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Abstract

Networks are broadly used to represent the interaction relationships between en-

tities in a wide range of scientific fields. Ensembles of networks are employed

to provide multiple network observations from the same set of entities. These

observations may capture different features of the relationships: some ensembles

exhibit group structures; some ensembles are collected over time; other ensembles

have more individual differences. Statistical models for ensembles of networks

should describe not only the dependency structure within each network, but also

the variations of the structural patterns across networks.

Exponential random graph models (ERGMs) provide a highly flexible way to

study the complex dependency structures within networks. We aim to develop

novel methodologies that utilise ERGMs to infer the underlying structures of

ensembles of networks from the following three aspects: (1) identifying and char-

acterising groups of networks that are similar with respect to the effects of local

connectivity patterns and covariates of interest on shaping the global structure of

networks; (2) modelling the evolution of networks over time by representing the

associated parameters using a piecewise linear function; (3) analysing the indi-

vidual characteristics of each network and the population structures of the whole

ensemble in terms of the block structure, homophily, transitivity and other local

structural properties.

For identifying the group structure of ensembles and the block structure of

networks, we employ a Bayesian nonparametric prior on an infinite sample space,

instead of requiring a fixed number of groups in advance as in the existing models.

In this way, the number of mixture models can grow along with the data size.
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This appealing property enables our models to fit the data better. Moreover, for

the ensembles of networks with a time order, we utilise a fused lasso penalty to

encourage similarities on the parameter estimation of the consecutive networks as

they tend to share similar connectivity patterns.

The inference of ERGMs under a Bayesian nonparametric framework is very

challenging due to the fact that we have an infinite number of intractable ERGM

likelihood functions in the model. Besides, the dependency among edges within

the same block and the unknown number of blocks also significantly increase the

difficulty of recovering the unknown block structure. What’s more, the correlation

between dynamic networks also requires us to work on all the possible edges of

the ensemble simultaneously, posing a big challenge for the algorithm.

To solve these issues, we develop five algorithms for the model estimation:

(1) a novel Metropolis-Hastings algorithm to sample from the intractable poste-

rior distribution of ERGMs with multiple networks using an intermediate impor-

tance sampling technique; (2) a new Metropolis-within-slice sampling algorithm

to perform full Bayesian inference on infinite mixtures of ERGMs; (3) a pseudo

likelihood based Metropolis-within-slice sampling algorithm to learn the group

structure of ensembles fast and adaptively; (4) an alternating direction method

of multipliers (ADMM) algorithm for the fast estimation of dynamic ensembles

using a matrix decomposition technique; (5) a Metropolis-within-Gibbs sampling

algorithm for the population analysis of structural patterns with an approximated

stick-breaking prior.
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Chapter 1

Introduction

Networks, consisting of nodes and edges, are widely used to describe the interac-

tions among different entities. The analysis of such data is an emerging area in

statistics. Over the last few decades, a significant number of models have been

proposed to infer the underlying structures of network data, including latent space

models (Hoff et al., 2002; Sewell and Chen, 2015), stochastic block models (Hol-

land et al., 1983; Lee and Wilkinson, 2019), and exponential random graph models

(ERGMs) (Frank and Strauss, 1986; Schweinberger et al., 2020).

An ensemble of networks, also known as a population of networks or mul-

tiplex networks, represents multiple network observations obtained on the same

or similar set of nodes across different subjects or time points. With the recent

development of technology, such data have become commonplace in many fields.

Examples include social networks from different schools (Sweet et al., 2019), brain

networks from different participants (Simpson et al., 2013), and trade networks

from different years (Lee et al., 2020). They provide multiple instances of the

complex interactions among the same set of nodes, increasing the complexity of

the data structure significantly.

In ensembles of networks, multilevel structures occur naturally within and

across networks. To be clear, we use an ensemble of trade networks for an ex-

ample. The ensemble of trade networks includes 16 networks indicating the trade

relationships among 60 countries from year 2001 to 2016. Within each network,

1



the trade relationship between two countries may be affected by other relation-

ships, exhibiting a wide range of dependency structures. Across networks, some

structures remain the same, for example when the associated countries have a long-

standing trade agreement. Other connection patterns may change continuously

with the time. There is a need to understand the similarities and dissimilarities

of network structures that determine the formation of the ensemble.

ERGMs are a class of versatile network models that capture various types of

topological structures through exponential family distributions. The ability of

incorporating complex connectivity patterns makes it an attractive model. There

is a large and growing body of literature on the developments and inference of

ERGMs, as reviewed by Schweinberger et al. (2020). Applying ERGMs to trade

networks can identify the significant structural patterns or exogenous factors as-

sociated with the formation of trade connections between countries within each

network. In this thesis, we focus on developing three new methodologies to model

the variations of network structures across networks based on ERGMs.

1.1 Problem Statement

The mixture model framework is a flexible method to capture the variations within

the ensemble using a group representation. With a mixture model, the ensemble

is divided into different groups. Each group contains networks generated from the

same distribution. There are a number of models for network clustering, including

Durante et al. (2017), Signorelli and Wit (2020), and Yin et al. (2022). However,

the models developed by Durante et al. (2017) and Signorelli and Wit (2020) can

not capture the complex connectivity patterns within networks. Although the

finite mixtures of ERGMs proposed by Yin et al. (2022) can represent various

topological features, this model requires a given number of clusters and struggles

to adapt to the dataset with increasing size. In this thesis, we propose a Bayesian

nonparametric mixture of ERGMs to analyse the ensemble of networks, which
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allows us to divide the multiple networks into several clusters based on the simi-

larities of the connectivity patterns without requiring a fixed number of clusters

in advance.

In some cases the ensembles of networks are observed over time. In the en-

semble of trade networks mentioned before, the networks have a time order as

they are collected from year 2001 to 2016. Related work that employs ERGMs

to model the temporal variations of dynamic ensembles includes Hanneke et al.

(2010), Krivitsky and Handcock (2014), Lee et al. (2020), Ren (2019) and Lee

et al. (2020). Hanneke et al. (2010) proposed a temporal ERGM by expressing

the one-step transition probability between two consecutive networks using an

exponential family distribution. Krivitsky and Handcock (2014) and Lee et al.

(2020) focused on extensions to temporal ERGMs (Hanneke et al., 2010). But the

temporal ERGM framework ignores the heterogeneity of the differences between

networks. The model developed by Lee et al. (2020) exploits a varying coeffi-

cient framework to capture the dynamic pattern of the network structure using

a smooth function. However, this model can not perform well when the underly-

ing network structure does not change smoothly with the time. For example, in

the trade network ensemble, the trade relationships were greatly affected by the

financial crisis of 2008, resulting in an abrupt change on the network structure.

Such a change can not be captured by a smooth function but a piecewise linear

function. We propose to model the parameters associated with different features

through a piecewise linear function.

The Bayesian hierarchical framework provides a way to capture the individ-

ual variations among networks as well as the common structure of the ensemble.

Slaughter and Koehly (2016) and Lehmann and White (2021) studied the indi-

vidual and population characteristics of ensembles of networks using a Bayesian

hierarchical framework, but they did not include block structures in their model.

The block structure, also called the community structure, is the structure that

nodes are divided into different groups with similar features. Incorporating block

structures into ERGMs would allow us to learn the various connectivity patterns
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between nodes with certain features. Such an extension of applying ERGMs to

networks with block structures has been studied by Schweinberger and Handcock

(2015), Babkin et al. (2020) and Schweinberger and Stewart (2020). However,

these methods focus on a singe network observation. The variations of the within-

block connectivity patterns have not been studied in the ensembles of networks.

In this thesis, we incorporate the block structure into the Bayesian hierarchical

framework to study the individual variations among various local connectivity

patterns.

1.2 Challenges

The probability function of ERGMs includes a normalising constant. The nor-

malising constant depends on model parameters and is only computable in trivial

cases. This increases the difficulty of handling ERGMs from a statistical view-

point. In this thesis, we encounter three main challenges in applying ERGMs for

ensembles of networks.

Firstly, the inference of Bayesian nonparametric mixtures of ERGMs is ex-

tremely challenging since an infinite number of intractable ERGM likelihood func-

tions have to be evaluated and compared. The posterior distribution of ERGMs is

doubly intractable due to the intractability of sampling directly from the posterior

distribution, and the intractability of the likelihood model within the posterior

(Caimo and Friel, 2011). Besides, sampling from the Bayesian nonparametric mix-

ture model is also complicated due to the countably infiniteness of the discrete

masses from the random distribution functions chosen from the Dirichlet process

prior (Walker, 2007).

Estimating the dynamic evolution of networks is the second challenge as we

want to present the correlation of ERGM parameter estimates using a piecewise

linear function. This requires us to work on all the possible edges of the ensemble

at the same time. In other words, for an ensemble with T directed networks and n

nodes, n(n− 1)T edges have to be estimated simultaneously at every iteration of
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the algorithm. Also, the inverse of a dT × dT matrix has to be calculated at each

iteration step, with d denoting the number of characteristics of interest. This is

particular challenging with large T .

Inferring the unknown block structure of ensembles of networks while describ-

ing the structural dependency within blocks using ERGMs is the third challenge.

Existing network models usually implicitly assume the edges within the same

block are independent of each other (Lee and Wilkinson, 2019). The within-block

independence assumption facilitates model inference, but fails to capture the true

connectivity patterns among nodes from the same group. In our framework, we

model the dependency structures within each block using ERGMs. This enables

us to learn the true underlying characteristics of each network in detail although

increases the difficulty of model estimation. In addition, the joint estimation of

individual and population characteristics of the ensemble also makes the problem

even more complicated.

1.3 Contributions

The main contribution of this thesis is that we extend ERGMs using a Bayesian

nonparametric framework to two different situations. To be specific, we first use

Bayesian nonparametric ERGMs to detect and compare the groups of networks

that have same generative processes without requiring the number of groups in

advance. Then we develop another Bayesian nonparametric ERGMs to identify

the subnetworks formed by the groups of nodes with similar connectivity patterns

and to model the dependency within subnetworks using ERGMs. The Bayesian

nonparametric analysis of ERGMs retains the advantage of both Bayesian non-

parametric models and ERGMs. It provides a flexible and general framework that

adapts its complexity automatically to the observed ensembles of networks, and

has the ability to capture various dependency structural patterns among nodes.

Another major contribution of this thesis is that we analyse the temporal vari-

ations of ensembles by describing the parameters associated with each network
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as a piecewise linear function. The parameters describe the effects of different

structural patterns on the formation of networks, and a piecewise linear function

of parameters provides an effective way to show the changing trend of networks,

whether it has abrupt changes or it is invariant for some period of time. More-

over, the neighbouring networks tend to share similar characteristics as they are

observed at consecutive time points. The use of fused lasso penalty encourages

similar estimates between neighbouring networks.

Our contributions also include the development of effective algorithms for our

proposed methods. To be specific, we develop two novel MCMC algorithms to

sample from the proposed Bayesian nonparametric mixtures of ERGMs which

tackle the issues of sampling from an infinite mixture of doubly intractable dis-

tributions. We also develop a fast algorithm, based on the alternating direction

method of multipliers (ADMM), to estimate all the ERGM parameters simulta-

neously. Besides, we develop a Metropolis-within-Gibbs algorithm to infer the

block structure of the ensemble adaptively and describe the various dependency

structures within and across blocks using a multilevel framework.

1.4 Outline of the Thesis

In this thesis, we develop three novel statistical models for inferring the unknown

structures of ensembles of networks.

Chapter 2 gives the background knowledge on ERGMs, Bayesian nonparamet-

ric models, block models and fused lasso regression.

In Chapter 3, we propose a Dirichlet process mixture of exponential random

graph models (DPM-ERGM) to study the group variations of networks. This is

achieved by detecting and comparing the groups of networks that are generated

from the same distribution. Moreover, we also develop two MCMC algorithms to

sample from the posterior distributions of the infinite intractable ERGM distri-

butions.

Next, we develop a fused lasso exponential random graph model (FL-ERGM)
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to model the temporal variations of networks in Chapter 4. The model is esti-

mated by the ADMM algorithm, thereby providing a fast approach for statistical

inference of complex dynamic networks.

In Chapter 5, we develop a Bayesian hierarchical block exponential random

graph model (BHB-ERGM) and a corresponding algorithm to study the individual

variations among networks. Specifically, the block structure is incorporated into

ERGMs to capture the dependency structure within blocks.

Chapter 6 concludes the thesis and discusses the potential future work. It sum-

marises the methodologies developed in this thesis for ensembles of networks and

suggests some potential extensions of the methods in several different directions.
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Chapter 2

Literature Review

In this chapter, we first give a literature review on ERGMs with a focus on the

existing estimation methods. Then we review the Dirichlet process mixture mod-

els. Afterwards, we review the stochastic block models from a mixture model

perspective. Finally, we review the fused lasso regression and the corresponding

estimation algorithm.

2.1 Network Data Representation

Networks, also called graphs, are representations of relational data. A network is

made up of nodes and edges, where nodes represent individuals or organisations,

and edges are placed between nodes if the corresponding nodes have interactions.

Mathematically, a network with n nodes is expressed using an adjacency matrix

Y , an n × n square matrix, with entry Yij indicating the relationships between

nodes i and j. The realisation of Y is denoted by y while the set of all possible

outcomes of Y is denoted by Y . The covariate information regarding the nodal

or network attribute that affects the connections are denoted by X ∈ X .

In this thesis, we focus on binary networks without loops. In other words, the

adjacency matrix has binary values, 0 or 1, on the off-diagonal elements. Yij = 1

indicates an edge between nodes i and j, and Yij = 0 indicates no connection

between nodes i and j. The diagonal entries of the adjacency matrix are 0,
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Yii = 0. The adjacency matrices of undirected networks are symmetric while

those of directed networks might not be symmetric. We consider both undirected

and directed networks here.

2.2 Exponential Random Graph Models

ERGMs describe the generating process of networks through exponential family

distributions with summary statistics showing various connecting patterns as ex-

planatory variables. For a network observation y with covariate information X,

the network structures of interest are expressed using a summary statistics vec-

tor, S(y,X) : Y × X → Rd. It represents the characteristics of the network, such

as the number of edges, triangles, etc., which are crucial to the formation and

dissolution of networks. The general ERGM has the following form,

P (Y = y | θ,X) =
exp{θ⊤S(y,X)}

k(θ)
. (2.2.1)

θ ∈ Rd is the vector of model parameters, and S(y,X) is the summary statistics

(Morris et al., 2008). The normalising constant k (θ) =
∑

y∈Y exp
{
θ⊤S(y,X)

}
is

the sum over all potential graphs in the sample space, which is usually intractable

except for very small networks. Given a realisation of network y, the aim of

statistical inference is to find which value of θ provides best description for the

data under ERGM framework. The intractability of the normalising constant is

a strong barrier to the estimation of ERGMs as the likelihood function can only

be specified up to a parameter dependent constant.

There is significant amount of literature on the estimation of ERGMs, includ-

ing work on pseudo likelihood methods (Strauss and Ikeda, 1990; van Duijn et al.,

2009; Bouranis et al., 2017), Monte Carlo maximum likelihood methods (Rob-

bins and Monro, 1951; Geyer and Thompson, 1992; Snijders, 2002; Hunter and

Handcock, 2006), and Bayesian inference methods (Møller et al., 2006; Murray

et al., 2006; Koskinen, 2008; Caimo and Friel, 2011; Liang and Jin, 2013). We
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will review these methods in detail here.

2.2.1 Pseudo Likelihood Estimation

Pseudo likelihood methods (Strauss and Ikeda, 1990) approximate the ERGM

likelihood function using the product of conditional probabilities of different edges,

PL (θ) =
∏
i ̸=j

P (yij|Cij, X) =
∏
i ̸=j

P (yij = 1|Cij, X)yij [1− P (yij = 1|Cij, X)]1−yij ,

(2.2.2)

where Cij = {ykl, (k, l) ̸= (i, j)} denotes all the dyads of the graph excluding yij.

From the likelihood of ERGMs in (2.2.1), we have

logit P (yij = 1|Cij, X) = log
P (yij = 1|Cij, X)

P (yij = 0|Cij, X)

= log
P (yij = 1, Cij, X)

P (yij = 0, Cij, X)

= θ⊤∆Sij,

(2.2.3)

where ∆Sij = S(yij = 1, Cij, X) − S(yij = 0, Cij, X) is called change statistics,

measuring the change in the summary statistics S(y,X) when one edge is changed

from 0 to 1, holding the rest of the network fixed.

Based on (2.2.3), we can write the edge connecting probability in terms of the

change statistics as

P (yij = 1|Cij, X) =
exp

(
θ⊤∆Sij

)
1 + exp (θ⊤∆Sij)

.

Therefore, log pseudo likelihood function of ERGM is

pl(θ) =
∑
i ̸=j

yij log {P (yij = 1|Cij, X)}+ (1− yij)log {1− P (yij = 1|Cij, X)}

=
∑
i ̸=j

{
yijθ

⊤∆Sij − log
{
1 + exp

(
θ⊤∆Sij

)}}
. (2.2.4)
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With such a tractable pseudo likelihood function, the maximum pseudo like-

lihood estimators can be obtained by finding the maximum point of (2.2.4). The

simplicity and computational tractability of the pseudo likelihood function make it

an appealing alternative to the likelihood function, regardless of the fact that the

properties of such estimators are unknown. It is particular helpful in estimating

the ensembles of networks with large data size and complicated structures.

2.2.2 Maximum Likelihood Estimation

The maximum likelihood estimation (MLE) of ERGMs is challenging due to the

intractable normalising constants in ERGMs. Here, we review two algorithms

that utilise network samples from Markov Chain Monte Carlo (MCMC) methods

to estimate ERGMs.

Robbins-Monro Algorithm

The log likelihood function of model (2.2.1) is

l(θ) = θ⊤S(y,X)− log k(θ) = θ⊤S(y,X)− log

{∑
y∈Y

exp
{
θ⊤S (y,X)

}}
.

The derivative of the log likelihood function is

∇l(θ) =∇θ⊤S(y,X)−
∑

y∈Y ∇θ⊤S(y,X)exp
{
θ⊤S (y,X)

}∑
y∈Y exp {θ⊤S (y,X)}

=∇θ⊤

{
S(y,X)−

∑
y∈Y S(y,X)exp

{
θ⊤S (y,X)

}∑
y∈Y exp {θ⊤S (y,X)}

}
=∇θ⊤ {S(y,X)− EθS(y,X)} .

The idea of Robbins-Monro algorithm (Snijders, 2002; Robbins and Monro, 1951)

is to search for an approximate solution to the moment equation EθS(y,X) −

S(y,X) = 0 using the Newton-Raphson method. During the estimation, EθS(y,X)

is approximated using network samples generated from ERGM distributions.
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Importance Sampling

The normalising constant is intractable, but the normalising constant ratio can be

rewritten with respect to expectation. Specifically, for the normalising constant

k(θ) =
∑

y∈Y q(y; θ) =
∑

y∈Y exp
{
θ⊤S(y)

}
, the normalising constant ratio

k(θ2)

k(θ1)
=

∑
y∈Y q(y; θ2)

k(θ1)
=
∑
y∈Y

q(y; θ2)

k(θ1)
=
∑
y∈Y

q(y; θ2)

q(y; θ1)

q(y; θ1)

k(θ1)
= Eθ1

q(y; θ2)

q(y; θ1)
.

(2.2.5)

Then the importance sampling estimation to the normalising constant ratio (2.2.5)

is

1

m1

m1∑
i=1

q(yi; θ2)

q(yi; θ1)
=

1

m1

m1∑
i=1

exp
{
(θ2 − θ1)

⊤S(yi)
}
, (2.2.6)

where y1, . . . , ym1 is a sequence of independent networks sampled from the distri-

bution defined by θ1.

Geyer-Thompson Algorithm

Given a constant θ0, searching for the MLE of ERGMs is equivalent to finding

a point at which the gradient of r(θ, θ0) = l(θ) − l(θ0) is zero, since l(θ) − l(θ0)

differs from l(θ) only by a constant,

l(θ)− l(θ0) =(θ − θ0)
⊤S(y,X)− log k(θ) + log k(θ0)

=(θ − θ0)
⊤S(y,X)− log

k(θ)

k(θ0)
.

Geyer and Thompson (1992) proposed to replace the normalising constant

ratio using importance sampling estimation (2.2.6), and obtained the MLE by

maximising

(θ − θ0)
⊤S(y,X)− log

1

m1

m1∑
i=1

exp[(θ − θ0)
⊤S(yi, X)]. (2.2.7)

12



Hunter and Handcock (2006) extended the Geyer-Thompson algorithm to curved

ERGMs with complicated network statistics S(y,X). The choice of θ0 is very

crucial to the estimation. Koskinen (2008) pointed out one drawback of the im-

portance sampling is that the approximation to the likelihood ratio k(θ)/k(θ0) is

inaccurate when θ is far from θ0.

2.2.3 Bayesian Estimation

Given the prior distribution g0(θ), the posterior distribution of f(y|θ) is

f(θ|y) = g0(θ)f(y|θ)
f(y)

, (2.2.8)

where f(y) =
∫
Rd g0(θ)f(y|θ)dθ.

In the case of ERGMs,

f(y|θ) = q(y; θ)

k(θ)
=

exp{θ⊤S(y,X)}
k(θ)

. (2.2.9)

The posterior distribution of ERGMs is doubly intractable since both f(θ|y) and

f(y|θ) are intractable. It is impossible to sample from such a distribution directly.

Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is widely used to sample from complicated

distributions. To sample from f(θ|y), the acceptance probability for moving from

the current value θk to the new proposal θ′ is

g0(θ
′)f(y|θ′)

g0(θk)f(y|θk)
h(θk|θ′)
h(θ′|θk)

=
g0(θ

′)

g0(θk)

q(y; θ′)

q(y; θk)

k(θk)

k(θ′)

h(θk|θ′)
h(θ′|θk)

, (2.2.10)

with the proposal density represented by h. The continuation of the algorithm

requires the calculation of normalising constant ratio k(θk)/k(θ′) at every iteration

step, which makes the direct Metropolis-Hastings algorithm impractical.

There are different algorithms dealing with this problem. Møller et al. (2006)

13



proposed to set up the Metropolis-Hastings algorithm with an auxiliary variable

where the normalising constant in the proposal density of the auxiliary variable

cancels with the normalising constant in the likelihood model. The auxiliary vari-

able method is a clever way to sample from doubly intractable distributions, but it

also suffers from slow mixing rate and low acceptance ratio. Further developments

of this method have been proposed by Koskinen (2008), Murray et al. (2006) and

among others. Instead of sampling one sample at each iteration as in auxiliary

variable method, Koskinen (2008) proposed a linked importance sampler auxil-

iary variable Metropolis-Hastings algorithm where multiple Markov Chains are

constructed at each iteration based on the idea of bridge sampling. This method

by Koskinen (2008) is more stable compared to the auxiliary variable method,

but it is also more time consuming. Next, we describe the details of the exchange

algorithm.

Exchange algorithm

The exchange algorithm proposed by Murray et al. (2006) is an ingenious way

to sample from the doubly intractable distributions. The details of the exchange

algorithm are as follows:

(1) Draw θ′ from a proposal distribution h(·|θk) with the current value θk.

(2) Generate an auxiliary variable w from f(·|θ′) using a perfect sampler

(Propp and Wilson, 1996).

(3) Update θk+1 with θ′ with probability min(1, r),

r =
f(θ′|y)
f(θk|y)

h(θk|θ′)
h(θ′|θk)

f(w|θk)
f(w|θ′)

(2.2.11)

=
g0(θ

′)

g0(θk)

q(y; θ′)

q(y; θk)

k(θk)

k(θ′)

h(θk|θ′)
h(θ′|θk)

q(w; θk)

q(w; θ′)

k(θ′)

k(θk)

=
g0(θ

′)

g0(θk)

q(y; θ′)

q(y; θk)

h(θk|θ′)
h(θ′|θk)

q(w; θk)

q(w; θ′)
.

As we can see, the normalising constants are cancelled out in formula (2.2.11).

The exchange algorithm offered a swap between (y, θk) and (w, θ′) and obtains
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a higher acceptance probability compared to the auxiliary variable method by

Møller et al. (2006). Furthermore, Caimo and Friel (2011) applied the exchange

algorithm to sample from the posterior ERGMs. As the perfect sampling method

is very time consuming, MCMC methods are used in practice to sample from

ERGMs.

Monte Carlo Metropolis-Hastings Algorithm

Liang and Jin (2013) proposed a Monte Carlo Metropolis-Hastings (MCMH) algo-

rithm to sample from the doubly intractable distributions. The idea is to replace

the unknown normalising constant ratio with an importance sampling estimation.

It has been proved that under mild conditions, the MCMH algorithm converges

to the target distribution. The steps of the MCMH algorithm for sampling from

the posterior ERGM distributions are as follows:

(1) Draw θ′ from a proposal distribution h(·|θk).

(2) Generatem samples z1, z2, . . . , zm independently from f(·|θk) using MCMC.

(3) Calculate the approximation to the normalising constant ratio k(θ′)/k(θk)

β̂ =
1

m

m∑
i=1

q(yi; θ
′)

q(yi; θk)
=

1

m

m∑
i=1

exp
{
(θ′ − θk)⊤S(zi, X)

}
. (2.2.12)

(4) Update θk+1 with θ′ with probability

min

(
1,

g0(θ
′)

g0(θk)

h(θk|θ′)
h(θ′|θk)

q(y; θ′)

q(y; θk)

1

β̂

)
. (2.2.13)

In the exchange algorithm, a perfect sampler is required at each iteration. A

pragmatic alternative is to use samples generated from the MCMC approach, as

discussed in Caimo and Friel (2011). In this case, the exchange algorithm for

ERGMs can be explained as approximating the unknown normalising constant

ratio with one sample, which is a special case of MCMH algorithm when m = 1.
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2.3 Dirichlet Process Mixture Models

2.3.1 Mixture Models

The mixture model assumes that the data point yi is drawn from a mixture of

multiple distributions,

yi ∼
K∑
k=1

wkf(yi|θk),

where k is the group label, K is the total number of groups, wk is the mixing

proportion, standing for the probability that yi is from group k, θk is the parameter

of group k, and f(·|θk) is the component distribution parametrised by θk.

The mixture model likelihood of data y = {y1, . . . , yn} is written in a product-

of-sums form,

f(y|θ) =
n∏

i=1

K∑
k=1

wkf(yi|θk),

which is usually challenging to handle.

An alternative way of explaining a mixture model is to use a latent variable

z to indicate the group membership of each data point. The indicator variable

z = {z1, . . . , zn} takes values (1, 2, . . . , K) with probability P (zi = k) = wk. Given

z,

yi|zi, θ ∼ f(·|θzi).

A Bayesian mixture model consisting of K components is

w|β ∼ Dirichlet(β),

zi|w ∼ Multinomial(w),

θk|H ∼ H,

yi|zi, θ ∼ f(·|θzi),

where β = {β1, . . . , βK} is the hyperparameter, and H is the prior distribution of

θ = {θ1, . . . , θK}.
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2.3.2 Dirichlet Process Mixture Models

The Dirichlet process is a stochastic process that is widely used in the Bayesian

nonparametric field, particularly in the mixture model framework. It is a dis-

tribution over distributions (Ferguson, 1973), i.e. each draw from a Dirichlet

process is a distribution. Let H be a distribution over Θ and α be a positive

real number. Then for any finite measurable partition A1, . . . , Ar of Θ the vector

(G(A1), . . . , G(Ar)) is random since G is random. We say G is a Dirichlet process

with concentration parameter α and base distribution H, written G ∼ DP (α,H),

if

(G(A1), . . . , G(Ar)) ∼ Dirichlet(αH(A1), . . . , αH(Ar)) (2.3.1)

for every finite measurable partition A1, . . . , Ar of Θ.

Next, we model a set of observations {y1, . . . , yn} using a set of latent param-

eters {θ∗1, . . . , θ∗n}. Each θ∗i is drawn independently and identically from G, while

each yi has distribution f(·|θ∗i ) parametrized by θ∗i ,

yi|θ∗i ∼ f(·|θ∗i ),

θ∗i |G ∼ G,

G|α,H ∼ DP (α,H). (2.3.2)

Because G is discrete, multiple θ∗i can take the same value simultaneously, and

the above model can be seen as a mixture model, where yi with the same value

of θ∗i belong to the same cluster. Model (2.3.2) can be reformulated using the

stick-breaking representation.
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Stick-Breaking Representation

We first write down the stick-breaking representation (Sethuraman, 1994) for the

Dirichlet process G ∼ DP (α,H),

G =
∞∑
k=1

wkδθk , (2.3.3)

where

vk ∼ Beta(1, α), (2.3.4)

w1 = v1, wk = vk

k−1∏
l=1

(1− vl),

θk ∼ H.

δθk is a measure that assigns mass 1 at θk. v1, v2, . . . are independent and iden-

tically distributed from a Beta distribution with parameters 1 and α. θ1, θ2, . . .

are independent and identically distributed from the base distribution H. The

construction of w can be understood metaphorically as follows. Starting with a

stick of length 1, we first break it at v1. Then we obtain the first stick with length

w1 = v1 and the remaining length is 1 − v1. Secondly, we break the remaining

stick 1−v1 with a ratio v2. Then we obtain a stick with length w2 = v2(1−v1) and

the remaining length is (1− v2)(1− v1). Next we recursively break the remaining

stick to obtain w3, w4 and so forth.

Let zi be a cluster assignment variable, which takes value k with probability
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wk. Then (2.3.2) can be equivalently expressed as

vk ∼ Beta(1, α), (2.3.5)

w1 = v1, wk = vk

k−1∏
l=1

(1− vl),

zi|w ∼ Multinomial(w),

θk|H ∼ H,

yi|zi, θk ∼ f(·|θzi),

with G =
∑∞

k=1wkδθk and θ∗i = θzi . In the mixture model terminology, w is the

mixing proportion, θk is the model parameters, f(θzi) is the distribution over data

in cluster k, and H the prior over cluster parameters.

The Dirichlet process mixture model is a mixture model with a countably in-

finite number of clusters. However, because wk decreases exponentially, only a

small number of clusters will be used to model the data a priori. In the Dirich-

let process mixture model, the actual number of clusters used to model data is

not fixed, and can be automatically inferred from data using the usual Bayesian

posterior inference framework.

2.3.3 Slice Sampling Algorithm

Next, we review the slice sampling algorithm (Walker, 2007; Kalli et al., 2011)

for sampling from the Dirichlet mixture of Gaussian distributions. The idea is

to introduce a latent variable u to the model to identify a finite and sufficient

set of variables that is required to produce a valid Markov chain with the correct

stationary distributions.

An infinite mixture model is

f(yi|w, θ) =
∞∑
k=1

wkN(yi|θk). (2.3.6)
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Walker (2007) introduced a latent variable ui for each data point yi,

f(yi, ui|w, θ) =
∞∑
k=1

1(ui < wk)N(yi|θk). (2.3.7)

As the sum of the mixing portion w is 1, there are only finite numbers of k

satisfying wk > ui. In other words, the inference can be performed by sampling

from the finite set {k : wk > ui}, which simplifies the problem dramatically.

Furthermore, Kalli et al. (2011) introduced a positive sequence ξ = {ξ1, ξ2, . . . }

into (2.3.7), and obtain

f(yi, ui|w, θ, ξ) =
∞∑
k=1

wk

ξk
1(ui < ξk)N(yi|θk). (2.3.8)

Typically, the sequence is a deterministic, decreasing sequence but a random se-

quence could also be considered. The choice of ξ is a delicate issue and any choice

has to balance efficiency and computational time. See Kalli et al. (2011) for more

details and choices of ξ.

(2.3.8) can also be expressed using the indicator variable z,

f(yi, ui, zi|w, θ, ξ) =
wzi

ξzi
1(ui < ξzi)N(yi|θzi). (2.3.9)

Therefore, the likelihood function of the infinite mixture model is

n∏
i=1

wzi

ξzi
1(ui < ξzi)N(yi|θzi). (2.3.10)

With the prior π(v) for v and prior g0(θ) for θ, the joint distribution of (u, v, θ, y, z)

is

π(v)g0(θ)
n∏

i=1

wzi

ξzi
1(ui < ξzi)N(yi|θzi). (2.3.11)

Next, we specify the full conditional distributions for each variable and derive

the slice sampling algorithm as follows:
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Step 1. For ui, we have

f(ui| · · · ) ∝ 1(ui < ξzi).

Then ui can be sampled from a uniform distribution

ui ∼ U(0, ξzi). (2.3.12)

Step 2. We sample vk from

vk ∼ Beta(1 + ak, α+ bk) (k = 1, 2, . . . , K∗). (2.3.13)

Here, ak =
∑n

i=1 1(zi = k) denotes the number of samples in group k and bk =∑n
i=1 1(zi > k) corresponds to the number of samples in the groups where the

labels are bigger than k. Ki =
∑

k 1{ξk > ui} is the number of components that

are used for yi. K
∗ = max {

∑
k 1{ξk > ui}} is the current number of clusters.

Then update wk with

w1 = v1, wk = vk

k−1∏
l=1

(1− vl) (k = 2, . . . , K∗). (2.3.14)

Step 3. We sample θk from the full conditional distribution

f(θk| · · · ) ∝ g0(θk)
∏
zi=k

N(yi|θk). (2.3.15)

If there are no samples allocated to group k, update θk using the prior distribution

g0(θk).

Step 4. We sample zi from the full conditional distribution

P (zi = k| · · · ) ∝ 1(ξk > ui)
wk

ξk
N(yi|θk). (2.3.16)
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2.4 Stochastic Block Models

Block structures are commonly observed in many real network datasets. The ad-

jacency matrices exhibit block structures after permuting their rows and columns.

Some blocks have more zeros, while some blocks consist of more ones. Stochastic

block models (SBMs) are widely used to infer the block structures of networks.

The model was firstly formalised by Holland et al. (1983), based on the idea of

Breiger et al. (1975).

From a mixture model perspective, a SBM is in fact a mixture model where

each mixture component is specified by the group membership of nodes (Nicola

et al., 2022). The node membership is typically identified by their connectiv-

ity behaviour, with nodes behaving similarly belonging to the same group. The

problem of inferring block structures is also called node clustering or community

detection.

2.4.1 Basic SBMs

We start with the basic version of SBMs. Assume that nodes belong toK different

groups, and the latent variable Z = {Z1, . . . , Zn} denotes the group membership

of each node. The connecting probability between any group is denoted by a

K×K matrix C, where each entry Ckl represents the probability between groups

k and l. Given the group membership of nodes i and j, Zi = k, Zj = l, nodes i

and j are connected with probability Ckl,

P (Yij = yij|Zi = k, Zj = l, C) ∼ Bernoulli(Ckl).

The above model implies that the edges within the same block are connected

with the same probability. In fact, the block structure may describe clusters of

nodes that behave similarly from a connectivity standpoint without necessarily

being more densely connected, thus allowing for other types of structures, such as

disassortative communities and core-periphery.
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SBMs assume that edges are conditionally independent given the group mem-

bership Z. Therefore, the likelihood of the network Y is

P (Y |Z,C) =
∏
i,j

P (Yij = yij|Z,C).

When applying SBMs to real world data, Z is usually unknown, and has to be

inferred. One common assumption is that Zi follows a multinomial distribution

with parameters w = {w1, . . . , wK},

P (Zi = zi|w) ∼ Multinomial(w1, . . . , wK).

The joint probability of Y and Z is,

P (Y, Z|w,C) = P (Y |Z,C)P (Z|w)

=
∏
i,j

P (Yij = yij|Zi = k, Zj = l, C)
∏
i

P (Zi = k|w)

=
∏
i,j

C
yij
kl (1− Ckl)

1−yij

K∏
k=1

w
∑n

i=1 1(zi=k)
k .

2.4.2 Mixed Membership SBMs

In the basic SBMs described above, each node belongs to one group. Airoldi et al.

(2008) argued that nodes can have multiple memberships depending on who they

are interacting with. They extended the single membership model to a mixed

membership model.

Let sij denote the membership of node i when interacting with node j, and rij

denote the membership of node j when interacting with node i. The connecting

probability of pair (i, j) is determined by the corresponding entry of C and the

node-specific membership,

P (yij = 1|sij = k, rij = l, C) = Ckl.
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The generating process of mixed membership SBMs can be described as fol-

lows:

1. For each node i, sample wi from a Dirichlet distribution with parameter

vector β,

P (wi|β) ∼ Dirichlet(β).

2. For each pair (i, j),

1) sample sij, the membership indicator variable of sender node i, from a

Multinomial distribution with parameter wi,

P (sij|wi) ∼ Multinomial(wi);

2) sample rij, the membership indicator variable of receiver node j, from a

Multinomial distribution with parameter wj,

P (rij|wj) ∼ Multinomial(wj);

3) sample yij, the value of the edge, from a Bernoulli distribution with param-

eter Ckl,

P (Yij = yij|sij = k, rij = l, C) ∼ Bernoulli(Ckl).

2.5 Fused Lasso Regression

Suppose that we observe (y1, x1), . . . , (yn, xn), where yi is the response variable

and xi = (xi1, . . . , xip)
⊤ is a p-dimensional predictor. We consider a regression

model for the observations

yi =

p∑
j=1

θjxij + ϵi, for i = 1, . . . , n, (2.5.1)

with ϵi standing for the errors.

The lasso (least absolute shrinkage and selection operator) method (Tibshirani,
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1996) is a regularised regression method with an L1 penalty. It imposes a bound

on the sum of the absolute value of the coefficients. The lasso finds the coefficients

θ̂ = (θ̂1, . . . , θ̂p) satisfying

θ̂ = argmin
θ

n∑
i=1

(
yi −

p∑
j=1

θjxij

)2

subject to

p∑
j=1

|θj| ≤ s1. (2.5.2)

The bound s1 is a tuning parameter. For sufficiently large s1 we obtain the least

squares solution. For smaller values of s1, we obtain spare solutions, i.e. some

components are exactly 0. This is an attractive property as it estimates and selects

variables that are important and discards the rest.

The fused lasso (Tibshirani et al., 2005) is proposed to consider the ordering

of the predictors in addition to the sparsity,

θ̂ = argmin
θ

n∑
i=1

(
yi −

p∑
j=1

θjxij

)2

subject to

p∑
j=1

|θj| ≤ s1 and

p∑
j=2

|θj − θj−1| ≤ s2.

(2.5.3)

The first constraint encourages sparsity in the coefficients, and the second en-

courages sparsity in the differences. For sufficiently large values of s2, we obtain

the same results as lasso. For smaller values of s2, the solutions are piecewise

constant.

The literature on algorithms for the estimation of fused lasso regression is

extensive. Friedman et al. (2007) derived a coordinate descent algorithm for the

fused lasso regression when the design matrix is an identity matrix. Tibshirani

and Taylor (2011) presented the path algorithm for the generalised lasso in the

case of Gaussian regression. Friedman et al. (2010) explored coordinate descent

regularisation paths for generalised linear models with convex penalties, where

they estimated the logistic regression using iteratively reweighted least squares.

Boyd et al. (2010) presented the theory and applications of the ADMM algorithm

to the large scale optimisation problem, including fused lasso estimation.

The regularisation method has also been used in networks. On the one hand,
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it is used to estimate networks, the inverse covariance matrices of the data. Hallac

et al. (2017) introduced a time-varying graphical lasso model to estimate the time-

varying networks from data. On the other hand, it is used to impose constraints on

the differences of network model parameters. Betancourt et al. (2017) developed

a Bayesian fused lasso regression model for link prediction in a time series of

directed networks. They imposed an L1 penalty on the differences of coefficients

in continuous time points based on a p1 model.
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Chapter 3

Dirichlet Process Mixtures of

Exponential Random Graph

Models

In this chapter, we focus on the group variations exhibited in ensembles of net-

works. To be specific, we propose a novel Dirichlet process mixture of exponen-

tial random graph models (DPM-ERGM). It divides the ensemble into different

groups and models each group of networks using a separate ERGM. By employing

a Dirichlet process mixture, the number of clusters can be determined automat-

ically and changed adaptively with the data provided. The model estimation is

challenging because it requires the calculation of an infinite number of intractable

ERGM likelihood. To address this issue, we develop an accurate full Bayesian

inference method using the intermediate importance sampling technique, and a

fast pseudo likelihood based MCMC algorithm.

3.1 Introduction

Within an ensemble, some networks are similar, generated from the same distribu-

tion, while others exhibit distinct features, sampled from different distributions.
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The group representation is a powerful tool to capture the similarities and differ-

ences of network structures in the same ensemble. Durante and Dunson (2018)

introduced a Bayesian method to test the differences between two given groups

of networks. Lehmann and White (2021) developed a multilevel network model

to compare networks from different groups. In most cases, the underlying group

structure is unknown and it is therefore necessary to develop a methodology that

identifies the group membership and compares groups of networks simultaneously.

Signorelli and Wit (2020) introduced a model-based clustering method based on

mixtures of generalized linear models for populations of networks. Yin et al. (2022)

proposed a finite mixture of exponential random graph models to model the en-

semble of networks based on the pseudo likelihood method. Durante et al. (2017)

extended the latent space models using a Bayesian nonparametric approach.

In this chapter, we propose a Dirichlet process mixture of exponential random

graph models (DPM-ERGM) for ensembles of networks. The Dirichlet process

mixture model uses the Dirichlet process as a prior over an infinite mixture model,

where the number of mixtures can grow adaptively with the data. This enables

the model to determine the group structure of the ensemble automatically, or more

precisely, to compare different networks without prior knowledge of the number

of clusters. Moreover, the Dirichlet process provides a large sample space and

tractable posterior distributions, facilitating inference on the infinite sample space

(Ferguson, 1973). On the other hand, the versatile ERGM is employed to model

networks for its ability to represent various types of topological features. Thus,

The DPM-ERGM is capable of determining the group structure and describing

the group characteristics of an ensemble simultaneously.

Under the Bayesian nonparametric framework, performing Bayesian inference

of the proposed model involves the evaluation and comparison of an infinite num-

ber of ERGMs. The intractability of ERGMs increases the difficulty of the es-

timation dramatically. To sample from the infinite sample space, we introduce

a latent variable to the model, which helps us to find a finite set of components
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required to produce the correct Markov chain, borrowing the idea of slice sam-

pling algorithm (Walker, 2007). The inference can then be performed by sampling

from the full conditional distributions of all variables on a finite space. However,

for each network sample, the sampling of the membership variable requires model

comparison between different group representations. This is challenging because

the current method to estimating ERGM likelihood relies on approximating the

intractable normalising constant ratio of two parameters that are close to each

other. Parameters from different clusters can be quite far away from each other

because they represent networks of different characteristics, and the parameters

of empty groups can be even further from the rest.

One way to sample from the posterior distributions of ERGMs is to use

Metropolis-Hastings algorithms. Standard Metropolis-Hastings algorithms are not

applicable since the acceptance probability depends on the intractable normalis-

ing constants. To address this issue, Caimo and Friel (2011) applied the exchange

algorithm (Murray et al., 2006), where a perfect sampler (Propp and Wilson,

1996) is employed to facilitate the Metropolis-Hastings algorithm, avoiding the

calculation of the intractable normalising constant. As the perfect sampler for

ERGMs is computational expensive, a sample from the MCMC method is used

in practice. Liang and Jin (2013) developed a Monte Carlo Metropolis-Hastings

(MCMH) algorithm to sample from the intractable posterior distributions. The

algorithm is implemented by approximating the unknown normalising constant

ratio in the acceptance probability using a Monte Carlo estimate and is proved to

converge to the desired target distribution under some conditions. The exchange

algorithm can be seen as a special case of the MCMH algorithm. However, most

of the literature on ERGMs only deals with the single network situation. In our

proposed DPM-ERGMs, networks from the same group are multiple samples from

the same ERGM distribution. This requires the Bayesian inference to have the

ability of incorporating multiple network samples.

To sample from the posterior distributions of DPM-ERGMs, we develop a
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Metropolis-within-slice sampling algorithm that employs Metropolis-Hastings in-

side the slice sampling algorithm. Specifically, we extend the MCMH algorithm

to a multi-network MCMH (MMCMH) algorithm in order to update the ERGM

parameters that represent multiple networks from the same group. An importance

sampling estimator with intermediate values is used in MMCMH to approximate

the normalising constant ratio in the acceptance probability to ensure the accuracy

of the estimation. In this way, the characteristics of the whole group can be cap-

tured by pooling information across networks. Posterior samples of membership

variables also suffer from the issue of intractability. We express the member-

ship variable distributions in such a way that a ratio of normalising constants is

obtained, and employ an intermediate importance sampling estimator to approx-

imate the constructed ratio. We refer to the combined algorithm as intermediate

importance Metropolis-within-slice (IMS) algorithm. The IMS algorithm allows

the full Bayesian inference to be performed based on the full likelihood, and is

capable of modelling complex dependency structures beyond dyad independence.

Moreover, we can replace the full likelihood with the pseudo likelihood function

in the Metropolis-within-slice scheme to achieve a faster, approximate estimation.

The rest of chapter is organised as follows. In Section 3.2, we describe how the

DPM-ERGMs are formulated. Section 3.3 provides the sampling methodology.

Section 3.4 presents the simulation studies. We summarise this chapter in Section

3.5.

3.2 Dirichlet Process Mixtures of ERGMs

Ensembles of networks include multiple network observations. In addition to

the complex structures within each network, we are also interested in studying

the variations across different networks using a group representation. A mixture

model is a natural approach to describe such a population as it can detect and

characterise subpopulations that share common structures and distinguish net-

works that are different automatically. In particular, the infinite mixture model
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is applied here because the number of mixture components can be adjusted to the

data. Here, we propose to model the ensemble of networks through an infinite

mixture of ERGMs, where each component represents a network cluster using a

cluster-specific ERGM.

An ensemble with N network samples is denoted by {Yi}Ni=1, and the corre-

sponding covariate information is {Xi}Ni=1. In such an ensemble, the single network

Yi is represented using an infinite mixture of ERGMs as follows

Pw,θ(Yi = yi |Xi) =
∞∑
j=1

wj

exp{θ⊤j S(yi, Xi)}
k(θj)

, (3.2.1)

where j is the cluster label, wj is the mixing proportion, θj ∈ Rd is the cluster

specified parameter vector, S(yi, Xi) is the summary statistics of network yi, and

k(θj) =
∑

y∈Y exp
{
θ⊤j S(y,Xi)

}
is the normalising constant. Without requiring a

fixed number of clusters in advance, the infinite mixture model is able to determine

the number of clusters adaptively with the data provided.

The likelihood of the ensemble of networks can be expressed as

Pw,θ({Yi = yi}Ni=1 | {Xi}Ni=1) =
N∏
i=1

∞∑
j=1

wj

exp{θ⊤j S(yi, Xi)}
k(θj)

,

or

Pθ({Yi = yi}Ni=1 | {Xi, Zi = ki}Ni=1) =
N∏
i=1

exp{θ⊤kiS(yi, Xi)}
k(θki)

,

where Z = (Z1, Z2, . . . , ZN) is a latent variable to indicate the membership of each

network, e.g. Zi = ki if yi belongs to cluster ki. It is informative to consider an

infinite mixture model especially when it is not appropriate to have a limit on the

number of groups. However, the inference of this model is challenging because the

intractable normalising constant has to be evaluated in the infinite sample space.

To perform Bayesian inference on the proposed infinite mixture of ERGMs,

we adopt a Dirichlet process prior DP(β,H) (Ferguson, 1973), which is arguably
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the most commonly used Bayesian nonparametric prior. Under the constructive

definition, also known as the stick-breaking representation (Sethuraman, 1994),

the mixing proportion w is constructed using a stick-breaking procedure with

an auxiliary variable v. A sequence of independent and identically distributed

auxiliary variables v1, v2, . . . is sampled from a prior distribution Beta(1, β), and

the mixing proportions are set as w1 = v1, wj = vj
∏j−1

l=1 (1 − vl) (j = 2, 3, . . . ).

The membership indicator variable Zi follows a multinomial distribution with

probability w = (w1, w2, . . . ). Given the membership Zi = ki, the network Yi

is modelled by an ERGM with parameter θki . The choice of prior distributions

for Bayesian ERGMs has not been studied in detail, and studies have generally

assumed a multivariate normal distributions on the model parameters (Caimo

and Friel, 2011; Bouranis et al., 2018). Here, we also use a multivariate normal

distribution N (µ0,Σ0) for the prior of ERGM parameter θj.

In summary, we propose a Dirichlet process mixture of exponential random

graph models (DPM-ERGM) with the following specification,

vj ∼ Beta(1, β) (j = 1, 2, . . . ),

w1 = v1, wj = vj

j−1∏
l=1

(1− vl),

Zi|w ∼ Multinomial(w) (i = 1, 2, . . . , N), (3.2.2)

θj|µ0,Σ0 ∼ N (µ0,Σ0),

yi|Zi = ki, θ ∼ Pθki
(Yi = yi |Xi),

P θki
(Yi = yi |Xi) =

exp{θ⊤kiS(yi, Xi)}
k(θki)

.

3.3 Posterior Computation

The statistical inference for the proposed model is very challenging due to the infi-

nite number of mixture components and the intractable ERGM likelihood. In this

section, we first develop a Metropolis-within-slice sampling algorithm to address
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the issue of sampling from the infinite sample space of DPM-ERGMs. Afterwards,

we provide details of the algorithms based on a full and pseudo likelihood approach

separately.

The slice sampling algorithm (Walker, 2007; Kalli et al., 2011) provides a way

to sample from the infinite mixture models. Similar to the slice sampling, we first

introduce a latent variable u to our proposed model to identify the exact number

of components that are required to produce a valid Markov chain with the correct

stationary distributions. The joint density of (y, u) is written as

Pw,θ(Y = y, u |X, ξ) =
∑

j:ξj>u

wj

ξj
Pθj(Y = y|X).

The inference can be performed by sampling from the finite set {j : ξj > u}, which

simplifies the problem dramatically. ξ is a deterministic decreasing sequence used

to address the update of u. See Kalli et al. (2011) for details and choices of ξ.

Furthermore, with the indicator variable Z, the joint density can be expressed

as

Pw,θ(Y = y, u, Z = k |X, ξ) =
wk

ξk
1(u < ξk)Pθk(Y = y|X).

Hence, the likelihood for the ensemble {Yi}Ni=1 with latent variable u and sequence

ξ is

lw,θ({Yi = yi, Zi = ki, ui}Ni=1 | {Xi}Ni=1, ξ) =
N∏
i=1

wki

ξki
1(ui < ξki)Pθki

(Yi = yi|Xi).

(3.3.1)

With the prior distribution specified in (3.2.2), the full conditional distributions

of all variables (u,w, θ, Z) are available. The Metropolis-within-slice sampling

scheme is performed by sampling (u,w, θ, Z) from their full conditional distribu-

tions in turn. In particular, as the direct sampling from ERGMs is not possible,

Metropolis-Hastings algorithm is used to assist the sampling of θ.
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3.3.1 Full Likelihood Based Algorithm

In order to overcome the intractability issue and perform accurate estimation to

the original model, we propose to employ the intermediate importance sampling

technique in the Metropolis-within-slice sampling scheme, and name this method

as IMS algorithm. The sampling procedure of the full likelihood based IMS algo-

rithm is as follows:

Step 1. Sample ui from a uniform distribution,

ui ∼ U(0, ξki) (i = 1, 2, . . . , N), (3.3.2)

where ki is the current allocation of network yi.

Step 2. Sample vj from a beta posterior distribution,

vj ∼ Beta(1 + aj, β + bj) (j = 1, 2, . . . , K∗). (3.3.3)

Here, aj =
∑N

i=1 1(ki = j) denotes the number of networks in group j and bj =∑N
i=1 1(ki > j) corresponds to the number of networks in the groups whose label

are bigger than j. K∗ denotes the current number of clusters.

Update wj with

w1 = v1, wj = vj

j−1∏
l=1

(1− vl) (j = 2, . . . , K∗). (3.3.4)

Step 3. Sample Zi with the following two steps:

(1) Introduce k(θc) to construct a computable normalising constant ratio and

estimate the normalising constant ratio k(θc)/k(θj) (j = 1, . . . , K∗) using an in-

termediate importance sampling estimator γj.

(2) Calculate the conditional probability with the intermediate importance
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sampling estimator replacement,

P (Zi = ki| · · · ) ∝ 1(ξki > ui)
wki

ξki
· exp{θ⊤kiS(yi, Xi)} · γki , (i = 1, 2, . . . , N).

(3.3.5)

Here, θki is the parameter of group ki.

Step 4. Sample θj (j = 1, 2, . . . , K∗) using the MMCMH algorithm with the

following substeps:

(1) Draw θ′j from a proposal distribution h(·|θj).

(2) Simulate m2 networks from each intermediate distribution with parameter

θimr (r = 0, 1, . . . ,m1) individually and store the network statistics using S(zsr) (s =

1, 2, . . . ,m2), where θimr (r = 1, 2, . . . ,m1) are m1 intermediate values between

θim0 = θj and θimm1+1 = θ′j.

(3) Estimate the normalising constant ratio k(θ′j)/k(θj) with an intermediate

importance sampling estimator γ.

(4) Accept θ′j with probability

α = min

(
1,

π(θ′j)h(θj|θ′j)
π(θj)h(θ′j|θj)

exp{(θ′j − θj)
⊤∑

zi=j S(yi, Xi)}
γ
∑

i 1(zi=j)

)
. (3.3.6)

If there are no networks allocated to group j, update θj using prior π(θj).

Next, we show the construction of formula (3.3.5) in sampling Z (Step 3), and

explain how the MMCMH algorithm is developed to sample θ (Step 4).

Details of Step 3

The full conditional distribution of Zi is

P (Zi = ki | · · · ) ∝ 1(ξki > ui)
wki

ξki

exp{θ⊤kiS(yi, Xi)}
k(θki)

. (3.3.7)

The ratio on the right hand side depends on an intractable normalising constant

k(θki), which makes the direct sampling infeasible.
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Gelman and Meng (1998) provides a way to estimate the normalising constant

ratio using the importance sampling technique,

k(θa)

k(θb)
≈ 1

m2

m2∑
s=1

exp{(θa − θb)
⊤S(zs)}, (3.3.8)

with zs (s = 1, 2 . . . ,m2) denoting a sequence of m2 independent auxiliary net-

works sampled from the ERGM with parameter θb. However, the importance

sampling estimate are incorrect if the compared parameters θa and θb are not close

enough (Neal, 2005). This obstacle can be overcome by introducing intermediate

distributions between θa and θb. Specifically, we interpolate m1 intermediate val-

ues, θimr (r = 1, 2, . . . ,m1), so that θimr and θimr+1 are close enough, and factorise

the normalising constant ratio using intermediate values,

k(θa)

k(θb)
=

m1∏
r=0

k(θimr+1)

k(θimr )
=

k(θim1 )

k(θim0 )

k(θim2 )

k(θim1 )
· · ·

k(θimm1+1)

k(θimm1
)
, (3.3.9)

where θim0 = θb and θimm1+1 = θa. Then, each factor k(θimr+1)/k(θ
im
r ) is estimated

using the importance sampling estimator, and k(θa)/k(θb) is approximated by

γ =

m1∏
r=0

1

m2

m2∑
s=1

exp{(θimr+1 − θimr )⊤S(zsr)}. (3.3.10)

where zsr (s = 1, 2, . . . ,m2) is a sequence of m2 independent networks sampled

from the ERGM with parameter θimr .

If we can construct a normalising constant ratio in the posterior membership

probability, we will be able to borrow the strength of intermediate importance

sampling to allocate the network samples. To do so, we multiply a constant k(θc)

to each term of the posterior probability vector and obtain

P (Zi = ki | · · · ) ∝ 1(ξki > ui)
wki

ξki
· exp{θ⊤kiS(yi, Xi)}

k(θc)

k(θki)
,

where the constructed normalising constant ratios k(θc)/k(θki) (ki = 1, 2, . . . , K∗)

can be approximated using the intermediate importance sampling estimation as
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shown in (3.3.10). Thus, the posterior probability ratios do not change and the

sampling can be performed.

The choice of θc is important to the accuracy of the intermediate importance

sampling estimation. The estimation are incorrect if the parameters to be com-

pared, θc and θj, are not close enough. As each group has a unique θj, it is

impossible to find one θc close to all θj at the same time. Simple importance

sampling is not applicable here and multiple intermediate values must be used to

ensure the quality of estimation. Also, some θki can be quite difficult to sample

from, especially when it is representing an empty group.

Details of Step 4

The posterior distribution of group parameter θj is proportional to the product

of prior π(θj) and the joint likelihood of the networks in group j, which is

f(θj| · · · ) ∝ π(θj)
∏
Zi=j

exp{θ⊤j S(yi, Xi)}
k(θj)

. (3.3.11)

Sampling from such a posterior distribution is challenging as it depends on the

product of multiple intractable likelihood functions.

The use of MCMC algorithm to sample from this posterior distribution of θj

involves the calculation of k(θ′j)/k(θj). As the product of the multiple normalising

constant ratios has to be calculated, it is necessary to have a more accurate esti-

mation for each k(θ′j)/k(θj). To achieve this, we use the intermediate importance

sampling estimator γ as in (3.3.10) to substitute k(θ′j)/k(θj).

Therefore, to sample from (3.3.11) using MMCMH algorithm, we propose θ′j

from h(·|θj), and accept θ′j with probability

π(θ′j)h(θj|θ′j)
π(θj)h(θ′j|θj)

exp{(θ′j − θj)
⊤∑

zi=j S(yi, Xi)}
γ
∑

i 1(zi=j)
. (3.3.12)

With the approximation to the normalising constant ratio available, the accep-

tance ratio is calculable and thus the posterior sampling is feasible. Compared
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with importance sampling, the use of intermediate values increases the quality

of estimation by introducing intermediate distributions. Similar techniques like

annealed importance sampling and linked importance sampling (Neal, 2005) can

be used as well.

3.3.2 Pseudo Likelihood Based Algorithm

In addition to the full likelihood approach in 3.3.1, we also propose a fast estima-

tion method based on the pseudo likelihood (Strauss and Ikeda, 1990), which is

an approximation to the full likelihood. To be specific, the algorithm is developed

by employing a pseudo likelihood approximation in the Metropolis-within-slice

sampling algorithm. We name this pseudo likelihood based algorithm as the PMS

algorithm. In the PMS algorithm, (u,w) are sampled in the same way as in the

IMS algorithm, and (θ, Z) are updated with pseudo likelihood replacement.

The pseudo likelihood method approximates the full likelihood using the prod-

uct of conditional probabilities of all edges in a network,

PLθ (Y = y |X) =
∏
r ̸=s

P (yrs = 1 | y−rs, X)yrs {1− P (yrs = 1 | y−rs, X)}1−yrs ,

where y−rs = {ykl, (k, l) ̸= (r, s)} denotes all the dyads of the graph excluding

yrs. The Change statistic is defined to measure the change of summary statistics

when the edge yrs is changed from disconnected to connected, ∆Srs = S(yrs =

1, y−rs, X)− S(yrs = 0, y−rs, X). The edge variable yrs follows a Bernoulli distri-

bution with probability expressed using change statistics,

P (yrs = 1|y−rs, X) =
exp(θ⊤∆Srs)

1 + exp(θ⊤∆Srs)
.

If we replace the full likelihood with use pseudo likelihood, then the acceptance
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ratio for sampling θj using the Metropolis-Hastings algorithm is

π(θ′j)h(θj|θ′j)
π(θj)h(θ′j|θj)

·
∏

zi=j PLθ′j
(Yi = yi|X)∏

zi=j PLθj (Yi = yi|X)
, (3.3.13)

and the posterior probability of cluster membership Zi is proportional to

1(ξj > ui)
wj

ξj
· PLθj (Yi = yi) . (3.3.14)

Thus, the sampling of θ, Z is possible with the pseudo likelihood replacement.

The PMS algorithm is faster than the IMS algorithm, but it is less accurate.

The major issue is that it may underestimate the endogenous network formation

process, since pseudo likelihood only uses local information within a whole graph

(van Duijn et al., 2009). Moreover, when the model is near-degenerate, posterior

samples from pseudo likelihood method may fall into the degenerate region (Caimo

and Friel, 2011).

3.4 Empirical Results

In this section, we first present some examples on the use of the intermediate

importance sampling. Then we show the performance of proposed methods using

simulated networks. Finally, we apply DPM-ERGMs to two real network ensem-

bles and discuss the results of the application. The network samples are generated

using the R package ergm (Hunter et al., 2008).

3.4.1 Intermediate Importance Sampling

Here, we use simulation studies to show how the number of intermediate distribu-

tions m1 and the number of auxiliary networks m2 affect the normalising constant

ratio approximation with varying distances between the compared parameters.

We first show that how the estimation changes with different values of m1

and m2 when the compared parameters are distant. To do so, we sample two
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Figure 3.4.1: Estimation of normalising constant ratios when the compared pa-
rameters are far from each other. The three plots correspond to three repetitions
of the parameters.

parameters θ1, θ2 independently from the priorN (µ0,Σ0) and estimate k(θ2)/k(θ1)

with different values of m1,m2. The results of three repetitions are shown in the

three plots of Figure 3.4.1 separately. In each plot, lines with different colours

correspond to different numbers of intermediate values m1 and x-axis represents

different numbers of auxiliary variables m2. As is shown, the line of m1 = 0 is far

from the other lines, meaning that the estimation is incorrect and intermediate

distributions have to be used to get a good estimation.
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Figure 3.4.2: Estimation of normalising constant ratios when the compared pa-
rameters are close to each other. The three plots correspond to three repetitions
of the parameters.

In the second simulation, we show how m1,m2 affect the intermediate impor-

tance sampling estimation when the compared parameters are close. Here, we

generate a sample θ1 from the prior N (µ0,Σ0), and propose θ2 from a normal
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distribution N (θ1,Σp). Then we estimate normalising constant ratio k(θ2)/k(θ1)

with different m1,m2, and show the estimation in Figure 3.4.2. As we can see, all

lines merge together with increasing m1 and m2, indicating that the intermediate

importance sampling estimation is consistent. The simple importance sampling

estimation (the line with m1 = 0) has big variations, and intermediate importance

sampling estimators (lines with m1 > 0) are more stable.

We recommend m1 = 2,m2 = 10 for MMCMH algorithm and m1 = 5,m2 = 10

for the posterior membership sampling as initial values, and similar techniques can

be applied to choose m1,m2 in the specific dataset.

3.4.2 Simulated Networks

Simulation 1

In this simulation study, we focus on comparing the clustering accuracy of dif-

ferent methods. Firstly, we choose three most commonly used network sufficient

statistics for the ERGM distribution,

� S1(yi) =
∑

r ̸=s yrs,i, the total number of edges in the network.

� S2(yi) = eϕ
∑n−2

k=1{1− (1− e−ϕ)k}EPk(yi), ϕ = 0.25, geometrically weighted

edgewise shared partner, GWESP, a representation for transitivity. EPk(yi)

is the number of connected pairs that have k common neighbours.

� S3(yi) =
∑

r ̸=s yrs,i1(Xr = Xs), the total number of connections between

individuals with the same covariate.

X is a binary covariate with half of nodes taking value 0 and the other half taking

1. Then we simulate networks from mixtures of ERGM distributions under four

different scenarios. In the first scenario, we consider an ensemble with N = 30

networks and K = 3 balanced groups. The number of nodes in each network is

n = 40. In the second scenario, we keep the same ensemble size but increase the

network size to n = 100. In the third scenario, we consider a larger ensemble with

N = 80 networks and K = 4 groups. The number of networks in each group is
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25, 25, 25 and 5. The network size of scenario 3 is n = 40. Similarly, the scenario

4 has N = 80 networks and K = 4 groups with a larger network size n = 100.

The parameter values θ for each group under different scenarios are specified as

follows,

θ(40,30) =


−0.85 −0.10 −0.10

−3.45 0.75 2

−5.10 2.5 0.5

 , θ(100,30) =


−2.03 −0.10 −0.10

−4.15 0.75 2

−5.85 2.5 0.5

 ,

θ(40,80) =


−0.85 −0.10 −0.10

−3.45 0.75 2

−5.10 2.5 0.5

−2.00 0.20 1.0

 , θ(100,80) =


−2.03 −0.10 −0.10

−4.15 0.75 2

−5.85 2.5 0.5

−3.00 0.20 1.0

 .

Next, we apply the proposed infinite mixture models to the synthetic ensem-

bles. The prior of variable v is a beta distribution Beta(1, 0.1). The prior of ERGM

parameters θ is selected to be a multivariate normal distribution N (µ0,Σ0) with

µ0 = (−3, 0, 0), Σ0 = 42Ip, where Ip is a p dimension diagonal matrix, with

p denoting the number of sufficient statistics. The proposal distribution in the

Metropolis-Hastings algorithm is N (0,Σp), Σp = 0.052Ip. For sequence ξ1, ξ2, . . . ,

we use an exponential decreasing sequence, ξi = e−i. Ki, the number of com-

ponents that satisfies {j : ξj > ui}, is also the smallest integer that satisfies

{e−Ki > ui}, thus Ki = ⌊−log(ui)⌋. We start with all networks in one group with

initial value θ0 = (−2, 0) and choose m1 = 2,m2 = 10 in the MMCMH step and

m1 = 5,m2 = 10 for the sampling of membership variables.

For each scenario, we repeat the same process for 50 times. After running the

simulation for 100,000 iterations with 60,000 burn-in and 50 thinning, we report

the accuracy of the estimated number of clusters from four different methods in

Table 3.4.1. Furthermore, we also evaluate the accuracy of the cluster member-

ships using Rand index (RI) (Rand, 1971) and adjusted Rand index (ARI). The
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Table 3.4.1: Estimation accuracy of K across 50 replicates for four experimental
conditions with different estimation methods.

Accuracy of K̂ Average K̂

(n,N) K IMS PMS IMS PMS
(40, 30) 3 1 0.56 3 3.40
(100, 30) 3 1 0.54 3 3.52
(40, 80) 4 1 0.26 4 5.26
(100, 80) 4 1 0.46 4 4.60

RI takes values between 0 and 1, with 0 indicating that the two data clusterings

do not agree on any pair of points and 1 stands for perfect match. The ARI is the

adjusted-for-chance version of the RI. Random labellings have an ARI close to 0

and 1 indicates that the data clusterings are exactly the same. We compare the

clustering results of each iteration with the true cluster membership and calculate

the average ARI and RI across 50 replicates. The average ARI and average RI

are shown in Table 3.4.2.

Table 3.4.2: Average ARI and RI across 50 replicates for four experimental con-
ditions with different estimation methods.

Average ARI Average RI

(n,N) K IMS PMS IMS PMS
(40, 30) 3 1 0.926 1 0.968
(100, 30) 3 1 0.944 1 0.977
(40, 80) 4 0.992 0.841 0.997 0.939
(100, 80) 4 1 0.928 1 0.972

From Table 3.4.1, we can see that the IMS method performs very well with

respect to the estimation accuracy for the number of clusters K, with an average

accuracy of almost 100%. The estimation accuracy of the PMS method is lower

as it tends to give a high estimation for K. From Table 3.4.2, we can see that

both methods perform well in regard to the accuracy of the cluster memberships.

The full likelihood method IMS performs better than the pseudo likelihood method
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PMS. After further investigation, we find that although the PMS method provides

a higher estimation for K, it only divides the original group into more than one

groups. As it does not mix networks from different groups, ARI values from PMS

are still satisfactory despite the high estimates on K̂.

Table 3.4.3: Average computation time (in seconds) per iteration across 50 repli-
cates.

Average Time

(n,N) K IMS PMS
(40, 30) 3 2.4230 0.0244
(100, 30) 3 3.0188 0.0459
(40, 80) 4 2.7854 0.0574
(100, 80) 4 3.4580 0.1196

We also display the average computation time of the proposed methods in

Table 3.4.3. The computation is run using a single core (Intel Core i5-11500

@ 2.70GHz). The full likelihood based method IMS takes longer time. IMS

aims to get the exact estimation to the model and thus requires estimating the

intractable normalising constants at each iteration of the updating procedure.

This significantly increases the computation time. The pseudo likelihood method

PMS is faster as the calculation of the pseudo likelihood is much simpler than the

normalising constant.

Simulation 2

We next concentrate on assessing the quality of ERGM parameter estimation. An

ensemble of N = 40 undirected networks are generated from a mixture model

with K = 2 groups. Two statistics are used to describe the networks, the number

of edges S1(y) =
∑

i<j yij to reflect on the network density and the number of

triangles S2(y) =
∑

i<j<k yijyjkyik to represent the transitivity. The mixing pro-

portion is wtrue = (0.5, 0.5). The network size is n = 30. The ERGM parameters
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for group 1 are selected as θ1true = (−3, 0.9), which has low density and high tran-

sitivity parameter, meaning that some edges are generated because of endogenous

formation process. The second group parameter is θ2true = (−1, 0), representing

Bernoulli networks which have independent edges.
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Figure 3.4.3: Clustering results of IMS algorithm (left), and PMS algorithm
(right).
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Figure 3.4.4: Density plots of ERGM parameters after 2,000 burn-in.

We apply both the IMS and PMS algorithm to the synthetic ensemble. The

simulation is run for 12,000 iterations with the first 2,000 iterations as burn-in.

The clustering results are shown in Figure 3.4.3. Both IMS and PMS algorithms

are able to detect the true group memberships of all networks correctly. The

acceptance ratio is 0.60 for group 1, 0.27 for group 2 using IMS algorithm. The

acceptance ratio is 0.62 for group 1, 0.18 for group 2 using PMS algorithm. The

posterior density plots are displayed in Figure 3.4.4. As we can see, the triangle
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estimator of group 1 from IMS is smaller than PMS. This confirms the finding of

van Duijn et al. (2009) that pseudo likelihood method tends to underestimate the

endogenous network formation process. For the Bernoulli networks in group 2, the

pseudo likelihood method underestimates the parameter variance and provides a

narrower interval. This is consistent with the finding of Bouranis et al. (2017).
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Figure 3.4.5: Density plots of simulated network statistics generated from full
likelihood estimation and pseudo likelihood estimation. The left two plots are
simulated from 200 different posterior samples, while the right two are sampled
from the posterior mean. The vertical lines stand for the value of structure statis-
tics of the simulated networks. Different colour represents different groups.

In order to further assess the quality of estimation, we simulate networks based

on the estimation. Specifically, we firstly simulate 200 networks, each from one of

the 200 different posterior samples obtained after 2,000 burn-in and 50 thinning,

then we simulate another 200 networks from the posterior mean. The simulated

network statistics from full likelihood is shown in the first row of Figure 3.4.5,

with statistics from the posterior samples on the left side and statistics from the

posterior mean on the right side. The observed network statistics is covered well

by the simulated network statistics, indicating that the estimator is a good fit to

the data. However, in the second row of Figure 3.4.5, there are significant amount
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of full graphs (graphs with 435 edges) simulated from the pseudo estimation,

because posterior samples from PMS method have degenerate parameter values.

In this simulation, we applied both the IMS and PMS algorithms to the syn-

thetic network ensemble. The IMS algorithm provided accurate estimation to

the model. PMS algorithm clustered all the network samples correctly, but the

estimated model for group 1 failed to generate networks resembling the observed

graphs.

3.4.3 Krackhardt’s Advice Networks

We next apply the proposed DPM-ERGMs to an advice network ensemble. Krack-

hardt (1987) studied a sequence of 21 networks about 21 employees in a high-tech

machine manufacturing firm. The networks are constructed based on the data

collected from a survey on the query “Who does A go to for advice and help with

work?” Everyone is asked not only the advice relationship of themselves but also

other people. Therefore, a collection of 21 perception networks yi(i = 1, 2, . . . , 21)

is built where every network represents an individual’s perspective about the ad-

vice relationships among the 21 individuals. yrs,i = 1 indicates that individual i

thinks that individual r asks s for help. The covariate information, the job level

of each individual is represented by a vector X. The original paper focuses on

exploring the differences of perception networks through node centrality scores to

measure the importance of the nodes. Here, we are interested in learning the dif-

ferences and similarities of the perception networks using the mixture of ERGMs.

In this way, the generating mechanism of the perception networks can be anal-

ysed. This helps us to better understand the perception network relationships.

For the structure statistics, we choose the following:

� S1(yi) =
∑

r ̸=s yrs,i, the total number of edges in the network. This reflects

on the communication strength.

� S2(yi) =
∑

r ̸=s yrs,i1(Xr = Xs), the total number of connections between
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individuals in the same level. The positive coefficient indicates that peo-

ple tend to ask for help from people of the same level, while the negative

coefficient means that more help is sought from others in a different level.

� S3(yi) = eϕ
∑n−2

k=1{1− (1− e−ϕ)k}DPk(yi), ϕ = 0.25, geometrically weighted

dyad-wise shared partner (gwdsp), representing local clustering property,

where DPk(yi) denotes the number of dyads that have k shared partners in

the network yi.
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Figure 3.4.6: Clustering results of advice network ensemble using IMS sampling
algorithm. Left: the number of clusters at every iteration. Right: the frequency
of allocating to each group after 50,000 burn-in.

We apply the IMS algorithm to the advice network ensemble. The hyper-

parameters are specified as follows. A multivariate Gaussian distribution with

mean µ0 = (−3, 0, 0) and covariance Σ0 = 42I3 is chosen as the prior distribu-

tion for ERGM parameters. The proposal variance in the MMCMH algorithm

is set as Σq = 0.052I3. A beta prior Beta(1, 0.1) is used for the mixing propor-

tion. θ0 = (−2, 0, 0) is the initial value for ERGM parameter. In the intermediate

importance sampling procedure, we use m1 = 2 intermediate distributions and

m2 = 10 auxiliary networks for MMCMH algorithm and m1 = 5,m2 = 10 in the

allocation step.

The number of clusters at each iteration and the allocating frequency of each

network from the IMS algorithm are shown in Figure 3.4.6. We can see that
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4 groups are clustered with networks 15, 20 in the first group, 2, 3, 4, 5, 7,

8, 9, 10, 11, 12, 14, 18, 19, 21 in the second group, 6, 13, 16, 17 in the third

group, and network 1 in the fourth group. The acceptance probability in the

MMCMH algorithm for 4 groups are 0.43, 0.16, 0.49, 0.38 respectively. To learn

about the characteristics of each group, we display the posterior density plots

from IMS algorithm in Figure 3.4.7. Group 1 has the smallest coefficient for edges

but the biggest for gwdsp. This means that networks 15 and 20 have strong

local clustering property, which is consistent with the fact that networks 15 and

20 have hub structures where fewer nodes have most of the connections. The

advice relationships they nominate are centred around themselves. Group 2 has

a big coefficient for edges and negative coefficient for level effect, indicating that

networks are dense in this group and there are more advice between employees of

different levels than of same levels. Group 3 has the smallest negative level effect,

meaning that the advice relationships they observed are most across employees of

different levels. Network 1 individually forms group 4. The level effect of network

1 is around 0, suggesting that individual level does not play a big role in network

1.

Our results are supported by the findings of Krackhardt (1987). Next, we com-

pare our results with the centrality calculated in Krackhardt (1987). Betweenness

centrality reflects on the influence of a node has over the flow of information.

Group 1 consists of networks 15 and 20, which have unique performances on be-

tweenness centrality. The betweenness centrality of nodes 15, 20 is 81.15 and
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65.35, which are much bigger than the rest of nodes. Both of them mentioned a

lot of advice relationships they are involved in. This is consistent with our finding

of local clustering phenomenon implied by high gwdsp coefficient. The networks

in group 3 are distinct from the rest of individuals in terms of low indegree and

betweenness centrality. The indegree of individuals 6, 13, 16, 17 is all 0, indicating

that they are not asked for advice by anybody. Also, the betweenness centrality of

them is 0, 0.2, 0.11, 0.28, smaller than the rest of nodes in the locally aggregated

networks. Moreover, employee 1 has high indegree centrality 18, but low between-

ness centrality 2.81. It is asked advice often, but rarely asks advice from other

people. Of all the 18 edges individual 1 claimed, only 1 relationship is confirmed

by others. The speciality of individual 1 explains why the network 1 formed a

group of its own.
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Figure 3.4.8: Density plots of network statistics based on networks simulated
from posterior mean. The vertical lines stand for the value of structure statistics
of observed networks.

Posterior assessments can be done by comparing the observed network statis-

tics with simulated network statistics sampled from ERGM with estimation as

parameters. Specifically, we generate 500 networks using the posterior mean as

parameters and draw the density plots of the simulated network statistics in Fig-

ure 3.4.8. As we can see, the simulated network statistics are close to the observed

network statistics, suggesting that IMS algorithm fits the data well. Note that

network 1 located on the right end of the plot is far from other networks regarding

the number of total edges and the number of edges within the same level. This is

another reason that we think network 1 is better to be in a separate group.
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Next, we apply PMS algorithm to the advice ensemble. After 100,000 itera-

tions, 6 stable groups are detected, as shown at Figure 3.4.9. The networks in

groups 1, 3, 4 from PMS algorithm are the same as from IMS algorithm. The

group 2 from IMS algorithm is divided further into 3 groups, where networks 2, 4,

5, 8, 9, 10, 14, 19, 21 form the new second group, 3, 7, 12, 18 make the new fifth

group, and 11 is in the sixth group. The acceptance probability of the MMCMH

algorithm for 6 groups are 0.36, 0.23, 0.40, 0.36, 0.29, 0.50 respectively.
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Figure 3.4.9: Clustering results of advice network ensemble using PMS sampling
algorithm. Left: the number of clusters at every iteration. Right: the frequency
of allocating to each group after 50,000 burn-in.

Furthermore, we calculate the distance between observed network statistics

and simulated network statistics as follows,

∑
i:Zi=k

{
S(yi)−

∑500
l=1 S(z

k
l )

500

}2

(k = 1, 2, . . . , K),

where S(yi) represents the summary statistics of observed network yi, and S(zkl )

stands for the summary statistics of simulated networks from ERGM with group

parameter θk. The results of are shown in Table 3.4.4. Comparing both results,

the estimation for groups 1, 3, 4 from IMS is more accurate, especially that the

IMS estimation of group 4 is much better than the PMS estimation. To get more

details, we show the density plots of the simulated network statistics on Figure

3.4.10. Simulated network statistics from IMS are centred around the observed
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Table 3.4.4: The distance between observed network statistics and simulated net-
work statistics.

Method Group 1 Group 2 Group 3 Group 4
IMS 1310 191507 411 6
PMS 1358 134267, 10162, 32 720 291048

statistics on the top row, while simulated statistics from PMS are distant from

the observed statistics on the second row. This is because the model for group 4

is near-degenerate. For a near-degenerate model, the underlying parameter values

are close to a degenerate region, which increases the difficulty for estimation. This

can happen quite often when we fit a ERGM with complicated statistics to real

datasets. The pseudo likelihood method does not work for the near-degenerate

model (Caimo and Friel, 2011). In this case, we can only use full likelihood

method. For the 14 networks in group 2, the total distance is smaller for PMS

method. This is understandable because the IMS method fits all these 14 networks

with one model, while the PMS method fits these networks with 3 models.
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Figure 3.4.10: Simulated network statistics from IMS estimation for network 1 (or
group 4) is in the first row. Simulated network statistics from PMS estimation for
network 1 (or group 4) is in the second row.
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In this simulation, we apply the IMS algorithm to the advice ensemble and

found 4 meaningful clusters. Although pseudo likelihood based methods manage

to divide the ensemble into reasonable clusters, they fail to represent the features

of networks because they are not suitable for estimating the near-degenerate model

in this example.

3.4.4 International Trade Networks

We also apply the proposed DPM-ERGMs to a world trade network ensemble.

The ensemble of trade networks is observed on 60 countries (n = 60) over the

period 2001-2016 (N = 16), denoted as yi(i = 1, 2, . . . , 16). The networks are

built based on the annual import data between every two countries from the UN

Comtrade website1. A directed edge exists from node r to s, yrs,i = 1, if the

import amount from country r to s is more than 3 billion dollars at year i. The

geographic distance between countries, represented by a matrixX, is an important

factor in analysing trade relationship. Here, we treat distance as an edge covariate

and explore its influence on the trade ensemble. The distance between countries

is calculated using the coordinate of the capital city, downloaded from CEPII

database2.

In this application, we choose four statistics to explore the ensembles of trade

networks from different aspects:

� S1(yi) =
∑

r ̸=s yrs,i, the total number of edges in network yi. The density of

trade networks can reflect the universality of global trade relationship.

� S2(yi) =
∑

r ̸=s yrs,iysr,i, the total number of mutual edges. A mutual edge in

the trade networks stands for bilateral trade. It is helping in understanding

trade types.

� S3(yi) = eϕ
∑n−2

k=1{1− (1− e−ϕ)k}EPk(yi), ϕ = 0.25, geometrically weighted

1https://comtrade.un.org/
2http://www.cepii.fr
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edgewise shared partner (gwesp), representing transitivity. EPk(yi) is the

number of connected pairs that have k common neighbours.

� S4(yi) =
∑

r ̸=s yrs,iXrs, the effect of the distance covariate. This helps to

explore how distance affects the trade network structure.
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Figure 3.4.11: Clustering results of trade ensemble using IMS sampling algorithm.
Left: the number of clusters at every iteration. Right: the frequency of allocating
to each group after 50,000 burn-in.

We run 100,000 iterations using IMS sampling algorithm with the first 50,000

iterations as burn-in. The hyperparameters and initial values are set as fol-

lows: θ0 = (−2, 0, 0, 0) for the ERGM parameter initial, µ0 = (−3, 0, 0, 0),

Σ0 = 42I4 for the ERGM parameter prior, a diagonal matrix Σq with diagonal

entries (0.052, 0.022, 0.022, 0.022) for the variance of the proposal distribution in

MMCMH, Beta(1, 0.1) for the stick-breaking prior. In intermediate importance

sampling, we choose m1 = 2,m2 = 10 for MMCMH and m1 = 5,m2 = 10 for

posterior membership sampling. As shown in Figure 3.4.11, the ensemble of trade

networks is clustered into 2 groups. Group 1 corresponds to networks of earlier

years, from 2001 to 2005, and group 2 is formed by networks of later years, between

2006 and 2016. The acceptance ratio is 0.45, 0.30 for two groups separately. The

network membership is closely related to the time, which is reasonable as trade

networks are collected over time.
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Figure 3.4.12: Density plots of estimation for groups 1 (red), 2 (blue) in trade
ensemble.

The characteristics of each group can be further described using a group-

specific ERGM and the comparisons between groups can be performed by com-

paring the parameters of each ERGM. The density plots for the posterior samples

are shown in the first row of Figure 3.4.12. As we can see, group 2 has bigger

density parameter than group 1, meaning that the trade relationships are denser.

It also has bigger mutuality, which indicates that bilateral trade is more common.

More countries prefer to form a mutual trade relationship with their trading part-

ners. The smaller transitivity coefficient of group 2 suggests that the international

trade is becoming more universal, although that the local clustering phenomenon

still exists, implied by the positive transitivity parameter.

Next, we run the PMS sampling algorithm for 100,000 iterations. The clus-

tering result is displayed in Figure 3.4.13, which is similar to the IMS algorithm.

Networks from 2001 to 2004 are in the group 1 and networks between 2005 and

2016 are in the group 2. The acceptance ratio of each group is 0.59, 0.32. The den-

sity plots for each group are shown in the second row of Figure 3.4.12. Although

the clustering result is very similar, the density plots for the ERGM parameter
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Figure 3.4.13: Clustering results of trade ensemble using PMS sampling algorithm.
Left: the number of clusters at every iteration. Right: the frequency of allocating
to each group after 50,000 burn-in.

estimation are quite different. Comparing with the IMS algorithm, PMS provides

a narrow and sharp estimation, because pseudo likelihood method underestimates

the variance of estimation. Moreover, the coefficient for gwesp term from PMS

method is much smaller compared with the IMS method. This is because the

pseudo likelihood method can not capture the dependency structures within a

network.

In order to assess the model results, we generate 1,000 networks from the

estimated model, and plot the simulated network statistics in Figure 3.4.14. The

black dots stand for networks of group 1 and red dots represent networks of group

2. In the first row of the figure, the density plots of simulated network statistics

are close to the observed samples, indicating that IMS algorithm provides good

estimation to the data. However, in the second row, the posterior mode of the

first group is far away from the 4 samples in the group, implying that the model

is not a good fit to the data. As we mentioned before, networks in group 1 have

strong transitivity, which can not be captured by PMS algorithm.

Furthermore, we calculate the distance between observed network statistics

and simulated network statistics. Results are shown in Table 3.4.5. IMS method

fits the networks in group 1 better than PMS method as the distance 89344 is

much smaller than 145566.
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Figure 3.4.14: Density plots of network statistics, edges, mutual, GWESP and
edgecov, based on networks simulated from estimation. The black vertical lines
represent networks of group 1 and the red lines stand for networks of group 2.
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Table 3.4.5: The distance between observed network statistics and simulated net-
work statistics.

Method Group 1 Group 2
IMS 80344 188624
PMS 145566 175461

For comparison, we also applied the pseudo likelihood Metropolis-within-Gibbs

(PMG) sampling algorithm, developed by Yin et al. (2022) for a finite mixture

of ERGMs. The prior for the group parameter is the same as it for the infinite

method. Without knowing the number of clusters in advance, we fit the model

with the number of clusters K = 1, 2, 3, 4 in sequence and calculate deviance in-

formation criteria (DIC) for each model accordingly. The DIC value with different

number of clusters is shown in Figure 3.4.15. The best model is the one with the

smallest DIC value, meaning that the number of clusters is chosen to be 2 here.

Networks between 2001 and 2004 are allocated to the first group and networks

between 2005 and 2016 are in the second group. The individual network mem-

bership and the posterior density of each group from the PMG algorithm are the

same as from our proposed PMS algorithm.

In this simulation, IMS algorithm clusters the trade ensemble into 2 groups and

fits each group with a different ERGM. PMS algorithm provides similar clustering

result to IMS, but the networks in group 1 are fit poorly because the pseudo

likelihood method failed to capture the transitivity of trade networks. The results

of PMG algorithm are comparable with PMS algorithm, which supported our

method.

Overall, the simulation results are not sensitive to the choice of priors and the

number of iterations (burn-in or tuning). The multivariate normal distribution for

ERGM model parameters is not an informative prior. As for the hyperparameter

setting, we use a flat normal distribution with mean µ0 = (−3,0) and covariance

Σ0 = 42Ip for the ERGM parameter. A negative number is suggested for the first

parameter of µ0 as nonnegative density parameter gives dense networks which

contradict the fact that most real-world networks are sparse. The variance of the
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prior can be flexible. For the variance of the proposal distribution in the MMCMH

algorithm, we recommend using Σ0 = 0.052Ip as a starting value and tune it based

on the acceptance rate.

3.5 Discussion

In this chapter, we have proposed to model the ensembles of networks using a

Dirichlet process mixture of ERGMs. Through such a framework, the subpopula-

tions consisting of similar networks can be detected and compared automatically

without requiring a fixed number of clusters in advance. On the other hand,

multiple networks with similar characteristics are described by the same ERGM,

namely, the cluster-specific ERGM. The cluster-specific ERGM is better than a

single network ERGM, because it gathers the information from all networks in the

same cluster. Moreover, we have also developed a novel IMS sampling algorithm

for the full Bayesian inference of the DPM-ERGMs.

The full Bayesian inference of ERGMs is known to be time consuming as gen-

erating networks from desired ERGMs requires a long run of Markov chains using

MCMC technique. We have provided a PMS sampling algorithm as a fast approx-

imation method which can be used for pre-analysis of the dataset. However, as we

mentioned before, PMS estimation may fail when the model is near-degenerate.

For a more accurate and robust estimation, the IMS sampling algorithm is rec-

ommended.
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Chapter 4

Fused Lasso Exponential Random

Graph Models

This chapter focuses on the temporal variations in ensembles of networks. Specif-

ically, we propose an extension to the exponential random graph model when the

networks are dynamic instead of static. Our extension adds a fused lasso penalty

to the objective function, which leads to the name fused lasso exponential ran-

dom graph model (FL-ERGM). Here, the fused lasso is used to characterise the

dynamic evolution of network topology. As a result, the parameter estimate is a

piecewise linear function. The piecewise linear structure can capture the similar

connectivity patterns between networks observed at consecutive points, and also

detect the abrupt changing patterns between networks. To estimate the param-

eters in the FL-ERGM, we use the alternating direction method of multipliers

(ADMM) to achieve a faster speed.

4.1 Introduction

Ensembles of networks that are observed over time are also called dynamic en-

sembles or dynamic networks. In such settings, where a time series of network

observations is available, several formalisms have been proposed to capture the
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changes of local and global structural patterns over time. We refer to this prop-

erty as temporal variations. Stochastic actor-based models (Snijders et al., 2010)

are one of the well-known models for network dynamics, which characterise net-

work evolution using an unobserved stochastic process of tie changes. There are

also several statistical models that utilise ERGMs to model dynamic networks

over discrete time steps. For example, Hanneke et al. (2010) proposed a tem-

poral ERGM to model the differences of network features between two consecu-

tive networks through exponential family distributions. Krivitsky and Handcock

(2014) extended the temporal ERGM to the separable temporal ERGM, which

consider both the formation and dissolution processes of networks by separately

parametrising prevalence and duration of fluctuations. Lee et al. (2020) developed

a model based clustering framework based on temporal ERGMs where the block

structure of networks are detected simultaneously. However, the temporal ERGM

and its extensions ignore the heterogeneity of the differences between networks,

and cannot fully capture the time varying patterns of the network structure.

Lee et al. (2020) proposed a varying coefficient ERGM where the parameter

functions are assumed to be a smooth function of time. But in many real cases,

the dynamic ensemble has a diverse changing pattern. For example, the networks

might change suddenly at one time point and remain steady for some period of

time. The smooth function in the varying coefficient ERGM can not capture

the sudden change of structure or uncover the period that the network structure

remains invariant.

Inferring the temporal variations of dynamic ensembles is challenging because

it is difficult to simultaneously estimate both the structure within each network

and the changes of the structure over time. Each network can exhibit a wide range

of dependency structures and the dynamic ensembles can reveal many different

types of changes. The range of possibilities includes a sudden shift of the entire

network structure, a single node rewiring all of its connections, or even just one or

two edges changing in the whole network. Therefore, any method must be flexible

enough to discover many types of evolutionary patterns, while also being powerful
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enough to learn this temporal structure over a long time period.

To account for the diverse changing patterns of network structures, we employ

the idea of fused lasso regression by imposing an L1 penalty (Tibshirani et al.,

2005) on the differences between consecutive model parameters. Specifically, we

propose a fused lasso exponential random graph model (FL-ERGM) to describe

the dynamic network evolution process. Using this model, the dependent rela-

tionships within a network are characterised by ERGMs, and the evolution of

networks is described by modelling the parameters associated with different fea-

tures using a piecewise linear function. The piecewise linear function is a flexible

function that can describe many types of relationships. Thus, the FL-ERGM can

capture a variety of changing patterns. Moreover, the fused lasso penalty can en-

courage similar estimates from consecutive networks under some conditions. Since

the evolution of networks is time dependent, it is reasonable to believe that the

networks observed at consecutive time points share similar connectivity patterns

to some extent.

Estimating FL-ERGMs is challenging due to the intractability of ERGM like-

lihood and the correlation between networks. First, as we mentioned before, the

likelihood of ERGM is intractable. Second, the use of the fused lasso penalty in

the dynamic networks also increases the difficulty of estimation as the fused lasso

penalty is not a separable and smooth function. Also, the penalty we use is dif-

ferent from the fused lasso for linear regression, since we only encourage sparsity

on the differences of parameters. Third, when the observed dynamic ensemble

has a large number of networks and nodes, the data size is big, requiring strong

computational power.

To address the above issues in an effective way, we first employ a pseudo like-

lihood approximation to the likelihood function for its computational tractability.

Then we derive a fast alternating direction method of multipliers (ADMM). The

ADMM algorithm solves convex optimisation problems by breaking them into

smaller subproblems, each of which are then easier to handle (Boyd et al., 2010).
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This allows us to take advantage of known properties and solution methods to de-

rive closed-form ADMM updates for each subproblem. Furthermore, the updates

of the ADMM algorithm require the calculation of the inverse of a matrix at each

iteration step. Since the matrix inverse calculation is time consuming, we use the

lower-upper (LU) matrix decomposition technique to simplify it. The use of LU

decomposition speeds up our solver by several orders of magnitude over a naive

ADMM implementation.

The rest of this chapter is organised as follows. We formulate the FL-ERGM

in Section 4.2. In Section 4.3, we use the ADMM algorithm to solve the resulting

optimisation problem. In Section 4.4, we numerically evaluate the performance

of our proposed method to the counterpart. We conclude this chapter in Section

4.5.

4.2 Fused Lasso ERGMs

4.2.1 Model Formulation

In dynamic ensembles, networks are observed over time. We look at the dynamic

networks collected at discrete time points in this chapter. In addition to describ-

ing the effects of local connectivity patterns on the shaping of global network

structure, we are also interested in the temporal variations of the effects across

networks. Neighbouring networks refer to networks observed at consecutive time

points. The fused lasso penalty can encourage neighbouring networks to have

similar estimates and describe the associated parameters using a piecewise lin-

ear function. Here, we propose a fused lasso exponential random graph model

(FL-ERGM) by adding a fused lasso constraint to the ERGM.

Specifically, for a dynamic ensemble {Yt}Tt=1 with covariate information {Xt}Tt=1,
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the FL-ERGM is

max
T∏
t=1

exp(θ⊤t S(yt, Xt))

k(θt)

subject to
T∑
t=2

∥θt − θt−1∥1 ≤ m,

(4.2.1)

where θt ∈ Rd is the parameter vector at time t, S(yt, Xt) is the summary statis-

tics for network yt with covariate X t, and k (θt) =
∑

y∈Y exp
{
θ⊤t S(y,Xt)

}
is the

normalising constant. m controls the similarity across different network parame-

ters.

Remark 1. Parameters of neighbouring networks should often be close to

each other as the evolving process of networks is time dependent, so a fused lasso

penalty (Tibshirani et al., 2005) is added to the marginal likelihood of ERGMs.

Note that the original fused lasso penalty encourages sparsity of each parameter

and the differences between parameters. Here, we only consider differences be-

tween parameters. Moreover, with a fused lasso penalty, information from neigh-

bouring networks is used and more reliable estimators are obtained.

Remark 2. The parameter m controls the similarity between θt and θt−1

for each 2 ≤ t ≤ T . In other words, it determines how much information to

use from neighbouring networks. Larger m means weaker constraints, and each

parameter θt includes more information on the individual network yt. Smaller m

means stronger constraints, and the parameters tend to be similar.

4.2.2 Pseudo Likelihood Approximation

To facilitate effective inference on the proposed FL-ERGM, we further express

model (4.2.1) in terms of pseudo likelihood functions.

In the pseudo likelihood function, the probability distribution of each edge is

described using the so-called change statistics. The change statistic for edge yij,t

is defined as ∆Sij,t = S(yij,t = 1, y−ij,t, Xt)− S(yij,t = 0, y−ij,t, Xt). This quantity

measures the change of global network structures when the status of one edge is
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altered from disconnected to connected. Here, yij,t represents the edge between

nodes i and j at time t, and y−ij,t = {ykl,t, (k, l) ̸= (i, j)} denotes the remaining

network excluding edge yij,t.

Under the ERGM framework, the conditional probability distribution of edge

yij,t is

P (yij,t = 1|y−ij,t, Xt) =
exp

(
θ⊤t ∆Sij,t

)
1 + exp(θ⊤t ∆Sij,t)

.

The pseudo likelihood of network yt is the joint conditional probability of all edges

in the network. For directed networks, the pseudo likelihood is

∏
i ̸=j

P (yij,t|y−ij,t, Xt) =
∏
i ̸=j

P (yij,t = 1|y−ij,t, Xt)
yij,t [1− P (yij,t = 1|y−ij,t, Xt)]

1−yij,t .

For undirected networks, the pseudo likelihood is

∏
i<j

P (yij,t|y−ij,t, Xt) =
∏
i<j

P (yij,t = 1|y−ij,t, Xt)
yij,t [1− P (yij,t = 1|y−ij,t, Xt)]

1−yij,t .

In undirected networks, yij = yji, one only need to consider the cases of i < j.

To keep the notation simple, we focus on the directed networks in the rest of the

chapter.

The log pseudo likelihood of yt is

∑
i ̸=j

yij,t log [P (yij,t = 1|y−ij,t, Xt)] + (1− yij,t)log [1− P (yij,t = 1|y−ij,t, Xt)]

=
∑
i ̸=j

{
yij,tθ

⊤
t ∆Sij,t − log

[
1 + exp

(
θ⊤t ∆Sij,t

)]}
.

Therefore, the FL-ERGM with pseudo likelihood approximation is written as

max
T∑
t=1

∑
i ̸=j

{
yij,tθ

⊤
t ∆Sij,t − log

[
1 + exp

(
θ⊤t ∆Sij,t

)]}
− λ

T∑
t=2

∥θt − θt−1∥1,

(4.2.2)

where θt is the model parameter, ∆Sij,t is the change statistic and λ is the tuning
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parameter.

4.2.3 Choice of Tuning Parameters

The tuning parameter λ controls the similarity of coefficients at different time

points. When λ = 0, parameters for each network observation are estimated

individually. In this case, using FL-ERGMs is the same as estimating each network

separately with ERGMs. The bigger the λ is, the more information we take from

neighbouring networks. As λ → ∞, all estimates at different time points tend to

be the same. The fused lasso penalty in our model makes it possible to estimate

single network parameters while considering information from other networks in

the meantime.

There are two reasons for choosing the tuning parameters. The first is that

each observed network is only one sample of the real unknown network. Even when

the underlying networks at different time points come from the same distribution,

the network observations appear to be different as they are different realisations.

In this case, using information from other networks is very necessary. The second

reason is that the evolution of networks is a time dependent process. The networks

that are closer to each other in time should have more similarities, which should be

considered in the model. An optimal λ can tell how much information to combine

from other networks.

Cross validation methods can be used to find the optimal tuning parameters.

Specifically, the dataset is partitioned into K subsets, {Dk, k = 1, 2, . . . , K}, with

approximately equal size. The cross validation process is then repeated K times,

with each of the K subsets used exactly once as the validation data, and the

remaining K − 1 subsets used as training data. Parameters are estimated using

training data, and quality of estimators is measured by Pearson residuals using

validation data. Pearson residuals have the form of

PR(λ) =
(y − p̂(λ))2

p̂λ(1− p̂(λ))
,
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which can be calculated by

P̂R(λ) =
K∑
k=1

∑
Dk

(yij,t − p̂−k
ij,t(λ))

2

p̂−k
ij,t(λ)(1− p̂−k

ij,t(λ))
,

where p̂−k
ij,t(λ) is the probability P (yij,t = 1|y−ij,t, Xt) =

exp{θ̂−k
t (λ)⊤∆Sij,t}

1+exp{θ̂−k
t (λ)⊤∆Sij,t} with

θ̂−k
t (λ) estimated using data other than Dk with tuning parameter λ. For each

value of λ, a Pearson residual can be calculated. The optimal tuning parameter

is the one with the smallest Pearson residual.

However, the partition of network data is complicated because edge variables

are dependent on each other (Li et al., 2020). Splitting network nodes into groups

would destroy some of the network structure. Also, the cross validation method

for our model is computationally expensive. Therefore, we choose the tuning

parameter using Bayesian information criterion (BIC). Specifically, we first choose

a sequence of different values of λ. Then we perform model estimations with

different λ, and obtain one BIC value for each λ. The λ with the lowest BIC value

is the optimal tuning parameter,

BIC(λ) =− 2
T∑
t=1

∑
i ̸=j

{
yij,tθ̂t(λ)

⊤∆Sij,t − log
[
1 + exp

(
θ̂t(λ)

⊤∆Sij,t

)]}
+ df(λ)× log(N × T ).

θ̂t(λ) is the estimation with tuning parameter λ. df(λ) is the number of degrees

of freedom when the tuning parameter is λ. In our model, we use the number of

unique parameters as the estimation for the degrees of freedom.

4.3 Model Estimation

In this section, we employ the ADMM algorithm to estimate FL-ERGMs and

utilise a LU decomposition technique to speed up the algorithm. We also show

the convergence of the algorithm.
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4.3.1 ADMM Algorithm

In order to facilitate model inference and use closed-form updates in the estima-

tion procedure, we use a Taylor expansion to form a quadratic approximation

(Friedman et al., 2010) to the first part of model (4.2.2) at current estimates θ̃t,

−1

2

⊤∑
t=1

∑
i ̸=j

wijt(θ
⊤
t ∆Sijt − zijt)

2 + C(θ̃t) (second order Taylor expansion),

(4.3.1)

where

p̃ijt = P (yijt = 1|θ̃t, y−ijt, Xt) =
exp(θ̃t

⊤
∆Sijt)

1 + exp(θ̃t
⊤
∆Sijt)

,

wijt = p̃ijt(1− p̃ijt) =
exp(θ̃t

⊤
∆Sijt)

(1 + exp(θ̃t
⊤
∆Sijt))2

,

zijt = θ̃t
⊤
∆Sijt +

yijt − p̃ijt
wijt

,

C(θ̃t) = −(yijt − p̃ijt)
2

2wijt

+ f(θ̃t).

(4.3.2)

The last term of (4.3.1), C(θ̃t), can be omitted as it does not contain θt. Details

of the expansion can be found in the Appendix A.1.

Using the quadratic approximation, the formula (4.2.2) can be written in a

penalised weighted least square form,

min
1

2

T∑
t=1

∑
i ̸=j

wijt(θ
⊤
t ∆Sijt − zijt)

2 + λ

T∑
t=2

∥θt − θt−1∥1. (4.3.3)

Thus, the estimation can be performed using an iteratively reweighted least squares

method.

Next, we rewrite (4.3.3) in a matrix form,

min
1

2
∥AΘ− b∥22 + λ∥FΘ∥1. (4.3.4)
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A ∈ RN×(d×T ) is a block diagonal matrix with At as diagonal entries,

A =


A1

A2

. . .

AT

 .

At ∈ RNt×d, t = 1, 2, . . . , T ,

At =



√
w12,t∆S1

12,t
√
w12,t∆S2

12,t · · · √
w12,t∆Sd

12,t

√
w13,t∆S1

13,t
√
w13,t∆S2

13,t · · · √
w13,t∆Sd

13,t

...
...

. . .
...

√
wnt(nt−1),t∆S1

nt(nt−1),t

√
wnt(nt−1),t∆S2

nt(nt−1),t · · · √
wnt(nt−1),t∆Sd

nt(nt−1),t

 ,

where nt is the number of nodes in network yt, Nt = nt(nt − 1) is the number

of potential edges at time t, and N =
∑T

t=1Nt is the total number of potential

edges. Θ is a (d× T )-dimensional vector

Θ = (θ⊤t )
⊤ = (θ1,t, θ2,t, . . . , θd,t)

⊤, t = 1, . . . , T.

and b is a N -dimensional vector

b = (
√
w12,tz12,t,

√
w13,tz13,t, . . . ,

√
wnt(nt−1),tznt(nt−1),t)

⊤, t = 1, . . . , T.

F , a pairwise difference matrix, indicates the position of penalty. It has d×(T−1)

rows, d× T columns, with the form

F =


−1 0 · · · 1 0 · · · 0

0 −1 · · · 0 1 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 1

 , (4.3.5)

where the first element is −1 and the (d + 1)th element is 1 in the first row, the
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second element is −1 and the (d+2)th element is 1 in the second row, and so on.

To use ADMM, we rewrite model (4.3.4) as,

min
1

2
∥AΘ− b∥22 + λ∥Q∥1

subject to FΘ−Q = 0.

(4.3.6)

Here, vectors Θ ∈ Rd×T and Q ∈ Rd×(T−1) are two primal variables.

The augmented Lagrangian form for (4.3.6) is

Lρ(Θ, Q, y) =
1

2
∥AΘ− b∥22 + λ∥Q∥1 + y⊤(FΘ−Q) +

ρ

2
∥FΘ−Q∥22, (4.3.7)

where y ∈ Rd×(T−1) is a dual variable and ρ > 0 is a penalty parameter.

(4.3.7) is equivalent to a scaled form,

Lρ(Θ, Q, U) =
1

2
∥AΘ− b∥22 + λ∥Q∥1 + ρU⊤(FΘ−Q) +

ρ

2
∥FΘ−Q∥22 (4.3.8)

=
1

2
∥AΘ− b∥22 + λ∥Q∥1 +

ρ

2
∥FΘ−Q+ U∥22 −

ρ

2
∥U∥22,

where U = (1/ρ)y is the scaled dual variable.

The ADMM algorithm is performed by updating variables Θ, Q, U in turn until

convergence:

(1) Θ updates,

Θk+1 = argmin
Θ

1

2
∥AΘ− b∥22 +

ρ

2
∥FΘ−Qk + Uk∥22

= (A⊤A+ ρF⊤F )−1[A⊤b+ ρF⊤(Q− U)].

(4.3.9)

(2) Q updates,

Qk+1 = argmin
Q

λ∥Q∥1 +
ρ

2
∥FΘk+1 −Q+ Uk∥22

= Sλ/ρ(FΘk+1 + Uk).

(4.3.10)
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(3) U updates,

Uk+1 = Uk + FΘk+1 −Qk+1. (4.3.11)

Here, k is the iteration number and Sδ(z) denote the soft-thresholding operator

with value

Sδ(z) =


z − δ if z > 0 and z > δ

z + δ if z < 0 and z < −δ

0 |z| ≤ δ.

The termination criterion is that the primal and dual residuals must be smaller

than the thresholds,

∥FΘk+1 −Qk+1∥2 ≤ εpri and ∥ − ρF⊤(Qk+1 −Qk)∥2 ≤ εdual,

where

εpri =
√

(d− 1)× Tεabs + εrel max{∥FΘk∥2, ∥ −Qk∥2},

εdual =
√
d× Tεabs + ρεrel∥F⊤Uk∥2.

A reasonable value for the relative stopping criterion might be εrel = 10−4 or 10−5.

4.3.2 LU Decomposition

In the fist step of ADMM algorithm (4.3.9), the calculation of (A⊤A+ ρF⊤F )−1

is challenging when the time length T is large. Here, we solve this problem by

using the lower-upper (LU) decomposition.
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F is also a banded matrix with (T − 1) rows and T columns,

F =


−Id Id

−Id Id
. . . . . .

−Id Id

 ,

where Id denotes the diagonal matrix of order d. Then F⊤F is a block tridiagonal

matrix,

F⊤F =



Id −Id

−Id 2Id −Id
. . . . . . . . .

−Id 2Id −Id

−Id Id


.

X = A⊤A+ ρF⊤F is also a block tridiagonal matrix,

X =



A⊤
1 (A1) + ρId −ρId

−ρId A⊤
2 (A2) + 2ρId −ρId

. . . . . . . . .

−ρId A⊤
T−1(AT−1) + 2ρId −ρId

−ρId A⊤
T (AT ) + ρId


.

In order to inverse X, we use the LU factorization to decompose the block tridi-

agonal matrix X as follows,

X = (∆ + L)∆−1(∆ + L⊤).
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L is the lower part of X,

L =



0

−ρId 0
. . . . . .

−ρId 0

−ρId 0


.

∆ is a block diagonal matrix with ∆i as diagonal blocks,

∆1 = X11 = A⊤
1 (A1) + ρId,

∆i = Xii − ρ2(∆i−1)
−1 = A⊤

i (Ai) + 2ρId − ρ2(∆i−1)
−1 (i = 2, . . . , T − 1),

∆T = A⊤
T (AT ) + ρId − ρ2(∆T−1)

−1.

As ∆ = ∆⊤, then ∆ + L = (∆ + L⊤)⊤, and

X−1 = (∆ + L⊤)−1∆(∆ + L)−1 = (∆ + L⊤)−1∆((∆ + L⊤)−1)⊤.

Let D = (∆ + L⊤)−1, and we have X−1 = D∆D⊤. If we solve D, we solve X−1.

Since ∆ + L⊤ is a upper triangular matrix, D can be expressed in the following,

D = (∆ + L⊤)−1 =



∆1 −ρId

∆2 −ρId
. . .

∆T−1 −ρId

∆T



−1

=



D11 = ∆−1
1 D12 = ρ∆−1

1 D22 D13 = ρ∆−1
1 D23 · · · D1T = ρ∆−1

1 D2T

D22 = ∆−1
2 D23 = ρ∆−1

2 D33 · · · D2T = ρ∆−1
2 D3T

D33 = ∆−1
3 · · · D3T = ρ∆−1

3 D4T

. . .
...

DTT = ∆−1
T


.
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(∆ + L⊤)−1∆ =



∆−1
1 ∆1 ρ∆−1

1 D22∆2 ρ∆−1
1 D23∆3 · · · ρ∆−1

1 D2T∆T

∆−1
2 ∆2 ρ∆−1

2 D33∆3 · · · ρ∆−1
2 D3T∆T

∆−1
3 ∆3 · · · ρ∆−1

3 D4T∆T

. . .
...

∆−1
T ∆T


,

X−1 = D∆D⊤ =



Id D12∆2 D13∆3 · · · D1T∆T

Id D23∆3 · · · D2T∆T

Id · · · D3T∆T

. . .
...

Id


.



D11

D12 D22

D13 D23 D33

...
. . .

D1T D2T D3T · · · DTT


.

Therefore, the inverse of X = A⊤A + ρF⊤F , a square matrix with dimension

dT × dT , can be solved by calculating the inverse of T small matrices ∆i of

dimension d.

4.3.3 Theoretical Guarantee

In this section, we show that the solution found by the ADMM algorithm converges

to the true value of (4.3.3).

First, we show that the optimal solution of the quadratic approximation (4.3.4)

converges to the original objective function (4.3.3). To achieve this, we define

l(θ1, . . . , θT ) = −
T∑
t=1

∑
i ̸=j

yijtθ
⊤
t ∆Sijt + log

{
1 + exp

(
θ⊤t ∆Sijt

)}
,

l̃(θ1, . . . , θT ) =
1

2

T∑
t=1

∑
i ̸=j

wijt(zijt + θ⊤t ∆Sijt)
2 + C(θ̃t)

2.

Lemma 1. l(θ1, . . . , θT ) and l̃(θ1, . . . , θT ) are convex.

We prove Lemma 1 by showing that the Hessian matrix for l(θ1, . . . , θT ) and

l̃(θ1, . . . , θT ) are positive definite. The details of the calculation can be found in

Appendix A.2.
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Lemma 2. For t ∈ {1, . . . , T}, as θ̃t → θt, then we have l̃(θ1, . . . , θT ) → l(θ1, . . . , θT ).

The proof of Lemma 2 is obvious due to the calculus theory.

Define

(θ̂1, . . . , θ̂T ) = argmin l(θ1, . . . , θT ), (4.3.12)

(ˆ̃θ1, . . . ,
ˆ̃θT ) = argmin l̃(θ1, . . . , θT ). (4.3.13)

Then we have the following theorem,

Theorem 1. (θ̂1, . . . , θ̂T ) and (ˆ̃θ1, . . . ,
ˆ̃θT ) defined in equations (4.3.12) and

(4.3.13) exist and are unique. Furthermore, as θ̃t → θt, we have (ˆ̃θ1, . . . ,
ˆ̃θT ) →

(θ̂1, . . . , θ̂T ).

The proof of Theorem 1 is straightforward. Lemma 1 shows that l(θ1, . . . , θT )

and l̃(θ1, . . . , θT ) are convex. Thus, (θ̂1, . . . , θ̂T ) and (ˆ̃θ1, . . . ,
ˆ̃θT ) exist and are

unique. Consequently, from Lemma 2, we have (ˆ̃θ1, . . . ,
ˆ̃θT ) → (θ̂1, . . . , θ̂T ), as

θ̃t → θt.

Next, we show that the solution found by the ADMM algorithm converges to

the true value of (4.3.4). To be specific, we have the following assumptions and

theorem.

Assumption 1. The (extended-value-real) functions 1/2∥AΘ − b∥22 : Rd×T →

R ∪ {+∞} and λ∥Q∥1 : Rd×(T−1) → R ∪ {+∞} are closed, proper and convex.

Assumption 2. The unaugmented Lagrangian 1/2∥AΘ−b∥22+λ∥Q∥1+ρU⊤(FΘ−

Q) has a saddle point, which means there exists a point (Θ∗, Q∗, U∗) (not neces-

sarily unique), for which

1/2∥AΘ∗ − b∥22 + λ∥Q∗∥1 + ρU⊤(FΘ∗ −Q∗)

≤ 1/2∥AΘ∗ − b∥22 + λ∥Q∗∥1 + ρU∗⊤(FΘ∗ −Q∗)

≤ 1/2∥AΘ− b∥22 + λ∥Q∥1 + ρU∗⊤(FΘ−Q)

holds for all (Θ, Q, U).
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Assumption 3. The matrix F has full column rank.

Theorem 2. (The convergence of ADMM algorithm) When assumptions 1 and 2

hold, 1/2∥AΘk − b∥22 + λ∥Qk∥1 converges to (4.3.6) as k → ∞. If assumption 3

also holds, Θk converges to a solution of (4.3.4).

We prove Theorem 2 in Appendix (A.3).

4.4 Empirical Results

To demonstrate the performance of our method, we first apply it to simulated

networks under various specifications, and then show its ability to recover the true

value in Section 4.4.1. Furthermore, we apply our method to international trade

networks in Section 4.4.2 and political co-voting networks in Section 4.4.3. We

also compare our method with the competing methods in the simulation studies.

4.4.1 Simulated Networks

We first introduce the five commonly used network statistics as follows:

� S1(yi) =
∑

r ̸=s yrs,i, the total number of edges in network yi.

� S2(yi) =
∑

r ̸=s yrs,iysr,i, the number of mutual connections in network yi.

� S3(yi) = eϕ
∑n−2

k=1{1− (1− e−ϕ)k}DPk(yi), ϕ = 0.25, geometrically weighted

dyad-wise shared partners (gwdsp), a representation for local clustering phe-

nomenon. DPk(yi) is the number of dyads that have k common neighbours

in network yi.

� S4(yi) =
∑

r ̸=s yrs,i1(X
1
r = X1

s ), the number of connections between indi-

viduals with the same categorical covariate X1.

� S5(yi) =
∑

r ̸=s yrs,i(X
2
r +X2

s ), measuring the effect of the continuous covari-

ate X2.
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Each of the above terms represents different features of networks. In order to

study various characteristics of networks, we consider three models with different

statistics. In model 1, we use three terms: the total number of edges S1(yi), the

number of mutual edges S2(yi) and the categorical covariate term S4(yi). In this

way, the topological feature and the covariates are both included. S2(yi) is a local

feature that involves two nodes, while S3(yi) is more advanced since DPk(yi) takes

account of the common neighbours of all dyads. We replace S2(yi) with an higher

order interaction measure S3(yi) in model 2. In model 3, we include the number

of edges S1(yi), the categorical covariate term S4(yi) and the continuous covariate

term S5(yi) to focus on the covariate effects.

For each model, we simulate 50 dynamic sequences of directed networks with

given parameters. We fix X1 as a binary covariate with half of the nodes taking

value 0 and the other half taking value 1. For the continuous covariate term

X2, we sample it from a standard normal distribution. The number of nodes

in each network is 30. After generating networks, we estimate each simulated

dynamic network sequence with three different methods, FL-ERGM, VCERGM

(Lee et al., 2020) and ERGM. Here, the ERGM is used on the dynamic ensemble

by estimating each network separately.

To assess the performance of each method, we calculate the integrated absolute

error (IAE) to measure the distance between estimated and true coefficients,

IAE =
T∑
t=1

|θ̂t − θt|. (4.4.1)

The mean and standard deviation of IAE are shown in Table 4.4.1. The FL-

ERGM provide the best results with the smallest IAE when T = 10, 20, 30, 50 in

all three different models. Next, we investigate the details of each setting. When

T = 10, the underlying parameters are constant over time as displayed in Figure

4.4.1. The FL-ERGM estimates are also constant over time, which can be seen

from the green flat shaded bands illustrating the 0.025 and 0.975 quantiles of the

FL-ERGM estimation, while the other shaded bands are not flat. At T = 20, the
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Table 4.4.1: Simulation results with 30 nodes and 50 replicates: mean and stan-
dard deviation of the integrated absolute errors (IAE) for each method.

T FL-ERGM VCERGM ERGM
10 2.14(1.19) 3.18(1.16) 7.22(1.40)
20 7.36(0.89) 20.60(1.40) 8.71(1.11)

Model 1: S1(yi) + S2(yi) + S4(yi) 30 5.39(1.82) 7.62(1.46) 18.30(1.90)
40 7.44(1.20) 6.73(1.01) 17.11(1.41)
50 10.53(2.78) 23.00(2.07) 34.46(2.84)
10 1.99(1.20) 4.01(1.35) 6.03(1.06)
20 6.54(1.10) 16.23(0.70) 9.65(3.39)

Model 2: S1(yi) + S3(yi) + S4(yi) 30 5.92(2.00) 10.61(2.53) 18.24(1.97)
40 9.27(1.91) 6.10(0.99) 15.59(1.40)
50 11.09(2.40) 22.26(2.76) 29.25(2.56)
10 1.20(0.74) 1.73(0.69) 3.90(0.69)
20 4.95(0.73) 14.85(0.51) 5.66(0.64)

Model 3: S1(yi) + S4(yi) + S5(yi) 30 4.71(1.08) 5.58(0.79) 11.56(1.33)
40 7.22(1.44) 4.67(0.81) 10.75(1.08)
50 9.15(2.04) 15.22(1.05) 20.43(1.64)

underlying parameters are non-smooth as displayed in Figure 4.4.2. In this case,

estimates from the FL-ERGM successfully capture the changing patterns of each

coefficient regardless of the high difficulty. We also notice that in model 1, the

true parameter of S2(yi) is piecewise constant, but the VCERGM estimates show

a continuously decreasing trend.

When T = 30, the underlying parameters are piecewise constant. The overall

performance of the FL-ERGM is the best. Although FL-ERGM estimates are

more distant to the true parameters than the VCERGM estimates at some time

points in the middle panel of Figure 4.4.3, it still captures the piecewise constant

structure of the real parameters successfully, while this is not suggested by other

methods. At T = 40, the underlying parameters are smooth as displayed in

Figure 4.4.4. The VCERGM performs the best. The FL-ERGM is worse than the

VCERGM but better than the ERGM. When T = 50, as shown in Figure 4.4.5,

the underlying parameters have some abrupt changes, the FL-ERGM detects and

recovers the changing patterns of the real parameter while the VCERGM suggests
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a smooth changing pattern.
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Figure 4.4.1: Parameter estimates for different models with constant underlying
parameters. Black lines are the true parameters. Red lines represent the ERGM,
blue lines stand for the VCERGM, and green lines show results from the proposed
FL-ERGM. For each method, solid lines indicate the average of 50 estimated
curves and the shaded bands illustrate the 0.025 and 0.975 quantiles.
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Figure 4.4.2: Parameter estimates for different models with nowhere constant
underlying parameters. Black lines are the true parameters. Red lines represent
the ERGM, blue lines stand for the VCERGM, and green lines show results from
the proposed FL-ERGM. For each method, solid lines indicate the average of 50
estimated curves and the shaded bands illustrate the 0.025 and 0.975 quantiles.
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Figure 4.4.3: Parameter estimates for different models with piecewise constant
underlying parameters. Black lines are the true parameters. Red lines represent
the ERGM, blue lines stand for the VCERGM, and green lines show results from
the proposed FL-ERGM. For each method, solid lines indicate the average of 50
estimated curves and the shaded bands illustrate the 0.025 and 0.975 quantiles.
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Figure 4.4.4: Parameter estimates for different models with smooth underlying
parameters. Black lines are the true parameters. Red lines represent the ERGM,
blue lines stand for the VCERGM, and green lines show results from the proposed
FL-ERGM. For each method, solid lines indicate the average of 50 estimated
curves and the shaded bands illustrate the 0.025 and 0.975 quantiles.
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Figure 4.4.5: Parameter estimates for different models with piecewise constant
underlying parameters. Black lines are the true parameters. Red lines represent
the ERGM, blue lines stand for the VCERGM, and green lines show results from
the proposed FL-ERGM. For each method, solid lines indicate the average of 50
estimated curves and the shaded bands illustrate the 0.025 and 0.975 quantiles.
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Furthermore, we also run simulations using the settings from Lee et al. (2020).

The results of IAE are shown in Table 4.4.2. We notice that our method FL-

ERGM performs the best in settings 3 and 4 with the smallest IAE value. In

settings 1 and 2, where the underlying parameters are smooth, the VCERGM

performs better. We also show the details of estimated parameters together with

the true parameters in Figure 4.4.6. Although the FL-ERGM does not perform

the best in settings 1 and 2, the estimation from the FL-ERGM can still reflect

on the changing trend of underlying parameters. However, in settings 3 and 4,

the VCERGM can provide false information about the underlying parameters.

Table 4.4.2: Mean (standard deviation) of IAE for each method under same set-
tings as Lee et al. (2020).

FL-ERGM VCERGM ERGM
Sinusoidal 8.31(1.47) 4.78(1.01) 18.07(9.76

Edges Quadratic 7.18(2.12) 2.31(0.57) 6.34(0.71)
Erdos-Renyi 1.89(1.38) 4.20(1.27) 14.58(2.51)
Non-smooth 9.54(1.13) 33.63(0.47) 18.69(10.64)
Sinusoidal 10.28(1.96) 6.67(1.15) 20.18(9.87)

Reciprocity Quadratic 8.53(2.61) 3.04(0.82) 8.63(0.96)
Erdos-Renyi 2.07(1.66) 4.73(1.40) 16.40(2.58)
Non-smooth 12.68(1.42) 28.63(1.06) 22.24(10.75)

4.4.2 International Trade Networks

The international trade networks describe the trade relationships among 60 coun-

tries from 2001 to 2016. We apply the proposed FL-ERGM to international trade

networks with the aim of analysing the dynamic evolution of trade relationships.

The trade networks are built based on the annual import data between every two

countries from the UN Comtrade website1. A directed edge exists from node r

to s, yrs,i = 1, if the import amount from country r to s is more than 3 billion

dollars at year i. For each trade network, we choose the following statistics:

1https://comtrade.un.org/
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Figure 4.4.6: Parameter estimates for simulated networks with same settings as
Lee et al. (2020). Black lines are the true parameters. Blue lines stand for the
VCERGM, and green lines show our method the FL-ERGM. For each method,
solid lines indicate the average of 100 estimated curves and the shaded bands
illustrate the first and third quantiles.

� S1(yi) =
∑

r ̸=s yrs,i, the total number of edges in trade network yi, reflecting

on the density of trade relationship.

� S2(yi) = eϕ
∑n−2

k=1{1− (1− e−ϕ)k}DPk(yi), ϕ = 0.25, geometrically weighted

dyad-wise shared partners (GWDSP), a representation for local clustering

phenomenon, measuring the extent to which the trade relationship localizes.

DPk(yi) is the number of dyads that have k common neighbours.

� S3(yi) =
∑

r ̸=s yrs,iXrs, measuring the effect of distance for the trade rela-

tionship. Xrs stands for the geographic distance between countries r and s,

downloaded from CEPII database2.

Next, we fit the FL-ERGM to the dynamic trade networks. BIC is shown in

Figure 4.4.7 and parameter estimates of the FL-ERGM are presented in Figure

4.4.8. The parameter estimates in Figure 4.4.8 reveal that the trade evolution has

two phases, the increasing period before 2008 and the steady phase after 2008.

This matches the fact of global financial crisis in 2008. Before 2008, the coefficient

of edges keeps increasing, meaning that the trade relationship was expanding

2http://www.cepii.fr
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Figure 4.4.7: BIC of the FL-ERGM for dynamic trade networks.

continuously. At the same time, the coefficient of gwdsp is decreasing, which

implies that the local clustering phenomenon is slowly disappearing, and the trade

relationships are becoming more universal. The distance has a negative and steady

effect on trading during this period. After 2008, the coefficients of edges and

distance effects are relatively stable over time. We also notice that the gwdsp

coefficient has a slight increase from 2012, but we could still claim that the second

phase is steady, as the value of gwdsp coefficient is relatively small. Moreover,

comparing two phases, the second one has bigger edge coefficients but smaller

distance effects, suggesting that the trade is more frequent and the reason might

be the increased convenience of global transportation.
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Figure 4.4.8: Parameter estimates of the FL-ERGM for dynamic trade networks.

We also apply the VCERGM and ERGM to the dynamic trade networks.

The model results are shown in Figure 4.4.9. We can see that the VCERGM

and ERGM provide similar estimates on the coefficients of edges and gwdsp,

86



regardless of the big spikes from the ERGM. However, the VCERGM suggests a

continuously increasing trend on distance effect instead of the two steady phase

result from the FL-ERGM. The changing patterns suggested by the VCERGM

might not be reliable, because in Figure 4.4.3, VCERGM estimates are increasing

continuously when the underlying parameter structure is piecewise constant.
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Figure 4.4.9: Parameter estimates of different methods for dynamic trade net-
works. Red lines represent the results from the ERGM, blue lines stand for the
VCERGM, and green lines show results from the proposed FL-ERGM.

We also assess the accuracy of the estimated model through simulations.

Specifically, at each time point, we simulate 100 networks from the ERGM dis-

tribution with parameter estimate θ̂t. We present the summary statistics of the

simulated networks using box plots in Figure 4.4.10. As is shown, the observed

network statistics are close to the simulated network statistics, indicating that the

estimated FL-ERGM fits the dynamic trade networks well.
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Figure 4.4.10: Model assessments of the FL-ERGM on dynamic trade networks.
The solid line indicates the observed network statistics and the box plots represent
the statistics of networks simulated from the estimated model.

87



4.4.3 Political Co-voting Networks

We also apply the FL-ERGM to the political co-voting networks to study the co-

voting patterns of senators. The co-voting networks consist of a dynamic sequence

of networks from Congress 40 (1867-1869) to Congress 113 (2013-2015). In each

network, nodes represent senators, and edges indicate that the corresponding sen-

ators vote concurringly (both yay or both nay) on at least 80% of the bills. This

dataset has been studied by Lee et al. (2020) using the VCERGM method. In this

chapter, we apply the FL-ERGM to the co-voting networks with same statistics

listed as follows:

� S1(yi) = eϕ
∑n−2

k=1{1 − (1 − e−ϕ)k}EPk(yi), ϕ = 1, geometrically weighted

edgewise shared partners (gwesp), representing transitivity. It measures the

extent to which the decisions of two senators are the same as their shared

co-voters. EPk(yi) is the number of connected pairs that have k common

neighbours.

� S2(yi) = eϕ
∑n−2

k=1{1 − (1 − e−ϕ)k}DPk(yi), ϕ = 1, geometrically weighted

dyad-wise shared partners (gwdsp), representing local clustering phenomenon.

It measures the extent to which the senators agree on each other. DPk(yi)

is the number of dyads that have k common neighbours.

� S3(yi) =
∑

r ̸=s yrs,i1(Xr = Xs = D), the number of connections within

Democratic senators.

� S4(yi) =
∑

r ̸=s yrs,i1(Xr ̸= Xs), the number of connections between Demo-

cratic and Republican senators.

� S5(yi) =
∑

r ̸=s yrs,i1(Xr = Xs = R), the number of connections within

Republican senators.

Next, we investigate the results of the FL-ERGM. BIC is shown in Figure

4.4.11 and parameter estimates of the FL-ERGM are presented in Figure 4.4.12.

The coefficient estimates from the FL-ERGM are functions over time. θ1 and
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θ2, representatives of the local clustering property, change irregularly with time.

θ3, θ4, θ5, the effects of affiliation, exhibit piecewise linear changing patterns. The

big positive gwesp coefficient and small negative gwdsp coefficient suggest a high

transitivity of co-voting networks, meaning that there exist groups of senators

that agree with each other on many bills. The negative coefficients of affiliation

terms indicate the amount of decrease on the log odds of two senators being

connected. In other words, senators being in different parties are most likely

disconnected since θ4 has the biggest absolute value of the three coefficients most

time. The effects of Democrats and Republicans are close, and we also notice that

the comparison of θ3 and θ5 is closely related to the majority party in Senate.

In order to show this relationship more clearly, we indicate the majority party

of the Senate through the background colour of the top panel, and the party of

the US president through the background colour of the bottom panel. Between

Congress 47 and 72, Republican is the majority party in Congress for 22 times (out

of 27 times) and the coefficient of Republicans, θ5, is bigger than the coefficient

of Democrats, θ3, for 24 times. Between Congress 78 and 102, the coefficient of

Democrats, θ3, is bigger than the coefficient of Republicans, θ5, for 23 times (out

of 25 times), and Democrat is also the majority party in Congress for 20 times.

Our model found that the sequence of co-voting networks can be divided into 9

periods. We have been able to identify each of these periods with events in Amer-

ican history. Networks at each period have different characteristics represented by

distinct coefficients of each period. The first period starts from Congress 40 (1867-

1869) to 45 (1877-1879), when the US went through the Reconstruction period

after the Civil War. The Congress is gradually dominated by Republican, indi-

cated by the increasing coefficient of θ5(R-R), while θ3(D-D) and θ4(D-R) remain

constant during this time. We also notice that there is an abrupt change from

Congress 45 to 46, suggested by the sharp increase on θ1(gwesp) and decrease on

θ2(gwdsp), meaning that new connections are built because of transitivity. The

second phase, form Congress 46 (1879-1881) to 63 (1913-1915), started with the

Gilded Age. During this period, US finished the Second Industrial Revolution
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and became a world economic and military power. The Congress was dominated

by Republicans and more agreement is reached inside the Republican party than

the Democratic party. There is also an abrupt change on θ3 and θ5, at around

Congress 50 (1887-1889) and 51 (1889-1891), which matches the fact of the change

in the affiliation of the president after a long time.

The third period, from Congress 64 (1915-1917) to 66 (1919-1921), corresponds

to time of the World War I. θ3, θ4, θ5 all decrease compared with the last period,

meaning that the effect of affiliation increases during war time. Also, θ1 reaches the

minimum and θ2 reaches its maximum at Congress 65. The 4th period, Congress

67 (1921-1923) to 71 (1929-1931), matches the Roaring Twenties when US had

the great economic prosperity after the World War I. θ3 and θ5 decrease but θ4

increases compared with the last period. The 5th period is between Congress 72

(1931-1933) and 81 (1949-1951), when US experienced the Great Depression and

World War II. We notice that the coefficient of Democrats increases dramatically

and becomes bigger than the coefficient of Republicans. The position of Democrats

is gained during the Great Depression and kept during the Word War II.

The 6th period, from Congress 82 (1951-1953) to 99 (1985-1987), is related

to the Cold War. The coefficient of Democrats is bigger than the coefficient of

Republicans most of the time. We also notice that θ3 has a dip at Congress

83 (1953-1955), which matches the time that the famous president Eisenhower

was elected as the first Republican president since 1932. The 7th period, from

Congress 100 (1987-1989) to 105 (1998-1999) is the Post-Cold War era. θ3, θ4, θ5 all

increase compared with the last period, indicating that the affiliation plays a less

important role in the decision of senators. θ4 increases sharply at Congress 106,

meaning that there is a lot of agreement between Democrats and Republicans.

The 8th period, from Congress 106 (1999-2001) to 109 (2005-2007), lasts for 8

years. θ3, θ4, θ5 all remain stable during this time when Bush was the president.

The change from phase 8 to 9 is marked by the financial crisis and at the same

time, Democrats became the Senate majority again from Congress 110. During

the 9th phase, from Congress 110 (2007-2009) to 115 (2013-2015), when Obama
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was the president, the coefficient of Democrats increases but the coefficient of

Republicans decreases.
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Figure 4.4.11: BIC of the FL-ERGM for dynamic co-voting networks.
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Figure 4.4.12: Parameter estimates of the FL-ERGM for co-voting networks. In
all three plots, the background colour of the top panel indicates the majority
party of the Senate, and the background colour of the bottom panel represents
the party of the US president. In the third plot, blue lines stand for the effects of
Democrats-Democrats, green lines stand for the effects of Democrats-Republicans,
and red lines show the effects of Republicans-Republicans.

The model assessment is shown in Figure 4.4.13, suggesting that the FL-ERGM

fits the networks well. The results of the VCERGM and ERGM are also presented

in Figure 4.4.14. Similar to what we found in the simulation studies, ERGM

estimates are spiky and VCERGM estimates are smooth. In comparing the Fl-

ERGM with competing methods, we see that the coefficient estimates from the

FL-ERGM can account for the characteristics of each network as well as show the

abrupt change points on the network structure.
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Figure 4.4.13: Model assessments of the FL-ERGM on dynamic co-voting net-
works. The solid lines indicate the observed network statistics and the box plots
represent the statistics of networks simulated from the estimated model.
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Figure 4.4.14: Parameter estimates of different methods for co-voting networks.
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4.5 Discussion

In this chapter, we have proposed a model for dynamic network analysis which

describes various kinds of connectivity patterns within networks and model the

changing patterns of network structures using a piecewise linear function. The

model is an extension to ERGMs in dynamic fields, and maintains the flexibility

of ERGMs. It also provides an interpretable dynamic network model that enables

the inference of temporal heterogeneity in dynamic networks. Moreover, the use

of fused lasso penalty also enables our model to make full use of information from

neighbouring networks to obtain more accurate estimates. In addition, we have

shown that the ADMM algorithm is an effective approach for statistical inference

of complex dynamic networks.
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Chapter 5

Bayesian Hierarchical Block

Exponential Random Graph

Models

In this chapter, we focus on the individual variations exhibited in ensembles of

networks. Specifically, we propose a Bayesian hierarchical block exponential ran-

dom graph model (BHB-ERGM) for ensembles of networks. The proposed BHB-

ERGM represents the whole ensemble using a multilevel framework and describes

each network in terms of block, transitive and other local structures using an

individual-specific model. The number of blocks and block memberships can be

determined automatically and changed adaptively with the data. A Metropolis-

within-Gibbs sampling algorithm for the posterior inference of the proposed model

is developed and tested through the simulated and real datasets.

5.1 Introduction

Individual variations refer to the differences in structures between individual net-

works. A multilevel framework provides a natural method to capture the individ-

ual variations exhibited in an ensemble of networks. The multilevel framework has

been combined with ERGMs to model the individual variations of the complex
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connectivity patterns across different networks. For example, in order to model an

ensemble of 102 student networks, Lubbers and Snijders (2007) applied ERGMs

on each network separately, and then employed a meta-analysis approach based on

the ERGM parameter estimation. Wang et al. (2013) extended ERGMs for multi-

level networks by introducing a variety of new specifications to represent a range of

multilevel structures. Slaughter and Koehly (2016) built a multilevel ERGM for a

single group of networks, and Lehmann and White (2021) extended this multilevel

model to compare networks from different groups. Yin et al. (2022) proposed to

model the ensemble of networks using a finite mixture of ERGMs when the group

structure of the networks is unknown. However, the block structure has not been

considered in the multilevel ERGMs.

Block structures occur frequently in many real networks, where the nodes in

a network can be divided into different groups with similar characteristics. The

ensembles of networks observed in nature are also known to exhibit block struc-

tures. There are a significant number of papers on the detection of unknown block

structure based on stochastic block models and their extensions, as reviewed in

Lee and Wilkinson (2019). Some of them focus on inferring block structures in the

context of ensembles of networks. For example, Paul and Chen (2020) developed

a random effects stochastic block model for joint community detection. Durante

et al. (2017) extended latent space models using a Bayesian nonparametric ap-

proach. MacDonald et al. (2022) used frequentist latent space models to infer the

shared structure of ensembles of networks.

Incorporating block structures into ERGM framework would allow us to cap-

ture the topological features within each network. Similar idea has been previously

studied in the single network case. Schweinberger and Handcock (2015) is the first

to characterise local dependence in exponential random graph models by taking

account of the neighbourhood structure of nodes. Later, Babkin et al. (2020) de-

veloped a large-scale estimation method of the local dependence model, assuming

that the number of blocks is known. Schweinberger and Stewart (2020) estab-

lished concentration and consistency results for ERGMs with local dependence in
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the case where the blocks are known and the block sizes are similar. In the con-

text of ensembles of networks, unknown structures occur at both individual and

population network levels. It is more challenging to simultaneously capture the

various structural patterns within networks and their variations across individual

networks.

To model ensembles of networks with block structures, we propose a Bayesian

hierarchical block exponential random graph model (BHB-ERGM). With such a

model, each network is described by individual level parameters and the whole

ensemble is characterised using population level parameters. Specifically, on the

individual level, each network is divided into several subnetworks based on its

block structure, and each subnetwork is represented by a different ERGM. On the

population level, the information from each network is collected using a Bayesian

hierarchical model. Overall, the BHB-ERGM allows us to learn the similarities

and differences among multiple network samples with respect to homophily, tran-

sitivity and other structural properties simultaneously.

The estimation of BHB-ERGMs is challenging. Firstly, individual and popu-

lation parameters both have to be estimated to capture the multilevel structures

of networks. Secondly, recovering unknown block structures of networks without

preliminary information is a tricky problem. There is a rich literature on the in-

ference of block structures using stochastic block models based on the conditional

independence assumptions. But in our proposed BHB-ERGMs, edges within the

same subnetwork are dependent on each other, making the problem more challeng-

ing. Thirdly, the likelihood of the ERGM is incomputable due to the existence of

intractable normalising constants. This increases not only the difficulty of ERGM

parameter estimation but also the difficulty of block membership identification.

In order to perform the posterior inference of the proposed BHB-ERGMs,

we develop a Metropolis-within-Gibbs sampling algorithm. The Gibbs sampling

algorithm is used to update variables in turn from their conditional posterior

distributions. Within each step of the Gibbs sampling algorithm, the Metropolis-

Hastings algorithm is applied to sample from the posterior ERGM distributions.
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The proposed algorithm allows the information to be shared across different net-

works. Furthermore, to identify the block structure of networks, we employ a

stick-breaking prior (Ishwaran and James, 2001) for the block membership vari-

ables. This allows the number of blocks and the block membership to be learned

automatically from the data. As for the ERGM likelihood evaluation, we adopt the

pseudo likelihood approximation method to achieve a faster computation speed.

Other approximation approaches such as adjusted pseudo likelihood (Bouranis

et al., 2017), Monte Carlo estimation (Neal, 2005) can also be plugged in our

algorithm.

The rest of the chapter is organized as follows. In Section 5.2, we describe

the formulation of BHB-ERGMs. Section 5.3 provides the sampling methodology.

Section 5.4 presents the simulation studies. We summarise this chapter in Section

5.5.

5.2 Model Formulation

In this section, we propose BHB-ERGMs for ensembles of networks in three steps.

We first develop a block ERGM for individual networks. Then we introduce a

Bayesian hierarchical framework to combine information from different individu-

als. At last, we combine the block ERGM and the Bayesian hierarchical frame-

work.

5.2.1 Block ERGMs

It is known that network data are dependent since they represent the interactions

among different entities. As a consequence, each edge may depend on n2 − n− 1

other possible edges in a directed network with n nodes (Babkin et al., 2020).

ERGMs capture various types of connectivity patterns exhibited in the graph

through exponential family distributions. The complexity of the connectivity

patterns increases with the number of nodes in the network, limiting the use of

ERGMs in big networks. On the other hand, block structures occur frequently
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in many real networks. Given the block structure, the network is divided into

a number of subnetworks that are independent of each other. In other words,

using the idea of block structures can help us to constrain the dependence within

each subnetwork. Here, we develop block ERGMs by combining the idea of block

structures and ERGMs.

Next, we introduce some notation. Suppose that we observe an ensemble of N

networks, directed or undirected, on a common set of n nodes with no self-loops.

The networks are represented by N adjacency matrices Y = (Y (1), . . . , Y (N)), each

with dimension n× n. The covariate information for the ensemble is stored using

a sequence of N matrices X = (X(1), . . . , X(N)). The nodes can be divided into

K groups, with the membership variable denoted by Z = (Z1, . . . , Zn). Given

the node membership, the edges in a single network Y (i) can be divided into

within-group connections Y
(i)
w,j = [Y

(i)
rs ]Zr=Zs=j, j = 1, . . . , K, and between-group

connections Y
(i)
b = [Y

(i)
rs ]Zr ̸=Zs . The subsets of nodes together with the within-

group connections form the subnetworks of interest.

We model each subnetwork Y
(i)
w,j, formed by nodes from cluster j, using a

separate ERGM with a specific parameter θ
(i)
w,j ∈ Rd1 ,

P (Y
(i)
w,j = y

(i)
w,j|θ

(i)
w,j, Z) =

exp{θ(i)⊤w,j S(y
(i)
w,j, X

(i)
j )}

k(θ
(i)
w,j)

. (5.2.1)

θ
(i)
w,j is the model parameter for subnetwork y

(i)
w,j. S(y

(i)
w,j, X

(i)
j ) is the summary

statistics of the subnetwork. k(θ
(i)
w,j) =

∑
y′∈Yw,j

exp{θ(i)⊤w,j S(y
′, X

(i)
j )} is the nor-

malising constant.

The between-group connections Y
(i)
b are modelled via the between-group pa-

rameter θ
(i)
b ∈ Rd2 ,

P (Y
(i)
b = y

(i)
b |θ(i)b , Z) =

∏
zr ̸=zs

P (Y (i)
rs = y(i)rs |θ

(i)
b ), (5.2.2)

where y
(i)
b is the set of between-group edges, formed by edges from different groups
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in network y(i). As the between-group connections are usually much simpler com-

pared to the within-group connections, we assume that between-group connections

are independent given the block structure. To be specific, we use a Bernoulli dis-

tribution to model each between-group edge variable.

Therefore, given the latent variable Z, the likelihood of a single network Y (i)

can be factorized using within-group and between-group connections, written as

P (Y (i) = y(i)|θ(i), Z) =
∏
zr ̸=zs

P (Y (i)
rs = y(i)rs |θ

(i)
b )

K∏
j=1

exp{θ(i)⊤w,j S(y
(i)
w,j, X

(i)
j )}

k(θ
(i)
w,j)

.

(5.2.3)

In this way, the complicated connectivity patterns within a single network Y (i) is

captured by K within-group parameters θ
(i)
w,j and one between-group parameter

θ
(i)
b .

5.2.2 Bayesian Hierarchical Frameworks

For ensembles of networks that we are interested in, unknown structures appear at

both individual and population network levels. To infer the multilevel structures

of ensembles of networks, we further build the block ERGMs into a Bayesian

hierarchical framework.

We assume that the individual within-group parameters θ
(i)
w,j are drawn from

a multivariate normal distribution with mean vector µw,j and variance-covariance

matrix Σw,j,

θ
(i)
w,j ∼ N (µw,j,Σw,j). (5.2.4)

Here, µw,j represents the characteristics of subnetwork j at a population level.

We also assume that the individual between-group parameters θ
(i)
b are drawn from

a multivariate normal distribution with mean vector µb and variance-covariance
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matrix Σb,

θ
(i)
b ∼ N (µb,Σb), (5.2.5)

where µb describes the between-group connections of all networks.

Then we specify conjugate hyperpriors on the population parameters as fol-

lows,

µw,j ∼ N (µ0
w,Σ

0
w),

µb ∼ N (µ0
b ,Σ

0
b).

For simplicity, we only place hyperpriors on the mean parameters {µw,j, µb}.

5.2.3 Bayesian Hierarchical Block ERGMs

In most cases, the node membership Z is unknown, and needs to be inferred from

the observed data. In Chapter 3, we described how to use the stick-breaking

process to infer the group structure of networks. Here, we borrow the strength

from the stick-breaking process to infer the node membership indicator Z without

preliminary information on the number of blocks.

Suppose that node r belongs to group j = 1, . . . , with probability wj, expressed

as P (Zr = j) = wj. Using a stick-breaking representation, the weight variable w

is constructed with an auxiliary variable v. v is sampled from a beta distribution

Beta(1, β) and w1 = v1, wj = vj
∏j−1

l=1 (1 − vl) (for j = 2, 3, . . . ). Therefore, we
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propose a Bayesian hierarchical block exponential random graph model (BHB-

ERGM) with the following specification,

vj ∼ Beta(1, β) (j = 1, 2, . . . ),

w1 = v1, wj = vj

j−1∏
l=1

(1− vl),

Zr|w ∼ Multinomial(w) (r = 1, . . . , n),

µw,j ∼ N (µ0
w,Σ

0
w),

µb ∼ N (µ0
b ,Σ

0
b),

θ
(i)
w,j ∼ N (µw,j,Σw,j) (i = 1, . . . , N),

θ
(i)
b ∼ N (µb,Σb),

P (Y (i) = y(i)|θ(i), Z) =
∏
zr ̸=zs

P (Y (i)
rs = y(i)rs |θ

(i)
b )

∞∏
j=1

exp{θ(i)⊤w,j S(y
(i)
w,j, X

(i)
j )}

k(θ
(i)
w,j)

.

Here, {θ(i)w,j, θ
(i)
b } represent the characteristics of each subnetwork, and {µw,j, µb}

describe the characteristics of all subnetworks at a population level. Z indicates

the shared block structure.

5.3 Posterior Computation

The statistical inference of the proposed model is challenging due to the following

three reasons: the infinite number of clusters, the intractability of the ERGM

likelihood, and the within-subnetwork dependence. In this section, we develop a

Metropolis-within-Gibbs sampling algorithm to sample from the posterior distri-

butions of BHB-ERGMs.

To address the infinity issue, we approximate the stick-breaking prior using a

truncated stick-breaking prior based on the maximum number of clusters Kmax,

along the lines of Ishwaran and James (2001). In their work, they offered some

general advice concerning the choice of Kmax: (1) trying out multiple values of

Kmax and comparing the goodness of fit of the model; (2) exploiting available
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information; (3) setting Kmax = n, the number of samples to be allocated.

Here, we focus on using the goodness of fit method to find Kmax. Given Kmax,

the membership probability w is constructed in the following way,

vj ∼ Beta(1, β) (j = 1, 2, . . . , Kmax − 1),

vKmax = 1,

w1 = v1, wj = vj

j−1∏
l=1

(1− vl) (j = 2, . . . , Kmax).

With the approximated stick-breaking prior, the posterior distribution can be

expressed as

p(w,Z, µw,j, µb, θ
(i)
w,j, θ

(i)
b |y(i), . . . , y(N))

∝ p(v)p(Z|w)p(µw,j)p(µb)
N∏
i=1

p(θ
(i)
w,j|µw,j)p(θ

(i)
b |µb)P (Y (i) = y(i)|θ(i), Z)

= p(v)p(Z|w)p(µw,j)p(µb)
N∏
i=1

p(θ
(i)
w,j|µw,j)p(θ

(i)
b |µb)

∏
zr ̸=zs

P (Y (i)
rs = y(i)rs |θ

(i)
b )

×
Kmax∏
j=1

exp{θ(i)⊤w,j S(y
(i)
w,j, X

(i)
j )}

k(θ
(i)
w,j)

.

This allows us to derive the full conditional distribution of each variable from the

above formula. The remaining obstacle is the intractable normalising constant

k(θ
(i)
w,j).

Next, we propose a Metropolis-within-Gibbs sampling algorithm to sample

variables (w,Z, µw,j, µb, θ
(i)
w,j, θ

(i)
b ) in turn, and describe our solution to the in-

tractability problem at Steps 3 and 4.

Step 1. Sample vj from the beta distribution,

vj ∼ Beta(1 + aj, β + bj) (j = 1, 2, . . . , Kmax),

vKmax = 1.
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Here, aj =
∑n

r=1 1(Zr = j) denotes the number of nodes in group j and bj =∑n
r=1 1(Zr > j) corresponds to the number of nodes in the groups that have

larger label than j.

Update wj with

w1 = v1, wj = vj

j−1∏
l=1

(1− vl) (j = 2, . . . , Kmax). (5.3.1)

Step 2. Sample µ = {µw,j, µb} from the multivariate normal distribution,

µw,j ∼ N (µpst
w,j,Σ

pst
w,j) (j = 1, 2, . . . , Kmax),

µb ∼ N (µpst
b ,Σpst

b ),

with

µpst
w,j = Σ0

w

(
Σ0
w +

1

N
Σw,j

)−1
(

1

N

N∑
i=1

θ
(i)
w,j

)
+

1

N
Σw,j

(
Σ0
w +

1

N
Σw,j

)−1

µ0
w,

Σpst
w,j = Σ0

w

(
Σ0
w +

1

N
Σw,j

)−1 1

N
Σw,j ,

µpst
b = Σ0

b

(
Σ0
b +

1

N
Σb

)−1
(

1

N

N∑
i=1

θ
(i)
b

)
+

1

N
Σb

(
Σ0
b +

1

N
Σb

)−1

µ0
b ,

Σpst
b = Σ0

b

(
Σ0
b +

1

N
Σb

)−1 1

N
Σb.

The conjugacy property of normal distributions facilitates the sampling of {µw,j, µb}.

Step 3. Sample θ = {θ(i)w,j, θ
(i)
b } using the Metropolis-Hastings algorithm.

The posterior distribution of θ
(i)
w,j is proportional to the product of the prior
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distribution and the likelihood of subnetwork y
(i)
w,j,

p(θ
(i)
w,j| · · · ) ∝ p(θ

(i)
w,j|µw,j)P (Y (i) = y(i)|θ(i), Z)

∝ p(θ
(i)
w,j|µw,j)P (Y

(i)
w,j = y

(i)
w,j|θ

(i)
w,j)

= p(θ
(i)
w,j|µw,j)

exp{θ(i)⊤w,j S(y
(i)
w,j, X

(i)
j )}

k(θ
(i)
w,j)

.

The direct application of Metropolis-Hastings algorithm to sample from this poste-

rior distribution is impossible as the likelihood includes an intractable normalising

constant. As we have discussed in Chapter 3, there are mainly two approaches to

address this issue. The first approach is to use a Monte Carlo method to estimate

the normalising constant ratio in the acceptance probability of the Metropolis-

Hastings algorithm. The second approach is to use a pseudo likelihood approx-

imation to replace the likelihood of the subnetwork. Here, we adopt the second

method to achieve a faster estimation speed. If there are no nodes allocated to

group j, then θ
(i)
w,j ∼ N (µw,j,Σw,j).

The posterior distribution of θ
(i)
b is proportional to the product of the prior

distribution and the likelihood of between-group connections,

p(θ
(i)
b | · · · ) ∝ p(θ

(i)
b |µb)P (Y (i) = y(i)|θ(i), Z)

∝ p(θ
(i)
b |µb)P (Y

(i)
b = y

(i)
b |θ(i)b )

= p(θ
(i)
b |µb)

∏
zr ̸=zs

P (Y (i)
rs = y(i)rs |θ

(i)
b ),

and edge y
(i)
rs is modelled using Bernoulli distribution with parameter θ

(i)
b .

Step 4. Sample Z based on

P (Zr = k| · · · ) ∝P (Zr = k|w)
N∏
i=1

P (Y (i) = y(i)|θ(i), Zr = k, Z−r) (5.3.2)

=P (Zr = k|w)
N∏
i=1

∏
zr ̸=zs

P (Y (i)
rs = y(i)rs |θ

(i)
b )

Kmax∏
j=1

exp{θ(i)⊤w,j S(y
(i)
w,j, X

(i)
j )}

k(θ
(i)
w,j)

.
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In stochastic block models, edges are conditionally independent given the block

structure of a network. In other words, the membership of node r does not

affect the probability of other edges that do not involve node r, which simplifies

the computation dramatically. However, in our framework, edges from the same

subnetwork depend on each other. If the membership of node r changes from k

to k′, the likelihood of all edges in subnetworks k and k′ may be all affected. This

requires us to calculate the likelihood of network y(i) with different values of Zr,

which is computational demanding. To address this issue, we adopt the pseudo

likelihood approximation for the likelihood of each subnetwork and borrow the

idea from stochastic block models to simplify between-group connections.

5.4 Empirical Results

To illustrate our proposed BHB-ERGMs, we first apply it to a set of simulated

networks to show its ability to recover the ground truth. Then we compare it

with HB-ERGMs (Slaughter and Koehly, 2016), the ERGMs under a hierarchi-

cal setting. Furthermore, we apply the BHB-ERGMs to an ensemble of trade

networks.

5.4.1 Simulated Networks

We generate an ensemble of N = 20 undirected networks. Each network has

n = 90 nodes with K = 3 equally sized subnetworks. For each subnetwork,

we choose the number of edges S1(y(i)) =
∑

r<s y
(i)
rs and geometrically weighted

edgewise shared partner (gwesp), S2(y(i)) = eϕ
∑n−2

k=1{1 − (1 − e−ϕ)k}EPk(y
(i)),

ϕ = 0, as the subnetwork statistics. EPk(yi) is the number of connected pairs

that have k common neighbours. With ϕ = 0, we have S2(y(i)) =
∑n−2

k=1 EPk(y
(i)).

For the between-subnetwork connections, we consider the number of edges only.

There are three steps in generating simulated networks. Firstly, we specify the
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within-subnetwork parameters as follows,

µw =

 −2 −2 −2

0 0.25 0.5

 , Σw =

 0.052 0

0 0.052

 .

The parameters for the between-subnetwork connections are µb = −4, Σb = 0.052.

Secondly, we simulate the individual parameters from the population parameters,

θ
(i)
w,j ∼ N (µw,j,Σw,j) (j = 1, . . . , K), θ

(i)
b ∼ N (µb,Σb). Thirdly, we generate

simulated networks y(i) (i = 1, . . . , N) with θ(i) as parameters.

For the simulated network ensemble y(i), we fit it with the Metropolis-within-

Gibbs sampling algorithm. The maximum number of clusters is set as Kmax = 10.

The hyperparameters in the prior distribution are set as µ0
w = (−2, 0), Σ0

w = I2,

µ0
b = −3 and Σ0

b = 1. The proposal distribution is N (0, 0.12I2) for within-

subnetwork parameters and N (0, 0.22) for between-subnetwork connections. I2

denotes a two-dimensional diagonal matrix. The simulation is run for 10,000

iterations with the first 2,000 as burn-in. We present the number of occupied

clusters at Figure 5.4.1. The nodes are correctly allocated to the true group.

The We also check that MCMC chains for all individual parameters {θ(i)w,j, θ
(i)
b }

mix well. The acceptance ratios are between 0.4 and 0.5. We also present the

posterior density plots of population parameters µw,j in Figure 5.4.2 and µb in

Figure 5.4.3. The posterior density plots cover the true parameter values well.
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Figure 5.4.1: Trace plot for the number of occupied clusters.
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Figure 5.4.2: Posterior density plots of the within-subnetwork parameters using
BHB-ERGMs. Each row corresponds to the characteristics of a population of
subnetworks formed a specific set of nodes.

We repeat the same process 50 times and calculate the mean and standard

deviation of all posterior means, shown in Table 5.4.1. As we can see, the estimates

are close to the true value.

Furthermore, we also apply ERGMs to the same simulated networks at the hi-

erarchical Bayesian setting, following the method of Slaughter and Koehly (2016).

We refer to this method as HB-ERGM. Compared to our proposed BHB-ERGM,
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Figure 5.4.3: The posterior density plot of the between-subnetwork parameter
using BHB-ERGMs at the population level.

Table 5.4.1: Mean (standard deviation) of posterior means of 50 repetitions.

subnetwork 1 subnetwork 2 subnetwork 3 between-subnetwork
edges -2.00 (0.06) -2.02 (0.06) -2.02 (0.07) -4.01(0.03)
gwesp -0.03 (0.05) 0.25 (0.04) 0.50 (0.05) 0

the HB-ERGM does not consider block structures of networks. The posterior

density plots of the population parameters µ are shown in Figure 5.4.4.
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Figure 5.4.4: Posterior density plots of the population parameters using HB-
ERGMs.

To assess the performance of both methods, we calculate the mean squared

error (MSE) and the mean absolute error (MAE) to measure the distance between

predicted network summary statistics and observed network summary statistics
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as follows,

MSE =
1

N

N∑
i=1

(
Ŝ(z(i))− S(y(i))

)2
,

MAE =
1

N

N∑
i=1

|Ŝ(z(i))− S(y(i))|.

Here, S(y(i)) stands for the statistics of the networks we are modelling, y(i) (i =

1, . . . , N). Ŝ(z(i)) is the average summary statistics of the predicted networks,

which are generated based on individual estimation θ̂(i). We generate predicted

networks using both estimation of BHB-ERGMs and HB-ERGMs and present

the results in Table 5.4.2. It is shown that BHB-ERGMs perform better than

HB-ERGMs suggested by the smaller values of MSE and MAE.

Table 5.4.2: Mean (standard deviation) of MSE and MAE of 50 repetitions.

BHB-ERGMs HB-ERGMs
edges MSE 26.82 (9.35) 372.57 (128.27)

MAE 4.28 (0.84) 16.31 (2.73)
gwesp MSE 48.00 (13.15) 227.03 (107.91)

MAE 5.58 (0.86) 11.47 (2.46)

5.4.2 International Trade Networks

We also apply the proposed BHB-ERGMs to an ensemble of trade networks.

The ensemble of trade networks is observed on 60 countries (n = 60) over the

period 2001-2016 (N = 16), denoted as y(i)(i = 1, 2, . . . , 16). The networks are

built based on the annual import data between every two countries from the UN

Comtrade website1. A directed edge exists from node r to s, y
(i)
rs = 1, if the import

amount from country r to s is more than 3 billion dollars at year i.

In this application, we choose two statistics to model the trade networks:

1https://comtrade.un.org/
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� S1(yi) =
∑

r ̸=s yrs,i, the total number of edges in network yi. The density of

trade networks can reflect the universality of global trade relationship.

� S2(yi) = eϕ
∑n−2

k=1{1− (1− e−ϕ)k}DPk(yi), ϕ = 0.25, geometrically weighted

dyadic shared partner (gwdsp), representing transitivity. DPk(yi) is the

number of connected pairs that share k common neighbours.

Next, we fit the model using the Metropolis-within-Gibbs sampling algorithm.

The maximum number of clusters is set as Kmax = 10. We use the same initial

points as in the simulation studies. The hyperparameter in the population mean

prior distribution is set as µ0
w = (−2, 0), Σ0

w = 0.5I2, µ0
b = −3 and Σ0

b = 1.

The proposal distribution in the Metropolis-Hastings algorithm is N (0, 0.12I2)

for within-subnetwork parameters and N (0, 0.22) for between-subnetwork connec-

tions. I2 denotes a two-dimensional diagonal matrix. We run four independent

chains for 20,000 iterations and present the number of occupied clusters at Figure

5.4.5. We also check the convergence of each parameter.
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Figure 5.4.5: Trace plot for the number of occupied clusters of two different chains.

Four stable groups are obtained from the model results. The members of each

subnetwork are listed as follows:

� Group 1: United States, China, Germany, United Kingdom, Japan, France,

Korea, Italy, Canada, Netherlands, Belgium, India, Spain, Singapore, Switzer-

land, Turkey, Thailand, Australia, Russia, Malaysia, Austria, Sweden, Brazil,
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Indonesia, Denmark, Ireland, Norway, Finland,

� Group 2: Philippines, South Africa, Romania, Portugal, Israel, Chile, Greece,

Colombia, New Zealand, Peru, Slovenia, Bulgaria, Belarus, Lithuania, Kaza-

khstan, Croatia, Sri Lanka, Tunisia, Luxembourg, Dominica Republic, Guatemala,

Ethiopia, Ecuador, Estonia, Costa Rica, Uruguay, Tanzania,

� Group 3: Czech Republic, Slovakia, Hungary, Poland,

� Group 4: Mexico.

We get four subnetworks, each of which has its unique characteristics. We

present the summary statistics of each subnetwork in Table 5.4.3. Subnetwork

1 is densely connected, with a positive gwdsp parameter (as shown in Figure

5.4.6) indicating high transitivity. Most of the 28 countries in subnetwork 1 are

developed countries. Only a few connections are observed in subnetwork 2, and the

gwdsp statistics are always 0. Subnetwork 3 is formed by four countries that are

geographically located next to each other. They are all members of the Visegrad

(V4) group. These four countries do not have any connections at years 2001 and

2002, but are fully connected at years 2011, 2013, 2014, 2015 and 2016, as shown

in Figure 5.4.7. Mexico forms its own group most of the time. Although it is a

big manufacturing country, its trade relationship is less wide ranging compared to

countries in subnetwork 1 as it mostly trades with a couple of specific countries.

For example, Mexico has a large amount of trade with the United States. The

posterior density plot of between-subnetwork connections is shown in Figure 5.4.8.

Table 5.4.3: Mean (standard deviation) of summary statistics of the subnetworks.

subnetwork 1 subnetwork 2 subnetwork 3 subnetwork 4
size 28 27 4 1
edges 371.81 (67.48) 0.31 (0.79) 7.44(4.53) 0 (0)
gwdsp 954.08 (28.26) 0 (0) 8.20 (6.19) 0 (0)
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Figure 5.4.6: Posterior density plots of model parameters for subnetwork 1.
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Figure 5.4.7: The number of edges of subnetworks 1 (left), 2(middle) and 4(right)
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Figure 5.4.8: The posterior density plot of the parameter for between-subnetwork
connections.
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5.5 Discussion

The analysis of connectivity patterns is crucial in understanding the process un-

derlying the formation of networks. The main contribution of this work is that

we have developed a multilevel framework to simultaneously model the various

connectivity patterns and their variations within and across blocks in the en-

semble of networks. The inference of such a framework is challenging due to the

within-subnetwork dependency, the intractability of the ERGM likelihood and the

problem associated with MCMC for hierarchical models. To address these issues,

we have developed a novel MCMC algorithm. The proposed algorithm can adapt

easily to different datasets. Moreover, we have applied our method to an ensemble

of trade networks. Our model detects the common block structure of the trade

ensemble, captures the dependency within each individual subnetworks and also

presents the characteristics of subnetworks at a population level.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, three strategies on the modelling of ensembles of networks have been

presented. After an introduction and literature review, different characteristics of

the ensemble have been individually described in Chapters 3, 4, 5.

In Chapter 3, we have presented a novel methodology for modelling the gener-

ative process of ensembles of networks. This model is the first approach to apply

a Bayesian nonparametric method on ERGMs, to the best of our knowledge. It

provides a highly flexible and interpretable framework for characterising the com-

plex generative process of ensembles. With such a model, the subpopulations

consisting of similar networks can be detected and compared automatically with-

out requiring a fixed number of clusters in advance. We have also developed a

novel IMS sampling algorithm for the full Bayesian inference of the model and a

PMS sampling algorithm for the fast estimation of the model.

In Chapter 4, we have proposed a new method to model the temporal vari-

ations of dynamic ensembles in terms of the effects of various local connectivity

patterns on the shaping of global network structure over time. By incorporating a

fused lasso penalty in the model, the time correlation between different networks

has been modelled realistically using a piecewise linear function. We have also

discussed how to use a powerful optimisation method, the ADMM algorithm, to
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estimate a sequence of dynamic networks simultaneously. In particular, we have

employed a LU matrix decomposition technique to facilitate the inference on the

ensemble with a large number of network observations. We have also shown that

our proposed model can present the changing trend of different effects as well as

detect abrupt changes of network structures.

In Chapter 5, we have proposed a Bayesian hierarchical framework to model

the ensembles of networks with block structures using ERGMs. The proposed

model does not only detect the common block structures of all network samples,

but it also describes the individual and population characteristics of subnetworks.

One obstacle of the estimation is how to distinguish block structures and various

structural patterns from ERGMs in the generative process of networks. We have

also developed a Metropolis-within-Gibbs sampling algorithm to address these

issues while keeping the flexibility on the number of blocks.

6.2 Future Work

The flexibility of both ERGMs and hierarchical models offers us many promis-

ing opportunities to further develop our framework. First, we plan to develop

a unified framework to infer the multilevel group structures of ensembles using

ERGMs, in other words, to develop a framework that can cluster networks and

nodes simultaneously. Second, we plan to include network level covariates in the

current Bayesian hierarchical framework to study how covariates affect the differ-

ences between networks. For example, this can provide insights on how personal

activities such as exercise influence the connectivity patterns of different brain

regions. Third, in addition to the common block structure of ensembles, we will

also consider the network block structure of each network. This would help us to

account for more heterogeneity on the generative processes of ensembles. Fourth,

for ensembles with a time order, it is often of interest to detect change points in

the network. It would be interesting to further analyse how to utilize dynamic

network models like the FL-ERGM to identify those points where the network
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undergoes significant local or global structural changes.

More accurate and faster approximations of the ERGM likelihood are also

potential directions for future research. Current available Monte Carlo approx-

imations are accurate but time consuming as generating networks from desired

ERGMs requires a long run of Markov chains. Pseudo likelihood approxima-

tions are fast but should be treated with caution because they can lead to an

unreasonable inference. More recently, faster Bayesian inference methods, such as

variation inference (Tan and Friel, 2020) and approximate Bayesian inference (Yin

and Butts, 2020), have been applied to ERGMs to pursue a better estimation. All

the methods mentioned above are developed for the case of a single network. It is

worthwhile to explore the use of fast Bayesian inference methods on the ensem-

bles of networks. Moreover, if we could make use of the features of the ensemble,

such as the similarities between network samples, to calculate the likelihood of

the ensemble without calculating the likelihood of each network sample, we could

also save computing time.

Although Bayesian nonparametric analysis based on stochastic block models

and latent space models has attracted much attention in the last decade, the

Bayesian nonparametric analysis of ERGMs has not been given the desired at-

tention. This is largely due to the intractable normalising constant in the ERGM

likelihood. However, as we mentioned before, Bayesian nonparametric methods

have both the advantages of Bayesian analysis and nonparametric models, the

model complexity of which can change with the data. On the other hand, ERGMs

are very flexible in the way that various dependency structures can be incorpo-

rated into the model. They have the advantages that other network models do

not have. Therefore, it is interesting to extend ERGMs using other stochastic

processes such as Gaussian processes or beta processes, in addition to Dirichlet

processes. The Bayesian inference of such frameworks would also be worthwhile

to explore.
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Appendix A

Appendix

A.1 Taylor Expansion

The function to expand is

f(θt) = yijtθ
⊤
t ∆Sijt − log

{
1 + exp

(
θ⊤t ∆Sijt

)}
,

with first and second derivative as follows,

∂f(θt)

∂θt
= yijt∆Sijt −

exp(θ⊤t ∆Sijt)

1 + exp(θ⊤t ∆Sijt)
∆Sijt,

∂2f(θt)

∂θ2t
= − exp(θ⊤t ∆Sijt)

(1 + exp(θ⊤t ∆Sijt))2
∆Sijt∆S⊤

ijt.
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The second Taylor expansion at θ̃t is

f(θ̃t) + (θt − θ̃t)
⊤f ′(θ̃t) +

1

2
(θt − θ̃t)

⊤f ′′(θ̃t)(θt − θ̃t)

=f(θ̃t) + (θt − θ̃t)
⊤∆Sijt(yijt −

exp(θ̃t
⊤
∆Sijt)

1 + exp(θ̃t
⊤
∆Sijt)

)

− exp(θ̃t
⊤
∆Sijt)

2(1 + exp(θ̃t
⊤
∆Sijt))2

(θt − θ̃t)
⊤∆Sijt∆S⊤

ijt(θt − θ̃t)

=− 1

2
wijt[(θt − θ̃t)

⊤∆Sijt]
2 + (θt − θ̃t)

⊤∆Sijt(yijt − p̃ijt) + f(θ̃t)

=− 1

2
wijt

{
[(θt − θ̃t)

⊤∆Sijt]
2 − 2(θt − θ̃t)

⊤∆Sijt(yijt − p̃ijt)

wijt

}
+ f(θ̃t)

=− 1

2
wijt

{
[(θt − θ̃t)

⊤∆Sijt]
2 − 2(θt − θ̃t)

⊤∆Sijt(yijt − p̃ijt)

wijt

+ (
yijt − p̃ijt

wijt

)2

}

− (yijt − p̃ijt)
2

2wijt

+ f(θ̃t)

=− 1

2
wijt

{
(θt − θ̃t)

⊤∆Sijt −
yijt − p̃ijt

wijt

}2

− (yijt − p̃ijt)
2

2wijt

+ f(θ̃t)

=− 1

2
wijt

{
θ⊤t ∆Sijt − θ̃t

⊤
∆Sijt −

yijt − p̃ijt
wijt

}2

− (yijt − p̃ijt)
2

2wijt

+ f(θ̃t)

=− 1

2
wijt

{
θ⊤t ∆Sijt − zijt

}2
+ C(θ̃t),

where

p̃ijt =
exp(θ̃t

⊤
∆Sijt)

1 + exp(θ̃t
⊤
∆Sijt)

,

wijt = p̃ijt(1− p̃ijt) =
exp(θ̃t

⊤
∆Sijt)

(1 + exp(θ̃t
⊤
∆Sijt))2

,

zijt = θ̃t
⊤
∆Sijt +

yijt − p̃ijt
wijt

,

C(θ̃t) = −(yijt − p̃ijt)
2

2wijt

+ f(θ̃t).
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A.2 Proof of Lemma 1

To prove Lemma 1, we only need to show that the Hessian matrix for l(θ1, . . . , θT )

and l̃(θ1, . . . , θT ) are positive definite.

For any t ∈ {1, . . . , T}, we have

∂2l(θ1, . . . , θT )

∂θ2t
=
∑
i ̸=j

∆Sijt∆S⊤
ijt exp(θ

⊤
t ∆Sijt)

(1 + exp(θ⊤t ∆Sijt))2
.

∂2l̃(θ1, . . . , θT )

∂θ2t
=
∑
i ̸=j

wijt∆Sijt∆S⊤
ijt.

In addition, for t ̸= s, t, t ∈ {1, . . . , T}, we have

∂2l(θ1, . . . , θT )

∂θt∂θs
= 0,

∂2l̃(θ1, . . . , θT )

∂θt∂θs
= 0.

Thus the Hessian matrix for l(θ1, . . . , θT ) is
∂2l
∂θ21

∂2l
∂θ1∂θ2

· · · ∂2l
∂θ1∂θT

∂2l
∂θ2∂θ1

∂2l
∂θ22

· · · ∂2l
∂θ2∂θT

...
...

. . .
...

∂2l
∂θT ∂θ1

∂2l
∂θT ∂θ2

· · · ∂2l
∂θ2T



=
∑
i ̸=j



∆Sij1∆S⊤
ij1 exp(θ

⊤
1 ∆Sij1)

(1+exp(θ⊤1 ∆Sij1))2
0 · · · 0

0
∆Sij2∆S⊤

ij2 exp(θ
⊤
2 ∆Sij2)

(1+exp(θ⊤2 ∆Sij2))2
· · · 0

...
...

. . .
...

0 0 · · · ∆SijT∆S⊤
ijT exp(θ⊤T ∆SijT )

(1+exp(θ⊤T ∆SijT ))2

 ,
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and the Hessian matrix of l̃(θ1, . . . , θT ) is
∂2 l̃
∂θ21

∂2 l̃
∂θ1∂θ2

· · · ∂2 l̃
∂θ1∂θT

∂2 l̃
∂θ2∂θ1

∂2 l̃
∂θ22

· · · ∂2 l̃
∂θ2∂θT

...
...

. . .
...

∂2 l̃
∂θT ∂θ1

∂2 l̃
∂θT ∂θ2

· · · ∂2 l̃
∂θ2T



=
∑
i ̸=j


wij1∆Sij1∆S⊤

ij1 0 · · · 0

0 wij2∆Sij2∆S⊤
ij2 · · · 0

...
...

. . .
...

0 0 · · · wijT∆SijT∆S⊤
ijT

 .

It is obvious to see that the Hessian matrix for l(θ1, . . . , θT ) and l̃(θ1, . . . , θT )

are positive definite, so l(θ1, . . . , θT ) and l̃(θ1, . . . , θT ) are convex.

A.3 Proof of Theorem 2

The main idea of the proof is to use three inequalities.

We define a Lyapunov function for the algorithm (which is a nonnegative

quantity that decreases at each iteration) as below,

V k = ρ∥Uk − U∗∥22 + ρ∥ − (Qk −Q∗)∥22.

The first inequality is

V k+1 ≤ V k − ρ∥FΘk+1 −Qk+1∥22 − ρ∥ − (Qk+1 −Qk)∥22, (A.3.1)

which states that V k decreases at each iteration. In addition, the amount of

decrease depends on the norm of the prime residual FΘk+1 − Qk+1 and on the

change of Q over one iteration. Since V k ≤ V 0, thus Uk and −Qk are bounded.
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From inequality (A.3.1), we have

ρ
∞∑
k=0

(∥FΘk+1 −Qk+1∥22 + ∥ − (Qk+1 −Qk)∥22) ≤ V 0, (A.3.2)

which implies that FΘk+1 −Qk+1 → 0 and −(Qk+1 −Qk) → 0 as k → ∞. Thus

the primal residual FΘk+1 −Qk+1 and dual residual −ρF⊤(Qk+1 −Qk) converge

to zero.

The second inequality is

1

2
∥A∗Θ∗ − b∗∥22 + λ∥Q∗∥1 −

1

2
∥Ak+1Θk+1 − bk+1∥22 − λ∥Qk+1∥1 ≤ ρU∗⊤(FΘk+1 −Qk+1).

(A.3.3)

The third inequality we are going to prove is

1

2
∥Ak+1Θk+1 − bk+1∥22 + λ∥Qk+1∥1 −

1

2
∥A∗Θ∗ − b∗∥22 − λ∥Q∗∥1 (A.3.4)

≤ −(ρUk+1)⊤(FΘk+1 −Qk+1)− ρ{(Qk+1 −Qk)}⊤{(FΘk+1 −Qk+1) + (Qk+1 −Q∗)}.

Using the results of inequality (A.3.2), we see that the righthand side of (A.3.3)

also converges to 0 when k → ∞, since the prime residual FΘk+1−Qk+1 converges

to 0. The righthand side in (A.3.4) converges to 0 when k → ∞, since −(Qk+1 −

Q∗) is bounded and FΘk+1−Qk+1 and −(Qk+1−Qk) converge to 0. Thus we have

limk→∞{(1/2)∥Ak+1Θk+1 − bk+1∥22 + λ∥Qk+1∥1} = (1/2)∥A∗Θ∗ − b∗∥22 + λ∥Q∗∥1,

which is the objective convergence. If assumption 3 holds, Θk converges to a

solution of (4.3.4).

Next, we prove the three inequalities. We first prove inequality (A.3.3). Since

(Θ∗, Q∗, U∗) is a saddle point for (1/2)∥AΘ − b∥22 + λ∥Q∥1 + ρU⊤(FΘ − Q), we

121



have

(1/2)∥A∗Θ∗ − b∗∥22 + λ∥Q∗∥1 + ρU∗⊤(FΘ∗ −Q∗)

≤ (1/2)∥Ak+1Θk+1 − bk+1∥22 + λ∥Qk+1∥1 + ρU∗⊤(FΘk+1 −Qk+1).

As FΘ∗−Q∗ = 0, the lefthand side of the above inequality equals to (1/2)∥A∗Θ∗−

b∗∥22+λ∥Q∗∥1. Subtracting both parts with (1/2)∥Ak+1Θk+1−bk+1∥22+λ∥Qk+1∥1,

then we have proved inequality (A.3.3).

Second, we prove inequality (A.3.4). Θk+1 minimizes the augmented La-

grangian (1/2)∥AΘ−b∥22+λ∥Qk∥1+ρUk⊤(FΘ−Qk)+(ρ/2)∥FΘ−Qk∥22. Because

(1/2)∥AΘ− b∥22 is closed, proper, and convex, it is subdifferentiable, and so is the

augmented Lagrangian (1/2)∥AΘ−b∥22+λ∥Qk∥1+ρUk⊤(FΘ−Qk)+(ρ/2)∥FΘ−

Qk∥22. The (necessary and sufficient) optimality condition is

0 ∈ ∂{(1/2)∥Ak+1Θk+1 − bk+1∥22}+ ρF⊤Uk + ρF⊤(FΘk+1 −Qk). (A.3.5)

Since Uk+1 = Uk + FΘk+1 −Qk+1, we plug in Uk = Uk+1 − (FΘk+1 −Qk+1) and

rearrange (A.3.5):

0 ∈ ∂{(1/2)∥Ak+1Θk+1 − bk+1∥22}+ F⊤{ρUk+1 + ρ(Qk+1 −Qk)}. (A.3.6)

(A.3.6) shows that Θk+1 minimizes

{(1/2)∥AΘ− b∥22}+ {ρUk+1 + ρ(Qk+1 −Qk)}⊤FΘ.

Thus we have

(1/2)∥Ak+1Θk+1 − bk+1∥22 + {ρUk+1 + ρ(Qk+1 −Qk)}⊤FΘk+1

≤ (1/2)∥A∗Θ∗ − b∗∥22 + {ρUk+1 + ρ(Qk+1 −Qk)}⊤FΘ∗.
(A.3.7)

A similar argument implies that Qk+1 minimizes λ∥Q∥1 − ρ(Uk+1)⊤Q, and we
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have

λ∥Qk+1∥1 − ρ(Uk+1)⊤Qk+1 ≤ λ∥Q∗∥1 − ρ(Uk+1)⊤Q∗. (A.3.8)

Adding inequalities (A.3.7) and (A.3.8), we obtain

1

2
∥Ak+1Θk+1 − bk+1∥22 −

1

2
∥A∗Θ∗ − b∗∥22 + λ∥Qk+1∥1 − λ∥Q∗∥1

≤ {ρUk+1 + ρ(Qk+1 −Qk)}⊤FΘ∗ − {ρUk+1 + ρ(Qk+1 −Qk)}⊤FΘk+1

− (ρUk+1)⊤Q∗ + (ρUk+1)⊤Qk+1.

Then we plug in FΘ∗ −Q∗ = 0 to the righthand side of the above inequality, and

we obtain the righthand side of the (A.3.4)

{ρUk+1 + ρ(Qk+1 −Qk)}⊤F (Θ∗ −Θk+1) + (ρUk+1)⊤(Qk+1 −Q∗)

={ρUk+1}⊤F (Θ∗ −Θk+1) + {ρ(Qk+1 −Qk)}⊤F (Θ∗ −Θk+1) + (ρUk+1)⊤(Qk+1 −Q∗)

={ρUk+1}⊤(Q∗ − FΘk+1) + (ρUk+1)⊤(Qk+1 −Q∗) + {ρ(Qk+1 −Qk)}⊤(Q∗ − FΘk+1)

=(ρUk+1)⊤(Qk+1 − FΘk+1) + ρ{(Qk+1 −Qk)}⊤{Q∗ − FΘk+1)}

=− (ρUk+1)⊤(FΘk+1 −Qk+1)− ρ{(Qk+1 −Qk)}⊤{(FΘk+1 −Qk+1) + (Qk+1 −Q∗).}

Thus (A.3.4) is proved.

The third inequality to prove is (A.3.1). To achieve this, we first add (A.3.3)

and (A.3.4), and multiply the sum by 2,

2(ρUk+1 − ρU∗)⊤(FΘk+1 −Qk+1) + 2ρ(Qk+1 −Qk)⊤(FΘk+1 −Qk+1)

+ 2ρ(Qk+1 −Qk)⊤(Qk+1 −Q∗) ≤ 0.
(A.3.9)

Then inequality (A.3.1) can be obtained from (A.3.9) after some manipulation

and rewriting.

Substituting Uk+1 = Uk+(FΘk+1−Qk+1) in the first term of inequality (A.3.9)
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gives

2ρ(Uk − U∗)⊤(FΘk+1 −Qk+1) + ρ∥FΘk+1 −Qk+1∥22 + ρ∥FΘk+1 −Qk+1∥22.

(A.3.10)

Replacing FΘk+1 −Qk+1 = (Uk+1 − Uk) in the first two terms of (A.3.10) gives

2ρ(Uk − U∗)⊤(Uk+1 − Uk) + ρ∥Uk+1 − Uk∥22 + ρ∥FΘk+1 −Qk+1∥22. (A.3.11)

Since Uk+1 − Uk = (Uk+1 − U∗)− (Uk − U∗), (A.3.11) can be written as

ρ
(
∥Uk+1 − U∗∥22 − ∥Uk − U∗∥22

)
+ ρ∥FΘk+1 −Qk+1∥22. (A.3.12)

Substituting (A.3.12) in the first term of (A.3.9) we obtain:

ρ
(
∥Uk+1 − U∗∥22 − ∥Uk − U∗∥22

)
+ ρ∥FΘk+1 −Qk+1∥22

+ 2ρ(Qk+1 −Qk)⊤(FΘk+1 −Qk+1) + 2ρ(Qk+1 −Qk)⊤(Qk+1 −Q∗) ≤ 0.

(A.3.13)

Replacing Qk+1 −Q∗ = (Qk+1 −Qk) + (Qk −Q∗) in the last term of (A.3.13), we

obtain

ρ
(
∥Uk+1 − U∗∥22 − ∥Uk − U∗∥22

)
+ ρ∥FΘk+1 −Qk+1 + (Qk+1 −Qk)∥22 + ρ∥Qk+1 −Qk∥22 + 2ρ(Qk+1 −Qk)⊤(Qk −Q∗) ≤ 0.

(A.3.14)

Substituting Qk+1 − Qk = (Qk+1 − Q∗) − (Qk − Q∗) in the last two terms of

(A.3.14), we obtain

ρ
(
∥Uk+1 − U∗∥22 − ∥Uk − U∗∥22

)
+ ρ∥FΘk+1 −Qk+1 + (Qk+1 −Qk)∥22

+ ρ
(
∥Qk+1 −Q∗∥22 − ∥Qk −Q∗∥22

)
≤ 0.

(A.3.15)

124



Then we can rewrite (A.3.15) as

V k − V k+1 ≥ ρ∥FΘk+1 −Qk+1 + (Qk+1 −Qk)∥22. (A.3.16)

(A.3.16) is equivalent to

V k+1 ≤ V k − ρ∥FΘk+1 −Qk+1∥22 − ρ∥(Qk+1 −Qk)∥22 − 2ρ(FΘk+1 −Qk+1)(Qk+1 −Qk).

(A.3.17)

Next, we show that 2ρ(FΘk+1 −Qk+1)(Qk+1 −Qk) is nonnegative. Note that

Qk+1 minimizes λ∥Q∥1 − (ρUk+1)⊤Q and Qk minimizes λ∥Q∥1 − (ρUk)⊤Q. Thus

we have

λ∥Qk+1∥1 − (ρUk+1)⊤Qk+1 ≤ λ∥Qk∥1 − (ρUk+1)⊤Qk, (A.3.18)

and

λ∥Qk∥1 − (ρUk)⊤Qk ≤ λ∥Qk+1∥1 − (ρUk)⊤Qk+1, (A.3.19)

From (A.3.18) and (A.3.19), we have

(ρUk+1)⊤Qk − (ρUk+1)⊤Qk+1 ≤ λ∥Qk∥1 − λ∥Qk+1∥1 ≤ (ρUk)⊤Qk − (ρUk)⊤Qk+1.

(A.3.20)

From (A.3.20) we will have

ρ(Uk+1 − Uk)⊤(Qk+1 −Qk) ≥ 0.

Since Uk+1−Uk = FΘk+1−Qk+1, thus we have proved that 2ρ(FΘk+1−Qk+1)(Qk+1−

Qk) is nonnegative.
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Thus, (A.3.17) leads to

V k+1 ≤ V k − ρ∥FΘk+1 −Qk+1∥22 − ρ∥ − (Qk+1 −Qk)∥22. (A.3.21)

We have proved inequality (A.3.1).
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