

# **Kent Academic Repository**

Arias-Martorell, Júlia, Urciuoli, Alessandro, Almécija, Sergio, Alba, David M and Nakatsukasa, Masato (2023) *The radial head of the Middle Miocene ape Nacholapithecus kerioi: Morphometric affinities, locomotor inferences, and implications for the evolution of the hominoid humeroradial joint.* Journal of Human Evolution, 178. ISSN 0047-2484.

**Downloaded from** <u>https://kar.kent.ac.uk/100710/</u> The University of Kent's Academic Repository KAR

The version of record is available from https://doi.org/10.1016/j.jhevol.2023.103345

This document version Author's Accepted Manuscript

**DOI for this version** 

Licence for this version CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

**Additional information** 

# Versions of research works

### **Versions of Record**

If this version is the version of record, it is the same as the published version available on the publisher's web site. Cite as the published version.

### **Author Accepted Manuscripts**

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in *Title of Journal*, Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

### **Enquiries**

If you have questions about this document contact <u>ResearchSupport@kent.ac.uk</u>. Please include the URL of the record in KAR. If you believe that your, or a third party's rights have been compromised through this document please see our <u>Take Down policy</u> (available from <u>https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies</u>).

#### **Short Communication**

The radial head of the Middle Miocene ape *Nacholapithecus kerioi*: Morphometric affinities, locomotor inferences, and implications for the evolution of the hominoid humeroradial joint

Julia Arias-Martorell<sup>a,b,\*</sup>, Alessandro Urciuoli<sup>c,d,a</sup>, Sergio Almécija<sup>e,f,a</sup>, David M. Alba<sup>a</sup>, Masato Nakatsukasa<sup>g</sup>

<sup>a</sup> Insitut Català de Paleontologia Miquel Crusafont, Universitat Auntònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain

<sup>b</sup> School of Anthropology and Conservation, Marlowe Building, University of Kent, Canterbury, CT2 7NR, UK

<sup>c</sup> Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain

<sup>d</sup> Division of Palaeoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany

<sup>e</sup> Division of Anthropology, American Museum of Natural History, Central Park West at 79<sup>th</sup> Street, New York, NY 10024, USA

<sup>f</sup> New York Consortium in Evolutionary Primatology, New York, NY 10024, USA <sup>g</sup> Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, 606-8502 Kyoto, Japan

\*Corresponding author.

E-mail address: julia.arias@icp.cat (J. Arias-Martorell).

### Acknowledgments

We would like to thank NACOSTI for permission to carry out this research in Kenya; we also thank the Director, Head of Earth Sciences and Palaeontology Section Staff at the National Museums of Kenya for their support and collaboration in this project. We would also like to thank the Associate Editor and three reviewers for their help improving earlier versions of this manuscript. This work is part of R+D+I projects PID2020-116908GB-I00 and PID2020-117289GBI00, funded by the Agencia Estatal de Investigación of the Spanish Ministry of Science and Innovation (MCIN/AEI/10.13039/501100011033/). Research has also been supported by the Generalitat de Catalunya/CERCA Programme, the Agència de Gestió d'Ajust Universitaris i de Recerca of the Generalitat de Catalunya (2022 SGR 01188 and 2022 SGR 00620, and Beatriu de Pinós Programme—H2020 MSCA-Cofund Grant No 801370 to J.A.M), a Margarita Salas postdoctoral fellowship funded by the European Union-NextGenerationEU to A.U, and the grants JPJSBP120216301 and KAKENHI 22H02708 to M.N.

# 1 Short Communication

- 2 The radial head of the Middle Miocene ape *Nacholapithecus kerioi*: Morphometric affinities,
- 3 locomotor inferences, and implications for the evolution of the hominoid humeroradial joint

4

- 5 Keywords: Miocene apes; Forelimb; Elbow joint; Pronosupination; Locomotion; 3D
- 6 geometric morphometrics

7

### 9 **1. Introduction**

10 The systematic position of the Middle Miocene large-bodied ape Nacholapithecus 11 kerioi (see review in Nakatsukasa and Kunimatsu, 2009) is somewhat uncertain (e.g., 12 Almécija et al., 2021), being considered a stem hominid by some researchers (Alba, 2012; 13 Kunimatsu et al., 2019) but being favored as a stem hominoid by recent cladistic analyses 14 (Pugh, 2022). The remains of this species, dated to the Middle Miocene (16 - 15 Ma; Sawada 15 et al., 1998, 2006; Nakatsukasa and Kunimatsu, 2009), were originally discovered in the Aka 16 Aiteputh Formation of the Nachola region (northern Kenya) and assigned to *Kenvapithecus* 17 (Ishida et al., 1984; Rose et al., 1996; Nakatsukasa et al., 1998). However, the discovery of 18 the articulated partial skeleton KNM-BG 35250, of which numerous postcranial elements and the cranium were recovered (Nakatsukasa et al., 1998; Ishida et al., 2004), prompted the 19 20 description of a new genus and species for the large-bodied hominoid from Nachola (Ishida et 21 al., 1999).

22 Many postcranial elements of N. kerioi have been described in detail from the 23 holotype KNM-BG 25350 skeleton (Nakatsukasa et al., 1998, 2003a, 2007b, 2012; Ishida et 24 al., 2004; Senut et al., 2004; Kikuchi et al., 2012, 2015, 2016; Ogihara et al., 2016; Takano et 25 al., 2018), as well as from numerous (mostly isolated) finds (Rose et al., 1996; Nakatsukasa et 26 al., 2003b, 2007a; Pina et al., 2021; Takano et al., 2020). From these studies, it has been 27 inferred that N. kerioi possessed a pronograde body plan (narrow thorax, long and flexible 28 vertebral column, and limbs used mostly in the parasagittal plane; Nakatsukasa and 29 Kunimatsu, 2009), like other Early and Middle Miocene apes such as *Ekembo* and *Equatorius* 30 (see review in Ward, 2015). However, Nacholapithecus exhibits derived postcranial features 31 compared with those of earlier (e.g., Ekembo) and contemporaneous (e.g., Equatorius) stem 32 hominoids, especially in the elbow joint, which exhibits a deep zona conoidea and a large, 33 globular, and medially tilted capitulum in the distal humerus (Nakatsukasa and Kunimatsu, 34 2009; Takano et al. 2020). These derived features indicate that *Nacholapithecus* displays the

earliest known evidence of increased forelimb-dominated behaviors with enhanced vertical
climbing capabilities among fossil apes (Nakatuskasa and Kunimatsu, 2009; Takano et al.,
2018, 2020).

38 The distal humeral and proximal ulnar morphology of Nacholapithecus have been 39 interpreted from a locomotor viewpoint (Takano et al., 2018, 2020) but its proximal radial 40 morphology remains to be analyzed from this perspective. The distinctively derived proximal 41 radial morphology of extant hominoids is functionally related to wide ranges of 42 pronosupination coupled with universal stability at the humeroradial joint (Sarmiento, 1988; 43 Rose, 1988, 1993; Sarmiento et al., 2002: Fig. 4) and has been used to make locomotor 44 inferences in fossil catarrhines (Arias-Martorell et al., 2021). Therefore, here we provide a 45 quantitative morphological analysis of the radial head of N. kerioi with the objective of 46 refining previous locomotor inferences for this species. Our analysis is based on the isolated 47 proximal radius fragment KNM-BG 40021 from the fossiliferous site BG-K (see Takano et al., 2020 for a full description of the specimen). We compare it with stem catarrhines and 48 49 other Miocene hominoids by means of three-dimensional geometric morphometrics (3DGM) 50 to establish its closest morphometric affinities.

51

52 2. Materials and methods

#### 53 2.1. Studied and comparative sample

The right proximal radial fragment of *N. kerioi* KNM-BG 40021 (Fig. 1; Takano et al., 2020) is housed at the National Museums of Kenya (KNM, Nairobi, Kenya). KNM-BG 40021 is a 63 mm-long fragment preserving the radial head, radial tuberosity, and a small section of the shaft below the radial tuberosity. The specimen has compression damage affecting mainly the shaft and radial tuberosity, which are both flattened anteroposteriorly. The posterior aspect of the radial head is also flattened, affecting the depth of the fovea, which shows an artifactually increased depth. However, the anterior and medial/lateral aspects of the radial

head are well-preserved and preserve their original morphology, including the outline of the fovea (Takano et al., 2020). Our analyses focused on this undistorted and well-preserved aspect of the radial head, the shape of which we characterized using 3DGM to capture more subtle aspects of variation such as the curvature and outline of the radial head, which are very important aspects of radial head variation and function.

66 The comparative fossil sample includes 3D virtual models of the radii of the 67 dendropithecids Simiolus enjisessi and Dendropithecus macinessi, the pliopithecoid 68 *Epipliopithecus vindobonensis*, and the stem hominoids *Ekembo heseloni* and *Equatorius* 69 africanus (see Supplementary Online Material [SOM] Table S1 for further details). The 70 extant comparative sample is the same as in Arias-Martorell et al. (2021), including 116 radii 71 from 26 anthropoid species including all extant hominoid genera (SOM Table S2). Three-72 dimensional landmarks were collected from 3D models of the radii listed in SOM Tables S1 73 and S2. Details about the scanning procedures of both the fossil and extant comparative 74 sample are presented in SOM S1 and SOM Table S2. All 3D models from right radii 75 (including fossils) were mirrored to the left side during the process of mesh reconstruction as 76 most extant anthropoid radii in our sample are from the left side. Landmarks were placed 77 using IDAV Landmark Editor v. 3.6 (Wiley et al., 2005) and all statistical analysis were done 78 with the statistical environment R v. 4.1.1 (R Core Team, 2021).

79

#### 80 *2.2. Geometric morphometric analyses*

The shape affinities of KNM-BG 40021 were explored using a landmark protocol specifically designed to capture the most informative aspects of shape preserved in this specimen (Fig. 2; for further details see SOM S1 and Table S3). We performed a generalized Procrustes analysis (GPA) with the 'Morpho' v. 2.8 package (Schlager, 2017) in R (R Core Team, 2021). We applied semilandmark sliding (identified with SMvector; Schlager, 2017) on curves defined by adjacent landmarks and identified with the function 'outline' (Schlager,

87 2017). To identify major patterns of shape variation across the sample, we performed a 88 between-group principal component analysis (bgPCA; Mitteroecker and Bookstein, 2011) on 89 the GPA-transformed coordinates of the extant sample, with major anthropoid clades 90 (platyrrhines, cercopithecines, colobines, hylobatids, and hominids) as the grouping factor. To 91 rule out the presence of spurious groupings in the sample, we computed a cross-validated 92 bgPCA and compared the results to those of the bgPCA without cross-validation (Bookstein, 93 2019; Cardini et al., 2019; Cardini and Polly, 2020). We computed the Z scores and  $r^2$  for 94 group differences in the raw shape data (Adams and Collyer, 2016), and the scores of both the 95 non-cross-validated and the cross-validated bgPCAs using the 'RRPP' v. 2.5 R package 96 (Collyer and Adams, 2018; SOM S1). The fossils were left ungrouped and plotted a posteriori 97 onto the morphospace identified by the bgPCA based on extant taxa. To assess the affinities 98 of each fossil specimen with the a priori defined groups we computed the squared 99 Mahalanobis distances between each individual and the group means using the D2.dist function of the 'biotools' v. 4.2 (Da Silva, 2020) R package, as well as their typicality 100 101 probabilities using the function typprobClass in 'Morpho' (Table 1; SOM S1). To visualize 102 shape changes occurring along the bgPC axes, we identified the extreme landmark 103 conformations for each bgPC and then warped the 3D model of the individual closest to the 104 mean configuration of the sample-identified with the function 'FindMeanSpec' within 105 'geomorph' v. 3.1.1 R package (Adams et al., 2020)-toward the obtained configurations. We 106 finally computed an unweighted pair group methods with arithmetic mean (UPGMA) cluster 107 analysis (SOM S1).

To assess correlations between size and shape, ordinary least squares (OLS) and phylogenetic generalized least squares (PGLS; Adams, 2014) regressions of bgPC scores vs. log-transformed centroid size (CS; with natural logarithms, ln CS) were computed using the 'geomorph' v. 3.1.1 R package (Adams et al., 2020). To compute the PGLS regressions, we used a time-calibrated phylogenetic tree based on molecular data downloaded from 10kTrees

113 website v. 3 (Arnold et al., 2010; SOM S1). To evaluate the influence of phylogeny vs.

114 function on the proximal radial shape among extant anthropoids, phylogenetic signal was also

quantified by means of both Pagel's  $\lambda$  and Blomberg's K statistics (Pagel, 1999; Blomberg et

al., 2003; see SOM S1 for further details) using the 'phytools' v. 0.6-60 R package (Revell,

117 2012).

118

119 **3. Results** 

The bgPCA (Fig. 3) discriminates among extant hominids, hylobatids, and monkeys and correctly classifies 80.2% of cases in the five groups defined a priori (platyrrhines, cercopithecines, colobines, hylobatids, and hominids), while the bgPCA with cross-validation (SOM Fig. S1) correctly classifies 72.4% of cases (SOM S1; SOM Tables S4 and S5). Misclassification cases occur mainly among monkeys, whereas hylobatids are correctly classified in 76% of the cases and hominids in 86% (cross-validated bgPCA; SOM Table S5).

126 There is no perceptible change between the bgPCA (Fig. 3) and the cross-validated 127 bgPCA (SOM Fig. S1) plots, and the Z-scores are similar for the raw data (6.9), bgPCA (8.7), 128 and cross-validated bgPCA (8.7), implying a similar strength of morphological integration in 129 the datasets. Similarly,  $r^2$  increases from the raw data comparisons (0.26) to both standard (0.52) 130 and cross-validated (0.52) bgPCAs. This indicates that grouping structure is not spurious 131 because there is a comparable increase in  $r^2$  from the raw data to both the standard and cross-132 validated bgPCAs. Only bgPC1 and bgPC2 (which account for 90% of the variance) are 133 discussed below because bgPC3 (7% variance) and bgPC4 (3% variance) yielded no 134 meaningful patterns.

135 The bgPC1 (78% of variance) embeds significant but low phylogenetic signal (K =

136  $0.35, p = 0.027; \lambda = 0.54, p = 0.016$ ), suggesting a considerable amount of homoplasy, best

137 illustrated by the overlap between *Ateles* and hominids—see SOM S1 for the different

implications of K and  $\lambda$ . Although bgPC1 is significantly correlated with ln CS (OLS: p < 1

0.001; PGLS: p = 0.008), size only accounts for a small amount of shape variation (OLS:  $r^2 =$ 139 0.10 and adjusted  $r^2 = 0.09$ ; PGLS:  $r^2 = 0.26$  and adjusted  $r^2 = 0.23$ ). This axis discriminates 140 141 between hominoids (hominids and hylobatids, overlapping toward negative scores) and 142 cercopithecoids and platyrrhines (which mostly display positive scores, particularly 143 colobines)—except for Ateles, which mostly overlaps with hominoids (Fig. 3). 144 *Nacholapithecus* displays slightly positive scores within the hominid variation range, whereas 145 all the other fossils, including Ekembo and Equatorius, fall within the cercopithecoid-146 platyrrhine distribution (albeit occupying different positions along bgPC1) apart from 147 hominoids. Simiolus displays the most positive scores and Ekembo is closer to hominoids (but 148 well distinct from Nacholapithecus) among the remaining fossil sample. Shape differences 149 along bgPC1 are driven by the shape of the radial head (Fig. 3) and the mediolateral tilting of 150 the head. Stem catarrhines and monkeys other than Ateles (more positive scores) display a 151 more elliptic radial head in proximal view and a medial elevation of the head in anterior view, 152 which results into a mediolateral tilting of the head. In contrast, extant hominoids and Ateles 153 (more negative scores) have rounder heads that are not tilted (Fig. 3). 154 bgPC2 (12% of variance) embeds no significant phylogenetic signal (K = 0.22, p =155 0.312;  $\lambda < 0.001$ , p = 1.000) and is not correlated with ln CS (OLS: p = 0.083; PGLS: p =156 0.274). bgPC2 distinguishes between hominids (positive and slightly negative scores) and 157 hylobatids (more negative scores) with some overlap, but both groups largely overlap with 158 cercopithecoids and platyrrhines, which are not distinguished along this axis (Fig. 3). All the 159 fossils analyzed cluster close to one another, with Nacholapithecus, Ekembo, and 160 Dendropithecus displaying scores closer to 0, and Simiolus and Equatorius displaying slightly 161 negative scores. Shape differences along bgPC2 are also driven by tilting of the head toward 162 more positive scores. More subtle differences include a more uniformly expanded distal 163 surface area of the radial head toward positive scores, whereas in specimens with more

negative scores the distally expanded surface area is more restricted to the anteromedialaspect of the head.

Based on the typicality probabilities for the fossils (Table 1), *Nacholapithecus* is
classified as a platyrrhine as first option and as a hominid as second option. *Ekembo*, *Equatorius*, and *Dendropithecus* are also classified as platyrrhines, whereas *Epipliopithecus*and the two *Simiolus* specimens are classified as cercopithecines. The UPGMA analysis
clusters *Nacholapithecus* with a subcluster including all extant hominoids (SOM S2; SOM
Fig. S2).

172

### 173 **4. Discussion and conclusions**

174 We used a landmark protocol that characterizes the anterior aspect of the radial head to 175 analyze the single proximal radial fragment available for *Nacholapithecus*. The overall results 176 are similar to those previously found using a protocol with a more complete proximal radius 177 coverage (Arias-Martorell et al., 2021) but have more limited explanatory power at the 178 morphofunctional level. The shape of the anterior aspect of the radial head is only partially 179 explained by phylogeny, with bgPC2 showing no meaningful phylogenetic signal (as the 180 monkey variation encompasses that of extant hominoids) and bgPC1 displaying significant 181 but low values. The latter denote homoplasy, which might be explained by Ateles partially 182 overlapping with hominids due to its convergently evolved hominoid-like humeroradial joint 183 shape (Larson, 1998; Arias-Martorell et al., 2021). Similarities include a round radial head 184 and a more uniform surface area in the distal expansion of the radial head (not circumscribed 185 to the anteromedial side) than in other monkeys (Arias-Martorell et al., 2021). 186 Functional inferences for the elbow complex of Nacholapithecus have been based

187 mostly on the forelimb evidence from the holotype (KNM-BG 35250; Ishida et al., 2004;

188 Nakatsukasa and Kunimatsu, 2009; Takano et al., 2018). The modern hominoid-like globular

189 capitulum of the humerus (KNM-BG 35250M) indicates enhanced mobility at the

190 humeroradial joint and suggests enhanced forearm pronosupination capabilities because of the 191 inferred rounder radial head compared with cercopithecids and stem Miocene hominoids 192 (Takano et al., 2018). As indicated by our shape analysis, *Nacholapithecus* possesses a fairly 193 circular radial head outline with limited tilting and a distal articular surface uniformly 194 expanded to some extent beyond the anteromedial aspect of the radial head. On the 195 morphospace. KNM-BG 40021 displays an intermediate position between extant hominoids 196 and monkeys, close to hominids and overlapping with Ateles. This is further supported by the 197 fact that the analysis classifies *Nacholapithecus* as a platyrrhine (first option, owing to its 198 similarities to Ateles) or as a hominid (second option). 199 The anterior aspect of the radial head articulates with the zona conoidea of the 200 humerus in extant apes, whose humeroradial joint is stable throughout all ranges of

pronosupination and flexion–extension (Rose, 1988). In contrast, cercopithecoids, have a
stable elbow in fully pronated position, where the humeroantebrachial joint achieves a closepacking position (Harrison 1987; Rose, 1988, 1993; Alba et al., 2011). The more extant

204 hominoid-like and atelid-like anterior aspect of the radial head of *Nacholapithecus* is

205 consistent with a radial head that is able to articulate with both the humerus and the ulna in

pronated and semipronated forearm positions due to incipient beveling of the radial head

207 beyond the lateral lip (Rose et al., 1992; Takano et al., 2018, 2020)—achieved, in

206

208 *Nacholapithecus*, by a rounder head and a more uniform distal expansion of the articular area

209 of the radial head than in cercopithecoids, nonsuspensory platyrrhines, and both earlier and

210 coeval Miocene apes. Relative to extant hominoids, *Nacholapithecus* displays a more

211 primitive humeroulnar joint that is not capable of full extension due to a long olecranon

212 process (Takano et al., 2020) and further retains primitive traits at the wrist joint (e.g.,

213 ulnocarpal articulation; Ogihara et al., 2016). However, these plesiomorphic features are

214 combined with a humeroradial joint somewhat derived toward the extant hominoid condition

than that of early hominoids such as *Ekembo* and *Equatorius* (Takano et al., 2018, 2020). The

| 216 | enhanced stability in wider ranges of pronosupination (especially in semipronated arm                  |
|-----|--------------------------------------------------------------------------------------------------------|
| 217 | positions) of the radiohumeral joint indicated by our results is concordant with previous              |
| 218 | locomotor inferences for Nacholapithecus. Its locomotor repertoire has been described as               |
| 219 | including forelimb-dominated arboreal behaviors with the forelimbs playing an important role           |
| 220 | in both body support and overhead positions (Takano et al., 2018, 2020)-i.e., vertical                 |
| 221 | climbing, orthograde clambering, transferring, and bridging in higher frequencies than in              |
| 222 | Early Miocene apes (e.g., <i>Ekembo</i> )—combined with powerful grasping abilities (Ishida et al.,    |
| 223 | 2004; Nakatuskasa et al., 2002, 2007a, 2007b, 2012, 2016; Nakatsukasa and Kunimatsu,                   |
| 224 | 2009; Alba et al., 2011; Ogihara et al., 2016; Ward, 2015; Takano et al., 2018, 2020).                 |
| 225 | Nevertheless, our results also suggest that the anterior aspect of the radius is not                   |
| 226 | sufficient to distinguish well among groups of quadrupedal taxa with radial heads most suited          |
| 227 | to maintaining stability in a flexed-elbow and fully pronated hand posture (Rose, 1988)-as             |
| 228 | illustrated by the considerable overlap between cercopithecines, colobines, and platyrrhines.          |
| 229 | The fact that small-bodied stem catarrhines and the stem hominoids <i>Ekembo</i> and <i>Equatorius</i> |
| 230 | occupy the same region of the morphospace indicates similarities in the anterior aspect of the         |
| 231 | radial head, especially in the distal expansion of its articular surface area. This is not             |
| 232 | surprising given that a more distally expanded anteromedial articular surface area is part of          |
| 233 | the ancestral anthropoid morphotype (Rose, 1988, 1993, 1994, 1997; Senut, 1989). In                    |
| 234 | previous analyses based on the proximal radius (Arias-Martorell et al., 2021), Ekembo and              |
| 235 | Equatorius displayed a clearly intermediate morphology between extant hominoids and                    |
| 236 | monkeys, rather than closer affinities with monkeys. In our bgPCA plot, Ekembo is somewhat             |
| 237 | closer to extant hominoids than Equatorius along bgPC1—consistent with differences in their            |
| 238 | positional behavior (Ward, 1993, 2015; Ward et al., 1993, 1999; McCrossin et al., 1998; Patel          |
| 239 | et al., 2009)—albeit less so than Nacholapithecus, whose humeroradial joint appears more               |
| 240 | derived toward the crown hominoid condition (Takano et al., 2018, 2020). Small-bodied stem             |
| 241 | catarrhines display the radial head morphology characteristic of non-hominoid anthropoids              |

242 and our results broadly agree with those previously obtained (Arias-Martorell et al., 2021) 243 albeit with lower resolution, especially for taxa with a high quadrupedal component. 244 The mosaic configuration of the elbow joint of Nacholapithecus, combining a 245 primitive humeroulnar joint with a quite derived humeroradial joint, supports a stepwise 246 evolution of the anthropoid elbow (Alba et al., 2011, 2015), with extant cercopithecoids and 247 hominoids displaying features derived in opposite directions and stem hominoids displaying 248 mosaic morphologies unlike those of living apes (Alba et al., 2011; Arias-Martorell et al., 249 2021). The uncertain phylogenetic relationships of *Nacholapithecus* (e.g., Almécija et al., 250 2021; Urciuoli et al., 2021) hinder to some extent the evolutionary implications of its 251 proximal radial morphology. Nevertheless, the proximal radial morphology of 252 Nacholapithecus, more derived than that of Ekembo but more primitive than that of crown 253 hominoids, likely reflects an enhancement of pronosupination movements associated with an 254 emphasis on orthograde positional behaviors-compatible with both the stem hominoid 255 (Pugh, 2022) and stem hominid (Alba, 2012; Kunimatsu et al., 2019; Morimoto et al., 2020) 256 status proposed for this taxon. Regardless of its systematic position, the elbow morphology of 257 Nacholapithecus suggests that the last common ancestor of crown hominoids displayed a 258 humeroradial joint more primitive than extant hominoids-indicating that the 259 humeroantebrachial complex would have evolved to some extent independently between 260 hylobatids and hominids. The latter notion would be consistent with the independent 261 evolution of orthogrady-related features in atelids and various lineages of crown hominoids 262 (Larson, 1998; Alba, 2012; Almécija et al., 2021) and is further reinforced by the retention of 263 primitive features (likely related to above-branch quadrupedalism) in the humeroulnar joint of 264 the Late Miocene great ape Hispanopithecus—recovered as a stem hominid by cladistic 265 analyses (Alba et al., 2015; Pugh, 2022)—despite indicating an elbow complex suitable for 266 preserving stability along the full range of flexion/extension and enabling a broad range of 267 pronosupination as in extant hominoids (Alba et al., 2012).

268

#### 269 **References**

- 270 Adams, D.C., 2014. A method for assessing phylogenetic least squares models for shape and
- other high-dimensional multivariate data. Evolution 68, 2675–2688.
- Adams, D.C., Collyer, M.L. 2016. On the comparison of the strength of morphological
- integration across morphometric datasets. Evolution 70, 2623–2631.
- Adams, D.C., Collyer, M.L., Kaliontzopoulou, A., 2020. Geomorph: Software for geometric
  morphometric analyses. R package version 3.2.1. <u>https://cran.r-</u>
- 276 <u>project.org/package=geomorph</u>.
- Alba, D.M., 2012. Fossil apes from the Vallès-Penedès Basin. Evol. Anthropol. 21, 254–269.
- 278 Alba, D.M., Almécija, S., DeMiguel, D., Fortuny, J., Pérez de los Ríos, M., Pina, M., Robles,
- J.M., Moyà-Solà, S., 2015. Miocene small-bodied ape from Eurasia sheds light on
  hominoid evolution. Science 350, aab2625.
- Almécija, S., Hammond, A.S., Thompson, N.E., Pugh, K.D., Moyà-Solà, S. Alba, D.M. 2021.
- Fossil apes and human evolution. Science 372, eabb4363.
- Almécija, S., Smaers, J.B. Jungers, W.L. 2015. The evolution of human and ape hand
- proportions. Nat. Comm. 6, 1–11.
- Arias-Martorell, J., Almécija, S., Urciuoli, A., Nakatsukasa, M., Moyà-Solà, S., Alba, D.M.
- 286 2021. A proximal radius of *Barberapithecus huerzeleri* from Castell de Barberà:
- Implications for locomotor diversity among pliopithecoids. J. Hum. Evol. 157, 103032.
- Arnold, C., Matthews, L.J., Nunn, C.L., 2010. The 10kTrees website: A new online resource
  for primate phylogeny. Evol. Anthropol. 19, 114–118.
- Blomberg, S.P., Garland, T., Ives, A.R., 2003. Testing for phylogenetic signal in comparative
- data: behavioral traits are more labile. Evolution 57, 717–745.
- 292 Bookstein, F.L., 2019. Pathologies of between-groups principal components analysis in
- 293 geometric morphometrics. Evol. Biol. 46, 271–302.

- Cardini, A., Polly, P.D., 2020. Cross-validated between group PCA scatterplots: A solution to
  spurious group separation? Evol. Biol. 47, 85–95.
- 296 Cardini, A., O'Higgins, P., Rohlf, F.J., 2019. Seeing distinct groups where there are none:
- 297 Spurious patterns from between-group PCA. Evol. Biol. 46, 303–316.
- 298 Collyer, M.L., Adams, D.C. 2018. RRPP: An R package for fitting linear models to high-
- dimensional data using residual randomization. Methods Ecol. Evol. 9, 1772–1779.
- 300 Da Silva, A.R., 2020. On testing for seed sample heterogeneity with the exact probability
- distribution of the germination count range. Seed Sci. Res. 30, 59-63.
- 302 Harrison, T., 1987. The phylogenetic relationships of the early catarrhine primates: A review
- 303 of the current evidence. J. Hum. Evol. 16, 41–80.
- 304 Harrison, T., 2010. Dendropithecoidea, Proconsuloidea, and Hominoidea (Catarrhini,
- Primates). In: Werdelin, L., Sanders, W.J. (Eds.), Cenozoic Mammals of Africa. University
  of California Press, Berkeley, pp. 429–469.
- 307 Ishida, H., Kunimatsu, Y., Nakatsukasa, M., Nakano, Y. 1999. New hominoid genus from the
- 308 Middle Miocene of Nachola, Kenya. Anthropol. Sci. 107. 189–191
- 309 Ishida, H., Kunimatsu, Y., Takano, T., Nakano, Y., Nakatsukasa, M., 2004. Nacholapithecus
- 310 skeleton from the Middle Miocene of Kenya. J. Hum. Evol. 46, 69–103.
- 311 Kikuchi, Y., Nakano, Y., Nakatsukasa, M., Kunimatsu, Y., Shimizu, D., Ogihara, N.,
- 312 Tsujikawa, H., Takano, T., Ishida, H., 2012. Functional morphology and anatomy of
- 313 cervical vertebrae in *Nacholapithecus kerioi*, a middle Miocene hominoid from Kenya. J.
- Hum. Evol. 62, 677-695.
- 315 Kikuchi, Y., Nakatsukasa, M., Nakano, Y., Kunimatsu, Y., Shimizu, D., Ogihara, N.,
- 316 Tsujikawa, H., Takano, T., Ishida, H., 2015. Morphology of the thoracolumbar spine of the
- 317 middle Miocene hominoid *Nacholapithecus kerioi* from northern Kenya. J. Hum. Evol. 88,
- 318 25-42.
- 319 Kikuchi, Y., Nakatsukasa, M., Nakano, Y., Kunimatsu, Y., Shimizu, D., Ogihara, N.,

- 320 Tsujikawa, H., Takano, T., Ishida, H., 2016. Sacral vertebral remains of the Middle
- Miocene hominoid *Nacholapithecus kerioi* from northern Kenya. J. Hum. Evol. 94, 117125.
- Kunimatsu, Y., Nakatsukasa, M., Shimizu, D., Nakano, Y. and Ishida, H. 2019. Loss of the
  subarcuate fossa and the phylogeny of *Nacholapithecus*. J. Hum. Evol. 131, 22–7.
- Larson, S.G., 1998. Parallel evolution in the hominoid trunk and forelimb. Evol. Anthropol. 6,
  87–99.
- Le Gros Clark, W.E., Thomas, D.P., 1951. Associated jaws and limb bones of *Limnopithecus macinnesi*. Fossil Mammals Afr. 3, 1–27.
- 329 McCrossin, L.M., Benefit, B.R., Giteu, S.N., Palmer, A.K., Blue, K.T., 1998. Fossil evidence
- for the origins of terrestriality among Old World higher primates. In: Strasser, E., Fleagle,
- J., Rosenberger, A., McHenry, H. (Eds.), Primate Locomotion: Recent Advances. Plenum
  Press, New York, pp. 353–396.
- 333 McNulty, K.P., Begun, D.R., Kelley, J., Manthi, F.K., Mbua, E.N., 2015. A systematic
- revision of *Proconsul* with the description of a new genus of early Miocene hominoid. J.
- Hum. Evol. 84, 42–61.
- Mitteroecker, P., Bookstein, F., 2011. Linear discrimination, ordination, and the visualization
  of selection gradients in modern morphometrics. Evol. Biol. 38, 100–114.
- 338 Morimoto, N., Kunimatsu, Y., Nakatsukasa, M., Ponce de Leon, M.S., Zollikofer, C.P.,
- 339 Ishida, H., Sasaki, T. Suwa, G. 2020. Variation of bony labyrinthine morphology in Mio-
- 340 Plio–Pleistocene and modern anthropoids. Am. J. Phys. Anthropol. 173, 276–292.
- 341 Nakatsukasa, M., Kunimatsu, Y. 2009. *Nacholapithecus* and its importance for understanding
- hominoid evolution. Evol. Anthropol. 18, 103–119.
- 343 Nakatsukasa, M., Yamanaka, A., Kunimatsu, Y., Shimizu, D., Ishida, H. 1998. A newly
- 344 discovered *Kenyapithecus* skeleton and its implications for the evolution of positional
- behavior in Miocene East African hominoids. J. Hum. Evol. 34, 657–664.

| 346 | Nakatsukasa, M., Kunimatsu, Y., Nakano, Y., Ishida, H. 2002. Morphology of hallucial  |
|-----|---------------------------------------------------------------------------------------|
| 347 | phalanges in extant anthropoids and fossil hominoids. Z. Morphol. Anthropol. 83, 361- |
| 348 | 372.                                                                                  |

- Nakatsukasa, M., Kunimatsu, Y., Nakano, Y., Takano, T., Ishida, H. 2003a. Comparative and
  functional anatomy of phalanges in *Nacholapithecus kerioi*, a Middle Miocene hominoid
- 351 from northern Kenya. Primates 44, 371–412.
- 352 Nakatsukasa, M., Tsujikawa, H., Shimizu, D., Takano, T., Kunimatsu, Y., Nakano, Y., Ishida

H. 2003b. Definitive evidence for tail loss in *Nacholapithecus*, and East African Miocene

- 354 hominoid. J. Hum. Evol. 45, 179–186.
- 355 Nakatsukasa, M., Kunimatsu, Y., Nakano, Y., Ishida, H. 2007a. Vertebral morphology of
- 356 *Nacholapithecus kerioi* based on KNM-BG 35250. J. Hum. Evol. 52, 347–369.
- Nakatsukasa, M., Kunimatsu, Y., Nakano, Y., Egi, N., Ishida, H. 2007b. Postcranial bones of
  infant *Nacholapithecus*: ontogeny and positional behavioral adaptation. Anthropol. Sci.
  115, 201-213.
- 360 Nakatsukasa, M., Kunimatsu, Y., Shimizu, D., Nakano, Y., Kikuchi, Y., Ishida, H. 2012.
- 361 Hind limb of the *Nacholapithecus kerioi* holotype and implications for its positional
- 362 behavior. Anthropol. Sci. 120, 12073.
- 363 Nakatsukasa, M., Almécija, S., Begun, D.R. 2016. The hands of Miocene hominoids. In:
- 364 Kivell, T.L., Lemelin, P., Richmond, B.G., Schmitt, D. (Eds.), The evolution of the primate
- hand. Springer, New York, pp. 485–514.
- 366 Kunimatsu, Y., Nakatsukasa, M., Shimizu, D., Nakano, Y., Ishida, H., 2019. Loss of the
- 367 subarcuate fossa and the phylogeny of *Nacholapithecus*. J. Hum. Evol. 131, 22–27.
- 368 Ogihara, N., Almécija, S., Nakatsukasa, M., Nakano, Y., Kikuchi, Y., Kunimatsu, Y.,
- 369 Makishima, H., Shimizu, D., Takano, T., Tsujikawa, H., Kagaya, M., Ishida, H. 2016.
- 370 Carpal bones of *Nacholapithecus kerioi*, a Middle Miocene hominoid from Northern
- 371 Kenya. Am. J. Phys. Anthropol. 160, 469–482.

- 372 Pagel, M., 1999. Inferring the historical patterns of biological evolution. Nature 401, 877–
  373 884.
- Patel, B.A., 2005. The hominoid proximal radius: Re-interpreting locomotor behaviors in
  early hominins. J. Hum. Evol. 48, 415–432.
- 376 Pina, M., Kikuchi, Y., Nakatsukasa, M., Nakano, Y., Kunimatsu, Y., Ogihara, N., Shimizu,
- 377 D., Takano, T., Tsujikawa, H., Ishida, H., 2021. New femoral remains of *Nacholapithecus*
- *kerioi*: Implications for intraspecific variation and Miocene hominoid evolution. J. Hum.
  Evol. 155, 102982.
- Pugh, K.D. 2022. Phylogenetic analysis of Middle-Late Miocene apes. J. Hum. Evol. 165,
  103140.
- 382 R Core Team, 2021. R: A language and environment for statistical computing. R Foundation
  383 for Statistical Computing, Vienna.
- Revell, L.J., 2012. Phytools: An R package for phylogenetic comparative biology (and other
  things). Methods Ecol. Evol. 3, 217–223.
- Rose, M.D., 1988. Another look at the anthropoid elbow. J. Hum. Evol. 17, 193–224.
- 387 Rose, M.D., 1993. Locomotor anatomy of Miocene hominoids. In: Gebo, D.L. (Ed.),
- 388 Postcranial Adaptation in Nonhuman Primates. Northern Illinois University Press,
- 389 DeKalb, pp. 252–272.
- Rose, M.D., 1994. Quadrupedalism in some Miocene catarrhines. J. Hum. Evol. 26, 387–411.
- 391 Rose, M.D., 1997. Functional and phylogenetic features of the forelimb in Miocene
- 392 hominoids. In: Begun, D.R., Ward, C.V., Rose, M.D. (Eds.), Function, Phylogeny and
- Fossils: Miocene Hominoid Evolution and Adaptation. Plenum Press, New York, pp. 79–
  100.
- Rose, M.D., Leakey, M.G., Leakey, R.E.F., Walker, A.C., 1992. Postcranial specimens of
- 396 *Simiolus enjiessi* and other primitive catarrhines from the early Miocene of Lake Turkana,
- 397 Kenya. J. Hum. Evol. 22, 171–237.

- Rose, M.D., Nakano, Y., Ishida, H. 1996. *Kenyapithecus* postcranial specimens from
  Nachola, Kenya. Afr. Study Monogr. 24, 3–56.
- 400 Rossie, J.B., Gutierrez, M., Goble, E., 2012. Fossil forelimbs of Simiolus from Moruorot,
- 401 Kenya. Am. J. Phys. Anthropol. 147 (854), 252.
- 402 Ruff, C.B., 2002. Long bone articular and diaphyseal structure in Old World monkeys and
- 403 apes. I: Locomotor effects. Am. J. Phys. Anthropol. 119, 305–342.
- Ruff, C.B., 2003. Long bone articular and diaphyseal structure in Old World monkeys and
  apes. II: Estimation of body mass. Am. J. Phys. Anthropol. 120, 16–37.
- 406 Sawada, Y., Pickford, M., Itaya, T., Makinouchi, T., Tateishi, M., Kabeto, K., Ishida, S.,
- 407 Ishida, H., 1998. K-Ar ages of Miocene Hominoidea (Kenyapithecus and
- 408 *Samburupithecus*) from Samburu Hills, Northern Kenya. C. R. Acad. Sci. Paris 326, 445–
- 409 451.
- 410 Sawada, Y., Saneyoshi, M., Nakayama, K., Sakai, T., Itaya, T., Hyodo, M., Mukokya, Y.,
- 411 Pickford, M., Senut, B., Tanaka, S., Chujo, T., Ishida, H. 2006. The ages and geological
- 412 background of Miocene hominoids *Nacholapithecus*, *Samburupithecus*, and *Orrorin* from
- 413 Kenya. In: H. Ishida, R. Tuttle, M. Pickford, N. Ogihara, M. Nakatsukasa (Eds.), Human
- 414 origins and environmental backgrounds. Developments in Primatology: Progress and
- 415 Prospects. Springer, New York, pp. 71-96
- 416 Schlager, S., 2017. Morpho and Rvcg shape analysis in R: R-packages for geometric
- 417 morphometrics, shape analysis and surface manipulations. In: Zheng, G., Li, S., Székely,
- 418 G. (Eds.), Statistical Shape and Deformation Analysis. Methods, Implementation and
- 419 Applications. Academic Press, London, pp. 217–256.
- 420 Senut, B., 1989. Le Coude des Primates Hominoïdes. Anatomie, Fonction, Taxonomie,
- 421 Évolution. Éditions du Centre National de la Recerche Scientifique, Paris.

- 422 Senut, B., Nakatsukasa, M., Kunimatsu, Y., Nakano, Y., Takano, T., Tsujikawa, H., Shimizu,
- D., Kagaya, M., Ishida, H. 2004. Preliminary analysis of *Nacholapithecus* scapula and
  clavicle from Nachola, Kenya. Primates 45, 97-104.
- 425 Sherwood, R.J., Ward, R.J., Hill, A., Duren, D.L., Brown, B., Downs, W., 2002. Preliminary
- 426 description of the *Equatorius africanus* partial skeleton KNM-TH 28860 from
- 427 Kipsaramon, Tugen Hills, Baringo District, Kenya. J. Hum. Evol. 42, 63–73.
- 428 Takano, T., Nakatsukasa, M., Kunimatsu, Y., Nakano, N., Ogihara N., Ishida, H. 2018.
- 429 Forelimb long bones of *Nacholapithecus* (KNM-BG 35250) from the middle Miocene in
- 430 Nachola, northern Kenya. Anthropol. Sci. 126, 135–149.
- 431 Takano, T., Nakatsukasa, M., Pina, M., Kunimatsu, Y., Nakano, Y., Morimoto, N., Ogihara,
- 432 N., Ishida, H. 2020. New forelimb long bone specimens of *Nacholapithecus kerioi* from
- 433 the Middle Miocene of northern Kenya. Anthropol. Sci. 128, 200116.
- 434 Urciuoli, A., Zanolli, C., Almecija, S., Alba, D.M. 2020. Reassessment of the phylogenetic
- 435 relationships of the late Miocene apes *Hispanopithecus* and *Rudapithecus* based on
- 436 vertibular morphology. Proc. Natl. Acad. Sci. USA 118, e2015215118.
- 437 Walker, A.C., Pickford, M., 1983. New postcranial fossils of *Proconsul africanus* and
- 438 Proconsul nyanzae. In: Ciochon, R.L., Corruccini, R.S. (Eds.), New Interpretations of Ape
- 439 and Human Ancestry. Plenum Press, New York, pp. 325–351.
- Ward, C.V., 1993. Torso morphology and locomotion in *Proconsul nyanzae*. Am. J. Phys.
  Anthropol. 92, 291–328.
- 442 Ward, C.V., 2015. Postcranial and locomotor adaptations of hominoids. In: Henke, W.,
- Tattersall, I. (Eds.), Handbook of Paleoanthropology, 2<sup>nd</sup> ed. Springer, Heidelberg, pp.
  1363–1386.
- 445 Ward, C.V., Walker, A., Teaford, M.F., Odhiambo, L., 1993. Partial skeleton of *Proconsul*
- 446 *nyanzae* from Mfangano Island, Kenya. Am. J. Phys. Anthropol. 90, 77–111.
- 447 Ward, S., Brown, B., Hill, A., Kelley, J., Downs, W., 1999. Equatorius: A new hominoid

- 448 genus from the middle Miocene of Kenya. Science 285, 1382–1386.
- 449 Wiley, D.F., Amenta, N., Alcantara, D.A., Ghosh, D., Kil, Y.J., Delson, E., Harcourt-Smith,
- 450 W., Rohlf, F.J., St John, K., Hamann, B., 2005. Evolutionary morphing. In: Silva, T.C.,
- 451 Gorller, E., Rushmeier, H. (Eds.), VIS 05 IEEE Visualization. IEEE, Minneapolis, pp.
- 452 431–438.
- 453 Zapfe, H., 1958. The skeleton of *Pliopithecus (Epipliopithecus) vindobonensis* Zapfe and
- 454 Hürzeler. Am. J. Phys. Anthropol. 16, 441–457.
- 455 Zapfe, H., 1961. Die Primatenfunde aus der miozänen Spaltenfüllung von Neudorf an der
- 456 March (Děvínská Nová Ves), Tschechoslowakei. Schweizer. Palaeontol. Abh. 78, 1–293.
- 457

#### 458 **Figure captions**

459

Figure 1. Right proximal radial fragment (KNM BG 40021) of *Nacholapithecus kerioi* from
the Aka Aiteputh Formation in Nachola, Kenya, in proximal (a), anterior (b), and medial (c)
views.

463

Figure 2. Landmark protocol illustrated on renderings of a 3D model of the right proximal
radial fragment (KNM-BG 40021, mirrored) of *Nacholapithecus kerioi*, in proximal (a),

466 anterior (b), lateral (c), and medial (d) views. Landmarks (L, bolded) and semilandmarks (SL)

467 are denoted by black and red dots, respectively, and described in SOM Table S3.

468

469 Figure 3. Results of the between-group principal component analysis as depicted by a

470 bivariate plot of bgPC2 vs. bgPC1. Groups distinguished a priori are denoted by color coded

- 471 convex hulls and symbols: violet = hominids; green = hylobatids; orange = cercopithecines;
- 472 emerald = colobines; pink = platyrrhines. Extant genera are denoted by different symbols (see
- 473 legend). The scatter of *Ateles* is highlighted with a convex hull in darker pink within the

- 474 platyrrhine distribution. Fossil specimens (scores projected a posteriori) are denoted by
- 475 colored stars (see legend). The percentage of variance explained by each bgPC is reported
- 476 within parentheses. Renderings along axes represent maximum and minimum shape changes
- 477 for that axis (corresponding to their position at the positive and negative ends of each axis).
- 478 Abbreviation: bgPC = between-group principal component.







Nomascus Hylobates Symphalangus A Hoolock **V** Mandrillus **V** Colobus Alouatta V Lagothrix

### Table 1

Squared Mahalanobis distances  $(D^2)$  between fossils and group means, and classification results based on typicality probabilities (p) of the fossils computed from the between-group principal component analysis of radial head shape.<sup>a</sup>

| Species                       | Catalogue No.  | $D^2/p$        | Cercopithecines | Colobines | Hominids | Hylobatids | Platyrrhines |
|-------------------------------|----------------|----------------|-----------------|-----------|----------|------------|--------------|
| Nacholapithecus kerioi        | KNM-BG 40021   | $D^2$          | 9.892           | 8.325     | 7.317    | 6.062      | 1.782        |
|                               |                | р              | 0.014           | 0.010     | 0.217*   | 0.015      | 0.486**      |
| Ekembo heseloni               | KNM-RU 2036CE  | $D^2$          | 3.878           | 5.265     | 4.770    | 11.891     | 0.603        |
|                               |                | р              | 0.529*          | 0.107     | 0.062    | 0.002      | 0.983**      |
| Equatorius africanus          | KNM-TH 28860-J | D <sup>2</sup> | 4.002           | 4.385     | 11.520   | 7.729      | 2.919        |
|                               |                | р              | 0.689*          | 0.155     | 0.007    | 0.001      | 0.827**      |
| Epipliopithecus vindobonensis | O.E. 304 PCe   | D <sup>2</sup> | 7.576           | 17.238    | 10.630   | 16.416     | 5.385        |
|                               |                | р              | 0.127**         | < 0.001   | <0.001   | < 0.001    | 0.056*       |
| Dendropithecus macinnesi      | KNM-RU 2098    | $D^2$          | 15.063          | 8.5177    | 12.022   | 13.748     | 1.964        |
|                               |                | р              | 0.031           | 0.118*    | 0.004    | < 0.001    | 0.874**      |
| Simiolus enjiessi             | KNM-MO 63      | D <sup>2</sup> | 12.904          | 12.547    | 13.622   | 14.547     | 3.052        |
|                               |                | р              | 0.528**         | 0.011     | < 0.001  | < 0.001    | 0.233*       |

| Simiolus enjiessi | KNM-MO 17022B | $D^2$ | 5.533   | 11.160 | 16.496  | 11.045  | 6.580  |
|-------------------|---------------|-------|---------|--------|---------|---------|--------|
|                   |               | р     | 0.304** | 0.003  | < 0.001 | < 0.001 | 0.088* |

<sup>a</sup> Group membership was rejected at p < 0.05. Two asterisks (\*\*) denote primary group classification; one asterisk (\*) denotes secondary group

classification. Shortest  $D^2$  and highest *p*-values are bolded.

# Supplementary Online Material (SOM):

The radial head of the Middle Miocene ape *Nacholapithecus kerioi*: Morphometric affinities, locomotor inferences, and implications for the evolution of the hominoid humeroradial joint

#### SOM S1

#### Supplementary materials and methods

#### Scanning

The radii of Simiolus enjiessi KNM-RU 17022B and of Epipliopithecus vindobonensis O.E. 304 PCe were scanned from high-quality casts housed in the Institut Català de Paleontologia Miquel Crusafont (ICP, Cerdanyola del Vallès, Spain). All the other fossils (see SOM Table S1) were scanned from original specimens at the Kenya National Museums with a NextEngine surface laser scanner (Next Engine, Santa Monica) using the HD3 macro mode. The 3D models of the extant specimens were obtained using a NextEngine surface scanner and two different high-resolution µCT scanners (SOM Table S2): a BIR ACTIS 225/300 industrial µCT scanner (Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Germany) and a Nikon XT 225 ST µCT scanner (Cambridge Biotomography Centre, Department of Zoology, University of Cambridge, UK). Specimens scanned with the NextEngine scanner were obtained using a resolution of >10,000 points per square inch; 6–12 scans were taken at two or more positions and then merged using ScanStudio HD PRO software v. 1.3.2 (Next Engine, Santa Monica). The isotropic voxel size range for the µCT scans sample is 21.9–51.5 µm. Laser scan-derived 3D models were cleaned (fill holes, irregularities in mesh, etc.) using Geomagic Wrap 2017 (3D Systems, Inc. Morrisville), and µCT scans were processed in AVIZO v. 6.3 (Visualization Sciences Group, Berlin).

#### Landmark protocol

Our landmark protocol was specifically devised to capture the shape affinities of KNM-BG 40021. It consists of 15 3D landmarks including 9 type II and 6 semilandmarks (Fig. 2; SOM Table S3). Type II landmarks reflect points in anatomical structures that can be recognized by their geometry, such as the maximum point of a curve. The homology of type III landmarks is given relative to the other landmarks around them, which should be type I or type II (therefore, a type III landmark would be the middle point between two 'true' landmarks, for example; Bookstein, 1997; O'Higgins, 2000). The protocol thus captures the anterior aspect of the radial head, including the anterior outline of the fovea (L1–3, SL1–2), the anterior outline of the radial head (L4–6, SL3–4), and the distal expansion of articular surface (L7–9, SL5–6). Radii were oriented in anterior view, either using anatomical orientation (complete radii) or based on the anteromedial position of the radial tuberosity, which was preserved in all individuals, allowing a swift identification of the medial, lateral, and posterior aspects of the radial head (as type II landmarks depend on correct orientation for placement; Zelditch et al., 2012). All type II

landmarks (L1–9) were used in a previous study of the proximal radius of fossil catarrhines (Arias-Martorell et al., 2021). We included six additional semilandmarks to ensure a more detailed and accurate representation of the anterior aspect of the shape of the radial head (Bookstein, 1997). Shape changes occurring along the axes of the bgPCA depicted in Figure 3 were visualized by warping the specimen closest to the mean configuration—identified with the 'findMeanSpec' function in Geomorph (Adams et al., 2020)—toward the extreme landmark configurations for each bgPC.

#### **Statistics**

We computed the standard deviates of observed statistics as effect sizes from distributions of random outcomes. We used these to compare the strength of morphological integration across morphometric datasets using the statistic test (Z-score) under the null hypothesis of a random association of variables. The method displays a constant expected value and confidence intervals and thus provides a consistent measure of integration suitable for comparisons across datasets (Adams and Collyer, 2016).

To assess the similarity of a fossil specimen's score to each a priori defined group based on their distribution of scores (variability) we used typicality probabilities. These are computed based on the Mahalanobis square distance ( $D^2$ ) between the specimen and the group centroids and represent the *p*-value to test the null hypothesis of group membership. Hence, a specimen is considered an outlier for a given group when *p* < 0.05, while higher typicality probabilities denote closer affinities between the individual and the distribution of the group. Note that the sum of the typicality probabilities for a given specimen does not equal 1, as they do not assume that the specimen must belong to one of the group separately. In the UPGMA analysis, we used the mean Procrustes coordinates of each group, of the two *Simiolus* specimens, and the other fossils.

To compute the amount of phylogenetic signal embedded in the shape data we computed both Pagel's  $\lambda$  (Pagel, 1999; Freckleton et al., 2002) and Bloomberg's K (Blomberg et al., 2003) statistics. Both compare the observed data distribution to that expected under a Brownian motion model of evolution but they are not entirely comparable:  $\lambda$  compares the actual covariance among species with that expected under Brownian motion, whereas K more specifically reflects how variance is partitioned. Pagel's  $\lambda$  ranges from 0 to 1:  $\lambda = 1$  implies that trait covariance is exclusively influenced by phylogeny,  $\lambda < 1$  suggests that other factors besides phylogeny influence trait evolution, and  $\lambda = 0$  is obtained when no phylogenetic correlation is found in the data. In contrast, Blomberg's K may vary beyond unity:  $K \approx 1$  similarly implies a model of evolution that closely resembles that expected under Brownian motion, K < 1 implies that closely related taxa resemble each other less than expected (variance accumulates within clades), possibly because of independent evolution (i.e., homoplasy), and K > 1 implies that closely related taxa are more similar than expected, so that variance accumulates among clades (as the result of stabilizing selection or architectural constraints).

### SOM S2

#### Supplementary results

Shape changes were warped onto the specimen of *Pan troglodytes* USNM-220062, which was identified to be the closest to the mean configuration with a Mahalanobis distance of 0.068. In the UPGMA analysis, all the monkeys clustered together, including a subcluster for *Lagothrix, Simiolus*, and *Epipliopithecus*, apart from the hominoid + *Nacholapithecus* cluster. *Ekembo* did not cluster with any other taxon but is at the base of the monkey + small fossil catarrhines cluster, whereas *Equatorius* and *Dendropitheus* clustered apart from all the other taxa.



bgPC1

**SOM Figure S1.** Results of the cross-validated between-group principal component (bgPC) analysis of proximal radial shape among extant anthropoid primates as depicted by a bivariate plot of bgPC2 vs. bgPC1. Groups distinguished a priori are denoted by color-coded convex hulls and symbols: violet = hominids; green = hylobatids; orange = cercopithecines; emerald = colobines; pink = platyrrhines. The scatter of *Ateles* is highlighted with a convex hull in darker pink within the platyrrhine distribution. Extant genera are denoted by different symbols (see legend). Fossil specimens (scores projected a posteriori) are denoted by colored stars (see legend).



**SOM Figure S2**. Dendrogram derived from the unweighted pair group methods with arithmetic mean (UPGMA) cluster analysis. Cophenetic correlation was  $r^2 = 0.84$ .



**SOM Figure S3**. Consensus molecular tree downloaded from 10kTrees website v. 3 (<u>www.10Ktrees.org</u>) used to compute phylogenetic signal and conduct the phylogenetic generalized least squares analyses.

Details of the fossil comparative sample.

| Species                         | Catalogue no.     | Site              | References                                                                 |
|---------------------------------|-------------------|-------------------|----------------------------------------------------------------------------|
| Simiolus enjiessi               | KNM-MO 63         | Moruorot          | Rose et al. (1992: Fig. 8); Senut (1989: Fig. 62); Rossie et al. (2012)    |
| Simiolus enjiessi               | KNM-MO 17022B     | Kalodirr          | Rose et al. (1992: Fig. 9)                                                 |
| Den de aniste a com a sine asi  | UNIN DI LOOO      | Durain an Islan d | Le Gros Clark and Thomas (1951: Pl. 4 Fig. 9, Pl. 5 Fig. 11); Senut (1989: |
| Denaroplinecus macinnesi        | KINWI-RU 2098     | Rusinga Island    | Fig. 76 and Pl. X)                                                         |
| Freinlignich anne sin dahamanin | $O = 204 D C_{2}$ | Davínska Navá Vas | Zapfe (1958: Pl. 1A and Fig. B5); Zapfe (1961: Fig. 54); Senut (1989: Fig. |
| Epipiloplinecus vindobonensis   | 0.E. 304 PCe      | Devinska Nova ves | 95 and Pl. XV)                                                             |
| Ekembo heseloni                 | KNM-RU 2036CE     | Rusinga Island    | Walker and Pickford (1983: Fig. 4); Senut, 1989 (Fig. 74 and Pl. VII)      |
| Equatorius africanus            | KNM-TH 28860-J    | Kipsaraman        | Ward et al. (1999: Fig 2k); Sherwood et al. (2002: Fig. 1f)                |

Details of the extant primate sample used in the study. Media and identifier (when available) are listed for specimens downloaded from

# Morphosource.org.

| Species                         | Catalog no.   | Sex | Side | Source | Media         | Identifier                  | Scanner         |
|---------------------------------|---------------|-----|------|--------|---------------|-----------------------------|-----------------|
| Alouatta palliata aequatorialis | USNM 338107   | М   | L    | USNM   |               |                             | NextEngine      |
| Alouatta palliata palliata      | USNM 282798   | F   | L    | USNM   | —             |                             | NextEngine      |
| Alouatta seniculus              | AMNH 42316    | F   | L    | AMNH   | _             |                             | NextEngine      |
| Alouatta seniculus              | AMNH 23333    | М   | L    | AMNH   | _             |                             | NextEngine      |
| Alouatta sp.                    | ZMB 35764     | М   | L    | ZMB    |               | _                           | µCT (BIR ACTIS) |
| Alouatta sp.                    | ZMS 1973-0330 | ?   | R    | ZMS    |               |                             | µCT (BIR ACTIS) |
| Ateles fusciceps robustus       | USNM 338111   | F   | L    | USNM   |               | _                           | NextEngine      |
| Ateles fusciceps robustus       | USNM 338112   | М   | L    | USNM   |               | _                           | NextEngine      |
| Ateles sp.                      | ZMB 45255     | F   | R    | ZMB    |               | _                           | µCT (BIR ACTIS) |
| Ateles sp.                      | ZMB 44814     | М   | R    | ZMB    |               | _                           | µCT (BIR ACTIS) |
| Ateles sp.                      | ZMB 38734     | ?   | R    | ZMB    |               |                             | µCT (BIR ACTIS) |
| Ateles sp.                      | ZMB 44079     | ?   | L    | ZMB    |               |                             | µCT (BIR ACTIS) |
| Cebus apella apella             | USNM 361020   | М   | L    | USNM   |               |                             | NextEngine      |
| Cebus apella                    | USNM 397940   | F   | R    | USNM   |               |                             | NextEngine      |
| Cebus apella                    | AMNH 133606   | М   | L    | AMNH   | _             |                             | NextEngine      |
|                                 | ANDIL 122/21  | M   | р    | MG     | M12000 10/05  | urn:catalog:AMNH:Mammals:M- |                 |
| Cebus apella paraguanayanus     | AMNH 133031   | M   | К    | MS     | M12099-19605  | 133631                      | —               |
|                                 |               | M   | р    | MG     | M12005 10504  | urn:catalog:AMNH:Mammals:M- |                 |
| Cebus apella paraguayanus       | AMNH 133623   | М   | K    | MS     | M12095-19594  | 133623                      | —               |
|                                 |               | м   | р    | MC     | M12002 10500  | urn:catalog:AMNH:Mammals:M- |                 |
| Cebus apella paraguayanus       | AMNH 133628   | M   | К    | MS     | W112093-19588 | 133628                      | _               |

| Colobus guereza             | AMNH 52223    | F           | L | AMNH         | _               | —                                    | NextEngine  |
|-----------------------------|---------------|-------------|---|--------------|-----------------|--------------------------------------|-------------|
| Colobus guereza             | AMNH 52241    | F           | L | AMNH         |                 | _                                    | NextEngine  |
| Colobus guereza kikuyuensis | USNM 452621   | М           | L | USNM         |                 | _                                    | NextEngine  |
| Colobus guereza             | AMNH 52248    | М           | L | AMNH         |                 | _                                    | NextEngine  |
| Colobus guereza             | USNM 452632   | F           | L | USNM         |                 | _                                    | NextEngine  |
| Gorilla beringei beringei   | AMNH 54091    | F           | L | AMNH         |                 | _                                    | NextEngine  |
| Gorilla beringei beringei   | RMCA 2263     | F           | L | RMCA         |                 | —                                    | NextEngine  |
| Gorilla beringei beringei   | USNM 395636   | М           | L | USNM         |                 | —                                    | NextEngine  |
| Covilla hovingoi hovingoi   | USNIM 206024  | м           | т | Morphosourco | M56720 102006   | http://n2t.net/ark:/65665/313444cf4- |             |
| Gornia beringel beringel    | USINIM 390934 | IVI         | L | Morphosource | WI30720-102000  | f1e7-4bbc-ba69-039e4d4557e4          |             |
| Govilla haringai haringai   | USNIM 206027  | Б           | т | Marphasaurae | M57000 102205   | http://n2t.net/ark:/65665/32f41b8f5- |             |
| Gorilla beringel beringel   | 051111 590957 | Г           | L | Worphosource | W137009-102295  | 9a15-4f88-af7e-8218ebf0b616          |             |
| Gorilla haringai haringai   | USNIM 207251  | М           | T | Morphosource | M56268-101554   | http://n2t.net/ark:/65665/3db306794- |             |
| Gornia beringer beringer    | 051NW 597551  | 1 <b>V1</b> | L | Morphosource | 10150208-101554 | 3c8e-4930-bb20-e514ac62bac6          | —           |
| Gorilla beringei graueri    | AMNH 202932   | М           | R | AMNH         | —               | —                                    | NextEngine  |
| Gorilla beringei graueri    | RMCA 8187     | М           | L | RMCA         |                 | —                                    | NextEngine  |
| Gorilla beringei            | USNM 239883   | М           | L | USNM         |                 | —                                    | NextEngine  |
| Gorilla gorilla             | USNM 586541   | F           | R | USNM         |                 | —                                    | NextEngine  |
| Gorilla gorilla gorilla     | AMNH 1673390  | F           | L | AMNH         |                 | —                                    | NextEngine  |
| Gorilla gorilla             | CMNH 2767     | М           | L | CMNH         |                 | —                                    | NextEngine  |
| Gorilla gorilla             | USNM 174722   | М           | R | USNM         |                 | —                                    | NextEngine  |
| Gorilla gorilla             | USNM 176225   | М           | L | USNM         |                 | —                                    | NextEngine  |
| Gorilla gorilla             | MER 300       | F           | R | PCM          |                 | —                                    | µCT (Nikon) |
| Homo sapiens                | AMNH 99-8376  | F           | L | AMNH         |                 | —                                    | NextEngine  |
| Homo sapiens                | USNM 1512     | F           | L | USNM         |                 | —                                    | NextEngine  |
| Homo sapiens                | AMNH 20-3501  | М           | L | AMNH         |                 | _                                    | NextEngine  |

| Homo sapiens           | USNM 942     | М | L | USNM | —            | _                                    | NextEngine      |
|------------------------|--------------|---|---|------|--------------|--------------------------------------|-----------------|
| Homo sapiens           | PSU 105-1793 | ? | L | MS   | M45359-82651 | _                                    | _               |
| Hoolock hoolock        | AMNH 83425   | F | R | AMNH | _            |                                      | NextEngine      |
| Hoolock hoolock        | AMNH 83420   | М | R | AMNH | —            |                                      | NextEngine      |
| Hylobates agilis       | AMNH 106575  | F | L | AMNH | —            | —                                    | NextEngine      |
| Hylobates klossii      | AMNH 103344  | М | R | AMNH | —            | —                                    | NextEngine      |
| Hylobates klossii      | AMNH 103347  | М | L | AMNH | —            | _                                    | NextEngine      |
| Hylobates lar vestitus | NMNH 271047  | F | L | USNM | —            | —                                    | NextEngine      |
| Lagothrix lagotricha   | DU-BAA 90    | ? | R | MS   | M12471-20497 | ark:/87602/m4/M20497                 | —               |
| Macaca arctoides       | AMNH 112727  | F | L | AMNH | _            |                                      | NextEngine      |
| Macaca fascicularis    | USNM 271168  | М | R | USNM | —            |                                      | NextEngine      |
| Macaca fascicularis    | ZMB 48496    | ? | L | ZMB  | —            |                                      | µCT (BIR ACTIS) |
| Macaca fascicularis    | ZMB 49090    | ? | L | ZMB  | —            | _                                    | µCT (BIR ACTIS) |
| Macaca fascicularis    | ZMB 49092    | ? | L | ZMB  | —            | _                                    | µCT (BIR ACTIS) |
| Macaca mulatta         | DU-BAA 142   | ? | R | MS   | M12472-20500 | —                                    | —               |
| Macaca mulatta         | USNM 537241  | F | L | USNM | —            | —                                    | NextEngine      |
| Macaca mulatta         | USNM 537253  | М | L | USNM | —            | —                                    | NextEngine      |
| Mandrillus sphinx      | AMNH 89361   | М | R | MS   | M10169-14599 | urn:catalog:AMNH:Mammals:M-<br>89361 | _               |
| Mandrillus sphinx      | AMNH 89365   | М | R | MS   | M10176-14633 | urn:catalog:AMNH:Mammals:M-<br>89365 | _               |
| Nasalis larvatus       | USNM 536050  | F | L | USNM | _            | _                                    | NextEngine      |
| Nasalis larvatus       | AMNH 106275  | М | L | AMNH | —            | _                                    | NextEngine      |
| Nasalis larvatus       | AMNH 198276  | М | L | USNM | —            | _                                    | NextEngine      |
| Nomascus gabriellae    | AMNH 87253   | F | L | AMNH | _            |                                      | NextEngine      |

| Pan paniscus                    | AMNH 86857    | F           | L | AMNH | _               | —                                    | NextEngine      |
|---------------------------------|---------------|-------------|---|------|-----------------|--------------------------------------|-----------------|
| Pan paniscus                    | RMCA 29045    | F           | L | RMCA |                 | —                                    | NextEngine      |
| Pan paniscus                    | RMCA 27696    | М           | R | RMCA |                 | —                                    | NextEngine      |
| Pan paniscus                    | SBU 87-1      | М           | L | SBU  |                 | —                                    | NextEngine      |
| Pan troglodytes                 | USNM 176226   | F           | L | USNM |                 | —                                    | NextEngine      |
| Pan troglodytes                 | USNM 176229   | F           | L | USNM |                 | —                                    | NextEngine      |
| Pan troglodytes                 | USNM 176227   | М           | L | USNM |                 | —                                    | NextEngine      |
| Pan troglodytes                 | USNM 220327   | М           | L | USNM |                 | —                                    | NextEngine      |
| Pan troglodytes                 | USNM 395820   | М           | L | USNM |                 | _                                    | NextEngine      |
| Pan troglodytes                 | UNSM 481804   | М           | R | USNM |                 | _                                    | NextEngine      |
| Dan tuogladytas sahusinfunthii  | A MINIH 51276 | м           | D | MS   | M10175 14620    | urn:catalog:AMNH:Mammals:M-          |                 |
| r an troglodyles schweinjurtnit | AMINH 51570   | 1 <b>V1</b> | ĸ | WIG  | WI10175-14050   | 51376                                |                 |
| Pan troalodytos schweinfurthii  | AMNH 51202    | м           | D | MS   | M10242 14814    | urn:catalog:AMNH:Mammals:M-          |                 |
| 1 un trogiouyles schweinjurinti | AIVINII 51575 | IVI         | ĸ | MB   | WI10242-14814   | 51393                                |                 |
| Pan tradadutas tradadutas       | AMNIH 54220   | м           | т | MS   | M10240 14808    | urn:catalog:AMNH:Mammals:M-          |                 |
| 1 un trogiouyles trogiouyles    | AWINII 54550  | IVI         | L | WIS  | WI10240-14808   | 54330                                |                 |
| Pan troglodytes troglodytes     | USNM 220064   | F           | L | USNM | _               | —                                    | NextEngine      |
| Pan tradadutas tradadutas       | USNIM 220062  | Б           | т | MS   | M56880 102175   | http://n2t.net/ark:/65665/3dcfb7753- |                 |
| 1 un trogiouyles trogiouyles    | USINIM 220002 | Г           | L | MB   | WI30889-102175  | f4d7-4334-9b52-6f9f1b9ea03e          |                 |
| Pau troglodytes troglodytes     | USNIM 220063  | F           | т | MS   | M56483-101769   | http://n2t.net/ark:/65665/386ed1f25- |                 |
| 1 un trogiouyles trogiouyles    | USINW 220005  | Г           | L | MB   | 10130483-101709 | 2f34-459d-91e5-d0111c2e0dc6          |                 |
| Pan troglodytes verus           | MPI-EVA 11778 | F           | L | MPI  |                 | —                                    | µCT (BIR ACTIS) |
| Pan troglodytes verus           | MPI-EVA 13429 | F           | L | MPI  |                 | _                                    | µCT (BIR ACTIS) |
| Pan troglodytes verus           | MPI-EVA 15001 | F           | L | MPI  |                 | _                                    | µCT (BIR ACTIS) |
| Pan troglodytes verus           | AMNH 89406    | М           | L | AMNH |                 | _                                    | NextEngine      |
| Papio anubis                    | AMNH 52668    | F           | L | AMNH |                 | _                                    | NextEngine      |

| Papio anubis          | AMNH 120388    | М           | L | AMNH |                 | —                                    | NextEngine      |  |
|-----------------------|----------------|-------------|---|------|-----------------|--------------------------------------|-----------------|--|
| Papio anubis neumanni | USNM 384235    | F           | L | USNM |                 |                                      | NextEngine      |  |
| Papio anubis neumanni | USNM 384229    | М           | L | USNM |                 |                                      | NextEngine      |  |
| Papio hamadryas       | ZMB 105450     | М           | R | ZMB  |                 | _                                    | µCT (BIR ACTIS) |  |
| Papio hamadryas       | ZMB 65265      | М           | L | ZMB  |                 |                                      | µCT (BIR ACTIS) |  |
| Pongo abelii          | USNM 588109    | F           | L | USNM |                 |                                      | NextEngine      |  |
| Pongo abelii          | UNSM 143588    | М           | L | USNM |                 |                                      | NextEngine      |  |
| Pongo abelii          | USNM 143587    | М           | T | MS   | M56592-101878   | http://n2t.net/ark:/65665/33bd6f2f4- |                 |  |
| 1 ongo ubelli         | 001001145507   | 141         | L | WIS  | W130372-101070  | 8b1a-4ffd-966f-06506fd24428          |                 |  |
| Pongo abelii          | USNIM 1/2500   | М           | T | MS   | M56324-101610   | http://n2t.net/ark:/65665/389dc210f- |                 |  |
| 1 ongo ubelli         | USININ 145550  | 1 <b>V1</b> | L | IVIS | M130324-101010  | f5b3-4910-ae87-a26700227801          |                 |  |
| Pongo abelii          | USNM 143593    | М           | T | MS   | M56494-101780   | http://n2t.net/ark:/65665/329ae2628- |                 |  |
| 1 ongo ubelli         |                | 141         | L |      |                 | 4c93-4da7-8e52-5f0c1e7bcc9e          |                 |  |
| Pongo abelii          | USNIM 1/250/   | м           | T | MS   | M56426-101712   | http://n2t.net/ark:/65665/3a893123e- |                 |  |
| 1 ongo ubelli         | 051111 145574  | 141         | L | WIS  | W130420-101712  | 021c-4f9b-ab42-4b4050332c24          |                 |  |
| Pongo abelii          | LIGNINA 142504 | F           | т | MS   | S M56423-101709 | http://n2t.net/ark:/65665/3c26ea641- |                 |  |
| 1 ongo ubelli         | USINIM 145590  | Г           | L | MB   |                 | 6662-42df-9b0d-a288ade0d69c          | _               |  |
| Pongo pygmaeus        | AMNH 200900    | F           | L | AMNH | _               | —                                    | NextEngine      |  |
| Pongo pygmaeus        | USNM 142169    | F           | L | USNM |                 |                                      | NextEngine      |  |
| Pongo pygmaeus        | USNM 145302    | F           | L | USNM |                 |                                      | NextEngine      |  |
| Pongo pygmaeus        | USNM 153805    | F           | R | USNM |                 |                                      | NextEngine      |  |
| Pongo pygmaeus        | USNM 153822    | F           | L | USNM |                 |                                      | NextEngine      |  |
| Pongo pygmaeus        | ZMS 1982-0092  | F           | R | ZMS  |                 | _                                    | µCT (BIR ACTIS) |  |
| Pongo pygmaeus        | USNM 145301    | М           | L | USNM |                 | _                                    | NextEngine      |  |
| Pongo pygmaeus        | USNM 145305    | М           | L | USNM |                 | _                                    | NextEngine      |  |
| Pongo pygmaeus        | USNM 153823    | М           | L | USNM |                 | _                                    | NextEngine      |  |

| ZMS 1909-0801 | М                                                                                                                                                                  | L                                                                                                                                     | ZMS                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | µCT (BIR ACTIS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ZMS 1966-0203 | М                                                                                                                                                                  | R                                                                                                                                     | ZMS                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | µCT (BIR ACTIS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ZMB 87092     | ?                                                                                                                                                                  | L                                                                                                                                     | ZMB                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | µCT (BIR ACTIS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AMNH 106583   | F                                                                                                                                                                  | L                                                                                                                                     | AMNH                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NextEngine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NMNH 271048   | F                                                                                                                                                                  | L                                                                                                                                     | USNM                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NextEngine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| AMNH 106581   | М                                                                                                                                                                  | L                                                                                                                                     | AMNH                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NextEngine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PSU 105-1841  | ?                                                                                                                                                                  | L                                                                                                                                     | MS                                                                                                                                               | M45351-82643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| UWBM 58721-1  | ?                                                                                                                                                                  | R                                                                                                                                     | MS                                                                                                                                               | M69298-125011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| UWBM 82801-1  | ?                                                                                                                                                                  | L                                                                                                                                     | MS                                                                                                                                               | M69299-125019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ZMB 38573     | ?                                                                                                                                                                  | R                                                                                                                                     | ZMB                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | µCT (BIR ACTIS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ZMB 38587     | F                                                                                                                                                                  | L                                                                                                                                     | ZMB                                                                                                                                              | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | µCT (BIR ACTIS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               | ZMS 1909-0801<br>ZMS 1966-0203<br>ZMB 87092<br>AMNH 106583<br>NMNH 271048<br>AMNH 106581<br>PSU 105-1841<br>UWBM 58721-1<br>UWBM 82801-1<br>ZMB 38573<br>ZMB 38587 | ZMS 1909-0801MZMS 1966-0203MZMB 87092?AMNH 106583FNMNH 271048FAMNH 106581MPSU 105-1841?UWBM 58721-1?UWBM 82801-1?ZMB 38573?ZMB 38587F | ZMS 1909-0801MLZMS 1966-0203MRZMB 87092?LAMNH 106583FLNMNH 271048FLAMNH 106581MLPSU 105-1841?LUWBM 58721-1?RUWBM 82801-1?LZMB 38573?RZMB 38587FL | ZMS 1909-0801       M       L       ZMS         ZMS 1966-0203       M       R       ZMS         ZMB 87092       ?       L       ZMB         AMNH 106583       F       L       AMNH         NMNH 271048       F       L       USNM         AMNH 106581       M       L       AMNH         PSU 105-1841       ?       L       MS         UWBM 58721-1       ?       R       MS         UWBM 82801-1       ?       L       MS         ZMB 38573       ?       R       ZMB         ZMB 38587       F       L       ZMB | ZMS 1909-0801       M       L       ZMS       —         ZMS 1966-0203       M       R       ZMS       —         ZMB 87092       ?       L       ZMB       —         AMNH 106583       F       L       AMNH       —         NMNH 271048       F       L       USNM       —         AMNH 106581       M       L       AMNH       —         PSU 105-1841       ?       L       MS       M45351-82643         UWBM 58721-1       ?       R       MS       M69298-125011         UWBM 82801-1       ?       L       MS       M69299-125019         ZMB 38573       ?       R       ZMB       —         ZMB 38587       F       L       ZMB       — | ZMS 1909-0801       M       L       ZMS           ZMS 1966-0203       M       R       ZMS           ZMB 87092       ?       L       ZMB           AMNH 106583       F       L       AMNH           NMNH 271048       F       L       USNM           AMNH 106581       M       L       AMNH           PSU 105-1841       ?       L       MS       M45351-82643          UWBM 58721-1       ?       R       MS       M69298-125011          ZMB 38573       ?       R       ZMB           ZMB 38587       F       L       ZMB |

Abbreviations: F = female; M = male; ? = unknown sex; L = left; R = right; AMNH = American Museum of Natural History, New York, USA; CMNH = Cleveland Museum of Natural History, Cleveland, USA; MPI-EVA = Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; MS = MorphoSource.org; PCM = Powell-Cotton Museum, Birchington, UK; RMCA = Royal Museum for Central Africa, Tervuren, Belgium; SBU = Stony Brook University, New York, USA; USNM = Smithsonian National Museum of Natural History, Washington D.C., USA; ZMB = Museum für Naturkunde – Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany; ZMS = Zoologische Staatssammlung Munchen, Munich, Germany.

| L/SL no.      | Description                                                          |
|---------------|----------------------------------------------------------------------|
| Fovea capitis |                                                                      |
| L1            | Most medial point on fovea capitis outline                           |
| L2            | Most anterior point on fovea capitis outline                         |
| L3            | Most lateral point on fovea capitis outline                          |
| SL1           | Midpoint between L1 and L2 on fovea outline                          |
| SL2           | Midpoint between L2 and L3 on fovea outline                          |
| Radial head   |                                                                      |
| L4            | Most medial point on radial head outline                             |
| L5            | Most anterior point on radial head outline                           |
| L6            | Most lateral point on radial head outline                            |
| SL3           | Midpoint between L4 and L5 on radial head outline                    |
| SL4           | Midpoint between L5 and L6 on radial head outline                    |
| L7            | Most medial point on distal articular expansion of the radial head   |
| L8            | Most anterior point on distal articular expansion of the radial head |
| L9            | Most lateral point on distal articular expansion of the radial head  |
| SL5           | Midpoint between L7 and L8 on distal articular expansion of the      |
|               | radial head                                                          |
| SL6           | Midpoint between L8 and L9 on distal articular expansion of the      |
|               | radial head                                                          |

Landmark (L) and semilandmark (SL) protocol for KNM-BG 40021.ª

<sup>a</sup> True landmarks (type II) and semilandmarks follow the descriptions of Bookstein (1997) and O'Higgins (2000).

| for extant taxa without cross-validation. |                 |           |            |            |              |  |  |  |
|-------------------------------------------|-----------------|-----------|------------|------------|--------------|--|--|--|
| Taxon                                     | Cercopithecines | Colobines | Hominids   | Hylobatids | Platyrrhines |  |  |  |
| Cercopithecines                           | 12 (75.0%)      | 0 (0%)    | 1 (6.3%)   | 0 (0%)     | 3 (18.8%)    |  |  |  |
| Colobines                                 | 0 (0%)          | 6 (75.0%) | 0 (0%)     | 0 (0%)     | 2 (25.0%)    |  |  |  |
| Hominids                                  | 0 (0%)          | 0 (0%)    | 48 (81.4%) | 9 (15.2%)  | 2 (3.4%)     |  |  |  |
| Hylobatids                                | 0 (0%)          | 0 (0%)    | 0 (0%)     | 14 (100%)  | 0 (0%)       |  |  |  |
| Platyrrhines                              | 1 (5.3%)        | 3 (15.8%) | 2 (10.5%)  | 0 (0%)     | 13 (68.4%)   |  |  |  |

Number of correctly classified specimens (and percentages within parentheses) by the bgPCA for extant taxa without cross-validation.

bgPCA = between-group principal component analysis.

| for extant taxa with cross-validation. |                 |           |            |            |              |  |  |  |
|----------------------------------------|-----------------|-----------|------------|------------|--------------|--|--|--|
| Taxon                                  | Cercopithecines | Colobines | Hominids   | Hylobatids | Platyrrhines |  |  |  |
| Cercopithecines                        | 11 (68.7%)      | 1 (6.2%)  | 1 (6.25%)  | 0 (0%)     | 3 (18.7%)    |  |  |  |
| Colobines                              | 0 (0%)          | 6 (75,0%) | 0 (0%)     | 0 (0%)     | 2 (25,0%)    |  |  |  |
| Hominids                               | 0 (0%)          | 0 (0%)    | 45 (76.3%) | 11 (18.6%) | 3 (5.1%)     |  |  |  |
| Hylobatids                             | 0 (0%)          | 0 (0%)    | 2 (14.3%)  | 12 (85.7%) | 0 (0%)       |  |  |  |
| Platyrrhines                           | 2 (10.5%)       | 4 (21.0%) | 3 (15.8%)  | 0 (0%)     | 10 (52.6%)   |  |  |  |

Number of correctly classified specimens (and percentages within parentheses) by the bgPCA for extant taxa with cross-validation.

bgPCA = between-group principal component analysis.

#### **SOM References**

- Adams, D.C., Collyer, M.L. 2016. On the comparison of the strength of morphological integration across morphometric datasets. Evolution 70, 2623–2631.
- Adams, D.C., Collyer, M.L., Kaliontzopoulou, A., 2020. Geomorph: Software for geometric morphometric analyses. R package version 3.2.1. <u>https://cran.r-</u> <u>project.org/package=geomorph</u>.
- Arias-Martorell, J., Almécija, S., Urciuoli, A., Nakatsukasa, M., Moyà-Solà, S., Alba, D.M., 2021. A proximal radius of *Barberapithecus huerzeleri* from Castell de Barberà: Implications for locomotor diversity among pliopithecoids. J. Hum. Evol. 157, 103032.
- Blomberg, S.P., Garland, T., Ives, A.R., 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745.
- Bookstein, F.L., 1997. Landmark methods for forms without landmarks: Localizing group differences in outline shape. Med. Imaging Anal. 1, 225–243.
- Freckleton, R.P., Harvey, P.H., Pagel, M., 2002. Phylogenetic analysis and comparative data: A test and review of evidence. Am. Nat. 160, 712–726.
- Le Gros Clark, W.E., Thomas, D.P., 1951. Associated jaws and limb bones of *Limnopithecus macinnesi*. Fossil Mammals Afr. 3, 1–27.
- O'Higgins, P., 2000. The study of morphological variation in the hominid fossil record: biology, landmarks and geometry. J. Anat. 197, 103–120.
- Pagel, M., 1999. Inferring the historical patterns of biological evolution. Nature 401, 877– 884.
- Rose, M.D., Leakey, M.G., Leakey, R.E.F., Walker, A.C., 1992. Postcranial specimens of *Simiolus enjiessi* and other primitive catarrhines from the early Miocene of Lake Turkana, Kenya. J. Hum. Evol. 22, 171–237.
- Rossie, J.B., Gutierrez, M., Goble, E., 2012. Fossil forelimbs of *Simiolus* from Moruorot, Kenya. Am. J. Phys. Anthropol. 147 (S54), 252.
- Senut, B., 1989. Le Coude des Primates Hominoïdes. Anatomie, Fonction, Taxonomie, Évolution. Éditions du Centre National de la Recerche Scientifique, Paris.
- Sherwood, R.J., Ward, R.J., Hill, A., Duren, D.L., Brown, B., Downs, W., 2002. Preliminary description of the *Equatorius africanus* partial skeleton KNM-TH 28860 from Kipsaramon, Tugen Hills, Baringo District, Kenya. J. Hum. Evol. 42, 63–73.
- Walker, A.C., Pickford, M., 1983. New postcranial fossils of *Proconsul africanus* and *Proconsul nyanzae*. In: Ciochon, R.L., Corruccini, R.S. (Eds.), New Interpretations of Ape and Human Ancestry. Plenum Press, New York, pp. 325–351.

- Ward, S., Brown, B., Hill, A., Kelley, J., Downs, W., 1999. *Equatorius*: A new hominoid genus from the middle Miocene of Kenya. Science 285, 1382–1386.
- Zapfe, H., 1958. The skeleton of *Pliopithecus (Epipliopithecus) vindobonensis* Zapfe and Hürzeler. Am. J. Phys. Anthropol. 16, 441–457.
- Zapfe, H., 1961. Die Primatenfunde aus der miozänen Spaltenfüllung von Neudorf an der March (Děvínská Nová Ves), Tschechoslowakei. Schweizer. Palaeontol. Abh. 78, 1–293.
- Zelditch, M. L., Swiderski, D. L., Sheets, H. D., 2012. Geometric morphometrics for biologists: A primer. New York, Academic Press.