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A B S T R A C T

Ensembles of networks arise in various fields where multiple independent networks are observed, for example,
a collection of student networks from different classes. However, there are few models that describe both the
variations and characteristics of networks in an ensemble at the same time. In this manuscript, we propose to
model ensembles of networks using a Dirichlet Process Mixture of Exponential Random Graph Models (DPM-
ERGMs), which divides an ensemble into different clusters and models each cluster of networks using a separate
Exponential Random Graph Model (ERGM). By employing a Dirichlet process mixture, the number of clusters
can be determined automatically and changed adaptively with the data provided. Moreover, in order to perform
full Bayesian inference for DPM-ERGMs, we develop a Metropolis-within-slice sampling algorithm to address
the problem of sampling from the intractable ERGMs on an infinite sample space. We also demonstrate the
performance of DPM-ERGMs with both simulated and real datasets.
1. Introduction

Networks, as representations of relational data, are widely used in
various scientific fields, such as sociology, neuroscience and biology.
They provide valuable insight in understanding the diverse processes
behind the complex dependent interactions among different objects.
With the recent development of technology, ensembles of networks are
increasingly available; they stand for multiple network observations
obtained on the same or similar set of nodes across different subjects
or time points. Examples of ensembles of networks include a collection
of social networks from different schools (Sweet et al., 2019), and a
population of brain networks from a number of participants (Simpson
et al., 2013). There are high demands for developing the methodology
to identify the characteristics common to or unique across individuals
by taking advantage of the wealth of data presented in an ensemble.

The statistical modelling of ensembles of networks has also been
motivated by the accessibility of abundant network data. Lubbers and
Snijders (2007) employed a meta-analysis approach to analyse 102 stu-
dent networks based on the estimation of each network. Slaughter and
Koehly (2016) built a multilevel model using a hierarchical Bayesian
approach to study the systematic network patterns within the popu-
lation and the different structural patterns across networks. Paul and
Chen (2020) developed a random effect stochastic block model, where
the individual variations from the mean community structure of the

∗ Corresponding author.
E-mail address: sarah.ren@sheffield.ac.uk (S. Ren).

population are considered in the model. Similarly, Arroyo et al. (2021)
introduced a common subspace independent-edge multiple random
graph model that includes both the common invariant submatrix for
modelling the shared latent structures and an individual score matrix
for describing the individual characteristics. MacDonald et al. (2022)
developed an extension to the latent space models that is used to infer
the underlying shared structure of multiplex networks. Sweet et al.
(2013) also proposed a hierarchical latent space model for ensembles
of networks.

Within an ensemble, some networks share common structures, while
others exhibit distinct features. Group representation is a powerful tool
to capture the similarities and differences of network structures in the
same ensemble. Durante and Dunson (2018) introduced a Bayesian
method to test the differences between two given groups of net-
works. Lehmann and White (2021) developed a multilevel network
model to compare networks from different groups. In most cases, the
underlying group structure is unknown and it is therefore necessary
to develop a methodology that identifies the group membership and
compares groups of networks simultaneously. Signorelli and Wit (2020)
introduced a model-based clustering method based on mixtures of
generalised linear models for populations of networks. Yin et al. (2022)
proposed a finite mixture of exponential random graph models to model
vailable online 28 March 2023
378-8733/© 2023 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).
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the ensemble of networks based on the pseudo likelihood method. Du-
rante et al. (2017) extended the latent space models using a Bayesian
nonparametric approach.

In this manuscript, we propose the Dirichlet Process Mixtures of
Exponential Random Graph Models (DPM-ERGMs) for ensembles of
networks. The Dirichlet process mixture model uses the Dirichlet pro-
cess as a prior over an infinite mixture model, where the number of
mixtures can grow adaptively with the data. This enables the model to
determine the group structure of the ensemble automatically, in other
words, to compare different networks without prior knowledge of the
number of clusters. Moreover, the Dirichlet process provides a large
sample space and tractable posterior distributions, facilitating inference
on the infinite sample space (Ferguson, 1973). On the other hand, the
Exponential Random Graph Model (ERGM), a versatile network model,
is employed to model networks for its ability to represent various
types of topological features (Schweinberger et al., 2020). Thus, DPM-
ERGMs are capable of determining the group structure and describing
the group characteristics of an ensemble simultaneously.

Other extensions of ERGMs in combination with mixture mod-
els have also been proposed to explore the within-network struc-
tures. Salter-Townshend and Murphy (2015) developed a mixture of
ERGMs for clustering nodes based on ego-networks. Schweinberger and
Handcock (2015) characterised the local dependence in random graph
models by taking account of the cluster membership of nodes. Henry
et al. (2019) developed a finite mixture of ERGMs to model the
unobserved heterogeneity in the effects of nodal covariates and network
features. Moreover, ERGMs have also been extended to model the
dependence between different layers of networks, such as multilevel
ERGMs (Wang et al., 2013) or multilayer ERGMs (Caimo and Gollini,
2020; Krivitsky et al., 2020).

Under the Bayesian nonparametric framework, performing Bayesian
inference of the proposed model involves the evaluation and com-
parison of an infinite number of ERGMs, the intractability of which
increases the difficulty of the estimation dramatically. To sample from
the infinite sample space, we introduce a latent variable to the model,
which helps us to find a finite set of components required to produce
the correct Markov chain, borrowing the idea from the slice sampling
algorithm (Walker, 2007). Then the inference can be performed by
sampling from the full conditional distributions of all variables on
a finite space. However, for each network sample, the sampling of
the membership variable requires model comparison between different
group representations. This is challenging because the current method
to estimate ERGM likelihood relies on approximating the intractable
normalising constant ratio of two parameters that are close to each
other. Parameters from different clusters can lie quite far apart because
they represent networks of different characteristics, and parameters of
empty groups can be very different from the rest.

One way to sample from the posterior distributions of ERGMs is
to use Metropolis Hastings algorithms. Standard Metropolis Hastings
algorithms are not applicable since the acceptance probability depends
on the intractable normalising constants. To address this issue, Caimo
and Friel (2011) applied the exchange algorithm (Murray et al., 2006),
where a perfect sampler is employed to facilitate the Metropolis Hast-
ings algorithm, avoiding the calculation of the intractable normalising
constant. As the perfect sampler from the ERGM is unavailable in most
cases, a sample from the MCMC method is used in practice. Liang and
Jin (2013) developed a Monte Carlo Metropolis Hastings algorithm
to sample from the intractable posterior distributions. The algorithm
is implemented by approximating the unknown normalising constant
ratio in the acceptance probability using a Monte Carlo estimate and
is proved to converge to the desired target distribution. The exchange
algorithm can be seen as a special case of the Monte Carlo Metropolis
Hastings algorithm. However, most of the literature on ERGMs only
deals with the single network situation. In DPM-ERGMs, networks from
the same group are multiple samples from the same ERGM distribution.
157
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This requires the Bayesian inference to have the ability to incorporate
multiple network samples.

To sample from the posterior distributions of DPM-ERGMs, we
develop a Metropolis-within-slice sampling algorithm that employs
Metropolis Hastings inside the slice sampling algorithm. Specifically,
we propose three different estimation methods to deal with the in-
tractability issue under the Metropolis-within-slice sampling frame-
work. In the first method, we employ the importance sampling tech-
nique to estimate the true model. We express the posterior distributions
of the membership variable in such a way that a ratio of normalis-
ing constants can be approximated with an intermediate importance
sampling estimator. Moreover, we extend the Monte Carlo Metropolis
Hastings algorithm to incorporate multiple networks from the same
group. In the second method, we replace the true likelihood function
with the pseudo likelihood function in Metropolis-within-slice scheme.
In the third method, we replace the true likelihood function with
the adjusted pseudo likelihood function. We will illustrate all three
methods in detail later.

The rest of manuscript is organised as follows. In Section 2, we
describe how the DPM-ERGMs are formulated. Section 3 provides the
sampling methodology. Section 4 presents the simulation studies. We
summarise the manuscript in Section 5.

2. Model formulation

2.1. Exponential random graph models

ERGMs describe the generating process of networks through expo-
nential family distributions with summary statistics showing various
connecting patterns as explanatory variables. A network with 𝑛 nodes
is typically represented by a random adjacency matrix 𝑌 ∈ {0, 1}𝑛×𝑛,

here 𝑌𝑖𝑗 = 1 indicates an edge between nodes 𝑖 and 𝑗, and 𝑌𝑖𝑗 = 0 oth-
rwise. The realisation of 𝑌 is denoted by 𝑦 while the set of all possible
utcomes of 𝑌 is denoted by  . The covariate information regarding
he nodal or network attribute that affects the connections are denoted
y 𝑋 ∈  . The network structures of interest are expressed using a
ummary statistics vector, 𝑆(𝑦,𝑋) ∶  ×  → R𝑑 . It represents the
haracteristics of the network, such as the number of edges, triangles,
tc, which are crucial to the formation and dissolution of networks. The
eneral ERGM has the following form,

(𝑌 = 𝑦 ∣ 𝜃,𝑋) =
exp{𝜃⊤𝑆(𝑦,𝑋)}

𝑘(𝜃)
, (1)

where 𝜃 ∈ R𝑑 is the vector of model parameters, and 𝑆(𝑦,𝑋) is
the summary statistics (Morris et al., 2008). The normalising constant
𝑘 (𝜃) =

∑

𝑦∈ exp
{

𝜃⊤𝑆(𝑦,𝑋)
}

is the sum over all potential graphs in the
sample space, which is usually intractable except for very small net-
works. Given a realisation of network 𝑦, the aim of statistical inference
is to find which value of 𝜃 provides best description for the data under
ERGM framework. The intractability of the normalising constant is a
strong barrier to the estimation of ERGMs as the likelihood function
can only be specified up to a parameter dependent constant.

Bayesian inference is a natural choice for ERGMs since it allows
uncertainty on model parameters. The posterior distribution of ERGMs
is

𝑓 (𝜃 ∣ 𝑦,𝑋) =
𝜋(𝜃)𝑃 (𝑌 = 𝑦 ∣ 𝜃,𝑋)

𝑃 (𝑌 = 𝑦 ∣ 𝑋)
, (2)

where 𝜋(𝜃) is the prior, 𝑃 (𝑌 = 𝑦|𝑋) = ∫𝑑 𝜋(𝜃)𝑃 (𝑌 = 𝑦|𝜃,𝑋)𝑑𝜃.
he standard MCMC algorithm is not suitable since the acceptance
robability as shown in (3) to move from 𝜃 to the new proposal 𝜃′
equires evaluation of the intractable constants 𝑘(𝜃) and 𝑘(𝜃′) at each
tep of the algorithm
𝜋(𝜃′)ℎ(𝜃|𝜃′)
𝜋(𝜃)ℎ(𝜃′|𝜃)

⋅
exp{𝜃′⊤𝑆(𝑦,𝑋)}
exp{𝜃⊤𝑆(𝑦,𝑋)}

⋅
𝑘(𝜃)
𝑘(𝜃′)

. (3)

Here, ℎ(⋅) stands for the proposal distribution. Monte Carlo Metropolis
astings algorithm (Liang and Jin, 2013) samples from the posterior
RGMs by using an importance sampling estimator to approximate
(𝜃)∕𝑘(𝜃′) in the Metropolis Hastings algorithm.



Social Networks 74 (2023) 156–165S. Ren et al.

c
t
a

𝑃

H
p

3

d
E
s
i
a
m

p
t
p
r
d

𝑃

H
a

2.2. Dirichlet process mixtures of ERGMs

Ensembles of networks include multiple network observations. In
addition to the complex structures within each network, one may
also be interested in studying the variations across different networks.
Mixture models are a natural approach to describe such a population
as they can detect and characterise the subpopulations that share
common structures and represent networks that are different using
separate distributions. In particular, the infinite mixture model can
detect the cluster structures of the population without requiring a pre-
specified number of clusters. Here, we propose to model the ensemble
of networks through an infinite mixture of ERGMs, each component
of which represents a cluster (subpopulation) of networks that share
common structures using a cluster-specific ERGM.

An ensemble with 𝑁 network samples is denoted by {𝑌𝑖}𝑁𝑖=1, and the
orresponding covariate information is {𝑋𝑖}𝑁𝑖=1. In such an ensemble,
he single network 𝑌𝑖 is represented using an infinite mixture of ERGMs
s follows

𝑤,𝜃(𝑌𝑖 = 𝑦𝑖 ∣ 𝑋𝑖) =
∞
∑

𝑗=1
𝑤𝑗

exp{𝜃⊤𝑗 𝑆(𝑦𝑖, 𝑋𝑖)}

𝑘(𝜃𝑗 )
, (4)

where 𝑗 is the cluster label, 𝑤𝑗 is the mixing proportion, 𝜃𝑗 is the
cluster specified parameter vector, 𝑆(𝑦𝑖, 𝑋𝑖) is the summary statistics
of network 𝑦𝑖, and 𝑘(𝜃𝑗 ) =

∑

𝑦∈ exp
{

𝜃⊤𝑗 𝑆(𝑦,𝑋)
}

is the normalising
constant. Without restrictions on the number of clusters, the infinite
mixture model is able to provide a wide range of distributions for the
data provided.

Alternatively, if we introduce a latent variable 𝑍𝑖 to indicate the
membership of network 𝑦𝑖, e.g. 𝑍𝑖 = 𝑘𝑖 if 𝑦𝑖 belongs to cluster 𝑘𝑖, (4)
can also be written as

𝑃𝜃(𝑌𝑖 = 𝑦𝑖 ∣ 𝑋𝑖, 𝑍𝑖 = 𝑘𝑖) =
exp{𝜃⊤𝑘𝑖𝑆(𝑦𝑖, 𝑋𝑖)}

𝑘(𝜃𝑘𝑖 )
.

Therefore, the likelihood of the ensemble of networks can be expressed
as

𝑃𝑤,𝜃({𝑌𝑖 = 𝑦𝑖}𝑁𝑖=1 ∣ {𝑋𝑖}𝑁𝑖=1) =
𝑁
∏

𝑖=1

∞
∑

𝑗=1
𝑤𝑗

exp{𝜃⊤𝑗 𝑆(𝑦𝑖, 𝑋𝑖)}

𝑘(𝜃𝑗 )
,

or

𝑃𝜃({𝑌𝑖 = 𝑦𝑖}𝑁𝑖=1 ∣ {𝑋𝑖, 𝑍𝑖 = 𝑘𝑖}𝑁𝑖=1) =
𝑁
∏

𝑖=1

exp{𝜃⊤𝑘𝑖𝑆(𝑦𝑖, 𝑋𝑖)}

𝑘(𝜃𝑘𝑖 )
.

It is informative to consider an infinite mixture model especially when
it is not appropriate to have a limit on the number of groups. However,
the inference of this model is challenging because the intractable
normalising constant has to be evaluated in the infinite sample space.

To perform Bayesian inference on the proposed infinite mixture
of ERGMs, we adopt a Dirichlet process prior DP(𝛽,H) (Ferguson,
1973), which is arguably the most commonly used Bayesian nonpara-
metric prior. Under the constructive definition, also known as the
stick-breaking representation (Sethuraman, 1994), the mixing propor-
tion 𝑤 is constructed using a stick-breaking procedure with an auxiliary
variable 𝑣. A sequence of independent and identically distributed auxil-
iary variables 𝑣1, 𝑣2,… are sampled from a prior distribution Beta(1, 𝛽),
and the mixing proportions are set as 𝑤1 = 𝑣1, 𝑤𝑗 = 𝑣𝑗

∏𝑗−1
𝑙=1 (1−𝑣𝑙) (for

𝑗 > 1). The membership indicator variable 𝑍 follows a multinomial
distribution Mult(𝑤) with probability 𝑤 = (𝑤1, 𝑤2,…). For the prior
of ERGM parameter 𝜃𝑗 , we use a multivariate Gaussian distribution
 (𝜇0, 𝛴0). Given the membership 𝑍𝑖 = 𝑘𝑖, the network 𝑌𝑖 is modelled
by an ERGM with parameter 𝜃𝑘𝑖 . In the remaining of this manuscript,
we will use Dirichlet Process Mixtures of Exponential Random Graph
Models (DPM-ERGMs) with the following form,

𝑣𝑗 ∼ Beta(1, 𝛽)

𝑤1 = 𝑣1, 𝑤𝑗 = 𝑣𝑗
𝑗−1
∏

(1 − 𝑣𝑙) (5)
158

𝑙=1
𝑍𝑖|𝑤 ∼ Mult(𝑤)
𝜃𝑗 |𝜇0, 𝛴0 ∼  (𝜇0, 𝛴0)

𝑦𝑖|𝑍𝑖 = 𝑘𝑖, 𝜃 ∼ 𝑃𝜃𝑘𝑖 (𝑌𝑖 = 𝑦𝑖 ∣ 𝑋𝑖).

ere, 𝑃𝜃𝑘𝑖 (𝑌𝑖 = 𝑦𝑖 ∣ 𝑋𝑖) = exp{𝜃⊤𝑘𝑖𝑆(𝑦𝑖, 𝑋𝑖)}∕𝑘(𝜃𝑘𝑖 ) is the ERGM with
arameter 𝜃𝑘𝑖 .

. Posterior computation

The statistical inference for the proposed model is very challenging
ue to the infinite number of mixture components and the intractable
RGM likelihood. In this section, we first develop a Metropolis-within-
lice sampling algorithm to address the issue of sampling from the
nfinite sample space of DPM-ERGMs. Then, we provide details of the
lgorithms based on a true likelihood method, a pseudo likelihood
ethod and an adjusted pseudo likelihood method separately.

The slice sampling algorithm (Walker, 2007; Kalli et al., 2011)
rovides a way to sample from the infinite mixture components. Similar
o the slice sampling, we first introduce a latent variable 𝑢 to our
roposed model to identify the exact number of components that are
equired to produce a valid Markov chain with the correct stationary
istributions. The joint density of (𝑦, 𝑢) is written as

𝑤,𝜃(𝑌 = 𝑦, 𝑢 ∣ 𝑋, 𝜉) =
∞
∑

𝑗=1

𝑤𝑗
𝜉𝑗
𝑈 (𝑢|0, 𝜉𝑗 )𝜉𝑗𝑃𝜃𝑗 (𝑌 = 𝑦|𝑋)

=
∞
∑

𝑗=1

𝑤𝑗
𝜉𝑗

1(𝑢 < 𝜉𝑗 )𝑃𝜃𝑗 (𝑌 = 𝑦|𝑋)

Then the inference can be performed by sampling from the clusters
that satisfy {𝑗 ∶ 𝜉𝑗 > 𝑢} instead of an infinite number of clusters,
which simplifies the problem dramatically. Here, 𝜉 is a deterministic
decreasing sequence used to address the update of 𝑢. See Walker (2007)
and Kalli et al. (2011) for more details about the introduction of the
latent variable 𝑢 and the choices of 𝜉.

Furthermore, with the indicator variable 𝑍, the joint density can be
expressed as

𝑃𝑤,𝜃(𝑌 = 𝑦, 𝑢,𝑍 = 𝑘 ∣ 𝑋, 𝜉) =
𝑤𝑘
𝜉𝑘

1(𝑢 < 𝜉𝑘)𝑃𝜃𝑘 (𝑌 = 𝑦|𝑋).

ence, the likelihood for the ensemble {𝑌𝑖}𝑁𝑖=1 with latent variable 𝑢
nd sequence 𝜉 is

𝑙𝑤,𝜃({𝑌𝑖 = 𝑦𝑖, 𝑍𝑖 = 𝑘𝑖, 𝑢𝑖}𝑁𝑖=1 ∣ {𝑋𝑖}𝑁𝑖=1, 𝜉)

=
𝑁
∏

𝑖=1

𝑤𝑘𝑖
𝜉𝑘𝑖

𝟏(𝑢𝑖 < 𝜉𝑘𝑖 )𝑃𝜃𝑘𝑖 (𝑌𝑖 = 𝑦𝑖|𝑋𝑖). (6)

With the prior distribution specified in (5), the full conditional dis-
tributions of all variables (𝑢,𝑤, 𝜃,𝑍) are available. Then we employ a
Metropolis-within-slice sampling algorithm to sample (𝑢,𝑤, 𝜃,𝑍) from
their full conditional distributions in turn.

3.1. True likelihood based algorithm

In order to overcome the intractability issue and perform accurate
estimation to the true model, we propose to employ the intermediate
importance sampling technique in the Metropolis-within-slice sam-
pling scheme. The sampling procedures of the true likelihood based
Metropolis-within-slice sampling algorithm are listed as follows.

Step 1. Sample 𝑢𝑖 from a uniform distribution,

𝑢𝑖 ∼ 𝑈 (0, 𝜉𝑘𝑖 ) (𝑖 = 1, 2,… , 𝑁), (7)

where 𝑘𝑖 is the current allocation of network 𝑦𝑖.
Step 2. Sample 𝑣𝑗 from a beta posterior distribution,

𝑣𝑗 ∼ Beta(1 + 𝑎𝑗 , 𝛽 + 𝑏𝑗 ) (𝑗 = 1, 2,… , 𝐾∗). (8)

Here, 𝑎𝑗 =
∑𝑁
𝑖=1 𝟏(𝑘𝑖 = 𝑗) denotes the number of networks in group 𝑗

and 𝑏 =
∑𝑁 𝟏(𝑘 > 𝑗) corresponds to the number of networks in the
𝑗 𝑖=1 𝑖
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groups whose label are bigger than 𝑗. 𝐾∗ denotes the current number
f clusters.

Update 𝑤𝑗 with

1 = 𝑣1, 𝑤𝑗 = 𝑣𝑗
𝑗−1
∏

𝑙=1
(1 − 𝑣𝑙) (𝑗 = 2,… , 𝐾∗). (9)

Step 3. Sample 𝑍𝑖 with the following two steps,
(1) Introduce 𝑘(𝜃𝑐 ) to construct a computable normalising constant

atio and estimate the normalising constant ratio 𝑘(𝜃𝑐 )∕𝑘(𝜃𝑗 ) (𝑗 =
1,… , 𝐾∗) using an intermediate importance sampling estimator 𝛾𝑗 .

(2) Calculate the conditional probability with the intermediate im-
portance sampling estimator replacement,

𝑃 (𝑍𝑖 = 𝑘𝑖|⋯) ∝ 𝟏(𝜉𝑘𝑖 > 𝑢𝑖)
𝑤𝑘𝑖
𝜉𝑘𝑖

⋅ exp{𝜃⊤𝑘𝑖𝑆(𝑦𝑖, 𝑋𝑖)} ⋅ 𝛾𝑘𝑖 , (𝑖 = 1, 2,… , 𝑁).

(10)

Here, 𝜃𝑘𝑖 is the parameter of group 𝑘𝑖.
Step 4. Sample 𝜃𝑗 (𝑗 = 1, 2,… , 𝐾∗) using the Metropolis–Hastings

algorithm with the following procedures,
(1) Draw 𝜃′𝑗 from a proposal distribution ℎ(⋅|𝜃𝑗 ).
(2) Estimate the normalising constant ratio 𝑘(𝜃′𝑗 )∕𝑘(𝜃𝑗 ) with an

intermediate importance sampling estimator 𝛾.
(3) Accept 𝜃′𝑗 with probability

𝛼 = min
(

1,
𝜋(𝜃′𝑗 )ℎ(𝜃𝑗 |𝜃

′
𝑗 )

𝜋(𝜃𝑗 )ℎ(𝜃′𝑗 |𝜃𝑗 )

exp{(𝜃′𝑗 − 𝜃𝑗 )
⊤∑

𝑧𝑖=𝑗 𝑆(𝑦𝑖, 𝑋𝑖)}

𝛾
∑

𝑖 𝟏(𝑧𝑖=𝑗)

)

. (11)

If there are no networks allocated to group 𝑗, update 𝜃𝑗 using prior
𝜋(𝜃𝑗 ).

Next, we will show the construction of formula (10) in Section 3.1.1
and explain how the Metropolis Hastings algorithm is developed in
Section 3.1.2.

3.1.1. Sample 𝑍
The full conditional distribution of 𝑍𝑖 is

(𝑍𝑖 = 𝑘𝑖 |⋯) ∝ 𝟏(𝜉𝑘𝑖 > 𝑢𝑖)
𝑤𝑘𝑖
𝜉𝑘𝑖

⋅
exp{𝜃⊤𝑘𝑖𝑆(𝑦𝑖, 𝑋𝑖)}

𝑘(𝜃𝑘𝑖 )
. (12)

The ratio on the right hand side depends on an intractable normalising
constant 𝑘(𝜃𝑘𝑖 ), which makes the direct sampling infeasible.

Gelman and Meng (1998) provides a way to estimate the normalis-
ng constant ratio using the importance sampling technique,

𝑘(𝜃𝑎)
𝑘(𝜃𝑏)

≈ 1
𝑚2

𝑚2
∑

𝑠=1
exp{(𝜃𝑎 − 𝜃𝑏)⊤𝑆(𝑧𝑠)}, (13)

with 𝑧𝑠 (𝑠 = 1, 2… , 𝑚2) denoting a sequence of 𝑚2 independent auxil-
iary networks sampled from the ERGM with parameter 𝜃𝑏. However,
the importance sampling estimate will be incorrect if the compared
parameters 𝜃𝑎 and 𝜃𝑏 are not close enough (Neal, 2005). This obstacle
can be overcome by introducing intermediate distributions between 𝜃𝑎
and 𝜃𝑏. Specifically, we interpolate 𝑚1 intermediate values, 𝜃𝑖𝑚𝑟 (𝑟 =
, 2,… , 𝑚1), so that 𝜃𝑖𝑚𝑟 and 𝜃𝑖𝑚𝑟+1 are close enough, and factorise the
ormalising constant ratio using intermediate values,

𝑘(𝜃𝑎)
𝑘(𝜃𝑏)

=
𝑚1
∏

𝑟=0

𝑘(𝜃𝑖𝑚𝑟+1)

𝑘(𝜃𝑖𝑚𝑟 )
=
𝑘(𝜃𝑖𝑚1 )

𝑘(𝜃𝑖𝑚0 )

𝑘(𝜃𝑖𝑚2 )

𝑘(𝜃𝑖𝑚1 )
⋯
𝑘(𝜃𝑖𝑚𝑚1+1

)

𝑘(𝜃𝑖𝑚𝑚1
)
, (14)

where 𝜃𝑖𝑚0 = 𝜃𝑏 and 𝜃𝑖𝑚𝑚1+1
= 𝜃𝑎. Then, each factor 𝑘(𝜃𝑖𝑚𝑟+1)∕𝑘(𝜃

𝑖𝑚
𝑟 ) is

estimated using the importance sampling estimator, and 𝑘(𝜃𝑎)∕𝑘(𝜃𝑏) is
approximated by

𝛾 =
𝑚1
∏

𝑟=0

1
𝑚2

𝑚2
∑

𝑠=1
exp{(𝜃𝑖𝑚𝑟+1 − 𝜃

𝑖𝑚
𝑟 )⊤𝑆(𝑧𝑠𝑟)}. (15)

where 𝑧𝑠𝑟 (𝑠 = 1, 2,… , 𝑚2) is a sequence of 𝑚2 independent networks
sampled from the ERGM with parameter 𝜃𝑖𝑚.
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𝑟

If we can construct a normalising constant ratio in the posterior
membership probability, we will be able to borrow the strength of
intermediate importance sampling to allocate the network samples.
To do so, we multiply a constant 𝑘(𝜃𝑐 ) to each term of the posterior
probability vector and obtain

𝑃 (𝑍𝑖 = 𝑘𝑖 |⋯) ∝ 𝟏(𝜉𝑘𝑖 > 𝑢𝑖)
𝑤𝑘𝑖
𝜉𝑘𝑖

⋅ exp{𝜃⊤𝑘𝑖𝑆(𝑦𝑖, 𝑋𝑖)}
𝑘(𝜃𝑐 )
𝑘(𝜃𝑘𝑖 )

,

here the constructed normalising constant ratios 𝑘(𝜃𝑐 )∕𝑘(𝜃𝑘𝑖 ) (𝑘𝑖 =
, 2,… , 𝐾∗) can be approximated using the intermediate importance
ampling estimation as shown in (15). Thus, the posterior probability
atios will not change and the sampling can be performed.

The choice of 𝜃𝑐 is important to the accuracy of the intermediate
mportance sampling estimation. The estimation will be incorrect if the
arameters to be compared, 𝜃𝑐 and 𝜃𝑗 , are not close enough. As each
roup has a unique 𝜃𝑗 , it is impossible to find one 𝜃𝑐 close to all 𝜃𝑗
t the same time. Simple importance sampling is not applicable here
nd multiple intermediate values must be used to ensure the quality
f estimation. Also, some 𝜃𝑘𝑖 can be quite difficult to sample from,
specially when it is representing an empty group.

.1.2. Sample 𝜃
The posterior distribution of group parameter 𝜃𝑗 is proportional to

he product of prior 𝜋(𝜃𝑗 ) and the joint likelihood of the networks in
roup 𝑗, which is

(𝜃𝑗 |⋯) ∝ 𝜋(𝜃𝑗 )
∏

𝑍𝑖=𝑗

exp{𝜃⊤𝑗 𝑆(𝑦𝑖, 𝑋𝑖)}

𝑘(𝜃𝑗 )
. (16)

Sampling from such a posterior distribution is challenging as it depends
on the product of multiple intractable likelihood functions.

The use of MCMC algorithm to sample from this posterior distribu-
tion of 𝜃𝑗 involves the calculation of 𝑘(𝜃′𝑗 )∕𝑘(𝜃𝑗 ). As the product of the
multiple normalising constant ratios has to be calculated, it is necessary
to have a more accurate estimation for each 𝑘(𝜃′𝑗 )∕𝑘(𝜃𝑗 ). To achieve this,
we use the intermediate importance sampling estimator 𝛾 as in (15) to
substitute 𝑘(𝜃′𝑗 )∕𝑘(𝜃𝑗 ).

Therefore, to sample from (16) using Metropolis Hastings algorithm,
we propose 𝜃′𝑗 from ℎ(⋅|𝜃𝑗 ), and accept 𝜃′𝑗 with probability

𝜋(𝜃′𝑗 )ℎ(𝜃𝑗 |𝜃
′
𝑗 )

𝜋(𝜃𝑗 )ℎ(𝜃′𝑗 |𝜃𝑗 )

exp{(𝜃′𝑗 − 𝜃𝑗 )
⊤∑

𝑧𝑖=𝑗 𝑆(𝑦𝑖, 𝑋𝑖)}

𝛾
∑

𝑖 𝟏(𝑧𝑖=𝑗)
. (17)

With the approximation to the normalising constant ratio available,
the acceptance ratio is calculable and thus the posterior sampling is
feasible. Compared with importance sampling, the use of intermediate
values increases the quality of estimation by introducing intermediate
distributions. Similar techniques like annealed importance sampling
and linked importance sampling (Neal, 2005) can be used as well.

3.2. Pseudo likelihood based algorithm

In addition to the true likelihood approach in Section 3.1, we
also propose a fast estimation method based on the pseudo likeli-
hood (Strauss and Ikeda, 1990), which is an approximation to the true
likelihood. To be specific, the algorithm is developed by employing a
pseudo likelihood approximation in the Metropolis-within-slice sam-
pling algorithm. In the pseudo likelihood based algorithm, (𝑢,𝑤) are
sampled in the same way as in the true likelihood based algorithm,
and (𝜃,𝑍) are updated with pseudo likelihood replacement.

The pseudo likelihood method approximates the true likelihood
using the product of conditional probabilities of all edges in a network,

𝑃𝐿 (𝑌 = 𝑦 ∣ 𝑋, 𝜃) =
∏

𝑟≠𝑠
𝑃
(

𝑦𝑟𝑠 = 1 ∣ 𝑦−𝑟𝑠, 𝑋, 𝜃
)𝑦𝑟𝑠

×
{

1 − 𝑃
(

𝑦𝑟𝑠 = 1 ∣ 𝑦−𝑟𝑠, 𝑋, 𝜃
)}1−𝑦𝑟𝑠 ,
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where 𝑦−𝑟𝑠 = {𝑦𝑘𝑙 , (𝑘, 𝑙) ≠ (𝑟, 𝑠)} denotes all the dyads of the graph
excluding 𝑦𝑟𝑠. Here, 𝑦𝑟𝑠 follows a Bernoulli distribution with probability
defined by change statistics, 𝛥𝑆𝑟𝑠 = 𝑆(𝑦𝑟𝑠 = 1, 𝑦−𝑟𝑠, 𝑋) − 𝑆(𝑦𝑟𝑠 =
0, 𝑦−𝑟𝑠, 𝑋), which indicates the changes of 𝑦𝑟𝑠 on the summary statistics,

𝑃
(

𝑦𝑟𝑠 = 1|𝑦−𝑟𝑠, 𝑋, 𝜃
)

=
exp(𝜃⊤𝛥𝑆𝑟𝑠)

1 + exp(𝜃⊤𝛥𝑆𝑟𝑠)
.

If we replace the true likelihood with pseudo likelihood, then the
acceptance ratio for sampling 𝜃𝑗 using Metropolis Hastings algorithm
s

𝜋(𝜃′𝑗 )ℎ(𝜃𝑗 |𝜃
′
𝑗 )

𝜋(𝜃𝑗 )ℎ(𝜃′𝑗 |𝜃𝑗 )
⋅

∏

𝑧𝑖=𝑗 𝑃𝐿
(

𝑌𝑖 = 𝑦𝑖|𝑋𝑖, 𝜃′𝑗
)

∏

𝑧𝑖=𝑗 𝑃𝐿
(

𝑌𝑖 = 𝑦𝑖|𝑋𝑖, 𝜃𝑗
) , (18)

nd the posterior probability of cluster membership 𝑍𝑖 is proportional
o

(𝜉𝑗 > 𝑢𝑖)
𝑤𝑗
𝜉𝑗

⋅ 𝑃𝐿
(

𝑌𝑖 = 𝑦𝑖|𝑋𝑖, 𝜃𝑗
)

. (19)

Thus, the sampling of 𝜃,𝑍 is possible with the pseudo likelihood
replacement.

Pseudo likelihood based algorithm is faster than true likelihood
based algorithm, but it is less accurate. The major issue is that it may
underestimate the endogenous network formation process, since pseudo
likelihood only uses local information within a whole graph (van Duijn
et al., 2009). Moreover, when the model is near-degenerate, posterior
samples from pseudo likelihood method may fall into the degenerate
region (Caimo and Friel, 2011).

3.3. Adjusted pseudo likelihood based algorithm

The adjusted pseudo likelihood (Bouranis et al., 2017, 2018) is
proposed as an improvement to the pseudo likelihood. The adjusted
pseudo likelihood for a single network 𝑌 is

𝐴𝑃𝐿(𝑌 = 𝑦|𝑋, 𝜃) = 𝐶 ⋅ 𝑃𝐿(𝑌 = 𝑦|𝑋,𝜓(𝜃)), (20)

where 𝐶 > 0 is the magnitude adjustment constant. 𝜓 is a model-
specific invertible and differentiable mapping that adjusts the mode and
curvature of the pseudo likelihood function, defined as

𝜓(𝜃) = �̂�𝑀𝑃𝐿𝐸 +𝑊 ⋅ (𝜃 − �̂�𝑀𝐿𝐸 ). (21)

Here, 𝑊 is a transformation matrix, �̂�𝑀𝑃𝐿𝐸 is the maximum pseudo
likelihood estimate, and �̂�𝑀𝐿𝐸 is the maximum likelihood estimate. The
transformation matrix 𝑊 aims to match the gradient and the Hessian of
the log-pseudo likelihood and the log-likelihood. The details about the
estimation of magnitude adjustment constant 𝐶 and the transformation
matrix 𝑊 can be found in Bouranis et al. (2017, 2018).

Similarly, we use the adjusted pseudo likelihood as the replace-
ment to the true likelihood and get the adjusted pseudo likelihood
based Metropolis-within-slice sampling algorithm. Variables (𝑢,𝑤) are
sampled in the same way as in the true likelihood based Metropolis-
within-slice sampling algorithm, described in Section 3.1. 𝜃𝑗 is sampled
using Metropolis Hastings algorithm with the acceptance ratio

𝜋(𝜃′𝑗 )ℎ(𝜃𝑗 |𝜃
′
𝑗 )

𝜋(𝜃𝑗 )ℎ(𝜃′𝑗 |𝜃𝑗 )
⋅

∏

𝑧𝑖=𝑗 𝐴𝑃𝐿
(

𝑌𝑖 = 𝑦𝑖|𝑋𝑖, 𝜃′𝑗
)

∏

𝑧𝑖=𝑗 𝐴𝑃𝐿
(

𝑌𝑖 = 𝑦𝑖|𝑋𝑖, 𝜃𝑗
) , (22)

nd the posterior probability of cluster membership 𝑍𝑖 is proportional
o

(𝜉𝑗 > 𝑢𝑖)
𝑤𝑗
𝜉𝑗

⋅ 𝐴𝑃𝐿
(

𝑌𝑖 = 𝑦𝑖|𝑋𝑖, 𝜃𝑗
)

. (23)

The label switching problem is a common issue in the Bayesian
analysis of mixture models, where the posterior distributions remain
invariant to the permutation of clusters. For the proposed Metropolis-
within-slice sampling algorithm, we handle the label switching problem
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by post-processing the output from the algorithm. Specifically, we
first obtain the new labels by performing K-centroids cluster analy-
sis (Malsiner-Walli et al., 2016; Leisch, 2006) on the cluster parameters
𝜃 of the non-empty groups after burn in and thinning. Then we relabel
the cluster components using the new labels. More details can be found
in Yin et al. (2022).

4. Empirical results

In this section, we show the performance of the proposed methods
using simulation studies. We first apply the DPM-ERGMs on synthetic
network samples so that we can compare the model results with the
true parameter values. Then we demonstrate how to find the underlying
cluster structure of the ensemble of real networks using Krackhardt’s
advice networks as an example. The synthetic network samples are
generated using R package ergm (Hunter et al., 2008) and the R code
for the simulation studies is available at GitHub.1

4.1. Synthetic networks

We use synthetic networks to compare the clustering accuracy
of different methods. Firstly, we choose three most commonly used
network sufficient statistics for the ERGM distribution,

• 𝑆1(𝑦𝑖) =
∑

𝑟≠𝑠 𝑦𝑟𝑠,𝑖, the total number of edges in the network.
• 𝑆2(𝑦𝑖) = 𝑒𝜙

∑𝑛−2
𝑘=1{1 − (1 − 𝑒−𝜙)𝑘}𝐸𝑃𝑘(𝑦𝑖), 𝜙 = 0.25, geometrically

weighted edgewise shared partner, GWESP, a representation for
transitivity. 𝐸𝑃𝑘(𝑦𝑖) is the number of connected pairs that have 𝑘
common neighbours.

• 𝑆3(𝑦𝑖) =
∑

𝑟≠𝑠 𝑦𝑟𝑠,𝑖𝟏(𝑋𝑟 = 𝑋𝑠), the total number of connections
between individuals with the same covariate.

𝑋 is a binary covariate with half of nodes taking value 0 and the
other half taking 1. Then we simulate networks from mixtures of ERGM
distributions under four different scenarios. In the first scenario, we
consider an ensemble with 𝑁 = 30 networks and 𝐾 = 3 balanced
groups. The number of nodes in each network is 𝑛 = 40. In the second
scenario, we keep the same ensemble size but increase the network size
to 𝑛 = 100. In the third scenario, we consider a larger ensemble with
𝑁 = 80 networks and 𝐾 = 4 groups. The number of networks in each
group is 25, 25, 25 and 5. The network size of scenario 3 is 𝑛 = 40.
Similarly, the scenario 4 has 𝑁 = 80 networks and 𝐾 = 4 groups with
a larger network size 𝑛 = 100. The parameter values 𝜃 for each group
nder different scenarios are specified as follows,

(40,30) =
⎛

⎜

⎜

⎝

−0.85 −0.10 −0.10
−3.45 0.75 2
−5.10 2.5 0.5

⎞

⎟

⎟

⎠

, 𝜃(100,30) =
⎛

⎜

⎜

⎝

−2.03 −0.10 −0.10
−4.15 0.75 2
−5.85 2.5 0.5

⎞

⎟

⎟

⎠

,

𝜃(40,80) =

⎛

⎜

⎜

⎜

⎜

⎝

−0.85 −0.10 −0.10
−3.45 0.75 2
−5.10 2.5 0.5
−2.00 0.20 1.0

⎞

⎟

⎟

⎟

⎟

⎠

, 𝜃(100,80) =

⎛

⎜

⎜

⎜

⎜

⎝

−2.03 −0.10 −0.10
−4.15 0.75 2
−5.85 2.5 0.5
−3.00 0.20 1.0

⎞

⎟

⎟

⎟

⎟

⎠

.

Next, we apply the proposed infinite mixture models to the synthetic
ensembles. We run the simulations for 10,000 iterations starting with
all networks in one group using the true likelihood based methods.
The prior distribution of variable 𝑣 is a beta distribution Beta(1, 0.1),
and the prior of ERGM parameters 𝜃 is selected to be a multivariate
normal distribution  (𝜇0, 𝛴0) with 𝜇0 = (−3, 0, 0), 𝛴0 = 42𝐼𝑝, where
𝐼𝑝 is a 𝑝 dimension diagonal matrix, with 𝑝 denoting the number
of sufficient statistics. The proposal distribution in the Metropolis–
Hastings algorithm is  (0, 𝛴𝑝), 𝛴𝑝 = 0.052𝐼𝑝. For sequence 𝜉1, 𝜉2,… ,

e use an exponential decreasing sequence, 𝜉𝑖 = 𝑒−𝑖. The number
f components that satisfies {𝑗 ∶ 𝜉𝑗 > 𝑢𝑖}, 𝐾𝑖, is also the smallest
nteger that satisfies {𝑒−𝐾𝑖 > 𝑢𝑖}, thus 𝐾𝑖 = ⌊−𝑙𝑜𝑔(𝑢𝑖)⌋. Also, we choose

1 https://github.com/SRenStats/DPM-ERGMs.

https://github.com/SRenStats/DPM-ERGMs
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Table 1
Estimation accuracy of 𝐾 across 50 replicates for various experimental conditions with five different estimation methods.
(𝑛,𝑁) K Accuracy of �̂� Average �̂�

IF-TL IF-APL IF-PL F-TL F-PL IF-TL IF-APL IF-PL F-TL F-PL

(40, 30) 3 1 0.96 0.56 0.92 0.70 3 3.04 3.40 2.92 3.32
(100, 30) 3 1 1 0.54 1 0.84 3 3 3.52 3 3.14
(40, 80) 4 1 1 0.26 0.26 0.42 4 4 5.26 3.2 4.06
(100, 80) 4 1 1 0.46 0.86 0.56 4 4 4.60 3.86 3.76
Table 2
Average ARI and RI across 50 replicates for various experimental conditions with five different estimation methods.
(𝑛,𝑁) K Average ARI Average RI

IF-TL IF-APL IF-PL F-TL F-PL IF-TL IF-APL IF-PL F-TL F-PL

(40, 30) 3 1 0.992 0.926 0.962 0.948 1 0.997 0.968 0.981 0.979
(100, 30) 3 1 1 0.944 1 0.974 1 1 0.977 1 0.988
(40, 80) 4 0.992 0.990 0.841 0.903 0.886 0.997 0.996 0.939 0.957 0.954
(100, 80) 4 1 0.999 0.928 0.987 0.931 1 0.999 0.972 0.994 0.970
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𝑚1 = 2, 𝑚2 = 10 in the Metropolis Hastings step and 𝑚1 = 5, 𝑚2 = 10 for
the sampling of membership variable. Details on the choices of 𝑚1, 𝑚2
can be found in the supplementary materials.

For comparison, we apply the finite mixture model of Yin et al.
(2022) to the same synthetic ensembles with pseudo likelihood approx-
imation as well as the true likelihood estimation method we developed.
For each scenario, we repeat the same process for 50 times. For sim-
plicity, we use IF-TL to stand for the infinite mixture model with the
true likelihood method, IF-APL for the infinite mixture model with the
adjusted pseudo likelihood method, IF-PL for the infinite mixture model
with the pseudo likelihood method, F-TL for the finite mixture model
with the true likelihood method and F-PL for the finite mixture model
with the pseudo likelihood method. For the pseudo likelihood based
methods, we run the simulation for 100,000 iterations and discard the
first 60% samples as burn in and set the thinning parameter as 50, to
be consistent with (Yin et al., 2022).

After running simulations, we present the accuracy of the estimated
number of clusters of each method in Table 1. From Table 1, we can
see that the two infinite methods, IF-TL and IF-APL, perform very well
with respect to the estimation accuracy for the number of clusters 𝐾,
with an average accuracy of almost 100%. F-TL performs better than
F-PL on three scenarios, other than the third scenario, where F-TL gives
a lower estimate on 𝐾. The estimation accuracy of IF-PL is low. This
is because the variances of the pseudo likelihood estimates are often
underestimated (Bouranis et al., 2018), leading to a high and narrow
posterior distributions. Compared to the true posterior distribution, one
pseudo posterior distribution can only represent a smaller number of
samples. Thus, in a mixture model, more distributions are required to
represent the whole population, and the estimates of average �̂� are
increased. As it is also shown in Table 1, the average �̂� of IF-PL and
F-PL is higher than the true 𝐾. This issue is worse for the infinite
mixture model than the mixture model. Regarding the convergence
rate, the true likelihood based methods converge faster than the pseudo
likelihood based methods.

Furthermore, we also evaluate the accuracy of the cluster member-
ships using Rand index (RI) (Rand, 1971) and adjusted Rand index
(ARI). The RI takes values between 0 and 1, with 0 indicating that the
two data clusterings do not agree on any pair of points and 1 stands
for perfect match. The ARI is the adjusted-for-chance version of the
RI. Random labellings have an ARI close to 0 and 1 indicates that the
data clusterings are exactly the same. We compare the clustering results
of each iteration with the true cluster membership and calculate the
average ARI and RI across 50 replicates. The average ARI and average
RI are shown in Table 2.

From Table 2, we can see that all the methods perform well in
regard to the accuracy of the cluster memberships. IF-TL, IF-APL and
F-TL have higher values of ARI and RI, compared to the two pseudo
likelihood based methods, IF-PL and F-PL. The average ARI for scenario
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Table 3
Overall computation time (in hours) of each method under different experimental
conditions.
(𝑛,𝑁) K IF-TL IF-APL IF-PL F-TL F-PL

(40, 30) 3 6.13 0.72 0.68 6.61 0.61
(100, 30) 3 9.84 1.36 1.21 6.60 1.36
(40, 80) 4 7.74 1.55 1.59 6.11 1.66
(100, 80) 4 9.61 3.71 3.32 9.26 3.97

3 with FL-TL is 0.903, higher than F-PL, 0.886, regardless of the lower
accuracy of �̂�. Although the IF-PL provides a higher estimation for 𝐾,
t only divides the original group into more than one groups. As it does
ot mix networks from different groups, ARI values from IF-PL are still
atisfactory despite the high estimates on �̂�.

We also display the overall computation time of each method in
able 3. The computing is performed at a single core (Intel Core

5-11500 @ 2.70 GHz). Compared to the pseudo likelihood based
ethods, the true likelihood based methods, IF-TL and F-TL, take the

ongest time. They aim to get the exact estimation to the model and
hus require estimating the intractable normalising constants at each
teration of the algorithms. This significantly increases the computation
ime. The time differences between IF-TL and F-TL are because of the
ifferences on the number of non-empty clusters at each iteration. IF-
L has a flexible number of clusters at each iteration while F-TL uses
over-clustering method with a pre-specified number of clusters. If

he pre-specified number is higher than the average cluster number in
he infinite mixture model, then the finite mixture model takes longer
ime. The computation time of the pseudo likelihood based methods
re similar. The adjusted pseudo likelihood methods need extra time
o estimate the adjusted pseudo likelihood function for each network,
hile the pseudo likelihood methods have to compare a higher number
f clusters during iteration.

In this simulation study, we compare the performance of different
ethods for different network ensembles. We find that the infinite
ixture model with the true likelihood function, IF-TL, is most accu-

ate, followed by the infinite mixture model with the adjusted pseudo
ikelihood function, IF-APL. With respect to the computation time,
he true likelihood based methods require more time than the pseudo
ikelihood based methods for both infinite and finite mixture models.

.2. Krackhardt’s advice networks

We next apply the proposed DPM-ERGMs to an advice network
nsemble. David Krackhardt (Krackhardt, 1987) studied a sequence of
1 networks about 21 employees in a high-tech machine manufacturing
irm. The networks are constructed based on the data collected from a

urvey on the query ‘‘Who does X go to for advice and help with work?’’
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p
𝑦

Fig. 1. The number of non-empty groups at each iteration.

Everyone is asked not only the advice relationship of themselves but
also other people. Therefore, a collection of 21 perception networks
𝑦𝑖(𝑖 = 1, 2,… , 21) is built where each network represents an individual’s
erspective about the advice relationships among the 21 individuals.
𝑟𝑠,𝑖 = 1 indicates that in the opinion of individual 𝑖, 𝑟 asks help from 𝑠.

The covariate information of each individual is represented by a vector
𝑋. The original paper focuses on exploring the differences of perception
networks through node centrality scores to measure the importance
of the nodes. Here, we are interested in learning the differences and
similarities of the perception networks using the mixture of ERGMs. In
this way, the generating mechanism of the perception networks can be
analysed. This helps us to better understand the perception network
relationships. For the structure statistics, we choose the following,

• 𝑆1(𝑦𝑖) =
∑

𝑟≠𝑠 𝑦𝑟𝑠,𝑖, the total number of edges in the network. This
reflects on the communication strength.

• 𝑆2(𝑦𝑖) =
∑

𝑟≠𝑠 𝑦𝑟𝑠,𝑖𝟏(𝑋𝑟 = 𝑋𝑠), the total number of connections
between individuals in the same level. The positive coefficient
indicates that people tend to ask for help from people of the
same level, while the negative coefficient means that more help
is sought from others in a different level.

• 𝑆3(𝑦𝑖) = 𝑒𝜙
∑𝑛−2
𝑘=1{1 − (1 − 𝑒−𝜙)𝑘}𝐷𝑃𝑘(𝑦𝑖), 𝜙 = 0.25, geometrically

weighted dyad-wise shared partner, GWDSP, a good representa-
tion for local clustering property, where 𝐷𝑃𝑘(𝑦𝑖) represents the
number of dyads with 𝑘 shared partners in the network 𝑦𝑖.

We first estimate the model using the infinite true likelihood
method, IF-TL. The hyperparameter are specified as follows. A multi-
variate Gaussian distribution with mean 𝜇0 = (−3, 0, 0) and covariance
𝛴0 = 42𝐼3 is chosen as the prior distribution for ERGM parameters.
The proposal variance in the Metropolis Hastings algorithm is set as
𝛴𝑞 = 0.052𝐼3. A beta prior Beta(1, 0.1) is used for the mixing proportion.
𝜃0 = (−2, 0, 0) is the initial value for ERGM parameter. In the inter-
mediate importance sampling procedure, we use 𝑚1 = 2 intermediate
distributions and 𝑚2 = 10 auxiliary networks for Metropolis Hastings
algorithm and 𝑚1 = 5, 𝑚2 = 10 in the allocation step.

The number of clusters at each iteration from the true likelihood
based method IF-TL are shown at Fig. 1. We can see that 4 groups
are clustered with networks 15, 20 in the first group, 2, 3, 4, 5, 7, 8,
9, 10, 11, 12, 14, 18, 19, 21 in the second group, 6, 13, 16, 17 in
the third group, and network 1 in the fourth group. The acceptance
probability in the Metropolis Hastings algorithm for 4 groups are 0.43,
0.16, 0.49, 0.38 respectively. To learn about the characteristics of each
group, we display the posterior density plots from the true likelihood
based method in Fig. 2. Group 1 has the smallest coefficient for edges
but the biggest for GWDSP. This means that networks 15 and 20 have
strong local clustering property, which is consistent with the fact that
networks 15 and 20 have hub structures where fewer nodes have most
of the connections. The advice relationships they nominate are centred
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around themselves. Group 2 has a big coefficient for edges and negative
coefficient for level effect, indicating that networks are dense in this
group and there are more advice between employees of different levels
than of same levels. Group 3 has the smallest negative level effect,
meaning that the advice relationships they observed are most across
employees of different levels. Network 1 individually forms group 4.
The level effect of network 1 is around 0, suggesting that individual
level does not play a big role in network 1.

Our results are supported by the findings of Krackhardt (1987).
Next, we compare our results with the centrality calculated in Krack-
hardt (1987). Betweenness centrality reflects on the influence of a node
has over the flow of information. Group 1 consists of networks 15 and
20, which have unique performances on betweenness centrality. The
betweenness centrality of nodes 15, 20 is 81.15 and 65.35, which are
much bigger than the rest of nodes. Both of them mentioned a lot
of advice relationships they are involved in. This is consistent with
our finding of local clustering phenomenon implied by high GWDSP
coefficient. The networks in group 3 are distinct from the rest of
individuals in terms of low indegree and betweenness centrality. The
indegree of individuals 6, 13, 16, 17 is all 0, indicating that they
are not asked for advice by anybody. Also, the betweenness centrality
of them is 0, 0.2, 0.11, 0.28, smaller than the rest of nodes in the
locally aggregated networks. Moreover, employee 1 has high indegree
centrality 18, but low betweenness centrality 2.81. It is asked advice
often, but rarely asks advice from other people. Of all the 18 edges
individual 1 claimed, only 1 relationship is confirmed by others. The
speciality of individual 1 explains why the network 1 formed a group
of its own.

Posterior assessments can be done by comparing the observed net-
work statistics with simulated network statistics sampled from ERGM
with estimation as parameters. Specifically, we generate 500 networks
using the posterior mean as parameters and draw the density plots of
the simulated network statistics in Fig. 3. As we can see, the simulated
network statistics are close to the observed network statistics, suggest-
ing that the true likelihood based method IF-TL fits the data well. Note
that network 1 located on the right end of the plot is far from other
networks regarding the number of total edges and the number of edges
within the same level. This is another reason that we think network 1
is better to be in a separate group.

Furthermore, we apply the adjusted pseudo likelihood based
method, IF-APL, to the advice ensemble. After 100,000 iterations, 4
stable groups are detected. The networks in groups 1 and 3 from the
IF-APL method are the same as from the IF-TL method. Networks
3, 7, 11, 12, 18 form the group 2 and networks 1, 2, 4, 5, 8, 9,
10, 14, 19, 21 form the group 4. The acceptance probability of the
Metropolis Hastings algorithm for 4 groups are 0.52, 0.38, 0.49, 0.38
respectively. As for the maximum likelihood estimation �̂�𝑀𝐿𝐸 required
for the adjusted pseudo likelihood, we use the Monte-Carlo contrastive
divergence estimate (Krivitsky, 2017) since the convergence of some
models with the standard MCMC MLE method (Hunter and Handcock,
2006) is very slow.

We also apply the pseudo likelihood based method, IF-PL, to the
advice ensemble. After 100,000 iterations, 6 stable groups are detected.
The networks in groups 1, 3, 4 from the IF-PL method are the same as
from the IF-TL method. The group 2 from the IF-TL method is divided
further into 3 groups, where networks 2, 4, 5, 8, 9, 10, 14, 19, 21
form the new second group, 3, 7, 12, 18 make the new fifth group, and
11 is in the sixth group. The acceptance probability of the Metropolis
Hastings algorithm for 6 groups are 0.36, 0.23, 0.40, 0.36, 0.29, 0.50
respectively.

For comparison, we show the density plots of the simulated network
statistics for group 4 on Fig. 4. Simulated network statistics from IF-
TL are centred around the observed statistics on the top row, while
simulated statistics from IF-APL and IF-PL are distant from the observed
statistics. This is because the model for group 4 is near-degenerate. For
a near-degenerate model, the underlying parameter values are close to

a degenerate region, which increases the difficulty for estimation. This
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Fig. 2. Density plots of the ERGM parameters for each group using IF-TL.
Fig. 3. Density plots of network statistics based on networks simulated from posterior mean. The vertical lines stand for the value of structure statistics of observed networks.
can happen quite often when we fit a ERGM with complicated statistics
to real datasets. The pseudo likelihood based methods do not work for
the near-degenerate model (Caimo and Friel, 2011). In this case, we can
only use true likelihood method. More details about the cluster results
as well as the posterior assessments for all three methods can be found
in the supplementary materials.

In this case study, we found stable and meaningful clusters with
all the three methods developed for DPM-ERGMs. Although pseudo
likelihood based methods managed to divide the ensemble into reason-
able clusters, they failed to represent the features of networks because
they are not suitable for estimating the near-degenerate model in this
example. While using DPM-ERGMs for real network ensembles, we
suggest to use IF-APL for a quick preliminary analysis, but for the
accurate estimation of network structure, especially for networks with
complicated dependent interactions, we recommend using IF-TL.

5. Discussion

In this manuscript, we proposed to model the ensemble of net-
works using a Dirichlet process mixture of ERGMs. Through such a
framework, the subpopulations consisting of similar networks can be
detected and compared automatically without requiring a fixed number
of clusters in advance. On the other hand, multiple networks with
similar characteristics are described by the same ERGM, namely, the
cluster-specific ERGM, which is better than a single network ERGM,
because information from all networks in the same cluster are gathered
together on the cluster-specific ERGMs. Moreover, we also developed
a novel Metropolis-within-slice sampling algorithm for the posterior
inference of the DPM-ERGMs. To handle the intractability issue of the
ERGM likelihood in the infinite mixture model, we presented three
different estimation methods, the true likelihood based method (IF-TL),
the adjusted pseudo likelihood based method (IF-APL) and the pseudo
likelihood based method (IF-PL). Simulation studies have shown that all
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three methods perform well in recovering the clustering memberships
of networks. Regarding the estimation accuracy of the true number of
clusters, IF-TL and IF-APL perform very well.

Although the IF-TL method provides accurate estimation to the
proposed models, it is also time consuming as auxiliary networks are
sampled using MCMC technique at each iteration of the algorithm to ap-
proximate the normalising constant ratio. For networks with different
sizes or covariates the time is even longer. The IF-APL method provides
good estimation but care is needed especially when estimating the MLE
for ERGMs. Pseudo likelihood based approximations are fast but should
be treated with caution because they can lead to an unreasonable in-
ference. Despite the fact that the computational burden can be reduced
with the use of multiple computer cores, it is still worthwhile to explore
more accurate and faster estimation methods, especially at the context
of ensembles of networks.

The flexibility of both ERGMs and the Bayesian nonparametric
mixture models also offers us many promising future directions. It
would be interesting to incorporate more diverse network structures
as well as individual properties into the current framework, such as
an extension to the conditional ERGMs for single networks (Nasini
et al., 2017). Within each network, there exists a multilevel structures
at different scales: micro, meso and macro, respectively (Mursa et al.,
2021). It might be illuminating to look at the multilevel within-network
structures of clusters of networks.

Recently, there is also work on the concentration and consistency
results for ERGMs (Schweinberger and Stewart, 2020) as well as for
pseudo likelihood based M-estimators (Stewart and Schweinberger,
2020) in a single network case. It would be interesting to derive the
posterior consistency of DPM-ERGMs on top of these results. Besides, al-
though the Monte Carlo Metropolis Hastings algorithm (Liang and Jin,
2013) has been proved to converge to the desired target distribution for
the single network, the theoretical properties of such an algorithm with
multiple network samples still remain unknown. Also, it is interesting to
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Fig. 4. Simulated network statistics from the IF-TL method for group 4 (or network 1) is in the first row. Simulated network statistics from the IF-APL method for group 4 (or
network 1) is in the second row. Simulated network statistics from the IF-PL method for group 4 is in the third row.
explore how the importance sampling technique in sampling the cluster
membership variables affects the posterior consistency of the estimates.
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