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Abstract

Spiking Neural Networks (SNNs) are a class of event-driven and low-power Arti-
ficial Neural Networks which aim to closely mimic the computational dynamics
which are observed in biological nervous systems. These networks employ dif-
ferent architectural designs and computational characteristics, when compared to
the more commonly used Analogue Neural Networks (ANNs). As a consequence,
existing tried-and-true Machine Learning methods which have proven effective for
training ANNs may not directly work on SNNs, but require new interpretations
or approximations to be applicable. It is currently still unclear how SNNs can
deliver on the promises of high-performance computing at reduced energy costs.

The work in this thesis addresses the problem of efficiently training SNNs on
traditional von Neumann hardware platforms. Although supervised learning rules
that allow SNNs to learn spatio-temporal spike-pattern mappings have been devel-
oped and studied for a variety of problem domains, the computational paradigm
of these methods can be broadly categorised into iterative or one-batch methods,
with their own advantages and limitations. The research conducted here aims to
combine computational properties from both of these two families of methods,
in order to derive hybrid learning algorithms which exhibit improved learning
efficiency.

First, we introduce a novel learning rule for supervised training of single-layer
SNNs to solve precise input-output spike train mapping problems. This algo-
rithm first converts the learning task into the form of a Constrained Satisfaction
Problem (CSP), with the aim of computing the precise step size with which the
spike-mapping problem can be solved with a single update step. In practice,
the constraints of performing computation in continuous time means that the
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method still require a number of updates to converge, however the required num-
ber of learning iterations will be several times fewer than with traditional iterative
learning. We will show that the proposed algorithm is viable and efficient through
extensive numerical simulations.

Next, we apply the proposed learning rule to supervised learning tasks with
spike-count encoding, in which only the number of output spikes are specified
and not their exact timings. Encoding the network output with a spike-count
have become the norm in classification tasks, since it has reduced computational
requirements for inference. Here, our algorithm demonstrates competitive gener-
alisation accuracy and improved convergence speed on common data classification
benchmarks, in comparison to existing methods in the literature. Additionally,
we perform an experiment in order to measure the maximal learning capacity of
the algorithm in spike-count learning problems.

Finally, we present an extension of the proposed algorithm to perform un-
supervised feature extraction in networks with convolutional layers. When used
sequentially with the original algorithm, we are able to partially address the main
weakness of the CSP weight update approach, which is its inability to train multi-
layer architectures. The application of our algorithms to the convolutional network
architecture is examined in depth, highlighting some of their strengths and weak-
nesses. Using these findings, we apply the methods to three well-known image
classification benchmark problems.

iii



Acknowledgements

I would like to express my most sincere gratitude to:

My supervisor, Dr. Dominique Chu, for his friendship, guidance, enthusiasm,
unerring adherence to quality, and seemingly endless patience.

The School of Computing at the University of Kent, and all of its staff, for
providing all the facilities and resources to support my research.

My parents, grandparents, and my brother, who have always treated my trou-
bles as their own, and have provided constant support throughout this process.

My partner, Laura Costin, without whom I would not have the courage to
pursue my further studies.

And last but not least to all of my friends and colleagues, who have made this
a vibrant and stimulating journey.

iv



Contents

Abstract ii

Acknowledgements iv

Contents v

List of Tables x

List of Figures xii

1 Introduction 1

1.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Review of Spiking Neural Networks 8

2.1 Biological Background . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 The Biological Neuron . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Neural Information Coding . . . . . . . . . . . . . . . . . . 12

2.2 Analogue Neural Networks . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 A Brief History . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Continuously-Activated Neuron Model . . . . . . . . . . . 19

v



2.2.3 Neural Network Design . . . . . . . . . . . . . . . . . . . . 21

2.2.4 Fully-Connected Feed-Forward Neural Networks . . . . . . 25

2.2.5 Convolutional Neural Networks . . . . . . . . . . . . . . . 26

2.3 Spiking Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 A Brief History of Spiking Models . . . . . . . . . . . . . . 30

2.3.2 Spike Response Neuron Model . . . . . . . . . . . . . . . . 32

2.3.3 Supervised Learning for SNNs . . . . . . . . . . . . . . . . 34

2.3.4 Unsupervised Learning for SNNs . . . . . . . . . . . . . . 42

2.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Linear Constrained Optimisation for Learning Precisely-Timed
Spikes 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Linear Programming with Constraints . . . . . . . . . . . 48

3.2 Motivations & Chapter Layout . . . . . . . . . . . . . . . . . . . 51

3.3 Method Description . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Problem Constraints . . . . . . . . . . . . . . . . . . . . . 53

3.3.2 Weight Update Method . . . . . . . . . . . . . . . . . . . 54

3.3.3 Domain Constraints . . . . . . . . . . . . . . . . . . . . . 56

3.3.4 Algorithm Summary . . . . . . . . . . . . . . . . . . . . . 57

3.4 Learning Performance . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 58

3.4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Effect of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.1 Choice of Learning Kernel . . . . . . . . . . . . . . . . . . 64

3.5.2 Choice of Domain Constraints . . . . . . . . . . . . . . . . 65

3.6 Noise Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

vi



3.6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 69

3.6.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 71

3.7 Algorithm Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 73

3.7.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 75

3.8 Analysis of Learning Interference . . . . . . . . . . . . . . . . . . 76

3.8.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 76

3.8.2 Learning Demonstration . . . . . . . . . . . . . . . . . . . 78

3.8.3 FILT Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 78

3.8.4 DTA Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 80

3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.10 Hardware Information . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Spike Count Learning with DTA 87

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Motivations & Chapter Layout . . . . . . . . . . . . . . . . . . . 88

4.3 Method Description . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Dynamic Threshold Procedure . . . . . . . . . . . . . . . . 90

4.3.2 Algorithm Summary . . . . . . . . . . . . . . . . . . . . . 92

4.4 Learning Performance . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 94

4.4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 95

4.5 Algorithm Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5.1 Overall Runtime Comparison . . . . . . . . . . . . . . . . 97

4.5.2 Dynamic Threshold Runtime . . . . . . . . . . . . . . . . . 98

4.6 Memory Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 101

vii



4.6.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 101

4.7 Benchmark Performance: UCI Datasets . . . . . . . . . . . . . . . 103

4.7.1 Dataset Descriptions . . . . . . . . . . . . . . . . . . . . . 104

4.7.2 Network Architecture . . . . . . . . . . . . . . . . . . . . . 105

4.7.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 107

4.7.4 Classification Results . . . . . . . . . . . . . . . . . . . . . 108

4.8 Benchmark Performance: MNIST Dataset . . . . . . . . . . . . . 110

4.8.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . . 111

4.8.2 Network Architecture . . . . . . . . . . . . . . . . . . . . . 111

4.8.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 113

4.8.4 Classification Results . . . . . . . . . . . . . . . . . . . . . 113

4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5 Unsupervised Feature Learning with DTA 117

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 Motivations & Chapter Layout . . . . . . . . . . . . . . . . . . . 119

5.3 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4 Method Description . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4.1 Problem Constraints . . . . . . . . . . . . . . . . . . . . . 122

5.4.2 Weight Update Method . . . . . . . . . . . . . . . . . . . 124

5.4.3 Algorithm Summary . . . . . . . . . . . . . . . . . . . . . 125

5.5 Benchmark Performance: MNIST Dataset . . . . . . . . . . . . . 126

5.5.1 Simulation Protocol . . . . . . . . . . . . . . . . . . . . . . 127

5.5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 127

5.6 Benchmark Performance: E-MNIST Dataset . . . . . . . . . . . . 131

5.6.1 Simulation Protocol . . . . . . . . . . . . . . . . . . . . . . 131

5.6.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 131

viii



5.7 Benchmark Performance: ETH-80 Dataset . . . . . . . . . . . . . 135

5.7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 135

5.7.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 136

5.8 Effects of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.9 Learning Performance of Deeper CSNNs . . . . . . . . . . . . . . 144

5.9.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 144

5.9.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 145

5.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6 Discussion 150

6.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.2.1 GPU Implementation . . . . . . . . . . . . . . . . . . . . . 153

6.2.2 Objective Functions for Constrained Optimisation . . . . . 154

6.2.3 Multi-Layer Fully-Connected SNNs . . . . . . . . . . . . . 155

6.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Bibliography 157

ix



List of Tables

1 Overall comparison of learning performance for the DTA algorithm
when trained with or without the domain constraints. Note that
the results for Epochs to Convergence and Algorithm Runtime only
includes converged trials. . . . . . . . . . . . . . . . . . . . . . . . 66

2 Software and hardware information used for neuronal simulation,
learning, and time measurements in Chapter 3. . . . . . . . . . . 86

3 Learning performance comparison between DTA, EMLC, and MST
algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Parameter values for Cα measurements. . . . . . . . . . . . . . . . 101

5 Training and test accuracy of the proposed method on the Iris
flower dataset formulated as a spike count learning problem. Data
represents 50 independent trials. . . . . . . . . . . . . . . . . . . . 108

6 Training and test accuracy of the proposed method on the Wis-
consin Breast Cancer dataset formulated as a spike count learning
problem. Data represents 20 independent trials. . . . . . . . . . . 110

7 Performance comparison of CSNN trained with the MST, EMLC,
and DTA-B methods on the MNIST dataset. Each data point is
averaged over 10 independent trials. . . . . . . . . . . . . . . . . . 114

8 Parameter settings for CSNNs in the MNIST classification task. . 127

9 Generalisation performance on the MNIST image classification prob-
lem. Comparisons with state-of-the-art results from several method
categories for training CSNNs are provided. . . . . . . . . . . . . 128

10 Parameter settings for CSNNs in the EMNIST classification task. 132

x



11 Generalisation performance on the EMNIST image classification
problem. Comparisons with state-of-the-art results of other convo-
lutional neural networks in the literature are provided. . . . . . . 132

12 Parameter settings for CSNNs in the ETH-80 classification task. . 137

13 Generalisation performance on the ETH-80 image classification prob-
lem. Comparisons with state-of-the-art results of other CSNNs in
the literature are provided. . . . . . . . . . . . . . . . . . . . . . . 138

xi



List of Figures

1 Model of a biological neuron, containing the soma, dendrites, and
axon. Adapted from Figure 2.1 in Trappenberg (2009). . . . . . . 9

2 Generation of an action potential in a biological neuron. Here, the
resting membrane potential of the neuron is zero. . . . . . . . . . 11

3 Neural coding schemes, categorised as either rate-coding or temporal-
coding. Figure originally published in Auge et al. (2021). Abbrevi-
ated coding schemes are: Threshold-based Representation (TBR),
Step-Forward (SF), Moving-Window (MW), Sparse Distributed Rep-
resentation (SDR), Hough Spiker Algorithm (HSA), Ben’s Spiker
Algorithm (BSA), Rank Order Coding (ROC), Time-to-first Spike
(TTFS). SDR, ROC, and TTFS coding schemes are discussed in
further detail later in this chapter, and TTFS coding is used exten-
sively in later research chapters. . . . . . . . . . . . . . . . . . . . 13

4 Model of a McCulloch & Pitts neuron. Inputs xi arriving to channel
i are weighted by wi and summed, then thresholded to generate a
binary output. The thresholding operation can be interpreted as
applying a Heaviside step function as the activation function. . . . 18

5 Model of a sigmoidal neuron. Inputs xi are summed, then the
sigmoidal function σ is applied as the transfer function, to generate
a continuous output between 0 and 1. . . . . . . . . . . . . . . . . 21

xii



6 Decision boundaries generated by networks containing Perceptrons,
for continuous two-dimensional inputs. A: A one-layer network
with a single output neuron (bottom) generates a linear decision
boundary (top). B: A two-layer network containing one hidden
layer, generating a convex decision boundary. C: a three-layer net-
work containing two hidden layers, generating non-convex and dis-
joint decision boundaries (Bishop et al. 1995). . . . . . . . . . . . 22

7 Different levels of representation of an input image (Bengio et al.
2009). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

8 Parallel network architectures. A: A parallel network consisting
of identical sub-networks which receives different parts of the input
vector. Figure adapted from (Littmann, Meyering and Ritter 1992).
B: A parallel network consisting of non-identical sub-networks, each
receiving the same input vector. . . . . . . . . . . . . . . . . . . . 25

9 A fully-connected neural network with 4 layers, including the input
layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

10 2-dimensional convolution operation. Left column: input image,
with each pixel encoded as an integer value. Middle column:
the convolutional kernel being applied to the image. Right col-
umn: the resulting filtered convolutional map. Figure adapted
from Alzubaidi et al. (2021). . . . . . . . . . . . . . . . . . . . . . 27

11 An example Convolutional Neural Network architecture. . . . . . 28

12 Model complexity vs simulation efficiency for various spiking neu-
ron models. Figure adapted from Izhikevich (2004). . . . . . . . . 31

13 Model of a SRM neuron. Each sequence of input spikes xi arriving
to channel i is temporally convolved with a post-synaptic poten-
tial (PSP) kernel λ(t) to generate a time-dependent PSP current.
The sum weighted PSP currents of all input channels yields the
membrane potential V (t). If V (t) crosses a certain threshold, an
output spike is generated. Each output spike has a reset effect on
the membrane potential via the reset kernel γ(t). . . . . . . . . . 33

xiii



14 The shapes of the PSP kernel λ and the reset kernel γ in the neuron
model, with τm = 20.0 and τs = 5.0. . . . . . . . . . . . . . . . . . 34

15 Illustration of the three types of errors in the FP learning algorithm.
Gray areas are tolerance windows around desired spike times. Fig-
ure adapted from Memmesheimer et al. (2014). . . . . . . . . . . 36

16 STS function of a LIF neuron given some fixed input pattern and
random initial weights. A: before learning, the voltage threshold
ϑ = 1 corresponds with k = 3 output spikes. In order to increase
k to 4, the voltage value corresponding to ϑ∗

4 is moved closer to ϑ

by gradient descent. B: after a number of learning updates, ϑ∗
4 has

crossed ϑ, which reflects that the neuron now elicits k = 4 spikes. 43

17 STDP mechanisms in the brain, replicated from Trappenberg (2009).
A: The experimentally measured changes in excitatory postsynap-
tic current for various time differences between pre- and post-synaptic
neurons. B-C: asymmetric STDP. D-E: symmetric STDP. . . . . 45

18 An example CSP problem. The two lines show the two linear con-
straints of the problem. When the constraints are inequalities (≤),
the feasible region lie inside of the thicker portions of the lines.
Figure originally published in (coh 1978). . . . . . . . . . . . . . . 50

19 Dependence of van Rossum distance values on the mean Gaussian
spike displacement (x-axis) and pattern duration T (colorbar) with
filter time constant τv = 100. . . . . . . . . . . . . . . . . . . . . . 60

20 Output spikes throughout DTA learning in an example PTS task
with randomly generated inputs. A: learning progress of a single
long input pattern. B: The same long input pattern is split into
five patterns of equal length, presented to the algorithm one at
a time. Red lines are desired spike times. C-D: The input pat-
terns presented to the learning neurons corresponding to A and B,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xiv



21 Memory capacity measurements (blue dots) of the DTA algorithm
for (lbd, ubd) = (0, 0.07) and κ(t) = λ(t). (Left) Memory capacity
in the long pattern learning scenario. (Right) Capacity in the short
patterns scenario. Gray lines are theoretical bounds as computed
by Equation 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

22 Weight distributions of an SRM neuron A: Before learning, and B-
D: after one iteration of the DTA algorithm learning four desired
spike times. E: The temporal shape of the three κ(t) learning
kernels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

23 Memory capacity of the DTA algorithm with different learning ker-
nel functions. Solid lines show the number of converged trials in
the long pattern scenario, dashed lines are for the short pattern
scenario. In general, κPSP provided the best results. . . . . . . . . 66

24 Average runtime of the DTA algorithm with different values of the
domain constraints lower bound lbd and upper bound ubd. . . . . 68

25 Membrane potential trajectories without reset (left) produced by
different weight solutions (right), with a single desired output spike
time at time 100. Replicated from Lee, Kukreja and Thakor (2016),
and κ denotes a regularisation term in the CONE method. . . . . 69

26 Effect of parameter ϕ on the learning kernel κ∗
PSP. . . . . . . . . . 70

27 A: Performance of DTA solutions for the PTS task on noise-corrupted
inputs, shown for varying degrees of Gaussian spike jitter with stan-
dard deviation σ. B: Percentage of converged trials using the learn-
ing kernel κ∗

PSP while varying the parameter ϕ. . . . . . . . . . . . 72

28 Memory capacity measurements of Widrow-Hoff-based learning al-
gorithms, for the long (top panel) and short (bottom panel) input
pattern scenarios. Solid lines denote trials where the learning rate
is normalised by the number of desired output spikes, dashed lines
denote trials where the learning rate is not normalised. Overall,
the FILT learning kernel produced the best results for Widrow-
Hoff-based learning. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xv



29 Runtime comparisons between the DTA and FILT algorithms, for
various values of pattern duration T in the single input pattern
scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

30 Illustration of learning interference with FP learning algorithm. A:
the Two-Spikes problem with two input spikes (red lines) and two
desired output spikes (blue lines). B: (top) First spike is converged,
second spike is earlier than desired. Hence, −∆wi is applied which
changes both weights; (bottom) intersection between red and blue
lines is κPSP(td) for each weight. C: because of the previous weight
update, the second spike is converged but the first is now later than
desired. Adjusting the first spike with ∆wi then affects the second
spike. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

31 The effects of learning interference on the FILT algorithm through-
out learning, illustrated using the ‘toy’ PTS problem. Colours and
contours represent the van Rossum distance values mapped to the
weight space. Plotted line denotes the progression of the learning
from start (red) to finish (white). Top plot: td

2−td
1 = 10. Bottom

plot: td
2 − td

1 = 40. The contours show discrete regions of the loss
value, which corresponds to the loss with (from lightest to darkest):
0 output spike, 1 output spike, and 2 output spikes generated by
the neuron. Here, we observe that the FILT algorithm finds the
optimal solution, but does not take a direct path. . . . . . . . . . 79

32 The weight computation of the DTA algorithm in the toy learning
problem, with the dashed and dotted arrows demonstrating the two
update terms corresponding with the two desired output spikes.
Top plot: td

2 − td
1 = 10. Bottom plot: td

2 − td
1 = 40 . . . . . . . 82

33 Dynamic threshold procedure for determining desired spike timings
for output neurons. A: Membrane potential V (t) (solid line) and
membrane potential without reset V0(t) (dashed line) of a neuron
with two output spikes. The appropriate time to generate a new
spike is t1, since V (t1) is closest to ϑ, thus requires the smallest
weight adjustment. B: decreasing threshold yields an extra spike
at t1. C: increasing threshold removes the spike at t2. . . . . . . 90

xvi



34 Comparison of the overall runtimes of the DTA, EMLC, and MST
learning algorithms in a spike count learning task with 5 input
categories. The total number of inputs is shown on the x axis. . . 97

35 Per-epoch runtime comparisons between the DTA-B and MST learn-
ing algorithms. Measurements are performed for both steps in the
learning process: Dynamic Threshold and weight update calculations. 99

36 A: Decoding capacity Cα, plotted against νinτ where νin is the (con-
stant) input spike rate and τ is the PSP correlation time √τmτs. In
general, Cα can be expressed as an exponentially decaying function
of τ . Symbols (circle, square, triangle) respectively represent differ-
ent series measured with τm = 10, 20, 40. The range of the number
of synaptic weights N is chosen on the log scale (102, 102.5, 103, ...). 102

37 Gaussian population coding. Here, the input numeric value (dashed
vertical line) is plotted against a number of overlapping Gaussian
functions with varying means (solid lines). The y-values of the
intersections between the dashed line and the solid lines are then
taken as the (encoded) input spike times. In this way, a single
numeric value is encoded as a population of input spikes. Further
details of how the Gaussian functions are set up are given in the
rest of this section. Figure originally published in Sboev et al. (2018).106

38 Generalisation speed of shallow networks on the Iris dataset, over
20 epochs of training. Error bars are standard deviations. Each
data point represents 50 independent trials. . . . . . . . . . . . . 109

39 Overview of the CSNN architecture (Xu et al. 2018a). The Con-
volution and MaxPool layers are composed of rate-coded neurons,
while the Encoding and Output layers are composed of spiking
neurons. In our setup, the Encoding layer has 864 neurons and the
Output layer has 10 neurons. . . . . . . . . . . . . . . . . . . . . 112

xvii



40 Generalisation accuracy on the MNIST dataset, over 20 epochs of
training. Error bars are standard deviations. Each data point rep-
resents 10 independent trials. Black dashed lines represents average
accuracy of a traditional rate-coded convolutional neural network
with the convolution and pooling weights fixed to the same weights
which are used in the CSNN. . . . . . . . . . . . . . . . . . . . . . 115

41 Simplified example of selection and competition steps to select tar-
get neurons in the convolutional layer. Here, we assume no neurons
spike. Each convolutional map has 25 neurons, and the colour of
each location denotes V (t∗

r,c,d) (lighter is larger membrane poten-
tial). Red squares in A and B denote the neuron at each step with
the largest membrane potential maximum in the entire layer. Black
cells denote neurons inhibited (marked) by competition. . . . . . . 123

42 Effect of parameter ϵ on neuron activation in the convolutional
layer. White pixels are spiking neurons in a map. A: Before learn-
ing, the map is selective towards all features in the image. B: neu-
ron activation in the map after one learning iteration, with different
values of ϵ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

43 Evolution of 16 convolutional kernels throughout 30 learning iter-
ations of samples from the MNIST dataset. . . . . . . . . . . . . . 129

44 Learning accuracy of the proposed model throughout 2 learning
epochs of the DTA-B algorithm on the MNIST dataset. . . . . . . 129

45 Confusion matrix of a randomly chosen trial of the MNIST dataset.
The colour bar shows (logarithmic) colour mappings for the gener-
alisation accuracy of each input category. . . . . . . . . . . . . . . 130

xviii



46 Learning accuracy of the proposed model throughout 2 learning
epochs of the DTA-B algorithm on the EMNIST dataset. Note
that the accuracies reported at partial epochs (for example 0.2 of
an epoch) were measured using the complete training and testing
set. This is in contrast with traditional experimental design where
the accuracy is reported only at the end of a complete epoch. How-
ever, we wanted to obtain additional data points since the DTA-B
algorithm is only run for 2 epochs total. . . . . . . . . . . . . . . 133

47 Confusion matrix of a randomly chosen trial of the EMNIST dataset.
The colour bar shows colour mappings for the generalisation accu-
racy of each input category. . . . . . . . . . . . . . . . . . . . . . 134

48 DoG encoding of an ETH-80 image of the ‘cup’ input category.
Left: the original input image, transformed into grayscale. Right:
the ON- and OFF-center filtered images. Colorbar represents pixel
intensity value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

49 Learning accuracy of the proposed model throughout 2 learning
epochs of the DTA-B algorithm on the ETH-80 dataset. . . . . . . 138

50 Confusion matrix of a randomly chosen trial of the ETH-80 dataset.
The colour bar shows colour mappings for the generalisation accu-
racy of each input category. . . . . . . . . . . . . . . . . . . . . . 139

51 Effect of various parameters on the learning performance of the
CSNN model on the MNIST, EMNIST, and ETH-80 classification
tasks. Each data point represents five independent trials. . . . . . 142

52 Effect of over-training in convolutional learning with DTA-C. Top
row shows the spike activation on an MNIST image in the con-
volutional layer, bottom row shows the weight distribution of the
convolutional layer. A: An optimally-trained convolutional layer,
trained with 30 images. B: an over-trained convolutional layer,
trained with 500 images. . . . . . . . . . . . . . . . . . . . . . . . 143

53 Generalisation accuracies of CSNN model with 1 convolutional layer
(solid lines) and 2 convolutional layers (dashed lines) on the MNIST,
EMNIST, and ETH-80 datasets . . . . . . . . . . . . . . . . . . . 145

xix



Chapter 1

Introduction

1.1 Preface

The field of Machine Learning applies learning algorithms to data in order to
automatically build computational models. In supervised ML, the purpose of the
model is to describe the relationship between input and output data, such that
the resulting model approximates the underlying data-generating function. In
unsupervised ML, the model aims to extract and store some information which
is hidden in the data, for example to separate the data points into a number of
clusters based on their statistical similarities. Successful ML models are those
which are able to describe the training data accurately, and also to maintain high
performance when applied to new, previously unseen data (to generalise).

One of the most prolific areas of modern ML is the study of Artificial Neural
Networks, which takes inspiration from computational neuroscience in order to
design models of artificial neurons. An artificial neuron is a fundamental compu-
tational node which typically performs a simple computation, for example a linear
combination of its inputs expressed as a dot product. Neurons are then connected
to each other to form larger and larger models, which allows the network as a
whole to perform complicated and high-dimensional computations.

The vast majority of modern neural network models fall into the category
of Analogue Neural Networks (ANNs), which are mainly made up of neurons
which both receive and generate continuous values Maass (1997); Bengio et al.
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CHAPTER 1. INTRODUCTION 2

(2009). ANN models have been applied to a variety of difficult problem areas,
for example Computer Vision (Krizhevsky, Sutskever and Hinton 2012; Simonyan
and Zisserman 2014), Natural Language Processing (Mikolov et al. 2013; Vaswani
et al. 2017; Ghojogh and Ghodsi 2020), Medical Diagnosis (Elveren and Yumuşak
2011; Catalogna et al. 2012; Barwad, Dey and Susheilia 2012), and many others.
Large networks with millions of parameters are now routinely trained, and it
is a growing challenge to keep up with the rising cost of energy consumption
required to simulate, train, and deploy neural networks (Li et al. 2016; Alyamkin
et al. 2018). ANNs have become so commonly used, that the name is often
used interchangeably with Artificial Neural Networks. Here, we will use ANNs to
denote specifically networks of continuously-activated neurons.

Spiking Neural Networks (SNNs) are a more recent type of architecture which
offer a promising alternative to ANNs. Utilising spiking neuron models as the
primary computational node, SNNs closely imitate the processing and dynamics
of biological neurons. Unlike the analogue artificial neurons, spiking neuron mod-
els communicate information via discrete, all-or-nothing events called spikes. It
has been theorised that a single simplified spiking neuron model exhibits greater
computational power, information density, and inference speed when compared to
its analogue counterpart (Maass 1997; Borst and Theunissen 1999; Thorpe, Fize
and Marlot 1996). Furthermore, recent developments in spiking neural simulators
and ultra energy-efficient neuromorphic emulators have promised to leverage the
event-driven computation of SNNs for novel neural network implementations (Roy,
Jaiswal and Panda 2019; DeBole et al. 2019; Orchard et al. 2021). These charac-
teristics suggest that SNNs may offer potential benefits for building smaller and
faster neural networks while maintaining high performance and precision (Thorpe,
Delorme and Van Rullen 2001; Young et al. 2019).

Despite their relative prevalence in recent studies, there are several factors
which are currently limiting the wide-spread adoption of SNNs in real-world appli-
cations. One major challenge is the inefficiencies of SNN simulation on traditional
von Neumann hardware platforms. Computations in SNNs are carried out in an
online manner, where the training data is processed sequentially and the state
of each neuron evolves asynchronously over time. While this means that SNNs
are amenable to highly parallel simulation strategies, the hardware architecture



CHAPTER 1. INTRODUCTION 3

must support fine-grained granularity while taking into account the communica-
tion overhead (Davies et al. 2018). Executing these temporal computations on
CPUs and GPUs can be much more difficult when compared to the offline linear
algebra approaches employed by traditional ANNs. Additionally, most SNNs are
expressed as a system of Ordinary Differential Equations (ODEs) with no analyt-
ical solutions, and thus require numerical approximations (Gerstner et al. 2014;
Valadez-God́ınez, Sossa and Santiago-Montero 2020). Efforts to overcome these
limitations constitute an active and ongoing field of SNN research (Ros et al.
2006; Brette et al. 2007; Naveros et al. 2014, 2017; Valadez-God́ınez, Sossa and
Santiago-Montero 2020; Qu et al. 2020).

Another significant challenge for modern SNN applications is the lack of a
general-purpose learning algorithm (Grüning and Bohte 2014). For modern ANNs,
gradient-descent learning via the Back-Propagation Through Time (BPTT) algo-
rithm is a powerful procedure which is both problem-agnostic and model-agnostic
(Linnainmaa 1976; Rumelhart, Hinton and Williams 1986; Bengio et al. 2009;
Lillicrap and Santoro 2019). One faces a number of difficulties when applying
gradient-descent for SNNs: firstly, the discrete spike activation found in spike-
based models is generally not differentiable (Li et al. 2021). To circumvent this
problem, a number of surrogate approximations of the spike derivative have been
proposed, with varying degrees of complexity (Bohte, Kok and La Poutré 2000;
Zenke and Ganguli 2018; Shrestha and Orchard 2018; Lee et al. 2020). Secondly,
BPTT incorporates a number of mechanisms which prove particularly challenging
for neuromorphic hardware implementations. One example is that neuromorphic
chips have limited resolution and no access to external memory, which is prob-
lematic for bidirectional weight transport during the backward propagation of
gradients (Bengio et al. 2015; Christensen et al. 2022). Because of these well-
known difficulties, traditional BPTT is famously incompatible with the design of
current neuromorphic hardware, and on-chip gradient-descent remains a difficult
challenge (Kwon et al. 2020; Renner et al. 2021).
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1.2 Thesis Contributions

The contributions of this thesis are three novel learning algorithms for training
SNNs. The algorithms are titled Discrete Threshold Assumption (DTA). The
details of each algorithm are as follows:

1. The DTA algorithm is first introduced in order to solve supervised spike-
based learning problems where the input and target output spike sequences
are both specified by the learning problem. The algorithm trains spiking
neurons to reproduce the target output sequence when the neuron is pre-
sented with the corresponding input.

2. The DTA-B algorithm is then introduced in order to solve supervised learn-
ing problems where only the input sequences and a target spike count are
specified by the learning problem. It is up to the algorithm to determine
appropriate timings for the learned output spikes, in addition to the problem
of updating the synaptic weights in order to generate said spikes.

3. The DTA-C algorithm is then introduced in order to solve unsupervised
feature extraction tasks for image data. The algorithm must train a number
of convolutional maps to recognise salient features in the training images.

All three learning algorithms proposed here achieve their learning objectives
through a novel learning mechanism, which combines the computational charac-
teristics of two different families of training methods in the literature: iterative
methods based on the classical Widrow-Hoff learning rule (Ponulak and Kasiński
2010; Yu et al. 2013; Mohemmed et al. 2012; Gardner and Grüning 2016) and
single-batch neural network optimisation methods (Tapson and van Schaik 2013;
Tapson et al. 2013; Lee, Kukreja and Thakor 2016; Boucher-Routhier, Zhang and
Thivierge 2021). Our algorithms implement an iterative learning regime wherein
the SNNs incrementally improve over a number of update steps, however each up-
date is computed by a Constraint Programming solver step. In exchange for higher
computational requirements during each learning step, the number of learning it-
erations is greatly reduced in our method, and we observe an overall reduction in
runtime when compared to standard iterative learning approaches.



CHAPTER 1. INTRODUCTION 5

Through this approach, we demonstrate that the solution weights of SNNs
in a variety of supervised and unsupervised learning tasks can be solved to a
reasonable performance while only requiring a relatively small number of train-
ing data presentations. This has implications on the efficiency of learning on
traditional hardware platforms, since the computational requirements of neural
network simulation are greatly reduced when compared to traditional iterative
learning approaches which typically require many repeated presentations of the
data to converge. On the ubiquitous MNIST classification task, our approach
demonstrates the capability to achieve good convergence and performance in un-
der one complete presentation of the dataset, which is a marked advantage over
single-batch optimisation methods where exactly one dataset presentation is used
for learning.

Traditional single-batch neural network optimisation methods, such as Ex-
treme Learning Machines (Eliasmith and Anderson 2003; Huang, Zhu and Siew
2006), compute solution weights for the whole training set in a single step and are
fundamentally limited by memory resources. While other single-batch incremen-
tal optimisation methods do exist in the literature (Tapson and van Schaik 2013;
Liang et al. 2006; Widrow et al. 2013), these methods were primarily designed
for ANNs or rate-based SNNs. In comparison, our learning algorithms are de-
signed to incrementally solve three different SNN learning problems utilising full
temporal coding. Additionally, such methods also typically utilise a randomised
hidden layer of tens of thousands neurons, which is difficult to efficiently simulate
on traditional architectures. We show how this hidden layer can be replaced with
a much smaller spiking convolutional layer trained with a very small number of
data samples, thus reducing the overall computational burden.

In summary, our novel approach aims to demonstrate how learning in SNNs
can be carried out more efficiently by treating the weight adjustment problem as
a constraint satisfaction problem. This improved efficiency is shown through re-
duced overall runtime, training data requirements, and smaller network size, all of
which are important considerations for training spike-based models on traditional
hardware architectures.
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1.3 Thesis Outline

The rest of the thesis is organised as follows:

• In Chapter 2, an overview of the relevant background information is pro-
vided. Here, the computational dynamics and information coding of biolog-
ical neurons are first examined, and the discussion then extends to analogue
and spiking neurons. The construction of neural networks from individual
neurons is also discussed, with illustrations of fully-connected and convolu-
tional networks. Then, a review of the relevant supervised and unsupervised
learning methods for SNNs are presented.

• Chapter 3 proposes the DTA algorithm for learning precisely timed spikes.
First, a brief summary of the literature surrounding Constraint Satisfac-
tion Problems (CSPs) is given, which is of fundamental importance to our
method. Then, the process of converting a given problem to a set of con-
straints for CSP solving is introduced, and the design of the algorithm is
discussed in detail. We then compare the memory capacity, learning accu-
racy, and convergence speed of the DTA algorithm with that of three other
learning methods in the literature, using extensive numerical simulations
and synthetic training data. The noise robustness, runtime, and effects of
various hyper-parameters are also examined.

• Chapter 4 proposes the DTA-B algorithm for supervised learning tasks in-
volving a target spike-count. The algorithm is compared against two other
methods in the literature, using standard data classification benchmark
problems. A hybrid SNN architecture is also used here to benchmark the
algorithm on the MNIST dataset (LeCun and Cortes 2010). Additionally,
we measure the maximal capacity of the algorithm to learn a large number
of input classes with a single spiking neuron.

• Chapter 5 proposes the DTA-C algorithm for unsupervised feature extrac-
tion in SNNs containing convolutional layers. The proposed network archi-
tecture and algorithm are described in detail, and the approach is bench-
marked on three standard image classification problems from the litera-
ture. The generalisation performances and effects of all hyper-parameters
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are closely analysed, in order to highlight the strengths and weaknesses of
the approach.

• Chapter 6 presents a discussion of the proposed constrained optimisation
approach, providing an outline of the key contributions, current limitations,
and possible future research directions pertaining to the above algorithms.



Chapter 2

Review of Spiking Neural
Networks

This chapter provides a brief summary of the relevant biological background re-
garding neural network models, as well as the concepts and theories from Com-
putational Neuroscience and Machine Learning that are used or expanded on in
this thesis.

Section 2.1 introduces the computational dynamics and principles of biological
neurons, and presents a discussion of how information is encoded in biological ner-
vous systems. Section 2.2 provides an overview of traditional ANNs, starting with
the definition of threshold-activated and continuous-activated neuron models. The
discussion continues on to a review of neural network architectures, describing the
common methods for building a network-level model. Section 2.3 presents a re-
view of SNNs: firstly, three neuron models are introduced: the Integrate-and-Fire
(IF) model, the Leaky Integrate-and-Fire (LIF) model, and the Spike Response
Model (SRM). Secondly, an introduction is given to cover existing SNN learn-
ing methods in the literature which are relevant to the design of the algorithms
proposed in the later research chapters.

8



CHAPTER 2. REVIEW OF SPIKING NEURAL NETWORKS 9

2.1 Biological Background

The study of neural networks draws much inspiration from mathematical models
developed in the field of computational neuroscience. This section presents a brief
overview of the construction and neural dynamics of biological neurons, as well as
how information can be represented in biological neural systems.

2.1.1 The Biological Neuron

Neurons are generally regarded as the main computational cells of the brain, whose
computation is carried out using electrical and biochemical signals (Trappenberg
2009). There are several different types of neurons, however their basic function
is simple: a neuron receives input signals from other cells, and if the inputs excite
the cell enough, then the neuron emits an output action potential (commonly
called a spike) which is propagated to other neurons to carry the signal forward.
Spikes are broadly considered to be the fundamental currency of neural informa-
tion processing and communication, because they can travel over large distances
through the nervous system (Dayan and Abbott 2005). Commonly, the neuron
sending spikes is called a presynaptic neuron, and the neuron receiving spikes is
called a postsynaptic neuron.

Figure 1: Model of a biological neuron, containing the soma, dendrites, and axon.
Adapted from Figure 2.1 in Trappenberg (2009).



CHAPTER 2. REVIEW OF SPIKING NEURAL NETWORKS 10

Cell Structure

The basic structure of a neuron can be generally divided into three components:
the dendrites, a soma, and an axon. A stereotypical illustration of a neuron is
given in Figure 1. Dendrites are branching tree-like structures which receive input
signals from presynaptic cells. The soma is the main cell body, which contains the
nucleus and other internal components which maintain the function of the cell.
The axon is a nerve bundle serving as the output structure of the neuron. When
a spike is generated at the soma, it travels down the entire length of the axon.

An important computational property of the neuron is called the membrane
potential, which is the difference in electrical potential between the inside and
outside of the cell. Input signals into a cell induce a change in the membrane
potential of the cell, called a postsynaptic potential (PSP). The primary commu-
nication interfaces between the presynaptic axon and postsynaptic dendrites are
structures called synapses. There are two types of synapses: a chemical synapse
converts an incoming action potential into a PSP by the release of neurotrans-
mitters in the presynaptic cell which are absorbed by the postsynaptic cell. An
electrical synapse performs passive transmission of electrical voltage through in-
tracellular gap junctions, which does not require an input action potential but
does still induce a PSP (Debanne and Russier 2017).

Spike Generation

The ability of a neuron to vary its membrane potential by integrating PSPs is
crucial to its computation. The membrane potential maintains a negative charge
at rest, due to a greater concentration of negative ions within the cell. This
equilibrium potential is maintained by a combination of active and passive ion
channels on the membrane of the cell. Once the neuron is excited by a PSP,
the membrane potential is depolarized, so that its charge becomes more positive.
If the potential reaches a certain ‘firing threshold’, the process of generating a
postsynaptic spike is triggered.

A spike is generated in three distinct sequential steps: firstly, voltage-activated
ion channels become active and further depolarize the cell, which brings the mem-
brane potential to a positive charge. Secondly, a period of rapid hyper-polarization
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brings the membrane potential to be more negative than the resting voltage. While
the membrane potential is hyper-polarized, it is said to be in a refractory period
where it is almost impossible to generate another spike. Finally, the membrane
potential gradually returns to the resting voltage state.

Both membrane potential integration and spike generation in biological neu-
rons are temporal processes (an example is illustrated in Figure 2). As such, the
PSP integration, depolarization, hyper-polarization, and the refractory period do
not occur instantly, but over some periods of time. It is also important to note
that spike generation has been observed to be noisy: the same input may not
elicit the same spike train across different trials, and a neuron receiving no input
may spontaneously spike (Gerstner et al. 2014).

Figure 2: Generation of an action potential in a biological neuron. Here, the
resting membrane potential of the neuron is zero.

Synaptic Strength

An important characteristic of neuronal communication is the strength of the
synaptic connections between a pre- and post-synaptic neuron. The synaptic
strength refers to the average amount of PSP that is produced by a presynap-
tic action potential, which can be regulated by a number of factors. For chemical
synapses, this includes the number of dendritic connections between the presynap-
tic and postsynaptic cell, the number of synaptic sites that connect each axonal



CHAPTER 2. REVIEW OF SPIKING NEURAL NETWORKS 12

and dendritic terminal, and also the density of neurotransmitter receptors on each
synapse. In electrical synapses, the connection strength is dependent on the con-
ductance of the gap junction, as well as the resistance of the cell membrane (Welzel
and Schuster 2019).

The modification of synaptic connection strengths between neurons is called
synaptic plasticity. Activity-dependent synaptic plasticity is believed to under-
lie experience-induced learning, behaviour modification, and memory formation
in the brain (Citri and Malenka 2008; Ho, Lee and Martin 2011; Martin et al.
2000). Synaptic connections can be enhanced or depressed by plasticity, with such
changes occurring over milliseconds to minutes (short-term plasticity), or hours
to days (long-term plasticity) (Dan and Poo 2004; Citri and Malenka 2008). Ex-
tensive experimental evidences have been presented to support the existence of a
wide variety of synaptic plasticity mechanisms, and it is known that most mam-
malian excitatory synapses simultaneously demonstrate multiple different forms
of plasticity (Katz and Miledi 1968; Bliss and Lømo 1973; Rosahl et al. 1993;
Zucker, Regehr et al. 2002; Whitlock et al. 2006).

2.1.2 Neural Information Coding

While it is generally accepted that the principal function of neurons is to process
and communicate information, the question of how this information is represented
in the brain (the ‘neural code’) remains a challenging topic without clear consen-
sus. The majority of computational neural models assume that action potentials
are stereotyped, such that individual spikes do not vary significantly in shape or
amplitude (Kandel et al. 2000; Dayan and Abbott 2005). Putting aside the cor-
rectness of this assumption (for alternative opinions see de Polavieja et al. (2005);
Debanne, Bialowas and Rama (2013); Maley (2018); Zbili and Debanne (2019)),
the main consequence is that there must be some other property of action poten-
tials which is fundamental to information representation, such as the number of
spike events or their timings. As a direct result, many spiking neuron models do
not model the shape of spike events, but instead characterize them by the spike
timing only.

Each neuron can be considered an information channel with limited capacity,
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Figure 3: Neural coding schemes, categorised as either rate-coding or temporal-
coding. Figure originally published in Auge et al. (2021). Abbreviated cod-
ing schemes are: Threshold-based Representation (TBR), Step-Forward (SF),
Moving-Window (MW), Sparse Distributed Representation (SDR), Hough Spiker
Algorithm (HSA), Ben’s Spiker Algorithm (BSA), Rank Order Coding (ROC),
Time-to-first Spike (TTFS). SDR, ROC, and TTFS coding schemes are discussed
in further detail later in this chapter, and TTFS coding is used extensively in later
research chapters.
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and the relevant issues to neural coding include how much input information is en-
coded by a neuron (MacKay and McCulloch 1952; Panzeri et al. 1999; Zeldenrust
et al. 2017), and also what information is encoded (Chichilnisky 2001; Paninski
2004; Schwartz et al. 2006). Research have proposed a variety of neural coding
schemes, which can be broadly separated into two basic categories: rate-coding
and temporal-coding (Figure 3).

Rate-Coding

In a rate coding scheme, the firing rate of the neuron is assumed to contain all
of the information. In this view, the exact neuron spike timings are of little
relevance. The idea of rate coding dates back to Adrian (1926), which shows a
correlation between stimulus strength and the firing rate measured in the frog
muscle. Similarly, Henry, Dreher and Bishop (1974) demonstrates correlations
between the firing rate of cells in the cat visual cortex and the axis, orientation, and
direction of moving lights. In London et al. (2010), in vivo measurements of the
rat cortex suggests that there is substantial intrinsic noise in the spike generation
process, which indicates that an average firing rate can represent information more
reliably than the timing of spikes.

Rate coding schemes can be distinguished into several sub-categories:

• Count rate is the most common rate coding scheme, where the firing rate
is defined simply as the number of spike events during a time unit of mea-
surement T . Here, the timing of individual spikes bears no significance to
information representation, as the same firing rate can be observed regard-
less of whether the spikes are evenly spread out from 0 → T , or are more
closely clustered in time.

• Density rate measures the firing rate of a neuron over several independent
simulations of the same input. All measurements are then summed and
averaged over the number of repetitions. While this method is useful for
analysis of neural activity, it is not a biologically plausible neural encod-
ing approach. Consider the example given by Gerstner and Kistler (2002)
of a frog attempting to catch a fly: the frog only has access to a single
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computation of the fly’s trajectory, instead of an average over multiple such
instances.

• Population rate encodes information in the average firing rate of a population
of (typically identical) neurons. Due to the noisy and probabilistic nature
of spike generation, a neuron integrating rate-coded inputs require a longer
temporal average duration T to achieve a more accurate evaluation. By
averaging the output spike rate over many redundant neurons receiving the
same input, population rate coding tackles the uncertainty introduced from
using short integration windows.

Temporal Coding

In a temporal coding scheme, it is assumed that the timing of spikes play a crucial
role in information representation (Thorpe, Delorme and Van Rullen 2001). The
idea for temporal coding was first suggested by Thorpe (1990) as a fast-processing
alternative to rate-coding. In Thorpe, Fize and Marlot (1996), experimental ev-
idence suggested that the speed of the human visual system is too fast to be
explained by the temporal averaging process in rate codes. A similar result was
demonstrated by Johansson and Birznieks (2004) for primary sensory neurons on
human fingertips, and it was also shown that the relative first spike timings are
information-dense and fast enough to explain their experimental data. Addition-
ally, it has been shown that for fast-fluctuating stimulus, temporal coding can be
reliable and highly precise (Mainen and Sejnowski 1995).

Temporal-coding and rate-coding are inherently related: consider the example
of an instantaneous rate code, which describes a spike train as a rapidly changing
firing rate. A classical method to evaluate the instantaneous rate is to perform
a low-pass filter over the output spike train using a smoothing function: if the
spikes are close together, a larger instantaneous rate will be measured (French
and Holden 1971; Pauluis and Baker 2000). In this approach, information is
still described in terms of the spike rate, however the temporal density of the
spike timings matter. As such, temporal codes and rate codes are not mutually
exclusive, and temporal coding schemes simply consider that the spike timing
carries additional information which is not captured by the average firing rate.
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Compared to rate coding, temporal coding schemes are broader in definitions,
ranging from codes which rely on only the first spike produced by a population
of neurons, or the precise timings of individual events in a spike train. Several
differentiations in temporal coding can be made as follows:

• Time-to-first-spike (TTFS) encodes the strength of a stimulus as the differ-
ence between the presynaptic signal onset time and the first postsynaptic
spike time. Typically, a larger stimulus will result in an earlier spike time.
This encoding scheme has been demonstrated in the salamander visual sys-
tem (Gollisch and Meister 2008). In an idealised neural network setting,
each encoding neuron is limited to a single spike per stimulus, and the en-
coding is realised by the linear relationship t = T − T × x where T is the
encoding duration, x is some scalar-valued input normalised between 0 and
1, and t is the encoded spike time. Due to this linear implementation, TTFS
encoding is also commonly referred to as delay encoding or latency encoding.

• Rank order coding (ROC) encodes information in the order with which mul-
tiple encoding neurons elicit their first spike. Unlike TTFS, a ROC code
does not consider the precise timing of the spikes, and can be thought of
as a discrete normalisation filter (Auge et al. 2021). As a result, certain
information is lost when using ROC coding, such as the precise distances
between each pair of stimulus. Another consideration is whether to allow
two neurons to have the same rank (Galluppi and Furber 2011).

• Precisely timed spikes encodes an input stimulus using the exact timings of
all spikes generated by a neuron. This coding scheme has also been referred
to as a fully temporal code (Grüning and Bohte 2014). The fully temporal
code is a generalisation of TTFS and ROC coding, which can encode a very
large number of unique spatio-temporal patterns of stimuli. Theoretically,
it has been shown that a code containing multiple spikes can increase the
diversity, richness, and capacity of information representation in temporal
coding schemes (Borst and Theunissen 1999; Ponulak and Kasiński 2010).
However, the added complexity of encoding with multiple spikes comes with
corresponding challenges, and there is yet no general consensus to how fully
temporal codes should be used in artificial neural networks.
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• Population-based temporal coding schemes come from a group of theories
which consider the temporal coordination of spikes across populations of
neurons. An early example is Polychronous Groups, which is a special case
of fully temporal coding where multiple groups of neurons elicit the same
exact spike train synchronised in time (Izhikevich 2006). Another example
are Sparse Distributed Representation coding, where information is encoded
by a relatively small group of neurons at any given time (Olshausen and Field
2004).

Rate and temporal coding schemes provide different benefits and challenges.
While temporal coding can explain the behaviour of fast-reacting neurons, rate-
coding is highly robust against fluctuations and noise. It is expected that further
explorations into neural coding techniques will assist future developments of arti-
ficial neural models.

2.2 Analogue Neural Networks

2.2.1 A Brief History

The history of abstract mathematical neuron models, and networks of such neu-
rons, dates back to the McCulloch & Pitts neuron model (McCulloch and Pitts
1943). Years later, Rosenblatt (1958) proposed the Perceptron learning algorithm
in order to modify the weights of a McCulloch & Pitts neuron to compute linear
functions. These works were instrumental to the later studies of the field of Neural
Networks.

Generally, computational models of neurons used for building ML applications
will consist of a number of input channels (a mathematical analogue of dendrites),
an internal state variable (membrane potential), and an output channel (axon).
Additionally, each input channel is associated with a weight variable, which rep-
resents the synaptic strength. The basic construction of a McCulloch & Pitts
neuron, and all other neuron models discussed in this chapter, will follow the
same high-level structure given above.

Formally, the computation of a McCulloch & Pitts neuron can be written as:
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Figure 4: Model of a McCulloch & Pitts neuron. Inputs xi arriving to channel i are
weighted by wi and summed, then thresholded to generate a binary output. The
thresholding operation can be interpreted as applying a Heaviside step function
as the activation function.

y = Θ
(

N∑
i=1

wixi − b

)
(1)

Here, the output y of the neuron when given N inputs is computed in two
stages. Firstly, the input arriving to the i-th input channel xi is multiplied by
channel weights wi, and summed with all the other weighted inputs. This weighted
sum can be thought of as the internal state of the neuron. Secondly, the neuron
state is passed to an activation function, in order to generate the output. In
the case of the McCulloch & Pitts neuron, this activation takes the form of the
Heaviside step function Θ(x):

Θ(x) =

1, if x ≥ 0

0, otherwise

As such, the McCulloch & Pitts neuron is a digital computational node which
produces a binary output. The bias term b is optionally added to the internal
state, which has the effect of adjusting the activation threshold of the neuron.

The geometric interpretation of this digital neuron can be seen when Equation
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1 is written in vector form:

y = Θ(x ·w) (2)

Here, x denotes the vector of inputs arriving to each channel, w denotes the
vector of weights, and the · operator denotes the vector dot product. Under this
interpretation, w defines a linear decision hyperplane in the N -dimensional input
space. This splits the space into two, and thus an input vector x can be classified
into either one of two possible classes, depending on which side of the hyperplane
it is in. Note that here b is folded into w as an additional weight w0, which has
the effect of moving the hyperplane away from the origin by adding a constant
value to the internal state of the neuron.

While a McCulloch & Pitts neuron is able to classify a set of linearly separa-
ble input vectors, it is unable to solve problems which are linearly non-separable.
A famous example of this limitation is the Boolean Exclusive-Or (XOR) prob-
lem, which cannot be solved by a single Perceptron or a single-layer network of
such neurons. However, multilayer feed-forward networks of Perceptrons have
been shown to be capable of generating any Boolean functions, subject to certain
constraints in the network size (Bishop et al. 1995).

2.2.2 Continuously-Activated Neuron Model

Unlike the McCulloch & Pitts neuron or Perceptron networks, modern ANNs
typically compute highly non-linear functions. They achieve this by utilising
continously-activated neuron models, which we refer to simply as analogue neurons.
The basic computation of an analogue neuron is fundamentally similar to that of
a McCulloch & Pitts neuron: first the inputs are weighted and summed, then
the result is passed to an activation function to generate the output. However,
the distinguishing factor is that analogue neurons utilise a continuous activation
function, instead of a step function.

One of the earlier analogue models used in the literature is the sigmoidal
neuron, in which the activation function takes the form of a logistic sigmoid:
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σ(x) = 1
1 + e−x

(3)

The use of the continuous-valued activation function allows the sigmoidal neu-
ron to compute function mappings between continuous input and output domains.
Specifically, σ maps from the interval (−∞,∞) to (0, 1). It has been shown that,
under very mild conditions, networks of sigmoidal neurons containing a single
hidden layer can uniformly approximate any continuous functions (Cybenko 1992;
Hornik 1991; Llanas, Lantarón and Sáinz 2008; Ma et al. 2020). This universal
approximation property is one of the fundamental results driving modern ANN
research.

However, interpreting the output of a sigmoidal neuron is not as straightfor-
ward compared to the Perceptron, with which the discrete output can be directly
inferred as the predicted class label. Assuming a two-class scenario with a single
neuron, the direct interpretation approach is to consider outputs less than 0.5 to
represent one class prediction, and outputs at least 0.5 to represent the other.
The more common approach is to interpret the outputs of multiple neurons as
the probabilities of class membership. Each neuron is assigned one input class,
and a larger neuron output indicates a higher probability of the input belonging
to the designated class. To this end, the network is usually arranged such that
its outputs approximate a Bayesian posterior distribution over the data (Bishop
et al. 1995).

Formally, the state variable of a sigmoidal neuron is a weighted sum of its
N input channels, with an added ‘bias’ term denoted as b. The state variable is
then used in an activation function σ, in order to generate a real-valued output
between 0 and 1:

y = σ

(
N∑

i=1
wixi + b

)
(4)

Here, the weight vector w describes the steepness of the decision surface (if a
direct interpretation is used for inference), and the bias b defines the position of
the function.
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Figure 5: Model of a sigmoidal neuron. Inputs xi are summed, then the sigmoidal
function σ is applied as the transfer function, to generate a continuous output
between 0 and 1.

2.2.3 Neural Network Design

Neurons are connected to each other to form a neural network, which enables
the modelling of more complicated functions than achievable by a single neuron.
Figure 6 illustrates some example decision boundaries generated by networks of
Perceptrons, which becomes more complex as more neurons are added to the
network (Bishop et al. 1995).

A typical modern ANN contains a number of layers. Each layer of a network
contains neurons, which are arranged into some specified structure, for example a
one-, two-, or three-dimensional grid. With some exceptions, most networks con-
tain only two layers which are visible to the outside environment: the input layer
which receives the input stimulus, and the output layer from which the compu-
tation of the network can be observed. Optionally, the network may also include
a number of hidden layers between the input and output layers. The purpose of
these hidden layers is to transform the input signal into some intermediate repre-
sentations, through the weighted linear combination of inputs and the non-linear
activation function.

Most authors will refer to the dimensionality of an ANN by the height and
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Figure 6: Decision boundaries generated by networks containing Perceptrons,
for continuous two-dimensional inputs. A: A one-layer network with a single
output neuron (bottom) generates a linear decision boundary (top). B: A two-
layer network containing one hidden layer, generating a convex decision boundary.
C: a three-layer network containing two hidden layers, generating non-convex and
disjoint decision boundaries (Bishop et al. 1995).

the width. The height of a network denotes the number of layers in the model,
which by convention excludes the input layer which only receives the input and
does not perform any computation. The width of a model loosely refers to size of
each layer: a network with a larger number of neurons in each layer is said to be
wider.

Given the universal approximation property of neural networks with a single
hidden layer, one may in principle expect to easily represent more complex func-
tions by simply adding more hidden neurons to the architecture (Cybenko 1992;
Hornik 1991). However, there are several practical issues with using shallow and
wide neural networks, when compared to deep and narrow neural networks. One
of the theoretical arguments is that some classes of functions cannot be approxi-
mated by shallow networks, or cannot do so without the network width growing
exponentially (Bengio et al. 2009). Well-known examples of such problems in-
clude:

• stabilisation of non-linear control systems: achievable with two hidden layers
but not one (Sontag 1991).
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• inverse problems with discontinuous domains: achievable with two hidden
layers but not one (Da Silva et al. 2017).

• radial functions on Rd: achievable with one hidden layer but requires width
which is exponential in d (Eldan and Shamir 2016).

An argument for using deeper architectures is the ability for networks with
many hidden layers to represent the input signal at many levels of abstractions.
Consider for example the task of interpreting an input image in Figure 7. In the
first hidden layer, the image may be transformed into a collection of low-level
features, such as information about the location of edges and corners. Neurons
in the second layer could then combine the features into more complex shapes,
and so on. In this manner, high-level abstractions in the data, such as MAN
or SITTING, can be systematically and hierarchically constructed by combining
lower-level features (Bengio et al. 2009). However, one of the main problems
with deep networks is that they can be much more difficult to train. The most
common method to train deep networks, gradient-descent with back-propagation,
can encounter the problems of exploding, vanishing, or unstable gradient which
means the earlier layers of the network improve very slowly compared to the
subsequent layers (Nielsen 2015).

Another method to design larger and more complex neural networks is to use
parallel architectures. Unlike a conventional network, where information flows
in one central path, in a parallel neural network information may travel through
several different paths simultaneously. There are mainly two possible methods to
implement data-path parallelism in neural networks (Figure 8):

• Implement multiple identical neural networks, each receiving a different sub-
set of the whole set of input signals. Some of the networks may become
specialists for specific input features or input regions. The outputs of all
networks must be combined in some subsequent layers (Littmann, Meyering
and Ritter 1992; Yang and Peng 2017; Luo et al. 2021).

• Implement multiple non-identical neural networks, each receiving the full
input signal. The hyper-parameter differences between the networks deter-
mine the desired computation for each information path. An example is a
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Figure 7: Different levels of representation of an input image (Bengio et al. 2009).
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convolutional network with multiple parallel convolutional or pooling layers
containing receptive fields of different sizes, which will detect input features
of different scales (Wu et al. 2019).

Figure 8: Parallel network architectures. A: A parallel network consisting of
identical sub-networks which receives different parts of the input vector. Figure
adapted from (Littmann, Meyering and Ritter 1992). B: A parallel network con-
sisting of non-identical sub-networks, each receiving the same input vector.

2.2.4 Fully-Connected Feed-Forward Neural Networks

One of the most commonly used ANN architectures is a fully-connected neural
network, which has become the workhorse of modern ML. One of the main ad-
vantages of a fully-connected network is that it is structure agnostic (Ramsundar
and Zadeh 2018). This means that the fully-connected architecture makes no
assumptions about the structure of the input, and so fully-connected ANNs are
often the earliest models built, regardless of the application area.

A fully-connected ANN is characterised by the use of fully-connected layers.
Here, each neuron in a layer propagates its output values to every neuron in
the next layer. An example of a fully-connected ANN is illustrated in Figure 9.
While networks of this type are very flexible, the full connectivity between each
layer results in a very large number of network parameters (weights and biases),
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Figure 9: A fully-connected neural network with 4 layers, including the input
layer.

which in turn requires significant computational effort in order to train. This is a
significant drawback, and fully-connected neural networks are often outperformed
by other network architectures which are specialised to exploit the structure of a
given problem.

2.2.5 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have become the standard for ML prob-
lems involving pattern recognition. This is because CNNs perform a convolution
operation in its hidden layers, which greatly reduces the number of trainable
weights and biases when compared to a fully-connected network. In turn, this
decreases the computational effort required to train CNNs, which allows more
complex tasks and datasets to be solved (Bengio et al. 2009).

Historically, the convolution operation is widely used in the fields of mathe-
matics and signal processing (Domı́nguez 2015). The basic idea is to filter a signal
by applying a kernel function to it, and output a signal which is shifted by the
kernel. Formally, the convolution operation ∗ can be written as the integral of the
product of the original signal f(t) and the kernel function g(t):
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Figure 10: 2-dimensional convolution operation. Left column: input image, with
each pixel encoded as an integer value. Middle column: the convolutional kernel
being applied to the image. Right column: the resulting filtered convolutional
map. Figure adapted from Alzubaidi et al. (2021).
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(g ∗ f)(t) =
∫ ∞

−∞
g(τ)f(t− τ)dτ (5)

Figure 11: An example Convolutional Neural Network architecture.

The defining characteristic of CNNs is the use of convolutional layers. A con-
volutional layer contains a number of convolutional maps, wherein each map is the
result generated by convolving a unique filter with the input image. Here, convolu-
tion is typically performed spatially in two dimensions: vertically and horizontally
across an image. Standard examples of convolutions in image processing include
the application of Ridge kernel functions to perform edge detection, or Gaussian
kernels for image smoothing or blurring. An illustration of 2D convolution is rep-
resented in Figure 10, and an example convolutional layer with 8 maps can be
seen in Figure 11.

Two central properties of convolutional layers is local connectivity and weight-
sharing. Local connectivity signifies that each neuron in a convolutional layer is
only connected to a specific portion of the neurons in the previous layer. The
region of the input that a convolutional neuron is connected to is referred to as
the receptive field. In CNNs, the receptive field is always the same size as the
convolutional kernel of the current map. For example, a convolutional map with a
kernel of size 5×5 means that each neuron in this map receives inputs from a 5×5
area of the input. Weight-sharing means that every neuron in a convolutional map
shares the same input weights. Practically, one can think of the shared weights
in a convolutional map as the convolutional kernel.

Formally, the convolution of kernel g(t) over a two-dimensional image X can
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be written as:

y(i, j) =
H∑

u=0

W∑
v=0

X(i + u, j + v)g(ki − u− 1, kj − v − 1) (6)

Here, 0 < i < H and 0 < j < W denote the vertical and horizontal positions
of the image. H and W denote the height and width of the image, respectively.
ki and kj denote the vertical and horizontal positions of the filter, respectively.
Note that for some positions i + u and j + v, these indices will be outside the
domain of the image. One common approach is to assume that X(i+u, j +v) = 0
at these values, which is called padding. In addition, stride parameters si and sj

can be specified by substituting X(sii + u, sjj + v) into Equation 6, which allows
the operation to skip a number of indices when generating the output map. More
detailed tutorials for implementing convolution operations in CNNs can be found
in (Hunsberger 2018; Alzubaidi et al. 2021).

Typically, a convolutional layer of a CNN will be immediately followed by a
pooling layer. Pooling layers perform spatial sub-sampling of the convolutional
maps, which serve the function of reducing the dimensionality of the information.
They do this by combining the adjacent values in a convolutional map into a
single value, most commonly by performing a maximum or averaging operation.
Similarly to a convolution operation, a pooling operation has local connectivity,
a pooling kernel size, and a stride parameter. Formally, a max-pooling operation
can be written as:

y(i, j) =
si,sjmax

u,v=0
X(sii + u, sjj + v) (7)

It is important to note that pooling layers only perform a simple and pre-
defined mathematical operation, and so they do not have trainable parameters.
This is in contrast to convolutional layers, in which the parameters must be trained
in order for the layer to learn useful transformations such as edge or corner de-
tection.
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2.3 Spiking Neural Networks

One of the main interpretations of analogue neuron models is that their continu-
ous activation values can be viewed as an abstract representation of the average
neuronal firing rate. As such, the computation of analogue neurons fall into the
rate-coding category, and by extension feed-forward ANNs cannot easily process
information by temporal-coding. By contrast, spiking neuron models commu-
nicate only by discrete, all-or-nothing action potentials encoded in time. This
characteristic computation allows models of SNNs to receive and process infor-
mation using some form of temporal-coding. However, the best coding scheme
for any particular SNN architecture or application remains a matter of significant
debate and ongoing research within the literature Grüning and Bohte (2014); Guo
et al. (2021).

This section will review the spiking models and training algorithms in the SNN
literature which are relevant to this current thesis.

2.3.1 A Brief History of Spiking Models

While spiking neuron models have existed for many decades (Hodgkin and Huxley
1952; Nagumo, Arimoto and Yoshizawa 1962), the use of SNNs in ML applica-
tions is a relatively recent development compared to ANN research. The earliest
examples of neuronal modelling were used in the field of neuroscience to accu-
rately capture the biochemical processes and complex dynamics of spike genera-
tion (Hodgkin and Huxley 1952; Koch and Segev 1989; Sterratt et al. 2011). These
models were highly detailed, and as such they were less analytically tractable and
very expensive to simulate at scale. To date, many models of spiking neurons
have been proposed, each with varying degrees of abstraction and biological re-
alism (Figure 12). The majority of spiking models used in modern ML treat the
various structures of a biological neuron (importantly, the dendrites, soma, and
axon), as a single computational node. In general, computational spiking neuron
models aim to only capture the temporal spiking dynamics of biological neurons,
instead of the underlying biochemistry.
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Figure 12: Model complexity vs simulation efficiency for various spiking neuron
models. Figure adapted from Izhikevich (2004).

The Integrate-and-Fire model (IF) is one of the earliest spiking neuron mod-
els (Lapicque 1907). The basic computation is two-fold: firstly, at the time of
an input spike arriving to the neuron, the membrane potential correspondingly
increases or decreases. Secondly, if the membrane potential reaches a predefined
and static spiking threshold, the neuron generates an output spike. Similarly to
many modern spiking models, the IF neuron assumes that the shape of the output
spike is not important, and thus an output spike is characterised only by the time
of occurrence.

An IF neuron can be conceptualised as a capacitor C that stores charge over
time. Formally, the membrane potential is written as:

C
dV (t)

dt
= I(t) (8)

Here, V (t) denotes the membrane potential of the neuron. I(t) denotes an
input electrical current, which can be an external current. Now, we only need to
define the spiking mechanism by choosing a threshold ϑ. At some time t with
which V (t) = ϑ, the neuron generates a spike and V (t) is immediately reset to a
resting potential Vrest = 0. Some IF models may also choose to include an absolute
refractory period, wherein immediately after spiking the membrane potential is
held at Vrest, thus it is impossible to immediately spike again.

Since the membrane potential is not a perfect insulator, if there is no input
then the membrane potential should decay over time. Combining this phenomenon



CHAPTER 2. REVIEW OF SPIKING NEURAL NETWORKS 32

with the IF model yields the Leaky Integrate-and-Fire (LIF) neuron model, which
is one of the most common models for building SNNs. The LIF neuronal dynamics
are described by the following equation:

τm
dV (t)

dt
= −V (t) + RI(t) (9)

Here, R denotes the membrane resistance, and τm = RC denotes the mem-
brane time constant. The LIF model has been instrumental to discovering some of
the different properties of computation and processing in neural systems (Burkitt
2006). The model is sufficiently simple to be analytically tractable, and equally
importantly, to be used for building medium to large-scale SNNs.

2.3.2 Spike Response Neuron Model

Experiments throughout this thesis will use the Spike Response Model (SRM),
which is a generalisation of the LIF model. The SRM is best defined as a flexible
framework which allows researchers to easily modify properties of the neuronal
computation, without having to make major adjustments to the mathematical
notation. As such, the model which is used here is obtained from mapping the
LIF neuron to the SRM framework (see Gerstner et al. (2014)). One of the main
differences between the LIF neuron and this version of the SRM model is that the
SRM is formulated using kernel filters, instead of differential equations.

Typically, an input current induced by an action potential is modelled as an
exponentially decaying kernel e−t/τs , with synaptic time constant τs. Solving the
differential equation of the LIF model yields the PSP kernel λ for a single input
spike:

λ(t) = Vnorm
(
e−t/τm − e−t/τs

)
(10)

Here, τm denotes the membrane time constant. We also obtain an explicit
expression for the membrane potential:



CHAPTER 2. REVIEW OF SPIKING NEURAL NETWORKS 33

Figure 13: Model of a SRM neuron. Each sequence of input spikes xi arriving
to channel i is temporally convolved with a post-synaptic potential (PSP) kernel
λ(t) to generate a time-dependent PSP current. The sum weighted PSP currents
of all input channels yields the membrane potential V (t). If V (t) crosses a certain
threshold, an output spike is generated. Each output spike has a reset effect on
the membrane potential via the reset kernel γ(t).

V0(t) =
N∑

i=1
wi

∑
ti
j<t

λ
(
t− ti

j

)
(11)

Here, the input spike sequences arriving to a channel i is denoted as xi =
[ti

1, ti
2, ...], with the spike times indexed by integer j. In experiments, we say that

the sequences of spikes arriving to N channels form an input pattern, written as
x = [x1, x2, ..., xN ]. At a time t, if V (t) = ϑ, then an output spike is generated at
time to = t. The sequence of output spikes generated in response to x is denoted
as O = [to

1, to
2, ..., to

l ], with the spike times indexed by l. In the SRM model, reset
after each output spike is modelled by a kernel γ, as follows:

γ(t) = e
t

τm (12)

Note that the kernel functions λ(t) and γ(t) are zero for t < 0. The shapes of
these functions are illustrated in Figure 14. Combining Equations 10, 11, and 12
yields the expression for the membrane potential with reset:
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Figure 14: The shapes of the PSP kernel λ and the reset kernel γ in the neuron
model, with τm = 20.0 and τs = 5.0.

V (t) =
N∑

i=1
wi

∑
ti
j<t

λ
(
t− ti

j

)
− ϑ

∑
to
l
<t

γ(t− to
l ) (13)

2.3.3 Supervised Learning for SNNs

The goal of supervised learning using SNNs is as follows: given a set of fixed input
patterns X = [x1, x2, ...] and a set of desired outputs Y = [y1, y2, ...] both indexed
by integer p, compute a set of SNN weights with which the network output in
response to xp is as close to yp as possible, for all indices p. Additionally, if the
inputs are labelled according to a number of categories, then all inputs belonging
to the same category should share the same desired output. While this objective
is straightforward, in practice there are a number of complications.

The first difficulty is the choice of the target output yp for each input pattern
xp. As an example, we can consider one of the simplest applications of SNNs is
to reproduce spike train data obtained from biological recordings, which is often
called as the spike-mapping problem, or learning Precisely-Timed Spikes (PTS)
(Memmesheimer et al. 2014). In this scenario, the target output is defined as a
sequence of desired spike times yp = [td

1, td
2, ...], and no decisions have to be made

about the computation of the SNN. One challenge of the PTS learning approach
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is that the difference between desired and actual output spike trains must be
computed, which is a signal processing problem (Victor 2005).

In general, there are currently two main approaches to spike-based classifica-
tion, as follows:

1. In the first approach: for each input category index c, define a target out-
put sequence yc = [td

c,1, td
c,2, ...]. The training problem now becomes a spe-

cial case of the PTS learning task, wherein input patterns belonging to
the same category are assigned to the same target spike sequence. In ear-
lier works, the target spike trains yc contain only one spike time (Bohte,
Kok and La Poutré 2000; Bohte, Kok and La Poutre 2002; Schrauwen and
Van Campenhout 2004; McKennoch, Liu and Bushnell 2006), which can
result in the network being susceptible to noise (Shrestha and Song 2017).
More recent methods have defined target spike trains containing multiple
spikes, which is more noise robust but at the cost of higher learning diffi-
culty (Ponulak and Kasiński 2010; Florian 2012; Yu et al. 2013; Sporea and
Grüning 2013; Gardner and Grüning 2016). An important limitation with
this classification approach is that it is unclear how one should choose the
spike times in each target sequence. It is possible to choose the sequence
arbitrarily or randomly, however it is clear that due to the temporal nature
of SNN computation, if a desired output spike occurs before the first input
spike of any pattern, then the problem has no solutions.

2. In the second approach: for each input category index c, define a target
number of output spikes |yc|, where |x| denotes the cardinality of x. The
exact target spike timings are not specified. This approach can be referred
to as Spike Count Learning (SC). The learning problem is now not only
to replicate the target spike train, but also to find an appropriate target
sequence for each input pattern, such that the number of spikes matches |yc|.
This approach is more robust than classification with PTS, since the learning
can automatically find appropriate spike times for which there is a solution
to the problem Gütig and Sompolinsky (2006); Gutig (2016); Shrestha and
Orchard (2018). However, this requirement also adds significant difficulty
and complexity to the design of the learning algorithm.
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The remainder of this section will introduce several SNN learning algorithms
which are directly relevant to the design of novel learning algorithms in subsequent
research chapters.

Finite-Precision Learning Algorithm

The Finite-Precision (FP) learning algorithm was introduced by Memmesheimer
et al. (2014) in order to train single SRM neurons to solve PTS learning prob-
lems with multiple target output spikes. In this algorithm, successful learning is
characterised by each output spike occurring within a tolerance window around a
desired spike time, set by hyper-parameter ϵ. The authors propose that there are
three kinds of errors which may occur during learning:

1. An actual output spike time to occurs outside of a tolerance window.

2. A tolerance window does not have an output spike occurring within it.

3. A tolerance window has more than one output spikes occurring within it.

Figure 15: Illustration of the three types of errors in the FP learning algorithm.
Gray areas are tolerance windows around desired spike times. Figure adapted
from Memmesheimer et al. (2014).

In order to arrive at a solution without any of the above errors, the FP learning
algorithm performs a number of iterative updates to the synaptic weights w =
[w1, w2, ..., wN ] of the form:

∆wi = ±ηλ(terror) (14)
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Here, λ(t) is the PSP kernel (Equation 10), η denotes a positive learning rate
parameter, and terror is the time of the earliest error of the three types above. If
the error is of type (1), terror is the time of the erroneous spike. If the error is of
type (2), terror is set as the end of the tolerance window td + ϵ. If the error is of
type (3), then terror is set as the time of the extraneous spike (the second spike
within the window).

Importantly, the decision to only include the time of the first error in the weight
update means that the algorithm is not utilising any of the information about sub-
sequent erroneous spikes. The authors state that this is done to “avoid nonlinear
accumulation of errors due to interaction between output spikes” (Memmesheimer
et al. 2014). This phenomenon of interacting output spikes will henceforth be re-
ferred to as learning interference, and has been summarised as follows: “when one
of the actual output spikes is learning to be close to the desired one, weight up-
dating inevitably changes not only the firing time of the current spike but also the
firing times of the other spikes” (Xu et al. 2013). Despite the relatively simplistic
weight adjustment approach, the FP algorithm was an important learning rule
that was able to demonstrate very high learning capabilities in the PTS learning
task.

Algorithms Derived from the Widrow-Hoff Rule

There exists a family of well-known SNN supervised learning algorithms for solving
multi-spike PTS learning tasks, which share significant similarities in their synap-
tic weight update rules. Representative examples include the Remote Supervised
Method (ReSuMe) (Ponulak and Kasiński 2010), the Spike Pattern Association
Neuron (SPAN) (Florian 2012), the Precise-Spike Driven method (PSD) (Yu et al.
2013), the Instantaneous-Error (INST) rule and the Filtered-Error (FILT) rule
(Gardner and Grüning 2016). There are some differences in notation and exact
derivation method, however the majority of these learning rules can be said to be
derived from the classical Widrow-Hoff learning rule, more commonly known in
literature as the Delta rule for gradient-descent (Widrow and Lehr 1990):

∆wi = ηxi(yd − yo) (15)
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However, the Delta rule was designed for ANNs where the input xi, target out-
put yd and actual output yo are all real-valued. For application to SNN learning,
the rule must be adapted to process spikes. Here, we follow the derivation set out
by Florian (2012). Specifically, this approach models the spike trains as a sum of
Dirac delta functions of the form:

x(t) =
∑
ti
j

δ(t− ti
j) (16)

yd(t) =
∑
td
l

δ(t− td
l ) (17)

yo(t) =
∑
to
k

δ(t− to
l ) (18)

However, the products of Dirac delta functions are mathematically problematic
for gradient computations. To resolve this difficulty, several methods (Florian
2012; Yu et al. 2013) have proposed to convert the above definitions to continuous
functions using the convolution operation:

x̃(t) = κ(t) ∗ x(t) =
∑
ti
j

κ(t− ti
j) (19)

ỹd(t) = κ(t) ∗ yd(t) =
∑
td
l

κ(t− td
l ) (20)

ỹo(t) = κ(t) ∗ yo(t) =
∑
to
k

κ(t− to
k) (21)

Here, κ(t) denotes a kernel function. With these definitions, a spiking inter-
pretation of the Delta learning rule is obtained:

∆wi(t) = η
(
ỹd(t)− ỹo(t)

)
x̃(t) (22)

Computing the integral of the above equation yields the batch version of the
learning rule:
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∆wi = η

∑
td

∑
ti

κ(td − ti)−
∑
to

∑
ti

κ(to − ti)
 (23)

In essence, the SPAN, ReSuMe, PSD, INST, and FILT rules all utilise varia-
tions of the above synaptic adjustment equation. There are some minor differences
in each method, with the most important one being the choice of the kernel κ(t).
It is important to note that Equation 23 has only been proven to converge in the
scenario where there is precisely one desired output spike and one actual input
spike (Ponulak 2006), however algorithms of this type have reported successful
learning in multi-spike settings. Additionally, these algorithms are susceptible to
the problem of learning interference, as noted by (Gardner and Grüning 2016).

CONE Algorithm

The Convex-Optimised Synaptic Efficacies (CONE) algorithm is a single-batch
supervised learning method for PTS problems which represents a different ap-
proach to SNN learning (Lee, Kukreja and Thakor 2016). Unlike the previously
introduced algorithms, the CONE method is non-iterative. This means that the
solution weights are evaluated using a single computation of the training data,
instead of using iterative presentations of each sample.

The underlying idea of the CONE algorithm is to convert the PTS learning
problem into a Constrained Optimisation Problem (COP), the solution of which
can then be computed in one go by relying on established methods in the field
of numerical optimisation. Note that Memmesheimer et al. (2014) previously
proposed to map a PTS problem to a COP, which is very similar in principle.
Generally, the COP is built using two types of constraints. The first type of
constraint states that the membrane potential should be equal to the threshold at
each desired spike time. The second type of constraint states that the threshold
should be below threshold at every other time. Formally, for an input pattern x
and output spike sequence y, this is written as:
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V (td
l ) = ϑ, for all td

l ∈ y (24)

V (t) = ϑ, for all t /∈ y (25)

Equations 24 and 25 define a PTS task which is mapped to a Constrained Sat-
isfaction Problem (CSP). By definition, a COP requires both a CSP formulation
and an objective function to be optimised. In the CONE method, this objective
takes the following form:

min : η1
||w||1
||wmax||1

+ η2
||w||2
||wmax||2

+ η3
B(w)
Bmax

(26)

The above objective function is minimising three terms, and η1, η2, and η3 are
regularisation parameters that tune the contribution of each term to the overall
objective. ||w||1 and ||w||2 denote the L1 and L2 norms of the solution weight
vector, respectively. Vector wmax denotes the maximum value of the weight vector.
Minimising the function B(w) has the effect of increasing the membrane potential
directly after a desired spike time:

B(w) =
∑
td
j ∈y

(V (td
j )− ρϑ)2, ρ > 1 (27)

In essence, the properties of the solution can be tuned by the objective terms.
By adjusting the ratio of η1 and η2, the sparsity of the solution (whether few
weights contribute to each spike or many weights) can be adjusted in order to
obtain better overall noise robustness. By increasing the term η3, the optimisation
favours solutions in which the membrane potential continues to increase after the
desired spike time, instead of just touching the spiking threshold then immediately
decreasing. This allows the solution to become more robust to small downward
noise perturbations caused by input jitter noise, missing spikes, or membrane
potential noise.

In Lee, Kukreja and Thakor (2016), the above COP is optimised by using
standard black-box solvers implementing the interior-point method. As a result,
optimal solution weights which satisfy the constraints set out by the PTS can



CHAPTER 2. REVIEW OF SPIKING NEURAL NETWORKS 41

be obtained without repeated presentation of the training data. The authors
compare the CONE algorithm to a class of single-batch ANN algorithms which
have been called neural synthesis methods (Tapson et al. 2013). Similarly to the
CONE algorithm, neural synthesis methods also aim to solve for network weights
in a non-iterative manner, however it is a notable difference that such methods
are generally not capable of learning multiple precisely timed spikes (Eliasmith
and Anderson 2003; Huang, Zhu and Siew 2006; Tapson and van Schaik 2013;
Kulkarni and Rajendran 2018; Cohen et al. 2016, 2017; Boucher-Routhier, Zhang
and Thivierge 2021). Learning rules which are capable of generating multiple
spikes are desirable, because multi-spike neural coding schemes have been shown
to have better computational properties compared to single-spike learning rules
(Borst and Theunissen 1999; Ponulak and Kasiński 2010).

Tempotron and Multi-Spike Tempotron

The Tempotron and Multi-Spike Tempotron algorithms aim to solve SC learning
tasks using gradient-descent (Gütig and Sompolinsky 2006; Gutig 2016). As such,
both of these algorithms are capable of automatically finding appropriate spike
times for an output neuron, given the desired number of spikes. In the case of
the Tempotron, the algorithm is limited to either zero or one output spikes. As
such, a single neuron trained with the Tempotron algorithm is limited to binary
classification. In contrast, the Multi-Spike Tempotron has no upper limit on the
number of target output spikes.

Each learning iteration of the Tempotron for binary classification is organised
as follows. Firstly, the input pattern is simulated, and the resulting output (spike
or no spike) is compared against the label. If the classification is incorrect, the
algorithm performs two computation steps. In the first step, an update time t∗

is identified: if the neuron elicits no spikes, then the update time is set as the
time of the maximal subthreshold membrane voltage; if the neuron elicits a spike,
then the update time is set as the output spike time. In the second step, a weight
update is applied of the following form:

∆wi = ±ηλ(t∗) (28)
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Here, the sign of the weight update depends on the learning scenario: positive
updates to generate a desired spike, and negative updates to remove an erro-
neous spike. It is evident that the Tempotron algorithm is very similar to the
FP algorithm described in the previous section. The important difference is the
identification of the update time: for the Tempotron, the desired spike time is
automatically set as the time the membrane potential is closest to the threshold.
This mechanism for setting the update time t∗ is what allows the Tempotron to
automatically search for appropriate values of desired spike times.

The Multi-Spike Tempotron (MST) can be seen as a generalisation of the
Tempotron learning rule to multiple spikes. One of the biggest differences is the
suggestion of the Spike-Threshold-Surface (STS). The STS is a function which
maps the spiking threshold value to the spike count generated by an SRM neuron.
This models an inverse relationship: when the neuron is simulated by a lower
threshold value than the static value ϑ, the spike count increases. Importantly,
the STS is characterised by a sequence of critical threshold values ϑ∗ = [ϑ∗

1, ϑ∗
2, ...],

indexed by integer k. Each ϑ∗
k corresponds with the threshold value where the

spike count jumps from k − 1 to k. Formally, this is written as (Gutig 2016):

ϑ∗
k = sup{ϑ ∈ R : STS(ϑ) = k}, k ∈ N (29)

An illustration of the STS function is shown in Figure 16. The MST learning
algorithm involves two steps: in the first step, the critical value for ϑ∗

k is found
given a desired spike count |yc| = k. In the second step, the neuronal weights are
modified by gradient descent, which has the effect of adjusting the shape of the
STS function, bringing ϑ closer to ϑ∗

k and thus allowing the neuron to generate
the correct spike count. The full mathematical derivation of the weight update
step can be found in the Supplementary Materials of Gutig (2016).

2.3.4 Unsupervised Learning for SNNs

The goal of unsupervised learning is relatively open-ended when compared to su-
pervised learning: Given a set of inputs X = [x1, x2, ...] without any labels, the
learning should automatically uncover some structure or relationship hidden in
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Figure 16: STS function of a LIF neuron given some fixed input pattern and
random initial weights. A: before learning, the voltage threshold ϑ = 1 corre-
sponds with k = 3 output spikes. In order to increase k to 4, the voltage value
corresponding to ϑ∗

4 is moved closer to ϑ by gradient descent. B: after a number
of learning updates, ϑ∗

4 has crossed ϑ, which reflects that the neuron now elicits
k = 4 spikes.
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the data. In common unsupervised learning tasks, a neural network is typically
tasked with learning a transformation of the input data into some useful represen-
tation. In problems such as clustering, the learned representation may be useful
by themselves. In other applications such as feature extraction, the transformed
input can then be used as input to other (often supervised) problems.

The vast majority of unsupervised learning algorithms for SNNs belong to the
family of Spike-Timing Dependent Plasticity (STDP) methods. STDP has two
main properties: firstly, synaptic plasticity only occurs based on locally avail-
able information. This means that a neuron does not adjust its weights based
on the processing of some other neuron which it is not directly connected to.
Secondly, STDP-based learning rules typically implement some form of Hebbian
learning (Hebb 1949). In traditional Hebbian learning, the connection between
two neurons is strengthened if the postsynaptic neuron fires shortly after the
presynaptic neuron has spiked. Commonly, STDP rules may also contain an anti-
Hebbian component, wherein the connection between two neurons is weakened if
the presynaptic neuron fires after the postsynaptic spike. This form of STDP is
often referred to as pair-wise and asymmetric (Figure 17).

Formally, the STDP function takes the form ∆wi = η+e−t/τ+ if the relationship
between the pre- and post-synaptic spike is t = tpost− tpre and t > 0. Here, η+ is a
magnitude adjustment parameter, and τ+ is a time constant parameter. Similarly,
for t ≤ 0 the function is written as ∆wi = −η−et/τ− . It is important to note that
while STDP learning has been observed in biological nervous systems, there is
evidence which suggests that the pair-wise function is not enough to give a full
explanation of biological STDP (Morrison, Diesmann and Gerstner 2008; Bi and
Wang 2002).

2.4 Chapter Summary

This chapter provides a review of the fundamental principles of ANNs and SNNs
which are relevant to this thesis: beginning with an overview of biological neu-
rons and neural coding, the definition and construction of networks of analogue
neurons, and finally the relevant spiking neural models and learning algorithms.
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Figure 17: STDP mechanisms in the brain, replicated from Trappenberg (2009).
A: The experimentally measured changes in excitatory postsynaptic current for
various time differences between pre- and post-synaptic neurons. B-C: asymmet-
ric STDP. D-E: symmetric STDP.
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The overview of temporal coding schemes in Section 2.1 reveals clear advan-
tages for temporal-coding over rate-coding. However, it is reasonable that in a
biological nervous system, the type of coding depends on the application. For
example, the components of the nervous system which are responsible for fast
environment-sensing tasks should rely on temporal-coding, whereas other compo-
nents which require high accuracy and robustness to noise should rely on average
rate-coding. In a neural network, the specific coding scheme must be consid-
ered from the perspectives of both input coding and output coding. For example,
a SNN model may be designed such that real-valued inputs into the model are
transformed into spikes via ROC, whereas the output layer spikes are inferred by
TTFS coding in order to obtain a classification. In practice, both the input and
output coding methods must be considered by authors for each application, in
order to obtain the best performance. However, such considerations are typically
made by trial and error, instead of by theoretical metrics such as information
density.

Section 2.2 outlines the computation of analogue neurons, and how such neu-
rons are connected together to form neural networks. It is important to note that
many of the structural principles behind designing ANNs also applies to SNNs.
For example, Spiking Convolutional Neural Networks (SCNNs) are an important
part of the current literature, which are beginning to show promising results in a
number of application areas. Similarly, one could design a deep or parallel SNN
in a similar manner to a deep or parallel ANN.

Section 2.3 reviews the computation of spiking neurons, as well as several learn-
ing algorithms which are important to the design of the learning rules introduced
in this thesis. In particular, the computational characteristics of the CONE algo-
rithm and the Widrow-Hoff-based learning rules will be combined in the design
of the DTA algorithm (Chapter 3). The principles of the STS function, which
provides the target spike times for a given spike count that corresponds with the
minimum disturbance principle, is adapted for the DTA-B algorithm (Chapter
4). Finally, the computation of the DTA-C algorithm utilises competition-based
learning commonly found in STDP algorithms.



Chapter 3

Linear Constrained Optimisation
for Learning Precisely-Timed
Spikes

3.1 Introduction

So far the typical approach to solving a PTS learning problem is to define a loss
function as the difference between the desired and actual spike sequences, resolve
the spike non-differentiability of the loss gradient by using a surrogate approxima-
tion, and then iteratively improve the SNN through gradient-descent (Zenke and
Ganguli 2018; Gardner and Grüning 2016; Shrestha and Orchard 2018). Xu et al.
(2013) outlined two major difficulties with the gradient-based approach in multi-
spike mapping: firstly, it is unclear how to define the loss function when the num-
ber of actual and desired spikes are different. Recent works such as Shrestha and
Orchard (2018) addressed this problem by utilising a continuous spike train dis-
tance measure as the loss function, for example the van Rossum distance (Rossum
2001). The second issue is the learning interference (LI) problem, which was intro-
duced in Chapter 2. It has been suggested that learning interference accumulates
with the number of output spikes, and for successful learning there should be
sufficient distance between desired spike timings (Gardner and Grüning 2016).
While it is currently unclear how LI can be completely solved during iterative

47
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learning, several existing algorithms have shown the ability to overcome or reduce
the effects of interference, which enables these methods to eventually converge to
a solution (Memmesheimer et al. 2014; Gardner and Grüning 2016).

Geometric links between SNN learning and constrained optimisation problems
have been made in Lee, Kukreja and Thakor (2016); Chou, Chung and Lu (2018);
Mancoo, Keemink and Machens (2020). Accordingly, several methods have been
proposed where the success of learning is defined by the ability of the SNN to sat-
isfy a CSP, instead of minimising an explicit loss function (Memmesheimer et al.
2014; Lee, Kukreja and Thakor 2016; Luo et al. 2019). Out of these methods,
the CONE algorithm has shown the capability to solve multi-spike PTS problems
without requiring repeated presentations of the input (see Section 2.3.3). This
approach has implications for the efficiency of learning, since the simulation re-
quirements during training are greatly reduced in exchange for a more complex,
one-batch approach to weight calculations.

Nonetheless, the CONE approach has a number of problems. Firstly, the
method is designed for applications in discrete time, and is not applicable to
continuous-time or event-based emulators. This approach is a challenge for learn-
ing situations which may require ultra-precise solutions, not only due to the dis-
cretisation but also because the number of inequality constraints scale directly
with the number of discrete time ‘bins’. Secondly, the method is not tested on any
industry-standard datasets, which makes it difficult to perform comparisons. By
extension, it is unclear what the exact learning capabilities of the algorithm are
compared to known metrics (Memmesheimer et al. 2014). Thirdly, it is unclear
how well the approach scales as the size of the problem increases. In particu-
lar, it is well known that other batch methods which compute solution weights
non-incrementally can incur significant memory issues as the training dataset size
increases (Tapson and van Schaik 2013).

3.1.1 Linear Programming with Constraints

Here, we give a brief overview of linear programming methods, since they are
integral to solving CSPs. Linear programming is a subset of classical mathematical
programming methods (coh 1978), in which the general form of the problem is
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written as

maximise/minimise Z(x1, x2, ..., xn)

subject to g1(x1, x2, ..., xn) = 0

g2(x1, x2, ..., xn) = 0

...

gm(x1, x2, ..., xn) = 0

Here, Z() is the objective function, x are the n decision variables, and g() are
the m constraints. Linear programming constitute the special case where Z() and
g() are all linear functions. Additionally, in a linear program the variables are
often of some continuous domains, and the constraints may include inequalities
as well as equalities.

The explanation above describes a Constraint Optimisation Problem (COP).
Here, the problem is twofold: firstly, the decision variables have to be chosen
such that the constraints are satisfied. Secondly, the variables must be chosen
such that the objective is optimised. We note now that CSPs specifically only
require the first part of the problem to be solved. That is, if a region of points in
variable space is identified as feasible, then any point on this region is accepted
as the solution, and correspondingly there may be an infinite number of feasible
solutions. In a one must then traverse the feasible region to find a single optimal
solution.

Figure 18 demonstrates an example CSP problem with two linear constraints,
written as

6x1 + 3x2 ≤ 24

2x1 + 3x2 ≤ 12
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Figure 18: An example CSP problem. The two lines show the two linear con-
straints of the problem. When the constraints are inequalities (≤), the feasible
region lie inside of the thicker portions of the lines. Figure originally published in
(coh 1978).
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Additionally, we also have the domain constraints x1, x2 ≥ 0, which is stan-
dard for linear programming problems. Here, we see that the feasible region in
variable space forms a two-dimensional convex polytope, described by the set of
vertices {(0, 0), (0, 4), (3, 2), (4, 0)}. Here, we obtain this feasible region by a
graphical solution, however this is fundamentally limited to two dimensions due
to the difficulty of graphing more than two decision variables. Beyond two dimen-
sions, an industry-standard approach is the simplex method (Velinov and Gicev
2018). This involves setting some variables in the constraint to zero, and solv-
ing the constraints as a system of linear equations. For example, in the above
constraints the vertex (0, 4) can be obtained by setting x1 to zero and solving
for x2. Because of this operation, vertices of the feasible polytope is typically
called the basic feasible solutions (Matoušek and Gärtner 2007). In the simplex
method, the optimal feasible solution is then found by traversing the set of basic
feasible solutions. In interior-point methods, optimisation is performed instead
by traversing the interior of the feasible region (Tanneau, Anjos and Lodi 2021).

Further details of how these methods perform optimisation is beyond the scope
of this thesis, as we will only encode the spiking problem as CSPs. Nonetheless,
we will use an interior-point solver throughout the upcoming experiments. This
is because various attempts were made at introducing objective functions into our
formulation, which is discussed later on in Chapter 6. For use in CSPs, the linear
programming solver will simply terminate once the first feasible solution is found.

3.2 Motivations & Chapter Layout

This chapter proposes a multi-spike learning algorithm to solve the PTS learning
problem, which is called the Discrete Threshold Assumption (DTA) method. The
algorithm is designed with a number of goals in mind:

1. Perform multi-spike learning in continuous time.

2. Combine computational characteristics of incremental learning and one-
batch learning.

3. Overcome the learning interference problem.
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4. Demonstrate robustness to input noise.

5. Minimise the simulation requirement during learning.

To this end, the DTA method uses the CONE algorithm as the basic inspi-
ration. Each learning iteration of the DTA algorithm contains two steps: in the
first step, the PTS problem is mapped to a CSP containing equality and inequal-
ity constraints. In the second step, the method utilises an industry-standard
interior-point solver to compute solution weights. At this high level description,
the DTA algorithm is very similar to CONE (Section 2.3.3). However, there are
several characteristics that set the DTA method apart from the CONE algorithm.
Firstly, our approach computes iterative updates to the solution weights in sev-
eral solver steps, as opposed to directly computing the solution in one solver step
as in Lee, Kukreja and Thakor (2016). This allows the neuron to learn one in-
put pattern at a time, which has implications on memory complexity since the
learning does not need to load the constraints from the entire dataset all at once.
Secondly, the DTA method does not compute the weights directly, but instead in-
troduces auxiliary optimisation variables which can then be used to calculate the
weight adjustments. This approach can greatly reduce the number of optimisa-
tion variables in practical settings where there are fewer constraints than there are
synaptic weights, thus further increasing the efficiency of the solver step. Thirdly,
the DTA algorithm utilises a CSP without any objective function, however we
introduce an expression for the weight update that allows tuning of the solution
weight distribution.

The rest of the chapter is organised as follows. Section 3.3 describes the formu-
lation of the DTA algorithm. The next four sections present various experiments
and analyses in order to understand the learning capabilities and characteristics
of the DTA algorithm in detail: Section 3.4 provides a learning demonstration
of the algorithm, and measures the capacity of the algorithm to solve standard
spike-mapping tasks with randomly generated input and output sequences. Sec-
tion 3.5 studies the effects of several crucial parameters on the performance of the
algorithm. Section 3.6 discusses the noise robustness of the algorithm, and shows
that noise sensitivity can be improved by minor alterations to the weight update
equation. Section 3.7 investigates the runtime of the algorithm in comparison to
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existing methods in the literature. Finally, Section 3.8 analyses the computation
of the algorithm with respect to the learning interference problem.

3.3 Method Description

The learning scenario is formalised as follows: given a fixed input pattern x =
[x1, x2, ..., xN ] where xi = [ti

1, ti
2, ...] is the input spike sequence arriving to the

i-th input channel of an SRM neuron, and a desired output spike sequence d =
[td

1, td
2, ...], the algorithm computes a weight vector w such that the neuron gener-

ates an actual output sequence o = d in response to x.

The DTA algorithm solves this learning task in a number of iterative weight
updates, where in each learning iteration the weight adjustment vector ∆w =
[∆w1, ∆w2, ..., ∆wN ] is computed by solving a Linear CSP. There are three com-
ponents to the CSP: (1) the constraints, (2) the optimisation variables, and (3)
the variable domains. Once all the components are defined, the CSP is solved
using the Tulip interior-point solver (Tanneau, Anjos and Lodi 2021).

3.3.1 Problem Constraints

For simplicity, we assume here that the neuron is only learning the desired spike
times for a single input pattern. At a given learning iteration, the initial neuron
weights are denoted as w. For a solution weight vector w∗ = w + ∆w to be
feasible, the following equality and inequality constraints have to be satisfied:

ϑ = V (td), for all td ∈ d (30)

ϑ > V (t), for all t /∈ d (31)

With the membrane potential V (t) defined using the SRM equations (Equa-
tions 13, 10, and 12) as follows:
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V (t) =
N∑

i=1
w∗

i

∑
ti
j<t

λ
(
t− ti

j

)
− ϑ

∑
td
l

<t

γ(t− td
l )

Note that the neuronal reset times are fixed to the desired vector d, which
is mathematically equivalent to the High Threshold Projection method used in
Memmesheimer et al. (2014), but only with notational difference. Optionally,
the reset term γ(t) can be moved from the membrane potential to the threshold.
This does not change the computation of the neuron (Gerstner and Kistler 2002),
however allows the constraints to be expressed as computationally efficient matrix
multiplications.

In continuous time, there are clearly an infinite number of inequality con-
straints. However, Memmesheimer et al. (2014) showed that due to the strong
temporal correlations in the membrane potential, the effective number of inequal-
ities is finite. In the DTA method, we consider the only relevant inequalities
to be the incorrect spike events of the current learning iteration, written as
a = {t : t ∈ o, t /∈ d}. Additionally, we assume that no output spike can be
learned with infinite precision, which is reasonable given that the system will be
solved using numerical solvers. This implies a = o, and we can rewrite Equation
31 as:

ϑ > V (to), for all to ∈ o (32)

Equations 30 and 32 yield a CSP with |o| + |d| linear constraints. Note that
by this definition, the DTA method is not guaranteed a good solution in a single
learning iteration, as threshold inequalities at any other times not in o are not
enforced. However, any new inequality constraint violations that are a result of
the current weight update will be considered in the next learning iteration.

3.3.2 Weight Update Method

The most common primal-dual interior-point methods exhibit a worst-case com-
plexity which primarily scales with the number of optimisation variables (Wright
1997). As such, optimising ∆wi directly may scale unfavourably as N increases.
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In addition, limiting the number of variables reduces the search space and in
turn, the combinatorial complexity of the problem. To this end, we introduce
new optimisation variables ζ, as well as a weight update equation as follows:

∆wi =
|d|∑
l=1

ζd
l

∑
ti∈xi

κ(td
l − ti) +

|o|∑
k=1

ζo
k

∑
ti∈xi

κ(to
k − ti) (33)

In essence, Equation 33 is a spiking interpretation of the Widrow-Hoff rule
(Widrow and Lehr 1990), similarly to Equation 23. κ(t) denotes a causal learning
kernel, which for example can be the PSP kernel λ(t) (Equation 10). Crucially,
the learning rate variable in the Equation 23 has been replaced with unknown
optimisation variables ζd

l and ζo
k . In general, increasing the value of ζd

l will also
increase V (td

l ), and the reverse is also true.

The weight update in Equation 33 has several advantages. Firstly, in this form
the CSP now contains the same number of variables as the number of constraints,
which is more efficient when N > |o| + |d|. This is the case in many practi-
cal learning scenarios with a few dozen target spikes but hundreds or thousands
of neuronal weights (Gardner and Grüning 2016; Gutig 2016; Xiao et al. 2019;
Shrestha and Orchard 2018). Secondly, the form of weight update is controlled by
the choice of κ(t), which allows the user a degree of control over the weight distri-
bution of the solution. This has a similar effect to the regularisation parameters
in the CONE method (Equation 26), but without requiring an explicit objective
function which needs to be evaluated numerically. As such, this fits well into the
goal of the algorithm to minimise the simulation requirements of learning.

With the above constraints and variables, the resulting CSP can in theory
be solved by a Linear Programming solver implementing any standard optimi-
sation technique, such as simplex or interior-point methods. However, it is very
important to include a fall-back strategy into the algorithm. This is because by in-
troducing auxiliary optimisation variables ζ, the complexity and size of the search
space have been reduced, but this also means the feasibility of a solution becomes
partly dependent on the current spike times o. This is because every additional
spike in o introduces a new weight adjustment term in Equation 33, which in-
creases the degrees of freedom the system has in search space. Consequently, this
means that if a problem is infeasible, the current solution weights must be able
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to continue exploring parameter space. In turn, this fall-back update allows the
next learning iteration to perform optimisation with a different sequence o than
the current, infeasible one.

To this end, if the solver identifies that the current problem is infeasible, then
a fall-back weight update is applied with all ζ ← η, where η is a learning rate
parameter. Note that this fall-back update is equivalent to other Widrow-Hoff-
based approaches (Section 2.3.3) and so is susceptible to the LI problem. However,
our simulation results indicate that even for very difficult PTS problems, this fall-
back is very rarely required (Section 3.4).

3.3.3 Domain Constraints

For stable optimisation, it can be helpful to specify domain constraints for the
optimisation variables Wright (1997); Anjos and Burer (2008); Tanneau, Anjos
and Lodi (2021). In our system, we find that without explicit domain bounds
for ζd

l , the magnitude of weight adjustments can explode to very large values.
Typically, this scenario occurs when equality constraints are satisfied from above,
instead of from below. As such, the following domain constraint is added to the
CSP for each ζd

l variable:

lbd ≤ ζd
l ≤ ubd (34)

Here, lbd and ubd denotes the lower and upper bound parameters, respectively.
The optimal values for lbd and ubd, as well as their effect on the overall stability
of learning will be discussed in Section 3.5.

It is important to note that the ζo
k variables, corresponding to the weight ad-

justments at actual spike times, are unconstrained in this system. Because of
temporal correlations in the membrane potential, an upper limit on ubd effec-
tively constrains the minimum values for lbo. In our simulations, we find that
including additional domain constraints for ζo

k increases the effort required for pa-
rameter optimisation without any significant benefits in terms of learning stability
or runtime.
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3.3.4 Algorithm Summary

A complete summary of the algorithm is given in Algorithm 1.

Algorithm 1: DTA Algorithm for learning Precisely Timed Spikes. The
algorithm takes in a set of inputs X and target outputs Y, and compute a
synaptic weight vector w such that all the outputs of each input pattern
xp is the same as the target yp.

Data: X = {x1, x2, ..., xp}, Y = {y1, y2, ..., yp}
1 initialise neuron with weights w;
2 accuracy ← 0.0;
3 while epoch < maxEpoch or accuracy < 1.0 do
4 shuffle X;
5 foreach xp in X do
6 compute output o;
7 compute ∆w (Eq. 33, 30 & 32);
8 w∗ ← w + ∆w;
9 w ← w∗;

10 end

11 accuracy ←
∑P

p=1 Θ(vRD(o,d)−vRDmin)
P

(Eq. 37 & 37);
12 end

3.4 Learning Performance

In Memmesheimer et al. (2014), it was suggested that when the input pattern
and desired output sequence are randomly generated, there is an upper limit
to the capacity of an SRM neuron to correctly implement the PTS problem.
Specifically, as the input duration T increases, the probability that the problem
is solvable decreases. Furthermore, the authors define a critical limit Tα where
there is a 50% probability that a feasible solution exists. The authors establish a
theoretical estimate of Tα as:

Tα ≈
N
√

τmτs

−2νout
√

τmτs

1+νout
√

τmτs
log

(
νout

√
τmτs

1+νout
√

τmτs

) (35)
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Here, νout denotes the average spike rate of the randomly generated target
output. This memory capacity limit provides a good benchmark for PTS learning
performance, and the primary objective of this section is to demonstrate that the
DTA learning rule is able to reach the limit defined by Equation 35.

3.4.1 Experimental Setup

The experimental setup of the random PTS task is as follows. The input pattern
is created by drawing spike sequences of duration T for each of the N = 500 input
channels from a homogeneous Poisson process with mean rate νin = 0.005 for each
of the N = 500 input channels. Desired output spike sequences are generated
similarly with rate νout = 0.005. Desired spikes are not allowed to occur earlier
than the τm.

Learning Scenarios

There are two distinct experimental scenarios that we use for memory capacity
measurements:

1. The neuron learns a single long input pattern of duration T . The duration
starts at T = 1000, then increases in increments of 200 until less than half
of all trials converge. The duration at the stopping point is taken as Tα.

2. The neuron learns multiple short input patterns of duration T = 400. The
number of patterns starts at 1, then increases one at a time until less than
half of all trials converge. The total combined duration of all patterns is
taken as Tα.

According to Memmesheimer et al. (2014), an SRM neuron exhibits approx-
imately the same PTS learning capacity (Equation 35) in either of the above
learning scenarios. For each capacity measurement, 50 independent trials are run
with different input and desired output sequences. For each measurement, the
DTA algorithm is run for a maximum of 100 epochs. An epoch is the presenta-
tion of all the input patterns, which is split into a number of iterations wherein
each iteration presents a single pattern at random.
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Spike Distance Metric

In all experiments, convergence is decided using the van Rossum distance met-
ric Rossum (2001); Schrauwen and Van Campenhout (2007); Paiva, Park and
Principe (2009):

vRD(o, d) =
√√√√∑

i,j

e
−|oi−oj |

τv +
∑
i,j

e
−|di−dj |

τv − 2
∑
i,j

e
−|oi−dj |

τv (36)

Here, τv is the metric time constant which we set as τv = τm. vRD is a strictly
positive distance metric, and vRD(o, d) = 0 indicates o = d. Based on analyses
presented in Rossum (2001); Satuvuori and Kreuz (2018), we set τv = 100 which
provides a good sensitivity to both short-term spike jitter and missing/additional
spikes. This parameter tuning is necessary because we will be measuring the
learning accuracy across a wide scale of the input duration T , and care must be
taken not to let the distance value be dominated by very small differences between
the actual and desired spike times.

It is practically impossible to achieve perfect convergence when the temporal
dimension is continuous, due to limitations of computer precision during numerical
optimisation. Hence, we must designate a parameter to denote ‘sufficiently good’
convergence for simulations. We choose this parameter to be the average distance
between each pair of actual and desired output spikes, denoted as ∆tϵ, and set
∆tϵ = 1 throughout this chapter. This means we consider an output sequence to
be converged if each output spike is (on average) within 1 time unit of their desired
output timing. This allows us to calculate a minimum distance value, denoted
as vRDmin(T, tϵ). Generally, if the average value of vRD(o, d) over the whole
training set is smaller than vRDmin(T, ∆tϵ), then we consider that the learning
has converged.

However, the value of Equation 36 does not only rely on the average distance
between pairs of target and desired spikes, but also the number of output spikes.
In order to determine a formula for vRDmin(T, tϵ), we perform a numerical exper-
iment, as follows. First, a Poisson spike train of duration T is generated as the
‘template’. Then, we apply a Gaussian spike jitter with mean zero and standard
deviation tϵ to each spike in the generated sequence. We then compute the vRD
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Figure 19: Dependence of van Rossum distance values on the mean Gaussian spike
displacement (x-axis) and pattern duration T (colorbar) with filter time constant
τv = 100.

between the template and noisy spike trains, and record the resulting distance
value. This was repeated many times while varying the value for T and tϵ. The
result is a point cloud as shown in Figure 19. We then fit a Multiple Linear Re-
gression model to the data, where the independent variables are T and ∆tϵ, which
yields the following relation:

vRDmin(T, tϵ) = 0.08tϵ + 0.0001T (37)

For the remainder of this chapter, all experiments utilise the minimum vRD

value in Equation 37 to determine convergence.

Learning Demonstration

First, we run an initial experiment for demonstration purposes. The experimental
setup is the random spike mapping task described above. An example is shown in
Figure 20: on panel A, the neuron is trained on a single input pattern of duration
T = 2000 with five desired output spikes. On panel B, the same input pattern
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Figure 20: Output spikes throughout DTA learning in an example PTS task with
randomly generated inputs. A: learning progress of a single long input pattern. B:
The same long input pattern is split into five patterns of equal length, presented
to the algorithm one at a time. Red lines are desired spike times. C-D: The input
patterns presented to the learning neurons corresponding to A and B, respectively.
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is now split into five patterns of length T = 400, which is passed one at a time
to the DTA algorithm for learning. 100 independent trials are run with different
realisations of the input pattern.

In the long input scenario, the DTA algorithm converges in 1.7± 0.09 epochs
on average, with a mean runtime of 0.12 ± 0.04 seconds. In the short input
pattern scenario, the algorithm converges in 3.1 ± 0.1 epochs on average, with
a mean runtime of 0.18 ± 0.06 seconds. These results indicate that the short
input scenario is generally more difficult to solve. This is reasonable, since the
algorithm is presented with only a subset of the problem constraints at each
learning iteration.

3.4.2 Simulation Results

Figure 21: Memory capacity measurements (blue dots) of the DTA algorithm for
(lbd, ubd) = (0, 0.07) and κ(t) = λ(t). (Left) Memory capacity in the long pattern
learning scenario. (Right) Capacity in the short patterns scenario. Gray lines
are theoretical bounds as computed by Equation 35.

Here, we measure the memory capacity of the DTA algorithm under both
learning scenarios. Following from Memmesheimer et al. (2014), here we also vary
τ = √τmτs as the independent variable, while keeping the ratio τm

τs
= 4 constant

in all measurements. In all trials, the DTA algorithm is trained for a maximum
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of 100 epochs.

Results are shown in Figure 21. For both the long and short pattern scenarios,
the measured capacity fits the theoretical bound reasonably well. Importantly, it
is observed that the capacity in the short pattern scenario is worse than the long
pattern scenario for every value of τ . This is expected, however increasing the
maximum number of epochs to 200 did not significantly improve these results. Ad-
ditionally, the memory capacity in the long pattern scenario is slightly higher than
the theoretical bound for smaller values of νoutτ in our measurements. While the
theoretical approximation is expected to diverge for very small values of νoutτ , the
capacity difference here is much larger than in the original work (Memmesheimer
et al. 2014). A possible explanation for this result is the relatively small number
of input channels, since the theoretical bound is most accurate in the very large
N regime.

Importantly, the number of learning iterations where the solver returned an
infeasible result was very low. Analysis of all of the learning trials at capacity
indicates that the average number of infeasible iterations take up less than 1% of
the total number of learning iterations to convergence, on average. The highest
number of infeasible trials was observed for νoutτ = 0.032, wherein the number
of infeasible trials are approximately 2%. Note that the statistics stated here
exclude any trials where the DTA algorithm did not converge (no solution). For
non-converging trials alone, the number of infeasible trials are almost 100%. One
explanation for this result is that the randomly generated input and output se-
quences have no exact solution, however it is difficult to test this hypothesis. Note
that for each data point, the number of non-converging trials are approximately
50%, since the capacity is measured when half of all trials are failing.

3.5 Effect of Parameters

This section examines how the learning kernel function K(t) (in Equation 33) and
the domain constraint bounds (Equation 34) affect the learning performance of
the DTA algorithm. In general, we find that there are optimal choices for each of
these parameters, and thus careful optimisation is necessary.
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The experimental setup here is the same memory capacity measurement pro-
cedure as detailed in the previous section, with both the long and short input
scenarios. Unless stated otherwise, all experiments in this section use parameters
τm = 20, τs = 5, N = 500, νin = νout = 0.005.

3.5.1 Choice of Learning Kernel

In order to study how κ(t) affects learning, we performed memory capacity mea-
surements for three different learning kernel functions which appear in the SNN
literature. These functions are written as follows:

κSTDP(t) = exp
(−t

τm

)
Θ(t) (38)

κPSP(t) = λ(t) (39)

κFILT(t) =

Vnorm
(
Cm exp

(
−t
τm

)
− Cs exp

(
−t
τs

))
, if t > 0

Vnorm (Cm − Cs) exp
(

t
τm

)
, otherwise

Cm = τm

τm + τs

Cs = τs

τm + τs

(40)

Here, κPSP(t) is simply the PSP integration kernel (Equation 10), which is
used in the PSD and INST learning rules (Yu et al. 2013; Gardner and Grüning
2016). The κFILT(t) kernel was introduced in Gardner and Grüning (2016), which
has a non-causal form where input channels that spiked shortly after an output
spike can be potentiated. κSTDP(t) is an single-exponential STDP curve, which
we find to provide better results than the more common two-exponential kernel
(Ponulak and Kasiński 2010). The shapes of these learning kernels are shown in
Figure 22E.

The effect of κ(t) on the resulting weight distribution of the solution is demon-
strated in Figure 22B-D. Here, an SRM neuron is trained to learn four desired
spike times in response to an input pattern with one input spike per channel.
The figures show the solution weights after one iteration of the DTA algorithm,
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Figure 22: Weight distributions of an SRM neuron A: Before learning, and B-D:
after one iteration of the DTA algorithm learning four desired spike times. E: The
temporal shape of the three κ(t) learning kernels.

after which convergence was observed using all three kernels. The different peak
heights of the weight distributions in each figure illustrates the magnitudes of the
four variables ζd

l computed by the solver.

Simulation results obtained from memory capacity measurements (Figure 23)
indicate that the learning performance of the DTA algorithm is highly depen-
dent on κ(t). In both learning scenarios, κPSP provided the best results. κSTDP

demonstrated high performance in the long pattern scenario, but has much worse
performance in the short pattern scenario. Increasing the maximum number of
epochs from 100 to 500 did not significantly increase this performance. The worst
capacity results are demonstrated while using κFILT, which is surprising since this
learning kernel has demonstrably better performance compared to κPSP when used
in a Widrow-Hoff-based learning approach (Gardner and Grüning 2016).

3.5.2 Choice of Domain Constraints

Here, we explore the effect of the domain constraint parameters lbd and ubd on
the DTA algorithm during learning.

The experimental conditions are as follows. Firstly, we generate 100 random
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Figure 23: Memory capacity of the DTA algorithm with different learning kernel
functions. Solid lines show the number of converged trials in the long pattern
scenario, dashed lines are for the short pattern scenario. In general, κPSP provided
the best results.

input patterns and desired output sequences with duration T = 10000, and train
SRM neurons to learn a single input-output mapping in each trial (single pattern
scenario). For each input-output pair, the DTA algorithm is run without the
domain constraints as the baseline trial. A grid-search parameter optimisation
was performed for −0.1 ≤ lbd ≤ 0.1 and −0.1 ≤ ubd ≤ 0.1 in increments of 0.02.
Note that any impossible parameter settings (lbd ≥ ubd) are ignored in the results.
Each parameter combination was tested on the same 100 random PTS problems
as the baseline trials. The optimisation and baseline trials are compared in terms
of the percentage of converged trials, the average number of learning epochs to
convergence, and the total algorithm runtime. κPSP is used as the learning kernel
in all simulations.

With Constraints Without Constraints
Converged Trials (%) 87.65 94

Epochs to Convergence 9.58± 4.30 7.12± 2.72
Algorithm Runtime (s) 6.82± 3.93 15.44± 17.95

Table 1: Overall comparison of learning performance for the DTA algorithm when
trained with or without the domain constraints. Note that the results for Epochs
to Convergence and Algorithm Runtime only includes converged trials.



CHAPTER 3. LEARNING PRECISELY TIMED SPIKES WITH DTA 67

Overall, we find that the domain constraints are not necessary for convergence.
Out of the 100 PTS problems, there were zero instances where the algorithm
converged with the constraints, but the baseline trial did not converge. Some
of the parameter combinations resulted in lower percentages of converged trials
compared to the baseline. Importantly, such combinations all fall in the parameter
range lbd ≥ ubd − 0.04, indicating that these domain bounds are too restrictive.
Additional analysis confirm that experimental trials in this parameter range are
dominated by infeasible learning iterations. When comparing only the trials that
converge, the trials with domain constraints also exhibited worse convergence
speed compared to the baseline (Table 1).

However, we also find that the average runtime of the trials with domain con-
straints are significantly faster when compared to the baseline trials. Further
analysis reveals that approximately 18% of the baseline trials showed unusually
high runtime, and that these trials computed very large ζd

l values in the first
learning iteration, which resulted in many undesired output spikes at the second
iteration. This phenomenon in the baseline trials greatly affected both the simula-
tion time and the learning time, but not the convergence percentage. We did not
observe this in any learning trials with the domain constraints, with any parameter
combinations tested here. These results indicate a trade-off between convergence
and learning stability, as the inclusion of the domain constraints results in worse
convergence, but better overall runtime.

Additionally, we find that the optimal values for the domain constraints are
lbd = 0 and ubd = 0.1. This means that the lowest average runtime is achieved
when computed values of ζd

l are positive.

3.6 Noise Robustness

In this section, we investigate the robustness of the DTA algorithm in the presence
of noise. Specifically, while the learning kernel κPSP has the highest learning
accuracy and memory capacity out of the three learning kernels tested in Section
3.5, updating weights proportionally to the PSPs produces solutions which are not
robust to noise. Here, we show that better solutions can be obtained by tuning
the time constants of the learning kernel function.
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Figure 24: Average runtime of the DTA algorithm with different values of the
domain constraints lower bound lbd and upper bound ubd.
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3.6.1 Experimental Setup

According to Lee, Kukreja and Thakor (2016), there are two characteristics to
a noise-robust solution for a PTS problem: the first component is the average
membrane potential trajectory at spike time. Since the input channels which
spike closest to a desired output spike incur the smallest weight adjustment with
κPSP, the learning is prone to produce solutions where the membrane potential
meets the threshold then immediately decays (Figure 25). The resulting solutions
are susceptible to downward perturbations in the membrane potential as a result
of input noise. The second characteristic is the sparsity of the solution, meaning
how many synapses contribute to a spike. Solutions produced by κPSP minimise
the L2 norm, where all synapses contribute based on their sum PSPs. Instead,
solutions which minimise L1 norm will have only the most significant synapse
contribute. Lee, Kukreja and Thakor (2016) shows that sparser solutions exhibit
lower average subthreshold membrane potentials, which can be more robust to
small upward perturbations.

Figure 25: Membrane potential trajectories without reset (left) produced by dif-
ferent weight solutions (right), with a single desired output spike time at time 100.
Replicated from Lee, Kukreja and Thakor (2016), and κ denotes a regularisation
term in the CONE method.

In order to tune the DTA solutions for better noise robustness, we now intro-
duce a new learning kernel κ∗

PSP to the DTA formulation, which can be written
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as follows:

κ∗
PSP(t) = Vnorm

e
−(t−ti

j
)

τ∗
m − e

−(t−ti
j

)
τ∗

s


τ ∗

m = τm

ϕ

τ ∗
s = τs

ϕ

Here, we have simply replaced time constants in κPSP with new values which
are controlled by a hyper-parameter ϕ. Figure 26 demonstrates the effect of ϕ on
the shape of the learning kernel. Setting ϕ > 1 has two effects: firstly, κ∗

PSP will
peak closer to t = 0 compared to κPSP. This produces steeper membrane potential
trajectories at spike time, which increases the robustness against downward noise.
Additionally, the width of the kernel function is smaller, which results in a sparser
solution and protects against upward noise. Our research question now involves
determining whether this strategy is (1) effective against input noise, and (2)
maintains high DTA learning performance.

Figure 26: Effect of parameter ϕ on the learning kernel κ∗
PSP.

The experimental setup is as follows. Firstly, we generate 100 random input
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patterns and desired output sequences with T = 1000, for the single pattern learn-
ing scenario. We then create ‘noisy’ input patterns by applying a Gaussian spike
jitter to each input spike, with zero mean and standard deviation σ. Finally, we
perform DTA training on the original input patterns using κ∗

PSP(t) while varying
2 ≤ ϕ ≤ 6, and record the performance of the solutions on the noise-corrupted
patterns.

3.6.2 Simulation Results

Simulation results are shown in Figure 27. Panel A plots the vRD metric against
increasing degrees of Gaussian noise. Overall, increasing the value of parameter ϕ

contributed significantly to the noise robustness of solutions, as expected. With
ϕ ≥ 2, the solutions are robust against even high degrees of Gaussian noise. Panel
B plots the percentage of converged trials for various values of parameter ϕ. Here,
it can be seen that setting ϕ > 4 will significantly compromise the ability of the
DTA algorithm to converge to a solution. This result is also expected, as weight
solutions with large ϕ have very large weights and steep membrane potential
trajectories, which may cause the neuron to spike twice in quick succession when
learning a single output time.

There are two important implications of the above results. Firstly, we can
confirm the hypothesis that by tuning the shape of the learning kernel function,
the resulting distribution of the solution weights can be influenced for better
robustness to noise. Maintaining high accuracy while being robust to noise is a
desirable property for deployment on neuromorphic platforms, which are known
to suffer from computational variability induced by manufacturing inaccuracies
and thermal instabilities (Wunderlich et al. 2019). Secondly, there is a clear limit
to the extent to which the learning kernel can be tuned by the ϕ parameter,
without compromising accuracy. In the best case scenario of ϕ = 4, the algorithm
is on average 3 times more robust to input jitter noise than the baseline (based on
vRD values) while maintaining the ability to reliably converge. For applications
that require significantly better noise robustness than is demonstrated here, more
complex solutions for tuning the learning kernel may be required.
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Figure 27: A: Performance of DTA solutions for the PTS task on noise-corrupted
inputs, shown for varying degrees of Gaussian spike jitter with standard deviation
σ. B: Percentage of converged trials using the learning kernel κ∗

PSP while varying
the parameter ϕ.
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3.7 Algorithm Runtime

In this section, we compare the runtime of the DTA algorithm to that of existing
methods in the literature. The primary objective is to demonstrate that the
DTA method can provide a significant benefit in terms of convergence speed and
runtime.

3.7.1 Experimental Setup

In particular, we are interested in how the DTA method compares against Widrow-
Hoff-based methods such as the ReSuMe, PSD, and FILT algorithms (Ponulak and
Kasiński 2010; Yu et al. 2013; Gardner and Grüning 2016). Due to these methods
having a very similar form of weight update to Equation 33, they provide a good
benchmark for the effectiveness of the constraint solver step in our algorithm.
Note that our implementation of the ReSuMe method utilises the learning kernel
κSTDP(t).

To reduce the computational burden, we will only compare the DTA method
against one Widrow-Hoff-based method from the literature. As such, we first
perform parameter optimisation and compare the ReSuMe, PSD, and FILT algo-
rithms in the memory capacity learning task (Section 3.4). The resulting learning
rate used in the Widrow-Hoff-based methods is η = 0.12

|d| . We find this optimal
value works equally well for ReSuMe, PSD, and FILT. The inclusion of a normal-
isation term in η was originally suggested in Gardner and Grüning (2016), and
significantly improved the learning performance for all three algorithms (Figure
28). Overall, the FILT method produces the best results, and so we use this
algorithm as comparison to the DTA method.

The experimental setup is the long input pattern scenario as described in
Section 3.4. In general, we vary the pattern duration T while measuring the
average number of epochs to convergence, per-epoch runtime, and total runtime
of the algorithms. For each value of T , 50 independent trials were run. The DTA
algorithm is trained for maximum 100 epochs, with parameters κ(t) = κPSP(t),
(lbd, ubd) = (0, 0.1), and η = 0.01

|d| (for the fall-back update). The FILT algorithm
is trained for maximum 500 epochs with parameter η = 0.12

|d| . Overall, we did not
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Figure 28: Memory capacity measurements of Widrow-Hoff-based learning algo-
rithms, for the long (top panel) and short (bottom panel) input pattern scenarios.
Solid lines denote trials where the learning rate is normalised by the number
of desired output spikes, dashed lines denote trials where the learning rate is
not normalised. Overall, the FILT learning kernel produced the best results for
Widrow-Hoff-based learning.
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find any trials where one algorithm converged on the learning problem but the
other algorithm did not. Any trials where both algorithms failed to converge were
discarded and rerun, as this was not indicative of runtime to convergence.

3.7.2 Simulation Results

Figure 29: Runtime comparisons between the DTA and FILT algorithms, for
various values of pattern duration T in the single input pattern scenario.

Simulation results are shown in Figure 29. On average, the DTA algorithm is
on average 4.08 times faster than the FILT algorithm, in terms of total runtime
(panel A). The time difference is largest for small input duration, and decreases
as T increases. With T = 16000, we observe an average of 2.39 times the run-
time improvement compared to the FILT algorithm. Additionally, our algorithm
requires on average 6.18 times fewer learning iterations to reach convergence. A
similar trend to the total runtime is observed here, with the largest difference
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observed for small T (panel C). In an average learning iteration, the DTA algo-
rithm is 2.30 times slower than the FILT algorithm, and this time difference can
be entirely attributed to the solver step (panel B). The per-iteration simulation
time is confirmed to be the same for both algorithms, regardless of T .

The above results indicate that the learning efficiency of the DTA algorithm
is overall a net improvement compared to the FILT algorithm. This achieves the
fourth goal of the algorithm, however the difference was overall not as large as
expected. Given the relatively high difficulty to implement the DTA algorithm
when compared to an implementation of the FILT algorithm, there is a significant
trade-off in model complexity and efficiency which must be considered for practical
applications. It is also worth noting that the runtime of the DTA algorithm is
in essence entirely dependent on the efficiency of the solver, which may be an
undesirable property.

3.8 Analysis of Learning Interference

In this section, the DTA algorithm is compared against the FILT algorithm on
a simple ‘toy’ learning problem, in order to investigate the effects of LI on each
algorithm. These results can be of potential benefit for two reasons: the first
reason is that the effects of LI are not well-characterised in the literature. While
it has been hypothesised that LI can affect the convergence rate of learning, this
has not yet been confirmed Xu et al. (2013). The second reason is that it is not
yet clear that the DTA algorithm can overcome this problem during learning.

3.8.1 Experimental Setup

Learning interference is defined as the phenomenon of adjusting the timing of
one output spike, inevitably affecting the timing of other output spikes. Here,
we demonstrate this problem with a toy problem: a learning scenario wherein a
neuron with two input channels is being trained to elicit two target output spikes,
denoted as td

1 and td
2. There is precisely one input spike arriving at each input

channel, which we denote as ti=1 and ti=2. The spike timings are set up so that:
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ti=1 < td
1 < ti=2 < td

2

As such, only ti=1 contributes to generating the first output spike td
1. We

assume also that the distances between ti=1, td
1 and ti=2, td

2 are both far enough
apart that a solution exists (if ti=1 and to

1 are two close together then the first
weight will grow large enough to elicit two output spikes after the first input, and
so no solutions exist). Figure 30A demonstrates this toy problem.

Figure 30: Illustration of learning interference with FP learning algorithm. A:
the Two-Spikes problem with two input spikes (red lines) and two desired output
spikes (blue lines). B: (top) First spike is converged, second spike is earlier than
desired. Hence, −∆wi is applied which changes both weights; (bottom) intersec-
tion between red and blue lines is κPSP(td) for each weight. C: because of the
previous weight update, the second spike is converged but the first is now later
than desired. Adjusting the first spike with ∆wi then affects the second spike.
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3.8.2 Learning Demonstration

In order to demonstrate the learning interference problem on a conceptual level,
we can first apply the FP learning algorithm in a step-by-step manner. The
straightforward weight adjustment rule in this algorithm (Section 2.3.3) provides
a simple illustration of the problem.

The example scenario involves a neuron which is already close to converging
to a solution, by setting weights such that to

1 = td
1, and to

2 − ϵ = td
1, where ϵ is

a positive variable with a small value (Figure 30)B. In the first step of the FP
algorithm, we set terror = to

2 and apply a negative weight adjustment of the form
in Equation 14. Since both weights have nonzero PSPs at to

2, both output spikes
occur later in time, after the first update (Figure 30C). As such, adjusting the time
of to

2 towards its desired value had the unintended effect of moving the time of to
2

away from its desired value. This fits with our definition of learning interference.

3.8.3 FILT Algorithm

In this experiment, we will apply the FILT algorithm to the above learning sce-
narios, and record the progress through weight space. All results shown here are
for ∆t = td

1 − ti=1 = td
2 − ti=2 = 7, however additional simulations were run for

5 < ∆t < 9 without reaching any different conclusions. Similarly to the learning
demonstration done with the FP algorithm, the initial weights are set such that
the first output spike is already converged, since this scenario demonstrates the
effects of LI most easily.

Simulation data for the FILT algorithm is shown in Figure 31. The top panel
demonstrates results for td

2 − td
1 = 10, which will be referred to as Scenario A.

The bottom panel demonstrates results for td
2 − td

1 = 40, which will referred to
as Scenario B. Results for values between 10 ≤ td

2 − td
1 ≤ 60 are also run, how-

ever no further conclusions could be drawn outside of the data shown here. The
background contour and colour shows the loss landscape of the problem, with the
vRD used as the loss value. The plotted line shows the position of the weights
in two-dimensional weight space after each learning iteration, with a red starting
point and white end point. The FILT algorithm converges in every permutation



CHAPTER 3. LEARNING PRECISELY TIMED SPIKES WITH DTA 79

Figure 31: The effects of learning interference on the FILT algorithm throughout
learning, illustrated using the ‘toy’ PTS problem. Colours and contours represent
the van Rossum distance values mapped to the weight space. Plotted line denotes
the progression of the learning from start (red) to finish (white). Top plot:
td
2 − td

1 = 10. Bottom plot: td
2 − td

1 = 40. The contours show discrete regions
of the loss value, which corresponds to the loss with (from lightest to darkest): 0
output spike, 1 output spike, and 2 output spikes generated by the neuron. Here,
we observe that the FILT algorithm finds the optimal solution, but does not take
a direct path.
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of the problem parameters.

The primary result is that there are two phases to the weight progression of
the FILT algorithm during learning. In the first phase, the weight vector initially
travels in a direction where the vRD value actually increases. Then, there is
a turning point where the loss sharply drops, and the learning transitions into
the second phase where the weight vector travels directly towards the optimal
solution. The explanation for the first phase of learning is that the second output
spike does not exist, hence a net positive weight update is applied to both weights,
during which learning interference draws w1 away from its converged value. This
continues until the weights are large enough for a second spike to occur, which
corresponds with the turning point entering the second phase of learning, and the
immediate drop in loss value.

The secondary result is that the effect of LI on w1 is larger for smaller values of
td
2 − td

1. This is an expected result, since it is logical that output spikes which are
temporally close have much larger overlaps in their PSPs, which results in larger
interference effects during weight adjustment. This phenomenon was also already
noted by Gardner and Grüning (2016), and is consistent throughout the rest of
the simulation data. Importantly, it was also observed that the FILT algorithm
converged in fewer learning iterations for larger values of td

2 − td
1 where there is

small interference, even though the distance that the learning must travel through
weight space is larger. This supports the hypothesis that learning interference has
an adverse effect on the convergence rate of multi-spike learning.

3.8.4 DTA Algorithm

Simulations of the toy problem were performed for the DTA algorithm, under
the same experimental conditions as with the FILT algorithm. The first result
is that under all permutations of the simulation parameters ∆t, the DTA algo-
rithm reported convergence within one learning iteration. While this immediately
demonstrates that the DTA algorithm overcomes the effects of learning interfer-
ence, it would be more interesting to investigate the underlying mechanisms of the
algorithm that lead to this result. To this end, we write the DTA weight update
equation in this learning scenario as follows:
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∆wi = ai + bi + ci

ai = ζd
1 λ(td

1 − ti)

bi = ζd
2 λ(td

2 − ti)

ci = ζo
1 λ(to

1 − ti)

Here, ai and bi represent the weight update terms made by the DTA algorithm
to channel i corresponding to td

1 and td
2, respectively. Similarly, ci represents the

weight update term corresponding to the actual output spike to
1 which exists at the

start of learning. Importantly, application of the DTA algorithm in this learning
scenario will be performed with the additional constraint ζo

1 = 0. There are two
reasons for this: firstly, because the initial weights are set such that to

1 = td
1, it

follows that λ(to
1 − ti

1) = λ(td
1 − ti

1) and ci is redundant, as any non-zero solution
value of ζo

1 can be absorbed by ζd
1 . The second reason is purely for demonstration

purposes, as this makes illustrating the results easier with only two update terms
ai and bi.

Simulation data for the same A and B scenarios as demonstrated in Figure 31 is
shown in Figure 32. Instead of showing the weight progression of the sole learning
iteration, we instead opted to plot the two vectors representing each update term:
a = [a1, a2] (dashed line) and b = [b1, b2] (dotted line). The solid line shows the
total ∆w vector. Here, the computation of the DTA algorithm as a result of the
two update terms is demonstrated. When compared to Figure 31, we observe that
the first phase of the weight progression in the FILT algorithm matches that of
b, however the first spike time is already converged and so a = [0, 0]. In the DTA
algorithm, the equality constraint corresponding to td

1 results in a negative value
of ζd

1 , which is reflected in the vector a.

These results illustrate the way that the DTA algorithm overcomes learning
interference. While the form of the DTA update equation is very similar to the
existing algorithms derived from the WH rule, the DTA algorithm considers all
weight update terms simultaneously, in a global and correlated fashion. In con-
trast, the weight update rule in the FILT algorithm are considered as a sum of
uncorrelated update terms.
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Figure 32: The weight computation of the DTA algorithm in the toy learning
problem, with the dashed and dotted arrows demonstrating the two update terms
corresponding with the two desired output spikes. Top plot: td

2 − td
1 = 10.

Bottom plot: td
2 − td

1 = 40
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3.9 Discussion

This chapter proposes the DTA learning algorithm for solving multi-spike PTS
problems for single-layer SNNs. The main novel contribution of this method is
to compute a set of variables ζ which scales the extent of the weight update
terms corresponding to each output spike, by solving an optimisation problem.
This is in contrast to iterative approaches to computing weight updates wherein
a static learning rate value is used to scale all weight update terms equally. Our
experiments suggest that the DTA method is viable and efficient, achieves high
memory capacity, and is able to overcome the learning interference problem.

κPSP appears to be the overall best learning kernel in terms of accuracy. Not
only does it exhibit the best memory capacity results, tuning the time constants
had a larger effect on the noise robustness of solutions compared to tuning the time
constants κSTDP and κFILT. However, the poor memory capacity results achieved
with κFILT are perplexing, as this kernel function is the most recent in the liter-
ature, and has documented advantages over κPSP in Widrow-Hoff-based learning
(Gardner and Grüning 2016). One possible hypothesis for this result is the acausal
properties of this kernel function, wherein channels that do not contribute to an
output spike can be potentiated. In the DTA algorithm, weight adjustment mag-
nitudes ζ can be much larger than the typical Widrow-Hoff-based learning rate,
which may cause the non-contributing channels to generate undesired spikes after
an update step.

An alternative approach to tuning the properties of κPSP for better noise ro-
bustness is simply to shift the learning kernel in the temporal dimension. In
initial investigations, we introduced an additional parameter s > 0 to be used as
κPSP(t) = κPSP(t − s). This had the effect of moving the kernel peak closer to
zero, thus making the membrane potential trajectory steeper. The resulting noise
robustness results were not as good as optimising parameter ϕ as in Section 3.6.
A more complex method is to tune the kernel time constants τ ∗

m and τ ∗
s separately,

however this increases the computational requirements of parameter optimisation.

One distinct advantage that our method has over the CONE algorithm is the
ability to process the input patterns incrementally, rather than as one batch. In
practical learning settings, it may be unrealistic to assume that all the input data is



CHAPTER 3. LEARNING PRECISELY TIMED SPIKES WITH DTA 84

available at the beginning of learning. In this scenario, the CONE algorithm must
calculate a completely new solution. Because our method computes incremental
weight updates, the existing solution can be used as the new initial weights as
new data becomes available. In particular, this is common in transfer learning
scenarios where the application dataset changes (Weiss, Khoshgoftaar and Wang
2016; Niu et al. 2020).

While the learning efficiency improvements that we observe here can be at-
tributed to the fast convergence speed of the algorithm, another contributing
factor is the simulation time. In our experiments, simulations are performed in an
event-based manner using spike-event queues, which works best for sparse inputs.
It is thus possible that with a more efficient simulation strategy, the runtime dif-
ference observed in Section 3.7 is lessened. However, we note that the improved
convergence speed of our algorithm does not only reduce the simulation time, but
also other necessary components of a learning iteration, such as the computational
requirement to calculate the spike train distance metric.

One of the central assumptions in the design of the DTA method is that ap-
plicable supervised learning problems are in the scenario where the number of
synaptic weights of the neuron is larger than the number of constraints. This
means that the computational efficiency of the proposed approach may not scale
favourably when the assumption is violated. Simulation results in Section 3.7
suggests that this is the case, with the runtime difference between the DTA and
FILT algorithms decreasing as the input pattern duration (and the number of
constraints) increases. Here, the runtime measurements only continue until the
memory capacity bound defined in Memmesheimer et al. (2014). While the DTA
algorithm demonstrates approximately half of the total runtime compared to the
FILT algorithm at this point, it is reasonable to expect that as the input dura-
tion increases the FILT algorithm may eventually be a better choice in terms of
efficiency.

One of the problems of the DTA algorithm in its current state is the as-
sumption made in each learning iteration that the set of inequality constraints
are sufficient to produce a correct solution. Evidently, the algorithm requires a
number of learning iterations to converge for difficult problems, meaning this as-
sumption is violated multiple times during learning. In a discrete-time simulation
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strategy, the number of inequality constraints are finite, and thus similarly to the
CONE algorithm we can guarantee convergence within a single learning iteration
(Lee, Kukreja and Thakor 2016). To alleviate this problem, we also conducted
experiments in continuous simulation time, however with additional inequality
constraints inserted at discrete intervals throughout the input duration T . As
expected, the smaller discretisation resulted in faster convergence speed (in terms
of required epochs), however the larger number of constraints and optimisation
variables result in much lower runtime efficiency.

The most important weakness of the DTA algorithm is that it is not applicable
to multi-layer SNN learning. This is because the algorithm requires both the out-
put times (in the constraints) and the input times (in Equation 33) to be specified.
In a multi-layer SNN, the spike times of an intermediate layer are not specified
by the learning problem, and as such learning cannot be performed in any layer.
This is a critical problem, as we cannot expect a sufficiently complex problem to
be solvable by a single-layer SNN. One possible solution is to use the ‘kernel trick’:
passing the input to an intermediate layer of higher dimensionality using random
weights. This approach has been successfully demonstrated by many analytical
SNN learning methods, which also cannot perform multi-layer training (Eliasmith
and Anderson 2003; Huang, Zhu and Siew 2006; Tapson et al. 2013; Tapson and
van Schaik 2013; Cohen et al. 2016, 2017; Kulkarni and Rajendran 2018; Boucher-
Routhier, Zhang and Thivierge 2021). However, we did not consider this a viable
method since our CPU-bound simulation strategies greatly limit parallelisation of
spike propagation, which would be prohibitive for a randomised hidden layer of
potentially tens of thousands of neurons.

3.10 Hardware Information

In this research chapter, we have measured the runtime of the DTA algorithm for
analysis and comparison to other learning algorithms in the literature. For the
sake of completeness, the details of the physical hardware and software used to
generate these measurements are detailed below in Table 2. Note that all neuronal
simulations and learning were performed on CPU.
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Component Detail
Software Programming Language Julia 1.6.2

Hardware

CPU
CPU clock speed
RAM
RAM speed

Table 2: Software and hardware information used for neuronal simulation, learn-
ing, and time measurements in Chapter 3.



Chapter 4

Spike Count Learning with DTA

4.1 Introduction

In the context of supervised learning for classification, it can be desirable to make
predictions based on the number of spikes, rather than the precise spike timing.
One of the reasons for this choice is the ability to delegate the decision of how
to generate the desired spike train from the user onto the learning process, which
was previously discussed in Chapter 2. However, there are a number of further
reasons why SC learning can be advantageous over PTS learning.

One benefit of SC learning is the ease at which inference can be carried out,
which has implications for the computational complexity of a model. To put very
simply, comparing a spike count integer to an integer label is a relatively straight-
forward task compared to computing the difference between two spike trains. In
practice, with a PTS learning setup one would typically have to implement some
form of spike distance metric, in order to determine which target spike sequence
the actual output is most similar to. In turn, this adds additional implementa-
tion complexity to the SNN model, as well as extra computational requirements.
This additional cost is especially important in real-world applications with large
datasets, and where hardware resources and inference speed are important con-
siderations.

Another reason for utilising SC learning is reliability. In Li and Yu (2020),
the authors demonstrated a learning algorithm on a synthetic learning task where

87



CHAPTER 4. SPIKE COUNT LEARNING WITH DTA 88

an SRM neuron is tasked to perform multi-class classification with each category
assigned to a different target spike count. Here, it was shown that after training,
the output of the neuron to the samples in a category forms an approximately
Gaussian distribution over the output spike count, which is centred around the
target label. This means that even if the neuron fails to reproduce the desired
number of spikes, it may still generate a spike count which is close to the label. An
implication of this result is that by setting target spike counts which are not close
together, a high classification accuracy can be maintained even if the problem is
too difficult to solve exactly as the labels specify Li and Yu (2020). In comparison
to PTS learning, we have observed in Section 3.8.2 that even a single missing spike
which is expected to exist at some precise time can cause the spike train distance
value to significantly change, which could potentially compromise the prediction
accuracy in the classification setting.

4.2 Motivations & Chapter Layout

In this chapter, the DTA-B algorithm is proposed, which is a direct extension of
the DTA algorithm (Chapter 3) designed for supervised learning tasks involving
a target spike count. The overall goals of the experiments in this chapter are as
follows:

1. Extend the DTA algorithm to SC learning with an arbitrary target number
of spikes.

2. Measure the memory capacity of DTA-B in synthetic benchmark tasks.

3. Benchmark DTA-B performance on standard real-world benchmark tasks.

4. Compare the DTA-B performance with existing methods in the literature.

In order to identify appropriate values for the desired spike times, we adapt and
incorporate the STS function into the DTA-B method. The STS was introduced
in Chapter 2 and originally proposed by Gutig (2016). We will show that this
approach can be simplified and applied to the DTA weight update method in order
to predict desired output spike times. Once the spike times have been computed,
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the original DTA algorithm from Chapter 3 can be used without modification in
order to generate the spikes.

The rest of this chapter is organised as follows. In Section 4.3, the DTA-B
method for SC learning is described in detail, which largely involves an explanation
of the modified STS computation. Section 4.4 provides a learning demonstration of
the proposed method on synthetic datasets. Additionally, results are presented in
order to provide a first comparison of the method to two other learning algorithms
in the literature. In Section 4.5, the runtime of the algorithm is investigated,
and the computational complexity of the modified STS operation is discussed.
In Section 4.6, numerical experiments are conducted to investigate the ability
of the algorithm to learn a large number of output classes. In Section 4.7, the
algorithm is applied for the first time on small but standard benchmark datasets
which are representative of real-world learning scenarios. Here, several options to
modify the architecture of the SNN model is also investigated. Finally, in Section
4.8 the model is applied to the MNIST dataset, which elucidates on the model
performance when provided with a large amount of training data belonging to
multiple input categories.

4.3 Method Description

The learning scenario is formalised as follows: given a fixed input pattern x =
[x1, x2, ..., xN ] where xi = [ti

1, ti
2, ...] is the input spike sequence arriving to the i-th

input channel of an SRM neuron, and a desired spike count denoted as |y|, the
learning problem involves computing a set of weights w with which the output
spike sequence o that the neuron generates is such that |o| = |y|. Here, |x| denotes
the cardinality of x.

Each learning iteration of the DTA-B algorithm is split into two computational
steps. In the first step, we apply a process which will be referred to as the
Dynamic Threshold procedure. The outcome of this process is to identify |y|
target spike times, denoted as y∗ = [t∗

1, t∗
2, ..., t∗

|y|]. In the second computation
step, we substitute y∗ in place of the desired spike sequence used in the DTA
algorithm (Equations 30 and 33), and compute the solution weights as described
in Chapter 3.
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4.3.1 Dynamic Threshold Procedure

Figure 33: Dynamic threshold procedure for determining desired spike timings for
output neurons. A: Membrane potential V (t) (solid line) and membrane poten-
tial without reset V0(t) (dashed line) of a neuron with two output spikes. The
appropriate time to generate a new spike is t1, since V (t1) is closest to ϑ, thus
requires the smallest weight adjustment. B: decreasing threshold yields an extra
spike at t1. C: increasing threshold removes the spike at t2.

The underlying idea of the Dynamic Threshold procedure is the similar to
the basic principle of the STS. In the scenario where |o| ≠ |y|, we raise or lower
the spiking threshold from ϑ to a new value ϑ∗ with which the neuron generates
exactly |y| output spikes. The identification of an appropriate value for ϑ∗ involves
interval halving in the interval [0, 10ϑ), stopping when the correct spike count is
observed. An illustration of this procedure is shown in Figure 33, for identifying
appropriate transitions between 2 spikes to 1 or 3 output spikes.

When compared to the original procedure proposed by Gutig (2016), our Dy-
namic Threshold process has two important differences. Firstly, our approach has
a relatively loose definition for the target threshold ϑ∗, compared to the critical
points ϑ∗

k used by the MST. In the original version, the process of interval halving
was stopped when near to critical value ϑ∗

k, and subsequently an additional root



CHAPTER 4. SPIKE COUNT LEARNING WITH DTA 91

solving step was used to identify ϑ∗
k as numerically close as possible to the real

value defined by Equation 29. This is because the weight update calculations in
the MST algorithm requires highly accurate ϑ∗

k in order to derive a gradient. In
the DTA algorithm, there is no such requirement. As a result, any threshold ϑ∗

which generates spike times satisfying the condition |o| = |y| is sufficient. This
has implications on the efficiency of the algorithm, since the interval halving pro-
cess is very computationally expensive: each halving step requires one simulation
of the neuron with the new threshold.

Secondly, a fall-back mechanism was introduced into the Dynamic Threshold
procedure to handle failure. Specifically, if the membrane potential is negative at
every point in the neuron simulation (all weights negative), the Dynamic Thresh-
old procedure will be unable to converge to a suitable ϑ∗ solution for any |y| > 0.
This is due to two reasons: firstly, the interval halving step is only performed in
a positive interval. Secondly, the neuron resting potential is zero, so by definition
of the neural dynamics a negative threshold cannot be defined. Note that the
original MST procedure did not handle this failure state in any way. When the
Dynamic Threshold procedure has no solutions, our approach is to set a single
desired spike situated at the very end of the input pattern, written as y∗ = [T ].
As a result, the DTA-B algorithm will attempt to make positive weight adjust-
ments in order to achieve a positive membrane potential. We find the choice of
this desired spike time works reasonably well for both our synthetic and real-world
benchmarks since at this time the probability of the input PSPs being non-zero
is very high. An alternative choice for a desired spike time in this scenario is
the time of the largest (negative-valued) membrane potential peak, however it is
difficult to find this timing without analysing the entire history of input PSPs.

It is important to summarize the main similarities and differences between the
DTA-B and the MST algorithm (Chapter 2). In general, the similarity between
the two algorithms is conceptual: both are designed with the idea that the optimal
target output spike times can be computed by applying a dynamic threshold ϑ∗ to
the neuron, following the principle of minimum disturbance. The main differences
are as follows:

• Different definition of ϑ∗: In the MST, there is only one possible ϑ∗ value per
learning iteration. In DTA-B, any value from a range of possible threshold



CHAPTER 4. SPIKE COUNT LEARNING WITH DTA 92

values are chosen during interval halving.

• Different process to determine ϑ∗: In MST, ϑ∗ is found by interval halving
and then root-solving, in DTA-B the process is only interval halving.

• Different weight adjustment computation: in MST, the obtained spikes o
under dynamic threshold is used in a recursive analytical derivation of the
gradient of the membrane potentials at target and desired spike times. In
DTA-B, o is used as times for inequality constraints of the CSP.

• Fallback mechanism for dynamic threshold: in MST, the algorithm fails
when the membrane potential is negative at all times during simulation. In
DTA-B, this is recoverable.

4.3.2 Algorithm Summary

A complete summary of the DTA-B algorithm is given in Algorithm 2.
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Algorithm 2: DTA Algorithm for learning Spike Counts. The algorithm
takes in a set of inputs X and target output spike counts Y, and compute
a synaptic weight vector w such that all the outputs of each input pattern
xp is of the same length as target count |y|p. The function δ denotes the
Dirac delta function.

Data: X = {x1, x2, ..., xp}, Y = {|y1|, |y2|, ..., |yp|}
1 initialise neuron with weights w;
2 accuracy ← 0.0;
3 while epoch < maxEpoch or accuracy < 1.0 do
4 shuffle X;
5 foreach xp in X do
6 compute output |o|;
7 compute ϑ∗ where |o| = |yp| by Dynamic Threshold;
8 compute ∆w (Eq. 33, 30 & 32);
9 w∗ ← w + ∆w;

10 w ← w∗;
11 end

12 accuracy ←
∑

xp∈X δ(|o|−|yp|)
P

;
13 end

4.4 Learning Performance

This section provides a benchmark of the DTA-B algorithm on synthetic data,
wherein the input training patterns are randomly generated using Poisson point
processes in the same manner as the experiments in Chapter 3.

In addition to providing a learning demonstration, a secondary aim of this
section is to benchmark the DTA-B algorithm against existing SC learning meth-
ods. We choose two algorithms here for comparison purposes: firstly, the MST
(Gutig 2016) will provide a baseline point of comparison, which is useful to high-
light the effects of the simplified Dynamic Threshold procedure. However, the
MST learning rule was designed to solve a very specific learning problem known
as aggregate-label learning, and we do not expect it to perform remarkably well in
our experimental conditions. To this end, we also compare the DTA-B algorithm
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with the EMLC learning rule (Li and Yu 2020). This is a more recent method
which claims to have superior learning performance and convergence speed when
compared to the MST. The EMLC algorithm achieves this by two design charac-
teristics: firstly, the learning rule also performs a simplified version of the original
STS function, where only one output spike time is adjusted at each learning
iteration. Secondly, their weight update rule does not contain any recursive com-
putations, and thus is significantly simpler than the MST weight update. Unlike
the MST algorithm, the efficacy of the EMLC rule has been demonstrated on a
similar experimental setup to the one we use here.

4.4.1 Experimental Setup

In each experimental trial, a set of input patterns with N = 500 synaptic channels
are randomly generated with a Poisson rate of ν = 0.005 over a time window
T = 50. As the input patterns are generated, they are evenly and equally split
into five input classes, which are labelled with target spike counts |y| between 1
and 5. Successful convergence is decided by 100% classification accuracies on the
entire training set. Importantly, learning performance is measured here using a
similar process to the memory capacity measurements made in Section 3.4: 50
independent trials were run for each algorithm, and during each trial the number
of input patterns is iteratively increased by 5 each time successful convergence is
reported (1 additional pattern for each input class), thus increasing the learning
load. A learning trial concludes at the first iteration when less than 50% of all
trials have failed to converge, and the total number of patterns at this point is
taken as the learning performance.

For all neurons, the initial synaptic weights are drawn from a Gaussian dis-
tribution with mean and standard deviation both set to 0.01, and this initial
condition is controlled across all three algorithms. All algorithms are run for a
number of learning epochs. Each epoch is split into a number of learning it-
erations, and in each iteration only one input pattern is randomly selected for
learning. A learning epoch concludes when all input patterns in the training set
have been processed. For the DTA-B algorithm, the learning is carried out for a
maximum of 100 epochs. Note that the DTA-B algorithm is applied here without
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any domain constraints. Initial investigations indicated that learning instabilities
are also present here, in the form of large values of the optimisation variables
ζ that cause the number of spikes to sharply increase. However, the number of
target spikes is relatively small in this experiment when compared to the PTS
learning scenario, and the instabilities did not have as adverse an effect on the
overall runtime.

The EMLC and MST algorithms were trained for a maximum of 200 learning
iterations. Before the experiment was performed, a grid search parameter optimi-
sation was carried out for both the MST and EMLC algorithm, in order to find
optimal learning parameter values. As a result, the learning rate parameter is set
to η = 0.009 for the EMLC algorithm, and η = 0.001 for the MST algorithm,
which provided the best average convergence speed when learning a set of 10 in-
put patterns split equally into 5 classes. A momentum acceleration coefficient was
also part of the grid search, which was set to µ = 0 for the EMLC algorithm, and
µ = 0.2 for the MST algorithm.

4.4.2 Simulation Results

Number of Patterns
DTA-B 135
EMLC 110
MST 70

Table 3: Learning performance comparison between DTA, EMLC, and MST al-
gorithms.

Simulation results are shown in Table 3. Overall, the DTA-B algorithm
achieved 23% better learning performance compared to the EMLC rule, and 93%
better compared to the MST algorithm. Since the number of learning epochs
are quite limited for each learning rule, this result should not be considered to
be indicative of the maximal memory capacity of the algorithms. It is entirely
possible that given a very large number of learning iterations, all algorithms here
demonstrate similar memory capacity results. However, due to constraints in com-
putational resources we were unable to increase the maximum number of learning
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epochs much higher, especially for the MST algorithm which is very computation-
ally expensive.

Instead, the above results indicate that the DTA-B algorithm exhibits better
learning convergence speed compared to both the EMLC and MST learning algo-
rithms. When comparing between the DTA-B algorithm and the MST algorithm,
the DTA-B algorithm converges in approximately 9 times fewer learning epochs,
on average. When compared to the EMLC algorithm, the performance difference
is more gradual, and increases with the number of input patterns. With only 5
input patterns in the training set, the DTA-B and EMLC algorithm converges in
approximately 11 and 25 epochs, respectively (EMLC is 127% slower to converge).
With 50 input patterns in the training set, the DTA-B and EMLC convergence
epoch is approximately 25 and 90, respectively (260% difference).

Additionally, we recorded metrics on the number of fall-back weight adjust-
ments made by the DTA-B algorithm during this experiment. On average, the
percentage of fall-back updates are 7.2% across all learning trials. Additional tri-
als were run with longer input pattern duration (T = 100, 150) and larger number
of weights (N = 1000, 1500), and we did not observe any significant differences in
the number of fall-back updates compared to the original experimental settings.

4.5 Algorithm Runtime

In this section, we investigate the runtime complexity of the proposed DTA-B
learning algorithm through numerical experiments. In particular, we are interested
in the following research questions:

1. Investigate the overall runtime differences between the DTA-B, EMLC, and
MST algorithms.

2. Investigate the computation time required by the Dynamic Threshold pro-
cedure in comparison to the original (Gutig 2016).

3. Determine how the Dynamic Threshold runtime changes as the input dura-
tion T increases.
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4.5.1 Overall Runtime Comparison

In this experiment, we aim to investigate the overall runtime of the DTA-B al-
gorithm in comparison to the EMLC and MNIST methods. The experimental
setting utilises randomly generated Poisson input patterns split into five classes,
with the same hyper-parameters to that of Section 4.4. In particular, we are inter-
ested in measuring the total runtime of each algorithm as the number of inputs in
the training set increases. Only learning trials which have successfully converged
to a solution are included in the measurements, since we are interested in the
runtime to convergence.

Figure 34: Comparison of the overall runtimes of the DTA, EMLC, and MST
learning algorithms in a spike count learning task with 5 input categories. The
total number of inputs is shown on the x axis.

Simulation data is demonstrated in Figure 34. Overall, the DTA-B algorithm
exhibited the best overall runtime out of the three algorithms. Here, the MST
algorithm exhibits average runtime which is 13.7 times slower compared to the
DTA-B algorithm, which is consistent throughout the different sizes of the input
set. However, we note that the MST rule is not designed for classification tasks
involving multiple short input patterns, or necessarily even for fast convergence
speed. As such, the performance difference between DTA-B and the EMLC al-
gorithm is a much more useful statistic, especially since our setup matches the
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experimental conditions in Li and Yu (2020) reasonably well. When compared
to the DTA-B method, the EMLC exhibits runtime which is between 2.4 and 3.8
times slower in terms of runtime, with an average difference of 3 times.

The results shown here establishes that the DTA-B algorithm is capable of
outperforming the EMLC algorithm in both overall convergence speed and overall
runtime. This is in spite of the fact that the EMLC algorithm has a much simpler
weight update, which does not require the computationally expensive Dynamic
Threshold step, or an interior-point solver step. In the range of parameter values
tested here, the approximate difference in runtime between the two algorithms
is consistent throughout, and the data does not indicate that as the size of the
training set increases, the performance difference becomes smaller. This is in
contrast to the results established in Section 3.7 regarding the DTA-B runtime in
PTS learning problems, where the DTA improvements become less significant as
the input duration increases.

4.5.2 Dynamic Threshold Runtime

In this experiment, we aim to investigate the runtime of the Dynamic Threshold
procedure, as described in Section 4.3. Importantly, we will compare the per-epoch
runtime of the Dynamic Threshold procedure against that of the original process
proposed in Gutig (2016), in order to characterise whether the simplifications
made in the proposed process have had an effect on the overall efficiency of the
algorithm.

The experimental setup is as follows. In each trial, we randomly generate one
Poisson input pattern of rate νin = 0.005, and set the target spike count to |y| = 5.
The DTA-B and MNIST algorithms are applied to learn this pattern for a single
iteration each, and we measure the runtime of the Dynamic Threshold procedure
as well as the runtime of the weight update steps in each method.

Simulation data are demonstrated in Figure 35, which shows the differences
between the DTA and MST algorithms for various values of the input duration T ,
for both the runtime of the dynamic threshold step and the weight update step.
For the MST algorithm, we observe that similar runtimes are observed for the
dynamic thresholding step and the weight update step. For the DTA algorithm, we
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Figure 35: Per-epoch runtime comparisons between the DTA-B and MST learning
algorithms. Measurements are performed for both steps in the learning process:
Dynamic Threshold and weight update calculations.
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observe that the thresholding step constitute a major computational bottleneck of
the algorithm, with the weight update step exhibiting near constant runtime over
the tested range of T . On average, our Dynamic Threshold process demonstrates
a 37% reduction in runtime, compared to the original procedure. However, our
process appears to exhibit a linear time complexity, similarly to the original.

4.6 Memory Capacity

Unlike the theoretical results and numerical evidence set out by Memmesheimer
et al. (2014) to prove that a maximal learning capacity exists for spiking neurons in
the PTS learning task, there are no such results when it comes to learning tasks
involving spike counts. Part of the difficulty in establishing this type of result
is in the flexible nature of the learning task. There are a number of different
approaches to set up a SC classification problem, in which the variables which
can vary include the input pattern duration, the number of target output spikes,
the number of input patterns in each class, and the number of input classes.
Furthermore, this is without considering the architectural parameters such as
the neuron time constants, the number of input afferents, and so on. While a
theoretical analysis of the overall capacity of SRM neurons to solve SC tasks is
beyond the scope of the current work, it is nonetheless an interesting problem to
characterise the DTA-B algorithm in further depth, in order to better understand
its learning capabilities.

To this end, this section presents an experiment which attempts to measure
the ability of the algorithm to solve a specific variant of the SC task. In particular,
the learning scenario we are interested in is one where the algorithm learns only
one input pattern per input category, but is trained to correctly learn as many
input classes as possible. Our aim is to understand the ability of the algorithm
to train neurons to precisely generate a large range of output statistics (spike
counts), while the average input statistics (input firing rate and input duration)
remain constant.
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4.6.1 Experimental Setup

The capacity of the algorithm to train neurons in this task is denoted as Cα.
We propose to measure Cα as follows. For each measurement, we will run 50
independent trials. In each learning trial, we begin with an input training set
of one pattern which has a target spike count of one. If the DTA-B algorithm
can train a single SRM neuron on this classification task, then we add a second
input pattern to the training set, which has a target spike count of two. All
input patterns are generated using as Poisson point processes with spiking rate
νin = 0.005. Each time the input training set grows, the previously trained neuron
is used as the starting point of another training process. This continues until the
algorithm does not converge within 100 learning epochs, and the trial ends. When
half of all learning trials have failed to converge, the number of input classes in
the training set is measured as Cα.

Importantly, the experiment will characterise the learning capabilities of the
algorithm with respect to several different parameters by performing a grid search.
Each permutation of the parameters result in one measurement. The list of pa-
rameters, as well as their search ranges, are shown in Table 4.

Parameter Name Search Values
τm [10, 20, 30]

τm/τs [2, 4, 6, 8]
N [100, 316, 1000, 3162]
T [10, 32, 100, 316, 1000]

Table 4: Parameter values for Cα measurements.

4.6.2 Simulation Results

Simulation results of Cα measurements are shown in Figure 36. Importantly, in the
large N limit (N = 10000) we find that the learning capacity Cα can be expressed
as an exponentially decaying function of a parameter τ , where τ = √τmτs is called
the PSP correlation time constant. Interestingly, in Memmesheimer et al. (2014)
the authors established that the parameter τ is crucial to explain the maximal
capacity of SRM neurons in PTS learning tasks.
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Figure 36: A: Decoding capacity Cα, plotted against νinτ where νin is the (con-
stant) input spike rate and τ is the PSP correlation time√τmτs. In general, Cα can
be expressed as an exponentially decaying function of τ . Symbols (circle, square,
triangle) respectively represent different series measured with τm = 10, 20, 40.
The range of the number of synaptic weights N is chosen on the log scale
(102, 102.5, 103, ...).
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Specifically, we find that Cα decreases with increasing τ . This means τ should
be small in order to maximise the capacity, and thus the neural dynamics that
maximises Cα in the large N limit is such that the membrane potential is able to
rise rapidly upon receiving an input spike, and also decays rapidly afterwards. The
neuron then operates in a fashion which is reminiscent of coincidence-detection,
where each output spike is only generated by coincident inputs during a very
small time window. Furthermore, as τm decreases, the time duration of the reset
pulse (Equation 12) becomes shorter, which allows the neuron to more easily elicit
spikes in quick succession. Additionally, outside of the large N limit the capacity
quickly deviates from the behaviour described above. Assuming N is fixed, for τ

smaller than a critical value, Cα instead increases with increasing τ . We find that
the critical value also forms an exponentially decaying function which depend on
the average number of spikes in an input pattern (calculated as NTνin), as shown
in Figure 36B.

The above result is consistent with the conclusions published in Memmesheimer
et al. (2014) for the PTS task, and in Rubin, Monasson and Sompolinsky (2010)
for the binary (two-class) SC task. In both of these studies, the memory capacity
decreases as τ increases, assuming that N is large. This then suggests that re-
gardless of the specific learning task, or indeed of whether learning is single-spike
or multi-spike, the ability for the membrane potential to rapidly respond to new
inputs or forget past stimulus is central to the computational capacity of spiking
neuron models. However, it is important to reiterate that the above numerical
results are valid only for characterising the capabilities of the DTA-B algorithm
to train neurons within a limited number of training epochs. This is the main
difference between our conclusions and the ones drawn in Memmesheimer et al.
(2014) and Rubin, Monasson and Sompolinsky (2010), in that we are not attempt-
ing to uncover the computational properties of the neuron in this multi-spike SC
learning task, but only of the algorithm.

4.7 Benchmark Performance: UCI Datasets

In this section, the ability of the proposed SC learning approach to generalise
from training data to unseen sample is evaluated using two standard benchmark
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datasets which can be accessed from the UCI Machine Learning repository (Dua
and Graff 2017). Additionally, we will also consider a simplistic option for ad-
dressing a significant weaknesses of the DTA-B algorithm, specifically its inability
to back-propagate in order to train deeper architectures.

4.7.1 Dataset Descriptions

Fisher’s Iris Dataset

The Iris dataset Fisher (1936) is a classic data classification problem involving 150
samples, which are evenly divided into three classes of different species of the iris
plant: setosa, vesicolor, and virginica. Two of the input classes are not linearly
separable. Each sample consists of four continuous and real-valued features: petal
width, petal length, sepal width, and sepal length. This dataset is one of the most
commonly used for benchmarking supervised machine learning and neural network
algorithms. Of the 150 samples in the dataset, 50% is chosen at random as the
training set, and the other 50% is used to measure generalisation performance in
the test phase.

Wisconsin Breast Cancer Dataset

The Wisconsin Breast Cancer (WBC) dataset (Wolberg 1992) is a binary data
classification problem containing 699 samples split into two different classifications
of breast cancer tumour: benign and malignant. The dataset is imbalanced,
containing 458 and 241 samples in each respective class. This dataset has been
used for analysis of machine learning algorithms, because imbalanced data can
cause problems during learning (Mohammed et al. 2020). Note that 16 samples
in this dataset contained missing values, which were discarded for a final 683
samples. Each sample consists of 9 discrete-valued features. For training and
testing, a 50-50 split is used.
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4.7.2 Network Architecture

Two different fully-connected feed-forward SNN architectures are proposed here
to solve the above classification tasks: the first is a one-layer network and the
second is a two-layer network with a population of classifiers in the hidden layer.

Learning Layers

The one-layer SNN is made up of a single output layer of SRM neurons, where
the number of neurons is the same as the number of input classes (3 for Iris
and 2 for WBC). Each neuron in the layer is assigned one of the input classes,
and if presented with the corresponding input the neuron is trained to generate
|y| output spikes. If the neuron is presented with an input not belonging to its
designated class, then it is trained to remain silent. A parameter optimisation
was performed to optimise |y| before learning, which showed that classification
accuracy increased with |y|, but does not improve above |y| = 10, so this value is
set as the target spike count.

The two-layer SNN is made up of an output layer of SRM neurons which is
trained exactly the same as the output layer in the one-layer SNN. The hidden
layer contains one population of SRM neurons for each input class, with each
neuron in a population also trained to generate |y| spikes when seeing the des-
ignated class, remaining silent otherwise. The basic idea of the hidden layer is
to train multiple classifiers, which make the classification boundary more robust
in the case that the learning fails to train one of the classifier neurons. For the
Iris dataset, the hidden layer contains two neurons in each population (total 6
neurons), and for the WBC dataset there are three neurons for each population
(also total 6). Note that the this approach is a rather primitive construction of a
two-layer network which we do not expect to scale up to larger datasets. However,
it would be interesting to see if training populations of classifiers is effective to
improve the generalisation performance.

Since the number of classification neurons is equal to the number of input
classes, the classification of the network is represented by the neuron which ex-
hibits the highest number of output spikes during a pattern presentation. This
classification is then compared to the label to determine the accuracy. In addition
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to this, for the one-layer SNN we also tried a setup with a single neuron learn-
ing all three classes, where the neuron is trained to generate 1 spike when seeing
the first input class, 2 spikes for the second input class, and so on. However, we
find that in this setup the learning performance is (approximately 10%) worse
compared to using one neuron to represent each class.

Input Encoding

Figure 37: Gaussian population coding. Here, the input numeric value (dashed
vertical line) is plotted against a number of overlapping Gaussian functions with
varying means (solid lines). The y-values of the intersections between the dashed
line and the solid lines are then taken as the (encoded) input spike times. In this
way, a single numeric value is encoded as a population of input spikes. Further
details of how the Gaussian functions are set up are given in the rest of this
section. Figure originally published in Sboev et al. (2018).

Before learning, the real- and discrete-valued features of the datasets must
be temporally encoded into spike times. Here, population encoding (Bohte, Kok
and La Poutre 2002) with Gaussian receptive fields of the form G(v, µj, σ) =
exp(−(v − µj)2/2σ2), wherein v is the feature value. The basic idea is to encode
each input feature into a population of values, which makes the features more
linearly separable (Figure 37). Each feature is represented by M = 10 identically
shaped Gaussian functions centered at:
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µj = Imin
j +

(2i− 3
2

)(Imax
j − Imin

j

M − 2

)
, j ∈ {1, 2, ..., M}

Here, Imax
j and Imin

j represents the maximum and minimum of the j-th feature,
respectively. The spread of the Gaussian functions are determined by:

σ = 1
β

(
Imax

j − Imin
j

)
(M − 2)

Here, 1 ≤ β ≤ 2 is an adjustment factor, which is set to 1.5 because this value
produced the best classification results. As such, each feature value v is converted
into M output values 0 ≤ G(v, µj, σ) ≤ 1, which is then linearly converted into
spike times as tj = T −G(v, µj, σ)T .

4.7.3 Experimental Setup

The experimental conditions is are as follows. 50 independent trials were con-
ducted for the Iris dataset and 20 independent trials were conducted for WBC,
each with a random split of the data into training and testing sets. All networks
are trained for a maximum of 20 epochs. On the Iris dataset, learning is performed
using the DTA, EMLC, and MST algorithms using both SNN architectures de-
scribed above, which gives additional data points for analysis of the two-layer
approach. On the WBC dataset, the learning accuracy of the DTA-B algorithm
is compared with other published results in the literature, in order to provide a
point of comparison with state-of-the-art supervised learning methods which are
able to train multi-layer networks with back-propagation.

During each trial, the initial weights of the network as well as the order of
pattern presentation are controlled across the different methods. Additionally, an
early-stopping condition was put in place, where the learning is allowed to stop if
classification accuracy on the test set reaches 100%. Before learning, a grid-search
parameter optimisation was conducted using only 15 input samples. As a result,
the learning parameter values for EMLC and MST are set as η = 0.02, µ = 0 and
η = 0.009, µ = 0.1, respectively. The input pattern duration T was also optimised
in the range of 0 < T < 100, however in this range there were no observable
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differences in the training accuracies of any of the learning algorithms.

4.7.4 Classification Results

Iris Classification Performance

Table 5: Training and test accuracy of the proposed method on the Iris flower
dataset formulated as a spike count learning problem. Data represents 50 inde-
pendent trials.

Method Architecture Train (%) Test (%)
DTA-κPSP 40-3 96.8 ± 2.03 96.1 ± 2.61

EMLC (Li and Yu 2020) 40-3 89.6 ± 6.91 84.8 ± 6.10
MST Gutig (2016) 40-3 89.4 ± 2.62 86.3 ± 4.98

DTA-κPSP 40-6-3 97.3 ± 1.03 99.1 ± 1.45
EMLC (Li and Yu 2020) 40-6-3 93.6 ± 4.20 90.3 ± 2.42

MST Gutig (2016) 40-6-3 92.4 ± 1.98 91.1 ± 1.28

Training and generalisation accuracies for the Iris dataset are shown in Table 5.
Here, the DTA-B algorithm achieves approximately 10% better generalisation ac-
curacy compared to EMLC and MST using the one-layer SNNs. For the two-layer
SNNs, the DTA-B algorithm achieves approximately 8% better generalisation ac-
curacy compared to these algorithms, reaching a state-of-the-art final accuracy of
99.1%. We also observed an improvement in terms of convergence speed (Figure
38): to achieve the same level of generalisation accuracy that the DTA-B method
achieves after one epoch of training, the EMLC and MST methods both require
approximately seven epochs. After the first four training epochs, the DTA-B
method achieves better performance than the final accuracy demonstrated by the
EMLC or MST algorithms

The Friedman test (Sheldon, Fillyaw and Thompson 1996) was used on the
generalisation performance, in order to determine whether or not there is a sig-
nificant difference between the average ranks of the three algorithms in Table 5
under the null hypothesis. The calculated Q-statistic is Q = 16.8, which yields a
corresponding p-value of p = 0.0002. Thus, we reject the null hypothesis that the
three algorithms have no significant differences in generalisation accuracy. The
Nemenyi test was used for post-hoc analysis to determine pairwise differences,
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which reported significant differences between the DTA-B method, when com-
pared to the EMLC and MST methods (both yielding p-values of 0.001). When
comparing the EMLC and MST methods, the statistical difference was not signif-
icant (p = 0.425).

Figure 38: Generalisation speed of shallow networks on the Iris dataset, over 20
epochs of training. Error bars are standard deviations. Each data point represents
50 independent trials.

Notably, in this classification task our one-layer network performance is compa-
rable to two-layer approaches in the literature. In particular, the DTA-B method
achieve similar predictive accuracy when compared to Bohte, Kok and La Poutre
(2002) (reported 96.1%), Sporea and Grüning (2013) (94%), and Gardner and
Grüning (2021) (95.2%). The works noted here all utilise a multi-layer architec-
ture with one hidden layer, containing 9-10 hidden neurons. In addition, Bohte,
Kok and La Poutre (2002) and Gardner and Grüning (2021) uses M = 12 popu-
lation input neurons to encode each feature, which is more than our M = 10. In
terms of convergence speed, the DTA-B method also demonstrates an improve-
ment compared to existing methods. For example, Gardner and Grüning (2021);
Tavanaei and Maida (2019); Taherkhani et al. (2018) reported high (> 94%) pre-
dictive accuracies after 30, 120, and 100 training epochs, respectively. On average,
the one-layer network reaches this performance after the first 8 epochs, and the
two-layer network reaches this performance after the first four epochs. It is also
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important to note that while some of the works discussed here also performs clas-
sification with multiple output spikes, none of them utilise a SC learning setup,
which may also be a major factor in the performance difference.

WBC Classification Performance

Table 6: Training and test accuracy of the proposed method on the Wisconsin
Breast Cancer dataset formulated as a spike count learning problem. Data repre-
sents 20 independent trials.

Method Architecture Epochs Train (%) Test (%)
DTA 63-2 5 96.6 ± 1.20 96.7 ± 2.00
DTA 63-6-2 5 97.8 ± 0.52 98.0 ± 0.97

(Bohte, Kok and La Poutre
2002)

64-15-2 1500 97.6 ± 0.20 97.0 ± 0.60

Xie et al. (2016) 108-9-2 16 98.0 ± N/A 96.0 ± N/A
Gardner and Grüning

(2021)
63-20-2 100 98.4 ± 0.04 97.1 ± 0.08

Simulation results for the WBC dataset are shown in Table 6. A similar trend
is observed here, where the one-layer network demonstrates slightly below state-
of-the-art classification performance, and the two-layer network demonstrates im-
proved generalisation accuracy in comparison. In terms of convergence speed,
both networks achieve above 96% generalisation accuracy after only 5 epochs of
training, which is slightly faster than compared to Gardner and Grüning (2021).
Additionally, predictive accuracies do not appear to improve significantly, even
if training was performed for up to 20 epochs. Increasing the number of neu-
rons in each hidden population of the three-layer network also did not improve
performance (tested up to 5 neurons in each population, or 10 neurons total).

4.8 Benchmark Performance: MNIST Dataset

In this section, the proposed SC learning approach is applied to the MNIST
dataset of handwritten digits (LeCun and Cortes 2010). With this larger dataset,
the initial goal was to investigate whether the two-layer architecture in Section 4.7
will scale up to a more complicated problem. Initial investigations showed that
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this was not the case, even with up to 20 neurons per population of classifiers in
the hidden layer the method did not demonstrate above 92% accuracy. As such, a
different type of ‘hybrid’ SNN architecture from the literature will be the subject
of study here.

4.8.1 Dataset Description

The MNIST dataset of handwritten digits is an overwhelmingly popular problem
in the computer vision sub-field of ML. The dataset has the advantages of having
samples of relatively small dimensionality, but many such samples, and most im-
portantly there exists an over-abundance of existing ML studies on this dataset,
which provides ample sources for comparison purposes. The dataset consists of
60000 training and 10000 test images in gray-scale format of 28 by 28 pixels, split
into ten classes labelled from 0 to 9. Both the training and test sets do not have
balanced splits between each of the 10 classes.

4.8.2 Network Architecture

Since other methods which are not able to perform back-propagation do exist in
the literature, there exists several different frameworks to allow researchers to test
these algorithms in multi-layer networks. One relatively recent approach is a hy-
brid ANN-SNN framework called CSNN (Xu et al. 2018b). In this framework, the
SNN learning algorithm is only applied on the (spiking) output layer to perform
classification.

The CSNN framework combines traditional CNN with a SNN classifier. More
formally, the architecture has two layers of rate-coded neurons, and two layers of
spiking neurons. Computation through the network can be decomposed into three
parts: feature extraction, temporal encoding, and classification. The technical
details of this architecture are as follows:

First, we train a traditional rate-coded CNN, which provides feature extraction
capabilities. The CNN only has three layers: a convolutional layer (6C5), a max-
pooling layer (2P2), and a fully connected output layer with 10 neurons. We train
this CNN using traditional back-propagation with cross-entropy error function for
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Figure 39: Overview of the CSNN architecture (Xu et al. 2018a). The Convolution
and MaxPool layers are composed of rate-coded neurons, while the Encoding and
Output layers are composed of spiking neurons. In our setup, the Encoding layer
has 864 neurons and the Output layer has 10 neurons.

30 epochs, then the CNN parameters are fixed and the output layer discarded.
The resulting partial-CNN model (the convolutional and pooling layer) performs
extraction of invariant local feature maps from the input image.

The feature maps produced by the above partial-CNN must be converted into
a spike-based encoding. To this end, the real-valued activations of the pooling
layer are linearly mapped to spike times in a time window of length T = 50.
The pooling layer feature maps are flattened to a vector of 864 activation values.
We denote the i-th activation value Ai and the corresponding spike time tspike

i .
Encoded spike times are calculated as tspike

i = T − TAi. These timings are then
used as spike times for the encoding layer of LIF neurons. Additionally, any
encoding neurons with spike time tspike

i = T (corresponds to Ai = 0) do not spike,
as their activation is considered too low to induce input spikes.

The encoding layer is fully connected to the output layer, which consists of
ten spiking neurons which will be trained. Similarly to the previous section, each
neuron is responsible for responding to a ‘target’ class with |y| = 10 output spikes,
remaining quiescent for all other classes. The neuron with the highest number of
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spikes decides the classification. All spiking neurons are initialised with τm = 20.0
and τs = 5.0, with initial weights drawn from a Gaussian distribution with mean
0.01 and standard deviation 0.01.

4.8.3 Experimental Setup

Here, the DTA-B algorithm is compared against the EMLC and MST methods,
over 10 independent learning trials. In each trial, the order of pattern presentation
and the initial weights of neurons in the output layer are controlled to be the
same. Additionally, the same pre-trained CNN layer is used to extract features
in all trials. All networks are trained for 20 epochs of the full 60000-10000 split.
A learning rate parameter of η = 0.001 was used for both the EMLC and MST
methods and also as the fall-back learning rate for the DTA-B method, which was
determined through manual tuning.

4.8.4 Classification Results

Classification results are shown in Table 7. Overall, the DTA-B method outper-
forms the EMLC and MST methods in both accuracy and convergence speed.
Regarding the generalisation performance, the DTA-B method achieves approx-
imately 5% better accuracy compared to EMLC, and approximately 10% better
compared to MST. For good generalisation performance, it is often useful to con-
sider early-stopping in order to prevent over-fitting to training data. If we consider
a suitable early-stopping point to be within 1% of the best accuracies reported
during learning, then the DTA-B method only requires approximately six training
epochs, the EMLC method requires ten epochs, and the MST method requires
18 epochs. This means that the DTA-B method reaches convergence faster than
compared to the EMLC or MST. Similarly, convergence to a good (> 90%) so-
lution is achieved by the DTA-B method in just 1 epoch, compared to 7 epochs
for the EMLC method. The MST method does not achieve this accuracy after 20
epochs of training (Figure 40).

The Friedman test (Sheldon, Fillyaw and Thompson 1996) was used here to
determine whether or not there is a significant difference between the average
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Method Train accuracy (%) Test accuracy (%)
CSNN-DTA 97.57± 0.82 97.54± 0.44

CSNN-EMLC (Li and Yu 2020) 94.15± 0.26 92.27± 0.26
CSNN-MST (Gutig 2016) 89.98± 4.61 86.91± 4.26

Table 7: Performance comparison of CSNN trained with the MST, EMLC, and
DTA-B methods on the MNIST dataset. Each data point is averaged over 10
independent trials.

ranks of the three algorithms in Table 7 under the null hypothesis. The calcu-
lated Friedman statistic is FF = 47.25. With three treatments (methods) and 10
independent trials, FF is distributed according to the F -distribution with 3 and 18
degrees of freedom, which for 5% significant level yields the critical value of 3.16.
Since FF is greater than the critical value, the null hypothesis can be rejected and
the differences between the three methods is considered significant. The Nemenyi
test was used for post-hoc analysis, which reported significant differences in the
predictive performance between the DTA-B and EMLC methods (with p-value
of 0.0199), and between the DTA-B and MST methods (with p-value of 0.001).
These results indicate that the DTA-B method demonstrate statistically signifi-
cant improvement in generalisation performance compared to EMLC and MST.
Additionally, we note that even though the CSNN architecture was fundamentally
similar, we did not compare our results with those of Xu et al. (2018a), because
they did not train output neurons to fire multiple spikes.

In addition to comparing the DTA-B method with other spike-based approaches,
we also obtained results from a traditional non-spiking CNN (dashed line in Fig-
ure 40). This CNN has one convolution and one pooling layer, the weights of
these layers are initialised to be the same as those layers of the CSNN, and kept
fixed throughout learning. The pooling layer is fully connected to an output layer
of 10 rate-coded sigmoidal neurons, and we train this output layer weights with
gradient-descent with cross-entropy loss. A small (maximum 0.1) amount of uni-
form noise is added to the CNN loss during training for regularisation. The order
of pattern presentation is controlled to be the same as training the CSNN. This
setup allows us to directly compare our spike-based method with the traditional
ANN training approach. Overall, the DTA-B method demonstrates comparable
generalisation accuracy as well as convergence speed to that of the CNN. After
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Figure 40: Generalisation accuracy on the MNIST dataset, over 20 epochs of
training. Error bars are standard deviations. Each data point represents 10
independent trials. Black dashed lines represents average accuracy of a traditional
rate-coded convolutional neural network with the convolution and pooling weights
fixed to the same weights which are used in the CSNN.

one epoch of training, CSNN-DTA is approximately 2% worse than the CNN, and
this gradually improves to a final difference of 1% after 20 epochs. In comparison,
EMLC and MST are approximately 6% and 11% worse than the CNN in terms
of final accuracy. We found no statistically significant difference between DTA
and the rate-coded CNN in terms of final generalisation performance (p = 0.507).
These results suggest that our method is competitive with traditional ANN learn-
ing, even without any regularisation strategies.

4.9 Discussion

This chapter proposes an extension to the DTA-B method which enables super-
vised learning where the desired output is a target number of output spikes. Given
a target spike count, the approach to solving the supervised learning problem in-
volves two distinct computational steps. In the first step, the Dynamic Threshold
procedure (Section 4.3) is used to find appropriate timings for each of the desired
spikes. The learning problem now reduces to a PTS learning scenario, and in
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the second step a set of solution weights is computed using the DTA-B algorithm
(Section 3.3).

In general, the proposed learning procedure demonstrates fast convergence
speeds on SC learning problems. The method is compared with the seminal
MST Gutig (2016) algorithm, and the more recent EMLC algorithm (Li and
Yu 2020), and improved convergence is demonstrated on both synthetic and real-
world datasets. Care must be taken to interpret this performance difference only
as learning efficiency, and not as the ability to converge. That is, given a very
large number of training epochs, it is possible that both the MST and EMLC
learning algorithms demonstrate similar accuracies as the DTA-B algorithm in
real-world classification tasks, or similar maximal memory capacities for synthetic
benchmarks.

The most important weakness of the DTA-B algorithm is the inability to train
SNNs of more than one layer. In Section 4.7, a simple two-layer architecture was
proposed with populations of classifier neurons in the hidden layer, and neurons
in both layers are trained identically in a layer-wise fashion. While the two-layer
architecture demonstrated a small accuracy improvement compared to the single-
layer network, this approach did not scale to the larger and higher-dimensional
MNIST dataset, and the performance benefits gained on the IRIS and WBC
datasets are also small.

The above weaknesses of the approach are the reason why a hybrid CSNN
architecture was chosen for benchmarking the algorithm on the MNIST problem.
Here, the experiment is only measuring the ability of the algorithm to train a
classification layer, and not its ability to extract visual features from images. This
approach is similar to (Li and Yu 2020; Xu et al. 2018b), where the CSNN is used
to benchmark other learning algorithms which are limited to single-layer training.
While good classification results are reported on the MNIST dataset, it is evident
that a fully spiking architecture is preferable since hybrid network architectures
pose additional challenges for deployment on neuromorphic hardware.



Chapter 5

Unsupervised Feature Learning
with DTA

5.1 Introduction

So far the most significant problem of the DTA and DTA-B algorithms is their
inability to train multi-layer neural networks. Because the algorithms do not
make use of incremental fixed-size weight updates derived from a loss function, we
cannot perform end-to-end back-propagation learning in a similar manner to the
current state-of-the-art learning approaches (Zenke and Ganguli 2018; Shrestha
and Orchard 2018; Gardner and Grüning 2021). With many recent works in the
literature already demonstrating the superior learning performance of multi-layer
SNNs in a variety of practical applications (Sengupta et al. 2019; Zhang and Li
2020; Li et al. 2021; Kim and Panda 2021), the drawback of being able to train
only single-layer SNNs appear to be very problematic for the applicability of the
proposed methods to more complex problem domains.

One simple option to design a multi-layer SNNs with the constraints of our
algorithm is to utilise a randomised hidden layer containing a large number of
neurons. The idea here is to randomly project the data onto a higher dimension,
which may untangle the correlations in the input and make the categories more
easily separable. Examples of this approach for both ANN and SNN implemen-
tations can be seen in Tapson and van Schaik (2013); Kulkarni and Rajendran
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(2018); Cohen et al. (2016, 2017); Boucher-Routhier, Zhang and Thivierge (2021).
However, the efficacy of the random projection increases with the number of neu-
rons in the hidden layer, and typically this can be ten times the dimensionality of
the input (Tapson and van Schaik 2013). The high degree of parallelism required
for efficient simulation of such a wide SNN is difficult to achieve on CPUs (or even
GPUs). As such, we will consider alternative options in this chapter.

One promising approach to non-backpropagated learning is to apply the DTA
approach to a multi-layer SNN in a layer-wise fashion (Kheradpisheh et al. 2018;
Vaila, Chiasson and Saxena 2020). Here, the network layers are trained one at a
time in sequence, from the first hidden layer to the output layer. Training for one
layer only begins after the previous network layer has finished its training loop.
In practice, this approach has been demonstrated to some success by existing
STDP-based unsupervised learning algorithms which are also unable to back-
propagate errors (Vigneron and Martinet 2020). Utilising unsupervised learning in
the hidden layers mean that the learning process can try to automatically discover
useful intermediate representations in the data, which can then be propagated to
a classification layer. Note that there exists STDP-inspired learning algorithms
which are able to perform end-to-end back-propagation training instead of layer-
wise learning, for example Tavanaei and Maida (2019). In the case of the DTA
approach, layer-wise training of a fully-connected architecture is difficult, because
we immediately encounter the non-trivial issue of having to solve for the target
output spike times of a hidden layer before performing the weight update.

A direction of research which can provide a suitable architecture to the above
problems is the study of Convolutional Spiking Neural Networks (CSNNs). Here,
the layer-wise training method has demonstrated relatively good success in train-
ing CSNNs using layer-wise unsupervised STDP at the convolutional layers. The
STDP is applied to extract visual features such as edges or corners from the
image in a spike-based manner (Kheradpisheh et al. 2018; Tavanaei, Kirby and
Maida 2018; Masquelier and Thorpe 2007; Vaila, Chiasson and Saxena 2020).
Typically, the resulting visual features are then fed-forward and classified using a
fully-connected output classification layer trained with a supervised learning algo-
rithm. By exploiting the relatively straightforward computation and structure of
the computational layers, these approaches successfully design simple and efficient



CHAPTER 5. UNSUPERVISED FEATURE LEARNING WITH DTA 119

learning procedures.

5.2 Motivations & Chapter Layout

In this chapter, an extension of the DTA approach called DTA-C is proposed in
order to perform unsupervised feature extraction in the convolutional layer of a
CSNN network. The proposed algorithm is inspired by existing works in unsuper-
vised STDP learning, and the weight update computation is significantly different
to that of the DTA and DTA-B algorithms studied in the previous chapters.

The objectives of the DTA-C algorithm are:

1. Automatically learn a number of convolutional kernels, which are repre-
sented by the shared weights in each convolutional map.

2. The learned kernels should each be selective towards specific visual features,
such as edges or corners of a particular orientation (horizontal, vertical,
diagonal).

3. Each convolutional kernel should learn a unique visual feature in the input
data, instead of all learning the same feature.

The remaining sections of this chapter are organised as follows. In Section 5.3,
the CSNN architecture is described in detail. In Section 5.4, the training loop of
the DTA-C algorithm is explained. Sections 5.5, 5.6, and 5.7 presents empirical
benchmarks of the proposed approach and CSNN on three different image classi-
fication datasets: MNIST, EMNIST, and ETH-80. Here, the DTA generalisation
accuracies are compared against other layer-wise learning approaches, as well as
to other state-of-the-art performances reported on these datasets. In Section 5.8,
the effects of various hyper-parameters on the accuracy of the network are exam-
ined, which demonstrates the conditions with which the model exhibits the best
generalisation performance. Finally, in Section 5.9 we investigate the efficacy of
the proposed approach for training CSNNs with two convolutional layers.
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5.3 Network Architecture

This section describes the CSNN architecture used throughout this chapter. Here,
the CSNN is built primarily using three layers: convolutional, pooling, and output
classification. In Section 5.9, an additional, deeper CSNN with five layers is also
trained, which contains two convolutional and two pooling layers, in addition
to the output layer. Neurons in all layers are modelled as SRM neurons with
dynamics set out in Equation 13. The details of each network layer are given
below.

Convolutional Layer The convolutional layer is made up of M convolutional
maps. Each convolutional map consists of a two-dimensional grid of neurons, with
a constant number of neurons in each map. Each map performs a two-dimensional
convolution operation similarly to the process described in Section 2.2.5, without
any padding. Each convolutional neuron in a map receives input spikes from a
K×K receptive field, with the synaptic weights (the convolutional kernel) shared
across all neurons in a map. The receptive fields of adjacent neurons in each map
are always maximally overlapped (stride parameter set to 1), such that the target
feature can be detected in any location of the input image.

Additionally, each convolutional neuron is only allowed to generate at most
one output spike for each input image (binary activation). This operational sim-
plification is made for two reasons: firstly, the function of a convolutional neuron
is only to determine whether or not a visual feature exists in its receptive field,
so a binary output is sufficient. Secondly, restricting the number of output spikes
greatly simplifies the training process. This condition can be enforced during sim-
ulation by making convolutional neurons undergo a refractory period after spiking,
which lasts for the duration of the input pattern presentation.

Pooling Layer The pooling layer is made up of M pooling maps. Each pooling
map receives inputs from only a single convolutional map, hence their purpose
is implement two-dimensional spatial down-sampling of the convolutional activa-
tions. In our network, each pooling neuron propagates only the earliest input
spike it receives from a 2 × 2 receptive field in the corresponding convolutional
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layer. The receptive fields of adjacent pooling neurons do not overlap (stride pa-
rameter set to 2). As such, 75% of the input information arriving to each pooling
neuron is discarded, and the size of the pooling layer is also 75% smaller than
the convolutional layer in the vertical and horizontal dimensions. This operation
approximates local max-pooling in traditional ANNs, where only the maximal
real-valued output activation from the receptive field is propagated forward.

Output Classification Layer The output classification layer contains as many
neurons as there are input classes. This layer performs classification with target
spike counts. In particular, each neuron is trained to output |y| output spikes if
the input belongs to the designated class, and to remain silent otherwise.

5.4 Method Description

The proposed CSNN is trained in a layer-wise fashion: first the convolutional layer
is fully trained using the DTA-C algorithm for a number of training iterations.
Once this process has finished, then the output layer is trained using the super-
vised DTA-B algorithm (Chapter 4). Pooling layers are not trained, since their
computation does not require adjustment.

Similarly to the DTA and DTA-B learning algorithms, each learning iteration
of the DTA-C method can be split into two main computational steps. In the first
step, the learning problem is described in terms of a CSP containing equality and
inequality constraints on the membrane potentials. In the second step, the CSP
is solved using an interior-point solver, which yields a weight update that satisfies
all constraints.

Here, we denote a convolutional neuron at location (r, c) in the d-th map as
nr,c,d. For learning purposes, we consider nr,c,d as a quadruple:

nr,c,d = {Wd, Xr,c,d, t∗
r,c,d, V (t∗

r,c,d)}

Here, Wd denotes the convolutional weight matrix of size K×K shared by all
neurons in map d. The synaptic weight at location (i, j) in this matrix is denoted
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as wd
i,j. The K ×K matrix Xr,c,d denotes the input spikes sequences within the

receptive field of the neuron. An input sequence at location (i, j) in this matrix
is denoted as xi,j

r,c,d. Finally, t∗
r,c,d denotes the time of the maximal membrane

potential value V (t∗
r,c,d), which is also the time of an output spike if V (t∗

r,c,d) = ϑ

during simulation.

5.4.1 Problem Constraints

A visual feature is a specific pixel arrangement of size K ×K, for example edges,
lines, or corners. At the beginning of the learning, neurons in a convolutional map
may respond to many different visual features, or to no feature in the input im-
ages. In order to develop selectivity and uniqueness in the learned convolutional
kernels, we now introduce a concept which we call target neurons. Fundamentally,
a target neuron is a specific neuron in a convolutional map, and in a given iteration
each map will learn to respond to the input feature seen by its target neuron (se-
lectivity). In order to define the constraints of the unsupervised learning problem,
we first apply an iterative process to select target neurons.

At the beginning of a learning iteration, we first simulate the network with
the input image. Then, we select the first target neuron as the neuron with the
earliest spike time t∗

r,c,d across all M convolutional maps. Since time is continuous
in the neuron model, a unique target neuron can always be selected under this
condition. The one exception to this rule occurs when there are no output spikes
in any convolutional map. This can happen when initial neuronal weights are
too close to zero for any neuron to elicit a spike, for example. In this scenario,
the neuron with the largest V (t∗

r,c,d) is selected, in order for learning to continue.
Under these two selection rules, we aim to select the highest activated neuron as
the target neuron.

After a target neuron nr∗,c∗,d is selected, we then apply a competition mecha-
nism which has been demonstrated in STDP learning (Vaila, Chiasson and Saxena
2020; Kheradpisheh et al. 2018): we mark all other neurons in map d, as well as
any neurons in other maps which lie in a Kinh ×Kinh spatial window centred on
(r∗, c∗). Marked neurons are prevented from being selected as target neurons for
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the remainder of the current learning iteration. This competition mechanism en-
sures that target neurons are spatially separated, which is crucial to encourage
different convolutional maps to learn different features in the image (uniqueness).

Figure 41: Simplified example of selection and competition steps to select target
neurons in the convolutional layer. Here, we assume no neurons spike. Each
convolutional map has 25 neurons, and the colour of each location denotes V (t∗

r,c,d)
(lighter is larger membrane potential). Red squares in A and B denote the neuron
at each step with the largest membrane potential maximum in the entire layer.
Black cells denote neurons inhibited (marked) by competition.

The selection and competition steps described above are repeated until all
neurons in the convolutional layer are either target neurons or marked neurons.
Note that due to the competition mechanism, there can be at most one target
neuron per convolutional map. We will now convert the learning problem into a
set of constraints. To this end, the neurons in a map d are split into two disjoint
sets: Sd

targ, which is a singleton set consisting of the target neuron; and Sd
inh, which

contains all other spiking neurons of the map. Formally, these can be written as:

Sd
targ = {nr∗,c∗,d} (41)

Sd
inh = {nr,c,d : V

(
t∗
r,c,d

)
= ϑ, r ̸= r∗, c ̸= c∗} (42)

The goal of the learning is to adjust the weights Wd such that the map is more
selective towards the feature seen by the target neuron, and less selective towards
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features seen by neurons in Sd
inh. We can now write the membrane potential

constraints as:

C =
ϑ + ϵ = V (t∗

r∗,c∗,d)

ϑ + ϵ > V (t∗
r,c,d), for nr,c,d ∈ Sd

inh

(43)

Here, ϵ ∈ R+ denotes a parameter which modulates the sparsity of spiking.
Setting ϵ > 0 allows non-target neurons which sees similar inputs to the target
features to also spike, and we find that this is crucial for good performance. With
ϵ = 0, only target neurons may spike, which may lead to information loss due to
hyper-selectivity. This means that the learned kernel is too specific, and neurons
in the map fails to spike even when the observed feature is very similar to the
learned feature. An example is illustrated in Fig. 42.

Figure 42: Effect of parameter ϵ on neuron activation in the convolutional layer.
White pixels are spiking neurons in a map. A: Before learning, the map is selective
towards all features in the image. B: neuron activation in the map after one
learning iteration, with different values of ϵ.

5.4.2 Weight Update Method

With the problem constraints defined in Equation 43, a weight update can be
applied in a similar manner to the DTA method (Equation 33). Note that weight
updates are only applied to convolutional maps which contain a target neuron.
The synaptic update at weight wd

i,j for a convolutional map d is written as follows:
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∆wi,j = ζd ∑
t∈xi,j

r∗,c∗,d

κ(t∗
r∗,c∗,d − t) +

∑
nr,c,d∈Sd

inh

ζo
r,c,d

∑
t∈xi,j

r,c,d

κ(to
k − t) (44)

Note that the CSP contains a single ζd variable corresponding to weight update
term for the target neuron, and |Sd

inh| variables ζo
r,c,d corresponding to the weight

update terms for the marked neurons. In order for the neurons in the map to
becomes more selective towards the feature seen by the target neuron nr∗,c∗,d, and
less selective towards visual features seen by other neurons, we impose additional
domain constraints ζd > 0 and ζo

r,c,d < 0. This results in a positive weight update
with respect to the feature seen by the target neuron, and a negative weight update
otherwise. Unlike the DTA method, a fall-back weight update is not applied for
the DTA-C algorithm in the case that the CSP solver returns an infeasible result.
This is because the DTA fall-back update is only useful for the learning scenario
where the problem data involves only one input pattern, which is not the case for
the benchmark tasks presented in this chapter.

5.4.3 Algorithm Summary

A complete summary of the DTA-C algorithm is given in Algorithm 3.
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Algorithm 3: DTA-C Algorithm for unsupervised convolutional feature
extraction. The algorithm takes in a set of 2D input images X, and trains
the M convolutional maps to detect different visual features. V (t∗r,c,d)max

denotes the maximum membrane potential in the entire layer. The ab-
breviation ‘s.t.’ stands for ‘such that’.

Data: X = {x1, x2, ..., xmaxSamples}
1 initialise maps with weights Wd;
2 shuffle X;
3 foreach xp ∈ X do
4 targetNeurons = ∅;
5 while V (t∗r,c,d)max > 0 do
6 compute output spikes;
7 if V (t∗

r,c,d)max = ϑ then
8 r∗, c∗, d∗ = argminr,c,dt∗

r,c,d s.t. V (t∗
r,c,d) = ϑ

9 else
10 r∗, c∗, d∗ = argmaxr,c,dV (t∗

r,c,d)
11 end
12 Set V (t∗

r,c,d∗) = 0,∀r, c;
13 Set V (t∗

r∗,c∗,d) = 0, ∀d;
14 targetNeurons← nr∗,c∗,d∗ ;
15 end
16 end
17 convert targetNeurons to constraints (Eq. 43);
18 compute ∆w (Eq. 44);
19 w∗ ← w + ∆w;
20 w ← w∗;

5.5 Benchmark Performance: MNIST Dataset

In this section, the generalisation performance of the proposed CSNN architecture
and training methods on the MNIST dataset (LeCun and Cortes 2010) is investi-
gated, and compared against that of state-of-the-art SNN training methods in the
literature. The standard split of 60000 training and 10000 test images are used.
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5.5.1 Simulation Protocol

A CSNN with a single convolutional layer is used to solve the MNIST classification
task. In total, 10 independent trials were run. For each input image, the greyscale
pixel value si,j at location (i, j) is linearly encoded into a single input spike at time
T − T × si,j. A value of si,j does not elicit an input spike. The encoded input
spikes are then fed into the first convolutional layer for training using the DTA-C
learning algorithm. The output layer contains 10 SRM neurons, which is trained
to generate a spike count of |y| ∈ N+ using the DTA-B algorithm. During each
trial, the output layer is trained for a maximum of 2 epochs.

Due to constraints in simulation resources, a full parameter sweep was not
possible. A good set of parameter settings were determined by manual tuning,
and the final values used here are shown in Table 8.

Table 8: Parameter settings for CSNNs in the MNIST classification task.

Parameter Value
τm 20.0

τs (convolutional) 10.0
τs (output) 5.0

K 5
|Y | 10
M 32
T 10.0
ϵ 0.1

Kinh 3

5.5.2 Simulation Results

Our generalisation performance is compared here against existing methods in the
SNN literature. In particular, there are three types of methods which we are inter-
ested in making comparisons to. The first type of method includes methods which
apply layer-wise unsupervised and supervised learning, which is most similar to
the DTA-C and DTA-B approach. The second type includes one-batch algorithms
which were introduced at the end of Section 2.3.3. Following from Tapson et al.
(2013), we refer to these algorithms as neural synthesis methods. They share some



CHAPTER 5. UNSUPERVISED FEATURE LEARNING WITH DTA 128

similar characteristics to the CONE and DTA-B algorithm, including the inabil-
ity to back-propagate errors, and thus can be valuable for comparison purposes.
The final type of methods of interest are end-to-end training methods based on
back-propagation, which currently demonstrate the best SNN performance in the
MNIST classification task.

Table 9: Generalisation performance on the MNIST image classification prob-
lem. Comparisons with state-of-the-art results from several method categories for
training CSNNs are provided.

Model Learning Method Accuracy (%)
This work DTA-C & DTA 98.42± 0.7

Tapson and van Schaik (2013) Neural Synthesis 97.25
Wang et al. (2017) Neural Synthesis 96.55

Tissera and McDonnell (2016) Deep Neural Synthesis 99.19
Vaila, Chiasson and Saxena (2020) STDP & Back-propagation 98.58
Tavanaei, Kirby and Maida (2018) STDP & Back-propagation 98.60

Lee et al. (2020) Back-propagation 99.59
Fang et al. (2021) Back-propagation 99.72

Generalisation results averaging 10 independent trials, and comparison to
state-of-the-art results from the above three approaches, are shown in Table 9.
Overall, our CSNN achieves near state-of-the-art results, while utilising smaller
network sizes compared to existing approaches. In particular, we achieve 0.77%
lower accuracy compared to the fully-connected deep neural synthesis model pro-
posed in Tissera and McDonnell (2016), however their network contains many
more layers (16 compared to our 3). Similarly, our accuracy is 1.3% lower than
demonstrated in Fang et al. (2021), but their network is larger, and additionally
the neuronal time constants are also trained in their method, which further in-
creases the number of network parameters. When compared to other layer-wise
training methods, our results are within 0.2% of the recent models demonstrated
in Tavanaei, Kirby and Maida (2018); Vaila, Chiasson and Saxena (2020), which
also achieve this accuracy with additional convolutional or fully-connected hidden
layers.

Notably, both the DTA-B and DTA-C learning algorithms demonstrated the
ability to converge to a good solution while requiring very few training samples. In
particular, the results demonstrated here are achieved with only 3 training samples
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Figure 43: Evolution of 16 convolutional kernels throughout 30 learning iterations
of samples from the MNIST dataset.

Figure 44: Learning accuracy of the proposed model throughout 2 learning epochs
of the DTA-B algorithm on the MNIST dataset.
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per input category (30 total training samples) to fully train the convolutional
layer with the DTA-C algorithm. An illustration of the learned convolutional
kernels throughout the unsupervised learning process is shown in Figure 43, which
demonstrates that selectivity is formed in most convolutional maps with as few
as 1 training sample per input category. By comparison, the first convolutional
layer used in Mozafari et al. (2019) was trained using 100000 samples. A similar
trend can be observed with the DTA-B algorithm for training the output layer
of the network. In particular, the network converges to a good solution after
approximately 40% of the total training set size, with only minimal improvements
thereafter (on the order of 1% after 10 epochs).

Figure 45: Confusion matrix of a randomly chosen trial of the MNIST dataset.
The colour bar shows (logarithmic) colour mappings for the generalisation accu-
racy of each input category.

The confusion matrix of a randomly chosen trial after learning the MNIST
dataset is shown in Figure 45. Results indicate that one of the most problematic
input classes is ‘2’, which the network confuses with ‘0’ and ‘7’ for approximately
0.9% and 0.7% of the classifications, respectively. Next, the digit ‘5’ is confused
as ‘0’ and ‘4’ for approximately 0.7% and 0.9% of the classifications. Finally,
the class ‘4’ is confused as ‘9’ on 0.8% of the classifications. In general, this is
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not a surprising result, since the miscategorised categories do share similar visual
features, which can be difficult for the CSNN to correctly predict. There are other
input classes that are miscategorised, however the rate of incorrect classification
for these classes are only around 0.1%.

5.6 Benchmark Performance: E-MNIST Dataset

In this section, we investigate the generalisation performance of the proposed
CSNN approach on the EMNIST dataset (Cohen et al. 2017). The EMNIST
dataset is an extension of the MNIST dataset to handwritten letters. There
are several different realisations of the dataset, for example with only letters or
only digits, with balanced or unbalanced classes, but in general the size of the
dataset is much larger when compared to MNIST. Unlike the MNIST dataset,
this benchmark is more suitable as a stress test for the performance of the CSNN,
because the higher problem complexity should pose a significant challenge for a
network containing only three layers.

5.6.1 Simulation Protocol

Here, we use the balanced version of the dataset with 47 balanced input categories,
containing digits, lowercase letters, and uppercase letters in the English alphabet.
Note that this version of the dataset combines certain input categories due to
their visual similarities, specifically the uppercase and lowercase versions of the
letters ‘i’, ‘j’, ‘k’, ‘l’, ‘m’, ‘o’, ‘p’, ‘s’, ‘u’, ‘w’, ‘x’, ‘y’, ‘z’. For training and testing,
we use the standard 112800-18800 training and testing split.

Parameter settings for the EMNIST task are shown in Table 10. Otherwise,
the network architecture and experimental setup is the same as in Section 5.5.1.

5.6.2 Simulation Results

Generalisation performance averaged over 10 independent trials are shown in Ta-
ble 11. Overall, the DTA methods demonstrate a competitive level of accuracy
when compared to the state-of-the-art results achieved by existing CSNNs in the



CHAPTER 5. UNSUPERVISED FEATURE LEARNING WITH DTA 132

Table 10: Parameter settings for CSNNs in the EMNIST classification task.

Parameter Value
τm 20.0

τs (convolutional) 10.0
τs (output) 5.0

K 5
|Y | 10
M 64
T 10.0
ϵ 0.05

Kinh 3

Table 11: Generalisation performance on the EMNIST image classification prob-
lem. Comparisons with state-of-the-art results of other convolutional neural net-
works in the literature are provided.

Model Learning Method Accuracy (%)
This work DTA-C & DTA 84.36± 0.3

Cohen et al. (2017) Neural Synthesis 78.02
Vaila, Chiasson and Saxena (2020) STDP & Back-propagation 85.35

Jin, Zhang and Li (2018) Back-propagation (SNN) 85.41
Shawon et al. (2018) Back-propagation (ANN) 90.59
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literature. In particular, the reported accuracies are within 1% of the CSNN
model reported by Vaila, Chiasson and Saxena (2020), which also performs layer-
wise training. However, a direct comparison of these results are difficult due to
the differences in experimental setup. In particular, the network used by Vaila,
Chiasson and Saxena (2020) utilises fewer convolutional maps, however they have
an additional hidden layer of 1500 neurons which is fully-connected to the out-
put layer and trained by back-propagation. It is worth noting that the learning
performances demonstrated by the spiking models in Table 11 are all lower than
current state-of-the-art results for traditional convolutional ANNs, which have
demonstrated above 90% accuracies (Shawon et al. 2018).

Figure 46: Learning accuracy of the proposed model throughout 2 learning epochs
of the DTA-B algorithm on the EMNIST dataset. Note that the accuracies re-
ported at partial epochs (for example 0.2 of an epoch) were measured using the
complete training and testing set. This is in contrast with traditional experimen-
tal design where the accuracy is reported only at the end of a complete epoch.
However, we wanted to obtain additional data points since the DTA-B algorithm
is only run for 2 epochs total.

In terms of convergence speed, the DTA-C method manages to fully train
the convolutional layer using only one input sample per category, or 47 training
samples in total. This can be considered a significant improvement when compared
to the 6000 training samples used for STDP training in Vaila, Chiasson and Saxena
(2020). The average convergence speed for the DTA-B algorithm on this dataset
is illustrated in Figure 46. Here, we observe that the best performance is reached
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at approximately 1.5 training epochs, and does not improve significantly after
this point (tested up to 10 epochs). The convergence speed is here is much slower
than was demonstrated for the MNIST dataset, which is expected given the higher
difficulty of the EMNIST problem.

Figure 47: Confusion matrix of a randomly chosen trial of the EMNIST dataset.
The colour bar shows colour mappings for the generalisation accuracy of each
input category.

The confusion matrix of a randomly chosen learning trial is shown in Figure 47.
When compared to the MNIST problem, we observe that the CSNN had difficulty
separating several different input categories in this class. The most difficult class
for the model was the letter ‘L’ with 30% accuracy, which is misclassified as the



CHAPTER 5. UNSUPERVISED FEATURE LEARNING WITH DTA 135

digit ‘1’ for approximately 52% of all predictions, and misclassified as the letter
‘I’ for approximately 13.75% of predictions. The another commonly misclassified
class was the letter ‘I’ with 57% accuracy, which is misclassified as the digit
‘1’ for 33% of all predictions. Overall, there are only 7 input categories which
demonstrate below 70% classification accuracies, which interestingly are all letter-
based classes: ‘F’, ‘I’, ‘L’, ‘O’, ‘f’, ‘g’, and ‘q’.

5.7 Benchmark Performance: ETH-80 Dataset

In this section, we investigate the generalisation performance of the proposed
CSNN approach on the ETH-80 dataset (Leibe and Schiele 2003). This dataset
contains photographs of eight different object categories: ‘apple’, ‘car’, ‘toy cow’,
‘cup’, ‘toy dog’, ‘toy horse’, ‘pear’, and ‘tomato’. There are 10 different object
instances of each classes. In addition, each individual object is photographed from
41 different viewpoints from various angles and tilts. As such, there are in total
3280 samples split evenly into the eight input classes.

The ETH-80 dataset is used here to investigate two different capabilities of
the algorithm. The first aim is to determine whether the training algorithm can
generalise well in the low data regime where the number of training samples is
much lower than with the MNIST or EMNIST datasets. The second aim is to
investigate the ability of the model to handle classification tasks with extreme
intra-class variability, which in this case refers to the large variations in viewpoints
for the images in each category.

5.7.1 Experimental Setup

Five object instances of each input category (and the corresponding 41 samples
of this each object) are randomly chosen for the training set, and the other half
are used for the test set. This is similar to the setup used in (Kheradpisheh et al.
2018). Exploratory simulations were also run for the scenario where the train-test
split is chosen uniformly random from the 3280 samples, however we find that
the generalisation accuracy is reduced by approximately 1.5% in this scenario,
compared to randomly choosing 5 object instances.
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Since the input images in ETH-80 are colour photographs, the input encod-
ing method used here is different to the linear encoding used for the greyscale
images in MNIST and EMNIST. Firstly, the colour images are transformed into
greyscale, and resized to 64 × 64 pixels. The main reason for this is because
much of the input information in a simple photograph dataset of this scale are
redundant for object recognition purposes. Instead, one possible approach is to
reduce the training samples to only the information about their contrast values.
To this end, following from (Vaila, Chiasson and Saxena 2020; Kheradpisheh et al.
2018; Kheradpisheh, Ganjtabesh and Masquelier 2016) the images are spatially
convolved with Difference of Gaussian (DoG) filters. There are two DoG filters
(ON- and OFF-centre filters), which are given by:

Kσ1,σ2(i, j) =


1

2πσ2
1
e

−i2+j2

2σ2
1 − 1

2πσ2
2
e

−i2+j2

2σ2
2 , for − 3 ≤ i, j ≤ 3

0, otherwise
(45)

The ON-center filter is generated with σ1 = 1, σ2 = 2, and the OFF-center
filter is generated with σ1 = 2, σ2 = 1. The result of convolving the input image
with each filter are two images which respectively contain positive and negative
contrasts. An example of a convolved ETH-80 image is shown in Figure 48. The
resulting contrast values are then linearly converted into spike time delays for
each input channel, with a pixel value of 0 not generating an input spike. The
two input matrices are concatenated along the depth dimension and fed into the
CSNN. As such, each kernel in the convolutional layer are of size K×K× 2. The
approach above reduces the 64×64 input pixels in an image to an average of only
700 input spikes, which greatly reduces the computational burden of simulation.

Parameter settings for the ETH-80 task are shown in Table 12. Otherwise,
the network architecture and experimental setup is the same as detailed for the
MNIST task (Section 5.5.1).

5.7.2 Simulation Results

Generalisation performance, averaged over 10 independent trials, are shown in
Table 13. When compared to other layer-wise training methods based on STDP,
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Figure 48: DoG encoding of an ETH-80 image of the ‘cup’ input category. Left:
the original input image, transformed into grayscale. Right: the ON- and OFF-
center filtered images. Colorbar represents pixel intensity value.

Table 12: Parameter settings for CSNNs in the ETH-80 classification task.

Parameter Value
τm 20.0

τs (convolutional) 10.0
τs (output) 5.0

K 5
|Y | 10
M 16
T 100.0
ϵ 0.1

Kinh 9
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Table 13: Generalisation performance on the ETH-80 image classification prob-
lem. Comparisons with state-of-the-art results of other CSNNs in the literature
are provided.

Model Learning Method Accuracy (%)
This work DTA-C & DTA 82.9± 1.1

Kheradpisheh et al. (2018) STDP & SVM 82.8
Zhou et al. (2020) STDP & SVM 82.9
Shi et al. (2021) Back-propagation 88.40

the proposed model achieves competitive performance with a smaller architecture.
Both CSNN models proposed by Kheradpisheh et al. (2018) and Zhou et al. (2020)
contain multiple convolutional layers, in order to reach the same performance level
demonstrated here. However, we our generalisation performance is approximately
6.34% lower compared to the end-to-end back-propagation method demonstrated
in Shi et al. (2021). However, we note that they use a 80-20 percentage split for
training and testing (as opposed to our 50-50 split), which may have contributed
to this result. In addition, the convolutional layer in our CSNN was trained with 3
training samples per category (24 samples total). This is a significant improvement
compared to the 40 samples per category used in (Kheradpisheh et al. 2018).

Figure 49: Learning accuracy of the proposed model throughout 2 learning epochs
of the DTA-B algorithm on the ETH-80 dataset.

The training and generalisation accuracies of the model on the ETH-80 dataset
throughout 2 epochs of training is shown in Figure 49. Here, the proposed training
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Figure 50: Confusion matrix of a randomly chosen trial of the ETH-80 dataset.
The colour bar shows colour mappings for the generalisation accuracy of each
input category.



CHAPTER 5. UNSUPERVISED FEATURE LEARNING WITH DTA 140

method reaches the maximal accuracies at approximately 40 to 80% of a the first
epoch. Additionally, we observe that the test accuracy at the end of 2 epochs
is approximately 15% lower compared to the training accuracy, which means the
model is significantly over-fitting to the data. Interestingly, this was not observed
for the MNIST and EMNIST datasets, which could be due to the low-data regime
that the learning process is operating in.

Additionally, we note that in Figure 49 the model appears to be over-fitting
to the training data, as the training accuracy continues to increase while the
test accuracy does not. In the traditional sense, over-fitting should cause the test
accuracy to continue to decrease as training progresses. However, this assumption
is difficult to make here because we have only obtained data points up to 2 epochs
of training. Nonetheless, a slight accuracy test accuracy decrease is observed
between 0.8 and 1.0 of an epoch of training.

The confusion matrix of a randomly chosen learning trial is shown in Figure
50. After the first 10% of a training epoch, the only two classes which demon-
strate below 70% accuracies are ‘toy cow’ and ‘toy horse’ categories. While this
suggests that the model can generalise well without many training data samples,
the accuracies for these classes did not improve significantly past this point. Ad-
ditionally, the class ‘toy dog’ demonstrates generalisation accuracy below 80%.
These three classes are misclassified as each other: for example, the class ‘toy
cow’ is misclassified as both ‘toy horse’ and ‘toy dog’ for approximately 10.5 and
15.6% of all classifications. Similar ratios of misclassifications are observed with
the other two classes. Interestingly, further analysis of the misclassified samples
reveals that the majority of them have front-back or top-down viewpoints. This
is inline with the results published in Kheradpisheh et al. (2018), which noted
specific angles in ETH-80 with similar outlines for inter-category samples.

5.8 Effects of Parameters

In this section, the effects of various learning and network parameters on the
learning performances of the proposed CSNN model. Due to constraints in com-
putational resources, we performed partial scans of the sparsity parameter ϵ, the
number of convolutional maps M , the number of training samples for DTA-C, the
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input duration T , and finally the target spike count |y| for the DTA-B algorithm.
During simulation, each of these parameters were varied while all other parame-
ters were kept constant to their basic values shown in Tables 8, 10, and 12 for the
MNIST, EMNIST, and ETH-80 tasks, respectively.

Overall, we find that all of the above have significant impacts on the learning
performance of the model. In particular, there are optimal value ranges for ϵ, T ,
and |y|. However, the performance was not sensitive to small variations around
their optimal values. For ϵ and |y|, similar optimal ranges are observed for all
three datasets: ϵ ≈ 0.1 and |y| ≈ 10. This is not the case for the input duration
T : for MNIST and EMNIST a smaller input duration (T ≈ 10) results in better
performance, however for ETH-80 the optimal value is observed with T ≈ 100.
This is an interesting result, because in the regime of T ≈ τm observed as optimal
for MNIST/EMNIST, all layers of the network are performing approximately as
perfect integrators, utilising only the spatial information of input spikes occurring
in quick succession.

Interestingly, we find that using a large number of training samples for convolu-
tional learning can adversely impact performance. This means that over-training
occurs in our DTA-C algorithm, and thus an early-stopping criterion is crucial.
This phenomenon has also been observed in other unsupervised learning methods
Kheradpisheh et al. (2018); Vaila, Chiasson and Saxena (2020), and is partic-
ularly problematic for larger datasets where it is difficult to quickly verify the
final accuracy. However, we may be able to detect over-training in our approach
without training the output layer. On these datasets, we find that an optimally
trained convolutional layer typically exhibits a bimodal distribution of weights
with the peaks occurring on both sides of zero. Instead, an over-trained layer has
a unimodal distribution typically with a negative-valued peak and a long positive
tail. Intuitively, over-trained convolutional maps can be thought of as being too
selective, with many regions of an input image not eliciting a spike in any layer
(Fig. 52).
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Figure 51: Effect of various parameters on the learning performance of the CSNN
model on the MNIST, EMNIST, and ETH-80 classification tasks. Each data point
represents five independent trials.
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Figure 52: Effect of over-training in convolutional learning with DTA-C. Top
row shows the spike activation on an MNIST image in the convolutional layer,
bottom row shows the weight distribution of the convolutional layer. A: An
optimally-trained convolutional layer, trained with 30 images. B: an over-trained
convolutional layer, trained with 500 images.
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5.9 Learning Performance of Deeper CSNNs

So far, benchmark simulations have shown that the DTA-C learning algorithm is
a viable approach for training multi-layer CSNN architectures in image classifica-
tion problems. However, the capabilities for layer-wise training methods to train
multiple layers of convolutional feature extractors have been demonstrated by
(Kheradpisheh, Ganjtabesh and Masquelier 2016; Kheradpisheh et al. 2018). The
ability of the method to learn a hierarchical series of internal representations is
an important consideration when solving more complicated learning tasks. Given
that the proposed architecture does not manage to perfectly solve the EMNIST
and ETH-80 classification problems, in this section we investigate the ability of
the DTA-C algorithm to perform layer-wise training of deeper CSNNs with two
convolutional layers.

5.9.1 Experimental Setup

The CSNNs now contain two convolutional layers, each followed by a pooling
layer, and finally an output layer. The network architecture and parameters are
otherwise exactly the same as described in Section 5.3. Due to constraints in
simulation resources and the sizes of the datasets, a complete parameter scan was
unrealistic. As such, the learning and network parameters are kept the same as
described in Table 8, 10, and 12. The number of maps in the two convolutional
layer in each network are also kept constant. This means for MNIST, the network
contains two convolutional layers consisting of 32 maps each. Note that this is
done to save computation time, and is in contrast to the typical approach wherein
the subsequent convolutional layers are larger than previous ones (for example see
Shrestha and Orchard (2018); Kheradpisheh et al. (2018)).

Initial simulations showed that the small number of training samples which
were sufficient for training the first convolutional layer did not achieve good results
when applied to the second convolutional layer, even though both layers are of the
same size. Here, the number of training samples was manually tuned using 10% of
of the available training samples in each datasets. As a result, we train the second
convolutional layers for 15, 10, and 20 training samples per input category, for the
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MNIST, EMNIST, and ETH-80 datasets respectively. This is not surprising, as
Kheradpisheh et al. (2018) has previously suggested that subsequent convolutional
layers in CSNNs can converge more slowly compared to earlier ones. Experimental
conditions are otherwise identical to the previous sections. In each trial, the initial
weights of the first convolutional layers and output layers are kept to be the same
across the three- and five-layer CSNN models.

5.9.2 Simulation Results

Figure 53: Generalisation accuracies of CSNN model with 1 convolutional layer
(solid lines) and 2 convolutional layers (dashed lines) on the MNIST, EMNIST,
and ETH-80 datasets

Simulation data are shown in Figure 53. Overall, the results are inconclusive.
After 2 training epochs of the DTA-B algorithm, the five-layer CSNN achieved
an approximately 5.7% lower generalisation accuracy in the MNIST task, 9.3%
lower accuracy in the EMNIST task, and 6.5% lower accuracy in the ETH-80 task,
when compared to the three-layer models. After 10 training epochs, we find that
the five-layer CSNN achieved a 0.49% improvement in generalisation accuracy on
MNIST, and a 0.64% improvement on the EMNIST dataset. However, we also
observed a 1.2% reduction in accuracy on the ETH-80 dataset. As such, while
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the final generalisation accuracies between the three- and five-layer networks are
similar, the convergence speed of the five-layer models are much slower on average.

In general, we consider that the deeper CSNNs trained by DTA-C have not
demonstrated sufficiently improved performance when compared to our previ-
ous three-layer models. Out of the three benchmark datasets, the models here
have only demonstrated a marginal improvement in generalisation accuracies
for the MNIST and EMNIST tasks. Furthermore, the additional convolutional
and pooling layers have increased the simulation requirements, additional hyper-
parameters, and slower convergence speeds are observed during learning.

Fundamentally, it is possible that the deeper network achieves better learn-
ing performance than demonstrated here, if a full parameter optimisation was
performed for hyper-parameters in the second layer. The relevant parameters to
optimise are the number of convolutional maps, the neuronal time constants, and
the sparsity parameter ϵ. However, it is important to note that if the inclusion of
a second convolutional layer requires a separate parameter optimisation to that of
the first layer, then the same procedure will be necessary for a third convolutional
layer, and so on. This evidently has implications on the scalability of the proposed
approach to more complex problems.

5.10 Discussion

In this chapter, an extension to the DTA supervised learning approach was in-
troduced in order to perform unsupervised feature extraction in Convolutional
SNNs, called DTA-C. The proposed method successfully trains multi-layer SNNs
to reach near state-of-the-art generalisation performance on the MNIST, EM-
NIST and ETH-80 image classification benchmarks. In general, the method is
competitive against other layer-wise training algorithms in the literature, however
the performance is not as good when compared to end-to-end training methods
which perform gradient-descent by back-propagation. The important benefit of
the DTA-C method is that the number of training samples required to achieve
good performance is relatively low compared to STDP-based approaches. In this
sense, the method may perform very well in low-data learning regimes.
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The computation of the DTA-C algorithm is fundamentally similar to the pre-
viously proposed methods, in that each learning iteration first requires the specifi-
cation of a set of linear constraints on the membrane potential of the neuron, and
subsequently the weights are computed using interior-point solvers. The step for
specifying the constraints was the largest difference between the DTA-C method
compared to the previous approaches. In the DTA method, the constraints were
well-defined by the precise-spike learning problem. Here, the problem constraints
were obtained by the target neuron selection process. The fundamental idea of
the process is similar to STDP-based unsupervised learning methods, wherein
the most active neurons (earliest spike time) receive positive weight adjustments
(Kheradpisheh et al. 2018; Vaila, Chiasson and Saxena 2020). Similarly to these
existing methods, one of the problem with the DTA-C algorithm is that early-
stopping must be applied in order to prevent over-training or over-fitting. It is a
non-trivial problem to determine when the optimal point during training is to im-
plement early-stopping, however we have observed that there are certain features
of the convolutional weight distribution which may forecast over-training.

Similarly to the DTA and DTA-B methods, the DTA-C algorithm demon-
strates good convergence speed when compared to similar methods existing in
the literature. While our models do not demonstrate superior learning accuracy,
the fast convergence suggests that one of the main applications for the proposed
approaches are to pre-train SNNs. In particular, the method may be used with
one sample per input category, and the resulting weights are tuned by some other
method such as back-propagation. Doing so can speed up the overall time re-
quired to converge to a solution, which has benefits for the overall computational
complexity. This highlights an additional benefit of using the DTA-C algorithm
in a layer-wise training approach, which is flexibility. In particular, the DTA-C
algorithm can be used for training the convolutional layer, and then the output
layer can be trained using any other supervised learning method. Given that
the algorithm fully trains a convolutional layer in under 10 seconds on any of the
dataset tested here, the method for training the output layer can be swapped with
some other approach which demonstrates better accuracy or robustness to noise,
while decreasing the required learning complexity.

One problem with our experimental designs in this chapter, which is related to
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the discussion above, is that it is difficult to decouple the learning performances of
the DTA-B and DTA-C algorithm. That is, in order to improve the approach it is
unclear which algorithm requires adjustments. One way to decouple the learning
performances of these algorithms is to perform two additional experiments. The
first experiment switches the DTA-B method for some other learning algorithm,
for example the SLAYER method Shrestha and Orchard (2018), in order to de-
termine whether the visual features extracted by the DTA-C algorithm still works
well with other supervised learning algorithms. If better results are achieved, then
the DTA-B algorithm is insufficient. The second experiment switches the DTA-C
method for another unsupervised feature extraction algorithm, for example Vaila,
Chiasson and Saxena (2020), in order to empirically compare the features learned
by DTA-C with other approaches. If better results are achieved, then the learned
features are insufficient.

There are two main problems to the DTA-C algorithm, in its current state.
The first problem is that there are insufficient evidence to support the capabilities
of the algorithm to train deeper networks. This greatly limits the application of
the algorithm to more complex learning problems. The second problem is that
this method is only capable of training multi-layer convolutional neural networks.
With regards to the overall goal of applying the DTA approach to multi-layer
architectures, it would still be ideal to apply the method to fully-connected deep
networks, which are fundamentally problem-agnostic. While applications of con-
volutional neural networks do exist outside of computer vision, such networks are
particularly well-poised to exploit spatial structure in the data, which may not
always exist for all types of problems.

Another problem of the DTA-C algorithm is that it is not biologically plausi-
ble, in that a global signal is required in order to apply the target neuron selection
process. As a consequence, this means that different neurons in the same convo-
lutional layer must not only know which times the other neurons spiked, but also
have access to the history of their membrane potentials. As such, in this learning
scheme the network performs not only spatially global credit assignment, but also
temporally global credit assignment (with knowledge of past and future states).
Both of these global learning mechanisms are currently thought of as not having
enough evidence in biological systems (Taherkhani et al. 2020). In addition, this
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means that our approach cannot perform learning in an online and continuous
manner as with STDP-based approaches. As such, the proposed method can-
not be performed in an on-chip manner for neuromorphic platforms, which is a
significant weakness for the computational and energy efficiency of the method,
regardless of the improvements observed in terms of convergence speed.



Chapter 6

Discussion

6.1 Thesis Summary

In this thesis we have introduced three novel training algorithms to solve a vari-
ety of supervised and unsupervised SNN learning problems with temporal coding.
The computation of each algorithm can be broken down into two sequential steps:
In the first step, the learning problem is mapped into a Constraint Satisfaction
Problem. This formulation involves defining two sets of linear constraints on the
membrane potential of a neuron, which specify when the neuron should or should
not generate an output spike. In the second learning step, a weight update is
computed by solving the system of constraints using industry-standard linear op-
timisation solvers. Here, we chose an expression for the weight update equation
which is similar to that of supervised learning methods derived from the clas-
sical Widrow-Hoff learning rule (Widrow and Lehr 1990; Ponulak and Kasiński
2010; Yu et al. 2013; Gardner and Grüning 2016), and the optimisation variables
take the form of real-valued scalars which modulate the magnitude of each weight
adjustment term. In theory, this constraint programming approach allows ad-
justment of the membrane potentials at spike time to specific values such that
the neuron generate the desired spikes, in one update step. However, due to the
continuous nature of temporal integration in the neuron model, the algorithms
may require a number of update steps in order to converge.

The DTA algorithm is proposed here to solve precisely-timed spike mapping

150
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problems, wherein the neuron must be trained to produce the correct spike se-
quence given some input. This is a fundamental learning task for spiking models,
and state-of-the-art methods such as Shrestha and Orchard (2018) still utilises this
problem for demonstration purposes. In Chapter 3, we go one step further and
provide measurements of the maximal memory capacity of the DTA algorithm,
following the metrics proposed in Memmesheimer et al. (2014). The capabili-
ties for learning algorithms to achieve this theoretical estimate has been rarely
demonstrated in the literature, which is partly due to the large computational
requirements of simulation. Here, we demonstrate that our algorithm is capable
of reaching the established theoretical bound on memory capacity, while requiring
under 100 learning epochs to do so.

One of the fundamental difficulties in learning multiple precisely-timed spikes
is the problem of learning interference, wherein an adjustment to the timing of
one output spike affects the convergence of another spike. Several approaches
have been suggested to overcome learning interference, from a general principle
regarding the ratio of synaptic adjustments (Xu et al. 2013), to limiting the weight
adjustments to one spike at each learning iteration (Memmesheimer et al. 2014).
The constrained computation of the DTA algorithm naturally provides a differ-
ent approach to handling interference, which we illustrate in a two-dimensional
problem in Chapter 3.

The DTA-B algorithm is introduced in Chapter 4. Here, the learning prob-
lem involves the additional complexity of finding appropriate spike times before
the CSP can be formulated. We show that the Spike-Threshold-Surface function
originally proposed by Gutig (2016) provides a suitable solution to this problem,
even when used outside of the original gradient derivations. Additionally, we make
adjustments to the original procedure to compute the STS, in order to prevent
failure and better match the computational characteristics of the DTA algorithm.
The result is a 37% reduction in runtime when compared to the original procedure,
and a much higher reduction in weight computation runtime when compared to
the original recursive weight update method in Gutig (2016). The DTA-B algo-
rithm is demonstrated on two classic data classification problems, wherein near
state-of-the-art learning performance is observed.

From the results demonstrated by the DTA-B algorithm, it was clear that
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while the method is efficient in terms of runtime, its most important limitation
is the inability to train multi-layer SNNs. Consequently, the size and complexity
of the learning problems with which the method is applicable are also very lim-
ited. In order to overcome this difficulty, we introduce the DTA-C algorithm in
Chapter 5, in order to train the hidden layers in a convolutional network. This
method is inspired by existing unsupervised learning rules with Spike-Timing De-
pendent Plasticity, for example (Kheradpisheh et al. 2018; Vaila, Chiasson and
Saxena 2020). By limiting each convolutional neuron to a single output spike,
and exploiting the relatively predictable activation of the convolution operation,
the method successfully and automatically extracts salient features in the training
images. The multi-layer architecture is successfully applied to several image clas-
sification benchmarks, and in particular demonstrates fast convergence speed for
feature extraction, when compared to STDP-based approaches. This suggests that
the DTA-C method perform well in learning scenarios where speed is important
or training data is limited, such as layer-wise pre-training.

It can be quite difficult to categorise the proposed algorithms in the context
of the wider literature. While the form of the weight update is similar to that
of methods which perform gradient-descent, the approach is distinctly different
from the established incremental learning paradigms wherein the synaptic update
step is performed with a fixed step size at each iteration. The computation of
the weight solver step is much closer to the CONE algorithm (Lee, Kukreja and
Thakor 2016), and by extension it is also similar to other batch-computation
approaches wherein the solution weights are analytically computed in either one
or few update steps (Tapson and van Schaik 2013; Tapson et al. 2013; Boucher-
Routhier, Zhang and Thivierge 2021). However, such methods all guarantee that
their computation converges within exactly one presentation of the training data,
which is a characteristic that our method does not adhere to. Removing the
requirement for presenting all the data can be seen as a benefit: for example
MNIST problem solved is by the 3-layer CSNN architecture using well under one
epoch of training data.
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6.2 Future Work

This section outlines some important limitations of the proposed constrained op-
timisation approach for SNN learning, and accordingly some directions for future
research that follow from our results and discussion.

6.2.1 GPU Implementation

An important limitation of our SNN implementation used throughout this thesis is
that all simulation and learning procedures are implemented on CPUs. This means
that even for networks of a few hundred or thousand neurons in the hidden layer
(for example the CSNN models), the ability to parallelise operations are greatly
limited. In turn, this makes it difficult to investigate the runtime complexity of
our event-based algorithms in comparison to state-of-the-art clock-based learning
algorithms such as Shrestha and Orchard (2018). Additionally, this limits our
ability to test computationally expensive learning algorithms, such as the Multi-
Spike Tempotron (Gutig 2016), for many training iterations.

In general, there are two potential avenues for more efficient implementations
of the algorithms and architectures used in this thesis. The first approach is to
utilise an event-driven simulator with GPU computing capabilities. However, to
the best of our knowledge, to date there are no open-source and easily accessible
GPU simulators that fit these requirements (see Naveros et al. (2017) for a review
of event-driven techniques). One could instead apply the DTA algorithm to a
clock-driven SNN implementation on CPU, however this would be considered a
trade-off given that the DTA algorithm has specific in-built mechanisms to handle
continuous-time simulations.

If a GPU implementation of the neural network is possible then the second
avenue for improving the DTA algorithm becomes available, which is to utilise
GPU-based constraint solvers. The computation of a constraint solver is in-
herently sequential and not easily amenable for parallelisation. While parallel
interior-point solvers exist in the literature, for example Gondzio and Sarkissian
(2003); Rehfeldt et al. (2022), these software typically achieve parallelisation by
exploiting special structure or geometries in the underlying optimisation problem,
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which may not necessarily be applicable in our case. Simply choosing a suitable
parallel interior-point solution is non-trivial, because solver design is a highly spe-
cialised area of research which lies in between mathematics and computer science.

6.2.2 Objective Functions for Constrained Optimisation

One alternative design of our proposed constraint programming approach is to
re-introduce an objective function which then turns the CSP into a COP. While
the CONE algorithm (Lee, Kukreja and Thakor 2016) was taken as inspiration
for the DTA rule, we removed the objective function in favour of a pre-defined
weight update equation (Equation 33). Our design has the benefit of allowing the
optimisation procedure to compute a weight update, instead of a single one-batch
solution. In addition, through the choice of the learning kernel function we are
able to still influence the resulting properties of the solution weight distribution,
thus retaining some of the flexibility of objective optimisation in CONE.

There are a number of limitations with our approach. Firstly, the very large
flexibility provided by introducing well-defined objective contribution terms into
an objective function is lost in the weight update equation. Fundamentally, many
objective terms can be derived from well-understood criteria such as L1 or L2

norm minimisation, and easily introduced into the CONE algorithm with minimal
changes. In the DTA algorithm, the ability to produce noise-robust solutions
must be introduced through very careful design of the learning kernel function,
which may also involve expensive parameter optimisations. This links into the
second limitation, which is the fact that the learning kernels adjusted to provide
a certain computational characteristic may also compromise the ability of the
DTA algorithm to reliably converge or find feasible solutions (Section 3.6). In
the CONE method, the nature of constrained optimisation (Tanneau, Anjos and
Lodi 2021) means that guaranteeing a feasible solution and optimisation of the
objective are decoupled. This means that the solver always will first find a feasible
solution. In the DTA method, these two computational requirements are coupled,
and thus the learning kernel function represents a single point of failure.
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One possible research direction may be to re-introduce a simple objective func-
tion into the DTA learning. This is also partly the reason why we used interior-
point solvers in our simulations, which are normally used for solving COPs. Initial
investigations were conducted to test both L1 or L2 norm minimisation objectives,
however the additional computations introduced by the weight update equation
means that evaluation of weight-based objective terms become very computation-
ally expensive. This is because the solution weights in the DTA algorithm are not
expressed as a simple vector, but instead obtained by matrix multiplication and
addition operations. To be viable, objective terms should optimise the values of
the optimisation variables themselves.

6.2.3 Multi-Layer Fully-Connected SNNs

The fundamental limitation of our approach remains that it is unable to train
multi-layer fully-connected networks. With the DTA-C algorithm we are able to
address the training of Convolutional SNNs in signal processing tasks, however
convolutional networks are highly specialised to problems with spatially local fea-
tures within the training data. This means that the architecture is not problem-
agnostic, and the applicability of our learning approach is still limited in data
classification or regression tasks. In such scenarios, it would be better to utilise
multi-layer networks with full connectivity.

The underlying reason why the DTA and DTA-B algorithms are limited to
training single-layer SNNs is the requirement that both the input and target out-
put of each individual neurons are known at training time. This is fundamentally
problematic, because in a multi-layer network the target output of a hidden layer
(and correspondingly the input to the next layer) are not specified by the learning
problem. In its current form, the DTA and DTA-B algorithms have no mecha-
nisms with which it is possible to automatically learn these hidden spike times.
One potential solution is to set the hidden spike times as optimisation variables,
and simultaneously solve for both spike times and weights. However, in this ap-
proach the CSP becomes both non-linear and non-convex, which is significantly
more difficult to optimise. Initial investigations were performed to analyse the vi-
ability of such an algorithm, however even with a few hidden neurons the problem
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reported infeasibility. Another problem that arises is the number of optimisation
variables becomes unknown, unless each neuron in the hidden layers are allowed
a limited number of activations.

6.3 Publications

• Chu, D. and Nguyen, H. L. (2021) ‘Constraints on Hebbian and STDP
learned weights of a spiking neuron’, Neural Networks. Elsevier, pp. 192-
200. doi: 10.1016/j.neunet.2020.12.012.

• Nguyen, H. L. and Chu, D. (2022). Incremental neural synthesis for spiking
neural networks. In IEEE Symposium Series on Computational Intelligence
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