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The analysis of learning interactions during online studying is a necessary task for designing online courses and 
sequencing key interactions, which enables online learning platforms to provide users with more efficient and 
personalized service. However, the research on predicting the interaction itself is not sufficient and the temporal 
information of interaction sequences hasn’t been fully investigated. To fill in this gap, based on the interaction 
data collected from Massive Open Online Courses (MOOCs), this paper aims to simultaneously predict a user’s 
next interaction and the occurrence time to that interaction. Three different neural network models: the long 
short-term memory, the recurrent marked temporal point process, and the event recurrent point process, are 
applied on the MOOC interaction dataset. It concludes that taking the correlation between the user action and its 
occurrence time into consideration can greatly improve the model performance, and that the prediction results 
are conducive to exploring dropout rates or online learning habits and performances.
1. Introduction

In traditional classroom teaching, a great number of learning inter-

actions occur between students and instructors, between students and 
teaching materials, and between students and students. For instance, 
the students answer questions, read the textbooks, and take part in 
group activities. A good instructor can provide appropriate feedback 
and timely adjust the following interactions according to the typical 
patterns of behaviours shown by students in real-time (Hirumi, 2002). 
However, in the environment of online learning or E-learning, com-

munication is technology-mediated and asynchronous, and the content 
and procedure of online courses are relatively fixed. There are limited 
opportunities for instructors to conduct individualized teaching and in-

terpret information based on spontaneous responses, which necessitates 
the analysis and sequence of E-learning interactions. The course design 
and the arrangement of key interactions greatly affect learners’ learning 
attitude and performance when studying online courses (Hirumi, 2002).

Wallace (2003) summarized that there are mainly four types of in-

teractions that constitute students’ engagement during online learning. 
Except for the common learner-instructor interactions, learner-content 
interactions, and learner-learner interactions, it also includes learner-

interface interactions. As a matter of fact, the emergence of online 
education platforms makes it possible to capture and save massive data 
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on users’ learning interactions and then facilitates interaction analysis 
and design.

Massive Open Online Courses (MOOCs) (https://www.mooc.org) is 
one of the biggest online education platforms and provides free online 
courses for anyone to enroll in. It has attracted a tremendous number of 
users worldwide in the last two decades. Every day, millions of people 
log in to this platform and study courses of different subjects. During 
this process, a huge amount of data on learning interactions taken by 
users are generated (Dalipi et al., 2018). Every single operation that 
users carry out on https://www.mooc.org is recorded by MOOCs with 
the timestamp when that action occurs. Such interaction may be brows-

ing a course, watching a lecture recording, joining a forum discussion, 
or even exiting MOOCs. Thus, for each user, there exists a chronolog-

ical sequence of their interactions in the MOOC system (referred to as 
sequential interaction data or temporal interaction data).

As mentioned before, E-learning interaction analysis is of great 
significance for sequencing learning interactions and designing new 
courses. Furthermore, it helps educators gain a comprehensive under-

standing of users’ online learning habits, which is especially useful to 
predict students’ learning performances and provides reference when 
educators adjust course delivery styles and assessment methods (Moore 
& Blackmon, 2022). On the other hand, if the MOOC system can rec-

ognize a user’s next action in advance, useful recommendations can be 
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made and shown directly to users, which makes learning more conve-

nient and boosts the users’ learning experience (Moore & Blackmon, 
2022).

For the predictive analysis based on the sequential interaction data 
collected from MOOCs, the prediction of course completion or dropout 
rates has been a main concern for educators and researchers for years 
(Hone & Said, 2016, Dalipi et al., 2018, Goopio & Cheung, 2021). Nev-

ertheless, Moore and Blackmon (2022) pointed out that researchers 
should pay more attention to the learner’s learning action itself rather 
than only focusing on the overall MOOC dropout rates. The studies on 
prediction of interactions with MOOCs are not sufficient. More impor-

tantly, every interaction record captured by the MOOC platform shows 
“which user takes which action at what time” (Kumar et al., 2019). Thus, 
such temporal interaction data have important information on the ac-

tion occurring time, but the temporal information hasn’t been fully 
emphasized in the existing literature.

Thus, the following research questions are raised, and we aim to 
answer them in this paper.

• Q1: Considering both of temporal and sequential characteristics, 
whether the users’ learning habits/patterns can be explored more 
comprehensively?

• Q2: Does the temporal information of interaction sequences plays 
an important role in the prediction of online learning interactions? 
If so, what kind of models can be used to describe interaction 
sequences with temporal information? And how can we simulta-

neously predict the user’s next action and its occurrence time point 
when conducting the interaction prediction?

To solve the above questions, the related work on learners’ sequen-

tial actions/interactions is summarised in the subsequent subsection.

1.1. Sequential action and interaction analysis

Analysing users’ learning interactions have gradually aroused the 
interest of researchers in the past few years. Using statistical methods, 
Simpson et al. (2000) coded the behaviour of an elementary student 
and conducted a cause-and-effect analysis based on several sequences 
of interactions using general systems theory. Brodahl et al. (2022) in-

vestigated students’ temporal interactions by conducting conversation 
analysis in the field of patient education. With machine/deep learn-

ing algorithms, Tang et al. (2016) applied the long short-term memory 
(LSTM) network to mine the underlying patterns of MOOC clickstream 
data. Sequential interaction rule mining was then studied by Fatahi et 
al. (2018), Lien et al. (2020) and Aktaş and Aktaş (2021) via sequential 
pattern mining algorithms. They identified the most frequent repeti-

tive action sequences, generated feasible associate rules, and predicted 
student’s learning style. Salehi (2013) produced a more effective rec-

ommendation by capturing users’ sequential patterns compared with 
only making use of users’ rating data. Most of these research works 
mentioned above merely focused on analysing users’ interactions or 
making prediction by mining sequential patterns/rules without consid-

ering temporal information.

For temporal interaction analysis, Martínez et al. (2008) consid-

ered a temporal interactive effect to investigate the influence factors on 
reading performance and then predict reading achievement. Xia and Qi 
(2022) captured semantic features of learning behaviour taking the tem-

poral risk and temporal tracking into account. Li et al. (2020) predicted 
the frequency of self-regulated learning behaviour occurring at time 
𝑡 via developing a multilevel vector autoregression model. Boroujeni 
and Dillenbourg (2018) focused on MOOC interaction sequences dur-

ing the assessment period and proposed a temporal clustering pipeline 
to track learning interactions at each time step. Rajendran et al. (2018)

proposed to use Hidden Markov models to represent and analyse the 
2

temporal learning interaction sequences.
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It can be seen that few papers have fully taken the temporal char-

acteristic into consideration. Vector autoregression method, clustering 
algorithm and Hidden Markov models have been used to describe the 
temporal sequence of learners’ interactions with online platforms. How-

ever, these existing methods have the disadvantages of poor general-

izability or relatively arduous calculation (Li et al., 2020, Boroujeni 
& Dillenbourg, 2018, Rajendran et al., 2018). Besides, there is little 
predictive work conducted from the perspective of considering the cor-

relation between an interaction and the occurrence time of that inter-

action, and then predicting both at the same time. Thus, using powerful 
machine/deep learning methods to model and predict user temporal in-

teractions with MOOCs is an interesting research direction for further 
investigation.

1.2. Marked neural temporal point process

The target of future temporal interaction prediction is to simultane-

ously predict the user action and the corresponding occurrence time, 
and the complexity of this kind of prediction makes it different from 
traditional time series forecasting. The differences mainly lie in two as-

pects: firstly, the actions from users do not necessarily occur at equal 
intervals, while the time series data are usually collected every equal 
time interval (such as every week or every month); secondly, paramet-

ric time series forecasting methods usually aim to predict one single 
index (such as the temperature, the stock price, or the product demand). 
However, in the case of temporal interaction prediction, we focus on 
which action a user will take at what time, and thus there are two parts 
involved–Action prediction and timestamp prediction, where the pre-

diction of continuous occurrence time points is a regression problem, 
and that of actions belongs to a classification problem. Besides, existing 
recurrent neural networks (RNN) are usually applied to deal with one 
specific problem (namely, regression or classification or others), which 
is also inapplicable in the setting of this paper.

On the other hand, Vista et al. (2016) regarded sequential actions 
as markers and visualized a person’s action sequence using directed 
graphs. Inspired by that, if we intend to predict user temporal interac-

tions with MOOCs and the occurrence time points, the temporal point 
process (TPP) and the marked temporal point process (MTPP) can be 
applied.

The TPP is often used to model the data that are localized in a finite 
set of time points. Widely studied point processes include the Hawkes 
process (Hawkes, 1971), the Poisson process (Kingman, 1992) and the 
self-correcting process (Isham & Westcott, 1979). The MTPP considers 
the event marker of each time point in a TPP. Some basic concepts are 
briefly explained in Section 2.

Moreover, Du et al. (2016) first proposed the marked neural TPP (or 
neural MTPP), innovatively integrating neural networks and marked 
point processes as a non-parametric method for temporal prediction. 
The authors embedded the history of event occurrences into a compact 
vector and input both the marker and the interval duration into a recur-

rent layer. They then applied their proposed model to several real cases, 
including taxi operations, financial transactions, and electrical medical 
records, and achieved excellent prediction performances. Subsequently, 
a series of variants of neural MTPP or neural TPP models are intro-

duced successively (see Xiao et al., 2017, Mei & Eisner, 2017, Omi et 
al., 2019, Shchur et al., 2019, Enguehard et al., 2020, Ben Taieb, 2022). 
The reader is referred to Shchur et al. (2021) for a comprehensive re-

view of neural TPPs.

1.3. Novelty and contributions

In summary, the prediction of users’ MOOC interactions integrated 
with temporal information has not been fully studied. In the existing 
papers on interaction prediction, repetitive sequence mining is one of 
the mainstream practices. Combining with temporal information, vec-
tor autoregression method, clustering algorithm and Hidden Markov 
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models were proposed to analyse and then predict the learning inter-

actions (see Section 1.1). Feasible deep learning methods are necessary 
to be put forward. On the other side, the marked neural TPP model 
focuses on the point process with event markers and has been success-

fully applied to the fields of finance and medical care (Du et al., 2016). 
Therefore, this paper aims to introduce the marked neural TPP model 
to predict user interactions with MOOCs based on temporal data, that 
is, predict the action and its occurrence time simultaneously.

The contributions of this paper include:

• An elaborate exploratory data analysis on the MOOC interaction 
dataset is given, and insights on users’ typical patterns of learning 
behaviour are obtained;

• The concept of the MTPP is introduced to the research field of 
online education to temporal interaction data. Deep learning meth-

ods, including the LSTM and two marked neural TPP models, are 
tailored and then applied to predict the user’s next action and its 
occurrence time on the MOOC platform;

• The prediction performances of the three different models are com-

pared. The result shows that the marked MTPP models are efficient 
and accurate. Different hyper-parameter schemes are investigated 
as well;

• This work confirms that the correlation between actions and oc-

currence time points is extremely important in the prediction task, 
which enlightens future work to pay more attention to temporal 
information or multiple interlinked factors.

The remainder of this paper is organized as follows. Section 2 ex-

plains some basic concepts of the TPP. Section 3 introduces the method-

ologies, including the LSTM and the marked neural TPP, and predic-

tion evaluation metrics. Section 4 describes and analyses the collected 
MOOC interaction dataset. Section 5 presents the model implementa-

tion and results. Section 6 summarizes the key findings and interprets 
the prediction results in the real application. Section 7 concludes our 
work and demonstrates limitations and future work.

2. Basic concepts

2.1. Temporal point process

The temporal point process (TPP) is a stochastic process composed of 
a series of time points of discrete events (Daley & Vere-Jones, 2008). Let 
𝑇1, 𝑇2, ⋯ , 𝑇𝑛 denote a sequential occurrence time points with 𝑇1 < 𝑇2 <

⋯ < 𝑇𝑛. 𝑇1 = 𝑡1, 𝑇2 = 𝑡2, ⋯ , 𝑇𝑛 = 𝑡𝑛 is a realization of a TPP sequence. So, 
variables 𝑋𝑖 = 𝑇𝑖−𝑇𝑖−1, 𝑖 = 1, ⋯ , 𝑛 stand for the inter-event time intervals 
or waiting times between event occurrences, where 𝑇0 = 0.

The counting process is defined by 𝑁(𝑡) = sup{𝑛∶ 𝑇𝑛 ≤ 𝑡}, which is 
the total number of events that have occurred before time point 𝑡.

In a TPP, the history of event occurrences may affect its re-

occurrence in the future to some extent. Thus, as an important concept 
in the field of the TPP, the conditional intensity function is defined 
based on 𝑁(𝑡):

𝜆∗(𝑡) = 𝜆(𝑡|𝐻𝑡− ) = 𝑙𝑖𝑚Δ𝑡→0
𝐸(𝑁(𝑡, 𝑡+Δ𝑡)|𝐻𝑡− )

Δ𝑡
,

where 𝐻𝑡− stands for the occurrence history prior to time point 𝑡, and 
𝑁(𝑡, 𝑡 +Δ𝑡) is the total number of events occurring in the time interval 
(𝑡, 𝑡 +Δ𝑡]. Thus, the conditional intensity function can be interpreted as 
the chance that events are expected to occur around 𝑡, given the history 
up to that time point.

For example, the Hawkes process (Hawkes, 1971) is a counting pro-

cess with the conditional intensity function

𝜆∗(𝑡) = 𝜇 + 𝛼
∑

𝛿(𝑡, 𝑡 ),
3

𝑡𝑗<𝑡

𝑗
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where 𝛿(𝑡, 𝑡𝑗 ) ≥ 0 is the trigger kernel function and 𝜇 ≥ 0 is the baseline 
intensity. The intensity function would increase by a certain amount 
when an event occurs in this case.

2.2. Marked temporal point process

For the MOOC temporal interaction prediction, if we only focus on 
one single action and regard it as the occurrence of an event, there is a 
TPP sequence for each user. For example, for user 𝑘, the TPP sequence 
is 𝑈𝑘

𝑇 𝑃𝑃
= (𝑡𝑘1 , 𝑡

𝑘
2 , ⋯), where 𝑡𝑘

𝑖
stands for the occurrence time of that 

specific action. However, the user can conduct various actions on the 
MOOC platform, as mentioned before. Thus, if we take 𝑀 different 
types of actions into account, the MTPP sequence for user 𝑘 can be 
denoted by

𝑈𝑘 = {(𝑡𝑘1 ,𝑚
𝑘
1), (𝑡

𝑘
2 ,𝑚

𝑘
2),⋯ , (𝑡𝑘

𝑘𝑖
,𝑚𝑘

𝑘𝑖
)},

where 𝑡𝑘
𝑖

is the 𝑖-th occurrence time point for user 𝑘 and 𝑚𝑘
𝑖
∈

{0, 1, ⋯ , 𝑀 − 1} is the marker of the occurring action. Note that 𝑡𝑘
𝑖

and 
𝑚𝑘

𝑖
come in pairs (𝑖 = 1, 2, ⋯ , 𝑘𝑖). And 𝑘𝑖 is the length of time/action 

sequence of user 𝑘.

Furthermore, if the data are collected from 𝑁 users in total, the 
whole dataset is a set of MTPP sequences 𝐷 = {𝑈1, 𝑈2, ⋯ , 𝑈𝑁} (Du et 
al., 2016).

The MTPP was originally applied to model earthquakes and after-

shocks (Hawkes, 1971, Ogata, 1998). In recent years, it has been widely 
studied for analysing multiple events with the underlying spreading pro-

cesses, such as rumours detection for social media (Naumzik & Feuer-

riegel, 2022) and recognition of the severity of illness on electronic 
health records (Islam et al., 2017).

Even though the traditional MTPP method has extensive applica-

tions, its weakness is also obvious. A parametric form of the point 
process is usually assumed first and then parameter estimation is carried 
out via some statistical methods. Thus, the choice of the pre-defined 
parametric form is extremely important. Nevertheless, the possibility 
that an appropriate model is chosen is very slim in real applications. 
Even for the well-performed model, it is not always reliable to project it 
to other situations (Du et al., 2016). That is the exact motivation of Du 
et al. (2016) to propose the non-parametric or semi-parametric marked 
neural TPP model. Neural networks such as RNN can be used to explore 
and form the underlying relationship by the model itself. Therefore, the 
marked neural TPP model will be applied to the temporal learning in-

teraction prediction in this paper.

3. Methodologies

As mentioned above, the temporal features of action sequences can 
be captured by TPP models. If we consider several event types in one 
TPP sequence, an MTPP model is applicable. An MTPP regards the event 
type as a marker and then records the event occurrence time and the 
marker in pairs. Furthermore, the marked neural TPP, combining the

LSTM and the MTPP, can simultaneously model user action and time 
point sequences.

Besides, LSTM networks have been widely applied because of their 
practicality in dealing with the prediction of time series data. Naturally, 
the time point and action prediction can be viewed as two separate 
data sequences, and then an LSTM network can be used to address the 
regression (for time points) and classification (for actions) problems, 
respectively.

3.1. Long short-term memory

The LSTM is one of the most popular variants of the RNN, which 
was introduced to overcome the challenge of long-term dependencies 
(Hochreiter & Schmidhuber, 1997). An LSTM has a cell state being 

passed straight through the neural network in different time steps, 
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which stores useful long-term memories. It has three types of gate lay-

ers, and two of them are used to update the cell state, and then the 
obtained cell state and the input variable processed by another gate 
layer are integrated to update the hidden state. The calculation formu-

las of these gate layers are given in the following.

Forget Gate: The forget gate is used to forget the cell state whose 
information is obsolete. The activation function is a sigmoid function.

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 ).

where ℎ𝑡−1 is the hidden state of the previous time step and 𝑥𝑡 is the 
input of the current time step.

Input Gate: The input gate is the second sigmoid layer, which is 
integrated with the output of a tanh layer to add new information to 
the cell state. The output result of that tanh layer is a new candidate 
cell state, denoted by 𝐶∼

𝑡
.

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖), 𝐶∼
𝑡
= tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶 ).

The final updated cell state 𝐶𝑡 is obtained by

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶∼
𝑡

,

where 𝑓𝑡 is derived in the forget gate.

Output Gate: The hidden state of the last time step and the input 
variable of the current time step would then go through the output gate, 
which is also a sigmoid layer.

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜).

And the updated cell state obtained from the input gate is put through a 
tanh layer. Finally, by multiplying these two parts, the updated hidden 
state is output.

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡).

3.2. Marked neural temporal point process

To solve the problem of predicting the event marker and its occur-

rence time, Du et al. (2016) proposed the Recurrent Marked Temporal 
Point Process (RMTPP) and Xiao et al. (2017) introduced the Event Re-

current Point Process (ERPP), which are the two earliest marked neural 
TPP models. Thus, these two models will be considered to conduct the 
MOOC temporal interaction data analysis. Here, the rationales of the 
RMTPP and the ERPP are explained as follows.

In Section 2.2, we state that the interaction dataset has the following 
form

𝐷 = {𝑈1,𝑈2,⋯ ,𝑈𝑁},

where 𝑈𝑘 = {(𝑡𝑘1 , 𝑚
𝑘
1), (𝑡

𝑘
2 , 𝑚

𝑘
2), ⋯ , (𝑡𝑘

𝑘𝑖
, 𝑚𝑘

𝑘𝑖
)} are the data for the user 𝑘, 

and (𝑡𝑘
𝑖
, 𝑚𝑘

𝑖
) is one temporal interaction in pair, and 𝑡𝑘

𝑖
is the occurrence 

time point and 𝑚𝑘
𝑖

is the action marker (𝑖 = 1, 2, ⋯ , 𝑘𝑖).

The conditional intensity function of a TPP is denoted by 𝜆∗(𝑡). The 
basic idea behind a marked neural TPP is to not directly define an exact 
parametric form for 𝜆∗(𝑡). On the contrary, through the information 
propagation and iteration in the neural networks, an intensity function 
having a non-parametric or semi-parametric form can be derived.

After getting the conditional intensity function, the conditional den-

sity function can be obtained as follows.

𝑓 ∗(𝑡) = 𝜆∗(𝑡) exp
⎛⎜⎜⎝−

𝑡

∫
𝑡𝑛

𝜆∗(𝜁 )𝑑𝜁

⎞⎟⎟⎠ . (1)

The loss function is defined as the negative joint log-likelihood function. 
Utilizing the conditional density function 𝑓 ∗(𝑡), the loss function and the 
predicted next time point can be calculated by

∑∑( (
𝑘

) (
𝑘

))
4

𝑙 = −
𝑘 𝑖

log 𝑃 (𝑚
𝑖+1|ℎ𝑖) + log 𝑓 (𝑑

𝑖+1|ℎ𝑖) ,
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and

𝑡𝑗+1 =

∞

∫
𝑡𝑗

𝑡 ⋅ 𝑓 ∗(𝑡)𝑑𝑡,

where 𝑑𝑘
𝑖+1 is the inter-event time. The inter-event time is the final form 

for the time point sequence to be input into the recurrent layer.

The modelling structures of RMTPP and ERPP algorithms are given 
in Figure 3 of Du et al. (2016) and Figure 2 of Xiao et al. (2017), 
respectively. In the RMTPP model, the event marker is put through 
an embedding layer and then combined with time information. They 
are input together to the LSTM layer subsequently. For the ERPP algo-

rithm, there are two LSTM networks corresponding to time and event 
sequences, respectively. The outputs of the two LSTMs are integrated 
into an embedding mapping layer and then used to carry out the pre-

diction.

For the RMTPP model, the conditional intensity function 𝜆∗(𝑡) is de-

fined with a partially parametric form as follows.

𝜆∗(𝑡) = exp
(

v𝑡𝑇 ⋅ h𝑗 +𝑤𝑡(𝑡− 𝑡𝑗 ) + 𝑏𝑡
)

.

Then, substituting the conditional intensity function 𝜆∗(𝑡) to Equation 
(1), the conditional density function 𝑓 ∗(𝑡) can be written as

𝑓 ∗(𝑡) =exp
{

v𝑡𝑇 ⋅ h𝑗 +𝑤𝑡(𝑡− 𝑡𝑗 ) + 𝑏𝑡

+ 1
𝑤

(
exp(v𝑡𝑇 ⋅ h𝑗 + 𝑏𝑡) − exp(v𝑡𝑇 ⋅ h𝑗 +𝑤𝑡(𝑡− 𝑡𝑗 ) + 𝑏𝑡)

)}
.

For the ERPP model, it directly defines the loss function of time pre-

diction as a square loss. The loss function of event prediction is the 
cross-entropy loss function, which is defined as

𝐸 = −
∑

𝑗

𝑦𝑗 log(𝑧𝑗 ),

where 𝑧𝑗 is the probability vector output from the classification model 
and 𝑦𝑗 is the real class with one-hot coding. Thus, the total prediction 
loss is the sum of the loss for time prediction and the cross-entropy loss 
for the event.

3.3. Evaluation metrics

In the temporal interaction prediction, the time point prediction 
and the event prediction are a regression task and a classification task, 
respectively. Thus, different evaluation measures are supposed to be ap-

plied to them.

For regression problems, some commonly-used evaluation metrics 
include the Mean Squared Error (MSE), Mean Absolute Error (MAE), 
and Mean Absolute Percentage Error. In this paper, we will use MAE 
to evaluate the performance of time point prediction, which can be 
calculated by

𝑀𝐴𝐸 = 1
𝑛 × 𝑘𝑖

∑
𝑘

𝑘𝑖∑
𝑖=1

|𝑡𝑘
𝑖
− 𝑡𝑘

𝑖
|,

where 𝑛 is the total number of users included in prediction, and 𝑡𝑘
𝑖

is 
the real time point and 𝑡𝑘

𝑖
is the predicted value.

For the action classification, the precision, the recall and the F1 
value (Macro-average method for multi-class classification) can all be 
used to evaluate the performance of the models. The definitions of the 
performance metrics are given by

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 1∑𝑀−1
𝑚=0 𝐼#(�̂�𝑘

𝑖
=𝑚)≠0

𝑀−1∑
𝑚=0

#(�̂�𝑘
𝑖
= 𝑚𝑘

𝑖
= 𝑚)

#(�̂�𝑘
𝑖
= 𝑚)

, #(�̂�𝑘
𝑖
= 𝑚) ≠ 0,

and

𝑅𝑒𝑐𝑎𝑙𝑙 = 1
𝑀−1∑ #(�̂�𝑘

𝑖
= 𝑚𝑘

𝑖
= 𝑚)

, #(𝑚𝑘 = 𝑚) ≠ 0,
∑𝑀−1
𝑚=0 𝐼#(𝑚𝑘

𝑖
=𝑚)≠0 𝑚=0 #(𝑚𝑘

𝑖
= 𝑚) 𝑖
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Table 1

The description of the MOOC interaction dataset.

Variable Type Description Value

id (int) The user id 0-7,046

time Scale (float) The time point when the user took an action Start from timestamp 0 (Unit: 104 seconds)

action Nominal (int) The corresponding action taken by user 0-96

Fig. 1. The action sequences of user 0-3 in the MOOC interaction dataset.
where 𝑚𝑘
𝑖
∈ {0, 1, ⋯ , 𝑀 − 1} is the actual marker of the 𝑖-th occurring 

action for user 𝑘, �̂�𝑘
𝑖

is the predicted action, #(𝐴) stands for the total 
number of cases satisfying the criterion 𝐴, and 𝐼𝐴 is an indicator func-

tion where 𝐼𝐴 = 1 if 𝐴 is True and 𝐼𝐴 = 0 otherwise.

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
.

4. Data collection and processing

4.1. MOOC interaction dataset

The MOOC interaction dataset we will analyse is a processed version 
from Kumar et al. (2019). The original dataset is open-access and was 
used in the Knowledge Discovery and Data Mining (KDD-CUP) compe-

tition of the year 2015. Kumar et al. (2019) collected and processed 
the dataset for social networking study. The specific information of this 
dataset is provided in SNAP (2019).

The dataset focuses on 97 different user actions from 7,047 users 
of the MOOC platform. The data was collected across one month, and 
the final dataset has 411,749 temporal interactions in total. The in-

volved user actions include doing homework, watching videos, reading 
the Wikipedia of a course, discussing in the forum, browsing the content 
of courses, and finishing the quiz, etc.

There are 3 variables in this MOOC interaction dataset, namely, id, 
time, and action. For privacy protection, the users and the taken actions 
are coded by numbers starting from 0, and the occurrence time is also 
standardized as beginning from time point 0. The concrete description 
of the variables is given in Table 1.

The action sequences of the first 4 users in this dataset are plotted in 
Fig. 1 as examples. It can be observed that the sequence length varies 
from person to person; the user’s learning pattern is usually to conduct 
a series of actions during a very short period and then stays still for a 
period, and then continue to conduct a bunch of actions; and as time 
goes on, the time interval between clustered actions has a gradually 
increasing trend.

4.2. Exploratory analysis

This section is devoted to the exploratory analysis of this interaction 
dataset. The descriptive statistics of the 3 variables are presented in 
Table 2, including the mean value (Mean), the standard deviation (Std), 
the minimum/maximum value (Min/Max), the quartiles (25%, 50%, 
5

75%) and the count number (Count). It can be seen from Table 2 that 
Table 2

The descriptive statistics of variables in the MOOC interaction dataset.

Variable Mean Std Min Max (25%, 50%, 75%) Count

id 0 7,046 411,749

time 138.3 73.9 0 257.2 (78.5, 145.8, 201.2) 411,749

action 26 21.2 0 96 (8, 22, 38) 411,749

Table 3

The top 5 and last 5 users ordered by the length of action sequences.

Index Last Top

User ID Sequence length User ID Sequence length

1 1673 5 1181 505

2 1650 5 1686 470

3 6559 5 805 463

4 2690 5 2990 439

5 4339 5 2358 406

the 411,749 temporal interactions from 7,047 MOOC users are recorded 
properly. There is neither missing value in this dataset nor other type of 
dirty data such as inconsistent data. Thus, there is no need for additional 
data cleaning.

To better understand the learning actions of these 7,047 MOOC users 
during that one month, the length of the respective action sequence of 
each user (namely, the total number of actions taken by each user) 
is investigated. Table 3 lists the length of the 5 longest and 5 shortest 
action sequences and their corresponding users. The most active learner 
is the one with id number 1181, and he/she conducted 505 actions in 
one month; however, the laziest users have only operated five times on 
the MOOC website.

Fig. 2 is the box plot for the length of action sequences of the whole 
user community in this dataset. The median is 38 and the mean value is 
58. Most of the users have action sequences with lengths less than 100 
and only a small part of them took more than 200 actions.

From the perspective of 97 different actions, the count numbers of 
each action are shown in Fig. 3 and the detailed information of the 
top/last 5 most frequent actions is presented in Table 4. It can be 
found that the actions with smaller id numbers are performed more fre-

quently, but different actions are relatively evenly-distributed because 
the most frequent action taken by users only accounts for 4.7% of the 
total interactions.

Because the time interval between actions is an important concept 

in the research field of the TPP, here, we visualize the approximate 
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Fig. 2. The length of user action sequences in the MOOC interaction dataset.

Table 4

The top 5 and last 5 actions ordered by the frequency of actions.

Index Last Top

Action ID Total times Action ID Total times Percent (%)

1 93 87 8 19,474 4.7

2 92 95 7 16,352 4.0

3 94 107 21 16,182 3.9

4 89 122 9 14,709 3.6

5 90 128 3 14,566 3.5

distributions of the inter-action time from 3 users (see Fig. 4). Note that 
the unit of time here is second.

Fig. 4 shows that the density distributions of the time interval from 
different MOOC users have relatively similar shapes and trends; the 
distribution is relatively concentrated (i.e., the kurtosis is large) and is 
skewed to the left, and most of the inter-action intervals are distributed 
in the range of 0-50 seconds except for some extreme points, and the 
interval length is very close to 0, indicating that most actions were taken 
successively and followed by the next action quickly.

4.3. Data processing

In this subsection, the MOOC interaction dataset will be processed 
to satisfy the requirements of model inputs, mainly including two steps. 
The first one is to randomly split the whole dataset into 3 sub-datasets 
used for training (60%), test (20%) and validation (20%), respectively, 
where the training dataset will be used to train a prediction model, 
the validation dataset is used for checking the model convergence, and 
the test dataset is used for evaluating the performance of the model. 
The second step is to obtain time point sequences and action sequences 
with a pre-defined time step from these 3 sub-datasets.

The two steps of data processing are presented in Fig. 5.

Step 1: Due to the temporal correlation among interaction data of 
an individual, the records for each user cannot be split or reordered. In-

stead, we regard each individual’s data as one user block and then split 
the entire dataset via splitting different user blocks. Through generating 
random numbers, the order of user blocks is shuffled, but the temporal 
order of the time and action sequences for every user block remains 
unchanged. The training, validation and test datasets are obtained ac-

cording to the percentages set in advance (60%, 20% and 20%). Finally, 
there are 4,228 users in the training dataset, 1,409 users in the val-

idation dataset and 1,410 users in the test dataset. The descriptive 
statistics of the training, validation and test datasets are summarized 
in Table 5. After random splitting, the distribution of each variable 
in three sub-datasets is relatively close to each other, and in this way 
the effectiveness and generality of the trained model can be guaran-
6

teed.
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Table 5

The respective descriptive statistics for the training, validation and test datasets.

Variable Time Action

Training Validation Test Training Validation Test

Mean 137.8 140.2 137.9 27 26 27

Std 74.4 72.9 72.9 21.1 21.4 21.3

Min 0.0 0.7 3.8 0 0 0

25% 77.5 80.6 78.6 8 8 8

50% 144.9 147.8 145.1 22 21 22

75% 201.3 201.7 199.6 38 38 39

Max 257.2 257.2 257.1 96 96 96

Count 248,656 78,881 84,212 248,656 78,881 84,212

Table 6

The descriptive statistics of the standardized time for the training, validation 
and test datasets.

Variable Time

Training Validation Test

Mean 0.535 0.543 0.529

Std 0.289 0.284 0.288

Min 0.000 0.000 0.000

25% 0.301 0.311 0.295

50% 0.563 0.573 0.557

75% 0.782 0.783 0.772

Max 1.000 1.000 1.000

Count 248,656 78,881 84,212

Step 2: For each user block in each sub-dataset, we split the complete 
sequences of that user into several time and action sub-sequences with 
a specific time step. At each split, we move forward one unit to make 
full use of data information. For example, if we set the time step as 10, 
then the time and action sub-sequences are records with Index 1-10, 
2-11, 3-12... (See Fig. 5). On the one hand, the length of a user’s action 
and time point sequences varies from user to user, but the format of 
input data for the LSTM network requires us to specify the same time 
steps. On the other hand, the data created a long time ago is relatively 
obsolete for predicting the next step, because the closer the interaction, 
the greater the impact on the user’s decision-making.

5. Experimental results

In this section, the methodologies mentioned in Section 3, namely 
the LSTM, RMTPP and ERPP models are constructed based on the 
MOOC interaction dataset. The action and time sequences obtained 
from Section 4.3 are fed into the models and Fig. 6 presents the flow 
charts. Here, for these three models, the structure of model layers and 
the dimensions of each layer are set to be close to each other to facil-

itate the model comparison, and the detailed description will be given 
in the following subsections.

5.1. Long short-term memory

5.1.1. Model implementation

Two LSTM networks are built for time and action sequences respec-

tively. For the occurrence time prediction, the timestamps are first stan-

dardized to (0, 1) interval in the training, validation, and test datasets, 
respectively, to facilitate model training. The descriptive statistics of the 
standardized time for training, validation and test datasets are shown 
in Table 6. For the action prediction, one-hot coding is needed for each 
action in every interaction (See Fig. 6a). We consider the time step is 
equal to 10.

For the model structure, in the time prediction LSTM model, we set 
two LSTM layers, two Dropout layers and two Dense layers (see Ta-

ble 7). The dropout layer is a regularization technique which can be 
utilized to prevent a neural network from overfitting. The input di-
mension is just 1, and then the neuron units in each layer are listed, 
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Fig. 3. The counts of 97 actions in the MOOC interaction dataset.

Fig. 4. The distributions of inter-action time for 3 users in the MOOC interaction dataset.

Fig. 5. Data processing flow chart of the MOOC interaction dataset.
Table 7

The LSTM model structure of time prediction.

Layer Units Number of parameters

LSTM 64 16,896

Dropout 64

LSTM_1 128 98,816

Dropout_1 128

Dense 64 8,256

Dense_1 1 65

Total 124,033

respectively. The activation function is the Relu function and the loss 
function is the mean square error. The constructed model is visualized 
in Fig. 7 and the training parameters are given in Table 8.

While for the LSTM model used for action prediction (see Table 9

and Fig. 8), given that the matrix obtained by action one-hot coding 
7

is high-dimensional and sparse, an embedding layer is added to make 
Table 8

Training parameters for LSTM models.

Learning rate Batch size Training epoch

0.001 16 30

the information more compact and improve the efficiency of model 
training. Finally, two Dense layers output a predicted vector with 97 
dimensions. Note that in the second Dense layer, the activation func-

tion is the Softmax function to transform the multi-class classification 
results. The loss function is the categorical cross-entropy function. Other 
training parameters are also listed in Table 8.

5.1.2. Prediction results

We apply the trained models to the sequences in the test dataset. 
The results of the occurrence time and action prediction are given as 

follows.
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Fig. 6. The flow chart of model developing.

Fig. 7. The LSTM model structure of time prediction.
Time point prediction

It is revealed that the MAE between the predicted time point and 
the real occurrence time is 3.890 for the training dataset, and 3.814 for 
the test dataset. No over-fitting occurs.

To acquire an intuitive understanding of the prediction performance, 
the prediction results of the first 1,000 items in the test dataset are 
visualized in Fig. 9 and Fig. 10, respectively.

From Fig. 9, we can see that the first 1,000 values consist of multi-

ple time sequences from several different users; the plotted lines of the 
8

predicted time and the real time are close to each other and have sim-
ilar trends (increasing or nearly stable); the predicted time is slightly 
larger than the real time point in most cases.

Because the predicted value and the real time point are so close, 
although the predictive time point is larger on most occasions, the mag-

nitude of their difference is too small to distinguish. It can be seen in 
Fig. 10, most of the scatter points distribute around the diagonal line, 
indicating that the model performs relatively well. However, there are 
a small part of points showing the predicted time point is far less than 
the real time. The reason is that the prediction has an obvious lag when 

there is a big jump for the time value in the sequence of every user.
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Fig. 8. The LSTM model structure of action prediction.

Fig. 9. The comparison of real time and predicted time for the first 1,000 items in the test dataset-Part I.
Table 9

The LSTM model structure of action prediction.

Layer Output shape (Units) Number of parameters

Embedding (, 9, 128) 12,416

Dropout (, 9, 128)

LSTM (, 64) 49,408

Dropout_1 (, 64)

Dense (, 64) 4,160

Dropout_2 (, 64)

Dense_1 (, 97) 6,305

Total 72,289

Action prediction

The precision, the recall and the F1 value of the model for action 
prediction on the training and test datasets are listed in Table 10. Both 
9

the precision and recall are about 50%, which is relatively high for 
multi-class classification tasks. The performance of the model on the 
training dataset is similar to that on the test dataset, which can be ex-

plained from two perspectives. Firstly, the training and test datasets 
were divided evenly. As shown in Table 5, the distribution of data in 
the training and test datasets is really close to each other. Secondly, the 
precision and recall values are defined for the multi-class classification 
(97 categories in total) based on the macro-average method. As shown 
in Section 3.3, the precision (or recall) is obtained as the average value 
of correctly classified percentage for each category. This method can 
be greatly affected by categories with relatively small sample sizes, and 
thus the improvement on the training dataset is not significant, com-

pared with the test dataset.

The scatter plot of the first 300 actions and the heatmap for all the 
predicted actions in the test dataset are shown in Fig. 11 and Fig. 12, re-

spectively. About half of the square and triangle scatter points coincide 

with each other. The heatmap presents the confusion matrix in a vivid 
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Fig. 10. The comparison of real time and predicted time for the first 1,000 items 
in the test dataset-Part II.

Table 10

The model performance of action prediction for the training and test datasets.

Dataset Precision (%) Recall (%) F1 value (%)

Training 50.3 49.8 50.1

Test 49.6 48.8 49.2

way. In Fig. 12, the colour blocks in the diagonal line are relatively 
dark, and the prediction for the actions coded as the first 40 are more 
accurate due to their relatively larger sample size. The LSTM model can 
realize an effective multi-action classification for the MOOC interaction 
dataset to some extent.

5.2. Marked neural point process

5.2.1. Model implementation

The basic model structure for the RMTPP or ERPP algorithms is men-

tioned in Section 3.2. Specifically, the description of the recurrent layers 
is given in Table 11 and the visualization is presented in Fig. 13. Here 
the input time is the inter-action time interval instead of the occurrence 
time point (see Fig. 6b).

The structure shows that there is an Embedding layer for the input 
action, and then it is concatenated with the input time interval, which is 
then put through an LSTM layer to obtain a hidden state. Subsequently, 
three Dense layers are utilized to output the final prediction. The di-

mensions of the Embedding layer, hidden state and the first Dense layer 
are denoted by emb_dim, hid_dim and mlp_dim respectively in Table 11. 
Here, we set emb_dim = 128 and mlp_dim = 16, and let the model it-
erate 30 epochs. The sequence length, hid_dim, batch size and learning 
rate are the hyper-parameters we will discuss further.

The activation function is set to be the tanh function. The loss func-

tion is a function of time loss and event loss, and there is a multiplicative 
weight 𝛼 = 0.05 for time loss to balance the magnitude of these two parts 
of losses.

5.2.2. Prediction results

RMTPP model

To fully explore the RMTPP model performance, several experiments 
with different hyper-parameter schemes are conducted. The details of 
these hyper-parameter settings are shown in Table 12. The scheme with 
sequence length 10, hid_dim 64, batch size 16 and learning rate 0.001 
10

(indexed as Scheme I) can be viewed as a baseline scheme, which is the 
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same as in the LSTM models. And then, these hyper-parameters are set 
to be a series of different numbers in Scheme II-V. Table 12 highlights 
the differences between Scheme II-V and Scheme I, and gives the form 
of shorthand for each scheme in the last column. The model results will 
be observed under different scenarios.

In the training process of the RMTPP model, the loss values for the 
training dataset and the validation dataset in each iteration epoch are 
recorded. The results are presented in Fig. 14 (the subfigures on the 
left). At the end of every epoch, the trained model is evaluated on the 
validation dataset. The time error (namely MAE) for time prediction and 
the F1 value for action prediction are obtained. The iteration trends can 
be seen from the subfigures on the right of Fig. 14.

The trained models after 30 epochs are applied to the test dataset, 
and the evaluation results are summarized in Table 13.

From Fig. 14, some conclusions can be drawn:

(1) As the model iterates, the loss on the training dataset and that 
on the validation dataset decrease and finally tend to be stable. The F1 
value gradually increases in the iteration, while the time error fluctuates 
but shows an upward trend at the beginning of the iteration and it also 
finally reaches a steady state.

(2) The iteration trends of the RMTPP model are slightly different 
under different hyper-parameter schemes.

(3) In Scheme II, we can see the loss on the validation dataset keeps 
almost unchanged at the end, indicating a model convergence; however, 
the loss on the training dataset is continuously decreasing, although the 
decreasing speed gradually slows down. The model is a little overfit-

ting under the corresponding hyper-parameter setting. The hidden state 
with 128 dimensions may involve excessive parameters. The prediction 
results are not so good as well in this case (see the time error).

(4) If we try to add more information to the input data, namely 
increasing the sequence length and batch size, the subfigures (e) - (h) 
show the results. Increasing the batch size from 16 to 32 has almost 
no influence on the model performance, whether for the loss or the 
time error and the F1 value. While for sequence length, there is a slight 
improvement after it increases to 20. The time error is relatively steady 
in the iteration process.

(5) Compared with other schemes, the differences between the losses 
on the validation dataset and the training dataset in Scheme V are 
the smallest. In Scheme V with the learning rate of 0.0001, the model 
achieves the smallest error in predicting gap time; however, the action 
prediction doesn’t perform as well as the other four.

Applying the models to the test dataset, the same conclusions can 
also be drawn from Table 13. The time prediction of the RMTPP model 
performs the best in Scheme V, and the action prediction achieves the 
best performance in Scheme III. But the best performance on either one 
hand is always at the expense of the poor performance on the other. For 
instance, the indices of action prediction for Scheme V are relatively 
low. Overall, the model performance for Scheme I is the most balanced, 
which can be regarded as the most appropriate hyper-parameter com-

bination for the RMTPP model based on the MOOC interaction dataset.

ERPP model

In the ERPP model, the same hyper-parameter setting as in Scheme I 
is used to facilitate the subsequent model comparison. Similarly, Fig. 15

presents the iteration plots of training and validation losses as well as 
the evaluation on the validation dataset for every epoch.

From the loss curves, it can be observed that the ERPP model con-

verges well, and its convergence speed is faster than that of the RMTPP 
model. In the iteration process, the performance of action prediction is 
boosted gradually, while the time error keeps fluctuating between the 
interval (2.7, 2.9).

The well-trained ERPP model is then applied to the test dataset, and 
the evaluation results are listed as follows.

Time error (MAE): 2.638; Precision: 50.0%; Recall: 46.2%; F1 value: 

48.0%.
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Fig. 11. The comparison of real action and predicted action for the first 300 items in the test dataset.

Fig. 12. The heatmap of the comparison between real action and predicted action.
5.3. Model comparison

Based on the MOOC interaction data, three different algorithms, 
namely the LSTM, RMTPP and ERPP models, are applied to predict the 
next user action and its occurrence time, respectively. With the identi-

cal model configuration parameters (that is, 10-64-16-0.001), the three 
models are implemented, and the prediction results are summarized in 
Table 14, including the time error (MAE) for time prediction as well as 
11

the precision, the recall and the F1 value for action prediction.
Overall, all these three models can capture the features of MOOC 
interaction and then conduct effective temporal predictions for the next 
learning action and the occurrence time point.

Compared with the pure LSTM model, the performance of tempo-

ral interaction prediction with the RMTPP and ERPP models greatly 
improves, and the time error decreases from 3.8 to 2.4 or 2.6 (Unit: 
104 seconds). The LSTM model separately treats the time and action se-

quences, while the RMTPP and ERPP models describe them together 

using the marked neural TPP. Thus, the results indicate the importance 
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Table 11

The structure of the RMTPP and ERPP algorithms.

Layer Input and output dimension Description

Embedding 97 -> emb_dim Action embedding layer

Dropout

LSTM emb_dim+1 -> hid_dim Concatenate the embedded action and the time point

Dense hid_dim -> mlp_dim

Dropout_1

Dense_1 mlp_dim -> 97 The output for action prediction

Dense_2 mlp_dim -> 1 The output for time prediction

Fig. 13. The structure of the RMTPP and ERPP neural networks.

Table 12

The hyper-parameter combinations for the RMTPP model.

Scheme index Sequence length hid_dim Batch size Learning rate Labels

I 10 64 16 0.001 10-64-16-0.001

II 10 128 16 0.001 10-128-16-0.001

III 20 64 16 0.001 20-64-16-0.001
IV 10 64 32 0.001 10-64-32-0.001

V 10 64 16 0.0001 10-64-16-0.0001

Table 13

The model evaluation for different hyper-parameter schemes based on the test 
dataset.

Scheme index Time Error (MAE) Precision (%) Recall (%) F1 value (%)

I 2.479 51.2 49.2 50.2

II 2.593 51.8 49.3 50.6

III 2.520 53.7 49.4 51.4

IV 2.507 51.0 49.1 50.0

V 2.214 49.0 42.5 45.5

Table 14

The MOOC interaction prediction of the LSTM, RMTPP and ERPP models.

Model Time Error (MAE) Precision (%) Recall (%) F1 value (%)

LSTM 3.814 49.6 48.8 49.2

RMTPP 2.479 51.2 49.2 50.2

ERPP 2.638 50.0 46.2 48.0

of considering the correlation between time and action when predicting 
user temporal interactions.

Note that the way of considering the correlation between two se-

quences can drastically reduce the error in predicting the gap time, but 
there is almost no difference for action prediction. In these three mod-

els, The ERPP model performs the worst in terms of the recall and the 
F1 value.

From each model, the time prediction of the LSTM model has an 
obvious lag when the user’s inter-action time interval increases remark-

ably, which is one of the reasons for the relatively large time error of the 
LSTM model. And that is also a difficult point for temporal interaction 
prediction.

Both the RMTPP and ERPP models are developed based on the 
MTPP, but they have different model performances. The neural net-

work structure and the hyper-parameters influence the final prediction 
accuracy.

Besides, from the loss curves in the iteration process of the RMTPP 
and ERPP models (see Fig. 14 and Fig. 15), it can be observed that in the 
12
first few epochs, the model loss on the validation dataset is slightly less 
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Fig. 14. The iteration results of the RMTPP model under different hyper-parameter schemes (Figure continued on next page).
than the training loss. That is because when we train the models, the 
loss values of the model on the training dataset are set to be collected at 
the end of each batch (namely during each epoch), while those on the 
validation dataset are recorded after each epoch. Shifting the training 
loss curve 1/2 epoch to the left would make it closer to the real situa-

tion (Rosebrock, 2019), but this doesn’t affect model performance and 
prediction results discussed above.

6. Discussion

To simultaneously predict users’ next interaction and the occur-
13

rence time to that interaction, the LSTM network, RMTPP model and 
ERPP model are developed respectively, and their performances are 
compared. Through comprehensively exploring the MOOC interaction 
dataset and analysing the experimental results, the two research ques-

tions mentioned in Section 1 can be answered, and some insights are 
obtained here.

Q1: Exploration of learning patterns with temporal information

The descriptive statistics of MOOC users’ usage behaviour in one 
month are obtained via data exploratory analysis. Combining with 
temporal information, the users’ overall active frequency or the learn-

ing frequency for each action can be derived, which undoubtedly 
brings us more valuable information to understand users’ learning 

behaviour.
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Fig. 14. (continued)

Fig. 15. The ERPP iteration results with the sequence length 10, hid_dim 64, batch size 16 and learning rate 0.001.
Besides, the distribution of the inter-action time (i.e., time interval 
between two adjacent actions) is another issue worthy of in-depth dis-

cussion. From the sequence plot (see Fig. 1), we can see that the time 
intervals between two actions are distributed unevenly. For each user, 
some actions are conducted in a very short period (just several seconds); 
however, there are also some actions that occur at long intervals. This 
phenomenon, which widely exists in the MOOC dataset, reflects learn-

ers’ learning patterns to some extent, and it also poses a big challenge to 
time point prediction. On the other hand, the length of the time inter-

val of an action might have a direct correlation with the corresponding 
14

conducted action. For example, after an action of completing a course, 
the time interval for the user to be active again could be relatively 
longer.

Q2: The correlation between action and occurrence time, and tem-

poral model construction

As mentioned above, the learning action and its occurrence time re-

late closely with each other. Considering the correlation between the 
time and action sequences and inputting them into the neural networks 
simultaneously, the RMTPP and ERPP models achieve a great improve-

ment in terms of time prediction compared with the commonly-used 
LSTM model. The performances of action prediction for the three mod-
els are relatively similar but the RMTPP model performs best. Therefore, 
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we can conclude that the correlation between the action and the occur-

rence time point plays an important part in interaction prediction, for 
it helps significantly improve the accuracy of prediction.

With the appropriate hyper-parameters, the RMTPP model outper-

forms the two other algorithms. Applying the well-trained RMTPP 
model to the test dataset, the MAE of time prediction is around 2.4 
(Unit: 104 seconds) and the action recognition rate reaches about 50% 
for 97 different actions. The models introduced here can realize effec-

tive MOOC temporal interaction prediction, and the marked temporal 
point process (MTPP) model is applicable to characterizing the tempo-

ral interaction data.

Real-world implications and instructions

In practice, accurately predicting the user’s next action and its oc-

currence time point can help teachers in their teaching activities. For 
example, during the learning process of an online course, an abnor-

mally predicted long time interval implies that students are at risk of 
dropping out of that course or may have relatively poor performance 
in the final assessments. Anomalous learning behaviours need noticing. 
Besides, the results of action prediction can be consulted for sequenc-

ing interactions of an online course, and then the MOOC system can 
generate corresponding real-time recommendations in light of the pre-

dicted user’s interaction(s) at the next step or the next several steps. 
Combining the action prediction with the occurrence time prediction, 
some essential details, such as average time spent per interaction, are 
obtained, and then users’ learning habits or learning styles can be ac-

cordingly defined.

More importantly, in terms of the recommendation system, most ex-

isting work mainly considers the next item(s) that can be recommended 
to users. However, the recommended time is ignored. In fact, recom-

mending relevant items without paying attention to time points when 
they are really needed is not able to achieve good results. Any action 
needs some time to be conducted and any item needs a period of time 
to be used. For instance, if a user is learning a basic machine learning 
module on the MOOC platform, he/she would not quickly move to a 
more advanced module until the basic one is finished. Similarly, if a 
customer has bought a computer online, as time goes on, ideally, com-

puter decorative accessories, maintenance accessories and then even a 
new computer product are supposed to be recommended chronologi-

cally when the customer needs them the most. Therefore, when making 
predictions and recommendations, it is important to consider not only 
the sequential nature of the data but also their temporal characteristics. 
Recommending an appropriate item at an appropriate time is a core and 
essential issue.

This paper highlights the importance of temporal information and 
the importance of considering the correlation between several inter-

ested indices in the prediction task. Thus, in the real-world application 
or future research work, multiple factors and their interactions should 
be focused on simultaneously and more multivariate prediction models 
are waiting to be proposed.

7. Conclusions

This paper focused on MOOC temporal interaction prediction, with 
the aim to predict a user’s next action and the occurrence time to the 
action. Three neural network models were used: the long short-term 
memory (LSTM) network, and two classical marked neural TPP models, 
namely, Recurrent Marked Temporal Point Process (RMTPP) and Event 
Recurrent Point Process (ERPP).

For each algorithm, the model structure and the configuration pa-

rameters were stated. Especially for the RMTPP model, the model per-

formances under different hyper-parameter schemes were investigated. 
The prediction performances of these three algorithms were then given 
and compared.

Through introducing the related concepts and conducting the pre-

diction experiments, the MOOC temporal interaction prediction were 
15

investigated in depth and relatively good prediction results have been 
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achieved. As mentioned before, the analysis of online interactions is es-

sential for designing online courses and sequencing key interactions. 
In the research fields of education and learning sciences, this paper 
dealt with the prediction of users’ interactions from a brand-new per-

spective of integrating temporal information and then introduced the 
marked temporal point process (MTPP) to describe online learning in-

teractions. Based on the concept of the MTPP, the RMTPP and ERPP 
models, which are able to concatenate information on user actions and 
their occurrence times, were tailored and applied in the field of on-

line education. We found that in this prediction task, the time interval 
between two consecutive actions is partly decided by the correspond-

ing category of action, while the action that will be taken is relevant 
to the time interval/occurrence time point as well. Namely, they are 
inextricably linked. It provides a reference for further study that fully 
considering the correlation between the interested indices and other 
temporal/spatial features can be informative and helpful. In terms of 
its contributions to artificial intelligence, we authenticated the appli-

cability of MTPP and the effectiveness of RMTPP and ERPP models 
on online interaction prediction compared with traditional LSTM net-

works. For marked neural TPP models, the layer structure and the 
hyper-parameters configuration were deeply explored based on a real 
dataset. The application scope of algorithms mentioned in the paper has 
been further improved.

Nevertheless, there are still some limitations in this paper. First, 
the corresponding action for each action ID is masked in this dataset 
for the sake of protecting users’ privacy, so a more detailed user be-

havioural analysis has not been considered in this paper. Second, the 
proposed algorithms are applicable to temporal interaction prediction, 
but their performance heavily depends on the configuration parameters 
and model structure. This paper only considered five different schemes 
for the RMTPP model, and these three models are set to be implemented 
under a similar model structure to facilitate model comparison. Thus, 
the results are not necessarily the optimal ones.

In the research field of online education, MOOC temporal interaction 
prediction has not been concerned sufficiently. Utilizing machine learn-

ing and deep learning algorithms for such prediction is worth studying 
further. In our future work, we will develop novel algorithms to im-

prove the performance of prediction.
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Appendix A

Pseudocode of the RMTPP and ERPP algorithms

Input: Model training hyper-parameters; Model layer dimensions

Class MTPP_RNN(): # Construct the model

def __init__(self, config, . . . ): # Model structure

Embedding->Embedding Dropout->LSTM->Dense layer->

Dropout->Action prediction & Time prediction

def Loss Functions():

Action – Cross Entropy Loss

Time – RMTPP: Joint Log-likelihood Function; ERPP: MSE Loss

def Optimizer(): Adam

def Train Batch(Batch):

Model Outputs = model.forward(Batch)

Time Loss, Action Loss = model.Loss Functions(Model Outputs)

Total Loss = alpha * Time Loss + Action Loss

Total Loss.backward()

Optimizer()

Return Time Loss, Action Loss, Total Loss

def Validation Loss(Batch):

Model Outputs = model.forward(Batch)

Time Loss, Action Loss = model.Loss Functions(Model Outputs)

Total Loss = alpha * Time Loss + Action Loss

Return Time Loss, Action Loss, Total Loss

def Predict(Batch):

Model Outputs = model.forward(Batch)

Return Predicted Time, Predicted Action

End

def Evaluate(Dataset):

For each Batch in Dataset:

Predicted Time, Predicted Action = Model.Predict(Batch)

End

Time Error = mean(abs(Predicted Time – Actual Time))

Precision, Recall, F1 value = Compare(Predicted Action, Actual 
Action)

Return Time Error, Precision, Recall, F1 value

Input: Training, Validation and Test MOOC datasets

Model = MTPP_RNN()

For i in 1 To NumEpoches

Model.train()

For each Batch in Training dataset:

Time loss, Action loss, Total loss = Model.Train Batch(Batch)

Record Time loss, Action loss, Total loss for this Batch

End

Record Time loss, Action loss, Total loss for Training dataset in i-th 
epoch

For each Batch in Validation dataset:

Time loss, Action loss, Total loss = Model.Validation Loss

(Batch)

Record Time loss, Action loss, Total loss for this Batch

End

Record Time loss, Action loss, Total loss for Validation dataset in 
16

i-th epoch
Computers and Education: Artificial Intelligence 4 (2023) 100133

Time Error, Precision, Recall, F1 value = Evaluate(Validation 
dataset)

End

Time Error, Precision, Recall, F1 value = Evaluate(Test dataset)
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