
Gu, Xiaowei (2023) Self-Adaptive Fuzzy Learning Ensemble Systems with Dimensionality
Compression from Data Streams. Information Sciences, 634 . pp. 382-399.
ISSN 0020-0255.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/100539/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1016/j.ins.2023.03.123

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/100539/
https://doi.org/10.1016/j.ins.2023.03.123
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Information Sciences 634 (2023) 382–399

Available online 23 March 2023
0020-0255/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Self-adaptive fuzzy learning ensemble systems with
dimensionality compression from data streams

Xiaowei Gu
School of Computing, University of Kent, Canterbury CT2 7NZ, UK

A R T I C L E I N F O

Keywords:
Data stream
Dimensionality compression
Ensemble learning
Evolving fuzzy system
Prediction

A B S T R A C T

Ensemble learning is a widely used methodology to build powerful predictors from multiple in-
dividual weaker ones. However, the vast majority of ensemble learning models are designed for
offline application scenarios, the use of evolving fuzzy systems in ensemble learning for online
learning from data streams has not been sufficiently explored, yet. In this paper, a novel self-
adaptive fuzzy learning ensemble system is introduced for data stream prediction. The pro-
posed ensemble system employs the very sparse random projection technique to compress the
consequent parts of the learned fuzzy rules by individual base models to a more compressed form,
thereby reducing redundant information and improving computational efficiency. To improve the
overall prediction performance, a dynamical base model pruning scheme is introduced to the
proposed ensemble system together with a novel inferencing scheme, such that less accurate base
models will be removed from the ensemble structure at each learning cycle automatically and
only these more accurate ones will be involved in joint decision-making. Numerical examples
based on a wide range of benchmark datasets demonstrate the stronger prediction performance of
the proposed ensemble system over the state-of-the-art alternatives.

1. Introduction

Ensemble learning is a powerful machine learning methodology to construct a stronger predictor by combining multiple individual
weaker predictors [1]. The main motivation of using ensemble models comes from the no-free-lunch theorem [2]. According to the
theorem, there is no single predictor that is appropriate for all tasks. However, by weighting and integrating multiple individual
predictors into one, one can obtain a new predictor that outperforms each of these individual ones [3]. Ensemble learning has been a
widely researched topic of great importance in the recent decades and has been applied successfully in various real-world applications
to tackle complex challenging classification and regression problems.

Currently, bagging [4] and boosting [5] are the two mainstream approaches for creating ensemble models. As a parallel ensemble
mechanism, bagging samples the training dataset with replacement into multiple subsets and uses each of these subsets to train a base
model (predictor). These trained predictors are then combined via majority voting. Boosting, on the other hand, is a sequential
ensemble mechanism. It trains a series of individual base models consecutively with various distributed training data such that each
predictor complements its predecessors. Then, these individual predictors are combined by weighted majority voting with more
weights assigned to the predictors that perform better on the training set. Compared with bagging, boosting gives more focus to harder
samples, leading to better prediction performance. However, bagging is more robust to noisy training samples and is less likely to be

E-mail address: x.gu@kent.ac.uk.

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

https://doi.org/10.1016/j.ins.2023.03.123
Received 5 September 2022; Received in revised form 9 March 2023; Accepted 19 March 2023

mailto:x.gu@kent.ac.uk
www.sciencedirect.com/science/journal/00200255
https://www.elsevier.com/locate/ins
https://doi.org/10.1016/j.ins.2023.03.123
https://doi.org/10.1016/j.ins.2023.03.123
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2023.03.123&domain=pdf
https://doi.org/10.1016/j.ins.2023.03.123
http://creativecommons.org/licenses/by-nc-nd/4.0/

Information Sciences 634 (2023) 382–399

383

overfitting [6].
It is well known that to construct a good ensemble predictor, the base models need to be both accurate and diverse. The vast

majority of existing works on ensemble learning employ mainstream machine learning models [3], such as support vector machine
(SVM) [7], artificial neural network (ANN), decision tree (DT) [8] and k-nearest neighbour (KNN) [9], etc., as the base models, and
have reported great performance. However, these mainstream models are mostly designed to learn from static data, some of which are
also widely criticized as being opaque (i.e., SVM and ANN) [10], and ensemble models constructed by mainstream models are often
limited to offline application scenarios.

Evolving fuzzy systems (EFSs) [11–13] are a special class of fuzzy systems designed for data stream processing. They are capable of
self-developing and self-evolving the system structure and parameters from data streams online, and are the prominent methodology
used for real-time non-stationary problem approximation [14]. Classical EFSs include, but are not limited to, dynamic evolving neural-
fuzzy inference system (DENFIS) [11], evolving Takagi-Sugeno (eTS) fuzzy model [12], evolving fuzzy rule-based (eClass0 and
eClass1) classifiers [13], sequential adaptive fuzzy inference system (SAFIS) [15], flexible fuzzy inference system (FLEXFIS) [16],
parsimonious learning machine (PALM) [17], self-evolving fuzzy system (SEFS) [18], recursive maximum correntropy-based evolving
fuzzy system (RMCEFS) [19], evolving fuzzy system with self-learning/adaptive thresholds (EFS-SLAT) [20], etc.

In recent years, there have been a few works proposed to construct ensemble models using fuzzy systems. For instance, an
AdaBoost-based ensemble system consisted of relational fuzzy systems is proposed in [21], and this work is later extended in [22] by
using logical-type neuro-fuzzy classifiers as base models. A fuzzy rule-based ensemble system utilizing attribute regrouping is proposed
in [23], where each base model is trained on a unique lower dimensional projection of data. The idea of utilizing EFSs as base
components of ensemble systems for data stream mining is firstly proposed in [24], and an eClass0-based ensemble (eEnsemble)
classifier is implemented to demonstrate the concept. Parsimonious ensemble (pENsemble) proposed in [25] is an EFS-based ensemble
classifier with an evolving ensemble structure that can automatically add or prune base models to self-adapt to the changes in un-
derlying patterns of data streams. pENsemble is also equipped with a dynamic online feature selection scheme that can detect and
remove redundant input attributes online. A deep evolving fuzzy neural network (DEVFNN) is introduced in [26] under the stacked
generalization principle via the feature augmentation concept. DEVFNN is composed of multiple generalized Takagi-Sugeno-Kang
fuzzy systems stacked one by one in layers, where the output of the previous layer is used for augmenting the input of the next
layer. As such, the base models in DEVFNN are interconnected through augmentation of feature space. Inspired by the multi-layered
structure of deep neural networks (DNNs), a multi-layered ensemble evolving fuzzy inference system (MEEFIS) with first-order EFSs as
building blocks is introduced in [27]. Benefited from its deeper ensemble structure, MEEFIS can learn multi-layered distributed
representations from data and demonstrates stronger capability to handle large-scale, non-stationary, complex problems. A fuzzily
weighted adaptive boosting (FWADABoost) method designed for creating stronger zero-order ensemble EFS is introduced in [28]. A
unique feature of FWADABoost is the use of confidence scores produced by EFSs in both weight updating and ensemble output
generation to create more precise classification boundaries. In [29], an online bagging-based ensemble fuzzy classifier with an
autonomous pruning scheme, which removes base models with higher prediction errors, is proposed. An online sequential ensemble of
fuzzy predictors is proposed in [30] for chunk-wise data stream learning. In this framework, data streams are received in the form of
chunks, and a new fuzzy predictor is initialized and added to the ensemble when a new data chunk is available. Other fuzzy system-
based ensemble models worth mentioning include selected ensemble of fuzzy inference systems (SENFIS) [31], self-organizing fuzzy
inference ensemble (SOFEnsemble) system [32], parsimonious ensemble (pENsemble+) [33], etc. Despite of the great potential
exhibited by existing works, the use of EFSs in ensemble learning, especially in online application scenarios, has not been sufficiently
explored, yet [28,29].

In this paper, a novel self-adaptive fuzzy learning ensemble (SAFLE) system is introduced for streaming data prediction. The SAFLE
system employs a group of self-adaptive fuzzy learning (SAFL) as its base models. SAFL is a recently introduced EFS with a unique
activation control scheme that dynamically selects a small number of more activated fuzzy rules by the current input at each learning
cycle for approximation reasoning and parameter updating [14]. Thanks to the removal of irrelevant information, the computational
complexity of SAFL is greatly reduced and its prediction accuracy is improved at the same time.

To increase the diversity between the base models of SAFLE whilst maintaining their prediction performances, the very sparse
random projection (VSRP) technique [34] is employed to compress the dimensionality of the consequent parameters of SAFL. Hence,
the new variant is named as SAFL-VSRP. Compared with the original SAFL, SAFL-VSRP associates a unique VSRP matrix to each
individual rule within its rule base, such that the consequent parts of the fuzzy rules are compressed to a tighter form with redundant
information between existing rules being removed from the rule base. In doing so, the computational efficiency of individual SAFL-
VSRP systems is greatly increased, especially when the dimensionality of data is high.

Due to the compressed dimensionality by VSRP, some of the base models may inevitably perform worse due to the loss of infor-
mation despite of the increase of diversity between them. To remove the error-prone base models and improve the overall prediction
accuracy of joint decision-making, a dynamic base model pruning scheme is introduced to the proposed SAFLE system. At each
learning cycle, the pruning scheme will identify the base models that tend to make more prediction errors and remove them from the
ensemble structure. To maintain the original ensemble size, new SAFL-VSRP systems will be initialized to fill in the empty spaces left by
the pruned base models. In addition to the pruning scheme, SAFLE is also equipped with a novel inferencing scheme that selects only
these base models with less prediction errors to perform joint decision-making, thereby improving its overall prediction performance.

Different from existing fuzzy ensemble approaches in the literature, the proposed SAFLE system has a unique ensemble architecture
that each individual SAFL-VSRP system is associated with a pair of training and validation data pools to dynamically maintain two
small non-overlapping subsets of historical data in the system memory. At each learning cycle, data stored in the validation pools will
be used to evaluate the performances of the individual base models. The out-of-sample prediction accuracy on validation data serves as

X. Gu

Information Sciences 634 (2023) 382–399

384

the main criterion for SAFLE to identify these weaker base models that need to be pruned in order to achieve greater overall prediction
performance. Once a particular base model is pruned due to its poor prediction performance, the data stored in the associated training
data pool will be combined with the most recent training data received at the current learning cycle and utilized to initialize a new
SAFL-VSRP system as a replacement. The use of both new and historical data enables the newly created base models to capture the
latest data patterns whilst reflecting historical changes, with the potential of greatly improving the prediction performance of SAFLE,
especially in the case of regular and cyclic drifts [30].

To summarize, key features of the proposed SAFLE system include:
1. An ensemble architecture to store small amounts of historical data for measuring the out-of-sample prediction performance of

individual base models and creating new base models;
2. The utilization of VSRP matrices in the consequent parts of fuzzy rules to improve the diversity and computational efficiency of

individual base models;
3. A dynamic pruning scheme to identify error-prone base models and replace them with new base models initialized on a com-

bination of new and historical data for greater prediction performance.
4. A fuzzy inferencing scheme to utilize only elite base models in joint decision-making with the respective weights computed based

on their out-of-sample prediction performances.
The remainder of this paper is organized as follows. Section 2 gives the problem definition. Technical details of the proposed SAFL-

VSRP are described in Section 3. The general architecture, online learning policy and joint decision-making policy of the proposed
SAFLE system are presented in Section 4. Numerical examples are given in Section 5 as a proof of concept, and this paper is concluded
by Section 6.

2. Problem definition

The proposed SAFLE system is designed to autonomously learn from data streams on a chunk-by-chunk basis for prediction in
online application scenarios.

Let {x} = {x1, x2, x3,⋯, xk,⋯} be a particular data stream in a M-dimensional data space with {y} =
{

y1, y2, y3,⋯, yk,⋯
}

being the

corresponding target/real outputs, where xk =
[
xk,1, xk,2,⋯, xk,M

]T; yk =
[
yk,1, yk,2,⋯, yk,K

]T
is the corresponding K-dimensional target

output vector of xk, and; the subscript k denotes the time instance at which xk is observed. It is also assumed that samples of the data
stream {x} continuously arrive in chunks denoted as {x}1,{x}2,⋯,{x}i,⋯, where {x}i =

{
xi,1, xi,2,⋯, xi,L

}
is the i th data chunk with the

cardinality, L. Note that cardinalities of different data chunks may vary in real applications.
Due to the inherent nonstationary nature of data streams, the underlying data patterns can change at any occasion. In other words,

concept drifts may happen frequently and the data distributions may vary from time to time, namely, Pi(x) ∕= Pj(x) and/or Pi(y|x) ∕=
Pj(y|x) ∀i ∕= j [26]. The existence of potential concept drifts poses a significant challenge to existing machine learning models for data
stream processing because the models are required to be able to precisely approximate the problem in real time whilst having the
capability to react to the rapid changes of data patterns.

To effectively handle concept drifts, the proposed SAFLE system continuously monitors the prediction performance of each indi-
vidual base model in its ensemble framework at each learning cycle and replaces these error-prone base models with new ones to
quickly self-adapt to new data patterns. There are two unique aspects that distinguish the proposed SAFLE from existing works in
similar areas.

1. The prediction performance of each individual base model is evaluated at each learning cycle based on validation samples
dynamically maintained in the associated validation data pool, which are independent from data samples used for model learning.
Thus, the obtained out-of-sample prediction error serves as an objective measure of the predictive capability and generalization ability
of the base model.

2. Once a weaker base model is pruned due to the poor prediction performance, a new base model is initialized at the next learning
cycle by utilizing both the current training data and a small selected set of historical training data stored in the associated training data
pool. In this way, the new base model not only captures the latest data patterns, but also gains the knowledge of historical data
patterns, resulting in greater prediction performance.

In addition, to increase the diversity between individual base models and lower their computational costs, SAFLE introduces a
unique randomly generated VSRP matrix to each individual fuzzy rule learned by its ensemble components from data. These VSRP
matrices compress the input data into a more compact form and effectively reduce the computational complexity of consequent
parameter updating by downsizing the covariance matrices, thereby improving the overall computational efficiency of the ensemble
model.

In the next two sections, technical details of the proposed SAFL-VSRP and SAFLE models are presented.

3. Proposed SAFL-VSRP

3.1. Architecture

The architecture of SAFL-VSRP is presented in Fig. 1 [14], where one can see that a multiple-input multiple-output (MIMO) SAFL-
VSRP system is composed of N IF-THEN fuzzy rules in the form of Eq. (1) (n = 1,2,⋯,N; N is the number of rules in the fuzzy rule base)

X. Gu

Information Sciences 634 (2023) 382–399

385

[34]. Such IF-THEN rules are a variant of the prototype-based IF-THEN rules used in [14] with the additional VSRP matrices in the
consequent parts to project the input vectors to a lower dimensional latent space.

Rn : IF (x ∼ pn) THEN

(

yn = An

[

1,
1̅̅̅
̅̅̅

Mc
√ xT Vn

]T
)

(1)

where “~” denotes similarity; x = [x1, x2,⋯, xM]
T is the M × 1 dimensional input vector; yn =

[
yn,1, yn,2,⋯, yn,K

]T
is the K × 1

dimensional output vector of Rn; M is the dimensionality of the input vector; K is the dimensionality of the output vector; Mc = ⌊εM⌋ is

the dimensionality of the input vector after compression; ε is the compression ratio, 0 < ε ≤ 1; pn =
[
pn,1, pn,2,⋯, pn,M

]T
is the pro-

totype of Rn; An =
[
an,1, an,2,⋯, an,K

]T is the K × (Mc +1) dimensional consequent parameter matrix of Rn; an,k =
[
an,k,0, an,k,1,⋯, an,k,Mc

]T; yn,k = aT
n,k
[
1, xTVn

]T ; Vn =
[
vn,l,j

]l=1:M
j=1:Mc

is the M × Mc dimensional VSRP matrix associated with Rn; and vn,l,j is
the element at the l th row and j th column of Vn (l = 1, 2, ⋯,M; j = 1, 2, ⋯,Mc), which is randomly generated by the following
distribution as specified by [34]:

vn,l,j =
̅̅̅
α

√
•

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1, with probability
1

2α

0, with probability 1 −
1
α

− 1, with probability
1

2α

(2)

Here α is set as
̅̅̅̅̅
M

√
, following [34]. It has been shown in previous studies that, compared with using a typical random matrix

consisted of entries with a standard value range of [0,1] or [− 1,1], using a VSRP matrix for dimensionality compression can achieve a
significant α-fold speedup with marginal loss in accuracy [34].

Note that ε is an externally controlled parameter controlling the dimensionality of the input vector after compression. The smaller ε,
the lower dimensional the input vector becomes. A small ε can greatly improve the computational efficiency of the online learning
process of SAFL-VSRP, but would inevitably decrease its prediction accuracy due to the loss of information.

Compared with conventional first-order EFSs, the computational efficiency of SAFL-VSRP is greatly improved thanks to 1) the
unique dynamic rule selection scheme, which isolates the less activated fuzzy rules from fuzzy inferencing and consequent parameter
updating at each learning cycle and 2) the dimensionality compression scheme, which reduces the computational complexity of
covariance matrix updating greatly. This rule selection scheme also helps SAFL-VSRP to achieve greater prediction accuracy, whilst
guaranteeing the stability of the system [14]. The online learning and decision-making policies of SAFL-VSRP are detailed as follows.

3.2. Online learning policy

The online learning process of SAFL-VSRP is composed of the following five stages.
Stage 1. System initialization. Given a new input sample, xi, the first fuzzy rule is initialized if xi is the very first sample, namely,

i = 1. Firstly, the global parameters of the system are initialized using Eq. (3).

υ←xi; χ←‖xi‖
2 (3)

where υ and χ are the respective arithmetic mean and average squared Euclidean norm of all data samples.
The first cluster, CN is built with xi being the prototype (N←1):

CN←{xi}; pN←xi; SN←1; cN←xi;XN←‖xi‖
2
; IN←i; ΛN←1 (4)

where SN is support of CN (the number of data samples associated with CN); cN is the arithmetic mean of these data samples; XN is the
corresponding average squared Euclidean norm; IN denotes the time instance at which CN is initialized and ΛN is the accumulated
firing strength starting from IN to the current time instance.

The first fuzzy rule, RN is then initialized based on CN with pN being the antecedent part in the form of Eq. (1). The consequent part

Fig. 1. Architecture of SAFL-VSRP [14].

X. Gu

Information Sciences 634 (2023) 382–399

386

of RN is set by Eq. (5) as follows.

AN←0K×(Mc+1); θN←ΩoI(Mc+1)×(Mc+1) (5)

where 0K×(Mc+1) is the K × (Mc +1) dimensional zero matrix; θN is the covariance matrix; I(Mc+1)×(Mc+1) is a (Mc +1) × (Mc +1)
dimensional identity matrix, and; Ωo is a constant for covariance matrix initialization used by standard RLS algorithms [11,12]. In this
study, Ωo = 10000. The VSPR matrix associated with RN, denoted as VN is then created by Eq. (2).

Note that each time a new fuzzy rule is created, a new VSRP matrix will be randomly generated and assigned to the new fuzzy rule
for dimensionality compression. Thus, each fuzzy rule within the rule base of SAFL-VSRP will be associated with a unique VSRP matrix.
However, once a VSRP matrix is created, it will not be updated anymore during its lifespan until the corresponding fuzzy rule is
removed by Condition (2). The main reason for fixing these VSRP matrices is because updating these randomly generated VSRP
matrices during online learning process will significantly decrease the computational efficiency of SAFL-VSRP due to the higher
computational complexity of data projection and the extra computational costs for updating these matrices. In addition, SAFLE is
equipped with a dynamic pruning scheme to remove these poorly performed base models (which will be detailed in Section 4.2). The
proposed pruning scheme naturally favours these base models with high-quality VSRP matrices for more precise ensemble decision
making.

If xi is not the first data sample, namely, i > 1, the learning process enters Stage 2 directly.
Stage 2. Activation control. Given a new data sample, xi (i←i + 1), the global parameters, υ and χ are updated firstly using Eq. (6).

υ←υ +
xi − υ

i
; χ←χ +

‖xi‖
2
− χ

i
(6)

The firing strength of each individual fuzzy rule, Rn (n = 1,2,⋯,N) is calculated as follows:

μn(xi) = e
−
‖xi − pn‖2

σ2
n (7)

where σn =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(χ− ‖υ‖2

)+(Xn − ‖cn‖
2
)

2

√

is the radius of area of influence around pn.
Rule activations of the N fuzzy rules are ranked in descending order as μ1(xi) ≥ μ2(xi) ≥ ⋯ ≥ μN(xi), and the most activated N* rules

by xi are identified using Eq. (8).

Ni = argmin
n=1,2,⋯,N

(
∑n

j=1
μj(xi) > ρo •

∑N

j=1
μj(xi)

)

(8)

where 0 ≤ ρo ≤ 1; there is always Ni ≤ ρoN. It can be observed from Eq. (8) that if ρo is equal to 1, all the fuzzy rules will be selected,
whilst only the most activated rule will be selected if ρo is equal to 0. In this study, ρo = 0.5 is recommended, unless specific domain
knowledge is available for determining its value [14].

It is generally a common practice for the vast majority of first-order EFSs [11–13,15] that all the fuzzy rules within the rule base will
be updated in response to the current input sample and involved in fuzzy inferencing. However, updating the consequent parts of these
less activated rules only introduces tiny changes to the consequent parameters with no improvement in the overall system performance
because of the marginal firing strength values, but may significantly increase the computational complexity especially if the dimen-
sionality of data is high. As the final output of an EFS is typically computed as the weighted sum of outputs of these individual rules
given a particular input sample, involving these fuzzy rules with marginal firing strengths in producing the system output also does not
improve the overall prediction performance. On the other hand, by selecting only the more activated rules in response to the current
input for consequent parameter updating and fuzzy inferencing, the computational complexity of consequent parameter updating can
be effectively reduced and overfitting can be avoided [14].

It is also worth noting that, rather than being a hardcoded crisp threshold, ρo specifies the ratio between the firing strengths of the
selected fuzzy rules and that of the entire rule base. Based on this ratio, Eq. (8) identifies these relatively more activated rules than
other candidates from the rule base in response to the input sample, which is more robust, flexible and guaranteed to be meaningful
[14].

Then, the normalized firing strengths of the fuzzy rules are calculated by Eq. (9) (n = 1,2,⋯,N).

λ*
n(xi) =

⎧
⎪⎨

⎪⎩

μn(xi)
∑Ni

j=1
μj(xi)

, μn(xi) ≥ μNi
(xi)

0, else

(9)

For these less activated rules, their normalized rule activations are set to be 0. These rules will not contribute to fuzzy inferencing,
nor be updated at the current learning cycle.

Stage 3. System structure updating. For the current data sample, xi, Condition (1) is examined to select whether it represents a
novel data pattern and has the potential to initialize a fuzzy rule:

Cond. 1 : if (μ1(xi) < μ0) then (xi initializes a fuzzy rule) (10)

X. Gu

Information Sciences 634 (2023) 382–399

387

where μ0 = e− 1, corresponding to the so-called ‘‘one sigma” rule [35].
If Condition (1) is satisfied, a new cluster, CN (N←N + 1) is initialized by xi using Eq. (4), and a new fuzzy rule RN is initialized with

xi being its prototype in the form of Eq. (1). The consequent part of the newly added fuzzy rule is set by Eq. (11) with the corresponding
VSRP matrix, VN created by Eq. (2).

AN←
1

N − 1
∑N− 1

n=1
An; θN←ΩoI(Mc+1)×(Mc+1) (11)

As shown in Eq. (11), the consequent parameter matrix, AN of the new rule RN is initialized as the average of the consequent
parameter matrices of all other fuzzy rules within the rule base. This is a standard strategy adopted by many EFSs [14,27] in the
literature. However, one may also consider alternative strategies, for example, initializing the consequent parameters of the new rule
as a matrix of all zeros [16,36].

Otherwise, xi is used for updating the parameters of the cluster that produces the greatest firing strength, μ1(xi) with regard to xi,
denoted as Cn* :

Cn* ←Cn* ∪ {xi}; Sn* ←Sn* + 1; cn* ←cn* +
xi − cn*

Sn*
;Xn* ←Xn* +

‖xi‖
2
− Xn*

Sn*
(12)

where cn* , Xn* and Sn* are the arithmetic mean, average squared Euclidean norm and support of Cn* , respectively. After that, the firing
strength μn* (xi) is updated using Eq. (7) to reflect the latest changes. The normalized firing strengths μn* (xi) are also updated
accordingly using Eq. (9).

Stage 4. Fuzzy rule quality monitoring. SAFL-VSRP removes these stale fuzzy rules from the rule base on the accumulated firing
strengths to improve the prediction accuracy. To do so, the accumulated firing strength of each fuzzy rule is firstly updated by Eq. (13)
(n = 1,2,⋯,N):

Λn←Λn +
μn(xi) − Λn

In − i
(13)

Then, Condition (2) is used to identify these stale fuzzy rules:

Cond. 2 : if (Λn < Λ0) then (Rn and Cn are removed) (14)

where Λ0 is a constant determining the tolerance of SAFL-VSRP towards stale fuzzy rules, and Λ0 = 0.05 [14]. Once Condition (2) is
satisfied for Rn, it is removed from the rule base together with the corresponding cluster, Cn.

Stage 5. Local consequent parameter updating. The consequent parameters of these activated fuzzy rules, (namely, λ*
n(xi) ∕= 0)

at the current learning cycle are updated using the fuzzily weighted recursive least square (FWRLS) algorithm [12] as follows (n = 1,2,
⋯,N).

θn←θn −
λ*

n(xi)θnxi,nxT
i,nθn

1 + λ*
n(xi)xT

i,nθnxi,n
(15)

An←An − λ*
n(xi)

(
Anxi,n − yi

)
xT

i,nθn (16)

Fig. 2. Diagram of SAFL-VSRP learning process.

X. Gu

Information Sciences 634 (2023) 382–399

388

where θn and An are the covariance matrix and consequent parameters of the n th rule, Rn if it is activated; xi,n =
[
1, 1̅̅ ̅̅̅

Mc
√ xT

i Vn

]T
. For

these fuzzy rules that are not activated, namely, λ*
n(xi) = 0, their consequent parameters are kept the same for the next learning cycle.

The main reason for using FWRLS in SAFL-VSRP is because FWRLS [12] is the most popular approach for consequent parameter
learning used by a wide variety of first-order EFSs, including SAFL [14]. However, one may also consider alternative approaches
instead, such as weighted recursive least square [11], extended Kalman filter [15], adaptive maximum correntropy extended Kalman
filter [37], etc.

After that, the SAFL-VSRP learning process goes back to Stage 2, and a new learning cycle begins once the next data sample is
available. The diagram of the learning process of SAFL-VSRP is given by Fig. 2 for better illustration.

3.3. Decision-making policy

Given a new data sample x, the system output of SAFL-VSRP is produced as the weighted sum of outputs of all the activated fuzzy
rules by x [14]:

ŷ = f (x) =
∑N

n=1
λ*

n(x)An

[

1,
1̅̅
̅̅̅̅

Mc
√ xT Vn

]T

(17)

where λ*
n(x) is the normalized firing strength of Rn calculated by Eq. (9). Not that if λ*

n(x) = 0, Rn will not contribute to the final system
output of SAFL-VSRP in response to the current input, x.

3.4. Computational complexity analysis

The computational complexity of the proposed SAFL-VSRP is analysed in this section. Since SAFL-VSRP learns from data streams
sample-by-sample, the analysis is conducted at the i th time instance at which xi is observed.

Stage 1 considers system initialization only and is not performed for any i > 1. Hence, the computational complexity of Stage 1 is
negligible within the overall learning process. Stage 2 is to produce the rule activations and select out the candidate rules from the rule
base for system structure updating (Stage 3). The complexity for updating the global parameters, υ and χ is O(M), for calculating the
firing strengths of the fuzzy rules is O(MN), for identifying these activated rules is O(N) and for calculating the normalized firing
strengths is O(Ni). Stage 3 is for system structure updating and the complexity for adding or updating a rule is O(M). Stage 4 identifies
and removes stale rules, and the complexity of that is O(N). Stage 5 concerns updating the consequent parameters of the candidate
fuzzy rules. The complexity for dimensionality compression is O

(
Mc

̅̅̅̅̅
M

√
Ni
)

and for updating consequent parameters is

O
(
(Mc + 1)2Ni

)
. Hence, the computational complexity of a particular learning cycle of SAFL is O

((
(Mc + 1)2

+ Mc
̅̅̅̅̅
M

√)
Ni

)
. The

overall computational complexity of the entire learning process given a total of i input samples is O
((

(Mc + 1)2
+ Mc

̅̅̅̅̅
M

√)∑i
j=1Ni

)
.

Compared with the overall complexity of SAFL, which is O
(
(M + 1)2∑i

j=1Ni

)
[14], it can be concluded that the computational

complexity of the learning process of SAFL-VSRP is much lower than the original SAFL given a small compression ratio.

4. Proposed SAFLE

4.1. Architecture

The architecture of SAFLE is depicted in Fig. 3. According to Fig. 3, SAFLE is composed of i) a data splitting module, ii) G base

Fig. 3. Architecture of SAFLE system.

X. Gu

Information Sciences 634 (2023) 382–399

389

models (namely, SAFL-VSRP systems), iii) an error-prone model pruning module, and iv) an ensemble decision-making module. There
are also a pair of training and validation data pools associated with each individual base model to store a small selected group of
historical training and validation data.

4.2. Online chunk-wise learning policy

SAFLE learns from data streams on a chunk-by-chunk basis. The learning procedure of SAFLE consists of the following three stages.
Stage 1. Random data splitting. Once a new data chunk {x}i with the chunk size L is available, for each base model (assuming the

g th one, g = 1,2,⋯,G), the data splitting module will firstly divide the current chunk {x}i into a pair of non-overlapping training and
validation sets in a purely random manner at a prefixed ratio, γ (0 < γ < 1). The obtained training and validation sets are denoted as
{x}t

i,g and {x}v
i,g. The respective sizes of {x}t

i,g and {x}v
i,g are γL and (γ − 1)L, and there are {x}t

i,g∪{x}v
i,g= {x}i and {x}t

i,g∩{x}v
i,g = ∅. After

that, the training set {x}t
i,g is passed to the g th base model and the associated training data pool, denoted by Xt

g. The validation set {x}v
i,g

is passed to the corresponding validation data pool, denoted by Xv
g. Note that the data splitting module will repeatedly divide the data

chunk for G base models such that each base model will receive a different pair of training and validation sets. This effectively enhances
the diversity between different base models since each base model utilizes a different (almost independent) subset of data for training.

Stage 2. Base model learning. If {x}i is the very first data chunk, namely, i = 1, the training and validation data pools will be set
as: Xt

g←{x}t
i,g and Xv

g←{x}v
i,g. To guarantee the memory efficiency of the SAFLE system, the sizes of the training and validation data

pools will be fixed as γL and (γ − 1)L after initialization. Then, the g th base model, denoted as fg(x) (g = 1,2,⋯,G) will be created from
{x}t

i,g.
Otherwise, namely, i > 1, the training and validation data pools will combine the stored historical samples with the current ones,

namely, Xt
g←Xt

g ∪ {x}t
i,g and Xv

g←Xv
g ∪ {x}v

i,g. The two pools temporarily become oversized as their sizes are doubled temporarily,
namely, 2γL and 2(γ − 1)L. After that, the g th base model will be updated with {x}t

i,g. However, if the g th base model, fg(x) has been
pruned in the previous learning cycle, a new base model will be initialized with the oversized training data pool, Xt

g to replace the old
one. The main reason for utilizing both the historical and current training data in creating new base model is to help the new model
rapidly capture the latest data patterns whilst having a good understanding about the historical patterns. Note that both the initial-
ization and updating processes follow the same online learning procedure described in Section 3.2.

Stage 3. Error-prone base model pruning. After the base models have been created/updated, the model pruning module will
monitor their prediction performances and remove these weaker (namely, less accurate) ones to maintain a healthy ensemble
framework. To do so, the prediction error of each base model (assuming the g th one) will be evaluated based on data samples stored
within the oversized validation data pool, Xv

g. The prediction error of the g th base model, denoted as eg (g = 1,2,⋯,G) will be measured
in terms of classification error if SAFLE is tackling classification problems:

eg =
1

2(γ − 1)L
∑

x∈Xv
g

I(ŷ ∕= y) (18a)

where ŷ is the predicted label of x by the g th base model; y is the corresponding true label of x (x ∈ Xv
g);

Alternatively, if SAFLE is applied to regression problems, eg will be measured in terms of non-dimensional error index (NDEI):

eg = min

⎛

⎜
⎝1,

1
σy

̅̅̅
1

2(γ − 1)L
∑

x∈Xv
g

‖ŷ− y‖2

√
√
√
√

⎞

⎟
⎠ (18b)

where y is the corresponding real output of x (x ∈ Xv
g); σy is the standard deviation of the real outputs associated with Xv

g. Here eg is
capped at 1 in Eq. (18b) to ensure that the value range of eg is always between 0 and 1. One may further consider to normalize the
prediction errors of individual base models to the value range of [0,1] in case that all the base models achieve the error upper limit 1,
but that would be extremely unlikely to happen.

The base models with poorer prediction performances are identified by Condition (3).

Cond. 3 : if
(
eg > (μe + Δe)

)
then

(
fg(x) is pruned

)
(19)

where μe and Δe are the respective mean and standard deviation of the prediction errors of all the base models. Condition (3) is also
based on the so-called ‘‘one sigma” rule [35], allowing SAFLE to identify and prune these error-prone models agilely. The prediction
errors of these base models are measured based on both the current and historical validation samples that are not presented to the base
models for parameter learning. Hence, the obtained performance measures are highly objective and reliable, providing a good indi-
cation of how well each base model self-adapts to the latest changes of data patterns and responses to familiar data patterns.

Condition (3) (Eq. (19)) has a similar form to the pruning condition proposed in [29] and both conditions aim to identify and prune
these weaker base models. However, their main difference lies in the way that the prediction errors of individual base models are
measured. In the proposed SAFLE system, the prediction error of a base model is evaluated based on validation samples, which are
independent from training samples used for model updating. In contrast, in [29], the prediction errors of base models are measured

X. Gu

Information Sciences 634 (2023) 382–399

390

based on the accumulated training errors between predicted outputs with respect to the input training samples and the corresponding
real outputs. Thus, Condition (3) used in SAFLE gives a more objective evaluation on the out-of-sample prediction performance of
individual base models. Importantly, the measured prediction errors on validation data reflect the generalization abilities of the base
models and can help SAFLE identify those overfitted base models.

After these error-prone base models are removed from the ensemble framework, each validation data pool, Xv
g (g = 1,2,⋯,G) is

firstly downsized to the original size of (γ − 1)L via randomly sampling. Next, the redundant validation samples squeezed out of the
validation data pools are merged into the corresponding training data pools. The training data pools, Xt

g (g = 1, 2, ⋯,G) are then
downsized to the original sizes of γL via randomly sampling, again. In this way, the information carried by redundant validation
samples is preserved (partially) in the training data pools for creating new models instead of being discarded completely. At the end of
the current learning cycle, the SAFLE learning process goes back to Stage 1 to learn from the next available data chunk (i←i + 1).

For clarify, the SAFLE learning process is summarized by the following pseudo code. It is worth noting that data samples in the
training pools are used to initialize new base models only after weaker base models are pruned at the current learning cycle. Otherwise,
the training data pools only collect data samples without participating in the learning process. Data samples in the validation pools, on
the other hand, will be used at each learning cycle to help SAFLE identify weaker base models.

Algorithm 1: SAFLE learning process.

i←1;
while (a new data chunk {x}i is available) do
for g = 1 to G do
randomly split {x}i to {x}t

i,g and {x}v
i,g at the ratio of γ;

if (i = 1) then
initialize training data pool: Xt

g←{x}t
i,g;

initialize validation data pool: Xv
g←{x}v

i,g;
build fg(x) from {x}t

i,g;
else
expand training data pool: Xt

g←Xt
g ∪ {x}t

i,g;
expand validation data pool: Xv

g←Xv
g ∪ {x}v

i,g;
if (fg(x) was pruned at the (i-1)th learning cycle) then
initialize fg(x) from Xt

g;
else
update fg(x) from {x}t

i,g;
end if
end if
evaluate the prediction error eg of fg(x) on Xv

g ;
if (Condition (3) is satisfied) then
prune fg(x);
end if
downsize Xt

g and Xv
g via random sampling;

end for
i←i + 1;
end while

4.3. Ensemble decision-making policy

During decision making, SAFLE will select a sub-group of base models based on their prediction performances on the validation
data to perform fuzzy inference. Only these base models that satisfy Condition (4) will contribute to decision making:

Cond. 4 : if
(
eg ≤

(
μ′

e + Δ′

e

))
then

(
fg(x) is involved in decision making

)
(20)

where μ′

e and Δ′

e are the mean and standard deviation of the prediction errors of all the base models within the ensemble framework,
respectively. Condition (4) is almost identical to Condition (3). However, since these weaker base models have already been pruned by
Condition (3) during the learning process, only these stronger base models are kept in the ensemble framework. These selected
candidates by Condition (4) are even more accurate and reliable. Utilizing only these elite models for joint decision making can lead to
more accurate predictions compared with involving all the base models regardless of their respective performances.

After these elite base models, re-denoted as f*
1(x), f*

2 (x),⋯, f*
N* (x) (N* ≤ N) are identified by Condition (4), given a new data sample

x, the corresponding output of SAFLE is obtained as the weighted sum of the outputs of the selected base models:

ŷ =
1

∑N*

g=1

(
1 − e*

g

)
∑N*

g=1

(
1 − e*

g

)
f *
g (x) (21)

where e*
g is the prediction error of f*

g (x); g = 1,2,⋯,N*. It can be seen from Eq. (21) that these base models with less prediction error are
given greater weights in the joint decision making.

X. Gu

Information Sciences 634 (2023) 382–399

391

One may also notice that the ensemble decision-making scheme used by SAFLE is similar to the one used in [30] in the sense that
both schemes compute the weighted sums of the outputs of the base models to produce the final outputs. However, SAFLE utilizes only
the elite base models in joint decision-making, whilst the scheme proposed in [30] involves all the base models. The two schemes also
compute the weights of base models differently. In [30], higher weights are given to these base models that perform better on training
samples. The model weights are further adjusted with respect to each input sample during the decision-making process with extra
weights allocated to the more confident base models. In contrast, SAFLE assigns higher weights to these base models with greater out-
of-sample prediction performances on validation data. Thus, SAFLE has a lower risk of overfitting.

5. Experimental investigation

In this section, numerical examples are conducted for evaluating the performance of the proposed SAFLE system. The algorithms
are developed using MATLABR2021b platform and experiments are performed on a desktop with dual core i7 processor 3.80 GHz × 2
and 32.0 GB RAM.

5.1. Dataset description

In this work, a wide range of popular benchmark problems are used to evaluate the performance of the proposed SAFLE system,
which include 21 classification problems, one high frequency trading (HFT) prediction problem and one S&P500 closing price pre-
diction problem. In particular, the 21 classification problems investigated include 14 classical benchmarks1, three real-world ones
(electricity pricing2, skin segmentation3 and SUSY4), two synthetic ones (hyperplane and SEA5) and two visual ones (MNIST per-
mutations and rotations6). Key information of 21 classification problems is summarized in Table 1. Note that to facilitate computation,
the original attributes of two visual classification problems are compressed by principal component analysis with the dimensionality
reduced from 784 to 28.

The HFT and S&P500 problems are detailed as follows.
1. HFT: This dataset contains tick-by-tick data on all NASDAQ, NYSE and AMEX securities from 1998 to the present with the

following attributes: i) time tag, k; ii) open price, xk,1; iii) high price, xk,2; iv) low price, xk,3; and v) close price, xk,4. There are a total of
19,144 samples involved in this problem. In this case study, two specific experiments are conducted as follows [19,36]:

Table 1
Key information of classification problems.

Dataset Abbr. #(Attributes) #(Samples) #(Classes) Characteristics

Occupancy Detection Training OD 5 8143 2 Stationary

Testing 12,417
Multiple Features MF 649 2000 10 Stationary
Pen-Based Recognition of Handwritten Digits Training PR 16 7494 10 Stationary

Testing 3498
Optical Recognition of Handwritten Digits Training OR 64 3823 10 Stationary

Testing 1797
Abalone AB 8 4177 3 Stationary
Image Segmentation Training IS 19 420 7 Stationary

Testing 2100
MAGIC Gamma Telescope MA 10 19,020 2 Stationary
Pima Indians diabetes PI 8 768 2 Stationary
Page-blocks PB 10 5472 5 Stationary
Spambase SP 57 4601 2 Stationary
Semeion handwritten digit SH 256 1593 10 Stationary
Texture TE 40 5500 11 Stationary
Phishing websites PW 30 11,055 2 Stationary
German credit GC 24 1000 2 Stationary
Electricity pricing EP 8 45,312 2 Non-stationary
Skin segmentation SS 3 245,057 2 Non-stationary
SUSY SU 18 5,000,000 2 Non-stationary
Hyperplane HP 4 120,000 2 Non-stationary
SEA SE 3 200,000 2 Non-stationary
MNIST permutations PM 784 70,000 10 Non-stationary
MNIST rotations RM 784 65,000 10 Non-stationary

1 Available at: https://archive.ics.uci.edu/ml/datasets.php.
2 Available at: https://moa.cms.waikato.ac.nz/datasets/.
3 Available at: https://archive.ics.uci.edu/ml/datasets/Skin+Segmentation.
4 Available at: https://archive.ics.uci.edu/ml/datasets/SUSY.
5 Available at: https://scikit-multiflow.github.io/.
6 Available at: https://nlp.stanford.edu/projects/mer/.

X. Gu

Information Sciences 634 (2023) 382–399

392

o Using the current four prices to predict the high price eight steps ahead:

x̂k+8,2 = f
([

xk,1, xk,2, xk,3, xk,4
]T
)

(22)

o Using the current four prices to predict the high price 24 steps ahead:

x̂k+24,2 = f
([

xk,1, xk,2, xk,3, xk,4
]T
)

(23)

Following the common practice [19,36], the four prices have been standardized online. The prequential test-then-train protocol is
employed for experimental simulation.

2. S&P500: This dataset contains daily closing prices of S&P500 ranging from 03/01/1950 to 12/03/2009, 14,893 samples in total.
This dataset is further expanded with its flipped time series, and thus, 29,786 samples after augmentation [20]. Following the common
practice, all data has been normalized to the range of [0, 1], with the first half of the augmented dataset used for training and the
second half used for online testing under the prequential test-then-train protocol. The regression model is defined as follows.

x̂k+1 = f
(
[xk− 4, xk− 3, xk− 2, xk− 1, xk]

T) (24)

Unless specifically declared otherwise, the proposed SAFLE system is composed of 10 base models, namely, G = 10, and the
compression ratio ε, chunk size L and split ratio γ are set as ε = 0.75, L = 2000 and γ = 0.8. During the experiments, if the amount of
remaining unprocessed data samples is less than L, all the remaining samples will be included in the last chunk. It has to be stressed that
this is a general setting, and the best performing parameters can be different from problem to problem and require prior knowledge to
be determined a priori.

To better understand the influences of the externally controlled parameters, G, ε, L and γ on the performance of SAFLE model,
sensitivity analysis is performed based on three regression problems, and the results are presented in Appendix A. In addition, an
ablation analysis is conducted based on four synthetic classification problems and presented in Appendix B to demonstrate that the use
of dimensionality compression can largely improve the computational efficiency of SAFLE without sacrificing prediction accuracy.

All the reported results in this study are obtained as the average of 10 Monte Carlo experiments to allow a certain degree of
randomness.

Table 2
Classification error (Err) comparison between SAFLE and alternative classification approaches.

Algorithm OD MF PR OR AB IS MA

SAFLE 0.0361 0.0221 0.0405 0.0262 0.4533 0.1211 0.1894
SAFL 0.0534 0.0256 0.0356 0.0263 0.4518 0.1096 0.1706
SVM 0.0405 0.0569 0.0229 0.0287 0.4642 0.0967 0.1722
KNN 0.0420 0.0697 0.0240 0.0206 0.4762 0.1562 0.1960
EC 0.0385 0.0987 0.0852 0.1358 0.4622 0.1300 0.1908
SEQ 0.4811 0.0252 0.0489 0.0451 0.5479 0.1176 0.2236
SDKNN 0.2649 0.0235 0.0469 0.0373 0.5494 0.1619 0.2212
ELM 0.0105 0.0219 0.0221 0.0837 0.6649 0.8570 0.4515
PNN 0.1233 0.0538 0.0380 0.0200 0.4729 0.1967 0.1901
RF 0.0401 0.0228 0.1424 0.0879 0.4506 0.0436 0.1586
SAMME 0.0760 0.0744 0.2240 0.2006 0.4589 0.0915 0.1726
XGBoost 0.0485 0.0233 0.0383 0.0417 0.4671 0.0610 0.1249
eEnsemble 0.1252 0.1821 0.1921 0.1445 0.5096 0.2500 0.3429
FWADABoost 0.0444 0.0607 0.0239 0.0223 0.4627 0.2331 0.2309
SOFEnsemble 0.0554 0.0219 0.0563 0.0891 0.4689 0.2219 0.2720
Algorithm PI PB SP SH TE PW GC
SAFLE 0.2413 0.0420 0.1069 0.0783 0.0045 0.0669 0.2400
SAFL 0.2460 0.0445 0.1024 0.0961 0.0048 0.0657 0.2586
SVM 0.2872 0.0533 0.1927 0.0795 0.0137 0.0483 0.2888
KNN 0.2751 0.0490 0.2178 0.1230 0.0219 0.0697 0.3088
EC 0.2955 0.0308 0.1417 0.2944 0.0338 0.0539 0.2940
SEQ 0.4053 0.0577 0.1147 0.1065 0.0186 0.0530 0.3384
SDKNN 0.4042 0.0384 0.1135 0.1828 0.0272 0.0906 0.2962
ELM 0.3342 0.0959 0.1184 0.5573 0.0901 0.0890 0.2188
PNN 0.2649 0.1781 0.1102 0.1111 0.0205 0.0342 0.3358
RF 0.2412 0.0325 0.0755 0.1779 0.1361 0.0713 0.2626
SAMME 0.2602 0.0338 0.0956 0.3017 0.1619 0.0716 0.2764
XGBoost 0.2614 0.0275 0.0513 0.1095 0.0276 0.0522 0.2492
eEnsemble 0.3813 0.1912 0.3125 0.2834 0.1756 0.2174 0.3724
FWADABoost 0.3239 0.0444 0.1767 0.0949 0.0119 0.0588 0.2930
SOFEnsemble 0.2797 0.0489 0.2279 0.1013 0.0206 0.0601 0.3106

X. Gu

Information Sciences 634 (2023) 382–399

393

5.2. Performance evaluation

In the first numerical example, the performance of the proposed SAFLE system is tested on 14 classical benchmark classification
problems. During the experiments, except for OD, PR, OR and IS datasets, which have prefixed training–testing splits, for the other 10
datasets, 50% of the data samples are randomly selected for training and the remaining samples are used for testing. The classification
results obtained by SAFLE on the 14 datasets are tabulated in Table 2 in the form of classification error (Err).

For better evaluation, the following classification approaches are used for comparison:

o SAFL system [14];
o SVM [7];
o KNN classifier [9];
o EigenClass (EC) classifier [38];
o Sequence (SEQ) classifier [39];
o Sequence-dictionary-based KNN (SDKNN) classifier [39];
o Extreme learning machine (ELM) [40];
o Probabilistic neural network (PNN) [41];
o Random forest (RF) [42];
o Stagewise additive modelling using a multi-class exponential loss function (SAMME) [43];
o XGBoost classifier [8];
o eEnsemble classifier [25];
o FWADABoost classifier [28], and;
o Self-organizing fuzzy inference ensemble (SOFEnsemble) system [32].

In running the experiments, SAFL follows the original setting as [14]. SVM uses Gaussian kernel, and the kernel width is determined
automatically using a heuristic procedure. Both KNN and SDKNN use k = 5. EC considers the first five eigenvalues for classification.
SEQ follows the same setting as [39]. The maximum number of neurons for ELM is set as 200. The standard deviation of PNN is set as δx̅̅

2
√

(δx is the standard deviation of training data). RF, SAMME, XGBoost, eEnsemble, SOFEnsemble and FWADABoost are six ensemble
classification algorithms. SAMME and XGBoot use DT as base classifiers, same as RF. The maximum split of DT used by RF, SAMME and
XGBoost is set as 20, and the number of base classifiers in the ensemble models is set as 50. η = 0.3 is used for XGBoost. eEnsemble,
FWADABoost and SOFEnsemble are ensemble classifiers based on EFSs, and they use the same parameter settings as [25,28,32],
respectively. The classification performances of the comparative approaches are also reported in Table 2, where the top three results
achieved on each dataset are highlighted in bold. For visual clarity, the average classification errors (Err) of the classification ap-
proaches over the 14 datasets are given in Table 3, and the respective average training time consumptions (texe, in seconds) are reported
in Table 3 as well (the top three results are in bold).

It can be seen from Tables 2 and 3 that the proposed SAFLE system is able to achieve the second highest classification accuracy
(1 − Err) over the 14 classical benchmark problems among the classification approaches involved in the example. Despite that the
overall classification error of XGBoost is lower than SAFLE, SAFLE outperforms XGBoost on eight out of the 14 datasets, which include
OD, MF, OR, AB, PI, SH, TE and GC. This performance comparison demonstrates the very strong classification performance of the
proposed SAFLE system. On the other hand, one may notice that SAFLE requires more computational resources than the majority of the
classification approaches involved in comparison, though the dimensionality compression technique has been employed. This is due to
the online recursively updating of covariance matrices associated with the fuzzy rules, which is less computationally efficient when the
dimensionality of data is high. Nevertheless, SAFLE uses 3.62 s in average to train a base model (composed of 10 base models in this

Table 3
Average classification errors (Err) and training time consumptions (texe) of the
classification approaches over 14 benchmark problems.

Algorithm Err texe

SAFLE 0.1192 36.24
SAFL 0.1208 8.83
SVM 0.1318 0.34
KNN 0.1464 0.01
EC 0.1632 705.22
SEQ 0.1845 0.68
SDKNN 0.1756 0.15
ELM 0.2582 0.04
PNN 0.1535 0.01
RF 0.1388 0.16
SAMME 0.1785 1.12
XGBoost 0.1131 0.41
eEnsemble 0.2629 0.32
FWADABoost 0.1487 3.58
SOFEnsemble 0.1596 0.34

X. Gu

Information Sciences 634 (2023) 382–399

394

case), which is less than half of the time needed for training a single SAFL model. Although the experiments are conducted on a single
desktop, the computational efficiency of SAFLE can be greatly improved in practice by using distributed computing facilities for
parallelization.

Next, the performance of SAFLE is tested on two non-stationary real-world classification problems, namely, EP and SS. For the two
datasets, 80% of the samples are randomly selected for training and the remaining 20% for testing. Performance of SAFLE is reported in
Table 4, in terms of Err, number of rules, #(Rules) and texe. In this example, the following EFSs are employed for performance
comparison:

o SAFL system [14];
o eTS system [12];
o SAFIS [15];
o eClass0 classifier [13];
o eClass1 classifier [13];
o PALM [17];
o statistically evolving fuzzy inference system (SEFIS) [37], and;
o eEnsemble classifier [25].

In this experiments, the results of eTS, SAFIS, eClass0, eClass1 and PALM are obtained from [14] directly. For SEFIS, its externally
controlled parameters are determined as: K = 0.5, δ1 = 0.5, δ2 = 0.5 and p0 = 2. eEnsemble uses the same setting as [25]. The
classification performances of the comparative EFSs on the two benchmark datasets are also presented in Table 4, where the best result
on each dataset is highlighted in bold. It can be observed from Table 4 that SAFLE outperforms all the EFS-based comparative ap-
proaches on the two problems (only slightly worse than SAFL on EP), showing its strong capability in handling non-stationary
problems.

Then, the test-then-train performance of the proposed SAFLE system is evaluated on five large-scale non-stationary classification
problems, including SU, HP, SE, PM and RM. As aforementioned, to facilitate computation, principal component analysis is used to
reduce the dimensionality of PM and RM from 784 to 28. The performance of SAFLE is compared with the following state-of-the-art
classification approaches designed for large-scale non-stationary data streams:

o progressive neural network (ProgNN) [44];
o dynamically expandable network (DEN) [45];
o online multiclass boosting (OMCBoosting) [46];
o hard attention to the task (HAT) classifier [47];
o pEnsemble [25];
o pEnsemble+ [33];
o autonomous deep learning (ADL) classifier [48];
o neural network with dynamically evolved capacity (NADINE) [49], and;
o multilayer self-evolving recurrent neural network (MUSE-RNN) [50].

The performance comparison results are given in Table 5, where the results of ProgNN, DEN, OMCBoosting, HAT, pEnsemble+,
ADL, NADINE and MUSE-RNN are obtained from [49,50] directly (the best results are in bold).

Finally, the prediction performance of SAFLE is further evaluated on HFT and S&P500 regression problems by following the test-

Table 4
Classification performance comparison on two real-world classification problems.

Dataset Algorithm Err #(Rules) texe

EP SAFLE 0.2647 ± 0.0078 59.60 ± 3.84 13.85 ± 0.23
SAFL 0.2570 ± 0.0047 5.90 ± 1.37 1.44 ± 0.19
eTS 0.5767 ± 0.0038 15.1000 ± 4.12 285.93 ± 7.52
SAFIS 0.3834 ± 0.0141 31.30 ± 12.79 249.04 ± 168.15
eClass0 0.4771 ± 0.0339 8.40 ± 1.84 1.67 ± 0.07
eClass1 0.4021 ± 0.1829 15.30 ± 3.77 13.37 ± 1.48
PALM 0.2663 ± 0.0025 1.00 ± 0.00 3.29 ± 0.04
SEFIS 0.4141 ± 0.0253 25.00 ± 0.00 9.48 ± 0.24
eEnsemble 0.4168 ± 0.0059 176.70 ± 17.13 2.28 ± 0.32

SS SAFLE 0.0142 ± 0.0014 234.90 ± 8.02 94.79 ± 1.75
SAFL 0.0150 ± 0.0013 21.20 ± 1.87 10.36 ± 0.44
eTS 0.0310 ± 0.0109 11.30 ± 4.81 1644.65 ± 50.53
SAFIS 0.0302 ± 0.0220 34.10 ± 5.59 664.45 ± 107.01
eClass0 0.1337 ± 0.0808 4.70 ± 3.06 10.91 ± 0.51
eClass1 0.0332 ± 0.0103 12.00 ± 3.80 62.30 ± 7.97
PALM 0.0561 ± 0.0301 8.00 ± 11.53 43.09 ± 53.43
SEFIS 0.1573 ± 0.0431 24.70 ± 0.67 47.06 ± 0.58
eEnsemble 0.0683 ± 0.0016 109.30 ± 2.21 10.46 ± 0.47

X. Gu

Information Sciences 634 (2023) 382–399

395

then-train evaluation method. The prediction performances of SAFLE on the two real-world problems (in terms of NDEI, #(Rules) and/
or texe) are summarized in Tables 6 and 7, respectively. The results of the state-of-the-art approaches from the literature [18–20] are
also presented in the two tables for benchmark comparison, and the best results are in bold.

Table 5
Performance comparison on large-scale non-stationary data stream classification problems.

Dataset Algorithm Err texe

SU SAFLE 0.2083 ± 0.0001 85.7 K
ProgNN 0.3106 ± 0.0408 345 K
DEN 0.3685 ± 0.1006 8 K
OMCBoosting 0.2287 ± 0.0143 14 K
HAT 0.2615 ± 0.0318 16 K
pEnsemble 0.2556 ± 0.0240 14 K
pEnsemble+ 0.2301 ± 0.0460 35 K
ADL 0.2174 ± 0.0280 2.5 K
NADINE 0.2197 ± 0.0300 1.5 K
MUSE-RNN 0.2186 ± 0.0160 21 K

HP SAFLE 0.0194 0.0014 0.4 K
ProgNN 0.1493 ± 0.0712 0.2 K
DEN 0.0817 ± 0.0417 0.2 K
OMCBoosting 0.1382 ± 0.0373 0.1 K
HAT 0.2210 ± 0.1076 3.7 K
pEnsemble 0.0820 ± 0.0190 68
pEnsemble+ 0.1240 ± 0.0620 0.2 K
ADL 0.0767 ± 0.0263 22
NADINE – –
MUSE-RNN 0.0736 ± 0.0215 0.3 K

SE SAFLE 0.0220 ± 0.0013 0.1 K
ProgNN 0.1513 ± 0.0652 0.2 K
DEN 0.2005 ± 0.1928 0.2 K
OMCBoosting 0.1322 ± 0.0385 77
HAT 0.2535 ± 0.1010 0.3 K
pEnsemble 0.0800 ± 0.0570 0.2 K
pEnsemble+ 0.9800 ± 0.0600 0.2 K
ADL 0.0718 ± 0.0579 18
NADINE 0.0776 ± 0.0640 15
MUSE-RNN 0.0763 ± 0.0611 0.1 K

PM SAFLE 0.0825 ± 0.0002 5.8 K
ProgNN 0.3558 ± 0.0877 0.2 K
DEN 0.4792 ± 0.2260 0.4 K
OMCBoosting 0.6442 ± 0.2051 5 K
HAT 0.4036 ± 0.1888 0.2 K
pEnsemble – –
pEnsemble+ – –
ADL 0.3160 ± 0.2417 0.2 K
NADINE 0.2235 ± 0.1509 0.2 K
MUSE-RNN 0.1613 ± 0.1342 0.4 K

RM SAFLE 0.0860 ± 0.0007 10.5 K
ProgNN 0.4381 ± 0.1094 0.1 K
DEN 0.3852 ± 0.2173 0.4 K
OMCBoosting 0.7393 ± 0.0580 5 K
HAT 0.3548 ± 0.1133 0.2 K
pEnsemble – –
pEnsemble+ – –
ADL 0.2710 ± 0.0935 0.2 K
NADINE 0.2549 ± 0.0750 192
MUSE-RNN 0.2373 ± 0.0490 190

Table 6
Performance comparison on real-world HFT problem.

Algorithm x̂k+8,2 = f(xk) x̂k+24,2 = f(xk)

NDEI #(Rules) NDEI #(Rules)

SAFLE 0.131 83 0.192 83
SAFL 0.170 7 0.244 7
DENFIS 1.598 12 1.582 12
eTS 0.183 6 0.271 7
SAFIS 0.554 20 0.779 14
RMCEFS 0.153 4 0.228 6

X. Gu

Information Sciences 634 (2023) 382–399

396

It can be seen from Tables 5-7 that SAFLE outperforms all the comparative approaches on the seven non-stationary data stream
prediction problems in terms of prediction accuracy (classification error and NDEI), and is only outperformed by SAFL on the S&P500
problem. This demonstrates the very strong capability of SAFLE to self-adapt to the rapidly changing patterns and mine useful in-
formation from the non-stationary data streams.

6. Conclusion

In this paper, a novel evolving fuzzy ensemble model, named SAFLE, is introduced for data stream prediction. The proposed SAFLE
employs a group of SAFL-VSRP systems as its base models to self-learn and self-evolve from data streams on a chunk-by-chunk basis
whilst simultaneously performing dimensionality compression, which effectively increases the diversity between base models and
reduces their computational complexity. A dynamic pruning scheme is introduced to SAFLE, enabling it to autonomously identify and
remove these error-prone components from its structure during the chunk-wise data stream learning process. To compensate the
possible loss of key information caused by dimensionality compression, an ensemble inferencing scheme is further proposed to help
SAFLE select only these elite base models for joint decision-making, thereby improving its prediction accuracy. Numerical examples
based on a number of popular benchmark classification and regression problems demonstrate the superiority of the proposed SAFLE
system.

There are a few considerations for future works.
Firstly, the use of dimensionality compression technique greatly improves the computational efficiency of SAFL-VSRP on high-

dimensional problems, but the training time consumption is still higher than many alternative classification and regression ap-
proaches. This is mostly caused by the online updating of covariance matrices, though it is a standard practice of recursive least square
algorithms used by first-order EFSs. To further improve the computational efficiency, one may need to employ computationally leaner
algorithms for consequent parameter learning and updating.

Secondly, although SAFLE has a flexible structure and has the capability to remove less accurate base models, the number of
ensemble components within the system is pre-fixed at this moment. It would be really helpful if a smarter approach is developed for
SAFLE to self-determine the best number of base models based on the ensemble properties of data.

Thirdly, despite that SAFLE is able to achieve greater performance than a single SAFL system, it is not clear to which degree the
stability of SAFLE is affected by the proposed random data splitting and base model pruning schemes. The stability issue needs to be
investigated in future work.

Last but not the least, whether or not can VSRP or similar alternative techniques help zero-order EFS-based ensemble systems to
achieve better performance remains a question to be answered, considering that zero-order EFSs are more computationally efficient
compared with first-order ones.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Appendix

Sensitivity analysis

Further to the systematic evaluation presented in Section 5, the influences of externally controlled parameters, 1) the number of
base models G; 2) the compression ratio, ε; 3) the chunk size, L; and 4) the split ratio, γ on the performance of the proposed SAFLE
system are investigated. However, it needs to be stressed that the four externally controlled parameters are not problem-specific and
can be determined without prior knowledge of the problem.

Table 7
Performance comparison on S&P500 problem.

Algorithm NDEI #(Rules) texe

SAFLE 0.0132 146 17.0
SAFL 0.0121 19 1.8
eTS 0.04 14 –
PANFIS 0.09 4 55.3
GENEFIS 0.07 2 48.3
SEFS 0.0182 2 2.3
EFS-SLAT 0.0156 23 –

X. Gu

Information Sciences 634 (2023) 382–399

397

In this section, one classical benchmark regression problem, namely, Mackey-Glass time series prediction, and two real-world
ones7, 1) California Housing and 2) Delta Ailerons are employed for experiments. Key details of the three datasets are summarized
by Table A1.

To start with, the influence of G on the performance of SAFLE is investigated. In this example, the value of G varies from 5, 10, 15
and 20. Other parameters are fixed as ε = 0.75, L = 2000 and γ = 0.8. The classification performance of SAFLE in terms of NDEI and
texe are reported in Table A2.

Next, the influences of ε, L and γ on the system performance are investigated under the same experimental protocol with G = 10.
During the experiments, the externally controlled parameters L and γ are firstly fixed as L = 2000 and γ = 0.8 with ε changed from
0.25, 0.5, 0.75 and 1.0. Then, the experiments are repeated with fixed ε and γ (ε = 0.75 and γ = 0.8) and L changed from 500 to 3000.
Lastly, the same experiments are conducted with ε and L being fixed (ε = 0.75 and L = 2000) and γ varied from 0.6 to 0.9. Numerical
results obtained with the three different experiment settings are tabulated in Tables A2 as well.

It can be seen from Table A2 that, firstly, by having more base models, namely, a greater G, SAFLE can achieve better prediction
performance in terms of NDEI. However, this also means that SAFLE requires more computational resources. Secondly, a smaller
compression ratio, ε can largely increase the computational efficiency by reducing the dimensionality of the covariance matrices
associated with the fuzzy rules, but this may also lead to a significant loss of information, leading to worse prediction accuracy. Thirdly,
the chunk size,

L has marginal influence on the system performance (both prediction accuracy and computational efficiency). This is due to the fact
that the base models learn from streaming data sample-by-sample. On the other hand, one may note that SAFLE may struggle to
identify these error-prone base models if L is too small because the amount of data samples stored in the validation data pools would be
insufficient to represent the underlying data patterns. Nevertheless, this issue can be resolved by simply increasing the size of vali-
dation data pools. Lastly, the split ratio, γ will influence the computational efficiency since it determines the amounts of samples to be
used for training and validation in each data chunk. A greater γ means more samples are used for training the base models, and vice
versa.

Ablation analysis

In this section, ablation analysis is conducted to investigate the influence of dimensionality compression on the performances of
SAFLE and its base models. In this example, four nonstationary synthetic datasets generated by HyperplaneGenerator API 8with
different dimensionalities varying from 8 to 64 are used. The four datasets are denoted as: HP8, HP16, HP32 and HP64. The sizes of the
four synthetic datasets are set to be 4000 (3000 for training and 1000 for testing) uniformly to facilitate computation. The classification
performances of SAFLE and SAFL with and without VSRP on the four datasets are presented in Table A3 in terms of Err and texe.

From Table A3 one can see that VSRP effectively reduces the computational complexity of SAFLE and SAFL systems, especially in

Table A1
Key information of regression problems for sensitivity analysis.

Dataset Abbr. #(Attributes) #(Training Samples) #(Testing Samples)

Mackey-Glass MG 4 3000 500
California Housing CH 8 10,320 10,320
Delta Ailerons DA 5 3000 4129

Table A2
Influence of parameter settings.

Dataset G 5 10 15 20 ε 0.25 0.5 0.75 1.0

MG NDEI 0.0369 0.0343 0.0332 0.0328 NDEI 0.0653 0.0462 0.0343 0.0274
texe 0.60 1.24 1.76 2.32 texe 1.09 1.18 1.24 1.27

CH NDEI 0.0726 0.0723 0.0720 0.0717 NDEI 0.0893 0.0805 0.0723 0.0678
texe 3.29 6.38 9.57 12.74 texe 5.91 5.99 6.38 6.67

DA NDEI 0.0507 0.0505 0.0504 0.0503 NDEI 0.0543 0.0521 0.0505 0.0488
texe 1.13 2.23 3.40 4.45 texe 2.09 2.21 2.23 2.34

Dataset L 500 1000 2000 3000 γ 0.6 0.7 0.8 0.9
MG NDEI 0.0315 0.0330 0.0343 0.0364 NDEI 0.0346 0.0338 0.0343 0.0350

texe 1.22 1.16 1.16 1.02 texe 1.06 1.14 1.24 1.27
CH NDEI 0.0725 0.0722 0.0723 0.0721 NDEI 0.0719 0.0725 0.0723 0.0722

texe 6.11 6.26 6.38 6.42 texe 5.91 6.23 6.38 6.88
DA NDEI 0.0504 0.0504 0.0505 0.0505 NDEI 0.0505 0.0504 0.0505 0.0505

texe 2.18 2.20 2.23 1.97 texe 1.93 2.10 2.23 2.41

7 Available at: https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html.
8 Available at: https://scikit-multiflow.readthedocs.io/en/stable/index.html.

X. Gu

Information Sciences 634 (2023) 382–399

398

the cases where the data dimensionality is high. The higher the data dimensionality is, the greater improvement can be observed from
the results in terms of computational efficiency. This demonstrates the effectiveness and validity of the proposed concept and general
principles. On the other hand, one can see that both SAFLE and SAFL performs better in terms of classification accuracy without
dimensionality compression because all the information from the data streams is preserved. Nevertheless, the decrease of prediction
accuracy is within a reasonable range and, in fact, one can improve the prediction accuracy by increasing the number of ensemble
components or increasing the compression ratio.

References

[1] B. Krawczyk, L.L. Minku, J. Gama, J. Stefanowski, M. Woźniak, Ensemble learning for data stream analysis: a survey, Inf. Fusion 37 (2017) 132–156.
[2] D.H. Wolpert, M. Field, O. Error, The supervised learning no-free-lunch theorems, Soft Comput. Ind. (2002) 25–42.
[3] L. Rokach, Ensemble-based classifiers, Artif. Intell. Rev. 33 (1–2) (2010) 1–39.
[4] L. Breiman, Bagging predictors, Mach. Learn. 24 (421) (1996) 123–140.
[5] Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55 (1) (1997) 119–139.
[6] A.M. Mohammed, E. Onieva, M. Woźniak, G. Martínez-Muñoz, An analysis of heuristic metrics for classifier ensemble pruning based on ordered aggregation,

Pattern Recognit. 124 (2021), 108493.
[7] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, Cambridge University Press,

Cambridge, 2000.
[8] T. Chen, C. Guestrin, Xgboost: a scalable tree boosting system, in; ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp.

785–794.
[9] P. Cunningham, S.J. Delany, K-nearest neighbour classifiers, Mult. Classif. Syst. 34 (2007) 1–17.

[10] Z. Zhou, J. Feng, Deep forest, Natl. Sci. Rev. 6 (1) (2019) 74–86.
[11] N.K. Kasabov, Q. Song, DENFIS : dynamic evolving neural-fuzzy inference system and its application for time-series prediction, IEEE Trans. Fuzzy Syst. 10 (2)

(2002) 144–154.
[12] P.P. Angelov, D.P. Filev, An approach to online identification of Takagi-Sugeno fuzzy models, IEEE Trans. Syst. Man, Cybern. - Part B Cybern. 34 (1) (2004)

484–498.
[13] P. Angelov, X. Zhou, Evolving fuzzy-rule based classifiers from data streams, IEEE Trans. Fuzzy Syst. 16 (6) (2008) 1462–1474.
[14] X. Gu, Q. Shen, A self-adaptive fuzzy learning system for streaming data prediction, Inf. Sci. (Ny) 579 (2021) 623–647.
[15] H.J. Rong, N. Sundararajan, G. Bin Huang, P. Saratchandran, Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and

prediction, Fuzzy Sets Syst. 157 (9) (2006) 1260–1275.
[16] E.D. Lughofer, FLEXFIS: a robust incremental learning approach for evolving Takagi-Sugeno fuzzy models, IEEE Trans. Fuzzy Syst. 16 (6) (2008) 1393–1410.
[17] M.M. Ferdaus, M. Pratama, S.G. Anavatti, M.A. Garratt, PALM: an incremental construction of hyperplanes for data stream regression, IEEE Trans. Fuzzy Syst.

27 (11) (2019) 2115–2129.
[18] D. Ge, X.J. Zeng, A self-evolving fuzzy system which learns dynamic threshold parameter by itself, IEEE Trans. Fuzzy Syst. 27 (8) (2018) 1625–1637.
[19] H. Rong, Z. Yang, P.K. Wong, Robust and noise-insensitive recursive maximum correntropy-based evolving fuzzy system, IEEE Trans. Fuzzy Syst. 28 (9) (2019)

2277–2284.
[20] D. Ge, X.J. Zeng, Learning data streams online - an evolving fuzzy system approach with self-learning/adaptive thresholds, Inf. Sci. (Ny) 507 (2020) 172–184.
[21] R. Scherer, Designing boosting ensemble of relational fuzzy systems, Int. J. Neural Syst. 20 (5) (2010) 381–388.
[22] R. Scherer, An ensemble of logical-type neuro-fuzzy systems, Expert Syst. Appl. 38 (10) (2011) 13115–13120.
[23] B. Soua, A. Borgi, M. Tagina, An ensemble method for fuzzy rule-based classification systems, Knowl. Inf. Syst. 36 (2) (2013) 385–410.
[24] J. A. Iglesias, A. Ledezma, A. Sanchis, Ensemble method based on individual evolving classifiers, in: IEEE Conference on Evolving and Adaptive Intelligent Systems,

2013, pp. 56–61.
[25] M. Pratama, W. Pedrycz, E. Lughofer, Evolving ensemble fuzzy classifier, IEEE Trans. Fuzzy Syst. 26 (5) (2018) 2552–2567.
[26] M. Pratama, W. Pedrycz, G.I. Webb, An incremental construction of deep neuro fuzzy system for continual learning of nonstationary data streams, IEEE Trans.

Fuzzy Syst. 28 (7) (2020) 1315–1328.
[27] X. Gu, Multilayer ensemble evolving fuzzy inference system, IEEE Trans. Fuzzy Syst. 29 (8) (2021) 2425–2431.
[28] X. Gu, P. Angelov, Multi-class fuzzily weighted adaptive boosting-based self-organising fuzzy inference ensemble systems for classification, IEEE Trans. Fuzzy

Syst. 30 (9) (2022) 3722–3735.
[29] E. Lughofer, M. Pratama, I. Škrjanc, Online bagging of evolving fuzzy systems, Inf. Sci. (Ny) 570 (2021) 16–33.
[30] E. Lughofer, M. Pratama, Online sequential ensembling of predictive fuzzy systems, Evol. Syst. 13 (2) (2022) 361–386.
[31] E. Alves, R. Tanscheit, M. Vellasco, SENFIS - selected ensemble of fuzzy inference systems, IEEE Int. Conf. Fuzzy Syst. 2019-June (2019) 1–6.
[32] X. Gu, P. Angelov, Z. Zhao, Self-organizing fuzzy inference ensemble system for big streaming data classification, Knowledge-Based Syst. 218 (2021), 106870.
[33] M. Pratama, E. Dimla, T. Tjahjowidodo, W. Pedrycz, E. Lughofer, Online tool condition monitoring based on parsimonious ensemble+, IEEE Trans. Cybern. 50

(2) (2020) 664–677.
[34] H. Huang, H. Rong, Z. Yang, C. Vong, Jointly evolving and compressing fuzzy system for feature reduction and classification, Inf. Sci. (Ny) 579 (2021) 218–230.
[35] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd ed., Wiley-Interscience, Chichester, West Sussex, UK, 2000.
[36] H. Rong, P. Angelov, X. Gu, J. Bai, Stability of evolving fuzzy systems based on data clouds, IEEE Trans. Fuzzy Syst. 26 (5) (2018) 2774–2784.

Table A3
Results of ablation analysis.

Dataset Meas. SAFL Δ SAFLE Δ

VSRP No VSRP VSRP No VSRP

HP8 Err 0.0352 0.0222 − 0.0130 (-36.93%) 0.0260 0.0200 − 0.0060 (–23.08%)
texe 0.92 0.94 +0.02 (+2.17%) 8.22 8.36 +0.14 (+1.70%)

HP16 Err 0.0305 0.0281 − 0.0024 (-7.87%) 0.0293 0.0277 − 0.0016 (-5.46%)
texe 15.67 16.16 +0.49 (+3.13%) 135.40 138.40 +3.00 (+2.22%)

HP32 Err 0.0353 0.0325 − 0.0028 (-7.93%) 0.0313 0.0299 − 0.0014 (-4.47%)
texe 49.54 53.56 +4.02 (+8.11%) 376.55 409.66 +33.11 (+8.79%)

HP64 Err 0.0522 0.0486 − 0.0036 (-6.90%) 0.0461 0.0425 − 0.0036 (-7.81%)
texe 84.95 116.15 +31.20 (+36.73%) 619.69 832.67 +212.98 (-34.37%)

X. Gu

http://refhub.elsevier.com/S0020-0255(23)00448-6/h0005
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0010
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0015
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0020
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0025
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0030
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0030
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0035
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0035
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0045
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0050
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0055
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0055
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0060
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0060
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0065
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0070
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0075
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0075
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0080
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0085
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0085
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0090
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0095
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0095
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0100
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0105
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0110
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0115
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0125
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0130
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0130
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0135
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0140
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0140
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0145
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0150
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0155
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0160
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0165
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0165
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0170
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0175
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0180

Information Sciences 634 (2023) 382–399

399

[37] Z. Yang, H. Rong, P.P. Angelov, Z. Yang, Statistically evolving fuzzy inference system for non-Gaussian noises, IEEE Trans. Fuzzy Syst. 30 (4) (2022) 2649–2664.
[38] U. Erkan, A precise and stable machine learning algorithm: eigenvalue classification (EigenClass), Neural Comput. Appl. 33 (10) (2021) 5381–5392.
[39] R.N. Patro, S. Subudhi, P.K. Biswal, F. Dell’Acqua, Dictionary-based classifiers for exploiting feature sequence information and their application to hyperspectral

remotely sensed data, Int. J. Remote Sens. 40 (13) (2019) 4996–5024.
[40] G. Huang, H. Zhou, X. Ding, R. Zhang, Extreme learning machine for regression and multiclass classification, IEEE Trans. Syst. Man, Cybern. Part B Cybern. 42

(2) (2012) 513–529.
[41] D.F. Specht, Probabilistic neural networks, Neural Networks 3 (1) (1990) 109–118.
[42] L. Breiman, Random forests, Mach. Learn. Proc. 45 (1) (2001) 5–32.
[43] J. Zhu, H. Zou, S. Rosset, T. Hastie, Multi-class AdaBoost, Stat. Interface 2 (3) (2009) 349–360.
[44] A. A. Rusu et al., Progressive neural networks, arXiv Prepr. arXiv1606.04671, 2016, [Online]. Available: http://arxiv.org/abs/1606.04671.
[45] J. Yoon, E. Yang, J. Lee, S. J. Hwang, Lifelong learning with dynamically expandable networks, arXiv Prepr. arXiv1708.01547, 2017.
[46] Y.H. Jung, J. Goetz, A. Tewari, Online multiclass boosting, in: Advances in Neural Information Processing Systems, 2017, pp. 920–929.
[47] J. Serra, D. Suris, M. Miron, A. Karatzoglou, Overcoming catastrophic forgetting with hard attention to the task, in: International Conference on Machine Learning,

2018, pp. 4548–4557.
[48] A. Ashfahani, M. Pratama, Autonomous deep learning: continual learning approach for dynamic environments, in: SIAM International Conference on Data Mining,

2019, pp. 666–674.
[49] M. Pratama, C. Za’in, A. Ashfahani, Y.S. Ong, W. Ding, Automatic construction of multi-layer perceptron network from streaming examples, in: International

Conference on Information and Knowledge Management, 2019, pp. 1171–1180.
[50] M. Das, M. Pratama, S. Savitri, J. Zhang, MUSE-RNN: a multilayer self-evolving recurrent neural network for data stream classification, in: IEEE International

Conference on Data Mining, 2019, pp. 110–119.

X. Gu

http://refhub.elsevier.com/S0020-0255(23)00448-6/h0185
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0190
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0195
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0195
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0200
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0200
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0205
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0210
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0215
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0230
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0235
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0235
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0240
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0240
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0245
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0245
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0250
http://refhub.elsevier.com/S0020-0255(23)00448-6/h0250

