.3% (3/11)         3         -         -         -         IIAA16G2R1 (5)           FR7         25% (5/20)         2         1         1         -         -         IIAA16G2R1 (2)           FR8         38.9% (7/18)         6         -         1         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BF14         | 5% (1/20)                                      | _                                                      | 1        | -         | _               | -                                            | -                                             | -                              |
| BE16         5.3% (119)         -         1         -         -         -         Image of the test of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BE15         | 20% (4/20)                                     | 1                                                      | 3        | -         | _               | -                                            | -                                             | HaA15G2R1 (1)                  |
| DELG         DELG         DELG         ImalSG2R1 (3)           BE17         35% (7/20)         4         2         -         -         1         -         IffaA15G2R1 (3)           IffaA15G2R1 (1)         -         -         1         -         IffaA15G2R1 (1)           FR1         10% (220)         -         -         1         -         -         -         IffaA15G2R1 (3)           FR3         45.5% (5/11)         5         -         -         -         -         IffaA15G2R1 (3)           FR4         29.4% (5/17)         5         -         -         -         IffaA16G2R1 (3)           FR5         35% (7/20)         6         -         -         1         -         IffaA16G2R1 (2)           FR6         27.3% (3/11)         3         -         -         -         IffaA16G2R1 (2)           FR7         25% (5/20)         2         1         1         -         1         IffaA16G2R1 (2)           FR10         0% (0/14)         -         -         -         -         IffaA16G2R1 (2)           FR11         0% (0/14)         -         -         -         -         IffaA16G2R1 (1)           FR12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BE16         | 5 3% (1/19)                                    | -                                                      | 1        | _         | _               | _                                            | _                                             | -                              |
| BE17         35% (720)         4         2         -         1         -         IIIIA1GCR1 (1)<br>IIIA14G2R1 (1)<br>IIIA14G2R1 (1)           FR1         10% (220)         -         1         1         -         -         -         IIIIA15G2R1 (3)           FR2         10% (220)         -         1         1         -         -         -         -         -         IIIIA15G2R1 (3)           FR3         45.5% (5/11)         5         -         -         1         -         -         IIIIIA16G2R1 (3)           FR4         29.4% (5/17)         5         -         -         1         IIIIIA16G2R1 (2)           FR5         35% (720)         6         -         -         1         IIIIA16G2R1 (3)           FR4         29.4% (5/11)         3         -         2         2         -         IIIIA16G2R1 (3)           FR4         72.5% (5/20)         2         1         1         -         -         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DL10         | 5.570 (1/17)                                   | -                                                      | 1        | _         | -               | -                                            | _                                             | $\Pi_{2} \Delta 15 G2 R1 (3)$  |
| Super-         Super-         I         I         I         Intractoring (1)           FR1         10% (220)         1         -         -         1         -         -         Intractoring (1)           FR2         10% (220)         -         1         -         -         -         -         -         -         -         -         Intractoring (1)         -         -         Intractoring (1)         -         -         Intractoring (1)         -         -         Intractoring (1)         -         -         Intractoring (2)         -         -         -         -         Intractoring (2)         -         -         -         Intractoring (2)         -         -         -         Intractoring (2)         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BE17         | 35% (7/20)                                     | 4                                                      | 2        |           |                 | 1                                            |                                               | $H_{2}A15G1P1(1)$              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DL17         | 3370 (7/20)                                    | 4                                                      | 2        | -         | -               | 1                                            | -                                             | IIdA14G2R1(1)                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FR1          | 10% (2/20)                                     | 1                                                      |          | -         | 1               |                                              | -                                             | IIa15G2R1 (1)                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FP2          | 10% (2/20)<br>10% (2/20)                       | 1                                                      | -        | 1         | 1               | -                                            | -                                             | Ha1502KI (1)                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ED 2         | 1070 (2/20)                                    | - 5                                                    | 1        | 1         | -               | -                                            | -                                             | -<br>HeA15C2P1 (2)             |
| PR4         29,4% (5)(1)         3         -         -         -         -         -         -         -         IIIA1062R1 (5)           FR5         33% (720)         6         -         -         1         -         -         IIIA1062R1 (5)           FR6         27.3% (3/11)         3         -         -         -         -         IIIA1062R1 (2)           FR7         25% (5/20)         2         1         1         -         1         IIIA1062R1 (2)           FR8         38.9% (7/18)         3         -         2         2         -         -         IIIA1562R1 (3)           FR10         0% (0/14)         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FK3<br>ED4   | 43.3%(3/11)                                    | 5                                                      | -        | -         | -               | -                                            | -                                             | HaA15G2R1(3)                   |
| FR3         3.3% (1/20)         0         -         -         1         -         -         IIIAAIG2R1 (2)<br>IIAAIG2R1 (2)           FR4         25% (5/20)         2         1         1         -         1         -         IIIAAIG2R1 (2)           FR7         25% (5/20)         2         1         1         -         1         -         IIIAAIG2R1 (2)           FR9         38.9% (7/18)         6         -         1         -         -         -         IIIAAIG2R1 (3)           FR10         0% (0/14)         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         IIIAAI5G2R1 (4)         IIIAAI5G2R1 (4)         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FK4<br>ED5   | 29.4%(5/17)                                    | 5                                                      | -        | -         | -               | -                                            | -                                             | HaA16G2R1(5)                   |
| FR6         27.3% (3/11)         3         -         -         -         -         -         -         IIIAA16G1R1 (1)<br>IIAA16G2R1 (2)           FR7         25% (5/20)         2         1         1         -         1         -         IIIAA16G2R1 (2)           FR8         38.9% (7/18)         6         -         1         -         -         IIIAA16G2R1 (2)           FR10         0% (0/14)         -         -         -         -         -         -         -         -         IIIAA16G2R1 (2)           FR10         0% (0/14)         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | гкэ          | 55% (7/20)                                     | 0                                                      | -        | -         | 1               | -                                            | -                                             | IIaA10G2R1(3)<br>IIaA15G2R1(3) |
| PER         FR7         25% (5/20)         2         1         1         -         1         -         IIAAHOGIR (1)           FR8         38.9% (7/18)         6         -         1         -         1         -         IIAAHOGIR (2)           FR9         38.9% (7/18)         6         -         1         -         -         IIAAHOGIR (2)           FR10         0% (0/14)         -         -         -         -         -         -         -         -         -         -         -         -         IIAAHOGIR (1)           FR11         0% (0/14)         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FR6          | 27.3% (3/11)                                   | 3                                                      | -        | -         | -               | -                                            | -                                             | HaA15G2R1(2)                   |
| PR/         25% (5/20)         2         1         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         -         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th="">         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         <th1< th="">         1         1         <th1< td=""><td></td><td>ED 7</td><td>250/ (5/20)</td><td>2</td><td>1</td><td>1</td><td></td><td>1</td><td></td><td>IIaAI6GIRI(1)</td></th1<></th1<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ED 7         | 250/ (5/20)                                    | 2                                                      | 1        | 1         |                 | 1                                            |                                               | IIaAI6GIRI(1)                  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FK/          | 25% (5/20)                                     | 2                                                      | 1        | 1         | -               | 1                                            | -                                             | HaA16G2R1(2)                   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FKð          | 38.9% (7/18)                                   | 3                                                      | -        | 2         | Z               | -                                            | -                                             | IIaA15G2R1(3)                  |
| FR10         0% (0/14)         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< td=""><td>E C</td><td>FR9</td><td>38.9% (7/18)</td><td>6</td><td>-</td><td>1</td><td>-</td><td>-</td><td>-</td><td>HaA15G2R1(4)</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FR9          | 38.9% (7/18)                                   | 6                                                      | -        | 1         | -               | -                                            | -                                             | HaA15G2R1(4)                   |
| FR10         0% (0/14)         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< td=""><td></td><td><b>ED</b> 10</td><td>00/ (0/14)</td><td></td><td></td><td></td><td></td><td></td><td></td><td><math>\operatorname{IIaA16G2K1}(1)</math></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>ED</b> 10 | 00/ (0/14)                                     |                                                        |          |           |                 |                                              |                                               | $\operatorname{IIaA16G2K1}(1)$ |
| SPR11         0.% (0/14)         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FK10<br>FD11 | 0% (0/14)                                      | -                                                      | -        | -         | -               | -                                            | -                                             | -                              |
| FR12         10% (220)         -         2         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         111         1         1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         112         131         10% (0 / 20 / 20 / 20 / 20 / 20 / 20 / 20 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FK11<br>FD12 | 0% (0/14)                                      | -                                                      | -        | -         | -               | -                                            | -                                             | -                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FR12         | 10% (2/20)                                     | -                                                      | 2        | -         | -               | -                                            | -                                             | -                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FR13         | 40% (8/20)                                     | 4                                                      | 3        | -         | -               | 1                                            | -                                             | IIaA16G2R1 (4)                 |
| FR15         28.0% (2/)         1         -         -         1         -         -         Ital SG2R1 (1)           NL1         35% (7/20)         7         -         -         -         -         -         Ital SG2R1 (1)           NL2         16.7% (3/18)         3         -         -         -         -         -         Ital SG2R1 (2)           NL3         15% (3/20)         -         1         1         1         -         -         -         -         -         Ital Al5G2R1 (2)           NL4         10% (2/20)         -         2         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FR14         | 0% (0/6)                                       | -                                                      | -        | -         | -               | -                                            | -                                             | -                              |
| NL1         35% (7/20)         7         -         -         -         -         -         -         ImalsG2R1(6)           NL2         16.7% (3/18)         3         -         1         1         1         -         -         ImalsG2R1(2)           NL3         15% (3/20)         -         1         1         1         -         -         -         -           NL4         10% (2/20)         -         2         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< td=""><td></td><td>FRIS</td><td>28.6% (2/7)</td><td>1</td><td>-</td><td>-</td><td>1</td><td>-</td><td>-</td><td>IIaA15G2R1 (1)</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FRIS         | 28.6% (2/7)                                    | 1                                                      | -        | -         | 1               | -                                            | -                                             | IIaA15G2R1 (1)                 |
| NL2         16.7% (5/18)         3         -         -         -         -         -         -         IBA15G2R1 (2)           NL3         15% (3/20)         -         1         1         1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NLI          | 35% (7/20)                                     | 1                                                      | -        | -         | -               | -                                            | -                                             | HaA15G2R1 (6)                  |
| NL3         15% (3/20)         -         1         1         1         1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< td=""><td></td><td>NL2</td><td>16.7% (3/18)</td><td>3</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>IIaA15G2R1 (2)</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NL2          | 16.7% (3/18)                                   | 3                                                      | -        | -         | -               | -                                            | -                                             | IIaA15G2R1 (2)                 |
| NL4         10% (2/20)         -         2         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         IIaAl4GR1(5)           NL6         20% (4/20)         4         -         -         -         -         IIaAl4GR1(5)         NL6         NL7         20% (4/20)         2         2         -         -         -         IIaAl5G2R1(2)         NL7         20% (4/20)         3         -         -         -         -         IIaAl3G2R1(3)         NL8         25% (5/20)         1         4         -         -         -         -         IIaAl3G2R1(3)         NL10         25% (5/20)         1         4         -         -         -         IIaAl3G2R1(3)         NL11         31.6% (6/19)         6         -         -         -         IIaAl3G2R1(5)         NL13         NL12         40% (8/20)         7         1         -         -         -         IIaAl5G2R1(5)         IIaAl5G2R1(6)         NL14         40% (8/20)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NL3          | 15% (3/20)                                     | -                                                      | 1        | 1         | 1               | -                                            | -                                             | -                              |
| NL5         25% (5/20)         5         -         -         -         -         -         -         Imalification           NL6         20% (4/20)         4         -         -         -         -         -         Imalification         -         Imalification         -         -         Imalification         -         Imalifica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The Netherlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NL4          | 10% (2/20)                                     | -                                                      | 2        | -         | -               | -                                            | -                                             | -                              |
| NL6       20% (4/20)       4       -       -       -       -       -       Imalification         NL7       20% (4/20)       2       2       2       -       -       -       -       Imalification         NL8       25% (5/20)       -       5       -       -       -       -       Imalification         NL9       15% (3/20)       3       -       -       -       -       -       -       Imalification       -       -       -       -       Imalification       -       -       -       -       -       Imalification       -       -       -       -       Imalification       -       -       Imalification       -       -       Imalification       -       -       -       Imalification       -       -       -       Imalification       -       -       Imalification       -       -       Imalification       -       -       Imalification       -       -       Ima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NL5          | 25% (5/20)                                     | 5                                                      | -        | -         | -               | -                                            | -                                             | IIaA14G1R1 (5)                 |
| Specific         NL7         20% (4/20)         2         2         -         -         -         -         IIaA15G2R1 (2)           NL8         25% (5/20)         -         5         -         -         -         -         -         -         IIaA15G2R1 (2)           NL9         15% (3/20)         3         -         -         -         -         -         -         -         -         -         IIaA15G2R1 (3)           NL10         25% (5/20)         1         4         -         -         -         -         IIaA15G2R1 (3)           NL11         31.6% (6/19)         6         -         -         -         -         IIaA15G2R1 (5)           NL12         40% (8/20)         7         1         -         -         -         IIaA15G2R1 (6)           NL13         0% (0/20)         -         -         -         -         IIaA15G2R1 (6)           NL15         20% (4/20)         4         -         -         -         -         IIaA15G2R1 (4)           NL16         20% (4/20)         4         -         -         -         IIaA15G2R1 (4)           NL17         25% (5/20)         5         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NL6          | 20% (4/20)                                     | 4                                                      | -        | -         | -               | -                                            | -                                             | IIaA15G2R1 (4)                 |
| NL8         25% (5/20)         -         5         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         IaA13G2R1 (3)         IaA13G2R1 (3)         IaA15G2R1 (1)         IaA15G2R1 (1)         IaA15G2R1 (5)         IaA15G2R1 (5)         IaA15G2R1 (5)         IaA15G2R1 (5)         IaA15G2R1 (5)         IaA15G2R1 (6)         IaA15G2R1 (4)         IaA15G2R1 (7)         IaA17G1R1 (7)         IaA17G1R1 (7) <th< td=""><td>NL7</td><td>20% (4/20)</td><td>2</td><td>2</td><td>-</td><td>-</td><td>-</td><td>-</td><td>IIaA15G2R1 (2)</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NL7          | 20% (4/20)                                     | 2                                                      | 2        | -         | -               | -                                            | -                                             | IIaA15G2R1 (2)                 |
| Here         NL9         15% (3/20)         3         -         -         -         -         IIaA13G2R1 (3)           Here         NL10         25% (5/20)         1         4         -         -         -         -         IIaA13G2R1 (3)           Here         NL10         25% (5/20)         1         4         -         -         -         -         IIaA13G2R1 (3)           Here         NL11         31.6% (6/19)         6         -         -         -         -         IIaA15G2R1 (1)           NL12         40% (8/20)         7         1         -         -         -         IIaA15G2R1 (5)           NL13         0% (0/20)         7         1         -         -         -         IIaA15G2R1 (6)           NL14         40% (8/20)         8         -         -         -         -         IIaA15G2R1 (6)           NL15         20% (4/20)         4         -         -         -         -         IIaA15G2R1 (4)           NL16         20% (4/20)         4         -         -         -         -         IIaA15G2R1 (4)           NL17         25% (5/20)         5         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NL8          | 25% (5/20)                                     | -                                                      | 5        | -         | -               | -                                            | -                                             | -                              |
| Homographic         State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NL9          | 15% (3/20)                                     | 3                                                      | -        | -         | -               | -                                            | -                                             | IIaA13G2R1 (3)                 |
| Ž         NL11         31.6% (6/19)         6         -         -         -         -         IIaA15G2R1 (5)           H         NL12         40% (8/20)         7         1         -         -         -         IIaA15G2R1 (5)           NL13         0% (0/20)         -         1         -         -         -         IIaA15G2R1 (6)           NL13         0% (0/20)         -         -         -         -         -         IIaA15G2R1 (6)           NL14         40% (8/20)         8         -         -         -         -         IIaA15G2R1 (6)           NL15         20% (4/20)         4         -         -         -         -         IIaA15G2R1 (4)           NL16         20% (4/20)         4         -         -         -         -         IIaA15G2R1 (4)           NL17         25% (5/20)         5         -         -         -         IIaA15G2R1 (7)           NL18         42.1% (8/19)         8         -         -         -         -         IIaA15G2R1 (7)           NL19         35% (7/20)         7         -         -         -         -         -         IIaA15G2R1 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NL10         | 25% (5/20)                                     | 1                                                      | 4        | -         | -               | -                                            | -                                             | IIaA15G2R1 (1)                 |
| PE         NL12         40% (8/20)         7         1         -         -         -         IIaA15G2R1 (6)           NL13         0% (0/20)         -         -         -         -         -         -         -         -         IIaA15G2R1 (6)           NL14         40% (8/20)         8         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         1aA15G2R1 (4)         NL16         20% (4/20)         4         -         -         -         -         IIaA15G2R1 (4)         NL17         25% (5/20)         5         -         -         -         -         IIaA15G2R1 (4)         NL18         42.1% (8/19)         8         -         -         -         -         IIaA15G2R1 (7)         IIaA15G2R1 (7)         NL19         35% (7/20)         7         - <td>NL11</td> <td>31.6% (6/19)</td> <td>6</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>IIaA15G2R1 (5)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NL11         | 31.6% (6/19)                                   | 6                                                      | -        | -         | -               | -                                            | -                                             | IIaA15G2R1 (5)                 |
| H         NL13         0% (0/20)         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         IIaA15G2R1 (6)         IIaA15G2R1 (6)         IIaA15G2R1 (4)         IIaA15G2R1 (7)         IIaA15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NL12         | 40% (8/20)                                     | 7                                                      | 1        | -         | -               | -                                            | -                                             | IIaA15G2R1 (6)                 |
| NL14       40% (8/20)       8       -       -       -       -       -       IIaA15G2R1 (6)         NL15       20% (4/20)       4       -       -       -       -       -       IIaA15G2R1 (4)         NL16       20% (4/20)       4       -       -       -       -       -       IIaA15G2R1 (4)         NL16       20% (4/20)       4       -       -       -       -       IIaA17G2R1 (4)         NL17       25% (5/20)       5       -       -       -       -       IIaA15G2R1 (4)         NL18       42.1% (8/19)       8       -       -       -       -       IIaA15G2R1 (7)         NL19       35% (7/20)       7       -       -       -       -       IIaA15G2R1 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NL13         | 0% (0/20)                                      | -                                                      | -        | -         | -               | -                                            | -                                             | -                              |
| NL15       20% (4/20)       4       -       -       -       -       -       IIaA15G2R1 (4)         NL16       20% (4/20)       4       -       -       -       -       IIaA17G2R1 (4)         NL17       25% (5/20)       5       -       -       -       -       IIaA15G2R1 (4)         NL17       25% (5/20)       5       -       -       -       IIaA15G2R1 (7)         NL18       42.1% (8/19)       8       -       -       -       IIaA15G2R1 (7)         NL19       35% (7/20)       7       -       -       -       -       IIaA17G1R1 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NL14         | 40% (8/20)                                     | 8                                                      | -        | -         | -               | -                                            | -                                             | IIaA15G2R1 (6)                 |
| NL16       20% (4/20)       4       -       -       -       -       -       IIaA17G2R1 (4)         NL17       25% (5/20)       5       -       -       -       -       -       IIaA15G2R1 (4)         NL18       42.1% (8/19)       8       -       -       -       -       -       IIaA15G2R1 (7)         NL19       35% (7/20)       7       -       -       -       -       IIaA17G1R1 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NL15         | 20% (4/20)                                     | 4                                                      | -        | -         | -               | -                                            | -                                             | IIaA15G2R1 (4)                 |
| NL17         25% (5/20)         5         -         -         -         -         IIaA15G2R1 (4)           NL18         42.1% (8/19)         8         -         -         -         -         IIaA15G2R1 (7)           NL19         35% (7/20)         7         -         -         -         -         IIaA17G1R1 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NL16         | 20% (4/20)                                     | 4                                                      | -        | -         | -               | -                                            | -                                             | IIaA17G2R1 (4)                 |
| NL18         42.1% (8/19)         8         -         -         -         -         -         IIaA15G2R1 (7)           NL19         35% (7/20)         7         -         -         -         -         -         IIaA17G1R1 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NL17         | 25% (5/20)                                     | 5                                                      | -        | -         | -               | -                                            | -                                             | IIaA15G2R1 (4)                 |
| <u>NL19</u> 35% (7/20) 7 IIaA17G1R1 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NL18         | 42.1% (8/19)                                   | 8                                                      | -        | -         | -               | -                                            | -                                             | IIaA15G2R1 (7)                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NL19         | 35% (7/20)                                     | 7                                                      | -        | -         | -               | -                                            | -                                             | IIaA17G1R1 (7)                 |

**Table 1.** Occurrence of *Cryptosporidium* spp. and *C. parvum gp60* subtypes in dairy cattle from farms across Belgium, France and the Netherlands.

| Country     | Cohort | % Prevalence     | Cryptosporidium | C. parvum gp60 |           |                                                                    |
|-------------|--------|------------------|-----------------|----------------|-----------|--------------------------------------------------------------------|
| Country     |        |                  | C. parvum       | C. bovis       | C. ryanae | subtypes                                                           |
| Poloium     | Year 1 | 35.6<br>(37/104) | 89.2            | 10.8           | -         | IIaA13G2R1<br>IIaA15G2R1<br>IIaA16G3R1<br>IIaA17G2R1               |
| Deigium     | Year 2 | 39.8<br>(45/113) | 84.4            | 13.3           | 2.22      | IIaA13G2R1<br>IIaA15G2R1                                           |
| France      | Year 1 | 33.7<br>(26/77)  | 84.6            | 15.4           | -         | IIaA15G2R1<br>IIaA16G2R1                                           |
|             | Year 2 | 38.3<br>(28/73)  | 89.3            | 3.57           | 7.14      | IIaA15G2R1<br>IIaA16G1R1<br>IIaA16G2R1                             |
|             | Year 1 | 35.9<br>(52/145) | 96.2            | 1.92           | 1.92      | IIaA13G2R1<br>IIaA14G1R1<br>IIaA15G2R1                             |
| Netherlands | Year 2 | 46.7<br>(71/152) | 95.8            | 4.23           | -         | IIaA13G2R1<br>IIaA14G1R1<br>IIaA15G2R1<br>IIaA17G1R1<br>IIaA17G2R1 |

**Table 2.** Comparison of *Cryptosporidium* spp. prevalence and *gp60* subtypes present in neonatal calves across Belgium, France, and the Netherlands over 2 years.

# Follow-up investigation into *Cryptosporidium* prevalence and transmission in Western European dairy farms

Sumaiya Hoque<sup>1</sup>, Pedro Pinto<sup>1</sup>, Cláudia A. Ribeiro<sup>1</sup>, Evi Canniere<sup>2</sup>, Yvonne Daandels<sup>3</sup>, Martine Dellevoet<sup>3</sup>, Anne Bourgeois<sup>4</sup>, Ourida Hammouma<sup>5</sup>, Paul Hunter<sup>6</sup>, Eleni Gentekaki<sup>7</sup>, Martin Kváč<sup>8,9</sup> Jérôme Follet<sup>10</sup>, & Anastasios D. Tsaousis<sup>1</sup>

Affiliations:

<sup>1</sup> Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, United Kingdom.

<sup>2</sup> Inagro vzw, Ieperseweg 87, 8800 Rumbeke-Beitem, Belgium.

<sup>3</sup> Southern Agricultural and Horticultural Organisation (ZLTO), Onderwijsboulevard 225, 5223 DE 's-Hertogenbosch, Netherlands.

<sup>4</sup> SELAS CVE, SALOME, France.

<sup>5</sup> UMR-Transfrontalière 1158 BioEcoAgro, Junia, University of Lille, University of Liège, UPJV, ULCO, University of Artois, INRAE, F-59000 Lille.

<sup>6</sup> The Norwich School of Medicine, University of East Anglia, Norwich NR4 7TJ, England

<sup>7</sup> School of Science and Gut Microbiome Research Group, Mae Fah Luang University, Chiang Rai, 57100, Thailand.

<sup>8</sup> Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice 37005, Czech Republic.

<sup>9</sup> Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic.

<sup>10</sup> University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520 IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F 59000 Lille, France.

\*Author for correspondence:

Dr. Anastasios D. Tsaousis, RAPID group, School of Biosciences, University of Kent, Canterbury, Kent, UK, Telephone number: +44 1227 827007; email: A.Tsaousis@kent.ac.uk

#### ABSTRACT

Cryptosporidium parvum is an enteric parasite and a major contributor to acute enteritis in calves worldwide, causing an important significant economic burden for farmers. This parasite poses a major public health threat through transmission between livestock and humans. Our previous pilot study in Western Europe revealed a high prevalence of Cryptosporidium in calves of dairy farms. In the sequel study herein, 936 faecal samples were collected from the same 51 dairy farms across Belgium, France, and the Netherlands. Following DNA extraction, Cryptosporidium screening was carried out using nested-PCR amplification targeting the SSU rRNA gene. All positive samples were sequenced, and phylogenetic analyses were used to identify the Cryptosporidium spp.species present. The 60 kDa glycoprotein (gp60) gene was also sequenced to determine the C. parvum subtypes present. Prevalence of Cryptosporidium ranged from 23.3% to 25%, across the three countries surveyed. The parasite was found in most of the farms sampled, with 90.2% testing positive. Cryptosporidium parvum, C. bovis, C. ryanae and C. andersoni were all identified, with the former being the most predominant, representing 71.4% of all infections. Cryptosporidium parvum was associated with pre-weaned calves, while other species were associated with older animals. Subtyping of gp60 gene revealed nine subtypes, eight of which have been-previously been-reported to cause clinical disease in humans. Similarly to the first study, vertical transmission was not a major contributor to Cryptosporidium spread. Our study highlights the need for further investigation into cryptosporidiosis Cryptosporidiosis transmission, and future studies will requirelikely requiring a One Health approach to reduce the impact of this disease.

#### INTRODUCTION

Cryptosporidiosis is an enteric disease caused by the apicomplexan <u>parasitesparasite</u> *Cryptosporidium* (Shirley et al., 2012). Most <u>cases of</u> zoonotic cryptosporidiosis <u>cases</u> are associated with livestock. Cattle, in particular, have long been established as a key reservoir of infection with numerous global reports of human cryptosporidiosis cases linked to close contact with <u>thosethe</u> animals (Chalmers and Giles, 2010; Xiao and Feng, 2008). In the majority of these, *C. parvum* and *C. hominis* are the main <del>species</del> responsible <del>species</del> (Leitch and He, 2011; Xiao and Feng, 2008).

Bovine cryptosporidiosis also has a major financial impact for cattle farmers (Chalmers and Giles, 2010; Mosier and Oberst, 2000; Widmer et al., 2020). In this livestock, C. parvum, C. bovis, C. ryanae and C. andersoni are the main infectious species, with C. parvum being the most common (Cho and Yoon, 2014; De Graaf et al., 1999; Feng et al., 2018). Cryptosporidium parvum is a major cause of acute enteritis in cattle, causing neonatal diarrhoea. In most cases, the disease is self-limiting, though persistent diarrhoea can lead to emaciation, fatigue, and severe dehydration. While fathalitymortality is generally low, long-term adverse health consequences may arise (Cho and Yoon, 2014; Thomson et al., 2017). Significant differences in weight gain havehas been observed between calves who had severe cryptosporidiosis as neonates and calves that had not (Shaw et al., 2020). Thus, farmers may incur economic losses through dead livestock, treatment of sick animals and reduced production due to retarded animal growth (Bennett, 2003; Hawkins et al., 2019; Stott and Gunn, 1997). Additionally, cryptosporidiosis may exacerbate concurrent infections with other pathogens (Delling and Daugschies, 2022; García et al., 2000) and); infected animals are more susceptible to developing severe cryptosporidiosis. It is difficult for farmers to know how to manage spread of infection, as there is insufficient data on risk factors for Cryptosporidium infection to cattle on dairy farms. A recent systematic review found no consistent risk or protective factors for preventing C. parvum infection (Brainard et al., 2020).

Historically, *Cryptosporidium* detection has relied on microscopic examination of faecal smears for the presence of oocysts. As this method suffers from low sensitivity and specificity (Adeyemo et al., 2018), *Cryptosporidium* infection may not be detected in samples with low oocyst levels. Molecular-based diagnostic techniques have been used to increase sensitivity of *Cryptosporidium* detection along with ability to identity infecting species and subtypes. Subtype analysis can shed further light on potential zoonotic transmission by identifying the ones that occur in both humans and cattle. With increased molecular typing

studies, distinctions in the epidemiology of subtypes may also be discovered. This information could help ascertain how best to track and potentially tackle infection spread in certain areas.

A previous 2019–2020 study using samples from dairy cattle farms in Belgium, France and the Netherlands indicated a prevalence of 20.8–25.7% (Pinto et al., 2021), with numerous zoonotic *C. parvum* subtypes identified. Prior to this, prevalence investigations in these countries were infrequent and often did not utilise molecular detection. The study herein is a <u>anlongitudinal</u> investigation of *Cryptosporidium* across the same dairy farms one year later. We used the *SSU* rRNA and *gp60* genes for species and subtype level characterisation to investigate *C. parvum* diversity and transmission dynamics. As such, our study complements previous molecular work, provides temporal information on *Cryptosporidium* infection at the farm level and contributes to future investigations aiming to discern transmission networks.

#### MATERIALS AND METHODS

#### Sample collection

From September 2020 to July 2021, veterinarians collected a total of 936 faecal samples from <u>51 fifty one</u> dairy farms were – 17 in Belgium, 15 in France and 19 in the Netherlands. We aimed to collect samples from up to 10 calves (up to 3 months of age) and their mothers. In cases where farms had less than 10 calves, fewer samples were collected. Diarrheic and <u>apparently healthasymptomatic</u> animals were included in a random selection. Faeces were taken directly from the rectum, using a single pair of disposable gloves. This study was conducted as a cross-border collaboration under the Health for Dairy Cows (H4DC) project, funded by the Interreg-2-seas programme. This is a European Territorial Cooperation program covering the Flanders region of Belgium, the Hauts-de-France region in France and the <u>westernwest</u> part of the Netherlands. These regions experience similar maritime temperate climates. The main objective of the project is to reduce the disease burden and economic impact of *Cryptosporidium* spp. on dairy farms.

#### **DNA extraction**

Immediately after defecation, faeces were collected into sterile tubes, and stored on ice. DNA extraction was carried out using PureLink<sup>TM</sup> Microbiome DNA Purification Kit (ThermoFisher) according to manufacturer's instructions, with slight modifications.  $650 \mu$ L of S1 Lysis Buffer ( $650 \mu$ L) and  $100 \mu$ L of S2 Lysis Enhancer ( $100 \mu$ L) was added to each sample. They were then incubated at 65°C and then vortexed on maximum speed for 13 min each. After addition of S3 Clean-up Buffer, samples were incubated at 4°C for 10 min. Following application of S6 Elution Buffer to the spin column, samples were incubated at room temperature for 3 min prior to centrifugation. Genomic DNA was stored at -20°C until 18S rRNA and *gp60* PCR reactions were carried out. Leftover DNA and <u>fecalstool</u> samples <u>wereare</u> stored long-term in a -80 °C freezer.

#### Cryptosporidium spp. screening and molecular genotyping

Nested-PCR amplification of a 631-bp region of the 18S rRNA gene was used to screen for *Cryptosporidium* spp. (Ziegler et al., 2007). The external primers used were 5'-GATTAAGCCATGCATGTCTAA-3' (forward) and 5'-TTCCATGCTGGAGTATTCAAG3' (reverse). The internal primers were 5'-CAGTTATAGTTTACTTGATAATC-3' (forward) and 5'-CCTGCTTTAAGCACTCTAATTTTC-3' (reverse). Each PCR mixture contained 1  $\mu$ L of DNA, 0.4  $\mu$ M each of forward and reverse primers, 12.5  $\mu$ L of 2× PCRBIO Taq Mix Red (PCR Biosystems) and 9.5  $\mu$ L nuclease-free water. External PCR cycling conditions were: denaturation for 2 min at 94°C, followed by 24 cycles at 94°C for 50 s, 53°C for 50 s and 72°C for 1 min, and a final extension step at 72°C for 10 min. Internal PCR cycling conditions were: denaturation for 2 min at 94°C, followed by 30 cycles at 94°C for 50 s, 56°C for 30 s and 72°C for 1 min, and a final extension step at 72°C for 10 min. Positive (genomic DNA from a pure culture of *C. parvum* IOWA oocysts) and negative (using sterile water as a template) controls were included in both reactions. Following separation and excision from a 2% agarose gel, DNA was extracted using GeneJET Gel Extraction Kit (ThermoFisher Scientific). All positive samples were then bidirectionally sequenced (Eurofins Genomics) and chromatograms were manually assessed for quality, with ambiguous bases trimmed. For species level identification, BLAST searches were performed using obtained sequences as queries against the nucleotide database in GenBank. Following alignment with reference sequences, polymorphisms were identified.

#### gp60 subtyping of Cryptosporidium parvum

Nested-PCR of the gp60 gene was carried out to determine the subtype of Cryptosporidium 18S rRNA PCR-positive samples (Alves et al., 2003). The external primers 5′used were 5'-ATAGTCTCCGCTGTATTC-3' (forward) and primers 5´-GGAAGGAACGATGTATCT-3' (reverse). The internal were TCCGCTGTATTCTCAGCC-3' (forward) and 5'- GCAGAGGAACCAGCATC-3' (reverse). Each PCR mixture contained 2 µL of DNA, 0.2 µM each of forward and reverse primers, 15  $\mu$ L of 2× PCRBIO Taq Mix Red (PCR Biosystems) and 11.8  $\mu$ L nuclease-free water. Cycling conditions for both internal and external PCR reactions were: a denaturation step for 3 min at 94°C, followed by 35 cycles at 94°C for 45 s, annealing at 50°C for 45 s and extension at 72°C for 1 min, and a final extension step at 72°C for 7 min. Positive and negative controls were included in both reactions. Following separation and excision from a 2% agarose gel, DNA was extracted using GeneJET Gel Extraction Kit (ThermoFisher Scientific). All positive samples were then bidirectionally sequenced (Eurofins Genomics), and chromatograms were manually assessed for quality, with ambiguous bases trimmed. Subtypes were determined using established standard nomenclature (Sulaiman et al., 2005). BLAST searches were performed using newly generated sequences as queries against the nucleotide database in GenBank (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Following alignment with reference sequences, polymorphisms were identified.

#### **Phylogenetic analysis**

The obtained sequences were aligned with each other as well as reference sequences from GenBank by MAFFT v.7 (https://mafft.cbrc.jp/alignment/server). Sequence alignment was manually inspected using BioEdit v7.0.5.3 (https://bioedit.software.informer.com). Best DNA/Protein phylogeny models were selected using the MEGA11 software (Tamura et al., 2021). The Tamura 3-parameter model (Tamura, 1992) was selected. Phylogenetic trees were inferred using maximum likelihood (ML), with the substitution model that best fit the alignment selected using the Bayesian information criterion. Bootstrap support for branching was based on 1,000 replications. An 18S sequence from *Monocystis agilis* (Accession number: AF457127) was used to root ML tree.

#### Comparison to preceding study and statistical analyses

Only neonatal calves aged under one month old werehave been included for comparison. Farms with less than three calves within this age range have been excluded from comparison. In the preceding study, gp60 subtyping was only performed on samples confirmed as *C. parvum* through *SSU* rRNA gene sequencing. In this study, gp60 screening was carried out on all samples that were PCR-positive for *SSU* rRNA, which revealed mixed infections in some animals. For comparison between the two time points these samples have been identified based on their *SSU* rRNA gene. Furthermore, the *SSU* rRNA gene of some samples could not be successfully sequenced, but the gp60 gene could. These have been excluded in the prevalence count, as only *SSU* rRNA confirmed positive samples were reported in the previous study (Pinto et al., 2021). Comparison of prevalence between the two cohorts was performed by using the Mann-Whitney U test. Cochran Q tests were used to determine heterogeneity between farms within the same year and country. The mixed effects multilevel negative binomial modelling was done with STATA<sup>TM</sup> v17.0 with farm as the level. STATSDirect v. 3.3.5 was used to compare prevalence between countries within the same years.

#### RESULTS

#### Prevalence of Cryptosporidium in Belgian, French, and Dutch dairy farms

In Belgium, 324 fecalstool samples across 17 farms were screened. Amplification of the SSU rRNA and gp60 genes showed a prevalence of 25% with 81/324 specimens positive for Cryptosporidium spp. (Table 1). Prevalence varied across farms from 0% to 50%. The majority of the positive samples were identified as C. parvum (64.2%, 52/81) with 45 of them showing 100% nucleotide identity to the reference sequence AH006572.2, and four samples showing 99% nucleotide identity to the same sequence. We were unable to obtain good quality sequences for three SSU rRNA PCR-positive samples. Nonetheless, C. parvum identity was confirmed through positive gp60 PCR and subsequent sequencing. At the farm level, C. parvum was present in 14/17 farms. The next most abundant species found was C. bovis (20.9%, 17/81). Additionally, three samples had co-infections of C. bovis and C. parvum. Nineteen samples had 100% nucleotide identity to the reference sequence AB777173.1 (from a calf in Egypt), while one sample had 100% nucleotide identity to the reference sequence MZ021459.1 (from a calf in Belgium in a previous study on these farms (Pinto et al., 2021)). The next most prevalent species was C. ryanae (6.2%, 5/81). Additionally, two samples showed mixed infection of C. ryanae and C. parvum. Five samples were 100% identical to the reference sequence FJ463193.1, while one sample had 100% nucleotide identity to the reference sequence KT922233.1 and another showed 99% identity to the same sequence. The least common species was C. andersoni (2.5%, 2/81). One sample showed 100% nucleotide identity to the reference sequence AB513856.1 (from cattle in Egypt), while the other was 100% identical to FJ463171.1 (from cattle in China).

In France, 236 <u>fecalstool</u> samples across 15 farms were screened. Amplification of the *SSU* rRNA and *gp60* genes showed a prevalence of 23.3% with 55/236 specimens positive for *Cryptosporidium* spp. Prevalence varied across farms from 0% to 45.5%. Most of the positive samples were identified as *C. parvum* (65.5%, 36/55) with 33 of them showing 100% nucleotide identity to the reference sequence AH006572.2, and one sample showing 99% nucleotide identity to the same sequence. We were unable to obtain good quality sequences for two *SSU* rRNA PCR-positive samples, but *C. parvum* identity was confirmed through positive *gp60* PCR and subsequent sequencing. At the farm level, *C. parvum* was present in 10/15 farms, with occurrence ranging from 5% to 45.5%. The next most common species was *C. bovis* (12.7%, 7/55). Additionally, two samples had co-infections of *C. bovis* and *C. parvum*. Eight samples showed 100% nucleotide identity to the reference sequence AB777173.1, while

one sample showed 100% nucleotide identity to the reference sequence MZ021459.1. Equal levels of *C. ryanae* and *C. andersoni* were detected at 9.1% (5/55) each. Two *C. ryanae* variants were found with three samples showing 100% identity to KT922233.1 and two samples showing 100% nucleotide identity to the reference sequence FJ463193.1. Two *C. andersoni* variants were found with three isolates showing 100% nucleotide identity to reference sequence FJ463171.1 and two showing 100% nucleotide identity to AB513856.1.

In the Netherlands, 376 <u>fecalstool</u> samples across 19 farms were screened. Amplification of the *SSU* rRNA and *gp60* genes showed a prevalence of 24.2% with 91/376 specimens positive for *Cryptosporidium* spp. 18/19 farms contained at least one positive samples with prevalence ranging from 0% to 42.1% across farms. Most positive samples were identified as *C. parvum* (81.3%, 74/91) with all 74 isolates showing 100% nucleotide identity to the reference sequence AH006572.2. At the farm level, *C. parvum* was present in 8/19 farms. The next most prevalent species was *C. bovis* at (16.5%, 15/91), with 13 isolates showing 100% nucleotide identity to the reference sequence AB777173.1 and two isolates showing 100% nucleotide identity to FJ463193.1, and one for *C. andersoni* with 100% nucleotide identity to AB513856.1. No mixed infections were found.

All *SSU* rRNA sequences have been submitted to GenBank under accession numbers OP975438 – OP975657.

#### Cryptosporidium parvum subtyping through gp60 analysis

*Cryptosporidium parvum* was detected in 71.3% (162/227) of *Cryptosporidium* positive samples and found in 39 farms. PCR amplification and sequencing of the *gp60* gene was used to identify the specific *C. parvum* subtypes present in these three countries. All *18S* rRNA PCR-positive samples were further screened using nested PCR of the *gp60* gene. Of these, the *gp60* gene was successfully amplified and sequenced in 145 samples. 24 *C. parvum* positive sequences were not successfully subtyped. Sequence analysis revealed the presence of nine subtypes, eight of which belong to the IIa subtype family and one belonging to the IId family (**Figure 1**).

The most abundant subtype found overall was IIaA15G2R1, representing 61.7% of *C. parvum*-positive samples Ninety-eight isolates had 100% nucleotide identity to the reference sequence DQ630518.1 and two were 99% identical to the same sequence. This subtype was also the most widely distributed, occurring in 71.8% (28/39) of *C. parvum*-positive farms. This

subtype represented 73.1%, 41.7% and 63.5% of all *C. parvum* positive samples, in Belgium, France and the Netherlands, respectively. It was the most prevalent subtype in Belgium and the Netherlands. This subtype predominantly occurred in calves, with only two isolates occurring in a dam.

The second most common subtype in this study was IIaA16G2R1. Seventeen isolates were found with 100% nucleotide identity to reference sequence DQ192505.1, all of which were found in France. This subtype was found in five farms and represented 47.2% of total *C. parvum* infections in the French farms. This subtype also predominantly occurred in calves, with only one isolate occurring in a dam.

Eight isolates of IIaA14G1R1 were identified – six with 100% nucleotide identity to reference sequence AM937017.1 and two with 99% nucleotide identity to the same sequence. This subtype occurred in three farms, representing 5.8% and 6.8% of *C. parvum* infections in Belgium and the Netherlands, respectively.

Eight isolates of IIaA17G1R1 were identified – seven with 100% nucleotide identity to reference sequence GQ983359.1, which were all located in one Dutch farm. The remaining isolate occurred in a Belgian farm and had 99% nucleotide identity to the same sequence. This was the sole subtype present in two farms, representing 1.9% and 9.5% of *C. parvum* infections in Belgium and the Netherlands, respectively.

Five isolates of IIaA13G2R1 were identified – four with 100% nucleotide identity to reference sequence DQ192502.1 and one isolate with 99% homology to the same sequence. This was the sole subtype present in three farms, representing 3.8% and 4.1% of *C. parvum* infections in Belgium and the Netherlands, respectively.

IIaA17G2R1 was found exclusively in the Netherlands. Four isolates were identified with 100% nucleotide identity to DQ630516.1. This subtype occurred on one farm and represented 5.4% of *C. parvum* infections. IIaA15G1R1 (99% nucleotide identity to AB777872) and IIaA16G1R1 (100% nucleotide identity to DQ192504.1), each occurred once in Belgium and France, respectively. Lastly, a novel isolate was identified and marked as IIdA14G2R1. This is the first report of this subtype worldwide and is the only subtype belonging to the IId family. Subtypes IIaA17G1R1, IIaA13G2R1, IIaA17G2R1, IIaA15G1R1 and IIaA16G1R1 were all found exclusively in calves. Geographical distribution of subtypes is visualised in **Figure 2**.

All *gp60* sequences have been submitted to GenBank under accession numbers OP978513 \_- OP978657.

#### Comparison to previous sampling study

This work is a follow-up to a prevalence study carried out between 2019 to 2020 (Pinto et al., 2021). Methodology was slightly altered between the two studies. In the preceding study, *gp60* PCR and subtyping was only carried out on samples confirmed as *C. parvum* positive through *SSU* rRNA PCR and sequencing. Herein subtyping was performed in all *Cryptosporidium SSU* rRNA positive samples. As such, we were able to detect *Cryptosporidium* co-infections. For comparability between the cohorts, prevalence figures in the second cohort have been adjusted accordingly. Furthermore, only animals under 28 days old have been included for comparison.

While overall Cryptosporidium prevalence was higher in all three countries in the follow-up study (Table 2) this difference was not statistically significant (Mann-Whitney, U= U=813.5, p=0.197). In both cohorts, C. parvum is consistently the predominant species present in all countries, representing 91% of total infections. The difference in Cryptosporidium prevalence between the two studies was not uniform across all farms (Figure 3). In Belgium, seven farms showed an increase in prevalence amongst neonatal calves in the follow-up study, three of which with an increase two-fold or higher. While BE11 farm was initially Cryptosporidium negative, in the following year 30% of neonatal calves sampled tested positive. Incidence had decreased in eight farms, four of which had reduced by at least half. No infections were detected in BE14 farm, despite 100% of animals sampled the previous year testing positive. In France, prevalence decreased in six farms. Four farms showed an increase in prevalence amongst neonatal calves in the follow-up study, most dramatically seen in FR8 and FR13. Cryptosporidium incidence in the FR8 tripled in the subsequent study, while in FR13 100% of sampled calves testing positive despite initially testing negative in the previous year. In the Netherlands, ten farms displayed an increase in prevalence in the follow-up sampling, most markedly seen in NL18. Incidence in five farms decreased. In NL4 and NL13, no infections were found despite presence of the parasite in cohort 1. Two additional subtypes - IIaA17G1R1 and IIa17G2R1 were detected in the follow-up study.

Across countries, no neonatal infections were detected in farms BE9, FR7 and NL3 in either year. Prevalence in BE4, FR12 and FR15 remained at 10-14% in both years. There was no significant effect observed between countries, however an increase of prevalence from  $1_{s}^{st}$  to  $2_{s}^{nd}$  sampling year was noted (**Table S1**). Within the same country and same year Cochran Q was frequently significant suggesting that differences between farms reflect real differences rather than just random variation. This would indicate that. Nonetheless, variance

Formatted: Superscript
Formatted: Superscript

remaining at >0 indicates remaining heterogeneity and so it does raise the issue of how some

farms, may indeed be better at controlling *Cryptosporidium* infections than others-because of factors yet to be elucidated.

Formatted: Font color: Custom Color(RGB(34,34,34)), English (United States)

Formatted: Font color: Custom Color(RGB(34,34,34)), English (United States) Formatted: Font color: Custom Color(RGB(34,34,34)), English (United States)

Formatted: Font color: Custom Color(RGB(34,34,34))

#### DISCUSSION

#### Cryptosporidium species in cattle

Amplification and sequencing of *SSU* rRNA gene revealed high presence of *Cryptosporidium* at the farm level, with 90.2% of farms containing at least one positive sample across the three countries surveyed. Our results are in accordance with a previous cattle study in France, reporting prevalence of 88.4-100% at the farm level (Follet et al., 2011; Mammeri et al., 2019). Conversely, a previous study in Belgium reported just 32% of farms sampled as containing *Cryptosporidium*. This could be attributed to the less sensitive method of detection used (i.e. immunofluorescence assays of faecal smears). However, other molecular studies utilising *SSU* rRNA PCR amplification in Europe have also reported lower *Cryptosporidium* at the farm level, ranging from 44.5-66.0% (Díaz et al., 2021; Santoro et al., 2019). On the other hand, as the cows in this study were only sampled at one time point, the number of infections may be underestimated. Oocyst shedding can be intermittent (Shaw et al., 2021), and numerous longitudinal studies in farms have observed that almost all calves will shed oocysts over the course of the sampling period (Rieux et al., 2014, 2013a, 2013b).

*Cryptosporidium* infections were predominantly identified as *C. parvum*, comprising 64.2-81.32% of total infections across the three countries. These results are reflected in previous studies in Belgium (Geurden et al., 2007), France (Follet et al., 2011), and the Netherlands (Wielinga et al., 2008). Beyond these countries, the ubiquity of *C. parvum* in cattle has been reported extensively worldwide. However, *SSU* rRNA PCR amplification has been previously shown to selectively amplify the dominant species in a sample (Cama et al., 2006). As *C. parvum* infections have been suggested to result in higher oocyst shedding density, mixed infections with *C. bovis, C. ryanae* and *C. andersoni* are effectively concealed from detection.

#### High occurrence of zoonotic C. parvum gp60 subtypes

To assess zoonotic risk of *Cryptosporidium* infection in cattle, *C. parvum* subtype identification was carried through amplification and sequencing of the *gp60* gene. Nine subtypes, eight of which belong to the IIa family, were identified across the three countries. The geographic distribution of these subtypes is broad (**Table S2**) and almost all are of known zoonotic risk, but each to a different extent. The most prevalent and widespread subtype in all three countries was IIaA15G2R1 in 66.7% of *C. parvum*-positive farms, closely matching the year one study (Pinto et al., 2021). This is also the most predominant subtype worldwide (Xiao,

2010) and has been described as "hyper-transmissible" (Feng et al., 2018) being responsible for the majority of acute clinical disease in humans (Feng et al., 2018; Xiao, 2010). The second most common subtype was IIaA16G2R1, which was found only in the French farms representing 44.7% of infections. It has been previously implicated in numerous individual human cryptosporidiosis cases globally (Azcona-Gutiérrez et al., 2017; Chalmers, 2012; Herges et al., 2012; Hijjawi et al., 2017; Nolan et al., 2009; Sharbatkhori et al., 2015). IIaA14G1R1 was found only in three farms across Belgium and the Netherlands. This subtype has been associated with zoonotic transmission, with human outbreaks noted in the UK, Norway and New Zealand (Garcia-R et al., 2020; Robertson et al., 2019; Smith et al., 2021). The highly zoonotic IIaA17G1R1 was found at low prevalence in Belgium and the Netherlands. Human cryptosporidiosis cases of this subtype have been reported worldwide (Chalmers et al., 2019, 2011; Hailu et al., 2021; Hatalova et al., 2022; Insulander et al., 2013; Ranjbar et al., 2016; Soba and Logar, 2008; Wielinga et al., 2008). Subtypes IIaA13G2R1, IIaA17G2R1, IIaA15G1R1 and IaA16G1R1 were found at very low prevalence matching previous results (Benhouda et al., n.d.; Geurden et al., 2007; Smith et al., 2014; Wielinga et al., 2008; Yasur-Landau et al., 2021). Their zoonotic potential appears low, as only sporadic cases in humans and outbreaks have been reported (Braima et al., 2019; Chalmers et al., 2019; Feltus et al., 2006; Guy et al., 2021; Herges et al., 2012, 2012; Hijjawi et al., 2017; Iqbal et al., 2012; Koehler et al., 2014; Ma et al., 2019; Nolan et al., 2009; O' Leary et al., 2020; Valenzuela et al., 2014; Waldron et al., 2011, 2009). In summary, the wide range and the persistent presence of subtypes detected across all counties, suggest a circulation and a high risk of zoonotic transmission of this parasite.

#### Age-associated differences in Cryptosporidium spp. infection

Age-related variance of infection was observed (**Table S3**) with prevalence in calves being much higher than in dams across Belgium, France, and the Netherlands. The inverse correlation of parasite burden with age has been observed numerous times in cattle (Kváč et al., 2006; Maddox-Hyttel et al., 2006; Santín et al., 2004; Wielinga et al., 2008). However, while the methods used in this study are far more sensitive than conventional microscopic detection, they may not be sufficient when processing <u>fecalstool</u> samples from adult cows. Efficient DNA extraction is vital for accurate detection of infection. Adult cows' faecal pats are much larger and contain more fibrous material (Wells et al., 2016). As such, oocysts can be "diluted" in these samples and DNA extracts may contain higher levels of PCR inhibitors Formatted: Font: Not Italic

(Schrader et al., 2012). In this study, DNA extraction was carried out on just 0.2 g of each faecal sample so reported infection in adults may be underestimated. Indeed, when utilising a method to concentrate oocysts prior to PCR screening, 91% of sampled adult cows tested positive (Wells et al., 2015).

We observed that the proportion of infecting *Cryptosporidium* spp. differed across age groups (**Table S3**). *Cryptosporidium parvum* was most commonly detected in young neonatal calves up to three weeks old, while *C. bovis* and *C. ryanae* became more prevalent in mothers. The age-related variation in infecting *Cryptosporidium* spp. has been observed extensively including within these same countries and elsewhere throughout Europe (Díaz et al., 2021; Follet et al., 2011; Geurden et al., 2007; Mammeri et al., 2019; Santoro et al., 2019; Soba and Logar, 2008). As *C. parvum* is the main 'cattle-infecting' species causing clinical disease, this result confirms that neonatal calves are particularly at risk for bovine cryptosporidiosis.

Co-infections were only observed in calves; however, this is likely attributable to the method in which mixed infections were identified. Co-infections were detected through a positive non-*C. parvum SSU* rRNA and specific *gp60* identities. As such, only mixed infections containing *C. parvum* were detected which would tend to discount older animals due to association of *C. parvum* with neonates. It is possible other mixed infections were present in the dams, but combinations of *C. bovis, C. ryanae* and *C. andersoni* could not be recognised. Since the focus of this study was *C. parvum*, future molecular work should explore techniques to better uncover mixed infections (Dettwiler et al., 2022).

#### Temporal Cryptosporidium infection

*Cryptosporidium* infection rates in Belgian, French, and Dutch calves over two years are similar. Nonetheless, large variation at the farm level is noted. Specifically, some farms demonstrated consistently low levels of infections, while others showed markedly reduced prevalence in the subsequent study. This is suggestive of variable effectiveness in infection control measures used in the different farms (Brainard et al., 2020). Further investigation into these farms may reveal best practices in reducing infections in neonatal calves.

Based on *gp60* analysis, two additional subtypes were detected in Dutch farms in this follow-up study (Pinto et al., 2021). While this could suggest parasite inflow into these farms, it is equally possible these subtypes were present in the initial study but underrepresented in the *C. parvum* population and therefore not identified. Given that both studies found vertical

transmission to be negligible, it is highly likely infection is originating from an environmental source. Being a known waterborne parasite, the organism has been found in environmental sources numerous times (Brankston et al., 2018; Rose, 1997). Analysis of *Cryptosporidium* in the surrounding farm environment could reveal potential sources of infection as well as routes of transmission.

#### Future avenues and concluding remarks

Further monitoring of *Cryptosporidium* is paramount to reducing disease burden in cattle. Development of a standardised molecular protocol, including next generation sequencing approaches (Wang et al., 2022) for species and subtype identification would allow for better comparability between studies as well as for tracking spread of different subtypes. While gp60 is suitable for revealing subtype diversity within a species, additional loci are needed for intra-subtype analyses. This is particularly important regarding "hypertransmissable" subtypes, such as IIaA15G2R1. Despite this subtype being the most prevalent and widespread, the obtained isolates showed little gp60 genetic variation, even across countries. Hence, transmission dynamics are impossible to discern as yet.

Age has been identified as a key risk factor for *Cryptosporidium* infection however other risk factors regarding animal husbandry should also be explored. Furthermore, as there was significant variation in prevalence between farms, investigations into how farm management practices differ may reveal effective infection control strategies. This would help ease the significant economic impact on farmers (Brainard et al., 2020; Brook et al., 2008; Shaw et al., 2020).

A One Health approach is essential to properly tackle disease burden and eliminate transmission routes of this parasite (Innes et al., 2020). Monitoring of the parasite in cattle moving across borders should be encouraged to prevent infection spread to uncontaminated areas (Pilarczyk et al., 2009). As outbreaks of *Cryptosporidium* are commonly associated with waterborne transmission, sampling of the surrounding water bodies, may reveal other reservoirs of disease as well as possible indirect routes of transmission through contaminated water runoff from farms. Reverse zoonoses may also be taking place, where humans are in fact responsible for infection spread to animals (Messenger et al., 2014). Farm professionals, veterinarians and other visitors may spread oocysts via contaminated clothing, shoes, and vehicles. It is possible all these modes of transmission play a role in cryptosporidiosis spread and cycling.

The high levels of *Cryptosporidium* detected in this and the previous study reinforcereinforces the role of dairy farms as a key reservoir of this parasite. Our findings pinpoint to a high risk of zoonotic transmission with *C. parvum* as the predominant species found across all three countries and all *gp60* subtypes identified here having previously been detected in human cryptosporidiosis cases.

#### **Figure Legends:**

**Figure 1.** Venn diagram with all observed <u>*CryptosporidiumC- parvum gp60*</u> subtypes across Belgium, France, and the Netherlands

**Figure 2.** Geographical distribution of <u>Cryptosporidium parvum gp</u>60 subtypes in dairy farms across a) Belgium, b) France and c) the Netherlands. IIaA13G12R1 (purple), IIaA14G1R1 (red), IIaA15G1R1 (dark blue), IIaA15G2R1 (green), IIaA16G1R1 (brown), IIaA16G2R1 (peach), IIaA17G1R1 (turquoise), IIaA17G2R1 (blue). *C. parvum* positive samples with unsuccessful *gp*60 sequencing are indicated in grey. Pie charts are proportional to number of *C. parvum* positive samples identified per farm

**Figure 3.** Comparison of *Cryptosporidium* prevalence in neonatal calves across two sampling studies in a) Belgium, b) France, c) The Netherlands.

**Supplementary Figure 1.** A maximum likelihood (ML) tree based on the 18S rRNA gene sequences of <u>*CryptosporidiumC*</u>. *bovis, C. ryanae* and *C. andersoni* obtained in Belgium, France, and the Netherlands. Bootstrap values for nodes with more than 50% support are shown. ML tree was rooted with an 18S rRNA sequence from *Monocystis agilis* (AF457127).

#### REFERENCES

- Adeyemo, F.E., Singh, G., Reddy, P., Stenström, T.A., 2018. Methods for the detection of *Cryptosporidium* and *Giardia*: From microscopy to nucleic acid based tools in clinical and environmental regimes. Acta Trop., Recent Advances in Genetic and Molecular Diagnosis of Parasitic Protozoa 184, 15–28. https://doi.org/10.1016/j.actatropica.2018.01.011
- Alves, M., Xiao, L., Sulaiman, I., Lal, A.A., Matos, O., Antunes, F., 2003. Subgenotype analysis of *Cryptosporidium* isolates from humans, cattle, and zoo ruminants in Portugal. J. Clin. Microbiol. 41, 2744–2747. https://doi.org/10.1128/JCM.41.6.2744-2747.2003
- Azcona-Gutiérrez, J.M., de Lucio, A., Hernández-de-Mingo, M., García-García, C., Soria-Blanco, L.M., Morales, L., Aguilera, M., Fuentes, I., Carmena, D., 2017. Molecular diversity and frequency of the diarrheagenic enteric protozoan *Giardia duodenalis* and *Cryptosporidium* spp. in a hospital setting in Northern Spain. PLoS ONE 12, e0178575. https://doi.org/10.1371/journal.pone.0178575
- Benhouda, D., Hakem, A., Sannella, A.R., Benhouda, A., Cacciò, S.M., n.d. First molecular investigation of *Cryptosporidium* spp. in young calves in Algeria. Parasite 24, 15. https://doi.org/10.1051/parasite/2017014
- Bennett, R., 2003. The "direct costs" of livestock disease: The development of a system of models for the analysis of 30 endemic livestock diseases in Great Britain. J. Agric. Econ. 54, 55–71. https://doi.org/10.1111/J.1477-9552.2003.TB00048.X
- Braima, K., Zahedi, A., Oskam, C., Reid, S., Pingault, N., Xiao, L., Ryan, U., 2019. Retrospective analysis of *Cryptosporidium* species in <u>westernWestern</u> Australian human populations (2015–2018), and emergence of the *C. hominis* IfA12G1R5 subtype. Infect. Genet. Evol. 73, 306–313. https://doi.org/10.1016/j.meegid.2019.05.018
- Brainard, J., Hooper, L., McFarlane, S., Hammer, C.C., Hunter, P.R., Tyler, K., 2020. Systematic review of modifiable risk factors shows little evidential support for most current practices in *Cryptosporidium* management in bovine calves. Parasitol. Res. 119, 3571–3584. https://doi.org/10.1007/s00436-020-06890-2
- Brankston, G., Boughen, C., Ng, V., Fisman, D.N., Sargeant, J.M., Greer, A.L., 2018. Assessing the impact of environmental exposures and *Cryptosporidium* infection in cattle on human incidence of cryptosporidiosis in Southwestern Ontario, Canada. PLoS ONE 13, e0196573. https://doi.org/10.1371/journal.pone.0196573
- Brook, E., Hart, C.A., French, N., Christley, R., 2008. Prevalence and risk factors for *Cryptosporidium* spp. infection in young calves. Vet. Parasitol. 152, 46–52. https://doi.org/10.1016/j.vetpar.2007.12.003
- Cama, V., Gilman, R.H., Vivar, A., Ticona, E., Ortega, Y., Bern, C., Xiao, L., 2006. Mixed *Cryptosporidium* Infections and HIV. Emerg. Infect. Dis. 12, 1025–1028. https://doi.org/10.3201/eid1206.060015
- Chalmers, R.M., 2012. Waterborne outbreaks of cryptosporidiosis. Ann. Ist. Super. Sanita 48, 429–446. https://doi.org/10.4415/ANN\_12\_04\_10
- Chalmers, R.M., Giles, M., 2010. Zoonotic cryptosporidiosis in the UK challenges for control. J. Appl. Microbiol. 109, 1487–1497. https://doi.org/10.1111/J.1365-2672.2010.04764.X
- Chalmers, R.M., Robinson, G., Elwin, K., Elson, R., 2019. Analysis of the *Cryptosporidium* spp. and gp60 subtypes linked to human outbreaks of cryptosporidiosis in England

and Wales, 2009 to 2017. Parasit. Vectors 12, 95. https://doi.org/10.1186/s13071-019-3354-6

- Chalmers, R.M., Smith, R.P., Hadfield, S.J., Elwin, K., Giles, M., 2011. Zoonotic linkage and variation in *Cryptosporidium parvum* from patients in the United Kingdom. Parasitol. Res. 108, 1321–1325. https://doi.org/10.1007/s00436-010-2199-x
- Cho, Y.-I., Yoon, K.-J., 2014. An overview of calf diarrhea infectious etiology, diagnosis, and intervention. J. Vet. Sci. 15, 1–17. https://doi.org/10.4142/JVS.2014.15.1.1
- De Graaf, D.C., Vanopdenbosch, E., Ortega-Mora, L.M., Abbassi, H., Peeters, J.E., 1999. A review of the importance of cryptosporidiosis in farm animals. Int. J. Parasitol. 29, 1269–1287. https://doi.org/10.1016/S0020-7519(99)00076-4
- Delling, C., Daugschies, A., 2022. Literature Review: Coinfection in <u>young ruminant</u> <u>livestockYoung Ruminant Livestock</u>—*Cryptosporidium* spp. and Its Companions. Pathogens 11, 103. https://doi.org/10.3390/pathogens11010103
- Dettwiler, I., Troell, K., Robinson, G., Chalmers, R.M., Basso, W., Rentería-Solís, Z.M., Daugschies, A., Mühlethaler, K., Dale, M.I., Basapathi Raghavendra, J., Ruf, M.-T., Poppert, S., Meylan, M., Olias, P., 2022. TIDE Analysis of *Cryptosporidium* Infections by gp60 Typing Reveals Obscured Mixed Infections. J. Infect. Dis. 225, 686–695. https://doi.org/10.1093/infdis/jiab417
- Díaz, P., Navarro, E., Remesar, S., García-Dios, D., Martínez-Calabuig, N., Prieto, A., López-Lorenzo, G., López, C.M., Panadero, R., Fernández, G., Díez-Baños, P., Morrondo, P., 2021. The <u>age-related/Age-Related</u> Cryptosporidium <u>species</u> <u>distributionSpecies Distribution</u> in <u>asymptomatic cattle/Asymptomatic Cattle</u> from <u>north-westernNorth-Western</u> Spain. Animals 11, 256. https://doi.org/10.3390/ani11020256
- Feltus, D.C., Giddings, C.W., Schneck, B.L., Monson, T., Warshauer, D., McEvoy, J.M., 2006. Evidence <u>supporting zoonotic transmissionSupporting Zoonotic Transmission</u> of *Cryptosporidium* spp. in Wisconsin. J. Clin. Microbiol. 44, 4303–4303. https://doi.org/10.1128/JCM.01067-06
- Feng, Y., Ryan, U.M., Xiao, L., 2018. Genetic <u>diversity Diversity</u> and <u>population</u> <u>structurePopulation Structure</u> of *Cryptosporidium*. Trends Parasitol. 34, 997–1011. https://doi.org/10.1016/J.PT.2018.07.009
- Follet, J., Guyot, K., Leruste, H., Follet-Dumoulin, A., Hammouma-Ghelboun, O., Certad, G., Dei-Cas, E., Halama, P., 2011. *Cryptosporidium* infection in a veal calf cohort in France: Molecular characterization of species in a longitudinal study. Vet. Res. 42, 1– 8. https://doi.org/10.1186/1297-9716-42-116/TABLES/3
- García, A., Ruiz-Santa-Quiteria, J.A., Orden, J.A., Cid, D., Sanz, R., Gómez-Bautista, M., de la Fuente, R., 2000. Rotavirus and concurrent infections with other enteropathogens in neonatal diarrheic dairy calves in Spain. Comp. Immunol. Microbiol. Infect. Dis. 23, 175–183. https://doi.org/10.1016/S0147-9571(99)00071-5
- Garcia-R, J.C., Pita, A.B., Velathanthiri, N., French, N.P., Hayman, D.T.S., 2020. Species and genotypes causing human cryptosporidiosis in New Zealand. Parasitol. Res. 119, 2317–2326. https://doi.org/10.1007/s00436-020-06729-w
- Geurden, T., Berkvens, D., Martens, C., Casaert, S., Vercruysse, J., Claerebout, E., 2007. Molecular epidemiology with subtype analysis of *Cryptosporidium* in calves in Belgium. Parasitology 134, 1981–1987. https://doi.org/10.1017/S0031182007003460
- Guy, R.A., Yanta, C.A., Muchaal, P.K., Rankin, M.A., Thivierge, K., Lau, R., Boggild, A.K., 2021. Molecular characterization of *Cryptosporidium* isolates from humans in Ontario, Canada. Parasit. Vectors 14, 69. https://doi.org/10.1186/s13071-020-04546-9
- Hailu, A.W., Degarege, A., Adamu, H., Costa, D., Villier, V., Mouhajir, A., Favennec, L., Razakandrainibe, R., Petros, B., 2021. Molecular characterization of *Cryptosporidium*

spp. from humans in Ethiopia. PLOS ONE 16, e0253186. https://doi.org/10.1371/JOURNAL.PONE.0253186

- Hatalova, E., Guman, T., Bednarova, V., Simova, V.T., Logoida, M., Halanova, M., 2022. Occurrence of *Cryptosporidium parvum* IIaA17G1R1 in hospitalized hematooncological patients in Slovakia. Parasitol. Res. 121, 471–476. https://doi.org/10.1007/s00436-021-07294-6
- Hawkins, A., Burdine, K., Amaral-Phillips, D., Costa, J.H.C., 2019. An <u>economic</u> <u>analysisEconomic Analysis</u> of the <u>costs associated</u> <u>Costs Associated</u> with <u>preweaningPre-Weaning</u> Management <u>strategiesStrategies</u> for <u>dairy heifers</u>. Dairy <u>Heifers</u>. Anim. Basel 9, 471–471. https://doi.org/10.3390/ANI9070471
- Herges, G.R., Widmer, G., Clark, M.E., Khan, E., Giddings, C.W., Brewer, M., McEvoy, J.M., 2012. Evidence that *Cryptosporidium parvum* populations are <u>panmicticPopulations Are Panmictie</u> and <u>unstructuredUnstructured</u> in the <u>upper</u> <u>midwestUpper Midwest</u> of the United States. Appl. Environ. Microbiol. 78, 8096– 8101. https://doi.org/10.1128/AEM.02105-12
- Hijjawi, N., Zahedi, A., Kazaleh, M., Ryan, U., 2017. Prevalence of *Cryptosporidium* species and subtypes in paediatric oncology and non-oncology patients with diarrhoea in Jordan. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 55, 127–130. https://doi.org/10.1016/j.meegid.2017.08.033
- Innes, E.A., Chalmers, R.M., Wells, B., Pawlowic, M.C., 2020. A One Health <u>approachApproach</u> to <u>tackle cryptosporidiosis.</u>Tackle Cryptosporidiosis. Trends Parasitol. 36, 290–303. https://doi.org/10.1016/j.pt.2019.12.016
- Insulander, M., Silverlås, C., Lebbad, M., Karlsson, L., Mattsson, J.G., Svenungsson, B., 2013. Molecular epidemiology and clinical manifestations of human cryptosporidiosis in Sweden. Epidemiol. Infect. 141, 1009–1020. https://doi.org/10.1017/S0950268812001665
- Iqbal, A., Lim, Y.A.L., Surin, J., Sim, B.L.H., 2012. High <u>diversity</u> Diversity of *Cryptosporidium* <u>subgenotypes</u> <u>identified</u><u>Subgenotypes</u> <u>Identified</u> in Malaysian HIV/AIDS Individuals <u>targeting</u><u>Targeting</u> gp60 <u>gene. PloS</u><u>Gene. PLOS</u> ONE 7, e31139. https://doi.org/10.1371/journal.pone.0031139
- Koehler, A.V., Whipp, M., Hogg, G., Haydon, S.R., Stevens, M.A., Jex, A.R., Gasser, R.B., 2014. First genetic analysis of *Cryptosporidium* from humans from Tasmania, and identification of a new genotype from a traveller to Bali. Electrophoresis 35, 2600– 2607. https://doi.org/10.1002/elps.201400225
- Kváč, M., Kouba, M., Vítovec, J., 2006. Age-related and housing-dependence of *Cryptosporidium* infection of calves from dairy and beef herds in South Bohemia, Czech Republic. Vet. Parasitol. 137, 202–209. https://doi.org/10.1016/J.VETPAR.2006.01.027
- Leitch, G.J., He, Q., 2011. Cryptosporidiosis-an overview. J. Biomed. Res. 25, 1–1. https://doi.org/10.1016/S1674-8301(11)60001-8
- Ma, D.-W., Lee, M.-R., Hong, S.-H., Cho, S.-H., Lee, S.-E., 2019. Molecular prevalencePrevalence and genotypesGenotypes of Cryptosporidium parvum and Giardia duodenalis in patientsPatients with acute diarrheaAcute Diarrhea in Korea, 2013–2016. Korean J. Parasitol. 57, 531–536. https://doi.org/10.3347/kjp.2019.57.5.531
- Maddox-Hyttel, C., Langkjær, R.B., Enemark, H.L., Vigre, H., 2006. *Cryptosporidium* and *Giardia* in different age groups of Danish cattle and pigs—Occurrence and management associated risk factors. Vet. Parasitol. 141, 48–59. https://doi.org/10.1016/j.vetpar.2006.04.032

- Mammeri, M., Chevillot, A., Chenafi, I., Julien, C., Vallée, I., Polack, B., Follet, J., Adjou, K.T., 2019. Molecular characterization of *Cryptosporidium* isolates from diarrheal dairy calves in France. Vet. Parasitol. Reg. Stud. Rep. 18, 100323–100323. https://doi.org/10.1016/J.VPRSR.2019.100323
- Messenger, A.M., Barnes, A.N., Gray, G.C., 2014. Reverse Zoonotic Disease Transmission (Zooanthroponosis): A Systematic Review of Seldom-Documented Human Biological Threats to Animals. PLoS ONE 9, e89055. https://doi.org/10.1371/journal.pone.0089055
- Mosier, D.A., Oberst, R.D., 2000. Cryptosporidiosis: A <u>global challenge.Global Challenge.</u> Ann. N. Y. Acad. Sci. 916, 102–111. https://doi.org/10.1111/J.1749-6632.2000.TB05279.X
- Nolan, M.J., Jex, A.R., Mansell, P.D., Browning, G.F., Gasser, R.B., 2009. Genetic characterization of *Cryptosporidium parvum* from calves by mutation scanning and targeted sequencing – zoonotic implications. Electrophoresis 30, 2640–2647. https://doi.org/10.1002/ELPS.200900071
- O' Leary, J.K., Blake, L., Corcoran, G.D., Sleator, R.D., Lucey, B., 2020. Increased diversity and novel subtypes among clinical *Cryptosporidium parvum* and *Cryptosporidium hominis* isolates in Southern Ireland. Exp. Parasitol. 218, 107967. https://doi.org/10.1016/j.exppara.2020.107967
- Pilarczyk, B., Kolodziejczyk, L., Zajaczkowska, K., Kuzna-Grygiel, W., Balicka-Ramisz, A., Tomza-Marciniak, A., Pilarczyk, R., 2009. Prevalence of *Eimeria* and *Cryptosporidium* sp. protozoa in polish cows and in cows imported from the Netherlands as in-calf heifers. Bull. Vet. Inst. Pulawy 53, 637–640.
- Pinto, P., Ribeiro, C.A., Hoque, S., Hammouma, O., Leruste, H., Détriché, S., Canniere, E., Daandels, Y., Dellevoet, M., Roemen, J., Barbier Bourgeois, A., Kváč, M., Follet, J., Tsaousis, A.D., 2021. Cross-border investigationsBorder Investigations on the prevalencePrevalence and transmission dynamicsTransmission Dynamics of *Cryptosporidium* speciesSpecies in dairy cattle farmsDairy Cattle Farms in western mainlandWestern Mainland Europe. Microorganisms 9, 2394. https://doi.org/10.3390/microorganisms9112394
- Ranjbar, R., Baghaei, K., Nazemalhosseini Mojarad, E., 2016. Genetic characterization of *Cryptosporidium* spp. among patients with gastrointestinal complaints. Gastroenterol. Hepatol. Bed Bench 9, 301–307.
- Rieux, A., Chartier, C., Pors, I., Paraud, C., 2013a. Dynamics of excretion and molecular characterization of *Cryptosporidium* isolates in pre-weaned French beef calves. Vet. Parasitol. 195, 169–172. https://doi.org/10.1016/J.VETPAR.2012.12.043
- Rieux, A., Paraud, C., Pors, I., Chartier, C., 2014. Molecular characterization of *Cryptosporidium* isolates from beef calves under one month of age over three successive years in one herd in western France. Vet. Parasitol. 202, 171–179. https://doi.org/10.1016/J.VETPAR.2014.03.004
- Rieux, A., Paraud, C., Pors, I., Chartier, C., 2013b. Molecular characterization of *Cryptosporidium* spp. in pre-weaned kids in a dairy goat farm in western France. Vet. Parasitol. 192, 268–272. https://doi.org/10.1016/J.VETPAR.2012.11.008
- Robertson, L.J., Temesgen, T.T., Tysnes, K.R., Eikås, J.E., 2019. An apple a day: an outbreak of cryptosporidiosis in Norway associated with self-pressed apple juice. Epidemiol. Infect. 147. https://doi.org/10.1017/S0950268819000232
- Rose, J.B., 1997. Environmental <u>ecologyEcology</u> of *Cryptosporidium* and <u>public health</u> <u>implications.Public Health Implications.</u> Annu. Rev. Public Health 18, 135–161. https://doi.org/10.1146/annurev.publhealth.18.1.135

- Santín, M., Trout, J.M., Xiao, L., Zhou, L., Greiner, E., Fayer, R., 2004. Prevalence and agerelated variation of *Cryptosporidium* species and genotypes in dairy calves. Vet. Parasitol. 122, 103–117. https://doi.org/10.1016/j.vetpar.2004.03.020
- Santoro, A., Dorbek-Kolin, E., Jeremejeva, J., Tummeleht, L., Orro, T., Jokelainen, P., Lassen, B., 2019. Molecular epidemiology of *Cryptosporidium* spp. in calves in Estonia: high prevalence of *Cryptosporidium parvum* shedding and 10 subtypes identified. Parasitology 146, 261–267. https://doi.org/10.1017/S0031182018001348
- Schrader, C., Schielke, A., Ellerbroek, L., Johne, R., 2012. PCR inhibitors occurrence, properties and removal. J. Appl. Microbiol. 113, 1014–1026. https://doi.org/10.1111/j.1365-2672.2012.05384.x
- Sharbatkhori, M., Nazemalhosseini Mojarad, E., Taghipour, N., Pagheh, A.S., Mesgarian, F., 2015. Prevalence and <u>genetic characterization</u> Genetic Characterization of *Cryptosporidium* <u>spp. in diarrheic children</u> <u>Spp. In Diarrheic Children</u> from Gonbad Kavoos <u>cityCity</u>, Iran. Iran. J. Parasitol. 10, 441–447.
- Shaw, H.J., Armstrong, C., Uttley, K., Morrison, L.J., Innes, E.A., Katzer, F., 2021. Genetic diversity and shedding profiles for *Cryptosporidium parvum* in adult cattle and their calves. Curr. Res. Parasitol. Vector-Borne Dis. 1, 100027. https://doi.org/10.1016/j.crpvbd.2021.100027
- Shaw, H.J., Innes, E.A., Morrison, L.J., Katzer, F., Wells, B., 2020. Long-term production effects of clinical cryptosporidiosis in neonatal calves. Int. J. Parasitol. 50, 371–376. https://doi.org/10.1016/J.IJPARA.2020.03.002
- Shirley, D.-A.T., Moonah, S.N., Kotloff, K.L., 2012. Burden of disease from Cryptosporidiosis. Curr. Opin. Infect. Dis. 25, 555–563. https://doi.org/10.1097/QCO.0b013e328357e569
- Smith, R.P., Clifton-Hadley, F.A., Cheney, T., Giles, M., 2014. Prevalence and molecular typing of *Cryptosporidium* in dairy cattle in England and Wales and examination of potential on-farm transmission routes. Vet. Parasitol. 204, 111–119. https://doi.org/10.1016/J.VETPAR.2014.05.022
- Smith, R.P., Newton, K., Rimdap, E., Wight, A., Robinson, G., Chalmers, R.M., 2021. Review of investigations of premises housing animals that were linked to human outbreaks of cryptosporidiosis in England and Wales between 2009 and 2019. Vet. Rec. 189, e246. https://doi.org/10.1002/vetr.246
- Soba, B., Logar, J., 2008. Genetic classification of *Cryptosporidium* isolates from humans and calves in Slovenia. Parasitology 135, 1263–1270. https://doi.org/10.1017/S0031182008004800
- Stott, A., Gunn, G., 1997. A comparison of economic losses due to calf enteritis and calf pneumonia in Northern Scotland. Epidémiologie Santé Anim.
- Sulaiman, I.M., Hira, P.R., Zhou, L., Al-Ali, F.M., Al-Shelahi, F.A., Shweiki, H.M., Iqbal, J., Khalid, N., Xiao, L., 2005. Unique <u>endemicityEndemicity</u> of <u>cryptosporidiosisCryptosporidiosis</u> in <u>childrenChildren</u> in Kuwait. J. Clin. Microbiol. 43, 2805–2805. https://doi.org/10.1128/JCM.43.6.2805-2809.2005
- Tamura, K., Stecher, G., Kumar, S., 2021. MEGA11: Molecular evolutionary genetics analysisEvolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 38, 3022–3027. https://doi.org/10.1093/molbev/msab120
- Thomson, S., Hamilton, C.A., Hope, J.C., Katzer, F., Mabbott, N.A., Morrison, L.J., Innes, E.A., 2017. Bovine cryptosporidiosis: impact, host-parasite interaction and control strategies. Vet. Res. 48. https://doi.org/10.1186/S13567-017-0447-0
- Valenzuela, O., González-Díaz, M., Garibay-Escobar, A., Burgara-Estrella, A., Cano, M., Durazo, M., Bernal, R.M., Hernandez, J., Xiao, L., 2014. Molecular

characterizationCharacterization of *Cryptosporidium* spp. in childrenChildren from Mexico. PLoS ONE 9, e96128. https://doi.org/10.1371/journal.pone.0096128

- Waldron, L.S., Dimeski, B., Beggs, P.J., Ferrari, B.C., Power, M.L., 2011. Molecular epidemiology, spatiotemporal analysisEpidemiology, Spatiotemporal Analysis, and ecologyEcology of sporadic human cryptosporidiosisSporadic Human Cryptosporidiosis in Australia. Appl. Environ. Microbiol. 77, 7757–7765. https://doi.org/10.1128/AEM.00615-11
- Waldron, L.S., Ferrari, B.C., Power, M.L., 2009. Glycoprotein 60 diversity in *C. hominis* and *C. parvum* causing human cryptosporidiosis in NSW, Australia. Exp. Parasitol. 122, 124–127. https://doi.org/10.1016/j.exppara.2009.02.006
- Wang, T., Guo, Y., Roellig, D.M., Li, N., Santín, M., Lombard, J., Kváč, M., Naguib, D., Zhang, Z., Feng, Y., Xiao, L., 2022. Sympatric recombinationRecombination in zoonoticZoonotic Cryptosporidium leadsLeads to emergenceEmergence of populationsPopulations with modified host preference. Mol. Biol. Evol. 39, msac150. https://doi.org/10.1093/molbev/msac150
- Wells, B., Shaw, H., Hotchkiss, E., Gilray, J., Ayton, R., Green, J., Katzer, F., Wells, A., Innes, E., 2015. Prevalence, species identification and genotyping *Cryptosporidium* from livestock and deer in a catchment in the Cairngorms with a history of a contaminated public water supply. Parasit. Vectors 8, 66. https://doi.org/10.1186/s13071-015-0684-x
- Wells, B., Thomson, S., Ensor, H., Innes, E.A., Katzer, F., 2016. Development of a sensitive method to extract and detect low numbers of *Cryptosporidium* oocysts from adult cattle faecal samples. Vet. Parasitol. 227, 26–29. https://doi.org/10.1016/j.vetpar.2016.07.018
- Widmer, G., Carmena, D., Kváč, M., Chalmers, R.M., Kissinger, J.C., Xiao, L., Sateriale, A., Striepen, B., Laurent, F., Lacroix-Lamandé, S., Gargala, G., Favennec, L., 2020. Update on *Cryptosporidium* spp.: highlights from the Seventh International *Giardia* and *Cryptosporidium* Conference. Presented at the Parasite, EDP Sciences, pp. 14–14. https://doi.org/10.1051/PARASITE/2020011
- Wielinga, P.R., de Vries, A., van der Goot, T.H., Mank, T., Mars, M.H., Kortbeek, L.M., van der Giessen, J.W.B., 2008. Molecular epidemiology of *Cryptosporidium* in humans and cattle in The Netherlands. Int. J. Parasitol. 38, 809–817. https://doi.org/10.1016/j.ijpara.2007.10.014
- Xiao, L., 2010. Molecular epidemiology of cryptosporidiosis: An update. Exp. Parasitol. 124, 80–89. https://doi.org/10.1016/J.EXPPARA.2009.03.018
- Xiao, L., Feng, Y., 2008. Zoonotic cryptosporidiosis. FEMS Immunol. Med. Microbiol. 52, 309–323. https://doi.org/10.1111/J.1574-695X.2008.00377.X
- Yasur-Landau, D., Zilberberg, M., Perry Markovich, M., Behar, A., Fleiderovitz, L., Leszkowicz Mazuz, M., 2021. Cryptosporidium parvum subtypes from diarrheic dairy calves in Israel. Vet. Parasitol. Reg. Stud. Rep. 25, 100608–100608. https://doi.org/10.1016/J.VPRSR.2021.100608
- Ziegler, P.E., Santucci, F., Lindergard, G., Nydam, D.V., Wade, S.E., Schaaf, S.L., Chang, Y.-F., Mohammed, H.O., 2007. Evaluation of polymerase chain reaction diagnosis of *Cryptosporidium* spp in dairy cattle and wildlife. Vet. Ther. 8, 148–159.

# Follow-up investigation into *Cryptosporidium* prevalence and transmission in Western European dairy farms

Sumaiya Hoque<sup>1</sup>, Pedro Pinto<sup>1</sup>, Cláudia A. Ribeiro<sup>1</sup>, Evi Canniere<sup>2</sup>, Yvonne Daandels<sup>3</sup>, Martine Dellevoet<sup>3</sup>, Anne Bourgeois<sup>4</sup>, Ourida Hammouma<sup>5</sup>, Paul Hunter<sup>6</sup>, Eleni Gentekaki<sup>7</sup>, Martin Kváč<sup>8,9</sup> Jérôme Follet<sup>10</sup>, & Anastasios D. Tsaousis<sup>1</sup>

# Affiliations:

<sup>1</sup> Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, United Kingdom.

<sup>2</sup> Inagro vzw, Ieperseweg 87, 8800 Rumbeke-Beitem, Belgium.

<sup>3</sup> Southern Agricultural and Horticultural Organisation (ZLTO), Onderwijsboulevard 225, 5223 DE 's-Hertogenbosch, Netherlands.

<sup>4</sup> SELAS CVE, SALOME, France.

<sup>5</sup> UMR-Transfrontalière 1158 BioEcoAgro, Junia, University of Lille, University of Liège, UPJV, ULCO, University of Artois, INRAE, F-59000 Lille.

<sup>6</sup> The Norwich School of Medicine, University of East Anglia, Norwich NR4 7TJ, England <sup>7</sup> School of Science and Gut Microbiome Research Group, Mae Fah Luang University, Chiang Rai, 57100, Thailand.

<sup>8</sup> Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice 37005, Czech Republic.

<sup>9</sup> Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic.

<sup>10</sup> University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520 IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F 59000 Lille, France.

\*Author for correspondence:

Dr. Anastasios D. Tsaousis, RAPID group, School of Biosciences, University of Kent, Canterbury, Kent, UK, Telephone number: +44 1227 827007; email: A.Tsaousis@kent.ac.uk

#### ABSTRACT

Cryptosporidium parvum is an enteric parasite and a major contributor to acute enteritis in calves worldwide, causing an important economic burden for farmers. This parasite poses a major public health threat through transmission between livestock and humans. Our previous pilot study in Western Europe revealed a high prevalence of *Cryptosporidium* in calves of dairy farms. In the sequel study herein, 936 faecal samples were collected from the same 51 dairy farms across Belgium, France, and the Netherlands. Following DNA extraction, Cryptosporidium screening was carried out using nested-PCR amplification targeting the SSU rRNA gene. All positive samples were sequenced, and phylogenetic analyses were used to identify the Cryptosporidium spp. present. The 60 kDa glycoprotein (gp60) gene was also sequenced to determine the C. parvum subtypes present. Prevalence of Cryptosporidium ranged from 23.3% to 25%, across the three countries surveyed. The parasite was found in most of the farms sampled, with 90.2% testing positive. Cryptosporidium parvum, C. bovis, C. ryanae and C. andersoni were all identified, with the former being the most predominant, representing 71.4% of all infections. Cryptosporidium parvum was associated with pre-weaned calves, while other species were associated with older animals. Subtyping of gp60 gene revealed nine subtypes, eight of which have previously been reported to cause clinical disease in humans. Similarly to the first study, vertical transmission was not a major contributor to Cryptosporidium spread. Our study highlights the need for further investigation into cryptosporidiosis transmission, and future studies will require a One Health approach to reduce the impact of this disease.

# **INTRODUCTION**

Cryptosporidiosis is an enteric disease caused by the apicomplexan parasites *Cryptosporidium* (Shirley et al., 2012). Most cases of zoonotic cryptosporidiosis are associated with livestock. Cattle, in particular, have long been established as a key reservoir of infection with numerous global reports of human cryptosporidiosis cases linked to close contact with those animals (Chalmers and Giles, 2010; Xiao and Feng, 2008). In the majority of these, *C. parvum* and *C. hominis* are the main responsible species (Leitch and He, 2011; Xiao and Feng, 2008).

Bovine cryptosporidiosis also has a major financial impact for cattle farmers (Chalmers and Giles, 2010; Mosier and Oberst, 2000; Widmer et al., 2020). In this livestock, C. parvum, C. bovis, C. ryanae and C. andersoni are the main infectious species, with C. parvum being the most common (Cho and Yoon, 2014; De Graaf et al., 1999; Feng et al., 2018). Cryptosporidium parvum is a major cause of acute enteritis in cattle, causing neonatal diarrhoea. In most cases, the disease is self-limiting, though persistent diarrhoea can lead to emaciation, fatigue, and severe dehydration. While fathality is generally low, long-term adverse health consequences may arise (Cho and Yoon, 2014; Thomson et al., 2017). Significant differences in weight gain have been observed between calves who had severe cryptosporidiosis as neonates and calves that had not (Shaw et al., 2020). Thus, farmers may incur economic losses through dead livestock, treatment of sick animals and reduced production due to retarded animal growth (Bennett, 2003; Hawkins et al., 2019; Stott and Gunn, 1997). Additionally, cryptosporidiosis may exacerbate concurrent infections with other pathogens (Delling and Daugschies, 2022; García et al., 2000) and infected animals are more susceptible to developing severe cryptosporidiosis. It is difficult for farmers to know how to manage spread of infection, as there is insufficient data on risk factors for Cryptosporidium infection to cattle on dairy farms. A recent systematic review found no consistent risk or protective factors for preventing C. parvum infection (Brainard et al., 2020).

Historically, *Cryptosporidium* detection has relied on microscopic examination of faecal smears for the presence of oocysts. As this method suffers from low sensitivity (Adeyemo et al., 2018), *Cryptosporidium* infection may not be detected in samples with low oocyst levels. Molecular-based diagnostic techniques have been used to increase sensitivity of *Cryptosporidium* detection along with ability to identity infecting species and subtypes. Subtype analysis can shed further light on potential zoonotic transmission by identifying the ones that occur in both humans and cattle. With increased molecular typing studies, distinctions

in the epidemiology of subtypes may also be discovered. This information could help ascertain how best to track and potentially tackle infection spread in certain areas.

A previous 2019–2020 study using samples from dairy cattle farms in Belgium, France and the Netherlands indicated a prevalence of 20.8–25.7% (Pinto et al., 2021), with numerous zoonotic *C. parvum* subtypes identified. Prior to this, prevalence investigations in these countries were infrequent and often did not utilise molecular detection. The study herein is a an investigation of *Cryptosporidium* across the same dairy farms one year later. We used the *SSU* rRNA and *gp60* genes for species and subtype level characterisation to investigate *C. parvum* diversity and transmission dynamics. As such, our study complements previous molecular work, provides temporal information on *Cryptosporidium* infection at the farm level and contributes to future investigations aiming to discern transmission networks.

## **MATERIALS AND METHODS**

# **Sample collection**

From September 2020 to July 2021, veterinarians collected a total of 936 faecal samples from 51 dairy farms were – 17 in Belgium, 15 in France and 19 in the Netherlands. We aimed to collect samples from up to 10 calves (up to 3 months of age) and their mothers. In cases where farms had less than 10 calves, fewer samples were collected. Diarrheic and apparently health animals were included in a random selection. Faeces were taken directly from the rectum, using a single pair of disposable gloves. This study was conducted as a cross-border collaboration under the Health for Dairy Cows (H4DC) project, funded by the Interreg-2-seas programme. This is a European Territorial Cooperation program covering the Flanders region of Belgium, the Hauts-de-France region in France and the western part of the Netherlands. These regions experience similar maritime temperate climates. The main objective of the project is to reduce the disease burden and economic impact of *Cryptosporidium* spp. on dairy farms.

# **DNA** extraction

Immediately after defecation, faeces were collected into sterile tubes, and stored on ice. DNA extraction was carried out using PureLink<sup>TM</sup> Microbiome DNA Purification Kit (ThermoFisher) according to manufacturer's instructions, with slight modifications. S1 Lysis Buffer (650  $\mu$ L) and S2 Lysis Enhancer (100  $\mu$ L) was added to each sample. They were then incubated at 65°C and then vortexed on maximum speed for 13 min each. After addition of S3 Clean-up Buffer, samples were incubated at 4°C for 10 min. Following application of S6 Elution Buffer to the spin column, samples were incubated at room temperature for 3 min prior to centrifugation. Genomic DNA was stored at -20°C until 18S rRNA and *gp60* PCR reactions were carried out. Leftover DNA and fecal samples were stored long-term in a -80 °C freezer.

# Cryptosporidium spp. screening and molecular genotyping

Nested-PCR amplification of a 631-bp region of the 18S rRNA gene was used to screen for *Cryptosporidium* spp. (Ziegler et al., 2007). The external primers used were 5'-GATTAAGCCATGCATGTCTAA-3' (forward) and 5'-TTCCATGCTGGAGTATTCAAG3' (reverse). The internal primers were 5'-CAGTTATAGTTTACTTGATAATC-3' (forward) and 5'-CCTGCTTTAAGCACTCTAATTTTC-3' (reverse). Each PCR mixture contained 1 µL of DNA, 0.4  $\mu$ M each of forward and reverse primers, 12.5  $\mu$ L of 2× PCRBIO Taq Mix Red (PCR Biosystems) and 9.5  $\mu$ L nuclease-free water. External PCR cycling conditions were: denaturation for 2 min at 94°C, followed by 24 cycles at 94°C for 50 s, 53°C for 50 s and 72°C for 1 min, and a final extension step at 72°C for 10 min. Internal PCR cycling conditions were: denaturation for 2 min at 94°C, followed by 30 cycles at 94°C for 50 s, 56°C for 30 s and 72°C for 1 min, and a final extension step at 72°C for 10 min. Positive (genomic DNA from a pure culture of *C. parvum* IOWA oocysts) and negative (using sterile water as a template) controls were included in both reactions. Following separation and excision from a 2% agarose gel, DNA was extracted using GeneJET Gel Extraction Kit (ThermoFisher Scientific). All positive samples were then bidirectionally sequenced (Eurofins Genomics) and chromatograms were manually assessed for quality, with ambiguous bases trimmed. For species level identification, BLAST searches were performed using obtained sequences as queries against the nucleotide database in GenBank. Following alignment with reference sequences, polymorphisms were identified.

# gp60 subtyping of Cryptosporidium parvum

Nested-PCR of the gp60 gene was carried out to determine the subtype of Cryptosporidium 18S rRNA PCR-positive samples (Alves et al., 2003). The external primers used were 5'-ATAGTCTCCGCTGTATTC-3' (forward) and 5'internal 5'-GGAAGGAACGATGTATCT-3' The (reverse). primers were TCCGCTGTATTCTCAGCC-3' (forward) and 5'- GCAGAGGAACCAGCATC-3' (reverse). Each PCR mixture contained 2 µL of DNA, 0.2 µM each of forward and reverse primers, 15 µL of 2× PCRBIO Taq Mix Red (PCR Biosystems) and 11.8 µL nuclease-free water. Cycling conditions for both internal and external PCR reactions were: a denaturation step for 3 min at 94°C, followed by 35 cycles at 94°C for 45 s, annealing at 50°C for 45 s and extension at 72°C for 1 min, and a final extension step at 72°C for 7 min. Positive and negative controls were included in both reactions. Following separation and excision from a 2% agarose gel, DNA was extracted using GeneJET Gel Extraction Kit (ThermoFisher Scientific). All positive samples were then bidirectionally sequenced (Eurofins Genomics), and chromatograms were manually assessed for quality, with ambiguous bases trimmed. Subtypes were determined using established standard nomenclature (Sulaiman et al., 2005). BLAST searches were performed using newly generated sequences as queries against the nucleotide database in GenBank (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Following alignment with reference sequences, polymorphisms were identified.

# **Phylogenetic analysis**

The obtained sequences were aligned with each other as well as reference sequences from GenBank by MAFFT v.7 (https://mafft.cbrc.jp/alignment/server). Sequence alignment was manually inspected using BioEdit v7.0.5.3 (https://bioedit.software.informer.com). Best DNA/Protein phylogeny models were selected using the MEGA11 software (Tamura et al., 2021). The Tamura 3-parameter model (Tamura, 1992) was selected. Phylogenetic trees were inferred using maximum likelihood (ML), with the substitution model that best fit the alignment selected using the Bayesian information criterion. Bootstrap support for branching was based on 1,000 replications. An 18S sequence from *Monocystis agilis* (Accession number: AF457127) was used to root ML tree.

# Comparison to preceding study and statistical analyses

Only neonatal calves aged under one month old were included for comparison. Farms with less than three calves within this age range have been excluded from comparison. In the preceding study, gp60 subtyping was only performed on samples confirmed as *C. parvum* through *SSU* rRNA gene sequencing. In this study, gp60 screening was carried out on all samples that were PCR-positive for *SSU* rRNA, which revealed mixed infections in some animals. For comparison between the two time points these samples have been identified based on their *SSU* rRNA gene. Furthermore, the *SSU* rRNA gene of some samples could not be successfully sequenced, but the gp60 gene could. These have been excluded in the prevalence count, as only *SSU* rRNA confirmed positive samples were reported in the previous study (Pinto et al., 2021). Comparison of prevalence between the two cohorts was performed by using the Mann-Whitney U test. Cochran Q tests were used to determine heterogeneity between farms within the same year and country. The mixed effects multilevel negative binomial modelling was done with STATA<sup>TM</sup> v17.0 with farm as the level. STATSDirect v. 3.3.5 was used to compare prevalence between countries within the same year and across the 2 years.

#### RESULTS

## Prevalence of Cryptosporidium in Belgian, French, and Dutch dairy farms

In Belgium, 324 fecal samples across 17 farms were screened. Amplification of the SSU rRNA and gp60 genes showed a prevalence of 25% with 81/324 specimens positive for *Cryptosporidium* spp. (**Table 1**). Prevalence varied across farms from 0% to 50%. The majority of the positive samples were identified as C. parvum (64.2%, 52/81) with 45 of them showing 100% nucleotide identity to the reference sequence AH006572.2, and four samples showing 99% nucleotide identity to the same sequence. We were unable to obtain good quality sequences for three SSU rRNA PCR-positive samples. Nonetheless, C. parvum identity was confirmed through positive gp60 PCR and subsequent sequencing. At the farm level, C. parvum was present in 14/17 farms. The next most abundant species found was C. bovis (20.9%, 17/81). Additionally, three samples had co-infections of C. bovis and C. parvum. Nineteen samples had 100% nucleotide identity to the reference sequence AB777173.1 (from a calf in Egypt), while one sample had 100% nucleotide identity to the reference sequence MZ021459.1 (from a calf in Belgium in a previous study on these farms (Pinto et al., 2021)). The next most prevalent species was C. ryanae (6.2%, 5/81). Additionally, two samples showed mixed infection of C. ryanae and C. parvum. Five samples were 100% identical to the reference sequence FJ463193.1, while one sample had 100% nucleotide identity to the reference sequence KT922233.1 and another showed 99% identity to the same sequence. The least common species was C. andersoni (2.5%, 2/81). One sample showed 100% nucleotide identity to the reference sequence AB513856.1 (from cattle in Egypt), while the other was 100% identical to FJ463171.1 (from cattle in China).

In France, 236 fecal samples across 15 farms were screened. Amplification of the *SSU* rRNA and *gp60* genes showed a prevalence of 23.3% with 55/236 specimens positive for *Cryptosporidium* spp. Prevalence varied across farms from 0% to 45.5%. Most of the positive samples were identified as *C. parvum* (65.5%, 36/55) with 33 of them showing 100% nucleotide identity to the reference sequence AH006572.2, and one sample showing 99% nucleotide identity to the same sequence. We were unable to obtain good quality sequences for two *SSU* rRNA PCR-positive samples, but *C. parvum* identity was confirmed through positive *gp60* PCR and subsequent sequencing. At the farm level, *C. parvum* was present in 10/15 farms, with occurrence ranging from 5% to 45.5%. The next most common species was *C. bovis* (12.7%, 7/55). Additionally, two samples had co-infections of *C. bovis* and *C. parvum*. Eight samples showed 100% nucleotide identity to the reference sequence define the reference sequence AB777173.1, while

one sample showed 100% nucleotide identity to the reference sequence MZ021459.1. Equal levels of *C. ryanae* and *C. andersoni* were detected at 9.1% (5/55) each. Two *C. ryanae* variants were found with three samples showing 100% identity to KT922233.1 and two samples showing 100% nucleotide identity to the reference sequence FJ463193.1. Two *C. andersoni* variants were found with three isolates showing 100% nucleotide identity to reference sequence FJ463171.1 and two showing 100% nucleotide identity to AB513856.1.

In the Netherlands, 376 fecal samples across 19 farms were screened. Amplification of the *SSU* rRNA and *gp60* genes showed a prevalence of 24.2% with 91/376 specimens positive for *Cryptosporidium* spp. 18/19 farms contained at least one positive samples with prevalence ranging from 0% to 42.1% across farms. Most positive samples were identified as *C. parvum* (81.3%, 74/91) with all 74 isolates showing 100% nucleotide identity to the reference sequence AH006572.2. At the farm level, *C. parvum* was present in 8/19 farms. The next most prevalent species was *C. bovis* at (16.5%, 15/91), with 13 isolates showing 100% nucleotide identity to the reference sequence AB777173.1 and two isolates showing 100% nucleotide identity to MZ021459.1. One sample was positive for *C. ryanae* with 99% sequence identity to FJ463193.1, and one for *C. andersoni* with 100% nucleotide identity to AB513856.1. No mixed infections were found.

All *SSU* rRNA sequences have been submitted to GenBank under accession numbers OP975438 – OP975657.

# Cryptosporidium parvum subtyping through gp60 analysis

*Cryptosporidium parvum* was detected in 71.3% (162/227) of *Cryptosporidium* positive samples and found in 39 farms. PCR amplification and sequencing of the *gp60* gene was used to identify the specific *C. parvum* subtypes present in these three countries. All *18S* rRNA PCR-positive samples were further screened using nested PCR of the *gp60* gene. Of these, the *gp60* gene was successfully amplified and sequenced in 145 samples. 24 *C. parvum* positive sequences were not successfully subtyped. Sequence analysis revealed the presence of nine subtypes, eight of which belong to the IIa subtype family and one belonging to the IId family (**Figure 1**).

The most abundant subtype found overall was IIaA15G2R1, representing 61.7% of *C. parvum*-positive samples Ninety-eight isolates had 100% nucleotide identity to the reference sequence DQ630518.1 and two were 99% identical to the same sequence. This subtype was also the most widely distributed, occurring in 71.8% (28/39) of *C. parvum*-positive farms. This

subtype represented 73.1%, 41.7% and 63.5% of all *C. parvum* positive samples, in Belgium, France and the Netherlands, respectively. It was the most prevalent subtype in Belgium and the Netherlands. This subtype predominantly occurred in calves, with only two isolates occurring in a dam.

The second most common subtype in this study was IIaA16G2R1. Seventeen isolates were found with 100% nucleotide identity to reference sequence DQ192505.1, all of which were found in France. This subtype was found in five farms and represented 47.2% of total *C*. *parvum* infections in the French farms. This subtype also predominantly occurred in calves, with only one isolate occurring in a dam.

Eight isolates of IIaA14G1R1 were identified – six with 100% nucleotide identity to reference sequence AM937017.1 and two with 99% nucleotide identity to the same sequence. This subtype occurred in three farms, representing 5.8% and 6.8% of *C. parvum* infections in Belgium and the Netherlands, respectively.

Eight isolates of IIaA17G1R1 were identified – seven with 100% nucleotide identity to reference sequence GQ983359.1, which were all located in one Dutch farm. The remaining isolate occurred in a Belgian farm and had 99% nucleotide identity to the same sequence. This was the sole subtype present in two farms, representing 1.9% and 9.5% of *C. parvum* infections in Belgium and the Netherlands, respectively.

Five isolates of IIaA13G2R1 were identified – four with 100% nucleotide identity to reference sequence DQ192502.1 and one isolate with 99% homology to the same sequence. This was the sole subtype present in three farms, representing 3.8% and 4.1% of *C. parvum* infections in Belgium and the Netherlands, respectively.

IIaA17G2R1 was found exclusively in the Netherlands. Four isolates were identified with 100% nucleotide identity to DQ630516.1. This subtype occurred on one farm and represented 5.4% of *C. parvum* infections. IIaA15G1R1 (99% nucleotide identity to AB777872) and IIaA16G1R1 (100% nucleotide identity to DQ192504.1), each occurred once in Belgium and France, respectively. Lastly, a novel isolate was identified and marked as IIdA14G2R1. This is the first report of this subtype worldwide and is the only subtype belonging to the IId family. Subtypes IIaA17G1R1, IIaA13G2R1, IIaA17G2R1, IIaA15G1R1 and IIaA16G1R1 were all found exclusively in calves. Geographical distribution of subtypes is visualised in **Figure 2**.

All gp60 sequences have been submitted to GenBank under accession numbers OP978513 – OP978657.

# Comparison to previous sampling study

This work is a follow-up to a prevalence study carried out between 2019 to 2020 (Pinto et al., 2021). Methodology was slightly altered between the two studies. In the preceding study, *gp60* PCR and subtyping was only carried out on samples confirmed as *C. parvum* positive through *SSU* rRNA PCR and sequencing. Herein subtyping was performed in all *Cryptosporidium SSU* rRNA positive samples. As such, we were able to detect *Cryptosporidium* co-infections. For comparability between the cohorts, prevalence figures in the second cohort have been adjusted accordingly. Furthermore, only animals under 28 days old have been included for comparison.

While overall Cryptosporidium prevalence was higher in all three countries in the follow-up study (Table 2) this difference was not statistically significant (Mann-Whitney, U= U=813.5, p=0.197). In both cohorts, *C. parvum* is consistently the predominant species present in all countries, representing 91% of total infections. The difference in Cryptosporidium prevalence between the two studies was not uniform across all farms (Figure 3). In Belgium, seven farms showed an increase in prevalence amongst neonatal calves in the follow-up study, three of which with an increase two-fold or higher. While BE11 farm was initially Cryptosporidium negative, in the following year 30% of neonatal calves sampled tested positive. Incidence had decreased in eight farms, four of which had reduced by at least half. No infections were detected in BE14 farm, despite 100% of animals sampled the previous year testing positive. In France, prevalence decreased in six farms. Four farms showed an increase in prevalence amongst neonatal calves in the follow-up study, most dramatically seen in FR8 and FR13. Cryptosporidium incidence in the FR8 tripled in the subsequent study, while in FR13 100% of sampled calves testing positive despite initially testing negative in the previous year. In the Netherlands, ten farms displayed an increase in prevalence in the follow-up sampling, most markedly seen in NL18. Incidence in five farms decreased. In NL4 and NL13, no infections were found despite presence of the parasite in cohort 1. Two additional subtypes – IIaA17G1R1 and IIa17G2R1 were detected in the follow-up study.

Across countries, no neonatal infections were detected in farms BE9, FR7 and NL3 in either year. Prevalence in BE4, FR12 and FR15 remained at 10-14% in both years. There was no significant effect observed between countries, however an increase of prevalence from  $1^{st}$  to  $2^{nd}$  sampling year was noted (**Table S1**). Within the same country and same year Cochran Q was frequently significant suggesting that differences between farms reflect real

differences rather than just random variation. This would indicate that may indeed be better at controlling *Cryptosporidium* infections than others.

# DISCUSSION

# *Cryptosporidium* species in cattle

Amplification and sequencing of *SSU* rRNA gene revealed high presence of *Cryptosporidium* at the farm level, with 90.2% of farms containing at least one positive sample across the three countries surveyed. Our results are in accordance with a previous cattle study in France, reporting prevalence of 88.4-100% at the farm level (Follet et al., 2011; Mammeri et al., 2019). Conversely, a previous study in Belgium reported just 32% of farms sampled as containing *Cryptosporidium*. This could be attributed to the less sensitive method of detection used (i.e. immunofluorescence assays of faecal smears). However, other molecular studies utilising *SSU* rRNA PCR amplification in Europe have also reported lower *Cryptosporidium* at the farm level, ranging from 44.5-66.0% (Díaz et al., 2021; Santoro et al., 2019). On the other hand, as the cows in this study were only sampled at one time point, the number of infections may be underestimated. Oocyst shedding can be intermittent (Shaw et al., 2021), and numerous longitudinal studies in farms have observed that almost all calves will shed oocysts over the course of the sampling period (Rieux et al., 2014, 2013a, 2013b).

*Cryptosporidium* infections were predominantly identified as *C. parvum*, comprising 64.2-81.32% of total infections across the three countries. These results are reflected in previous studies in Belgium (Geurden et al., 2007), France (Follet et al., 2011), and the Netherlands (Wielinga et al., 2008). Beyond these countries, the ubiquity of *C. parvum* in cattle has been reported extensively worldwide. However, *SSU* rRNA PCR amplification has been previously shown to selectively amplify the dominant species in a sample (Cama et al., 2006). As *C. parvum* infections have been suggested to result in higher oocyst shedding density, mixed infections with *C. bovis, C. ryanae* and *C. andersoni* are effectively concealed from detection.

# High occurrence of zoonotic C. parvum gp60 subtypes

To assess zoonotic risk of *Cryptosporidium* infection in cattle, *C. parvum* subtype identification was carried through amplification and sequencing of the *gp60* gene. Nine subtypes, eight of which belong to the IIa family, were identified across the three countries. The geographic distribution of these subtypes is broad (**Table S2**) and almost all are of known zoonotic risk, but each to a different extent. The most prevalent and widespread subtype in all three countries was IIaA15G2R1 in 66.7% of *C. parvum*-positive farms, closely matching the year one study (Pinto et al., 2021). This is also the most predominant subtype worldwide (Xiao,

2010) and has been described as "hyper-transmissible" (Feng et al., 2018) being responsible for the majority of acute clinical disease in humans (Feng et al., 2018; Xiao, 2010). The second most common subtype was IIaA16G2R1, which was found only in the French farms representing 44.7% of infections. It has been previously implicated in numerous individual human cryptosporidiosis cases globally (Azcona-Gutiérrez et al., 2017; Chalmers, 2012; Herges et al., 2012; Hijjawi et al., 2017; Nolan et al., 2009; Sharbatkhori et al., 2015). IIaA14G1R1 was found only in three farms across Belgium and the Netherlands. This subtype has been associated with zoonotic transmission, with human outbreaks noted in the UK, Norway and New Zealand (Garcia-R et al., 2020; Robertson et al., 2019; Smith et al., 2021). The highly zoonotic IIaA17G1R1 was found at low prevalence in Belgium and the Netherlands. Human cryptosporidiosis cases of this subtype have been reported worldwide (Chalmers et al., 2019, 2011; Hailu et al., 2021; Hatalova et al., 2022; Insulander et al., 2013; Ranjbar et al., 2016; Soba and Logar, 2008; Wielinga et al., 2008). Subtypes IIaA13G2R1, IIaA17G2R1, IIaA15G1R1 and IaA16G1R1 were found at very low prevalence matching previous results (Benhouda et al., n.d.; Geurden et al., 2007; Smith et al., 2014; Wielinga et al., 2008; Yasur-Landau et al., 2021). Their zoonotic potential appears low, as only sporadic cases in humans and outbreaks have been reported (Braima et al., 2019; Chalmers et al., 2019; Feltus et al., 2006; Guy et al., 2021; Herges et al., 2012, 2012; Hijjawi et al., 2017; Iqbal et al., 2012; Koehler et al., 2014; Ma et al., 2019; Nolan et al., 2009; O' Leary et al., 2020; Valenzuela et al., 2014; Waldron et al., 2011, 2009). In summary, the wide range and the persistent presence of subtypes detected across all counties, suggest a circulation and a high risk of zoonotic transmission of this parasite.

# Age-associated differences in Cryptosporidium spp. infection

Age-related variance of infection was observed (**Table S3**) with prevalence in calves being much higher than in dams across Belgium, France, and the Netherlands. The inverse correlation of parasite burden with age has been observed numerous times in cattle (Kváč et al., 2006; Maddox-Hyttel et al., 2006; Santín et al., 2004; Wielinga et al., 2008). However, while the methods used in this study are far more sensitive than conventional microscopic detection, they may not be sufficient when processing fecal samples from adult cows. Efficient DNA extraction is vital for accurate detection of infection. Adult cows' faecal pats are much larger and contain more fibrous material (Wells et al., 2016). As such, oocysts can be "diluted" in these samples and DNA extracts may contain higher levels of PCR inhibitors (Schrader et al., 2012). In this study, DNA extraction was carried out on just 0.2 g of each faecal sample so reported infection in adults may be underestimated. Indeed, when utilising a method to concentrate oocysts prior to PCR screening, 91% of sampled adult cows tested positive (Wells et al., 2015).

We observed that the proportion of infecting *Cryptosporidium* spp. differed across age groups (**Table S3**). *Cryptosporidium parvum* was most commonly detected in young neonatal calves up to three weeks old, while *C. bovis* and *C. ryanae* became more prevalent in mothers. The age-related variation in infecting *Cryptosporidium* spp. has been observed extensively including within these same countries and elsewhere throughout Europe (Díaz et al., 2021; Follet et al., 2011; Geurden et al., 2007; Mammeri et al., 2019; Santoro et al., 2019; Soba and Logar, 2008). As *C. parvum* is the main 'cattle-infecting' species causing clinical disease, this result confirms that neonatal calves are particularly at risk for bovine cryptosporidiosis.

Co-infections were only observed in calves; however, this is likely attributable to the method in which mixed infections were identified. Co-infections were detected through a positive non-*C. parvum SSU* rRNA and specific *gp60* identities. As such, only mixed infections containing *C. parvum* were detected which would tend to discount older animals due to association of *C. parvum* with neonates. It is possible other mixed infections were present in the dams, but combinations of *C. bovis, C. ryanae* and *C. andersoni* could not be recognised. Since the focus of this study was *C. parvum*, future molecular work should explore techniques to better uncover mixed infections (Dettwiler et al., 2022).

# Temporal Cryptosporidium infection

*Cryptosporidium* infection rates in Belgian, French, and Dutch calves over two years are similar. Nonetheless, large variation at the farm level is noted. Specifically, some farms demonstrated consistently low levels of infections, while others showed markedly reduced prevalence in the subsequent study. This is suggestive of variable effectiveness in infection control measures used in the different farms (Brainard et al., 2020). Further investigation into these farms may reveal best practices in reducing infections in neonatal calves.

Based on *gp60* analysis, two additional subtypes were detected in Dutch farms in this follow-up study (Pinto et al., 2021). While this could suggest parasite inflow into these farms, it is equally possible these subtypes were present in the initial study but underrepresented in the *C. parvum* population and therefore not identified. Given that both studies found vertical

transmission to be negligible, it is highly likely infection is originating from an environmental source. Being a known waterborne parasite, the organism has been found in environmental sources numerous times (Brankston et al., 2018; Rose, 1997). Analysis of *Cryptosporidium* in the surrounding farm environment could reveal potential sources of infection as well as routes of transmission.

# Future avenues and concluding remarks

Further monitoring of Cryptosporidium is paramount to reducing disease burden in cattle. Development of a standardised molecular protocol, including next generation sequencing approaches (Wang et al., 2022) for species and subtype identification would allow for better comparability between studies as well as for tracking spread of different subtypes. While gp60 is suitable for revealing subtype diversity within a species, additional loci are needed for intra-subtype analyses. This is particularly important regarding "hypertransmissable" subtypes, such as IIaA15G2R1. Despite this subtype being the most prevalent and widespread, the obtained isolates showed little gp60 genetic variation, even across countries. Hence, transmission dynamics are impossible to discern as yet.

Age has been identified as a key risk factor for *Cryptosporidium* infection however other risk factors regarding animal husbandry should also be explored. Furthermore, as there was significant variation in prevalence between farms, investigations into how farm management practices differ may reveal effective infection control strategies. This would help ease the significant economic impact on farmers (Brainard et al., 2020; Brook et al., 2008; Shaw et al., 2020).

A One Health approach is essential to properly tackle disease burden and eliminate transmission routes of this parasite (Innes et al., 2020). Monitoring of the parasite in cattle moving across borders should be encouraged to prevent infection spread to uncontaminated areas (Pilarczyk et al., 2009). As outbreaks of *Cryptosporidium* are commonly associated with waterborne transmission, sampling of the surrounding water bodies, may reveal other reservoirs of disease as well as possible indirect routes of transmission through contaminated water runoff from farms. Reverse zoonoses may also be taking place, where humans are in fact responsible for infection spread to animals (Messenger et al., 2014). Farm professionals, veterinarians and other visitors may spread oocysts via contaminated clothing, shoes, and vehicles. It is possible all these modes of transmission play a role in cryptosporidiosis spread and cycling.

The high levels of *Cryptosporidium* detected in this and the previous study reinforce the role of dairy farms as a key reservoir of this parasite. Our findings pinpoint to a high risk of zoonotic transmission with *C. parvum* as the predominant species found across all three countries and all *gp60* subtypes identified here having previously been detected in human cryptosporidiosis cases.

# **Figure Legends:**

**Figure 1.** Venn diagram with all observed *Cryptosporidium parvum gp60* subtypes across Belgium, France, and the Netherlands

Figure 2. Geographical distribution of *Cryptosporidium parvum gp60* subtypes in dairy farms across a) Belgium, b) France and c) the Netherlands.
IIaA13G12R1 (purple), IIaA14G1R1 (red), IIaA15G1R1 (dark blue), IIaA15G2R1 (green), IIaA16G1R1 (brown), IIaA16G2R1 (peach), IIaA17G1R1 (turquoise), IIaA17G2R1 (blue). *C. parvum* positive samples with unsuccessful *gp60* sequencing are indicated in grey. Pie charts are proportional to number of *C. parvum* positive samples identified per farm

**Figure 3.** Comparison of *Cryptosporidium* prevalence in neonatal calves across two sampling studies in a) Belgium, b) France, c) The Netherlands.

**Supplementary Figure 1.** A maximum likelihood (ML) tree based on the 18S rRNA gene sequences of *Cryptosporidium bovis*, *C. ryanae* and *C. andersoni* obtained in Belgium, France, and the Netherlands. Bootstrap values for nodes with more than 50% support are shown. ML tree was rooted with an 18S rRNA sequence from *Monocystis agilis* (AF457127).

# REFERENCES

- Adeyemo, F.E., Singh, G., Reddy, P., Stenström, T.A., 2018. Methods for the detection of *Cryptosporidium* and *Giardia*: From microscopy to nucleic acid based tools in clinical and environmental regimes. Acta Trop., Recent Advances in Genetic and Molecular Diagnosis of Parasitic Protozoa 184, 15–28. https://doi.org/10.1016/j.actatropica.2018.01.011
- Alves, M., Xiao, L., Sulaiman, I., Lal, A.A., Matos, O., Antunes, F., 2003. Subgenotype analysis of *Cryptosporidium* isolates from humans, cattle, and zoo ruminants in Portugal. J. Clin. Microbiol. 41, 2744–2747. https://doi.org/10.1128/JCM.41.6.2744-2747.2003
- Azcona-Gutiérrez, J.M., de Lucio, A., Hernández-de-Mingo, M., García-García, C., Soria-Blanco, L.M., Morales, L., Aguilera, M., Fuentes, I., Carmena, D., 2017. Molecular diversity and frequency of the diarrheagenic enteric protozoan *Giardia duodenalis* and *Cryptosporidium* spp. in a hospital setting in Northern Spain. PLoS ONE 12, e0178575. https://doi.org/10.1371/journal.pone.0178575
- Benhouda, D., Hakem, A., Sannella, A.R., Benhouda, A., Cacciò, S.M., n.d. First molecular investigation of *Cryptosporidium* spp. in young calves in Algeria. Parasite 24, 15. https://doi.org/10.1051/parasite/2017014
- Bennett, R., 2003. The "direct costs" of livestock disease: The development of a system of models for the analysis of 30 endemic livestock diseases in Great Britain. J. Agric. Econ. 54, 55–71. https://doi.org/10.1111/J.1477-9552.2003.TB00048.X
- Braima, K., Zahedi, A., Oskam, C., Reid, S., Pingault, N., Xiao, L., Ryan, U., 2019. Retrospective analysis of *Cryptosporidium* species in western Australian human populations (2015–2018), and emergence of the *C. hominis* IfA12G1R5 subtype. Infect. Genet. Evol. 73, 306–313. https://doi.org/10.1016/j.meegid.2019.05.018
- Brainard, J., Hooper, L., McFarlane, S., Hammer, C.C., Hunter, P.R., Tyler, K., 2020. Systematic review of modifiable risk factors shows little evidential support for most current practices in *Cryptosporidium* management in bovine calves. Parasitol. Res. 119, 3571–3584. https://doi.org/10.1007/s00436-020-06890-2
- Brankston, G., Boughen, C., Ng, V., Fisman, D.N., Sargeant, J.M., Greer, A.L., 2018. Assessing the impact of environmental exposures and *Cryptosporidium* infection in cattle on human incidence of cryptosporidiosis in Southwestern Ontario, Canada. PLoS ONE 13, e0196573. https://doi.org/10.1371/journal.pone.0196573
- Brook, E., Hart, C.A., French, N., Christley, R., 2008. Prevalence and risk factors for *Cryptosporidium* spp. infection in young calves. Vet. Parasitol. 152, 46–52. https://doi.org/10.1016/j.vetpar.2007.12.003
- Cama, V., Gilman, R.H., Vivar, A., Ticona, E., Ortega, Y., Bern, C., Xiao, L., 2006. Mixed *Cryptosporidium* Infections and HIV. Emerg. Infect. Dis. 12, 1025–1028. https://doi.org/10.3201/eid1206.060015
- Chalmers, R.M., 2012. Waterborne outbreaks of cryptosporidiosis. Ann. Ist. Super. Sanita 48, 429–446. https://doi.org/10.4415/ANN\_12\_04\_10
- Chalmers, R.M., Giles, M., 2010. Zoonotic cryptosporidiosis in the UK challenges for control. J. Appl. Microbiol. 109, 1487–1497. https://doi.org/10.1111/J.1365-2672.2010.04764.X
- Chalmers, R.M., Robinson, G., Elwin, K., Elson, R., 2019. Analysis of the *Cryptosporidium* spp. and gp60 subtypes linked to human outbreaks of cryptosporidiosis in England and Wales, 2009 to 2017. Parasit. Vectors 12, 95. https://doi.org/10.1186/s13071-019-3354-6

- Chalmers, R.M., Smith, R.P., Hadfield, S.J., Elwin, K., Giles, M., 2011. Zoonotic linkage and variation in *Cryptosporidium parvum* from patients in the United Kingdom. Parasitol. Res. 108, 1321–1325. https://doi.org/10.1007/s00436-010-2199-x
- Cho, Y.-I., Yoon, K.-J., 2014. An overview of calf diarrhea infectious etiology, diagnosis, and intervention. J. Vet. Sci. 15, 1–17. https://doi.org/10.4142/JVS.2014.15.1.1
- De Graaf, D.C., Vanopdenbosch, E., Ortega-Mora, L.M., Abbassi, H., Peeters, J.E., 1999. A review of the importance of cryptosporidiosis in farm animals. Int. J. Parasitol. 29, 1269–1287. https://doi.org/10.1016/S0020-7519(99)00076-4
- Delling, C., Daugschies, A., 2022. Literature Review: Coinfection in young ruminant livestock—*Cryptosporidium* spp. and Its Companions. Pathogens 11, 103. https://doi.org/10.3390/pathogens11010103
- Dettwiler, I., Troell, K., Robinson, G., Chalmers, R.M., Basso, W., Rentería-Solís, Z.M., Daugschies, A., Mühlethaler, K., Dale, M.I., Basapathi Raghavendra, J., Ruf, M.-T., Poppert, S., Meylan, M., Olias, P., 2022. TIDE Analysis of *Cryptosporidium* Infections by gp60 Typing Reveals Obscured Mixed Infections. J. Infect. Dis. 225, 686–695. https://doi.org/10.1093/infdis/jiab417
- Díaz, P., Navarro, E., Remesar, S., García-Dios, D., Martínez-Calabuig, N., Prieto, A., López-Lorenzo, G., López, C.M., Panadero, R., Fernández, G., Díez-Baños, P., Morrondo, P., 2021. The age-related *Cryptosporidium* species distribution in asymptomatic cattle from north-western Spain. Animals 11, 256. https://doi.org/10.3390/ani11020256
- Feltus, D.C., Giddings, C.W., Schneck, B.L., Monson, T., Warshauer, D., McEvoy, J.M., 2006. Evidence supporting zoonotic transmission of *Cryptosporidium* spp. in Wisconsin. J. Clin. Microbiol. 44, 4303–4303. https://doi.org/10.1128/JCM.01067-06
- Feng, Y., Ryan, U.M., Xiao, L., 2018. Genetic diversity and population structure of *Cryptosporidium*. Trends Parasitol. 34, 997–1011. https://doi.org/10.1016/J.PT.2018.07.009
- Follet, J., Guyot, K., Leruste, H., Follet-Dumoulin, A., Hammouma-Ghelboun, O., Certad, G., Dei-Cas, E., Halama, P., 2011. *Cryptosporidium* infection in a veal calf cohort in France: Molecular characterization of species in a longitudinal study. Vet. Res. 42, 1– 8. https://doi.org/10.1186/1297-9716-42-116/TABLES/3
- García, A., Ruiz-Santa-Quiteria, J.A., Orden, J.A., Cid, D., Sanz, R., Gómez-Bautista, M., de la Fuente, R., 2000. Rotavirus and concurrent infections with other enteropathogens in neonatal diarrheic dairy calves in Spain. Comp. Immunol. Microbiol. Infect. Dis. 23, 175–183. https://doi.org/10.1016/S0147-9571(99)00071-5
- Garcia-R, J.C., Pita, A.B., Velathanthiri, N., French, N.P., Hayman, D.T.S., 2020. Species and genotypes causing human cryptosporidiosis in New Zealand. Parasitol. Res. 119, 2317–2326. https://doi.org/10.1007/s00436-020-06729-w
- Geurden, T., Berkvens, D., Martens, C., Casaert, S., Vercruysse, J., Claerebout, E., 2007.
   Molecular epidemiology with subtype analysis of *Cryptosporidium* in calves in
   Belgium. Parasitology 134, 1981–1987. https://doi.org/10.1017/S0031182007003460
- Guy, R.A., Yanta, C.A., Muchaal, P.K., Rankin, M.A., Thivierge, K., Lau, R., Boggild, A.K., 2021. Molecular characterization of *Cryptosporidium* isolates from humans in Ontario, Canada. Parasit. Vectors 14, 69. https://doi.org/10.1186/s13071-020-04546-9
- Hailu, A.W., Degarege, A., Adamu, H., Costa, D., Villier, V., Mouhajir, A., Favennec, L., Razakandrainibe, R., Petros, B., 2021. Molecular characterization of *Cryptosporidium* spp. from humans in Ethiopia. PLOS ONE 16, e0253186. https://doi.org/10.1371/JOURNAL.PONE.0253186
- Hatalova, E., Guman, T., Bednarova, V., Simova, V.T., Logoida, M., Halanova, M., 2022. Occurrence of *Cryptosporidium parvum* IIaA17G1R1 in hospitalized hemato-

oncological patients in Slovakia. Parasitol. Res. 121, 471–476. https://doi.org/10.1007/s00436-021-07294-6

- Hawkins, A., Burdine, K., Amaral-Phillips, D., Costa, J.H.C., 2019. An economic analysis of the costs associated with pre-weaning Management strategies for dairy heifers. Anim. Basel 9, 471–471. https://doi.org/10.3390/ANI9070471
- Herges, G.R., Widmer, G., Clark, M.E., Khan, E., Giddings, C.W., Brewer, M., McEvoy, J.M., 2012. Evidence that *Cryptosporidium parvum* populations are panmictic and unstructured in the upper midwest of the United States. Appl. Environ. Microbiol. 78, 8096–8101. https://doi.org/10.1128/AEM.02105-12
- Hijjawi, N., Zahedi, A., Kazaleh, M., Ryan, U., 2017. Prevalence of *Cryptosporidium* species and subtypes in paediatric oncology and non-oncology patients with diarrhoea in Jordan. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 55, 127–130. https://doi.org/10.1016/j.meegid.2017.08.033
- Innes, E.A., Chalmers, R.M., Wells, B., Pawlowic, M.C., 2020. A One Health approach to tackle cryptosporidiosis. Trends Parasitol. 36, 290–303. https://doi.org/10.1016/j.pt.2019.12.016
- Insulander, M., Silverlås, C., Lebbad, M., Karlsson, L., Mattsson, J.G., Svenungsson, B., 2013. Molecular epidemiology and clinical manifestations of human cryptosporidiosis in Sweden. Epidemiol. Infect. 141, 1009–1020. https://doi.org/10.1017/S0950268812001665
- Iqbal, A., Lim, Y.A.L., Surin, J., Sim, B.L.H., 2012. High diversity of *Cryptosporidium* subgenotypes identified in Malaysian HIV/AIDS Individuals targeting gp60 gene. PloS ONE 7, e31139. https://doi.org/10.1371/journal.pone.0031139
- Koehler, A.V., Whipp, M., Hogg, G., Haydon, S.R., Stevens, M.A., Jex, A.R., Gasser, R.B., 2014. First genetic analysis of *Cryptosporidium* from humans from Tasmania, and identification of a new genotype from a traveller to Bali. Electrophoresis 35, 2600– 2607. https://doi.org/10.1002/elps.201400225
- Kváč, M., Kouba, M., Vítovec, J., 2006. Age-related and housing-dependence of *Cryptosporidium* infection of calves from dairy and beef herds in South Bohemia, Czech Republic. Vet. Parasitol. 137, 202–209. https://doi.org/10.1016/J.VETPAR.2006.01.027
- Leitch, G.J., He, Q., 2011. Cryptosporidiosis-an overview. J. Biomed. Res. 25, 1–1. https://doi.org/10.1016/S1674-8301(11)60001-8
- Ma, D.-W., Lee, M.-R., Hong, S.-H., Cho, S.-H., Lee, S.-E., 2019. Molecular prevalence and genotypes of *Cryptosporidium parvum* and *Giardia duodenalis* in patients with acute diarrhea in Korea, 2013–2016. Korean J. Parasitol. 57, 531–536. https://doi.org/10.3347/kjp.2019.57.5.531
- Maddox-Hyttel, C., Langkjær, R.B., Enemark, H.L., Vigre, H., 2006. Cryptosporidium and Giardia in different age groups of Danish cattle and pigs—Occurrence and management associated risk factors. Vet. Parasitol. 141, 48–59. https://doi.org/10.1016/j.vetpar.2006.04.032
- Mammeri, M., Chevillot, A., Chenafi, I., Julien, C., Vallée, I., Polack, B., Follet, J., Adjou, K.T., 2019. Molecular characterization of *Cryptosporidium* isolates from diarrheal dairy calves in France. Vet. Parasitol. Reg. Stud. Rep. 18, 100323–100323. https://doi.org/10.1016/J.VPRSR.2019.100323
- Messenger, A.M., Barnes, A.N., Gray, G.C., 2014. Reverse Zoonotic Disease Transmission (Zooanthroponosis): A Systematic Review of Seldom-Documented Human Biological Threats to Animals. PLoS ONE 9, e89055. https://doi.org/10.1371/journal.pone.0089055

- Mosier, D.A., Oberst, R.D., 2000. Cryptosporidiosis: A global challenge. Ann. N. Y. Acad. Sci. 916, 102–111. https://doi.org/10.1111/J.1749-6632.2000.TB05279.X
- Nolan, M.J., Jex, A.R., Mansell, P.D., Browning, G.F., Gasser, R.B., 2009. Genetic characterization of *Cryptosporidium parvum* from calves by mutation scanning and targeted sequencing zoonotic implications. Electrophoresis 30, 2640–2647. https://doi.org/10.1002/ELPS.200900071
- O' Leary, J.K., Blake, L., Corcoran, G.D., Sleator, R.D., Lucey, B., 2020. Increased diversity and novel subtypes among clinical *Cryptosporidium parvum* and *Cryptosporidium hominis* isolates in Southern Ireland. Exp. Parasitol. 218, 107967. https://doi.org/10.1016/j.exppara.2020.107967
- Pilarczyk, B., Kolodziejczyk, L., Zajaczkowska, K., Kuzna-Grygiel, W., Balicka-Ramisz, A., Tomza-Marciniak, A., Pilarczyk, R., 2009. Prevalence of *Eimeria* and *Cryptosporidium* sp. protozoa in polish cows and in cows imported from the Netherlands as in-calf heifers. Bull. Vet. Inst. Pulawy 53, 637–640.
- Pinto, P., Ribeiro, C.A., Hoque, S., Hammouma, O., Leruste, H., Détriché, S., Canniere, E., Daandels, Y., Dellevoet, M., Roemen, J., Barbier Bourgeois, A., Kváč, M., Follet, J., Tsaousis, A.D., 2021. Cross-border investigations on the prevalence and transmission dynamics of *Cryptosporidium* species in dairy cattle farms in western mainland Europe. Microorganisms 9, 2394. https://doi.org/10.3390/microorganisms9112394
- Ranjbar, R., Baghaei, K., Nazemalhosseini Mojarad, E., 2016. Genetic characterization of *Cryptosporidium* spp. among patients with gastrointestinal complaints. Gastroenterol. Hepatol. Bed Bench 9, 301–307.
- Rieux, A., Chartier, C., Pors, I., Paraud, C., 2013a. Dynamics of excretion and molecular characterization of *Cryptosporidium* isolates in pre-weaned French beef calves. Vet. Parasitol. 195, 169–172. https://doi.org/10.1016/J.VETPAR.2012.12.043
- Rieux, A., Paraud, C., Pors, I., Chartier, C., 2014. Molecular characterization of *Cryptosporidium* isolates from beef calves under one month of age over three successive years in one herd in western France. Vet. Parasitol. 202, 171–179. https://doi.org/10.1016/J.VETPAR.2014.03.004
- Rieux, A., Paraud, C., Pors, I., Chartier, C., 2013b. Molecular characterization of *Cryptosporidium* spp. in pre-weaned kids in a dairy goat farm in western France. Vet. Parasitol. 192, 268–272. https://doi.org/10.1016/J.VETPAR.2012.11.008
- Robertson, L.J., Temesgen, T.T., Tysnes, K.R., Eikås, J.E., 2019. An apple a day: an outbreak of cryptosporidiosis in Norway associated with self-pressed apple juice. Epidemiol. Infect. 147. https://doi.org/10.1017/S0950268819000232
- Rose, J.B., 1997. Environmental ecology of *Cryptosporidium* and public health implications. Annu. Rev. Public Health 18, 135–161. https://doi.org/10.1146/annurev.publhealth.18.1.135
- Santín, M., Trout, J.M., Xiao, L., Zhou, L., Greiner, E., Fayer, R., 2004. Prevalence and agerelated variation of *Cryptosporidium* species and genotypes in dairy calves. Vet. Parasitol. 122, 103–117. https://doi.org/10.1016/j.vetpar.2004.03.020
- Santoro, A., Dorbek-Kolin, E., Jeremejeva, J., Tummeleht, L., Orro, T., Jokelainen, P., Lassen, B., 2019. Molecular epidemiology of *Cryptosporidium* spp. in calves in Estonia: high prevalence of *Cryptosporidium parvum* shedding and 10 subtypes identified. Parasitology 146, 261–267. https://doi.org/10.1017/S0031182018001348
- Schrader, C., Schielke, A., Ellerbroek, L., Johne, R., 2012. PCR inhibitors occurrence, properties and removal. J. Appl. Microbiol. 113, 1014–1026. https://doi.org/10.1111/j.1365-2672.2012.05384.x

- Sharbatkhori, M., Nazemalhosseini Mojarad, E., Taghipour, N., Pagheh, A.S., Mesgarian, F., 2015. Prevalence and genetic characterization of *Cryptosporidium* spp. in diarrheic children from Gonbad Kavoos city, Iran. Iran. J. Parasitol. 10, 441–447.
- Shaw, H.J., Armstrong, C., Uttley, K., Morrison, L.J., Innes, E.A., Katzer, F., 2021. Genetic diversity and shedding profiles for *Cryptosporidium parvum* in adult cattle and their calves. Curr. Res. Parasitol. Vector-Borne Dis. 1, 100027. https://doi.org/10.1016/j.crpvbd.2021.100027
- Shaw, H.J., Innes, E.A., Morrison, L.J., Katzer, F., Wells, B., 2020. Long-term production effects of clinical cryptosporidiosis in neonatal calves. Int. J. Parasitol. 50, 371–376. https://doi.org/10.1016/J.IJPARA.2020.03.002
- Shirley, D.-A.T., Moonah, S.N., Kotloff, K.L., 2012. Burden of disease from Cryptosporidiosis. Curr. Opin. Infect. Dis. 25, 555–563. https://doi.org/10.1097/QCO.0b013e328357e569
- Smith, R.P., Clifton-Hadley, F.A., Cheney, T., Giles, M., 2014. Prevalence and molecular typing of *Cryptosporidium* in dairy cattle in England and Wales and examination of potential on-farm transmission routes. Vet. Parasitol. 204, 111–119. https://doi.org/10.1016/J.VETPAR.2014.05.022
- Smith, R.P., Newton, K., Rimdap, E., Wight, A., Robinson, G., Chalmers, R.M., 2021. Review of investigations of premises housing animals that were linked to human outbreaks of cryptosporidiosis in England and Wales between 2009 and 2019. Vet. Rec. 189, e246. https://doi.org/10.1002/vetr.246
- Soba, B., Logar, J., 2008. Genetic classification of *Cryptosporidium* isolates from humans and calves in Slovenia. Parasitology 135, 1263–1270. https://doi.org/10.1017/S0031182008004800
- Stott, A., Gunn, G., 1997. A comparison of economic losses due to calf enteritis and calf pneumonia in Northern Scotland. Epidémiologie Santé Anim.
- Sulaiman, I.M., Hira, P.R., Zhou, L., Al-Ali, F.M., Al-Shelahi, F.A., Shweiki, H.M., Iqbal, J., Khalid, N., Xiao, L., 2005. Unique endemicity of cryptosporidiosis in children in Kuwait. J. Clin. Microbiol. 43, 2805–2805. https://doi.org/10.1128/JCM.43.6.2805-2809.2005
- Tamura, K., Stecher, G., Kumar, S., 2021. MEGA11: Molecular evolutionary genetics analysis Version 11. Mol. Biol. Evol. 38, 3022–3027. https://doi.org/10.1093/molbev/msab120
- Thomson, S., Hamilton, C.A., Hope, J.C., Katzer, F., Mabbott, N.A., Morrison, L.J., Innes, E.A., 2017. Bovine cryptosporidiosis: impact, host-parasite interaction and control strategies. Vet. Res. 48. https://doi.org/10.1186/S13567-017-0447-0
- Valenzuela, O., González-Díaz, M., Garibay-Escobar, A., Burgara-Estrella, A., Cano, M., Durazo, M., Bernal, R.M., Hernandez, J., Xiao, L., 2014. Molecular characterization of *Cryptosporidium* spp. in children from Mexico. PLoS ONE 9, e96128. https://doi.org/10.1371/journal.pone.0096128
- Waldron, L.S., Dimeski, B., Beggs, P.J., Ferrari, B.C., Power, M.L., 2011. Molecular epidemiology, spatiotemporal analysis, and ecology of sporadic human cryptosporidiosis in Australia. Appl. Environ. Microbiol. 77, 7757–7765. https://doi.org/10.1128/AEM.00615-11
- Waldron, L.S., Ferrari, B.C., Power, M.L., 2009. Glycoprotein 60 diversity in *C. hominis* and *C. parvum* causing human cryptosporidiosis in NSW, Australia. Exp. Parasitol. 122, 124–127. https://doi.org/10.1016/j.exppara.2009.02.006
- Wang, T., Guo, Y., Roellig, D.M., Li, N., Santín, M., Lombard, J., Kváč, M., Naguib, D., Zhang, Z., Feng, Y., Xiao, L., 2022. Sympatric recombination in zoonotic

*Cryptosporidium* leads to emergence of populations with modified host preference. Mol. Biol. Evol. 39, msac150. https://doi.org/10.1093/molbev/msac150

- Wells, B., Shaw, H., Hotchkiss, E., Gilray, J., Ayton, R., Green, J., Katzer, F., Wells, A., Innes, E., 2015. Prevalence, species identification and genotyping *Cryptosporidium* from livestock and deer in a catchment in the Cairngorms with a history of a contaminated public water supply. Parasit. Vectors 8, 66. https://doi.org/10.1186/s13071-015-0684-x
- Wells, B., Thomson, S., Ensor, H., Innes, E.A., Katzer, F., 2016. Development of a sensitive method to extract and detect low numbers of *Cryptosporidium* oocysts from adult cattle faecal samples. Vet. Parasitol. 227, 26–29. https://doi.org/10.1016/j.vetpar.2016.07.018
- Widmer, G., Carmena, D., Kváč, M., Chalmers, R.M., Kissinger, J.C., Xiao, L., Sateriale, A., Striepen, B., Laurent, F., Lacroix-Lamandé, S., Gargala, G., Favennec, L., 2020. Update on *Cryptosporidium* spp.: highlights from the Seventh International *Giardia* and *Cryptosporidium* Conference. Presented at the Parasite, EDP Sciences, pp. 14–14. https://doi.org/10.1051/PARASITE/2020011
- Wielinga, P.R., de Vries, A., van der Goot, T.H., Mank, T., Mars, M.H., Kortbeek, L.M., van der Giessen, J.W.B., 2008. Molecular epidemiology of *Cryptosporidium* in humans and cattle in The Netherlands. Int. J. Parasitol. 38, 809–817. https://doi.org/10.1016/j.ijpara.2007.10.014
- Xiao, L., 2010. Molecular epidemiology of cryptosporidiosis: An update. Exp. Parasitol. 124, 80–89. https://doi.org/10.1016/J.EXPPARA.2009.03.018
- Xiao, L., Feng, Y., 2008. Zoonotic cryptosporidiosis. FEMS Immunol. Med. Microbiol. 52, 309–323. https://doi.org/10.1111/J.1574-695X.2008.00377.X
- Yasur-Landau, D., Zilberberg, M., Perry Markovich, M., Behar, A., Fleiderovitz, L., Leszkowicz Mazuz, M., 2021. *Cryptosporidium parvum* subtypes from diarrheic dairy calves in Israel. Vet. Parasitol. Reg. Stud. Rep. 25, 100608–100608. https://doi.org/10.1016/J.VPRSR.2021.100608
- Ziegler, P.E., Santucci, F., Lindergard, G., Nydam, D.V., Wade, S.E., Schaaf, S.L., Chang, Y.-F., Mohammed, H.O., 2007. Evaluation of polymerase chain reaction diagnosis of *Cryptosporidium* spp in dairy cattle and wildlife. Vet. Ther. 8, 148–159.

# Dear Editor,

I hereby submit the revised version of our manuscript Vetpar-D-22-577R1, entitled "Followup investigation into *Cryptosporidium* prevalence and transmission in Western European dairy farms", on behalf of myself and all co-authors. We have addressed all of the reviewers' suggestions, as detailed below (in red and italics). I hope that the improved manuscript is now suitable for publication

**Reviewer Comments:** 

# **Reviewer #2:**

The multi-authored manuscript describes an epidemiological survey on bovine Cryptosporidium in three western European countries, including the occurrence of different C. parvum subtypes and the analysis of possible risk factors for transmission. This work presents a follow-up study on this topic and extends to detailed genotyping with a very detailed analysis, and supports the previous findings that C. parvum is the prevailing and probably also the most important species in calves, due to its pathogenic potential in suckling calves and its zoonotic nature. The follow-up study not only enabled comparison of prevalence rates over several years, but also developed further in methodology as it changed the decision on C. parvum genotyping which enabled the detection of coinfections in the present study. The authors do not embark on a discussion whether this may have lead to a higher C. parvum prevalence on some of the farms that were re-sampled, but focus on the genotyping details instead and do not discuss possible reasons for prevalence differences, only mention this briefly in the Results and Discussion sections (maybe this is yet to come in another manuscript).

The manuscript is well written, the methods are outlined in a way that makes them easy to follow, the results are clearly presented and support the conclusions.

**Comment:** We would like to thank the reviewer for their positive comments on the manuscript.

A few points should be addressed in a minor revision, listed according to their appearance in the manuscript:

Table 1: in the header "(co-infection)" should not be in italics; the table should be formatted in a way that enables portrait format on a single page if possible.

# **Comment:** Both changes have been made. We still think that the font size is very small to have all the information in one page, but we have made the modification according to the reviewer's suggestion.

Abstract, last sentence: while zoonotic diseases usually require a One Health approach, it is not clear wat the impact of cryptosporidiosis is on humans in the countries that were enrolled in this study. Have clinical cases in humans with the reported genotypes been described from this area or is this a more general statement? This should be described more precisely in the Abstract. The statement that vertical transmission does not seem to play a role comes a bit as a surprise in the Abstract, since, unlike in the full text, sampling of calves and their mothers is not mentioned as such, this should also be clarified.

**Comment:** In regard to the One Health sentence, this is a general statement on future studies. We have modified the sentence to highlight this: "Our study highlights the need for further investigation into cryptosporidiosis transmission, and future studies will require a One Health approach to reduce the impact of this disease.".

We are a bit confused about the comment on the vertical transmission. We have stated several times within the text that we have sampled calves and their mothers: e.g. "We aimed to collect samples from up to 10 calves (up to 3 months of age) and their mothers." in methods; "Cryptosporidium

parvum was most commonly detected in young neonatal calves up to three weeks old, while C. bovis and C. ryanae became more prevalent in mothers." in results.

Results: the term "stool" is used for human samples, while "fecal samples" is used for animals. It is suggested to use "fecal samples" (this is not mandatory, just a suggestion).

# **Comment:** We have replaced eh word "stool" to the word "fecal" throughout the manuscript.

Discussion: There is a strong focus on discussion of the detected genotypes (maybe this impression is not quite correct since a lot of the text in the pdf was erased but is still visible). The authors give hints on possible mechanisms of spread and transmission between cattle and from cattle to humans (and vice versa) and recommend NGS for more detailed genotyping. The "high risk of zoonotic transmission" is, however, not fully supported by the Discussion that does not bring forward data on human cryptosporidiosis in the three countries the samples in this study originated from. It would provide more stringency in the discussion to only include Europe in the discussion of the genotypes considered as zoonotic; after all, the data deal with cattle from 3 western European countries and not with a review on zoonotic genotypes worldwide. To not let the authors' work on compiling such data go unnoticed, it is suggested to collectively describe non-European findings in the format of a Table (supplementary data) instead of putting them into the text, and to just sum them up briefly in the text to put more focus on the geographic correlation between the findings in cattle and humans (to pinpoint the reviewer's concerns, cattle are certainly moved over long distances, however, for an outbreak in New Zealand oocysts shed by a calf on a European farm are not relevant). On the other hand. The now deleted data on the distribution of genotypes in cattle could also go into a supplementary table instead of being deleted (this is just a suggestion, if the authors do not want to follow this, the reviewer will not insist).

**Comment:** We would like to thank the reviewer for this comment. We have actually done this, based on previous comments on the previous revision of our manuscript. Supplementary Table S2 summarises all the information and in the discussion we just provide a small overview of the impact of the various subtypes.

#### **Reviewer #3:**

Table 1 - replace "Incidence" with "Occurrence"

Comment: Done

Keywords - display alphabetically

#### Comment: *Done*

#### Abstract

... causing an important economic burden

Comment: *Done* 

... identify the Cryptosporidium spp. present

Comment: *Done* 

... have previously been reported

Comment: Done

Replace Cryptosporidiosis [italics] with Cryptosporidium [roman] **Comment:** *Done* 

Introduction

Cryptosporidiosis is an enteric disease caused by apicomplexan parasites of the genus Cryptosporidium... Comment: *Done* 

Most cases of zoonotic cryptosporidiosis are associated... Comment: *Done* 

... close contact with THOSE animals **Comment:** *Done* 

are the main responsible species **Comment:** *Done* 

Remark 1 - display references by year of publication **Comment:** *the format of the references are according to the journal's guidelines, which is an alphabetical order* 

While FATHALITY is generally low... Comment: *Done* 

Significant differences in weight gain HAVE been observed between calves WHICH had severe **Comment:** *Done* 

García et al., 2000) AND infected animals are more susceptible to developing severe **Comment:** *Done* 

Delete specificity: As this method suffers from low sensitivity (Adeyemo et al., 2018), **Comment:** *Done* 

Delete longitudinal: The study herein is an investigation of Cryptosporidium across the same dairy farms one year later **Comment:** *Done* 

Materials and methods (instead of Methods) Comment: *Done*  ... from 51 dairy farms were **Comment:** *Done* 

Remark 2 - replace asymptomatic with apparently healthy **Comment:** *Done* 

and the WESTERN part of the Netherlands **Comment:** *Done* 

650  $\mu$ L of S1 Lysis Buffer (650  $\mu$ L) and S2 Lysis Enhancer (100  $\mu$ L) WERE added to each sample. **Comment:** *Done* 

Leftover DNA and stool samples WERE stored long-term in a -80 oC freezer **Comment:** *Done* 

Only neonatal calves aged under 1 month old WERE included for comparison **Comment:** *Done* 

Farms with less than three calves within this age range have been excluded from comparison. **Comment:** *Done* 

... and across the 2 years **Comment:** *Done* 

Write spp. in non-italic style **Comment:** *Done* 

The high levels of Cryptosporidium detected in this and the previous study REINFORCE **Comment:** *Done* 

Figure legends - write out Cryptosporidium at least once per legend **Comment:** *Done* 

References - please standardize, including lowercase for titles (as much as possible)

Comment: Done

Kind regards,

Anastasios Tsaousis (on behalf of all the co-authors)

Supplementary Figure 1

Click here to access/download **Supplementary Material** Supplementary Figure 1.tif Supplementary Material - Table S1

Click here to access/download Supplementary Material Table S1.docx Supplementary Material - Table S2

Click here to access/download Supplementary Material Table S2.docx Supplementary Material - Table S3

Click here to access/download Supplementary Material Table S3.docx