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Abstract

A primary topic of focus for Brain-Computer Interfaces (BCI) research is to accurately clas-

sify EEG signals associated with various motor imagery (MI) activities. Difficulties such as

intra- and cross-subject variability, and restricted open-access data availability make estab-

lishing firm findings challenging. Deep learning approaches have gained widespread use in

various application fields, including natural language processing and computer vision. We

are interested in improving the performance of traditional classification methods in EEG-MI

and the reliability and robustness of EEG-MI classification utilising deep networks.

This thesis presents two frameworks based on deep Convolutional Neural Networks (dCNN).

The first is a spectrogram and dCNN-based method that provides the network with infor-

mation about the EEG data’s power spectrum. The second is a topographical map and

dCNN-based method capable of retaining the spatial, temporal, and spectral information

contained in the data fed to the dCNN.

The spectrogram based method with a 2-class MI classification problem performed with

an average model accuracy of 91.81%, across individual participants. Results for the to-

pographical maps based method demonstrate that it is capable of robustly and accurately

identifying MI for two and three-class datasets and provides a feasible method for BCI appli-

cations employing EEG-MI. We concluded in this investigation that for two-class MI datasets

the proposed topographic and dCNN framework was able to generalise across individuals

in a dataset, with its best performance at 94.12%. For the three-class MI datasets the best

performance was 98.48%.

As part of our future research, we intend to collect data from a variety of patients with

varying cognitive abilities in order to further validate and refine the model. The use of active

electrodes has shown promise in the literature; incorporating them into the data collection

process may help to alleviate some of the shortcomings currently observed with inactive

electrodes.
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1

Introduction

1.1 Purpose

The World Health Organisation (WHO) reported in 2011 that more than one billion people

worldwide suffer from some form of disability. Of those, nearly 200 million experience

difficulties in functioning. The 2011 WHO report explained that disability is on the rise due

to the increased ageing populations and those with chronic health conditions which may

have an associated disability [1]. The increase, as mentioned in [1], is reflected in the survey

conducted in the UK between 2019 and 2020, where 14.1 million people reported having a

disability, up 2.7 million from 2009 and 2010, when 11.4 million individuals reported having

a disability. The percentage of people who reported a disability climbed to 22% in 2019-2020,

up from 19% in 2009-2010 [2].

Mobility limitations are the leading cause of functional limitations in adults. Between 2014

and 2015, in the United Kingdom, it was recorded that mobility-related disabilities accounted

for 53% of the total reported instances. Though disability has no gender bias, the possibility

of developing a disability increases with age. Within the general population, 45% of adults
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above pension age have a disability. For working-age adults, this figure sits at 16% and for

children at 6%. Only 17% of the total persons have had a disability from birth [3]. Mobility

difficulties are also strong predictors for those who may have difficulty with activities of

daily living. A variety of neurological issues such as motor neuron disease, stroke, spinal

cord injury or acute brain injuries may lead to some form of paralysis. This may deny them

the possibility of using conventional assistive devices for functional movements, such as a

joystick to control a wheelchair or exoskeleton.

From the synthesis of personal computing in the 1970s, researchers have endeavoured to

narrow the gap between humans and computer technology. The process initially started

with the development of graphical user interfaces and computers [4]. Such individuals

would benefit from a Brain-Computer Interface (BCI) solution and significantly boost their

autonomy and ability to interact with the world. BCI represents a communication relay

between a human and a computer - it offers the subject a means of interacting with the

surrounding environment by interpreting signals generated by a person’s brain.

The first BCI was suggested in 1964 by Dr Grey Walter. He conducted an experiment where

he found that by connecting electrodes to the brain’s control centres (which he had previ-

ously found through another investigation), i.e. the motor cortex, the patient in question

could control a slide show projector to flip to the following image. BCI research was limited

at the time, but the importance has since grown to be known, having radically expanded.

The applications of BCI have since grown beyond just being a tool of communication and

control for those who cannot otherwise communicate; one of the more popular utilisation is

hands-free gaming [5]. This is why the idea of BCI based assistive control has been of great

interest, as it requires no muscular movement, and the directional commands rely on the

electrical activity generated by the brain.

BCI systems consist of six stages: brain activity measurement, pre-processing, feature ex-

traction, classification, translation into commands and feedback. The work presented in this

PhD thesis belongs to the framework of BCI research. It focuses on the research of EEG data
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processing and classification techniques to create and implement BCI for engaging with as-

sistive technologies.

BCI techniques have various applications and can vary significantly in the level of invasive-

ness of the electrodes. Highly invasive techniques imply the insertion of electrodes into or

just above the cortex through neurosurgery. Such measures imply a high level of risk and

generally only find applications in scientific research and for medical purposes, such as deep

brain stimulation for managing Parkinson’s disease or severe epilepsy.

Non-invasive BCI techniques imply acquiring signals from the brain through electrodes

placed on the scalp, such as Electroencephalography (EEG), to detect electromagnetic waves

created by the brain or using functional magnetic resonance imaging (fMRI) by monitoring

blood flow in different regions of the brain. The vast majority of studies have focused on

EEG based BCI interfaces.

Electroencephalography is one of the most widely used methods for recording the electrical

activity of the brain. The analysis of physiological signals such as EEG has been helpful

in the diagnosis of brain illnesses such as epilepsy, dementia, stroke, and brain tumours

[6]. EEG is a popular choice for use in BCIs due to its high resolution, relative ease of use,

portability, and cost-effectiveness compared to other methods. However, EEG signals pose

challenges whilst processing. Due to their static nature, they are prone to suffering from

external noise and signal artefacts. EEG signals, the electrical activity measured from the

scalp, are also affected by mood and even the posture of a subject [7].

Due to advancements in EEG headset technology, it is now possible to gather EEG data

more readily. EEG sensor technology is available at a low cost, with products developed

by the entertainment industry, but also aimed at health and well-being, and education [8].

Although BCI can be designed to use EEG signals in a wide variety of ways, MI-BCIs have

been subject to extensive research [9]. Subjects visualise movements occurring to their limbs

to control a system using this MI-BCI. This interest is due to their broad applicability in

areas such as neurorehabilitation and gaming, where the decoding of subjects thoughts of
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imagined movement would be extremely useful [10, 11]. MI EEG–based BCI is a promising

technology due to the multitude of use cases in medical and non–medical areas.

The MI-based BCI application entails the real-time interpretation of EEG data and the de-

termination of responses to such signals. The curse of dimensionality problem [12] arose

from non-stationary signals, multi-channel recording paradigm, channel correlation, and

the presence of noise and artefacts while analysing EEG signals. As a result, robust and

fast systems are needed to extract latent variables from physiological inputs. The imple-

mentation of MI EEG signals in real-world systems, in particular, is fraught with difficulties

[13].

Artificial Intelligence (AI) has shown considerable promise in interpreting and analysing

EEG data due to significant computational capacity advances. EEG data refers to the elec-

trical activity measured from the scalp that reflects the activity of neurons in the brain. Ma-

chine Learning (ML), a subset of AI, is the ability of a complex algorithm to learn from

provided data without being explicitly programmed [14]. For a long time, researchers have

employed conventional neural networks (NNs) to automate various tasks. With the expo-

nential growth of all digital data kinds (time-series signals, pictures, and videos), however,

it is quickly apparent that NNs are insufficient to cover all stages of variability within a

vast amount of data [15]. Deep learning (DL) techniques for evaluating large-scale datasets

have recently sparked a revolution [13]. Whereas, unlike standard NNs, DL approaches

can learn a vast number of the essential parameters for extracting meaningful and in-depth

information. Furthermore, DL does not rely on time-consuming, subject-dependent [16]

hand-engineered techniques of extracting features, where you may suffer from loss of infor-

mation.

Deep neural networks (DNNs) require a considerable number of learn-able parameters and

intensive floating-point matrix multiplication [17, 18, 19]. The computing system is put un-

der much strain as a result of this. Typically, the research incorporates graphical processing

units (GPUs) to tackle the problem of heavy computation. DNNs are trained by instances,
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necessitating a big enough training dataset with various examples that are not biased to

some instances. The lack of large enough datasets is the main challenge that prevents re-

searchers from applying DL using MI EEG signals. The existing MI EEG datasets, on the

other hand, are recorded for multiple people and only comprise a small number of MI trials.

MI trials refer to a type of experimental task used in BCI research.

In particular, Convolutional Neural Networks (CNN) are highly effective at detecting com-

plex features and patterns in images for image classification. Innately complex properties

and non-linear interactions between these variables can be modelled inherently by the deep

network, composed of multiple layers of neurons. Given that brain patterns in EEG are

complex and non-linear, DL approaches can achieve a greater success rate in the classifica-

tion of these patterns than traditional methods. Aside from that, constant data recording in

BCI systems generates a large amount of data crucial in the training of DNNs. EEG signal

acquisition is used to examine BCI systems in this study, which is the first of its kind to do

so. The primary goal of this thesis is to investigate the signal processing component of BCI.

Specifically, MI signals are used in this study in order to control the BCI system.

DL algorithms were researched for the classification of brain patterns associated with MI.

BCI signals are acquired, processed, and fed back to the user through EEG signals; this is

accomplished through a series of studies in which MI is used to control BCI, and DL methods

are utilised for signal processing. Examples are required by learning algorithms in order for

them to infer the underlying statistical structure of the respective brain state. To achieve

a specific brain state repeatedly throughout a calibration session, subjects are required to

perform the following tasks: Current learning machines are capable of extracting spatio-

temporal blueprints of these brain states from even little quantities of data, which may then

be used in the subsequent feedback session to improve the accuracy of the predictions.

A key issue in BCI research is dealing with the enormous variation from trial to experiment.

This endeavour requires the use of advanced ML techniques such as deep learning, which

are critical in this process. It is possible to achieve high decision accuracy for BCI by utilising
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state-of-the-art learning machines; however the classification process produces a by-product

that identifies the few most salient traits for classification, which may then be paired with

neurophysiological information. Therefore, ML approaches are valuable beyond the pure

classification or adaptive spatio-temporal filtering stage, as they can contribute to a better

interpretation and understanding of a novel paradigm that is being studied.

1.2 Thesis Objectives

The focuses of this thesis is on investigating the improvements in accuracy and robustness

that can be made to state–the–art DL methodologies. Recent successes in image classifica-

tion have used dCNNs designed to exploit invariance and capture compositional features

in data. For the most part, these systems were equipped to handle image data or audio

data. This research explores if we are able to accurately and robustly classify EEG signals

associated with various MI activities.

There are two principal aims of this research. Firstly, the improvement on results from clas-

sic EEG MI signal classification techniques using deep learning methodologies. Secondly,

improving the reliability and robustness of MI EEG signal classification using DL networks.

This thesis explored the use of EEG data representations as inputs to deep networks for

MI classification. It also explored the possibility of a model which could generalise over

multiple users in a dataset, as opposed to the current literature which aims to classify on

individual subjects.

The author was motivated to empower users who are unable to use conventional assistive

technology control inputs. By aiding users with motor impairments in training and rehabil-

itation and interacting with smart technology solutions to improve their quality of life, and

diversify the way we interact with technology. Through two studies, this research aims to

address the challenges in classifying EEG images. The experiments explore spatial, tempo-

ral and frequency variants of the data in order to provide the most suitable format which
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can be appropriately trained by the model.

Two principal approaches were explored to attempt and address the research questions.

The first proposed approach aims to use generated spectrograms as an input to a CNN ar-

chitecture for MI classification. The second approach explored a classification pipeline for

modelling user intentional events from multi-channel EEG time–series data. The proposed

approach preserves the spatial, temporal and spectral structure of EEG. One of the chal-

lenges of modelling cognitive events from EEG is finding representations that are invariant

to differences in one particular subject’s data, and also between subjects, and the noise asso-

ciated with data collection. An overview of the two approaches and their respective research

questions is summarised as follows:

Study 1: Application of deep CNN networks in the interpretation and analysis of EEG MI

signals represented as windowed spectrogram images. The salient research questions of the

study are as follow:

1. Would providing a spectrogram, frequency, representation of EEG signals to a deep

network improve on results obtained from classical ML and state–of–the–art method-

ologies?

2. Is a frequency only representation enough to extract relevant features by the deep

model?

Study 2: Application of deep networks in the interpretation and analysis of EEG MI signals

represented as topographical maps. The salient research questions of the study are as follow:

1. Would providing a topographical representation of MI EEG signals to a deep network

improve on results obtained from classical ML using state–of–the–art methodologies?

2. Are we able to find a robust model which is able to generalise over all the subjects, and

would not be required to train on an individual subject-to-subject basis?
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The open-source datasets chosen for these experiments will be discussed further in Chapter

2, section 2.11. These have been selected due to their popularity for benchmarking analysis

and have become well-used within this research area. Thus, we are able to compare results

between given data pipelines and models accurately.

1.3 Contributions

There were three main contributions of this thesis: Firstly, the development of a novel and

robust dCNN network which has the ability to generalise over multiple subjects. It has

the ability to classify MI EEG data, where two class models achieved up to 95% accuracy.

The model achieved results which were on par with state-of-the-art models. Secondly, the

transformation of raw data to topographical and spectral representations as an input to the

created dCNN network. Thirdly, the creation of a novel classification pipeline and subse-

quently feeding into a DNN, which showed improvements when compared to state-of-the-

art deep learning models.

1.4 Thesis Structure

By addressing the difficulties inherent in the processing and interpreting EEG data contain-

ing MI, this research seeks to improve on conventional ML approaches and state-of-the-art

DL procedures.

As a starting point, the Literature Review (Chapter 2) discusses the current state of the lit-

erature on EEG MI data, analysis approaches, BCIs and their applications in healthcare, and

the difficulties that researchers encounter when analysing such data. We discuss machine

learning in the context of classifying EEG data. DL is introduced along with its significance

in the healthcare industry and in the field of research into EEG classification. This chapter
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discusses in detail the state-of-the-art strategies for analysing EEG MI data that employ deep

learning techniques.

In the Spectrograms EEG representations chapter (Chapter 3), we examine a DL framework

inspired by recent promising results for image classification. We use dCNNs to exploit in-

variance and capture compositional elements in EEG signals. Historically, dCNNs have

been largely employed to manage image or audio data. An objective of our research is to

apply dCNNs on EEG spectrograms, to correctly classify user intentions. The methodology

effectively treats EEG channel data as an audio representation, and the suggested method is

modelled after analogous applications using DNNs in that domain. Throughout the course

of this study, several DNN models were explored.

A different approach explored through our research is discussed in the Topographical EEG

Representations chapter (Chapter 4). This consists of transforming EEG signals into topo-

graphical images which are then used as inputs to a deep network. These representations

are subjected to analysis by the trained DNN model, and we investigate the experimental

results over a series of datasets. Finally, we conclude which framework and model work

best against the given topographical representations. We explain the results obtained for

both individual subjects and as a generalised model across the entire dataset.

In the Concluding Remarks and Recommendations for Future Work (Chapter 5) we sum-

marise the work done throughout this investigation and bring the findings to a close in

Chapter 5. The difficulties in research and development, the shortcomings of testing method-

ologies, ethical considerations, and the issues that limit widespread adoption and commer-

cialisation are further explored. Additionally, work beyond the conclusion of this research

is explored, emphasising the creation of improved DL methods and alternative approaches

for the classification of EEG data in the future.
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2

Literature Review

This chapter explores the current literature and concepts used within the course of this re-

search. Previous works in the fields of electrode systems for recording EEG signals, MI as a

classification tool and the current state of the art in these areas of research are explored.

First, sections 2.2, 2.3 and 2.4 provide an overview of the MI, principals of a BCI system

and measuring brain activity, respectively. Further to this, sections 2.5 and 2.6 cover the

introduction to traditional ML and the applications of MI EEG in current literature. We

also explore the limitations of conventional ML and how these can be addressed with the

use of DL methodologies. Section 2.8 provide a background in the concepts of DL, NNs,

and the related MI-EEG background in the state-of-the-art. Section 2.2 describes the current

state of the art in MI based systems. Section 2.9 provides an overview of the current pre-

processing techniques which are used within literature when handling EEG signals. Finally,

we introduce the open-source MI-EEG datasets which were used during the course of this

research in Section 2.11.
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2.1 Introduction

EEG is a non-invasive clinical method that neurologists and physicians have routinely utilised

for decades to diagnose brain-related illnesses such as epilepsy and seizures [20]. However,

manually annotating clinical data is time-consuming and expensive, requiring highly qual-

ified board-certified neurologists in short supply. It is known to be quite a tiresome task

[20].

EEG signal interpretation is quite subtle and difficult to decipher, thus making human errors

probable [21]. Much of the information acquired is now available in digital format due to

recent advancements in EEG technology. However, there are just a handful of publicly ac-

cessible datasets. While acquiring EEG data for processing remains challenging, the amount

of data available has steadily increased. The advancement of technology necessitates hiring

trained experts to read the data, hence increasing the possibility of inaccuracy [22].

Automated EEG data analysis can assist humans in providing intelligent solutions via the

use of AI, which can be aided by technological advancement. AI can engage in human-like

thought patterns, allowing it to learn, reason, and self-correct the same way humans do

[23]. Davenport [24] divided AI into three different subgroups: process automation, cogni-

tive insight and cognitive engagement. Process automation is the automation of digital and

physical tasks. Cognitive insight is using automation algorithms, such as ML algorithms, to

detect patterns in large data and interpret their meaning. Finally, cognitive engagement is

used in projects which engage using natural language processes.

In recent years, ML has been applied to EEG data as a subcategory of AI. On the other hand,

conventional ML techniques are constrained by the requirement to extract features to train

a model manually. This time-consuming process requires prior knowledge of the domain

from which the features are being extracted, among other requirements.

A more recent addition in the field of AI comes in the form of DL. Because of advances in

technology, it has gained significant traction and attention in the last decade. An advantage
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of DL is that it allows for automated data analysis to be performed, and features do not need

to be manually extracted before being passed to the model. On the other hand, the training

data must be of high quality and annotated appropriately. Both ML and DL have been

successful, given an abundance of data, such as object identification and voice recognition,

and both have been successful in other situations [25]. However, due to a scarcity of freely

available EEG data in the research sector, its application in this context was limited.

EEG data can be utilised for a variety of different purposes, including diagnosis and treat-

ment in medicine. It can be used to aid in clinical diagnosis via the increasingly prevalent

use of brain imaging techniques. Through the use of activation characteristics research, it is

possible to observe the engagement of a specific brain region and the involvement of physi-

ological or cognitive activity. Analysed EEG data can be used to ascertain the characteristics

of a person’s brain state, such as whether they are acting willingly or involuntarily, first to

target specific BCI applications [26].

EEG data can be processed in the time domain, frequency domain, or spatial domain, de-

pending on the approach used. We sought to investigate EEG data in both the frequency and

spatial domains in this research. The most natural way to handle EEG data is to take a time-

domain waveform of the multi-channel signal. This is the method via which the majority

of EEG acquisition equipment stores data. However, deriving usable information directly

from waveform data is generally impractical. Despite almost two decades of research to-

wards automatic classifiers, qualified technicians may discover anomalies directly from raw

EEG waveforms in the medical industry [27].

There is BCI-based research that analyses time-domain data. In this field, the use of common

spatial pattern (CSP) filters was pioneered. Using simultaneous diagonalisation of two ma-

trices, this approach partitioned the signal into subcomponents with the greatest variance

differences [28]. This has achieved well–recognised results, especially in [29, 30] which fur-

ther introduced more methodologies. Additionally, CSP inspired EEGNet, a modern DNN-

based classifier. According to the article, one advantage of processing data directly in its
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raw form is avoiding the computational overhead associated with data transformation into

a different domain or format [31].

EEG analysis for research purposes is usually performed in the frequency domain. Oscilla-

tions along the time axis reflect underlying brain activity and noise introduced by artefacts

and other unforeseen factors. By sacrificing temporal information, we can extrapolate cer-

tain frequency distribution and power spectrum features that are more prominent than those

of time-domain wave bursts and oscillations. When data is transformed from the time do-

main to the frequency domain, data with unusual variance within the time domain can be

discarded. As a result, it is possible to develop significantly more sophisticated biomarkers.

Numerous physiological and cognitive breakthroughs have been made due to event-related

potential (ERP) and event-related spectral perturbation research [32]. The time-domain

to frequency-domain transformation is typically accomplished using the discrete Fourier

transform (DFT), the fast Fourier transform (FFT), or wavelet transforms. Wavelet analy-

sis frequently analyses both the frequency and time scales, implying that it is not a purely

frequency-oriented methodology. Specific frequency bands are of particular interest in cur-

rent research to ascertain the relationship between specific brain activities or functionalities

[32, 33, 34, 35, 36].

In order to suppress artefacts and increase the signal–to–noise ratio, pre–processing of the

EEG signals is general practice before further processing the EEG data A.2. As mentioned

previously, there are a limited amount of available datasets, even more so, there are an even

smaller amount publicly available MI EEG recordings.

Within literature, there are two popular techniques which have been applied attempting

to increase the performance accuracy of these datasets. First, using a transformation state

before the deep network structure. Techniques such as CSP [29], FFT [33], STFT [37] or CWT

[38] have been widely examined. This has been observed to be the preferred methodology

for researchers. The second option is transfer learning [39], however this required a large

network to be pre–trained using another dataset before being re–trained through MI EEG
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dataset.

2.2 Motor Imagery

Humans have the ability to imagine anything if they have any experience related to - an

action, an object or a scenario. All movement by the human body which occurs voluntarily

begins as thought–based on intention. Some may have the ability to imagine actions, but

may not have the physical ability to action them.

MI is the cognitive process where a person imagines a motor action without executing the

movement in question. This process requires the activation of certain areas of the brain

which are dedicated to the preparation and execution of movement - the motor cortex. It

has been widely accepted that similar areas are active during the mental imagery or phys-

ical movement of the same motion. MI trials are a type of experimental task used in re-

search of BCI. Imagining motions of the right hand, left hand, right foot, left foot, both feet,

and tongue are the most commonly employed MI activities in research. Many other tasks,

such as those related to the elbow, fists, and fingers, are also investigated. The purpose of

these trials is to observe changes in brain activity patterns as a result of the mental imagery

task, which can then be used to control BCI devices or for other purposes. The EEG signals

recorded during motor imagery trials can provide information about the neural activity as-

sociated with specific types of movements. Due to this there are variations in the motor cor-

tex region of the brain (labelled in Fig. 2.2). Variations that are seen can include the increase

or decrease of power spectrum or amplitude of produced EEG signals. By interpreting EEG

signals generated from MI related tasks, we can deduce the intention of movement or MI

activity patterns.

Once this electrical impulse is generated, the signal is passed through the nervous system

to the intended body part with instructions of movement. The exact process occurs dur-

ing involuntary action, such as heart rate, blood pressure and breathing [40]. However, the
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signal for these particular actions is not produced in the motor cortex but the medulla ob-

longata [41]. Transient increases and drops in spectral power recorded in the human EEG

have traditionally been referred to as event-related synchronisation (ERS) and event-related

desynchronisation (ERD) [42], can be used to discern different imagined movements. Simply

put, ERS and ERD occur when a user imagines moving a unilateral limb, with the recorded

signals being amplified at the contralateral motor-sensory cortex and decreased at the ipsi-

lateral. Both phenomena are time-locked to the event rather than phase-locked and are very

frequency band-specific.

It has long been recognised that movement alters the frequency of the EEG [43]. Alpha and

Beta bands may detect both synchronisation and desynchronisation [44]. For example, when

the right or left hand is imagined, a similar ERD can be found over the contralateral hand

area and an ERS over the ipsilateral hand area. The ERD phenomena serve as the basis for

classifying MI. MI EEG signals are highly variable [45] due to physiological and psycholog-

ical factors for each person at each given moment. This variation in recorded signals can be

interpreted as a minor shift in the frequency of ERS/ERD. As a result, utilising conventional

signal processing techniques to hand-engineer features would generate subject-dependent

features, culminating in a BCI system that is not universal.

Traditionally MI EEG signals have been classified using ML techniques, and in earlier stud-

ies, standard NNs have been used to classify MI Signals. Table 2.1 shows the classification

results observed by traditional ML techniques. In recent times, DNNs have made substantial

progress in achieving high performance in classification tasks [46].

In order to trigger an MI EEG signal within an experiment environment, a subject must

imagine performing a directed physical activity, such as the movement of a limb [58]. During

data collection, a visual prompt is given to the subject to perform this imagination activity.

This time–point is typically indicated within the data to mark the beginning and end of the

MI activity in question. MI EEG signals are known to play a significant role within BCI

technology [13].
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Table 2.1: MI-EEG Classification techniques in literature using traditional Machine Learning

Methods Accuracy % No. of Classes Classifier Dataset
Alansari’s [47] 83.8 2 SVM BCI IV-IIb
Aljalal’s [48] 80.2 2 MLP BCI III-IVa

Behri’s [49]
89.4
94.5
67.4

2 SVM KNN MLP BCI III-IVa

Mirnaziri’s [50] 61.7 4 MLP BCI IV-IIa
Mishuhina’s [51] 89.8 4 LDA BCI III-IIIa
Li’s [52] 68.6 3 SVM BCI IV-Ila

Molla’s [53]
92.2
91.2
92.2

2 SVM BCI III-IVa

Silva’s [54] 67.8 2 MLP BCI IV-IIb
Wang’s [55] 77.2 4 MLP BCI III-IIIa
Wang’s [56] 81.2 2 SVM BCI IV-IIb
Zhang’s [57] 84 2 SVM BCI III-IVa

2.3 Principles of a BCI System

A BCI is an interface that has the ability to interact with an external device and collect data

in real-time. It has the ability to communicate and translate these brain signals collected

between the user and the computer system. This field of research is relatively new, and has

been on the rise for the past two decades. BCIs bypass the requirement for physical out-

put and apply advanced algorithms to translate brain signals into action [59]. This section

provides a background to BCI technology and the application of EEG signals with this area.

The brain is the command base of the nervous system - it has more than 100 billion neu-

rons [60]. The motor cortex of the brain is where movement electrical impulses are seen.

In particular, the role of the primary motor cortex is to generate these nerve impulses to

execute some movement. It is only in the past few decades that research into BCI has be-

come of greater interest. Prashant et al. discuss that there are four main factors which have

contributed to this [61]. Firstly, the benefit for users who have sustained physical damage

or have a condition that has left them completely immobile. Secondly, the developments in
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understanding the nature of brain signals and their complex functionalities. Thirdly, the rise

in low-cost microelectronics which have allowed for tasks to be performed through embed-

ded systems and BCI. The final factor has been the recent growth in the research of complex

ML algorithms.

Creating a BCI is a complex and time-consuming endeavour that requires multidisciplinary

expertise in computer science, signal processing, neuroscience, and psychology. Two steps

are normally necessary to operate a BCI. First, there is an offline training phase, followed

by an online phase in which the BCI is used to recognise mental states, calibrate the system,

and translate them into computer commands.

EEG-based BCI systems can be classified into two main categories: evoked and spontaneous.

An evoked EEG refers to brain activity that is elicited in response to a specific stimulus, such

as a flashing light or a sound. For example, a visual evoked potential EEG would measure

the brain’s response to a visual stimulus, such as a flashing light, to assess the function of

the visual system. On the other hand, spontaneous EEG refers to the continuous electrical

activity of the brain in the absence of any specific stimulation. For example, a resting state

EEG measures the ongoing brain activity when a person is simply lying still with their eyes

closed. As their names suggest, the evoked systems require external stimulation, whereas

the spontaneous systems do not. Visual, auditory, and sensory stimulations can all be used

in evoked systems. The two primary kinds of evoked systems are visually evoked potential

(VEP) and ERP, and both are used in various applications. We sought to investigate EEG

data in both the frequency and spatial domains in this research. Because they are generated

based on a user’s conception of accomplishing a task, MI signals are of the spontaneous type

[62].

Compared to spontaneous systems, evoked systems have higher throughput [13], require

less training, and can be mastered by a wider number of users. This is because evoked EEG

measures the brain’s response to a specific, well-defined stimulus. This allows for a clear

and consistent measurement of the brain’s activity, which can then be used to control a BCI
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system. In contrast, spontaneous EEG measures ongoing brain activity, which can be more

difficult to interpret and control due to the presence of background noise and other sources

of electrical activity in the brain. Additionally, evoked EEG allows for the use of averaging

techniques, which can enhance the signal-to-noise ratio and increase the reliability of the

brain activity measurement. This results in a more accurate and consistent signal that can

be used to control a BCI system, which in turn leads to higher throughput. Although the

downside of evoked systems is that they require the attention of the subject to remain fixed

on the stimuli at all times, which can be mentally exhausting [10, 63, 64].

People who have motor difficulties can use BCI to control their environment. These individ-

uals can improve their quality of life by being able to do their day–to–day activities such as

controlling their television, lights, and room temperature. In addition to Locomotion, a BCI

application that assists disabled individuals with transportation is available. People with

physical disabilities would be able to manoeuvre their wheelchairs independently in this

approach [65].

Due to advancements in BCI technology, it is now possible to use BCIs for mass consump-

tion. BCI introduces a new mode of interaction for those who play video games or work

with computers. Several recent studies have discovered that simple video games such as

Pacman could be controlled using motor imagery signals [66].

Speech communication, often known as silent speech, is one of the most common uses of

the BCI for people who have communication problems, though it is also one of the most

computationally expensive. A large number of speech studies have been conducted on this

topic. In such experiments, subjects were asked to choose the target letter from an on-screen

display. A variety of brain processes have been used in conjunction with a variety of stimuli.

P300 event-related brain potentials in communication applications are one of the most widely

used paradigms for BCI control in communication applications. A large number of speech

communication experiments in BCI make use of these signals. Other control signals, such as

Steady-State Visual Evoked Potentials (SSVEP), have been employed extensively for voice
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communication [67].

A closed-loop system procedure must be followed by an online BCI, which consists of three

overall modules [68] with a total of six steps as mentioned in Section 1.1 and seen in 2.1. In

the next few paragraphs each element of the BCI system is described in detail.

Figure 2.1: General architecture of BCI interface [69]

The signal acquisition module is responsible for recording the EEG signals, which provide

the input for the BCI. Depending on the type of electrode (invasive or non–invasive), the

signals are either recorded from the scalp and sit directly on the brain’s surface to use neu-

ronal activity. Signals are then amplified to enhance the signal strength and subsequently

digitised before the pre-processing stage [68].

The preprocessing stage involves cleaning and de-noising input data to enhance the signal’s

relevant information. Raw EEG signals recordings, in addition to brain signals, also pick up

muscular activity, eye movements and other such activities known as artefacts. Within BCI

research, preprocessing is particularly of importance to obtain high classification accuracy

[70].

The second task in the signal processing module includes three elements - feature extraction,
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feature selection and classification. This module takes in the signals post preprocessing and

is fed into one or more feature extraction methods. This component extracts features in

the frequency and time domain. There are a variety of feature extraction methods that are

used in BCI systems. This includes, but is not limited to: amplitude measures, band power,

autoregressive models, wavelets, FFT, CSP etc., as mentioned in Section 2. A set of features

derived from the signals is assigned a class in the classification stage [71]. This category

corresponds to the type of mental state that has been identified. This process is also known

as “feature translation” [72].

The processed EEG data undergoes feature extraction, feature selection, and feature classi-

fication phases to attain a decision. Manually selected, statistical, and data-driven adaptive

features are the three types of EEG features commonly utilised in BCI systems, according to

[73]. Several standard signal processing technologies were heavily used during these three

phases. Given the dynamic and complicated nature of EEG signals [74], choosing a set of

tools to deal with features is critical.

The final module is the application interface. The output device for most modern BCIs is

a computer screen, and the output is a selection of targets, letters, or icons displayed on it

[75]. Certain BCIs generate an output, such as the cursor moving toward the item before

selecting it. The output device generates feedback to inform the user about the recognised

brain activity pattern. This pattern is then used to maintain and improve communication

accuracy and speed.

2.4 Measuring Brain Activity

The brain plays a role is most major body systems, including processing sensory informa-

tion, regulating breathing and blood pressure. The cerebrum is the largest part of the brain

and is divided into two halves called the hemispheres. It can be categorised into broad,

functional areas: frontal, parietal, temporal and occipital.
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Figure 2.2: Brain: Motor Cortex [76]

The frontal lobe are the largest lobes of the cerebrum and are located near the front of the

brain. This region is associated with reasoning, high–level cognition, and motor skills. Near

the rear of the frontal region is the motor cortex. The primary motor cortex (M1), (Fig. 2.2,

is responsible for the generation of nerve impulses that regulate movement. M1 signals

propagate across the mid line, activating muscles on the opposing side. The primary so-

matosensory cortex somatotopically represents each part of the body. The amount of brain

matter dedicated to a particular body region is proportional to the extent to which the pri-

mary motor cortex controls that region.

The parietal lobe is located in the mid–region of the brain and is associated with sensory

information such as pressure, touch and pain. A portion of this region is known as the

somatosensory cortex, which is essential to process the body’s senses. The temporal lobe

is located at the base of the brain, this lobe is responsible for interpreting the sounds and

speech we hear. The hippocampus, associated with the formation of memories, is also lo-

cated in the temporal region. The occipital lobe is located at the back of the brain and is

associated with visual information and stimuli interpretation.
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Figure 2.3: Mu-rhythms. A fragment of EEG recorded in a healthy adult subject during eyes
open condition. Note distinct rhythms of about 10 cycles per second at C3 and C4. Insertion
– two maps of potentials taken at two moments indicated bay black vertical lines.

EEG signals do not have distinctive waveforms such that of electrocardiogram or heart

sounds. On the other hand, brain patterns generate wave shapes that are typically sinu-

soidal in character [77]. The measured EEG brain waves can be categorised depending on

their frequency ranges (brain waves per second) and its amplitude (the voltage). A sample

of an EEG recording can be seen in 2.3. Once this information passes through a Fourier

transform, it transforms to the frequency domain, and power spectrum of the EEG signal is

derived [77]. A summary of the various brain waves is shown below in Table 2.2. Figure 2.4

shows an example signal representation of the main brain signals.

Table 2.2: Brain wave categorisation, frequency ranges and general attribution [78]

Brain Waves Generally Attributed To Frequency Ranges (Hz)
δ Sleep 1-4
θ Creative State or Drowsiness 4-8
α Relaxed Focus or Daydreaming 8-13
β Active Thinking or Problem Solving 13-30
γ Excited or Irritability 30-100

Theta rhythms are typically found during problem–solving activities and are located in the

pre-frontal cortex. Beta rhythms can be observed across the cortex. They are high–frequency

and low–amplitude in nature and are commonly observed when the subject is awake. They
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are often associated with busy, active states or active concentration. There are two type of

beta waves - beta Rolandic rhythms and beta frontal rhythms. Beta Rolandic rhythms are

associated with spontaneous activity and is generally observed around the sensorimotor

region, where the C3, Cz and C4 electrodes are found. These waves are also related with

intentionality of performing a movement, and presents desynchronisation before the mu

rhythm. Beta frontal rhythms are those observed in the frontal lobe around the F3, Fz and

F4 electrodes. In particular, they appear during cognitive tasks which relate to decision

making For the purposes of the experiments conducted, beta Rolandic and frontal rhythms

are classified as one.

Alpha waves were the first to be discovered. They are present in various locations in the

cortex. However, they are particularly prominent in the occipital regions, where they are

generally of higher amplitude than the other rhythms. The three categories of alpha rhythms

found in the brain are mu rhythms, alpha occipital rhythms, and alpha parietal rhythms.

Mu rhythms have been widely implemented in BCI systems. Their namesake is due to

the signals sharp negative peaks, much like the letter mu. Mu rhythms are found on both

hemispheres of the brain, and sometimes appear as though they are symmetrical on a power

map.

Alpha occipital rhythms are high amplitude signals recorded from the brain’s occipital re-

gion. These are from the O1 and O2 electrodes. These rhythms have enhanced amplitudes

when the subject’s eyes are closed, and they decrease when in response to visual stimuli. Al-

pha parietal rhythms are enhanced when the subjects eyes are closed, much like the Alpha

occipital rhythms. However this does not occur in all subjects – some were observed to have

decreased amplitude when their eyes were closed. The Pz electrode is where this signal is

most observable. However, the functional properties of the parietal rhythm are not fully un-

derstood. Again, much like the beta waves, for the purposes of the experiments conducted

during the course of this research, alpha parietal and alpha occipital rhythms are classified

as one, as seen widely in literature.
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Figure 2.4: Types of EEG rhythms
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Figure 2.5: Electrode types that have been used for BCIs: EEG from scalp, ECoG from brain
surface, and cortex-penetrating microelectrodes [79]

Figure 2.5 shows different invasive and non–invasive electrode types, and their placement

during signal collection. EEG sensors are place on the surface of the skull i.e. non–invasive,

and they are consequently the most commonly used electrode type in BCI research.

Invasive forms of electrodes include, Cortical surface electrodes and intracortical electodes.

Non-invasive types of electrodes include fNIR, EEG, MEG and fMRI.

German physiologist Hans Berger recorded the first human EEG in 1924. He found that

using radio equipment from his laboratory. He was able to amplify EEG signals detected on

the scalp [77]. EEG is a method of recording the electrical activity of the brain.

It is a non–invasive procedure in which electrodes are placed on particular areas of the scalp.

It measures the voltage fluctuations which occur from the resulting ionic current within the

neurons of the brain [80]. The waveforms of the EEG reflect the post–synaptic potentials by

cortical neurons in the brain.

It has been observed that different EEG signals are generated during the execution of vary-

ing tasks such as problem–solving [81], visualisation [55], and MI [82]. Each electrode

records raw EEG data as a one–dimensional vector. The signals are obtained through vol-

ume conduction across numerous brain tissues on the three–dimensional scalp surface [83].
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EEG has several advantages over other brain imaging approaches (shown in Table 2.3),

despite its inherent disadvantages. Because of its non-invasive nature, EEG is low cost,

portable, and generates no adverse effects [84, 85]. As a result, EEG offers a wide range of

applications, including screening and hypothesis-based diagnoses. Several types of brain

illnesses, such as epilepsy [6], tumours [86], Alzheimer’s [87], sleep problem [88], and oth-

ers, can be examined depending on the shape of waves, such as rapid spikes waves or slow

waves.

Table 2.3: Properties of various signal acquisition systems

Imaging Technique Direct/Indirect Measurement Risk Portability

ECoG Direct Invasive Portable

EEG Direct Non-Invasive Portable

MeA Direct Highly invasive Portable

MEG Indirect Non-Invasive Non-Portable

fMRI Indirect Non-Invasive Non-Portable

NIRS Indirect Non-Invasive Portable

In the medical field, EEG is used as a method of diagnosis of various brain-related condi-

tions. Some possible diagnoses using EEG: Epilepsy, sleep disorders, depth of coma, and

brain death. There are several advantages with the use of EEG relevant to this work. Firstly,

EEGs are non–invasive which is highly desirable for recurrent testing and movement-based

research applications where risk is higher. Additionally, EEG hardware costs are signifi-

cantly lower to other techniques used to detect brain activity. EEGs also have a high tem-

poral resolution, in order of milliseconds rather than seconds, which proves to be essential

in terms of movement detection. EEG sampling rates are between 250 to 2000 Hz. It has

additionally been observed that EEG devices are tolerant to subject movement, which is not

the case for most other techniques. EEGs also have a lower magnetic field which enables

them to be used for patients with metal implants and pacemakers.

However EEG devices also have several disadvantages, which are mainly related to their
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non-invasive nature. Firstly, due to low spatial resolution it can be difficult to interpret

which areas are activated by a stimuli. EEGs are unable to measure the electrical activity

of the lower layers of the brain well. Additionally it can be tedious to connect a subject

to EEG, and it would require the precise placement of many electrodes around the head,

using various solutions to keep them in place. It is less taxing to prepare someone for other

non–invasive recording techniques as a general rule. Finally, the Signal–to–Noise ratio is

low, requiring complex data analysis to extract useful information from the EEG data. The

EEG measures the voltage fluctuations caused by the firing of these electrical impulses [89].

These are then processed to find their spectral content. Extensive data cleaning and analysis

requires to be performed to extract relevant information [90].

Traditionally EEG devices have been used mainly in the medical field, such as seizure ac-

tivity [91], and monitoring patients post-surgery [86]. However, in recent years there has

been much advancement in EEG technology, making it much more accessible outside of

solely medical applications. Research is found in the area of social interaction [92], cognitive

studies [93], neuromarketing [94] and BCI applications [95].

There are a few EEG consumer products available on the market. Some of the most popular

are Emotiv [96] and Neurosky [97] headsets, as well as OpenBCI, a biosensing microcon-

troller used to acquire biological signals, the headsets blueprints are available for 3D print

technology from online schematics.

Wet electrodes are the most often used clinical electrodes in EEG headsets. They employ

a saline or gel environment to improve contact area, reduce impedance, and capture high-

quality data [98]. Dry electrodes, on the other hand, are more suited to sustained signal

capture. Dry electrodes have the fundamental advantage of requiring no prior prepara-

tion. These are primarily hands-on procedures that require personnel with EEG experience.

Another significant discomfort is the annoyance experienced by the subject being tested.

For example, despite being slightly invasive and barely hazardous, abrasive paste and elec-

trolyte gel are sticky items that clog the hair and scalp [99].
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Before driving any cabling, active electrodes amplify and buffer V-level EEG signals locally.

Due to the AE’s low output impedance, cable motion artefacts are minimised, allowing for

high-impedance dry electrodes for increased user comfort [100]. Wet electrodes are regarded

as the gold standard, and new dry electrodes must be evaluated against them before being

claimed to be adequate.

During the earlier years of research with EEG, there were varied approached to electrode

placement, however this lacked a uniformity when data was shared between research cen-

tres. A committee from the International Federation of Societies for EEG and Clinical Neu-

rophysiology studied a variety of approaches, and in 1958 the 10–20 electrode placement

system became internationally adopted.

Figure 2.6: 10-20 Electrode Placement System [101]

The 10 and 20 refer to the percentage rather than absolute distance which allows for variance

in head shape and size. There are other variants such as the higher resolution 5–10 system.

The placement method of the electrodes in the 10–20 system can be seen below in Figure 2.6.

Each of the letters F, T, C, P and O are used to identify the site location (Frontal, Temporal,
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Central, Parietal and Occipital, respectively).

Electrocorticography (ECoG) was invented in the 1950s by neurosurgeons Wilder Penfield

and Herber Jasper. The signals are recorded directly from the surgically exposed cerebral

cortex without penetrating the blood–brain barrier. Initially, this was developed as a treat-

ment for epilepsy. ECoG was also used to map and explore the brain’s functional anatomy,

such as identifying somatosensory and somatomotor cortex areas, and such that these sec-

tions would be avoided during surgery.

ECoG offers greater precision than EEG recording from the scalp due to closer proximity

to neural activity and higher spatial resolution. However, there are several limitations of

ECoG. Data sampling for ECoG is limited to the area exposed during the surgery, thus giving

a limited field of view. Most significantly, the patient is under the influence of anaesthetic

narcotic analgesics. This altered state has to be taken into account for the duration of the

recording. Finally, the sampling time of ECoG is limited due to the invasive nature of the

surgery.

2.5 Introduction to Traditional Machine Learning

ML can be segregated into five main tasks: classification, regression, ranking, clustering,

and dimensionality reduction. Dependent on how a model is trained, ML can be also di-

vided into supervised, unsupervised and semi–supervised learning. Supervised learning

is when a ML model is given the labels of the dataset during training. In contrast, unsu-

pervised learning is where a model is not provided with labelled data, and it is dependent

on the model to find patterns within the data. Semi–supervised learning falls in between

the two above learning methods. In this method the training sample has both labelled and

unlabelled data [102].

Classification is an application of supervised learning, and it is the task of assigning a cate-

gory to each item. In contrast, regression is tasked with predicting a value based on the data
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it receives, such as the prediction of stock values. Regression also comes under the category

of supervised learning. The last task considered under the classification umbrella is ranking,

which is where a model is tasked with ordering items based on a given criteria.

Both clustering and dimensionality reduction are unsupervised training methods. Cluster-

ing is the partitioning into similar data groups, and is often used to analyse large datasets.

Dimensionality reduction is where initial representations of data are transformed into a

lower–dimensional representations, whilst still maintaining some properties of the initial

representations of data. Some popular methods of traditional ML include Support Vector

Machines, Random Forest, Logistic Regression, Decision Trees and ANNs.

Traditional ML requires pre–processing of the raw data and manual extraction of features

from the data. Generally, following this process, the data is divided into training, validation

and test sets. The training data is used to train the model, and validation data is used to

monitor the performance of the model during training. Finally, the test set is used to check

the model’s generalisation performance. The pre–trained model can be fed with data and

would have the ability to make predictions based on the patterns learned through the model

training process.

2.6 Traditional Machine Learning for MI BCI applications

This section explores how traditional ML has been used to interpret MI EEG signals for

applications within BCI. There have been several techniques which have been developed

for feature extraction such as FFT, WT, standard deviation, variance, and power spectral

density (PSD).

Conventional machine learning techniques have been successfully used to identify patterns

in the collected EEG signal that correspond to someone is desire to move a limb or focus

their attention on a flickering light.
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BCI systems based on ML have been successfully used to control prosthetic arms [13], wheelchairs

[103], and computer programmes. As with other biomedical data, EEG signals contain tens

of thousands of features that can be analysed and interpreted to yield detailed information

about various physiological functions [71].

Several different techniques have been used to extract EEG features over the last few decades,

including standard deviation (SD), variance, FFT [104], WT [105], PSD [36]. Prior knowledge

of neurophysiology is critical for identifying significant traits that will provide greater dis-

criminative information between EEG classes [106].

Linear Discriminant Analysis, K-Nearest Neighbour (KNN), Artificial Neural Network (ANN),

and Naı̈ve Bayes are some of the most often utilised traditional machine learning models for

EEG signal interpretation in BCI applications [107].

Wang et al. employed Fisher Linear Discriminant and Support Vector Machine (SVM) to

understand and control a humanoid robot using MI-based EEG signals [108]. ANN and

SVM were employed again to interpret EEGs caused by four different flickering frequencies

presented on a LCD display for BCI applications, with SVM achieving an accuracy of 88.5%

[109]. The performance of a machine in identifying patterns is highly dependent on the

training data and the model itself [110].

2.7 Limitations of conventional EEG data analysis

This section highlights the shortcomings of traditional ML in the development of automated

biomedical data analysis. The primary drawback of traditional ML is the requirement for

human feature extraction. This section addresses the effects of manual feature extraction on

the application of standard machine learning to EEG data and biological pictures.

Although there are several real-world applications of computerised EEG analysis based on

traditional ML, the technique has always encountered certain challenges for the real life ap-
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plications [111]. EEG data are known to be diverse, temporally dependent, sparse, irregular,

noisy, and of high dimension, making feature extraction for training traditional ML models

prohibitively difficult [112].

Determining the best representative feature set is a significant issue since it requires someone

with extensive knowledge and expertise in the field of feature extraction. Additionally, the

work of extracting strong and accurate features is always harmed by noise and interference

from other signals, which is a typical source of limitation in EEG data.

The feature extraction procedure in EEG data is always influenced by variables such as mo-

tion artefacts [113], EOG, and EMG. EOG is a tiny electrical signal produced by eye move-

ment, whereas EMG is a muscle electrical signal. For instance, in MI categorisation tasks,

the imagined movement is frequently lost in the mix of other signals such as EOG and EMG

[114].

Although several techniques for reducing feature dimensions have been applied, such as

Principle Component Analysis (PCA), linking the features from the original feature space

to the new features is a difficult task [115], as PCA assumes that the principle components

are a linear combination of the original features [116]. The effectiveness of machine learning

models trained on extracted features from collected EEG signals is constantly impacted by

the extraction of redundant features [15].

2.8 Deep Learning

DL is an area of ML algorithms referring to the system of deep NNs, and is considered to be

one of the pillars of AI [117]. To address the limits of conventional ML in order to produce

more generalisation-oriented solutions. DL aims to replicate the human brain’s operation

by creating highly interconnected NNs and therefore producing a generic model capable of

handling various input sources. DL is a fully integrated methodology, meaning raw data

can be immediately input into the DNN for parameter and hyperparameters learning [118].
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In other words, DL enables the direct feeding of DNNs with raw data and with little or

no preprocessing; additionally, DL integrates feature extraction, selection, and classification

into a single pipeline. Additionally, the DL approach is ubiquitous, robust, general, and

scalable [119].

DL approaches have enabled researchers to classify, detect, recognise, and, most signifi-

cantly, comprehend tasks that humans traditionally perform. Without the computing power

of today’s GPUs and cloud computing it would not have been possible to deploy DL al-

gorithms, although they have provided a performance boost. Numerous new NN classes

have been developed in image classification (most notably CNNs) and prediction analysis

(RNNs). Due to the widespread availability of information over the internet, datasets can

now be made open-source and become widely available.

DL approaches are dynamic and can be sensitive to changes in the data they analyse by

considering the underlying patterns they discover. Similarly to how humans learn via ex-

perience, deep learning computers acquire knowledge by repeatedly executing a task and

changing the algorithm to influence the outcome. To uncover all of the valuable informa-

tion included in large datasets, in-depth analysis is required. Traditional classification tech-

niques perform poorly in large and dynamic datasets due to their inability to capture all

possible diversity states within the data [120]. DL strives to overcome the limitations of ex-

isting NNs by covering all information contained within a training dataset. However, train-

ing DNN requires many parameters and hyperparameters, which significantly increases

training time compared to other approaches and consumes prohibitively more hardware re-

sources [121, 122, 123]. Nonetheless, it is possible to address such issues by using devices

with high computing power.

Numerous investigations established DL’s superiority to alternative state-of-the-art tech-

niques. In [124], researchers used a short-term Fourier transform (STFT) to translate MI

EEG signals into two-dimensional time-frequency spectrum images for training a CNN. The

classification findings indicated that CNN outperformed SVM and ANN classifiers. They
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utilised a CNN to extract spatial features from MI EEG data and then an LSTM to extract

temporal features from signals in [124]. This framework outperformed the SVM classifier.

In [125], they used a CNN to extract temporal and spatial features from MI EEG data and

then auto encoders to fuse the features; this study demonstrated that this framework per-

formed better than one that used FBCSP as the feature extractor and three different classi-

fiers, namely Naı̈ve Bayes, Linear Discriminant Analysis, and SVM.

The following subsections discuss DNNs in detail, including the various architecture types,

input formulation kinds, learning methodologies and deep learning platforms. Common

optimisation methodologies are detailed in C.6.

2.8.1 Convolutional Neural Networks

Convolutional Neural Networks are more commonly known as ConvNets or CNNs, and

were inspired by the visual cortex. These are deep feed-forward NNs, made with a complex

combination of NNs. They are particularly adept at finding patterns within images and

classifying them. However, the drawback of this approach is that CNNs are not designed to

capture the underlying relationships between different parts of the input data that are not

local in nature. In particular, if the data has a high degree of permutation invariance, i.e.

if the order of the elements in the data does not significantly impact its semantic meaning,

then the local spatial patterns captured by a CNN may not be as informative as more global

relationships between the elements.

CNNs are capable of robustly recognising the pattern and structure of image and time series.

Aside from being effectively employed in computer vision and natural language process-

ing, CNN structures have also shown tremendous promise in biomedical signal processing.

CNN had not gained much attention before 2012 because of data and technical restrictions.

However, the discovery of “AlexNet” [126], which has addressed a wide range of applica-

tions with surprisingly strong results, has prompted researchers to investigate several DNN

models, including VGG [127], GoogleNet [128], and ResNet [129].
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A CNN model required three stacked layers: a convolutional layer, a pooling layer, and

a fully connected layer. Convolutional layer convolves the tensor to the shape, while the

pooling layer reduces the necessary calculations to lower the data dimension. Finally, the

completely linked layer connects each neuron from the previous layer to a new layer that

will be used to forecast or classify the objective goals. When talking in terms of the use of

DL and EEG, this approach of applying DL with stacked layers aims to reduce the amount

of input data and capture the EEG patterns’ distinctive spatial dependence.

Significant advancements in CNN classification tasks are critical for the development of

the BCI, including enhancements to EEG-based fatigue evaluation. For instance, a spatial-

temporal CNN system based on EEG was proposed in [130]. This system’s advancement

extracts temporal dependencies. It is used in conjunction with dense layers to process and

classify spatial-temporal EEG data, achieving a classification accuracy of 97% or EEG driving

tiredness levels. Another recent study [131] used a visual EEG experiment to detect various

levels of weariness. It suggested a multi-scale CNN system that extracts raw EEG signals

from an inception structure using a spacetime frequency combination features extraction

technique.

Generally, it is not commonplace to supply a DL model with raw EEG data, as varied noise

distributions among the signals makes it difficult to extract straightforward features from

the original EEG signal. Since EEG signals are time–based, they also require to be trans-

formed appropriately to be compatible with CNN models.

Within the literature, there is not a singular preferred methodology for model creation. Dose

et al. [132], proposed a method for a shallow network where the training samples were first

applied on the time domain, and then applied a spatial filter along the EEG channel di-

mension which would created a weighted linear dimension of a single channel, followed

by a pooling and flatten layer, leading to a classification layer. Their method presents good

results – with a mean cross–validation accuracy of 80.10%. It was discussed that DL ar-

chitectures would be a viable alternative in order to find the rather more intricate features.
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The need for preprocessing becomes clear, as raw EEG signals are hard to decrypt on their

own. As a result, researchers such as [133] additionally pre–processed the data and filtered

the signals using a Butterworth band–pass filter, and a zero phase digital filter in order to

obtain signals of various brain signal frequency bands (alpha, beta, gamma, theta, delta).

The model implemented was also of a shallow network. Though pre–processing was ap-

plied here, the results shown were less than ideal, with the average result at 61.3%. They

compared the results classic SVM algorithms, which showed poorer results at 51.5%.

The use of Fourier transforms, in order to bring the EEG signals into the frequency–domain,

has become an increasingly popular method of feature extraction. Wang et al, [134], ex-

tracted three electrode data points in the central region of the motor–cortex (not–specified),

apply a STFT. These were then transformed into images of on the spectral data on time

stamps. Here however all frequency points between 8 − 30Hz were taken into account, and

visualised as what looks like a ‘pixelated image’ [134]. The deep network architecture con-

sisted of 7 layers, two sets of convolutional layers + max pooling, followed by two dense

layers used to compute the predicted labels, the average accuracy was at 86.74%. They com-

pared this value to vanilla CSP + SVM, to which is outperformed with a mean accuracy of

9.05%.

2.8.2 Recurrent Neural Networks

The number of studies investigating the RNN or LSTM networks when applied to EEG-

based BCIs has expanded significantly in recent years, with data indicating that RNN or

LSTM-based approaches outperform classical ML. The reason for this is that they are ca-

pable of extracting hidden EEG feature presentations, and when paired with CNN, they

may optimise feature representations by including both temporal and spatial information

included in EEG signals. The RNN framework is beneficial for identifying motion, recog-

nising emotions, and assessing sleep stage. For instance, Supratak et al. [135] examined

automatic sleep stage classification using a bidirectional LSTM algorithm for learning tran-
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sitional rules from hidden time series EEG features and a CNN for extracting time invariant

EEG features.

RNNs have been designed mainly to handle sequence prediction problems. It is the first al-

gorithm which has been able to remember the input due to internal memory, enabling them

to forecast future events. The recurrent (lateral) connections of RNNs allow them to learn

broader abstractions from input sequences. RNN’s potential was only recently exploited

more since the increase in available computational power.

In general, RNNs have two major obstacles which they have or have had to deal with: Ex-

ploding Gradient and Vanishing Gradient. Exploding Gradients occur when the algorithm

randomly assigns high importance to weights without much reason, however this may be

easily solved by truncating or squashing the gradients. Vanishing gradients occur when the

gradient is so small that the model stops learning or takes a very long time to learn. The

LSTM was the solution to this, and was first introduced by Sepp Hochreiter and Juergen

Schmidhuber [136].

LSTM are an extension to RNNs - they have the additional behaviour where they are able

to handle long-term dependencies. This is due to LSTMs having a computer–like memory

which enables them to read, write and delete information from their memory. As such,

LSTMs are well suited to learning more important information which may have long periods

of lag between them. The memory of an LSTM can be seen as a gated cell. Here, gated is in

reference to the cell deciding whether to store or delete information based on the importance

given to it, which is controlled through weights. The problem of vanishing gradients in

RNNs, is solved by LSTMs, because the gradients are kept steep enough, and therefore the

training is relatively short, with higher levels of accuracy.
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2.8.3 Hybrid Structures

Hybrid NN architectures refer to the combination of multiple different neural network ar-

chitectures into a single model. These hybrid models can leverage the strengths of different

NN architectures to achieve improved performance over using a single architecture alone.

In the context of EEG-based BCI classification, hybrid NN architectures have the potential

to address some of the challenges faced by single architecture models. EEG signals are

non-stationary and highly variable, which makes their analysis challenging. Additionally,

EEG signals are typically measured in multiple channels, which requires the use of spatial

filtering techniques to extract relevant features from the signals.

Hybrid NN architectures can help address these challenges by incorporating different neu-

ral network architectures to capture different aspects of the EEG signals. For example, a

hybrid model could incorporate a CNN for spatial filtering, followed by a RNN for tem-

poral analysis. The CNN would be used to extract relevant features from the EEG signals,

while the RNN would be used to model the temporal dependencies in the signals.

Hybrid architectures for biological signal analysis has recently been of interest for researchers

to explore if combining architectures improves results of model implementations. Due to

these developments in hybrid NN being quite recent, the currently available literature is

sparse, in particular, in relation to EEG hybrid architectures.

In [137], Wang et al. create power spectral images from the raw EEG data, and transform

these into images which look much like heat maps of the brain. The network architecture is

made up of a combination of CNN and LSTM networks, where the CNN is used to extract

the space and frequency features and the LSTM network is used to extract the timing fea-

tures of the EEG signal. The authors present the advantages of their technique as making

use of the features which are prominent in both the frequency and time domains.

An architecture proposed by Hu et al. [138], suggested a 11 layer CNN structure, followed

by an LSTM layer, and finally by fully connected layers. They compared the accuracy of
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their models to state of the art DL representations and found that the model implemented

was 8.9% better in terms of accuracy, in comparison to a normal non–hybrid network imple-

mentation, and 11.4% higher than traditional ML approaches.

Bresch et al. [88], proposed a novel approach using DNNs to classify different sleep stages,

which is normally visually classified by a human annotator. Their architecture consisted of

a deep network; a structural idea which was also used by Hu et al. [138]. Their findings

suggest that the accuracy of their hybrid network was comparable to traditional DNNs.

Though it was also found that, for the most part, the DNN and human annotators agreed

on the classification at most stages, this was not always the case.

2.9 Preprocessing

Preprocessing techniques used in BCI focus mostly on the frequency domain and spatial

filtering. Band-pass and notch filters are the most often used methods in frequency domain

filtering because they can extract the distinctive signals situated at the stimulus frequency

and eliminate noise and artefacts. These filters are constructed per the frequency character-

istics of the associated signals. The band-pass filter’s frequency range is often determined by

the stimulation frequencies or their harmonics, whereas a notch filter is utilised to eliminate

power line interference.

Processing numerous channels of brain signal data, spatial filters can increase the signal-to-

noise ratio of the brain signal response. Additionally, spatial filtering can be utilised to ex-

tract features. Raw EEG data normally have a lot of unwanted background noise that needs

to be removed before the meaningful analysis can begin. There are various pre-processing

steps which are seen throughout literature [139, 140, 141].

Filtering is the first common method to pre-process signals. One possible method is using a

notch filter to remove power line noise at 50Hz or 60Hz. This is dependent on the country

where the signal recording has taken place. The second method is using a high-pass filter



2. Literature Review 40

with a low cut-off frequency in order to remove the baseline drift. The third common filter-

ing method is using band-pass filters to select specific frequency bands. Another common

pre-processing step is to clip the amplitude of EEG signals by forcing them to fall within

a certain range or using the mean and standard deviation. A similar method is to cancel

some of the samples from the start and/or finish of the signal to eliminate potential acute

artefacts.

Other pre-processing approaches include using artefact rejection techniques for noise cre-

ated by electroocoulogram and electromyogram artefacts. This popular method of EEG

pre-processing works by referencing signals using either an electrode or by the average of

signals from all the electrodes, and normalising the data to a zero mean and unit variance

using the z-score. This technique potentially can avoid a local minima trap and could speed

up convergence. Finally, by reducing the overall number of electrodes from which the data

is collected you could reduce the overall amount of noise.

EEG signals are transmitted through bone, tissue, hair and other barriers before they make

contact with the electrodes and can be recorded. An artefact is denoted as a component of

the EEG signal which is not produced directly by human brain activity [142]. Therefore an

artefact can be defined as noise generated by the human system, which alters the neural

EEG data [143]. Physiological artefacts originate from the subject, and non-physiological

artefacts originate from the environment around the subject. [144]

Table 2.4 lists possible physiological and non-physiological artefacts which may occur dur-

ing the recording of EEG signals. Each artefact mentioned in Table 2.4 is discussed with

detail in Appendix A.2.
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Table 2.4: List of Physiological and Non-physiological artefacts

Physiological artefacts Non-physiological artefacts

Ocular activity Electrode pop

Muscle activity Cable movement

Cardiac activity Incorrect reference placement

Perspiration AC electrical and electromagnetic interferences

Respiration Body movements

2.10 Feature Extraction Methods

The extraction of features is a critical challenge in signal processing and is critical to the

whole BCI system. Numerous approaches have been employed in various EEG paradigms.

The following sections cover many frequently used feature extraction methods which in-

cludes Fourier-based transform, WT, Hilbert-Huand transform, Independent Component

Analysis (ICA) and CSP.

The Fourier Transform is comprised of the FFT and the DFT. Fourier Transform techniques

are mostly used to analyse the PSD. FFT is a fast DFT computation algorithm, which may

have an effect on practical applications. In real-world applications, the available stimulation

frequencies may be limited due to the frequency resolutions being constrained by the length

of the data segment.

Among the benefits of employing FFTs are simplicity and a short computation time. Wang

et al. employed 256-point FFT to translate EEG signals into the frequency domain repre-

senting five frequencies in SSVEP-based BCI [145]. When respondents were not focused

on any stimuli, a 128-point FFT averaged the three spectral components around the target

frequency. The average value was used to determine whether a subject was in an idle con-

dition. Mouli et al. used the FFT’s maximum amplitudes to differentiate between multiple

target stimuli at frequencies of 7, 8, 9, and 10 Hz [146]. Muller-Putz and Pfurtscheller esti-
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mated the frequency components of the EEG signal using split-radix FFT and then averaged

the three spectral components around the target frequency [147]. Additionally, Diez et al.

employed the FFT to estimate the power spectral density derived from the DFT [148]. All

of these studies that used FFT to estimate DFT demonstrate FFT’s computing advantages.

FFT is widely used in SSVEP systems throughout a wide frequency range, from low to high.

Due to its short calculation time, FFT is frequently used to estimate DFT.

EEG signals are non-stationary in nature, with frequency components that fluctuate with

time [149]. Wavelet Transforms, which allow adjustable time-frequency resolution, can aid

in the analysis of such data. WT is a Fourier analysis with adjustable-windows that is based

on FT [150]. The advantage of WT over FT is the ease with which different mother wavelet

functions may be used to evaluate various signal types. Due to its capacity to adapt to signal

components and its multi resolution, WT is widely used to analyse EEG signals. Zhang et

al. incorporated the Continuous Wavelet Transform (CWT) into SSVEP feature extraction

and classification in SSVEP-based BCI [151].

The choice of the mother wavelet is critical in CWT. They compared the performance of var-

ious wavelet types in SSVEP classification. Experiments revealed that the Complex Morlet

wavelet outperformed others and excelled at segmenting brief EEG data. Kumari and So-

mani determined the feature vectors using the coefficients of CWT to find the location of

high frequency components in SSVEP [152]. The CWT provides a representation of EEG

signals in the time-scale domain in MI-based BCI [149], and thus can be used to precisely

localise ERD/ERS components in the time-scale domain. Hsu and Sun used CWT in con-

junction with Student’s two-sample t-statistics to extract 2D time-scale features [153].

HHT is a recently created adaptive data analysis method that combines empirical mode

decomposition and Hilbert spectral analysis [154]. It has been extensively used in EEG re-

search. Unlike FFT, which is based on cosine functions, HHT is self-adaptive and can im-

prove performance in certain signal segments, allowing it to be utilised for both stationary

and non–stationary signals analysis. However, the computation time for HHT is longer than
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for FT.

ICA is a relatively new technique that aims to establish a linear representation for non-

Gaussian data in order to ensure that its components are statistically independent or as

independent as possible. In a variety of applications, such as feature extraction and sig-

nal separation, this format appears to capture the data’s essential structure [155]. ICA is

frequently used in preprocessing to extract noise/interference from raw EEG signals. ICA,

on the other hand, typically integrates additional feature extraction techniques in order to

classify the various targets in distinct EEG scenarios.

CSP is a powerful signal processing technique that has been proven to extract more discrim-

inative information than bipolar, Laplacian, or CAR spatial filters [156]. The CSP principle

results in a set of spatial filters that are optimised for one class while minimising variance

for another. CSP can effectively suppress noise by utilising data from a large number of

electrodes and so requires a small number of electrodes to perform well. CSP is a powerful

technique, particularly for MI classification. Numerous new CSP-based approaches have

been proposed in recent years to improve classification accuracy. Samek et al. [157] devised

a technique termed stationary CSP that regularises the CSP solution towards stationary sub-

spaces; in other words, the CSP is extended to be invariant to data non-stationarity.

The advantage of using deep learning is the ability to learn EEG signals end-to-end, extract

their features, and classify them automatically, thus making manual feature extraction, nor-

mally required for traditional ML techniques, redundant. However, given the incredibly

complex nature of EEG signals, incorporating some manual feature extraction techniques

into the pre-processing structure prior to passing these signals to the DNN can be a very

powerful tool.

CNNs, RNNs, and hybrid network designs are all employed for EEG recognition. Not only

can deep learning-based EEG signal identification learn features manually retrieved, but

it can also learn features automatically from the original EEG signals or two-dimensional

(2D) images translated from the frequency domain. As a result, deep learning technology
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holds greater promise for the recognition and categorisation of EEG data than traditional

ML-based methods.

2.11 Databases

This section discusses the open-source databases used in this research. The information

obtained from understanding these datasets set the potential and limitations of the exper-

iments. The dataset structure, experimental structure, and pre–processing methodologies

will all be discussed during the course of this section.

Databases can serve as a basis for comparison after data has been collected. This is especially

useful when initial data collection establishes a benchmark for evaluating patterns in signals.

These datasets have not only been expertly gathered and thoroughly checked, but they have

also been utilized by multiple BCI systems evaluations, making them the perfect choice for

verifying the effectiveness of proposed MI event classification methods and comparing them

to current techniques.

In particular, one database draws interest – the EEG database for BCI applications [158].

This included data sets such as four-class MI, P300 speller with ALS patients, and visual

P300 speller. The currently available open–access datasets for MI based EEG are limited. The

database which was used for the development of the models was a GigaScience Database by

Ho et al.[159]. This was chosen mainly due to the number of participants available as part

of one database and the full EEG cap electrodes of 64 channels. It is also the newest dataset

available, where data was collected in 2017. Table 2.5 compilation of these databases.

The model implemented will be further tested against the BCI-IV datasets in Table 2.5, as

seen in literature – these are the datasets that are typically used during implementation or

as a testing benchmark for the models made. Producing the EEG signal is critical for a suc-

cessful BCI in MI. As a result, the problem of human training requires consideration. In com-

parison to SSVEP and ERP, MI requires a longer training period to produce the ERD/ERS
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phenomena. To enable a subject to take control of the EEG response, some form of feedback

is required, particularly at the start. Typically, the MI training process includes both offline

and online instruction. Offline training is required to fine-tune the user’s EEG signals and

train the recognition algorithm.

Table 2.5: Detailed open-source EEG datasets

Dataset No. of Subjects Sampling Rate (Hz) No. of Electrodes MI Classes

BCI III - Dataset IIIa 3 250 60 4 - Left/Right Hand, Foot, Tongue

BCI III - Dataset IIIb 3 125 2 2 - Left/Right Hand

BCI III - Dataset IVa 5 1000/ 100 118 2 - Right hand/Foot

BCI III - Dataset IVb 1 1000/ 100 118 2 - Left hand/Foot

BCI III - Dataset IVc 1 1000/ 100 118 2 - Left hand/Foot

BCI III - Dataset V 3 512 32 3 - Left/Right Hand, Word Image

BCI IV - Dataset I 7 1000 64 3 - Left/Right Hand (either), Feet, Tongue

BCI IV - Dataset IIa 9 250 22 4 - Left/Right Hand, Feet, Tongue

BCI IV - Dataset IIb 9 250 3 2 - Left/Right

GigaDB 52 512 64 2 - Left/Right Hand

2.11.1 BCI Competition III - Dataset IIIA

Graz University of Technology provided this dataset as part of the BCI Competition III [158].

The recording was made with a 64-channel Neuroscan EEG amplifier, with the left mastoid

serving as a reference and the right mastoid serving as ground. The EEG was captured at

250 Hz and filtered with Notch filter between 1 and 50 Hz. Figure 2.7 shows the recording

technique for sixty EEG channels, which are not a traditional, and internationally recognised

mapping system.

These subjects were asked to perform an imaginary left or right index finger, as shown in

Figure 2.8. The aim was to perform visualisations with the left and right hands while fol-

lowing a signal. The experiment consists of several runs with 40 trials each. Each of the four

MI tasks were displayed 10 times, in a randomised order.
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Figure 2.7: BCI III - Dataset IIIa 60 channel electrode positions [158]

Dataset IIIa includes three subjects: k3b, k6b, and l1b who were asked to perform four dif-

ferent MI tasks – repetitive movement of right hand, left hand, tongue or foot. The paradigm

and time scheme were as follows. The first 2sec of the trial were silent. At t = 2sec an acous-

tic stimulus indicated the start of the trial, and a cross “+” was displayed. From t = 3sec,

an arrow to the left, right, and up was displayed for 1sec. At the same time, the subject was

asked to imagine the specified movement up until the cross disappeared when t = 7sec.

Figure 2.8: Timing paradigm of BCI III - Dataset IIIa [158]

2.11.2 BCI Competition III - Dataset IVA

This dataset was provided by the Frauhofer FIRST, Intelligent Data Analysts Group and

Carite University Medicine Berlin [158]. The EEG signals were recorded on a 118 channel

EEG. Signals were band pass filtered between 0.05 Hz and 200 Hz, and then digitised at



2. Literature Review 47

1000 Hz. The dataset is also available at a down-sampled rate of 100 Hz. This was the

chosen dataset version for this research.

Five healthy subjects participated in this experiment. Each subject performed 2 different

MI tasks: right hand and left foot Visual cues were indicated for 3.5 seconds which of the

three MI tasks which The presentation of the target cues were randomised between 1.75

to 2.25 seconds between which the subject could relax. The participants had two types of

stimulation. First where targets were indicated with letters appears behind a visual fixation

cross. Second, where a randomly moving object indicates the target.

2.11.3 BCI Competition III - Dataset IVB

This dataset was provided by the Frauhofer FIRST, Intelligent Data Analysts Group and

Carite University Medicine Berlin [158].The EEG signals were recorded on a 118 channel

EEG. Signals were band pass filtered between 0.05 Hz and 200 Hz, and then digitised at

1000 Hz. The dataset is also available at a down-sampled rate of 100 Hz. This was the

chosen dataset version for this research.

There was one subject per task for this experiment. Each subject performed a different MI

task: left hand, right hand, tongue (relax). The same paradigm to that of BCI Competition

III - Dataset IVA was used for this experiment.

2.11.4 BCI Competition III - Dataset V

This dataset was provided by the IDIAP Research Institute. The data was collected using a

BioSemi system with 32 electrodes [158]. The sampling rate of the data was at 512Hz.

Three healthy subjects took part in this MI data collection experiment for 4 non–feedback

sessions. The subjects were asked for the duration of the experiment to have their arms
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relaxed on their legs. The three tasks consisted of imagination of a repetitive right and left

hand movement, and the generation of words beginning with the same random letter.

All four sessions were acquired on the same day. Each session lasted 4 minutes, with 5–

10 minutes between each. The subject performed a given task for approximately 15 seconds

and then switched randomly to another task at the request of the operator. During the course

of the 4 minute session the subject was continuously performing an MI task.

2.11.5 BCI Competition IV - Dataset I

This dataset was provided by the Berlin BCI group affliated with the Berlin Institute of Tech-

nology. The EEG signals were recorded on a 59 channel EEG, most densely distributed over

the sensorimotor area. Signals were band pass filtered between 0.05 Hz and 200 Hz, and

then digitised at 1000 Hz. The dataset is also available at a down-sampled rate of 100 Hz.

A total of 7 healthy subjects performed two types of MI activity: 2 classes of left hand, right

and foot. The EEG data collected during the MI task (3 seconds or 750 samples each trial)

was utilised to classify the participants in this study. Trials of the left-hand and right-hand

MI tasks were retrieved for the study from the four classes of MI.

Throughout the session, MI was done in the absence of feedback. Two MI classes were cho-

sen for each subject from the three available: left hand, right hand, and foot. The individual

was directed to do the cued MI task for four seconds while the cues were displayed. These

periods were interspersed with two seconds of blank screen and two seconds with a fixa-

tion cross displayed in the screen’s centre. However, for the purposes of this study, we used

solely right and left hand MI data.
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2.11.6 BCI Competition IV - Dataset IIa

This dataset was provided by Graz, Austria [160]. EEG signals were captured at a sampling

rate of 250 Hz from 22 electrodes. Placement of the electrodes was using standard 10–20

system. The raw data was sampled at 250Hz and band–pass filtered between 0.5Hz–100Hz.

An additional 50Hz notch filter was used to suppress mains noise.

There were a total of 288 MI task trials, with 72 trials for each MI class. Data was collected

over the course of two sessions in two days, where a session is defined as six runs, with a

short break between them. A list of trials which contained artefacts was provided. These tri-

als were discarded during the pre–processing of the raw data and not used during analysis.

Nine healthy subjects performed four types of MI activity: left-hand, right-hand, foot, and

tongue. The EEG data collected during the MI task (3 seconds or 750 samples each trial) was

utilised to classify the participants in this study. Trials of the left-hand and right-hand MI

tasks were retrieved for the study from the four classes of MI.

At the start of each session approximately 5 minutes of EEG baseline data was collected to

understand the influence of EOG. The EOG data was collected by an additional 3 monopolar

EOG At t = 0s a fixation cross appeared on a screen. In addition to this a short acoustic

warning presented to indicate the beginning of the session. After t = 2s a cue in the form of

an arrow pointing either left, right down or up. These corresponded to the foot and tongue,

respectively. The cue appeared and stayed on screen for 1.25s. This prompts the subjects to

perform the desired MI for recording. The subjects were expected to carry out the MI task

until the fixation cross disappeared from the screen at t = 6s. A short break followed this.

2.11.7 BCI Competition IV - Dataset IIb

This dataset was provided by Graz, Austria [160]. The data is made up of three bipolar

recordings (C3, CZ, and C4) that correlate to the image in Figure 2.9a. The data was sampled
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at the rate of 250 Hz. The raw data was bandpass filtered between 0.5 and 100Hz and with

a notch filter of 50 Hz.

Nine healthy subjects took part in 5 sessions of EEG data collection. In the first two ses-

sions training was conducted without feedback, whereas the last three sessions training was

recorded with feedback. Subjects were instructed to visualise left or right hand movement.

Each session consisted of six runs with ten trials each and two MI tasks. Thus a total of 20

trials per run and 120 trials per session. Each session began (t = 0s) with a short acoustic

tone. For the first two sessions, at t = 3s a cue showing an arrow pointing either left or right

was presented for 1.25 seconds. Subjects were expected to imagine the corresponding hand

movement for 4s. A pause of up to 1.5s followed the MI task.

During the three online feedback sessions, a smiley was used as a feedback visual tool. The

smiley would be shown from the beginning of the session. At t = 2 a warning acoustic tone

would sound. The visual cue was presented from t = 3s to t = 7.5s. The smiley would

change to green when the MI task was performed correctly, otherwise would remain grey.

At t = 7.5s the screen would go blank, and a random interval of 1 to 2 seconds was added

between the current trial to the next. Figure 2.9b depicts the time scheme paradigm used

during acquisition.

Figure 2.9: This figure includes information about the acquisition of dataset IIb from the BCI
Competition IV, where (a) shows the electrode placement on the scalp (C3,Cz,C4) . and (b)
shows the time scheme paradigm which was followed during data acquisition [160]
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2.11.8 H.Cho Two-Class Dataset (GigaDB)

This dataset was collated by Hohyun Cho et al. [161]. The data was collected using the

Biosmi ActiveTwo 64 channel EEG system, with a sampling rate of 512Hz. Two EMG elec-

trode data points were recorded alongside EEG.

There were a total of 52 healthy participants. Before the MI experiment began, the subjects

were asked to move their fingers starting from index finger and processing their little finger

each touching their thumb, each after 3 seconds of onset. The subjects were asked, whilst

during the MI ask, to imagine the kinaesthetic experience rather than imagining the visual

experience.

The participants were asked to first perform real hand movement. The corresponding EEG

data was collected during these actions. At the start of each trial, the monitor showed a

blank screen with a fixation cross for 2s. The prompt for either left hand or right hand was

then shown on screen for 3 seconds. A rest period, showing a blank screen, was shown at

a random rate between 4.1 to 4.8 seconds. This process was repeated 20 times. Following

the physical movement task, the MI experiment was conducted. Subjected were asked to

imagine either the movement of the left or right hand. Either five or six runs were conducted

during each MI experiment. Between each run a maximum of 4 minutes was given as a break

period.
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3

Deep learning using EEG spectrograms

for classification of user intention

3.1 Introduction

In this chapter we explore a deep learning approach inspired by the recent successes in

image classification using dCNNs designed to exploit invariance and capture compositional

features in data [162, 163]. These systems have primarily been used to handle image data or

audio data. This research aims to work with spectrograms of EEG data (2D time–frequency

maps). This approach essentially treats the EEG channel data as an audio representation,

and the proposed method mimics similar uses in deep networks of that area.

The algorithm was inspired by a paper which was classifying music into various categories

using deep convolutional networks on spectrograms, [164]. This paper first applied win-

dows onto music signals, created spectrograms from these, and then passed these images

through a deep CNN architecture with 10 hidden layers. Their proposed network produced

results of at least 90% accuracy which was on par with other state-of-the-art methodologies
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in their research space.

Various noise signals degrade the original EEG during signal capture. As a result, pre-

processing techniques aid in the removal of undesired artefacts from the collected EEG sig-

nal and increase the signal to noise ratio. The frequency ranges include the mu and beta

bands, which have been demonstrated to be critical for MI categorisation.

Spectrograms display how the spectral density of a signal varies with time. The spectrogram

representation of a one-dimensional signal captures the fluctuation in the signal’s spectral

content across time. The resulting two-dimensional image has time as the horizontal axis,

frequency as the vertical axis, and the amplitude of the frequency components at a given mo-

ment as the intensity or colour of that point on the graph [165]. EEG signals are non–periodic

signals and consequently need to be captured as consecutive snapshots using sliding win-

dows.

The spectrogram was generated for the pre-processed EEG channels in their entirety. As

noted previously, the spectrogram band-pass filtered the range. The reason for using an

overall image rather than a stacked image as previously described was to create a more

robust model that could generalise not just to a single participant or dataset, but to several

datasets.

As mentioned in the literature (Chapter 2) there have been many proposed feature extrac-

tion methodologies for the classification of EEG MI signals. However, the majority of these

techniques have limitations and are insensitive to EEG signal deformations. They overlook

the class-relevant components contained in the time-frequency data. In other words, certain

frequency components were excluded from the analysis because they did not contribute to

class discrimination. This research mitigated these issues by utilising deep learning tech-

niques for feature learning and classification.

The spectrogram is used to recover EEG data in the time-frequency domain by applying a

STFT to the signal. By adjusting the temporal frame with some overlap, a process known

as windowing, STFT is used to partition the EEG signal into several segments of short-
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time signals [166]. A spectrogram is characterised as narrowband or wideband depending

on the temporal windowing function w[n]. The Fourier transform is wideband when the

time window is short, but the Fourier transform is narrowband when the time window is

extended [167]. The STFT general equation of a signal S is given by equation 3.1.

S(m, k) =
N−1

∑
n=0

s(n + mN)w(n)e−j( 2π
N )nk (3.1)

Where k[0 : K] is the kth Fourier coefficient. K = N/2 is the frequency index corresponding

to the Nyquist frequency. S(m, k) indicates the m-index time–frequency(frame) spectrogram.

N = window segment length. mN = the shifting step of the time window. w(n) = windowing

method of an N-point sequence. mN should be at a value smaller than N to produce an

overlap between time windows. S depends on the type of window function used such as

Symmetric, Uni-modal and Gaussian.

A wide window gives less localisation in time but greater frequency discrimination in the

spectrogram, which compromises time resolution and frequency resolution. The window

captures a time slice of the signal with near–constant spectral properties [167]. The obtained

segments then shift the time window whilst also overlapping. The spectrogram is defined

as a magnitude of S(m, k); this is represented at A(m, k), shown in equation:

A(m, k) =
1
N
|S(m, k)|2 (3.2)

The resolution of the spectrogram can be improved by changing the length window; a longer

window provides better frequency resolution but poor temporal resolution. A small win-

dow, on the other hand, offers better temporal resolution but low-frequency resolution. The

selection of an adequate window length and overlapping is critical for a decent spectrogram

visualisation. A spectrogram of a signal, a time–varying spectral representation of a signal,

is shown in Figure 3.1. The following is a typical spectrogram layout: The x–axis repre-

sents time, the y–axis shows frequency, and the third dimension, colour-coded, represents



3. Deep learning using EEG spectrograms for classification of user intention 55

the amplitude (spectral content) of a frequency–time pair. Figure 3.1a shows overlapped

EEG signals in the time domain, over the course of a particular period of time. The fre-

quency domain representation of a signal refers to the representation of a signal in terms of

its frequency components (Figure 3.1b), typically obtained through a Fourier transform. This

representation, taking the form of a frequency versus magnitude or power graph, shows the

magnitude and phase of the signal at each frequency. A spectrogram, visualised in Figure

3.1c, on the other hand, is a two-dimensional representation of the frequency content of a

signal over time. The STFT is used to create it on a signal that has been windowed, with the

STFT magnitude squared producing the signal’s energy or power content at each frequency

for each time window. With time on the x-axis, frequency on the y-axis, and color depth rep-

resenting the magnitude or power of the signal at each time and frequency, the spectrogram

visualises this data as a color-coded image.

(a) EEG signals with varying amplitudes over time

(b) EEG signals in the frequency domain

(c) Spectrogram representation

Figure 3.1: EEG signal representation in raw data time series, frequency domain and spec-
trogram representation
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The raw EEG data is transformed, before being processed by the proposed deep learning

framework. Firstly, the signal is pre–processed with filtered values between 2-40Hz. These

frequency parameters are widely adopted when looking for EEG features. Each 5 seconds

(5 ∗ 100Hz) of EEG signals was sampled and converted to a spectrogram image in accor-

dance with the time sequence. Additionally, to maximise data utilisation, each STFT win-

dow overlapped by 20% with adjacent windows. Finally, each generated spectrogram image

was resized to 256 x 256 pixels in order to conform to the deep CNN’s input format. Finally,

the data is classified into right and left motor imagery data. Figure 3.2 shows the block dia-

gram of the framework proposed.

Motor Imagery
Signals Preprocessing Spectrogram dCNN Left/Right

Hand MI

Figure 3.2: MI Classification Pipeline using STFT and deep learning framework

3.2 Data Preprocessing

The first stage of pre-processing was to reduce power line interference by applying a notch

filter with a frequency of 50Hz. Second, the data was high-pass filtered with a cut-off fre-

quency of 0.5Hz to eliminate baseline drift. The signals were filtered between 7Hz and 14Hz,

after the experiment, using a 5th order zero-phase Butterworth filter.

The Nolan et al. [168] method was chosen to detect and eliminate EOG and EMG signals

from the EEG data. EEG artefacts were removed from individual channels within single

epochs using the channel data’s mean amplitude and standard deviation. The deleted por-

tions and epochs comprised data with a high amplitude, which was typically evaluated as

per the standard. To enhance the representation of partial temporal invariance in the data

and minimize overfitting and associated errors, an overlapping sliding window technique

was employed.
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A consensus was reached regarding the characteristics of the data windows, which should

exclusively pertain to the MI and encompass the entire duration of the trial, starting from

the initiation of MI until its completion. A time window of 4 seconds was used to generate

alternative crops with a stride of 125 ms, creating 25 new sub-trials from each individual

trial. Crops were collected for 3 seconds prior to the initiation of MI and continued until the

end of the trial.

Following the deployment of the augmentation technique, a considerable performance im-

provement was noticed with the recommended model, as it required the CNN model to

learn complex characteristics from all of the windows, resulting in enhanced classification

performance. The augmentation procedure was performed exclusively on the training set.

The augmented dataset also includes the original EEG signals.

3.3 Model Implementation

CNNs have been most successfully employed for image identification applications, requir-

ing a two-dimensional input. EEG signals, by contrast, are dynamic time series obtained

from several scalp channels. To address this issue, the employed EEG data is in the form of

a two-dimensional matrix of size TxC, where C denotes the number of electrodes (channels)

and T denotes the EEG signal time points, as represented in Figure 3.3. As illustrated in Fig-

ure 3.4, the proposed CNN model architecture is inspired by CNNs used in the ImageNet

competition, such as VGGNet [169] and AlexNet [170, 126].
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Figure 3.3: Representation of the two-dimensional matrix which represents the number of
electrodes vs the time points

Determining the coarse structure of the DNN is one of the most difficult problems in DNNs.

A DNN structure with a small size makes it easier to search for a coarse model than a DNN

structure with a large size. It employs stacked convolutional layers with decreasing layer

depth and an increasing number of filter kernels. Batch normalisation is applied after each

convolutional layer to reduce covariate shift in intermediate representations and improve

robustness.

A block diagram representation of the STFT model is shown in Figure 3.4. The first convo-

lutional layer computes the spectrogram representation, which is used as the model’s input.

The CNN’s pooling layer conducts a non-linear down-sampling operation while also con-

tributing to the network’s translation invariance. By placing a pooling layer between the

convolutional layers of the CNN, the CNN’s input size is gradually lowered.

Max-pooling is the most often used pooling method in ML applications. The requirement

for pooling layers varies by problem, and there is no universal methodology. Pooling is a

technique that is frequently employed in CNNs, but it is not required to utilise this layer after

each convolutional layer. Between each subsequent convolutional layer in this investigation,

a pooling layer is used. With an activation function of f (x) = max(0, x), the ReLU layer

zeroes out the negative values in the activation maps, performing a non-linear action in

the decision-making system. Additionally, between each layer, the batch normalisation and
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EEG

STFT

2D Conv
Batch norm

2D Max Pooling
ReLU

2D Conv
Batch norm

2D Max Pooling
ReLU

2D Conv
Batch norm

2D Max Pooling
ReLU

2D Conv
Batch norm

2D Max Pooling
ReLU

Dropout (0.5)
Fully connected

Softmax

Figure 3.4: Block diagram of motor imagery classification using STFT and deep learning
framework
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drop-out functions are employed to reinforce the training. While a CNN represents the

features in general, a fully connected NN represents the classifier in particular.

The magnitude of spectrum images was determined using STFT at a sampling rate of 250Hz

and a 50% overlap. The spectrogram illustrates the STFT results visually. Following their

acquisition, the EEG signals were initially cut into small overlapping time—windows. This

new data format combines information about frequency, time, and electrode position. Due

to the unique design of the Hamming window, it was chosen for this experiment as the

sliding window. Following that, each crop was subjected to a FFT, with the assumption that

the crops would remain stationary over a short time period. The spectrogram was generated

by merging three distinct spectrograms of three electrodes from the motor cortex, C3, C4,

and Cz. The spectrograms in a frequency range of 2–40Hz were used to generate the input

image for the proposed CNN framework.

To avoid mains interference, a suitable notch filter was used, which varied according to the

country from which the dataset was collected (50Hz for the majority of European countries,

60Hz for the majority of others). The parameters for this experiment were n = 1024 FFT

samples and a s = 16 time shift between STFT windows.

The CNN model was trained, validated and tested on each individual subject of the dataset

on overall accuracy. Further to this, the model was additionally validated using a 5–fold

k–means cross–validation. Different approaches to network architecture design were inves-

tigated to determine their effect on network performance. We sought to gain insight into

the network by varying design parameters such as activation functions, kernel size, and fil-

ter size. Taking into account computational expenses and the time required for training the

model, we opted for a simpler CNN model construction. The filters were aimed to capture

different spatial pattern related to MI. The proposed dCNN model consisted of a 6-layer

model. Firstly raw EEG signals were used in order to create spectrograms using STFT. The

resulting images were passed into the CNN. The network has 5 convolutional layers. The

filters were chosen such that the first filter is 24, and doubles for the two following Conv2D
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layers i.e. 24, 48, 192, 384 and finally 768. A kernel size was chosen which dropped in size

with each Conv2D layer. The network’s performance was tuned by using filters of vari-

ous sizes, however, we observed the highest performance improvements with an increasing

filter size, and a decreasing kernel size.

The concept of changing the filters for each convolution was chosen to emulate state-of-the-

art CNN models such as the VGG or ImageNet model structure [126]. After each convo-

lution layer a ReLU activation layer was applied. The activation function had the greatest

impact on the network’s performance. For instance, the ReLU produced the most accurate

results. Additionally, dense layers were implemented without activating the ReLU, result-

ing in a decreased recognition rate. This leads to the conclusion that non-linearity makes

dense layers more robust at the network’s end in terms of feature extraction.

To perform the classification of the data, a fully connected layer is applied further to the three

convolutional layers, with a So f tmax activation layer. Max pooling was applied after each

layer, as research indicates that this could improve the network performance. A dropout

regularisation is applied after the final convolutional layer at 50%. The chosen dropout was

the optimal dropout found during hyperparameter tuning to prevent overfitting. During

model compilation categorialcrossentropy was the chosen loss function, and we used the

Adam optimal optimiser.

3.4 Analysis and Results

As stated in the previous chapter, a CNN is a DNN composed of an input layer, many

convolutional and pooling layer pairings, a fully connected layer, and finally an output layer.

The architecture of a CNN is a top priority for DL researchers. There are various state-of-

the-art CNN models for image identification, including AlexNet and ResNet. Each of these

CNN models is unique in terms of layer count, kernel size, and inception blocks, which are

responsible for the CNN model’s classification accuracy.
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Transfer learning is a ML technique that entails reusing a trained model that was created for

a certain job in order to classify another task using the learned knowledge. In this section,

we employed the transfer learning method to compare our CNN built on the STFT frame-

work to other state-of-the-art models. Transfer learning of these pre-trained CNN models

begins by adapting the network’s structure and learnt features to the new dataset, rather

than training the network from scratch using random weights. The next sections examine

the network architecture of these models.

AlexNet and ResNet50 were utilised as pre-trained models used for benchmarking. Origi-

nally, these networks were created to classify photos for the ImageNet challenge, with varied

degrees of classification accuracy.

Five convolutional layers and three fully linked layers comprise the AlexNet model. Each

convolutional and fully connected layer output is routed through a non-linear Rectified Lin-

ear Units (ReLU). The final fully connected layer is fed into the output softmax layer, which

classifies the input images using the 1000 class labels specified in the ImageNet classifica-

tion challenge. The input layer receives an image with a dimension of 224x224x3. AlexNet’s

detailed design is described in depth in [126].

ResNet-50 is a 50-layer residual CNN that is aimed to alleviate the problem of vanishing gra-

dients during backpropagation by introducing shortcut links between conventional CNN

networks. ResNet50’s input layer accepts an image with a dimension of 224x224x3. Each

convolutional layer is followed by batch normalisation and downsampling using filters of

size 33. To classify the input image into 1000 labels, the last component of the CNN uses an

average pooling layer and a fully connected layer with softmax. ResNet50’s detailed design

is described in length in [129].

We chose to conduct these tests using the BCI Competition III dataset IIIa, which contains

four distinct classes of motor imagery (left hand, right hand, foot and tongue). This dataset

was used to evaluate both a two-class (left and right hand) and a four-class dCNN on it.

The dCNN was applied to the data after each participant’s spectrogram was pre-processed
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using the spectrogram framework. To reduce the data’s dimension and improve learning

accuracy, the data was transformed as described in the pre-processing section.

In the study, a deep learning model was employed on a per-subject basis within the dataset,

incorporating all EEG trials as part of the framework. A stratified five-fold cross–validation

was applied for both the proposed framework and also the two state-of-the-art datasets

(ResNet and AlexNet). Five folds were used for training and validation (90% training and

10% validation), and the last fold used for testing. Following the validation of 10% of the

training set, the remaining data in the training set is supplemented. As a result, no augmen-

tation of validation on test data is performed. The small initial dataset is enhanced first, and

then divided into 82 percent training, 8% validation, and 10% test sets. The dCNN would

have complete information about the data because the three sets of training, validation, and

test would contain augmented variants of the original data. In this case, success rates of 100

percent would be achieved for all open-source datasets’ training, validation, and test sets.

The inability of some individuals to participate adequately in MI-based studies is a frequent

occurrence, and as a result, unsatisfactory results with specific participants are obtained.

When compared to currently used methods, it is discovered that the proposed methods

achieve a marginal improvement in classification performance. Each dataset was cross-

validated five times. Additionally, to achieve the highest degree of accuracy, a grid search

method was used to determine the optimal parameters. An early–stopping feature was

used to prevent overfitting. This ensured that the model would be trained until the min-

imum validation loss was found and tested on the test data to measure its generalisation

capabilities. Obtained results from the proposed CNN model have outperformed state–of–

the–art–results on the same dataset, which were obtained using classical ML techniques.

A confusion matrix is a frequently used statistical technique for classifying situations. It is

relevant to problems involving both binary and multi-class classification. The confusion ma-

trix depicts the distribution of all expected responses in relation to their true classifications.

The following figures present the performance indicators for our dCNN on the BCI III
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dataset IIIa dataset for a binary class classification model. Looking at the confusion matrix

for one of the k-folds, as illustrated in Figure 3.5, the true labels are predominantly correctly

identified for both the left and right classes in each of the five instances. This particular fold

shows a classification accuracy of 93.12%. The classification accuracy over the cross vali-

dation folds indicates that the model is capable of learning and discriminating between the

two classes on a consistent basis of left hand and right hand MI.

Figure 3.5: Confusion Matrix for spectrogram-dCNN framework: BCI IIIa binary classifica-
tion (k3b)

Figure 3.6 illustrate the training versus validation accuracies. A significant difference in

accuracy or loss between training and validation strongly suggests overfitting.
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Figure 3.6: Model Accuracy for spectrogram-dCNN framework: BCI IIIa binary classifica-
tion (k3b)

The larger the distance, the more overfitting occurs. As illustrated in the image, we first

permitted model training to take place across 30 epochs. Both training and validation curves

closely track each other for accuracy and loss, but begin to diverge at 10 to 15 epochs. This

is true for all k-folds. As a result, in order to avoid overfitting, we choose 12 epochs as the

optimum cut-off point for model training.

Table 3.1 summarises the classification accuracy of STFT pre-processing steps, as described

previously in this chapter, followed by either the proposed model, AlexNet or ResNet50

models. As a result of these findings, it is clear that the suggested model outperformed the

transfer learning approach with a pre-trained network in terms of classification accuracy.
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Table 3.1: Classification results of two-class BCI competition III dataset IIIa compared to
transfer learning from state-of-the-art models

Classification accuracy %

Subject Proposed AlexNet ResNet50

k3b 94.01 90.32 89.25

k6b 91.86 87.69 86.33

I1b 89.56 86.33 87.98

Mean ± Std Dev 91.81 ± 2.23 88.11 ± 2.03 87.85 ± 1.46

It can be observed that the proposed framework has a mean classification accuracy of 91.81%,

whereas AlexNet and ResNet50 both have 88.11% and 87.85% classification accuracy, re-

spectively. This demonstrates that, despite the fact that both AlexNet and ResNet50 have

a significantly higher layer count, the layer count is not positively linked to classification

accuracy, and was not able to generalise over the individual participants in the dataset with

a higher accuracy.

The following graphs illustrate our deep convolutional neural network’s performance in-

dicators on the BCI III dataset IIIa for a four class classification model, when applied on

individual subjects within a dataset. Each of the five k-folds has its own confusion matrix.

As seen in Figure 3.7, one of the k-folds, true labels are mostly accurately detected for both

the left and right classes in each of the five occurrences. Classification accuracy for this

specific fold is 92.06%.
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Figure 3.7: Confusion Matrix for spectrogram-dCNN framework: BCI IIIa 4-class classifica-
tion (k3b)

The classification accuracy throughout cross validation folds demonstrates that the model is

capable of accurately learning and differentiating between the four classes of left hand, right

hand, tongue and feet MI.

The training vs validation accuracies and losses are depicted in 3.8 and 3.9 for the four class

classification of this dataset. Between training and validation, a considerable difference in

accuracy or loss clearly signals overfitting. Initially, the model was run for 30 epochs. From

the model accuracy and loss curves we are able to visualise that the point where the model

appears to be overfitting is approximately at 15 epochs. As a result, we chose 15 epochs as

the optimal cut-off point for model training to avoid overfitting.
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Figure 3.8: Model Accuracy for spectrogram-dCNN framework: BCI IIIa 4-class classifica-
tion (k3b)

Figure 3.9: Model Loss for spectrogram-dCNN: BCI IIIa 4-class classification (k3b)

Following the successful application of the STFT-dCNN framework on individual subjects,

it was deemed appropriate to proceed with the analysis of the four-class dataset across indi-

vidual subjects. The Table 3.2 summarises the classification accuracy of STFT pre-processing
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steps followed by a dCNN. The dataset was additionally compared with the AlexNet, and

ResNet50 networks, similiar to the binary results. As can be shown, the suggested frame-

work has a mean classification accuracy of 90.81% , while AlexNet and ResNet50 both have

classification accuracy of 86.28% and 85.11%, respectively.

Table 3.2: Classification results of four-class BCI competition III dataset IIIa compared to
transfer learning from state-of-the-art models for spectrogram-dCNN framework

Classification accuracy %

Subject Proposed AlexNet ResNet50

k3b 92.98 87.22 85.34

k6b 89.22 85.39 83.45

I1b 90.23 86.24 86.55

Mean ± Std Dev 90.81 ± 1.94 86.28 ± 0.92 85.11 ± 1.56

Following the successful application of the STFT-dCNN framework on the individual sub-

ject 4-class classification in the dataset, it was decided to evaluate this framework across the

entire dataset.

It was observed that the proposed framework has a classification accuracy of 74.97%, as

detailed in Table 3.3. This accuracy is well below what would be considered an accept-

able level of classification accuracies for BCI MI. However, this level of accuracy is also ex-

hibited when utilising transfer learning and the spectrogram framework with AlexNet and

ResNet50, which achieve classification accuracy of 72.02% and 69.68%, respectively.
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Table 3.3: Classification results of two-class BCI competition III dataset IIIa compared to
transfer learning from state-of-the-art models for the overall dataset

Classification accuracy %

k-fold Proposed AlexNet ResNet50

1 74.47 73.62 70.22

2 77.42 74.55 69.58

3 71.99 70.86 72.33

4 72.14 71.83 67.28

5 73.82 69.22 68.98

Mean ± Std Dev 74.97 ± 2.20 72.02 ± 2.13 69.68 ± 1.84

3.5 Conclusions

In this research a DNN based model on pre-processed spectrogram EEG data was proposed.

In order to classify the MI signals without the use of identifying specific features the dCNN

was used. The concept of feature vectors in the time-frequency domain was proposed and

refined as an effective and practical framework for removing noise, reducing dimension,

and extracting signal features from EEG data.

The following factors may contribute to the proposed framework’s superior performance:

To begin, the spectrogram structure emphasises the characteristics of each class. Then, using

the suggested DL system, the spatial and temporal properties of the MI signal may be effi-

ciently learned. In comparison to existing frameworks, the experimental results reveal that

the proposed scheme is extremely effective at enhancing discriminant analysis results and

also has a strong classification effect on MI signals with short time series.

We proposed a unified, end-to-end classification system that integrates two stages: spectro-

grams and dCNNs. The spectrogram framework is effective in highlighting characteristics

and assisting our proposed NN in achieving greater accuracy in MI task categorisation. The
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disadvantage of this approach is that the model is applied to each individual participant

rather than to the entire dataset. We discovered that the total dataset performed poorly, and

the dCNN with the spectrogram architecture was unable to generalise across it.

In comparison to the well-established ML approaches highlighted in the literature (Chapter

2), this framework appears to be superior at discriminating MI task-related EEG signals. It

outperformed other classification algorithms by achieving the greatest classification accu-

racy of 91.81% for binary classification and 90.81% for four-class classification. It outper-

forms a number of other notable combinations of feature extractors and classifiers. Thus,

combining STFT modifications for EEG signal reconstruction with dCNN models proves to

be a robust approach when applied on individual subjects.
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4

Deep learning using topographical EEG

images for classification of user intention

This chapter examines the combination of topographical maps with a dCNN as an alter-

native candidate for EEG MI classification. Topographical maps provide a spatial repre-

sentation of a window of information, effectively making them images that can be used

in conjunction with convolutional networks. The following chapter presents our proposed

approach as an alternative framework to address the cross-subject generalisation problem

observed in the previous chapter.

4.1 Introduction

Constructing a model that is robust to signal translation and deformation in space, fre-

quency, and time due to inter-subject and intra-subject variances, as well as signal acqui-

sition techniques, is a fundamental problem in correctly recognising mental processes from

observed brain activity [171]. Many of the discrepancies are due to minor individual changes
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in cortical mapping and/or functioning, which results in observable disparities in spatial,

spectral, and temporal patterns. Furthermore, lack of proper fitting of the cap on heads

of various sizes and shapes, EEG caps, which are used to position the electrodes on top

of designated cortical regions, might be another source of spatial differences in observed

responses.

We propose an improved DL based framework for learning representations from EEG data,

that appears to be more robust to inter-subject and intra-subject variations, as well as mea-

surement related noise. The method proposed in this thesis is substantially different from

prior deep neural network based attempts to learn high—level representations from EEG.

Instead of representing low–level EEG features as a vector, we transform the data into a

multi-dimensional tensor which preserves the data’s structure throughout the learning pro-

cess. In other words, unlike current EEG analysis approaches, which neglect such spatial

information, we produce a sequence of topology-preserving multi-spectral images.

Following the extraction of these topologies, the EEG data is trained on DNN architectures

influenced by state–of–the-art video classification techniques in order to develop robust rep-

resentations from a succession of images, or frames [172]. CNNs are used to extract spatial

and spectral invariant representations from each frame of data [173].

In literature, researchers generally train EEG MI models on a subject-by-subject basis i.e. the

model would be applied on the individual’s trials rather than applied between participants.

Applying subject-by-subject training restricts the use of your data. DNNs are capable of

generalisation and classification based on the amount of properly labelled data at their dis-

posal. As stated previously in this thesis, this project’s scope is extremely constrained by

lack of available open-source datasets.

In contrast to previous research that has focused on subject-by-subject comparisons, the

work in this chapter will examine the possibility of developing a general classification model

that is capable of generalising across all subjects. As detailed in the literature review chap-

ter, the framework made use of a collection of publicly available datasets. Experiments with
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two, three, and four classes of MI were conducted. Section 2.11 provided an in-depth de-

scription of each dataset.

4.2 Data Preprocessing

EEG data consists of numerous time series corresponding to measurements taken at various

spatial locations throughout the cerebral cortex. Like voice signals, the most salient aspects

of a signal are found in the frequency domain, which may be analysed by looking at the

signal’s spectrogram. Nevertheless, as previously mentioned in the literature review, the

EEG signal possesses a spatial component. A FFT is performed for each trial to evaluate

the power spectrum of the signal. Cortical oscillations which are associated with frequency

bands for memory processes are theta (4-8Hz), alpha (8-13Hz), and beta (13-30Hz). Calcu-

lated and used as a distinct measurement for each electrode, the sum of squared absolute

values within each of the three frequency bands was computed and used as a separate mea-

surement.

The standard approach to EEG analysis is to aggregate spectral measurements from the

electrodes to form a feature vector. This approach, however, ignores the inherent structure

of EEG data in terms of space, time and frequency. The proposed framework preserves

spatial structure by transforming the measurements into a 2D image, using multiple colours

to represent the spectral dimension. Temporal evolutions in brain activity are represented

from a sequence of images from consecutive time windows.

Each of the EEG trials can be expressed mathematically as a matrix, T × i × j of M × N,

where i represents the index of the MI tasks, and j represents the index of trials. M expresses

the number of channels in the EEG, and N represents the time–domain visual matrix. In

order to preserve the relative distance between the electrodes which are normally on the

cap, Polar Projection is applied to 3D coordinates which projects this onto a 2D surface. This

procedure generates a 32 × 32 image. The process is then repeated for each of the frequency
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bands discussed, and merged, giving an image which is the collective representation of the

three frequency bands.

This three-channel image gives the input to the deep CNN. The data pre-processing can

be segregated into four steps. Firstly, The data is separated into overlapping one–second

windows, and the Hanning window is applied. Second, an FFT is applied to the data to

convert the data from the time domain to the frequency domain. Thirdly, the FFT ampli-

tudes are grouped into alpha(8–12Hz), beta(12-40Hz), theta (4–8Hz) frequency band. This

would then give three quantifiable values for each of the electrodes. Finally a mathematical

projection tool, the 2D azimuthal projection is applied to the values produced by the fre-

quency binning are then interpreted as RGB colours and projected onto a 2–D map of the

head. We go into detail of these steps over the next few paragraphs.

The Hanning window was applied on the raw signal as the first part of the data pre–

processing. The main lobe width of the Hanning window is
8π

T
, and roll–off rate at −18dB/oct,

and side load level at −31.5dB/oct. The equation can be seen in 4.1, where n is the sample

index, ranging from 0 to N − 1, and N is the length of the window function. Generally, the

Hanning function is the chosen windowing function due to its good frequency resolution

and reduced spectral leakage.

Hanning function:

w(n) = 0.5
[

1 − cos
(

2πn
N − 1

)]
(4.1)

Hanning windows are frequently used with random data because their effect on the fre-

quency resolution and amplitude accuracy of the resulting frequency spectrum is relatively

small in comparison to the effects of other windows. A Hanning window’s maximum am-

plitude error is 15%, while the frequency leakage is typically limited to 1.5 spectral lines on

either side of the original sine wave signal.

The Hanning window begins at zero and terminates at zero. It has a value of one in the

window’s centre. This gradual transition between 0 and 1 ensures a smooth change in am-
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plitudes when the measured signal is multiplied by the window, thereby reducing spectral

leakage.

DFT is a mathematical technique used to transform a discrete signal from its time domain

representation to its frequency domain representation. The DFT converts a discrete signal

into a sum of complex exponentials, each representing a particular frequency component in

the signal. The magnitude and phase of each frequency component can be found from the

DFT coefficients, which are complex numbers.

FFT is an efficient algorithm for computing the DFT of a signal. It reduces the computa-

tional complexity of the DFT from θ(n2) to θ(n log n), where N is the number of samples in

the signal. The FFT algorithm exploits the symmetry properties of the DFT to reduce the

number of computations required, making it much faster than the standard DFT. The FFT

is widely used in many applications, including signal processing, image processing, and

communication systems.

The EEG data is recorded from the scalp surface. This data contains two types of informa-

tion: voltages and electrode positions. There are three commonly used methods for display-

ing data. The most common method is to use a set of lines known as isolines, each of which

represents the same voltage values on the head surface. However, it cannot show us the true

positions of the maximum and minimum because the interpolation method used may give

us an incorrect impression of brain activity.

The second method, using potential distribution on a projective plan, can provide us with

the voltages and 2-D positions, but there is still the issue that when a hemisphere is pro-

jected to a plane, there is some serious distortion in the projection of the sphere’s lateral

surface. The final step is to place the data on the realistic head surface. However, in or-

der to be analysed, this model must be rotated. The azimuth projection has long been used

to represent EEG data on maps. To convert the data from its raw form, three steps were

taken. First, we convert the electrode coordinates to ’geographical’ coordinates. Second, we

use the azimuth conformal projection to determine the new electrode position. Finally, the
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interpolation method is used to obtain a satisfied figure. Figure 4.1 provides a sample of

four images post pre–processing using the framework above. It is observed that the spatial

structure is preserved. In Figure 4.2 the complete data pipeline is represented. The raw EEG

data is fed into the data pipeline using the pre–processing framework as above. The gener-

ated EEG temporal representations are then fed into a deep CNN model architecture. The

outcome of the model is the directional prediction, depending on the dataset this would be

either two, three or four classes.

Figure 4.1: A sample of the produced 2–D azimuthal projections

4.3 dCNN Model Implementation

Deep CNNs lie at the core of state–of–the–art architectures when working with image and

video data. EEG data when presented is in the form of X number of channels of data,

against the y data samples taken, as a 2D–Matrix of data. The process of this experiment is

based off the approach taken by Bashivan et al, [174]. The data which the model is based on

was collected with the intent of classifying the mental exertion required to count different

number of letters on a screen.

EEG signals are time–based, they require to be transformed appropriately to be compatible

with CNNs. Each of the EEG trials can be expressed mathematically as a matrix, Ti
j of di-
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mensions M × N, where i represents the index of the tasks, and j represents the index of

trials. M expresses the number of channels in the EEG, and N represents the time–domain

data points.

Bashivan et al. [174] uses general the VGG network framework [169], popularly known

for its object detection and segmentation within images. All the convolutional layers are

3x3, and stride length of 1 pixel, max pooling at 2 × 2, and stride of 2 pixels, using a ReLU

activation function, with fully connected layers at the end, also using a ReLU activation

function. Image margins are padded in order to preserve the whole image between convo-

lutions. Multiple convolutional layers are stacked before being followed by a max pooling

layer. As we go deeper into the network, after each of the max-pooling layers, the kernels

are increased by a multiple of 2.

Initial evaluations were conducted on a 5 layer CNN model without any preprocessing of

the EEG data. Raw EEG signals were used from all 64 channels provided in the database

[160]. Spectrograms were generated from the EEG signals and the resulting images were

fed to the NN as inputs of the CNN, and was then passed through two densely connected

layers for classification using a sigmoid activation layer. The model was consistently un-

derperforming with results at around 40% testing accuracy. While hyperparameter tuning

was able to slightly increase the accuracy of the model, it had no significant impact. Thus,

this avenue was abandoned from further investigation, as the model was unsuccessful in

learning the features from raw data.

The successful implementation proposed in Figure 4.2 consists of a 9 layer neural network

and a four stage preprocessing step of the EEG data. The preprocessing steps described in

Section 4.2 (Hanning Window FFT, Frequency Binning) were applied to the raw data. The

final stage of the preprocessing pipeline consists of generating the topographical maps by 2D

Azimuthal Projection. These images are then being fed to the neural network through two

convolutional layers and alternately max-pooled. For the intermediary transitions between

convolutional layers, ReLU was applied as the activation function. The resulting matrix is
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then flattened and a dropout is applied before passing through a dense layer to calculate

the probabilities of it belonging to a particular class. For the optimisation, the Adam was

used. The large amount of parameters in EEG datasets makes them susceptible to over-

fitting. In order to mediate this risk, a dropout with probability rate of 0.1 was applied to all

fully connected Layers. Learning rate was set to 10−3, with a batch size of 32. Training was

carried out using the cross-entropy loss function. A similar VGG structure was used, with

modifications made to the complexity of the original structure. Optimisation search tools

were implemented, in particular using Grid–search based method using the Talos library

[175]. To reduce training time for models, early stopping was also applied.

conv2D maxpool
conv2D maxpool

flatten dropout dense output

Figure 4.2: Proposed dCNN Model

The proposed CNN model can be seen in Figure 4.2. Its structure is inspired by the VGG

model architecture proposed in [170]. Further to testing, the optimal found hyperparameters

were as follows with momentum = 0.9 and learningrate = 0.0010. The dropout layer in the

model is set to 0.1.

4.4 Performance Metrics

It is crucial to use a suitable metric when analysing ML models. For the experiments con-

ducted in this work, performance was evaluated using a number of classification metrics.

Numerous metrics have been proposed for evaluating ML models in a variety of applica-

tions. In certain circumstances, focusing exclusively on a single metric may not provide a
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complete picture of the problem. In order to have a thorough understanding of a model’s

metrics a combination of performance metrics should be considered.

There are several methods to evaluate a classification model. The most popular metrics

used for model evaluation include accuracy, precision, recall, F1-score, Receiver Operating

Characteristic (ROC) and the Area Under the Curve (AUC). Classification accuracy is one

of the basic metrics known; it is defined as the number of correct predictions divided by the

total number of predictions, multiplied by 100.

The F1–score was the chosen measure of performance is it takes into account both recall and

precision. Recall can be described as the true positive rate of the model and precision as the

positive prediction value of the model. In ML, the true positive rate is either referred to as

sensitivity or recall. Recall and precision can be described as equations as shown in Equation

4.2 and Equation 4.3. The resulting F1 score can be calculated using Equation 4.4. TP refers

to the true positive, FN to false negative and FP for false positive. There are numerous

instances where classification accuracy does not accurately reflect a model’s performance.

One of these circumstances is when the distribution of your classes is skewed. Confusion

matrices were also generated in addition to these. They provide an instant visualisation of

the performance.

Recall =
TP

TP + FN
(4.2)

Precision =
TP

TP + FP
(4.3)

F1 = 2 × Recall × Precision
Recall + Precision

(4.4)

The ROC is a graph that depicts a binary classifier’s performance as a function of its cut-off

threshold. It provides a visual representation of the true positive rate (TPR) against the false
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positive rate (FPR) for a range of threshold values. The ROC curve provides a visual rep-

resentation of the trade-off between TPR and FPR as the decision threshold is varied. AUC

is a scalar value that summarises the performance of a binary classifier by measuring the

area under the ROC curve. AUC provides a single, scalar metric for evaluating classifier

performance that takes into account both TPR and FPR. A classifier with a high AUC is gen-

erally considered to have good performance, as it implies that it can accurately distinguish

positive and negative instances over a wide range of decision thresholds.

4.5 Analysis and Results

All data analysis was conducted using a EVGA GeForce GTX 1080 Ti GPU. The Tensorflow

ML framework was used alongside the Keras library as detailed in Appendix B.

A nine-layer dCNN was applied in this study, which included an input layer, eight hidden

layers, and an output layer. The ReLU layer trains on the actual target class, making it a

supervised method. All code was written in Python and used Tensorflow as a backend.

Numerous experiments have been conducted to develop the topographical mapping-DNN

framework that has shown promise. Table 4.1 shows the results of random-search based

hyperparameter selection search using Talos with using the proposed framework. For each

of the frameworks described, a two-layer DNN up to a nine-layer DNN was evaluated. In

this work, the aim was to keep the complexity of the system to a minimum in the hopes this

work would be useful for real-time assistive device applications where the need to be less

computationally expensive is paramount. This was to determine whether there was a trend

in the classification accuracy of the model as the number of layers increased. If there was no

positive trend in accuracy the framework was abandoned.

The first framework used band-pass filtering to transform the raw EEG data as little as possi-

ble, but this resulted in poor CNN classification accuracy results. In the second framework,

we limited the data to the three known electrodes (C3, C4, CZ) that have been shown to
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Table 4.1: Talos Hyperparameter search

epochs val loss val acc loss acc momentum lr batch dropout features

80 0.12 0.97 0.06 0.98 0.9 0.0010 32 0.10 32
103 0.09 0.97 0.10 0.96 0.9 0.0010 64 0.05 32
96 0.09 0.97 0.10 0.96 0.6 0.0010 64 0.05 32

135 0.09 0.97 0.10 0.96 0.9 0.0010 64 0.05 32
150 0.09 0.97 0.10 0.96 0.9 0.0005 64 0.05 32
116 0.09 0.97 0.10 0.96 0.6 0.0010 64 0.05 32
113 0.09 0.97 0.10 0.96 0.9 0.0010 64 0.05 32
124 0.09 0.97 0.10 0.96 0.9 0.0005 64 0.05 32
134 0.10 0.97 0.14 0.94 0.9 0.0004 64 0.15 32
150 0.09 0.97 0.12 0.95 0.6 0.0004 64 0.10 32

be active during MI, while still band-pass filtering it. The third framework took a differ-

ent approach, employing spectrograms and converting the data to the frequency domain,

as discussed in the previous chapter, and yielded some promising results. However, the

framework did not perform consistently across datasets.

A five–fold cross-validation approach was employed on the data. Four folds were used for

training and validation (90% training and 10% validation), and the last fold used for testing.

The ResNet model is currently considered one of the top-performing image-classification

CNNs; it is short for Residual Network. To ensure consistency between comparisons, the

ResNet model was also trained using the topographical maps as input. In the below sec-

tions the proposed framework classification results will be compared to the state-of-the-art

ResNet model.

It was been found by [176] that when the deeper network begins to converge, a degradation

problem becomes apparent: as network depth increases, accuracy becomes saturated and

then rapidly degrades. This degradation is not due to overfitting, nor is it due to additional

layers to a deep network that results in a higher training error. The deterioration of training

accuracy indicates that not all systems are straightforward to optimise. This is aligned with

experiments such as those that have been run by Narejo et al [177] and Lin et al [178].
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The following sections present the results from applying the proposed dCNN and topo-

graphical map framework to the datasets presented in section 2.11.

4.5.1 GigaDB dataset

The GigaDB dataset [159] has recordings of 52 subjects, as explained in section 2.11.8 of the

literature review chapter.

A confusion matrix is a widely used statistic for classification problems. It is applicable to

both binary and multi-class classification issues. The confusion matrix plots the distribu-

tion of all predicted responses against their true classes. Each diagonal element represents

a successfully classified result. The misclassified outcomes are depicted on the confusion

matrix’s off diagonals. As a result, the optimal classifier will have a confusion matrix that

contains only diagonal members and all other elements are set to zero. Diagonal compo-

nents represent the number of points for which the predicted label is equal to the true label,

and off-diagonal elements represent points for which the classifier incorrectly categorised

them.

The performance metrics for our dCNN over the GigaDB dataset are illustrated in the fol-

lowing figures. Figure 4.3 presents the confusion matrices for each of the 5 k-folds. As

can be observed from Figure 4.3, the true labels are predominantly correctly identified for

both the left and right classes in each of the 5 instances, indicating that the model is able to

consistently learn and distinguish the features between the 2 classes.
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(a) K-Fold 1 (b) K-Fold 2

(c) K-Fold 3 (d) K-Fold 4

(e) K-Fold 5

Figure 4.3: Confusion Matrix for proposed Model over GigaDB Dataset

We have chosen to train the model over 70 epochs. This has been done to mitigate the prob-

lem of overfitting. Following, we present a justification for our epoch selection in training
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our model.

Overfitting is a term that refers to a model that has learned too much about the training

dataset, including the statistical noise or random fluctuations contained within the training

dataset. To fit a more flexible model, a greater number of parameters must be estimated.

These more complex models may result in a phenomenon known as overfitting the data,

which essentially means that they closely monitor the errors, or noise. The issue with over-

fitting is that as a model becomes more specialised to training data, its ability to generalise

to new data decreases, resulting in an increase in generalisation error. The model’s perfor-

mance on the validation dataset can be used to quantify this increase in generalisation error.

Figures 4.4 and 4.5 present the training versus validation accuracies and the training versus

validation losses, respectively, for each of the 5 k-folds. A large difference in accuracy or loss

between training and validation is a strong evidence of overfitting. The greater the gap, the

greater the degree of overfitting. As can be observed from the figures, we initially allowed

the model training to occur over 120 epochs. For both accuracy and loss, both training and

validation curves follow eachother closely, but start presenting some divergence beyond 60

to 90 epochs. This effect is more subtle in the accuracy graphs but is clearly observable in

the losses from Figure 4.5. At this junction, the testing metrics continue to improve but not

so for the validation ones, indicating that the model becomes too specialised to generalise.

This behaviour is observed for all k-folds. As such, to prevent overfitting, we decide on 70

epochs as an appropriate cut-off point to end the model training.
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(a) K-Fold 1 (b) K-Fold 2

(c) K-Fold 3 (d) K-Fold 4

(e) K-Fold 5

Figure 4.4: Accuracy Curves for proposed Model over GigaDB Dataset
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(a) K-Fold 1 (b) K-Fold 2

(c) K-Fold 3 (d) K-Fold 4

(e) K-Fold 5

Figure 4.5: Loss Curves for proposed Model over GigaDB Dataset

The ROC curve is a binary classification issue evaluation metric. It is a probability curve

that displays the TPR against the FPR at various threshold levels, thereby separating ’sig-



4. Deep learning using topographical EEG images for classification of user intention 88

nal’ from ’noise’. The ROC curve illustrates the trade-off between sensitivity (or TPR) and

specificity (1 – FPR). Classifiers that produce curves closer to the top-left corner perform

better. Sensitivity and specificity are two components that indicate the intrinsic validity of a

result when compared to a gold standard.

As a starting point, a random classifier is supposed to produce diagonal points (FPR = TPR).

The closer the curve approaches the ROC space to a 45-degree diagonal, the less accurate

the model. The ROC curve is independent of the class distribution. This makes it an excel-

lent tool for evaluating classifiers that forecast infrequent events such as diseases or natural

disasters. By binarising the result, the ROC curve is tailored for multi-label classification. A

separate ROC curve is produced for each class label.

The area under the ROC curve (AUC) is a widely used indicator for summarising the infor-

mation contained in the curve. AUC is a measure of performance that is aggregated across

all possible categorisation levels. AUC can be interpreted in several ways. One method is

to think of it as the likelihood that the model will rank a random positive example higher

than a random negative example. AUC quantifies the total two-dimensional region beneath

the curve in two dimensions. The AUC score indicates how well a metric can differentiate

between classes. AUC is a scale-invariant and classification-threshold-invariant measure

of performance across all potential classification thresholds. Figure 4.6 illustrates the ROC

curves of our model over the GigaDB dataset. The model presents with AUCs of 0.99 for all

five k-folds, indicating it can easily differentiate between left and right handed signals.
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(a) K-Fold 1 (b) K-Fold 2

(c) K-Fold 3 (d) K-Fold 4

(e) K-Fold 5

Figure 4.6: ROC Curves for proposed Model over GigaDB Dataset

Precision assesses the proportion of positive class predictions that are genuinely positive

class predictions. Recall quantifies the amount of positive class predictions made from the
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dataset’s positive examples. We can see there is a high precision and recall within the data.

There was an even split with the left and right data points which were shown to the model

for training. During each of the five folds of training the AUC can be seen as 0.98 and above.

The AUC is at an average of 0.99 over all the folds which indicates that the model learned to

distinguish between the classes. This shows that the model is robust in generalising for the

GigaDB dataset.

When target classes are not balanced, utilising the above metrics as a criterion of perfor-

mance may not be sufficient. As a result, it is recommended that additional measures like

as Precision, Recall, and F1 Score be considered. The findings for these metrics are given in

Table 4.2. We can see by Table 4.2 that all 5 k-folds which were evaluated performed with an

average testing accuracy of 95.17%.

Table 4.2: K-Fold summary for dataset GigaDB

k-fold loss accuracy f1 precision recall

1 0.15 95.17 95.12 95.12 95.12

2 0.15 94.25 94.20 94.20 94.20

3 0.18 93.32 93.25 93.26 93.25

4 0.16 94.49 94.46 94.46 94.46

5 0.18 93.38 93.37 93.35 93.36

mean 0.16 94.12 94.08 94.08 94.08

std 0.01 0.70 0.70 0.70 0.70

To assess the effectiveness of the proposed deep convolutional neural network model with-

out requiring manual feature extraction, we chose to compare it to the ResNet50 deep net-

work, a very popular, state-of-the-art machine learning model. The comparative experimen-

tal results obtained from running the GigaDB database through the ResNet50 network can

be observer in Table 4.3.

The results obtained by our network are comparable to those obtained with ResNet50, with
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Table 4.3: Resnet50 K-Fold summary for dataset GigaDB

k-fold loss accuracy f1 precision recall

1 0.22 95.21 95.21 95.21 95.21
2 0.17 95.82 95.78 95.78 95.78
3 0.24 95.34 95.29 95.29 95.29
4 0.20 95.23 95.21 95.21 95.21
5 0.21 94.21 94.20 94.20 94.20
mean 0.21 95.16 95.14 95.14 95.14
std 0.02 0.52 0.51 0.51 0.51

our network slightly underperforming against ResNet50. Our model performed with an

accuracy between 93.32% and 95.17% with a mean accuracy of 94.12% with a standard de-

viation of 0.7. The performance of ResNet50 was slightly better, with an accuracy between

94.21% and 95.82% with a mean accuracy of 95.16% and slightly lower standard deviation

of 0.52, outperforming our network by 1.04% on average.
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4.5.2 BCI III dataset IVA

Dataset BCI III IVa presented a real challenge for both our network as well as for ResNet50.

The dataset comprises of two classes, right hand and left foot. Neither model could be

successfully trained and acceptably generalise over the data. As can be observed from the

confusion matrix in Figure 4.7, the model had a very difficult time distinguishing between

right hand and left foot data.

While there is no clear justification or evidence in the literature regarding this behaviour, the

author conjectures that a possible reason for this behaviour is the subtlety of EEG signals

generated by foot MI. The motor cortex for hands has a relatively large surface area when

compared to the one dedicated to foot movement. The location of the mapping for hand

movement is also tangential to the cranium, which allows for EEG signals to be picked up

over a wider range of the scalp. The cortical region for feet, on the other hand is positioned

within the inter-hemispheric fissure separating the two hemispheres, and is perpendicular

to the cranium. This would imply a smaller surface area on the scalp for the signal collection,

as well as a weaker signal, and thus less information. This, however, is a theory and would

require further investigation to determine the source of this issue.
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(a) K-Fold 1 (b) K-Fold 2

(c) K-Fold 3 (d) K-Fold 4

(e) K-Fold 5

Figure 4.7: Confusion Matrix for proposed Model over BCI III Dataset IVa

Additionally, insufficient data may have presented a challenge, as this dataset only contains

recordings from only 5 subjects, in contrast to the GigaDB dataset which had a total of 52
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users. The case for this conjecture is reinforced by results obtained from BCI III dataset IVb,

which also presented the model with foot MI as one of the classes and observed similarly

poor performance, both with our model and the ResNet50.

Figures 4.8 & 4.9 representing the accuracy and loss are indicative of the model not being

able to distinguish between classes and generalise. With the exception of the 2nd k-fold,

where the model opted to miss-classify all of the data as belonging to the right-hand class,

the training and validation accuracies and losses significantly diverge from as early as 20

epochs. While the model’s training accuracy presents a continued increase, the test accuracy

stagnates and breaks down at around 60%. A similar degradation is evident for the losses,

with the loss reaching a low of around 0.65, after which it reverses course and increases

steadily.

For the 2nd K-fold, the AUC is at 0.5% which indicates the model has no discrimination

capacity to distinguish between the two classes. For the other k-folds, the AUC is between

0.65 and 0.70.
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(a) K-Fold 1 (b) K-Fold 2

(c) K-Fold 3 (d) K-Fold 4

(e) K-Fold 5

Figure 4.8: Accuracy Curves for proposed Model over BCI III IVa Dataset
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(a) K-Fold 1 (b) K-Fold 2

(c) K-Fold 3 (d) K-Fold 4

(e) K-Fold 5

Figure 4.9: Loss Curves for proposed Model over BCI III Dataset IVa
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(a) K-Fold 1 (b) K-Fold 2

(c) K-Fold 3 (d) K-Fold 4

(e) K-Fold 5

Figure 4.10: ROC Curves for proposed Model over BCI III Dataset IVa
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For the IVa dataset, our network performed with an accuracy between 50% and 64.90%, with

a mean of 60.10%. The poor performance was reflected in the ResNet50 network, and was

even more prominent, with a mean accuracy of 54.74%. A summary of these results can be

observed in Tables 4.4 & 4.5.

Table 4.4: K-Fold summary for BCI III dataset IVa

k-fold loss accuracy f1 precision recall

1 0.77 64.80 64.82 64.87 64.85

2 0.69 50.00 50.60 50.60 50.60

3 0.73 61.73 61.71 61.81 61.76

4 0.79 59.08 58.99 59.05 59.02

5 0.63 64.90 65.08 65.01 65.05

mean 0.72 60.10 60.24 60.27 60.26

std 0.06 5.49 5.31 5.31 5.31

Table 4.5: Resnet50 K-Fold summary for BCI III dataset IVa

k-fold loss accuracy f1 precision recall

1 1.95 56.94 56.85 56.85 56.85
2 2.33 57.96 57.92 57.92 57.92
3 1.93 53.98 54.54 54.54 54.54
4 0.69 50.00 50.60 50.60 50.60
5 2.14 54.80 54.80 54.80 54.80
mean 1.81 54.74 54.94 54.94 54.94
std 0.58 2.77 2.51 2.51 2.51
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4.5.3 BCI IV dataset I

Dataset I of the BCI IV competition is another 2-class dataset with left and right hand MI EEG

signals. Our model recorded its highest performance for this dataset, even outperforming

ResNet50. The confusion matrices in Figure 4.11 over the 5 k-folds provide a summary of

this. The model managed to appropriately classify both left and right classes, with only two

instances in which the misclassification exceeded 0.01 of the total labels in the class. The 1%

misclassification occurred for k-fold 4 and 5 in Sub-figures 4.11d and 4.11e.

The statistics demonstrate a disparity between the accuracy and loss scores obtained dur-

ing testing and training, with testing accuracy being higher and testing loss being lower,

respectively.

Two modes present in a deep learning model: training and testing. At testing time, regu-

larisation procedures such as Dropout and L1/L2 weight regularisation are disabled. They

are reflected in the loss of training time but not in the loss of test time. Additionally, the

dCNN presents the training loss as the average of the losses for each batch of training data

for the current epoch. Due to the fact that the model evolves with time, the loss over the

early batches of an epoch is typically greater than the loss over the last batches. This can

result in a decrease in the epoch-wise average. On the other hand, the testing loss for an

epoch is computed using the model in its final state, resulting in a smaller loss.
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(a) K-Fold 1 (b) K-Fold 2

(c) K-Fold 3 (d) K-Fold 4

(e) K-Fold 5

Figure 4.12: Accuracy Curves for proposed Model over BCI IV Dataset I
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(a) K-Fold 1 (b) K-Fold 2

(c) K-Fold 3 (d) K-Fold 4

(e) K-Fold 5

Figure 4.13: Loss Curves for proposed Model over BCI IV Dataset I

The ROC curves for our model across the dataset are depicted in Figure 4.14. The model is

well adept at making correct predictions, having AUCs of 1 for all 5 k-folds. This is true for
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both left and right hand classes.

(a) K-Fold 1 (b) K-Fold 2

(c) K-Fold 3 (d) K-Fold 4

(e) K-Fold 5

Figure 4.14: ROC Curves for proposed Model over BCI IV Dataset I

We can see by Table 4.6 that all 5 k-folds which were evaluated performed with a mean
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accuracy of 98.48%. The highest accuracy obtained by the model was on k-fold 1, at 99.55%

with the lowest one being 97.86% for k-fold 3. Our network outperformed ResNet50 by

7.02% accuracy, on average, and had an order of magnitude lower standard deviation of

0.65 versus 6.16 for ResNet. The model’s loss was also an order of magnitude lower than

that of Resnet (Tables 4.6 & 4.7).

Table 4.6: K-Fold summary for BCI IV dataset I

k-fold loss accuracy f1 precision recall

1 0.04 99.55 99.55 99.55 99.55

2 0.06 98.93 98.93 98.93 98.93

3 0.09 97.86 97.77 97.85 97.81

4 0.07 98.12 98.12 98.12 98.12

5 0.08 97.95 97.95 97.95 97.95

mean 0.07 98.48 98.46 98.48 98.47

std 0.02 0.65 0.67 0.66 0.66

Table 4.7: Resnet50 K-Fold summary for BCI IV dataset I

k-fold loss accuracy f1 precision recall

1 0.09 97.14 97.14 97.14 97.14
2 0.58 86.43 86.43 86.43 86.43
3 0.05 98.84 98.84 98.84 98.84
4 0.37 92.23 92.23 92.23 92.23
5 0.87 82.68 82.68 82.68 82.68
mean 0.39 91.46 91.46 91.46 91.46
std 0.31 6.16 6.16 6.16 6.16
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(a) K-Fold 1 (b) K-Fold 2

(c) K-Fold 3 (d) K-Fold 4

(e) K-Fold 5

Figure 4.11: Confusion Matrix for proposed Model over BCI IV Dataset I
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4.5.4 BCI III dataset IVB

Dataset BCI III IVb is a 3 class dataset which contains data from a single individual. The

classes in question are right hand, foot and a relax state. Though it was initially recorded with

2 classes, a 3rd rest class was labelled within the data. Dataset BCI III IVa presented a real

challenge for both our network as well as for ResNet50. In general, human EEG signals

vary according to each individual’s mental state, resulting in a high degree of inter-subject

variability. While existing ML and DL algorithms have demonstrated progress in MI classi-

fication, many suffer from lack of data on new users. As will be made apparent in section

4.5.5, the model does not have any particular shortcomings in handling 3 class problems.

Therefore, the performance on the dataset in question may be linked to its peculiarities. It

is, as such, worthy of discussion.

The confusion matrices in Figure 4.11d can help in understanding the poor performance of

our model on this dataset. As can be observed, the model is not able to generalise for any of

the k-folds. However, pattern is observable. In 4 out of the 5 k-folds, it heavily misclassified

the relax class as either right hand or foot. This would indicate that as observed in Section 4.5.2,

the model struggled even with a 2 class problem in the case where one of the classes was

foot MI. The conjecture, in that instance, was that foot EEG signals subside more rapidly

and are, thus, more difficult to distinguish from noise. Allowing for that assumption, the

problem may be compounded by the introduction of a relaxed state, which could present

with a similar noise profile. As such, foot data may be very difficult to distinguish from a

relaxed state. Additionally, a relaxed state could be difficult to classify as the model attempts

to look for subtle patterns which get amplified in the remaining classes.
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(a) K-Fold 1 (b) K-Fold 2

(c) K-Fold 3 (d) K-Fold 4

(e) K-Fold 5

Figure 4.15: Confusion Matrix for proposed Model over BCI III Dataset IVb

As is apparent from the confusion matrices and from the ROC curves in Figure 4.16, the

model has little discrimination capacity between the 3 classes, with AUCs in the range of
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0.54 to 0.63.

Both our model and ResNet50 performed equally poorly on the dataset (Tables 4.8 & 4.9),

with a mean accuracy of 40.39% for our model and 37% for ResNet50. Our model had a

higher maximum accuracy of 44.9% and a higher standard deviation of 2.78.

Table 4.8: K-Fold summary for BCI III dataset IVb

k-fold loss accuracy f1 precision recall

1 1.16 37.56 61.07 35.89 45.17

2 1.14 40.10 58.57 38.91 46.68

3 1.07 37.56 43.48 36.71 39.69

4 1.13 44.90 48.21 31.09 37.78

5 1.12 41.84 58.48 36.47 44.87

mean 1.12 40.39 53.96 35.81 42.84

std 0.03 2.78 6.86 2.57 3.46

Table 4.9: Resnet50 K-Fold summary for BCI III dataset IVb

k-fold loss accuracy f1 precision recall

1 21.21 37.56 33.04 33.04 33.04
2 3.93 35.53 31.25 31.25 31.25
3 4.02 37.56 33.04 33.04 33.04
4 1.11 37.24 0.00 0.00 0.00
5 2.92 37.76 33.04 33.04 33.04
mean 6.64 37.13 26.07 26.07 26.07
std 7.36 0.82 13.06 13.06 13.06
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(a) K-Fold 1 (b) K-Fold 2

(c) K-Fold 3 (d) K-Fold 4

(e) K-Fold 5

Figure 4.16: ROC Curves for proposed Model over BCI III Dataset IVb
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4.5.5 BCI III dataset V

Dataset 5 of the BCI III competition presents a three class database with EEG signals col-

lected from 3 subjects. The classes in question are left, right and word image. Our model

recorded the highest score on this dataset.

The confusion matrices in Figure 4.17 demonstrate the model classifying the 3 classes ex-

ceptionally well, with no misclassification errors in 3 out of the 5 k-fold instances. It is to be

noted that the dataset is not evenly balanced, with the 3rd class (word image) representing

over 40% of the data points, and with a higher number of right hand recordings than left

ones.

As seen in the Figure 4.18, both training and validation accuracy closely track one another,

with little divergence, for all k-folds. The same is true for the loss curves in Figure 4.19.

The figures indicate a discrepancy between testing and training scores for accuracy and

loss, with testing accuracy being higher than during training, and testing loss being lower,

respectively. As discussed in dataset Section 4.5.2, deep learning has two modes: training

and testing. Dropout and L1/L2 weight regularisation are disabled during testing. They

affect loss and accuracy at training time but not at test time. For instance, a Dropout of

0.25 means that 25% of features will be zero throughout training. However, all attributes

are employed during testing, which makes the model more robust and improves testing

accuracy. The implication is that accuracy and loss curves test metrics are higher than the

ones during training, hence the gaps between the training and testing graphs.
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(a) K-Fold 1 (b) K-Fold 2

(c) K-Fold 3 (d) K-Fold 4

(e) K-Fold 5

Figure 4.18: Accuracy Curves for proposed Model over BCI III Dataset V
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(a) K-Fold 1 (b) K-Fold 2

(c) K-Fold 3 (d) K-Fold 4

(e) K-Fold 5

Figure 4.19: Loss Curves for proposed Model over BCI III Dataset V

Our model’s ROC curves are depicted in Figure 4.20, which shows the curves for our model

across the whole dataset. The model is adept at making correct predictions, with AUCs
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between 1 and 0.97 for all 5 k-folds in the data set. This is true for all 3 classes, left, right and

word image.

(a) K-Fold 1 (b) K-Fold 2

(c) K-Fold 3 (d) K-Fold 4

(e) K-Fold 5

Figure 4.20: ROC Curves for proposed Model over BCI III Dataset V
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A summary of the model’s performance metrics is presented in Table 4.6. The accuracy of

our proposed model ranged between 98.82% and 100% with a standard deviation of 0.49

and a mean loss of 0.06.

Table 4.10: K-Fold summary for dataset BCI III Dataset V

k-fold loss accuracy f1 precision recall

1 0.11 99.29 99.29 99.29 99.29

2 0.04 100.00 100.0 100.0 100.0

3 0.05 100.00 100.0 100.0 100.0

4 0.02 100.00 100.0 100.0 100.0

5 0.06 98.82 98.82 98.82 98.82

mean 0.06 99.62 99.62 99.62 99.62

std 0.03 0.49 0.49 0.49 0.49

Comparatively, ResNet50 did not perform well, as it did not manage to generalise for the

3-class problem (Table 4.11). It obtained a mean accuracy of 34.93%.

Table 4.11: Resnet50 K-Fold summary for dataset BCI III Dataset V

k-fold loss accuracy f1 precision recall

1 70.00 32.71 31.03 31.03 31.03
2 6.59 40.00 43.08 43.08 43.08
3 51.41 43.06 45.98 45.98 45.98
4 3.31 26.12 24.78 24.78 24.78
5 61.49 32.78 31.03 31.03 31.03
mean 38.56 34.93 35.18 35.18 35.18
std 28.09 5.98 8.02 8.02 8.02
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(a) K-Fold 1 (b) K-Fold 2

(c) K-Fold 3 (d) K-Fold 4

(e) K-Fold 5

Figure 4.17: Confusion Matrix for proposed Model over BCI III Dataset V
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4.5.6 BCI III dataset IIIA

A final difficult challenge for the model was BCI III Dataset IIIa, a dataset with 4 classes,

namely feet, left, right and tongue. The data was collected from 3 subjects.

As can be observed from the confusion matrices in Figure 4.21, the model had a very difficult

time distinguishing between the 4 classes of data.

As discussed in a previous section (Section 4.5.4), one possible explanation for this behaviour

is that the foot EEG signals may present as challenging to distinguish from noise, given its

cortical topology. When compared to the motor cortex responsible for foot movement, the

motor cortex responsible for hand movement has a significantly larger surface area. Insuffi-

cient training data could also account for the poor performance of the network, as the EEG

signals originate from only 3 users. However, the confusion matrix (Figure 4.21) and the

ROC curves (Figure 4.24) seem to suggest that, over all of the k-folds, the model struggled

more in distinguishing left-hand signals.

Given the higher number of classes, the low number of subjects and the difficulties encoun-

tered by both our proposed network and ResNet50 in classifying feet data, further explo-

ration is required. One avenue to explore would be to remove the feet data from the dataset

and evaluate the model’s performance on a 3-class problem, similar to Section 4.5.5, which

yielded very promising results. Further research is required to address the difficulty of clas-

sifiers to handle feet data. Investigations into alternative solutions may shed light on the

cause of the problem. To address the problem of insufficient data, the combination of multi-

ple databases in the training of future models could offer possible improvements. Addition-

ally, along with the growing interest in the fields of BCI using DL, the authors expect future

databases to become available and provide ample data for research.
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(a) K-Fold 1 (b) K-Fold 2

(c) K-Fold 3 (d) K-Fold 4

(e) K-Fold 5

Figure 4.21: Confusion Matrix for proposed Model over BCI III Dataset IIIa

Figures 4.22 and 4.23 indicate a very wide over-fitting gap emerging very early on in the

training phase, with the training metrics continuing to improve but the test metrics stagnat-



4. Deep learning using topographical EEG images for classification of user intention 117

ing or reversing.

(a) K-Fold 1 (b) K-Fold 2

(c) K-Fold 3 (d) K-Fold 4

(e) K-Fold 5

Figure 4.22: Accuracy Curves for proposed Model over BCI III Dataset IIIa

According to the AUCs in Figure 4.24, the model is hardly able of distinguishing between
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(a) K-Fold 1 (b) K-Fold 2

(c) K-Fold 3 (d) K-Fold 4

(e) K-Fold 5

Figure 4.23: Loss Curves for proposed Model over BCI III Dataset IIIa
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the 4 classes. The AUCs over the 5 k-folds are in the range of 0.62 to 0.75.

Table 4.12: K-Fold summary for BCI III Dataset IIIa

k-fold loss accuracy f1 precision recall

1 1.30 38.00 38.91 33.54 46.34

2 1.33 41.60 37.70 32.45 44.99

3 1.28 47.20 39.56 34.16 47.01

4 1.33 41.77 38.70 33.61 45.61

5 1.32 39.76 39.76 34.53 46.88

mean 1.31 41.67 38.93 33.66 46.17

std 0.02 3.09 0.72 0.71 0.77

Table 4.13: Resnet50 K-Fold summary for BCI III Dataset IIIa

k-fold loss accuracy f1 precision recall

1 2.09 28.80 28.12 28.12 28.12
2 3.07 26.40 25.78 25.78 25.78
3 1.57 28.80 5.47 31.25 9.17
4 2.57 24.90 24.22 24.22 24.22
5 4.44 30.92 32.81 32.81 32.81
mean 2.75 27.96 23.28 28.44 24.02
std 0.98 2.10 9.37 3.22 7.97

A summary of these performance metrics for our model and for ResNet50 can be found in

Tables 4.12 & 4.13. While both networks performed very poorly, the performance of ResNet

was twice as bad, on average. Its mean accuracy was 27.96%, while our network’s mean was

at 41.76%. The accuracy of our network was between 38.00% and 41.67%, while the highest

accuracy achieved by ResNet was 28.80%.
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(a) K-Fold 1 (b) K-Fold 2

(c) K-Fold 3 (d) K-Fold 4

(e) K-Fold 5

Figure 4.24: ROC Curves for proposed Model over BCI III Dataset IIIa
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4.6 Conclusions

In this work, a comprehensive study of the use of topographical representations of EEG as

a preprocessing step combined with a deep convolutional network were explored.

The proposed framework and model has a number of characteristics to address the draw-

backs associated with conventional ML methods. The ability of the proposed CNN model to

learn its own features from the transformed data provides a significant advantage for pos-

sible real-life applications. Handcrafting features from raw data or even the transformed

topographical maps by human experts leaves much room for error and sometimes this can

involve the extraction of features that are not related to the classes involved, thus effecting

the model’s performance.

On average, the proposed framework in this chapter matched performance of state-of-the-

art algorithms for binary class datasets specifically for right-left MI. It was observed that the

overall dataset exhibits a consistent pattern of high-accuracy performance across multiple

metric parameters, as indicated in the results discussion. By pre-processing the data prior

to passing it to the CNN, it has been demonstrated that the deep network is capable of

capturing the relevant patterns within the data.

Due to the small size of the networks used and the reduced number of parameters to learn,

it makes it more feasible to be embedded into smart assistive devices. The use of small CNN

models reduces training costs while maintaining an acceptable response time. However, as

the number of classification categories increased, i.e. three-class and four-class, performance

decreased.

The framework and model were optimised for the H.Cho database (i.e. GigaDB [159]). The

H.Cho dataset is a two-class dataset comprised of images of the right and left hands, which

has the most participants (52), and hence a wider pool of training data. While reviewing the

data, it was observed that the algorithm is capable of successfully classifying left and right

hand MI with a high degree of classification accuracy. However, when the framework was



4. Deep learning using topographical EEG images for classification of user intention 122

tested against a binary framework, such as right hand and foot for BCI III dataset IVa, we

can see that the data is not being evaluated appropriately. This could be down to a number

of reasons, such as the number of data points, need to adjust the model such that there are

more layers to find different relevant details within the data. However, in BCI III dataset

V, we can see that we can correctly categorise using left and right hand imagery, and the

system was able to infer that the remaining data belonged to the word-img category. It can

be concluded that the proposed network is capable of performing robustly across binary left

right MI datasets.

The observations from our experiments suggest that augmenting EEG data while retain-

ing its temporal and spatial information can be beneficial to the performance of a dCNN.

According to the data presented in the preceding sections, the model achieved a highly ac-

ceptable and dependable level of accuracy. Regularisation supported the model’s resilience

against overfitting. This was accomplished through the use of dropout and pooling layers,

k-fold cross validation, and batch learning procedures.

This framework outperforms other frameworks in tasks involving MI classification. The

results corroborate previously published accuracy values in related studies as well as our

own comparative experiments against ResNet. It is not commonly seen in literature for

EEG-MI classification to find a model looking for overall accuracy of a model. This is not the

case for the proposed framework and model as it can be deduced that it is able to holistically

look at the overall data using temporal, spatial and spectral information derived from the

topographical maps. Not only will training ML and DL models on appropriate features

improve their performance and robustness, but they will also lower computational costs

associated with model training and deployment for real-life applications.

In practice, training a specialised network for a single subject can be time consuming, since

it demands not only a large amount of time but also a large amount of computer memory.

Thus, in this research all subjects’ training data to create a single neural network capable of

learning the common features of all subjects.
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The following factors may contribute to the shared neural network’s superiority over sep-

arate DNNs: To begin, the combined dataset is far larger than the individual datasets. A

larger training set that includes not only the subject’s MI-EEG features but also the MI fea-

tures of other subjects can increase deep neural network classification accuracy. Second, we

minimised DNN’s overfitting. The integrated data set includes both common and unique

characteristics of MI tasks. Individual variations can cause neural networks to experience

less overfitting and hence learn more common features.

The application of DL approaches to EEG processing is promising and warrants more at-

tention and further study. The suggested framework can be adapted for BCIs and has the

potential to be used in medical solutions for rehabilitation and regaining autonomy by in-

terfacing with EEG-compatible smart devices, and these features can extend beyond the

medical, into other fields.
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5

Concluding remarks and

recommendations for Future work

5.1 Discussion

For nearly two decades, BCI systems have been extensively studied in order to rehabilitate

individuals with motor impairments. The researchers want to make this technology acces-

sible to everyone, despite the fact that it is prohibitively expensive for end users. BCI has

developed into an intriguing research topic and a critical subject for a variety of applica-

tions. It is a way for a computer and a brain to communicate in order to perform an external

procedure. BCI aids the current workings of the nerves and muscles and generates motor

tasks using EEG signals, which are then translated into physical behaviour using hardware

and software.

The purpose of this work was to improve the accuracy of detection frameworks using DL

frameworks, thereby allowing for a more precise definition of user intention based on EEG

data. This thesis presented two frameworks for classifying mental tasks. To begin, we build
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a power spectrum image using spectrograms, which is utilised as an input to a dCNN

model. We explored the accuracy that can be achieved when a two-class, and four-class

model are employed.

There were two proposed frameworks based on dCNNs to perform feature extraction and

classification for MI EEG signals. The results demonstrated that when compared to other

conventional ML techniques and state of the art models, the dCNN can improve classi-

fication performance. The studies demonstrate that the proposed framework with topo-

graphical maps is capable of robustly and effectively classifying MI for two- and three-class

datasets, and provides a practical framework for BCI applications using non-invasive EEG

signals.

These were the questions posed at the beginning of this thesis (Section 1.2) with regards

to the spectrogram-dCNN chapter. Firstly, would providing a spectrogram, frequency, rep-

resentation of EEG signals to a DNN improve on results obtained from classical ML and

state–of–the–art methodologies? Secondly, is a frequency-only representation enough to ex-

tract relevant features by the deep model?

We were able to improve on the results (Chapter 3, section Section 3.4) obtained using tra-

ditional ML and state-of-the-art strategies by combining spectrograms and a DL model. For

a 2-class MI dataset (BCI competition III dataset IIIa) with the 5 layer dCNN we were able

to see an average model accuracy of 91.81%, across the participants, as seen in Table 3.1.

The results were taken as an average over 5 k-folds. This exceeded the performance of the

ResNet50 network, which averaged classification accuracy of 87.85%. Table 3.2 shows the

results of the same model and framework used for the full four classes in the BCI competi-

tion III dataset IIIa. We found the classification accuracy at an average of 90.81% across the

participants, also performing better than state-of-the-art model.

Experiments demonstrated that, despite the model’s high accuracy across the whole dataset,

the framework were not robust across different datasets. This framework worked effectively

over individuals in a dataset, however was not able to generalise over the whole dataset. Re-
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sults are shown in Table 3.3 for the performance of the model on the overall BCI competition

III dataset IIIa (Chapter 3, Section 3.4), for binary classification (left hand, right hand). The

proposed framework with the 5-layer dCNN resulted in a mean of 74.95% across 5 k-folds.

Though the classification accuracy is seen to be less than optimal, there is a improvement

of 2.95% from the highest performing state-of-the-art model. This raised the question of

whether we would see an improvement in results if we could retain the spatial, temporal,

and spectral information contained within the data. The answer was favourable. As a re-

sult, the data pipeline was designed to augment the data utilised to generate topographical

image projections. This drove the research for the spectrograms chapters, and the questions

posed, also mentioned in the Introduction chapter, (Section 1.2). First, would providing a

topographical representation of MI EEG signals to a DNN improve on results obtained from

classical ML using state–of–the–art methodologies? Second, are we able to find a robust

model which is able to generalise over all the subjects, and would not be required to train

on an individual subject-to-subject basis? To begin, we utilised this framework to identify

models that performed well on a two-class dataset and subsequently on an individual level

dataset. Following that, experiments were conducted to assess whether the model was gen-

eralisable across the complete dataset in its entirety.

The study’s findings demonstrated that the dCNN model was capable of generalising with

a high degree of accuracy and robustness across the entire dataset of two-class datasets.

Overall, we performed experiments on a total of 6 datasets. This included three 2-class MI

datasets, two 3-class datasets and finally one 4-class dataset. As demonstrated in the results

section of the previous chapter(Chapter 4, Section 4.5), when compared to current state-

of-the-art ML techniques and model accuracy, the topographical maps - dCNN framework

was extremely successful. The success of this DL framework was echoed when compared to

other existing frameworks in the field.

The implementation consisted of a 9-layer dCNN network, and inputs of the topographi-

cal maps image data. The model was trained and optimised on the 52 participant GigaGB

dataset (Section 4.5.1). This two-class MI dataset, performed with an accuracy of 94.12%
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and outperformed the compared state of the art model as seen in table 4.2. We then went

on to compare it with two further two-class MI datasets BCI Competition III dataset IVA

(right hand, left foot MI), and BCI IV dataset I (right hand, left hand MI). The former, BCI

III-dataset IVA showed performed poorly with an average accuracy across the dataset of

60.10% as shown in Table 4.4, this poor result was reflected also with the compared state-of-

the-art model. However the proposed model performed better by an average of 5.36% over

the 5-folds. We attributed this poor performance to this dataset being for right hand and left

foot MI, where the original model was trained on a dataset for right hand and left hand MI

data. This was reinforced with BCI IV dataset I which has right hand and left hand MI data.

As seen in Section4.5.3, Table 4.6, classification accuracy across the 5-folds was 98.48%.

We tested the same model on three- and four-class datasets, respectively. Section 4.5.5, Table

4.10, shows the results of the BCI Competition III dataset V which consisted of left hand,

right hand and word image MI, had an average accuracy of 99.62% classification accuracy

over 5 k-folds using the same 9-layer dCNN network framework as described above. This

performed with a much greater classification accuracy than state-of-the-art-model, which

showed performance of 34.93% as seen in Section 4.5.5, Table 4.7. In contrast, BCI compe-

tition III dataset IVB which consisted of right hand, foot and relax states performed with a

classification accuracy of 40.39%; however this performance is higher than that of ResNet50

which averaged at 37.17%. The conjecture, as reflected in the binary class MI dataset BCI

III-dataset IVA, was that due to the original dCNN model being optimised on the binary

(right hand, left hand dataset), the model is not able to discriminate much beyond these pa-

rameters. The four class dataset (results shown in Section 4.5.6, Table 4.12), BCI competition

III dataset IIIa which consisted of the MI data of feet, left hand, right hand, tongue, showed

poor performance of 41.67%. We attribute this poor performance to the added parameters

beyond the right and left hand data that the model was optimised to.

There could be a multitude of reasons for the low classification accuracy. To begin, these

datasets include much fewer participants and data points than their two-class equivalents.

Also, the dCNN model may not be suitable for all classification levels. By increasing the
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number of hidden layers, it is possible that the viability of the model would increase. Ad-

ditionally, it is possible that we are limited in our view of the data within due to the image

made by the pipeline (28x28) and the image created by the pipeline. This would be a po-

tential avenue for future research. Increased image resolution may enable us to extract more

information from the data while preserving the dCNN architecture currently proposed. On

the other hand, these solutions result in increased computing time and power usage.

In conclusion, this study demonstrates that for two-class MI datasets, the proposed 9-layer

dCNN showed consistent high classification accuracy performance, with the capability to

generalise over the entire dataset. The performed experiments suggest that it is pertinent to

conclude that using topographical DL solutions are capable of learning to generalise over

multiple users and can distinguish particularly well between left and right hand MI. The

performance for both individual subjects as well as intra-subject classification accuracy de-

creased. The robustness of the model across entire datasets is also set to decrease given an

increase in the number of classes. It should be noted, that this model performed consistently

with a higher classification accuracy with comparison to state-of-the-art-models.

5.2 Challenges

Although research into BCI technology has been garnering attention for the last two decades,

these technologies have primarily remained isolated in a research environment and have yet

to make their way into clinical and home settings.

This section highlights the significant challenges that have prevented the general use of

BCIs, which have been classified into five categories: challenges encountered during re-

search and development of BCIs, the obstacles impeding commercialisation, flaws in testing

approaches that have been identified in the literature, issues that have been encountered

during BCI use that may prevent their widespread adoption, and the ethical considerations

which should be taken into account.
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5.2.1 Challenges in research and development

There are numerous signal processing issues involved in the research and development of

BCI interfaces, particularly those that are based on MI EEG. These include determining the

most effective strategies for feature extraction and selection, which is difficult due to the

extremely non-linear, non-stationary, and artefact-prone nature of EEG data, as well as iden-

tifying the most effective techniques for feature extraction and selection. There are also

issues in data fusion, namely in determining how the data from multiple EEG channels may

be integrated in order to reduce data dimensionality while also potentially improving the

classification results.

Further research is also required in order to determine the most appropriate categorisation

approaches for the given features. Identifying the optimal approaches to utilise for patients

with spinal cord injury or sickness should be a primary focus of research into features and

classifiers, as the MI-EEG characteristics of such patients can differ from those of healthy

persons. In addition, more effective training methodologies must be investigated through

research. It is customary for a BCI to be used by a specific subject to require a significant

number of training attempts from that particular subject, resulting in the calibration stage

taking an excessively long time for a practical system.

As a result, investigations aimed at decreasing the calibration time are required. In an at-

tempt to reduce the training time, the covariance matrices associated with CSP features col-

lected from EEG trials to aid in the decoding of EEG signals have been used to aid in the

decoding of EEG signals [179, 180, 181]. However, despite the fact that the geometry of the

covariance matrix can be used to extract salient information from EEG data [182], current

algorithms do not take advantage of it. It has been demonstrated that the geometric quali-

ties of covariance matrices exist in symmetrical positive definite space, and Singh et al. [182]

have devised a framework that takes advantage of SPD characteristics to reduce calibration

time. On the IVa dataset, this framework outperformed other approaches that had previ-

ously been tried. Finally, one of the most difficult challenges in the study and development
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of BCIs is the design of trustworthy systems with stable performance that can be utilised by

a wide variety of users in various mental states and various locations.

5.2.2 Challenges in commercialisation

Challenges of BCIs is hindered by two significant barriers: the first is technical, which can be

overcome through the development of more robust, efficient, and accurate signal processing

infrastructures, and the second is the adaptation of laboratory-based technologies for use in

the real world. Both of these issues are discussed in greater detail in the sections that follow.

Vansteensel et al. [183] distributed a questionnaire to over 3500 BCI researchers worldwide,

95% of whom worked on BCIs based on EEG or EMG technologies, to gain a clear picture of

the barriers impeding the commercialisation of BCI interfaces. The researchers who replied

to the poll judged BCIs, particularly those meant to replace or augment brain activity, to

be practical and commercially viable. They predicted they would be commercially viable

and feasible within the next five to ten years. According to the survey’s findings, signif-

icant technological advancements in sensor technology, overall system performance, and

user-friendliness were required for non-invasive BCIs. In contrast, for invasive BCIs, it was

necessary to develop wholly implantable systems, improve system robustness and perfor-

mance, and conduct clinical trials to ensure the systems’ safety.

Additionally, the authors recommended that future research in BCI technology should focus

on increasing bit rates [184], refining signal processing approaches, and experimenting with

alternative categorisation methodologies. The authors propose that new approaches for de-

signing overarching BCI systems, as well as the types of control systems used, be established

at the macroeconomic level.

One of the most significant advancements in the commercialisation of BCIs has been the

adaptation of laboratory-based interfaces for usage in the real world. Although BCIs have

the potential to be applied to a variety of fields, including home automation [185, 186] ,
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prosthetics [10, 11, 187, 188], rehabilitation [189, 190, 191], gaming [11, 192, 193, 194], trans-

portation [195, 196] , education [197] , virtual reality [198], artistic computing [199, 200], and

possibly even virtual assistants based on affective computing [199, 200], the leap to creating.

These considerations include, but are not limited to, the following: (i) technology selection,

(ii) broad appeal, (iii) intuitivism, (iv) usability and reliability, and (v) cost [10, 201, 202,

203, 204]. This section will cover each of these elements in further depth. However, when

designers make decisions about any of these variables, it is critical to consider the specific

circumstance and setting in which the technology will be employed. For instance, the design

requirements for an economical technology for controlling a television in a home environ-

ment may be different from those for a BCI system monitoring the attentiveness of a pilot in

a plane. Similarly, designers must consider the users’ health; technologies meant for rehabil-

itation or restoring lost CNS functionality frequently have additional or different needs than

technologies intended for healthy users. Thus, the engineers must conduct an in-depth ex-

amination of the system’s fundamental requirements throughout the early stages of system

design, considering the environment, circumstance, and target audience.

The initial and most critical stage in building a human-computer interface, particularly one

designed for use in factual circumstances, is selecting the appropriate technology. The tech-

nology selection process begins with examining all available hardware alternatives for the

interface, including EEG, EMG, EOG, and other forms of eye-gaze tracking technology, as

well as hybrid combinations of these technologies. At this point, it may be determined that

a BCI is not the best solution for the intended commercial use and that another form of tech-

nology should be examined. When evaluating a BCI technology, a choice between an evoked

and spontaneous system must be made, and the trade-offs between these two technologies

must be considered.

The following topics are predicated on the use of an EEG-based device. For instance, MI-

based technology may be well-suited for controlling a prosthetic limb or a small robotic arm,

as the concept of body movement is natural in this case. However, for digital radio control,
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an SSVEP-based system with a four-option menu comprising of station-up, station-down,

volume-up, and volume-down possibilities may be more intuitive than an MI-based system

with imagined movements associated with television controls.

This element of intuitivism should be considered during the first decision process when

technology and BCI type are chosen. General appeal is another factor that underpins all de-

sign process areas; it encompasses anything that may influence the user’s initial opinion of

the system. The system’s portability is critical: Bluetooth or Wi-Fi-enabled headsets enable

users to walk around freely while still utilising the system, as opposed to a corded head-

set that restricts movement. The aesthetics of the headset and the graphical user interfaces

employed would also influence the adoption of the technology.

Additionally, a choice can be made about the type of electrodes to be used: wet or dry. Dry

electrodes are considered a more effective solution because they eliminate the inconvenience

of inserting electroconductive gel between the scalp electrodes and leave no remnant of gel

in the hair after use. However, there is controversy over whether dry electrodes provide

the same signal quality as wet electrodes [205], with some research indicating that dry elec-

trodes create noisier and more artefact-prone signals than wet electrodes [206]. Water-based

electrodes have also been researched recently. It was observed in [207] that water- and dry-

based electrodes performed comparably to gel-based electrodes in subjects with shorter hair,

and it was suggested that with further refinement of the electrodes for subjects with varying

hair lengths, water- and dry-based electrodes might be used instead of gel electrodes.

BCI systems must be highly usable and reliable in order to be successful in the market. Us-

ability includes both design ergonomics and simplicity of use and the time required to train

a new user on the system, which should be low. The ideal technology would be that ordi-

nary people could pick up and learn to use intuitively or through brief instruction, similar

to how they would when purchasing a new phone. Additionally, the systems must be user-

friendly and incorporate protections to prevent unsafe use. Additionally, systems must be

dependable, with users believing that the technology is trustworthy and produces consistent
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outcomes past the initial learning curve of new technology. Additionally, the system must

be reliable when utilised in the multimodal contexts in which it is intended to be used, such

as a noisy family home, a crowded design studio, or the constantly changing environment

of an emergency operating theatre.

These multimodal environments may affect expected brain responses compared to con-

trolled laboratory recordings, necessitating extensive development and testing of such de-

vices. The user’s condition during use may also need to be considered, like heart rate

and cortisol levels—a stress hormone—have been shown to interact with the EEG signal

response [208]. Seo and Lee discovered a substantial positive connection between higher

beta band power—a characteristic of MI EEG data—and cortisol level [209]. Finally, the

cost is a considerable impediment. The typical budget of the projected end users and any

prospective economies of scale should be considered early on since this will dictate the sorts

of recording equipment and sensors that can be utilised, as well as the software and any

compliance requirements specific to the target audience.

While the objective should always be to give the optimal trade-off between cost and perfor-

mance, the price ranges within which students, families, private healthcare firms, the mili-

tary, start-ups, and substantial technology corporations may operate varies just as widely as

their needs. Researchers serious about developing new technologies for a specific audience

would conduct market research before initiating the system’s design process.

The commercialisation of BCIs would also necessitate the development of industry stan-

dards, particularly for benchmarking databases, EEG recording equipment, and software

applications [13]. International roadmap initiatives like BNCI Horizon 2020 [10] have sought

to strengthen collaboration between industry and research in order to tackle such difficul-

ties.
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5.2.3 Shortcomings in testing approaches

Extensive testing on large populations is required to implement these recommended im-

provements, but the testing process itself is often flawed. The literature contains a range

of performance measures for evaluating BCIs, and the absence of a standardised technique

or a single metric for quantifying a system’s overall performance means that comparisons

between systems are limited [210]. Furthermore, reporting on fundamental statistics such as

accuracy may mask essential considerations in the BCI system, such as the trade-off between

accuracy and speed [210, 211].

The flaws in widely used testing approaches are not restricted to the performance metrics

employed but also to the data used for testing. Numerous BCIs intended to replace or restore

CNS functionality are tested on healthy volunteers in a laboratory setting. However, if the

typical end-users of these systems are people with functional disabilities, this can result in

unrealistically optimistic findings.

A comprehensive database of MI EEG data from such patients and healthy controls per-

forming the same tasks would provide an abundance of data for research, permitting the

resilience of technologies to be tested and new solutions to be identified if they fail users

with particular disabilities. Even data from healthy patients are frequently collected in care-

fully controlled laboratory situations. While this data is critical for the first evaluation of

signal processing techniques, creating more robust and commercially viable systems would

require stress testing. As previously stated, heart rate and cortisol levels can alter the quality

of EEG signals in contexts outside the lab, both indoors and outdoors, with diverse sensory

input from noises, movements, and scents, and with participants seated in a variety of posi-

tions.

A database of subjects performing the same set of MI tasks in all of these different scenarios,

as well as in a controlled laboratory setting, would be an excellent starting point for assess-

ing how the effectiveness of MI data processing techniques varies across scenarios and how
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these techniques can be made more robust.

5.2.4 Issues preventing wide-spread adoption

A significant hurdle in the face of widespread adoption of BCI technologies is BCI illiteracy.

This arises when a user cannot control a BCI due to their inability to produce the needed

high-quality brain signals [13]. The quality of the EEG signal and the user’s overall mastery

of the BCI can be improved by employing an interactive, co-learning approach that gives

feedback, such as auditory or visual input, while the user interacts with the system [212].

Long-term use of BCIs requires repeated usage of specific neural pathways, and additional

research is needed to determine any potential health consequences or changes in brain func-

tion. For example, long-term usage of external actuators via BCIs has been shown to result

in a reorganisation of the brain’s map of the body, with the actuators being interpreted as an

extension of the subject’s body [13, 213].

5.2.5 Ethical considerations

To guide the future development of BCI technology, ethical norms must also be created. Such

ethics would define accountability for accidents that occur when using controlled apparatus

and address the acceptable use of bio-signal data in the context of privacy. The BCI Society

seeks to address some of these demands through the publication of ethical principles and

guidelines [11, 10].

5.3 Future Work

The next steps in improving the proposed processing pipeline is to offer more attention

to channel selection. A 2018 paper [214] looked at studying EEG signals in patients with
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brain death. The channel reduction applied in [134], was also applied in [214], in which

the C3, C4 and Cz electrodes, shown in Fig. 2.6, were used in data analysis. Here there

was also the use of STFT, in particular looking for the mu and beta band of frequencies.

Their research involved an analysis of the signals from the motor cortex using a reduced

number of channels. Wang et al. [137] have also conducted studies on the motor cortex

using STFT. Their analysis is only focused on 10 centrally located channels focusing on the

motor cortex. Additionally, Wang et al. [137] have also trained their models separately

for individual users, with a wide range of variability in accuracy. Reducing the number of

channels has the potential to improve the performance of the NN, as additional channels

introduce uncorrelated data from regions of the cortex not directly responsible for the task

under scrutiny.

The main goal of BCI is to empower people with disabilities. Therefore mirroring this it is

very important for response of the BCI to be as accurate as possible such that the system

feedback is perceived as natural. Working towards this would require further data collec-

tions, including an online data collection with feedback. It would additionally be appropri-

ate to train an additional class which would be a state of relaxation. This pollutes the search

space with noise and reduce the useful information available to the network. This could also

have a practical application for data collection. The complexity of setting up the head–set

along with difficulties in maintaining the electrodes from drying by continuously applying

gel can affect the quality of the data. Additionally, the proximity of the electrodes to the

facial muscles could also introduce greater variability in the signal, as well as drawing away

focus from the actual regions of interest, namely the motor cortex, which occupies a more

central region of the scalp.

Existing BCI systems rely primarily on volunteers with typical cognitive abilities, while

some applications require unique populations such as the elderly and those with neuro-

logical disorders. Numerous experiments will be required to determine the individual dis-

tinctions between a normally functioning person and a disabled or elderly person in order

to apply BCI systems as a service.
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DL is a type of “Black Box” ML, and thus it is difficult to understand reasoning behind

the predictions which are made by the model in question. In recent times, the importance

of understanding this reasoning has become a growing area of research, and is known as

“Interpretable Machine Learning” [215, 216]. This area will be critical in gaining a better

understanding of how deep networks work.

The research of MI BCIs in assistive technologies has a great deal to gain from research

into DNNs and their internal mechanisms. A thorough understanding of these networks

could lead to the development of a motor-imagery BCI that is fully robust and reliable and

is capable of offering accurate assistance to people with disabilities. The functionality and

impact of assistive technologies can be greatly enhanced by further research in this area,

which could completely alter how people with disabilities interact with their surroundings.

Thus, the study of DNNs and their applications in BCIs is a crucial area of research that

holds great promise for the future.
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Appendix A

EEG Signal Artefacts

A.1 Physiological Artefacts

There are several physiological artefacts including ocular distortion, muscle activity and cardiac activity, res-

piration, and perspiration. In the next few paragraphs these artefacts are discussed.

Ocular distortion is known as the EOG, this occurs during blinking, lateral movement and general eye move-

ments. When electrically modelled, the eye may be represented by a dipole. It distorts the electric field in the

region when the eye moves. EOG signals have a magnitude larger than that of EEG (reaching around 100-200

mV). Blinking produces quick changes in the electrodes places at the frontal area of the brain, which is more

concentrated whilst closer to the eyes. Lateral movements affect the frontal region but also distort EEG signals

near the temples. Some ocular activity man be confused with delta and theta bands in low frequencies. The

resulting signal created by electrical activity in the muscles is called electromyography. The signals interfere

with EEG, which can be observed by the naked eye as high–frequency artefacts. Movements such as clench-

ing the jaw, chewing, talking, frowning and swallowing all contribute to the signal distortion, the amplitude

of which is correlated directly to the strength of the muscle contraction. In particular, these affect the high

frequency (beta and gamma) EEG bands.

Cardiac artefacts are produced by electrical activity from the heart. The signals are called Electrocardiogram.

Though the signal is of low amplitude on the scalp, depending on where the electrode has been placed, it is
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possible to see a rhythmic distortion in the resulting EEG. ECG and EEG have overlapping frequency bands

and thus are difficult to visualise.

Sweat glands produce perspiration in the skin. A small amount of sweat produced may cause a change in the

electrical baseline of the electrodes. With a higher amount of sweat, there is a possibility of creating shorts

between electrodes. On the resulting EEG, these can be shown as slow waved, which overlap the EEG signal.

These can be shown in the frequency domain as a low–frequency artefact that generally overlaps the delta and

theta bands.

Respiration is normally an artefact when recording subjects whilst they are sleeping. The electrodes’ contact to

the scalp may modify depending on the movement of the head and chest whilst breathing. The resulting arte-

fact can be seen on the EEG as slow waves, which are synchronised with the subject’s breathing. Respiration

artefacts are of low frequency and overlap in the delta and theta bands.

A.2 Non–Physiological Artefacts

The presence of non-physiological artefacts in EEG recordings can severely affect the validity of the results and

make it challenging to extract meaningful information. Some of the most common types of non-physiological

artefacts include electrode pop, cable movement, incorrect reference placement, AC electrical and electromag-

netic interferences, and body movement.

Electrode pop is produced due to temporary failure in contact between the EEG electrode and the scalp or

by touching the sensor. The resulting signal is abrupt and usually of high amplitude, and generally localised

in a signal channel. The artefact could also be produced due to the movement of the cables that connect the

electrodes and the amplification system. Changes are produced in the electromagnetic fields, which distort the

signal recorded and possibly the sensor contact to the scalp. In addition to this, correct placement and contact

of the reference sensor is vital. In the case where the placement or contact is not sufficient, the EEG signal is

not recorded.

Abrupt changes will be seen on all channels, which are of high amplitude. One can observe high power in

all channels (EEG and Non–EEG related signals) in the frequency domain. AC interference from electrical

lines is produced either at 50Hz or 60Hz, depending on the recording country. If there is insufficient wire

shielding, the signal can be affected by the surrounding electromagnetic fields. A continuously overlapping

high–frequency noise is observed on the EEG signal. In the frequency domain, a large spike is observed at

50Hz or 60Hz.
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Finally, body movements, even if unintentional, the contact between the electrode and the skin may be affected,

thus corrupting the EEG signal. Any body movement can distort EEG signals; however, head movements

are the principal cause. These are observed in the EEG as temporary slow waves which correspond to the

rhythm of movement. This is seen typically overlapping in the lower frequencies (delta and theta bands) in

the frequency domain.

It is crucial to minimise the impact of these non-physiological artefacts on EEG recordings in order to obtain

accurate and reliable results. To achieve this, appropriate technical procedures and precautions should be

taken during the recording process.
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Appendix B

Experimental Setup

All of the data analysis conducted during the course of this research was conducted on the EVGA GeForce

GTX 1070 Ti GPU, which runs the NVIDIA Pascal programming language.

This set of experiments was built on top of the open-source TensorFlow machine learning framework [217].

According to the researchers, when TensorFlow was used alone, a tedious process with a steep learning curve

was discovered. TensorFlow’s popularity is reasonably clear, with many large companies utilising Tensor-

Flow to perform artificial intelligence activities. Many well-known companies, including NVIDIA, Twitter,

Snapchat, and Uber, rely on TensorFlow for their major operations and research. On the one side, one could

argue that TensorFlow’s appeal stems from its history and legacy. TensorFlow is a household name due to

its development under the aegis of “Google”. Without question, TensorFlow has received more marketing

attention than some of its competitors such as Theano [218], and PyTorch [219].

Kernel-level API built on TensorFlow, which provides a more intuitive set of abstractions that simplifies the

development of deep learning models. Keras [220] is a open-source deep learning library which works on top

of Google’s Tensorflow framework. The models presented in this thesis were created using the Keras libraries.

Its ability to make machine learning accessible to both industry and academic researchers aided in its rise

to prominence as the most popular deep learning platform. Keras adheres to best practices for minimising

cognitive load by providing consistent and straightforward APIs, minimising the number of user activities

required for typical use cases, and providing clear and responsive feedback in the event of user error.

The Talos library [221] was used to optimise hyperparameters because manually tuning them via empirical
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observations is a time-consuming and difficult task. Talos is a model performance evaluation and tuning

tool that automates the process of tuning hyperparameters. It includes optimizations for Grid Search and

Random Search, as well as their implementations. In the course of this research both grid search and random

search were used. It then performs subsequent model evaluations by exhaustively retraining the model using

different permutations of the input hyperparameters.
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Appendix C

Deep Learning Optimisation

Optimisation is required in deep learning as a method of improving how an algorithm models against a

dataset. They tie in the loss function and the model parameters by changing the model as response to how the

loss function is performing. Optimisers essentially shape the model to be as accurate as possible, using the loss

function as a guide, telling it whether it is moving in the correct or wrong direction. Hyperparameters govern

the training process itself. Within the machine learning space, hyperparameters are pre-initialised variables

defined before training takes place. These can be modified in order to alter the behavior of the algorithm, to

optimise.

The Cost Functions is a core reason networks require evaluation and optimisation. Simply, if the loss function

outputs a high number, the model is not working well; however if it output a low loss function, it shows

a better model, outputting a low number. Loss functions show us how the model is able to fit the data in

the first place. The two main loss functions mentioned in the latest literature are Mean Squared Error, and

Cross–entropy loss.

Mean–squared Error (MSE) is a basic loss function, as the name suggests it measure of the averages of squared

difference between predictions and actual observations, and is only concerned with the average magnitude

of error irrespective of its direction. It is easy to understand and implement. In order to calculate MSE, the

difference between the predictions and the ground truth are calculated, squared and averaged across the whole

dataset. In equation form this can be described as C.1. Where Yi is a vector which represents the true values,

and Ŷi denotes the values of n number of predictions.
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MSE = J(θ) =
1
n

n

∑
i−1

(Yi − Ŷi)
2 (C.1)

Cross Entropy loss is also known as the Log Loss function. Cross–entropy measures the divergence between

two probability distributions. If the cross–entropy is large, i.e. the distribution between the two is large, and

vise–versa. Essentially the log of the actual predicted value probability is being multiplied with the ground

truth class.The formula for this is much like the likelihood loss functions, with added algorithms to it, as seen

in Equation C.2.

− ∑{yi ln(Ŷi) + (1 − Yi)log(1 − Ŷi)} (C.2)

C.1 Regularisation

Regularisation reduces the complexity of the model in order to discourage the model learning a complex model

which would have a higher risk of overfitting. The more training data there is, the possibility of overfitting can

be expensive for the model. Even if more training data is added, the generalisation accuracy may only rise by

a small amount.

The primary reason why overfitting occurs is due to the network having the ability to recognise even the

smallest details present in the data [222]. Due to this the model tends to perform extremely well on the training

data samples, but on the validation sample results will be poor. By doing this, the model will not learn much

from these units, and making the network simpler.

l2 Regularisation is also called Ridge Regression, which adds a square magnitude coefficient as a penalty term

to the loss function.l2 does not offer feature selection, and it is not robust to outliers within data. Due to this l2

gives better predictions when the output variable is a function of all the input features. It is preferred over l1

regularisation due to its ability to learn more complex patterns in data.The l2 regularisation element is defined

in Eq. C.3. Added to the cost function this now becomes Eq. C.4. In this equation θ represents the weights,

x represents the bias, hθ x represents the cumulative. Here the parameter λ is the variable which we have the

ability to tweak within the equation during implementation.

l2 Regularisation element:
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λ
n

∑
i=1

θ2
i (C.3)

Loss Function with l2 Regularisation term:

L(x, y) ≡
n

∑
i=1

(yi − hθ(xi))
2 + λ

n

∑
i=1

θ2
i (C.4)

l1 Regularisation is also known as Lasso Regression, and adds the absolute value of the magnitude of coeffi-

cient as a penalty term to the cost function. l1 regularisation does feature selection by assigned insignificant

input features with zero weight, and important features with a weight which is not zero – hence it is robust to

any outliers.The l1 element is described in Eq C.5. The cost function with l1 is then re-defined as Eq. C.6. The

drawback to l1 is that the model generated are simple and interpretable although it is not able to learn complex

patterns.In this equation θ represents the weights, x represents the bias, hθ x represents the cumulative. Here

the parameter λ is the variable which we have the ability to tweak within the equation during implementation.

l1 Regularisation element:

λ
n

∑
i=1

|θi| (C.5)

Loss Function with l1 Regularisation term:

L(x, y) ≡
n

∑
i=1

(yi − hθ(xi))
2 + λ

n

∑
i=1

|θi| (C.6)

Dropout is another type of regularisation technique, first introduced by Srivastava et al. [223]. Dropout is

simply a method where random hidden units are turned off, at a particular probability, such as Fig. C.2; this

creates a sparser network. Thus these switched off neurones would not contribute any information during

the updates. This is so that every redundant detail in a training dataset is not learnt by the network, and is

encouraged to learn a sparse representation as a side–effect of this.

For example, if we have a network with three hidden layers, Fig C.1. We set the dropout probability of to be

0.5 of the network, as seen in Fig C.2, i.e. 50% of the hidden units of each of these layers would be randomly

removed, leaving us with a much simpler network to train.

Learning rate, usually mathematically represented by α, is parameter which allows us to control how much
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Figure C.1: Fully connected complex network [223]

the weights are being adjusted with respect to the loss gradient. Generally, a large learning rate allows the

model to converge to the minimum faster, however the cost of this may be that it may never land on the true

minimum. However if we take a small learning rate, though it may take a lengthier time to train, the chances

of it converging to the true minimum are higher. There is a middle ground to this – decaying the learning rate

over a period of time. At the beginning of training the learning rate would be at its peak, and over time, it

would decay.

In practice, it was found that step decay is the most preferable of these hyperparameters. Same mean and

variance to normalize the test set as training data - we want the transformation to occur both on the train and

test data. The scales of features for unnormalised stat will vary, and hence there will be a variation in the

parameters which are learnt for each feature. This would cause the cost function to become asymmetric. Once

normalised, the cost function will be symmetric, and thus easier for gradient descent algorithm to find the

global minima faster, therefore positively affecting the algorithm speed.

Early Stopping is a another form of regularisation techniques used in order to avoid overfitting during training.

It is a widely used method, and is simple to understand and implement, in comparison to other regularisation

techniques, [224]. The data which is split into training and validation sets are evaluated at the end of each

epoch, or Nth epoch, in terms of its performance, and a check to see if the network has outperformed that

previous best model, if so this would become the now current best model. If the network does not outperform,



Appendix C. Deep Learning Optimisation 168

Figure C.2: Fully connected network, with 50% of each layer randomly chosen to dropout
[223]

after a preset number of epochs, the training would terminate.
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C.2 Gradient Descent Variants

Gradient descent and its several variants are used whilst training deep networks. It is one of the most popular

training algorithms used to perform optimisation. This section describes the details of each of these variants,

their benefits, and challenges.

Normal gradient descent computes the gradient of the cost function J with respect to the parameter θ for the

entire training set. The mathematical representation is described by Equation C.7. The main advantage are they

can be used fixed learning rate with use of learning rate decay methods. They also have unbiased estimates

of gradients. The more examples, the lower the standard error. Direct trajectory towards the minimum and it

theory will always converge. The main disadvantages are that it is slow to go over all examples, and will take

a longer time training for larger datasets. Additionally, each learning step occurs once all the samples have

been gone over, though some samples may not contribute, and thus be redundant

θ = θ − α · ∇θ J(θ) (C.7)

Mini–Batch Gradient descent is much like a hybrid between normal Gradient Descent and SGD, taking the best

parts of both optimisation algorithms. It performs an update for every mini–batch n of training samples, which

are shuffled during training. The mathematical representation is shown by Eq. C.8. The main advantages are

that this is faster than Batch Gradient Descent. When batch size is less than the size of the training set, it adds

noise to the learning process, which adds to the improvement of generalisation error. Mini batch Gradient

randomly selects samples which help to avoid redundant examples which do not contribute to the learning

process. Disadvantages include that it will not converge due to noise, therefore would wander the minimum

region and due to the noise incurred, learning–decay must be added to help to come closer to the minimum.

θ = θ − α · ∇θ J(θ; x(i:i+n); y(i:i+n)) (C.8)

Stochastic Gradient Descent (SGD), in contact performs parameter update for each of the training sample

xi and its label yi, thus learning happens on every sample. Much like the Mini–batch gradient descent, the

training data is shuffled to avoid pre–existing order of samples. The mathematical representation is shown

in Eq.C.9. SGD shares most of its pros and cons with Mini–batch. The disadvantages specifically relate to

SGD include that it adds more noise than Mini–batch, however improves generalisation error, though also

increasing training time and also it cannot vectorise over one sample as training becomes very slow, and
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variance would be large.

θ = θ − α · ∇θ J(θ; x(i); y(i)) (C.9)

There are various challenges which are faced with gradient descent strategies.

Selection of an appropriate learning rate can be difficult. If a learning rate which is too small is chosen it can

be incredibly slow to converge, too high, and it may hamper the process of convergence. This could lead to

the loss function fluctuation near the minimum or may even cause it to diverge. The learning rate schedules

can be added to try to optimise the algorithm, by reducing the learning rate which is predefined, or between

epochs which fall between a particular threshold. However these have to be defined prior to training, and thus

are unable to adapt to the dataset’s characteristics [225].Another key challenge is to minimise getting trapped

in the ravines of highly complex error functions within their numerous local minima. It is however argued,

by [226], that it is not the local minima which is the problem however, but that it the saddle points, i.e. the

points where one dimension slopes up and another slopes downward. These points are generally surrounded

by a plateau which incur the same error make it difficult for SGD to escape as the gradient at these point being

close to zero in all dimensions.

C.3 Gradient Descent Optimisation Algorithms

SGD has trouble navigating where the surface curves are more steep in one dimension than another – this is

common in the local optima. Due to this shortcoming, SGD makes hesitant progress through slopes towards

the local optimum. Momentum is a modification which adds direction and dampens the oscillation of SGD,

thus gain faster convergence.

Added momentum is preferred with SGD for two reasons: SGD does not compute the derivative of the loss

function exactly, and thus does not always travel in the optimal direction because of these estimated deriva-

tives, thus exponentially weighted averages would be closed to the actual derivative. The second reason is due

to ravines which are common near local minima in deep learning, if the ravine is narrow, SGD has trouble with

navigation, however when combined with momentum, it helps accelerate gradients in the correct direction.

The fraction, denoted by γ of the update vector of the past time step, and adds this to the current update vector,

as observed in Equation C.10.
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vt = γvt−1 + α∇θ J(θ)

θ = θ − vt

(C.10)

Nesterov Momentum is a modified version of the momentum update, and has recently become more popular,

[227]. The difference can be seen in Figure C.3, here it can be seen that the lookahead gradient step is different

to that of the normal momentum update.

vt = γvt−1 + α∇θ J(θ − γvt−1)

θ = θ − vt

(C.11)

Figure C.3: Momentum update v/s Nesterov momentum update [228]

Adagrad, first introduced by [229], is an algorithm for gradient–based optimisation which adapts the learning

rate to the parameters. It performs smaller updates for parameters with frequently occurring features, and

larger updates for parameters associated with less frequent features. It is best suited for dealing with sparse

data.

In the above equation (Equation C.11), we performed a momentum update for all parameters θ because each

parameter θi used the same learning rate α. Equation C.12 shows us Adagrad’s per parameter update, which

is then vectorised: gt is used to denote the gradient with respect to time step t, gt,i is the partial derivative of

the objective function w.r.t to the parameter update θt.

gt,i = ∇θ J(θt,i) (C.12)
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Equation C.13, shows us the SGD update for every parameter θi at every time step t.

θt+1,i = θt,i − α · gt,i (C.13)

The update rule, C.13, shows us the modification which Adagrad makes to the general learning rate α, at each

time step t, for each parameter θi, based on its past gradients.

θt+1,i = θt,i −
α√

Gt,ii + ϵ
· gt,i (C.14)

Here in Equation C.14 Gt,ii, is the diagonal matrix where each diagonal element i, i is the sum of the square of

the gradients w.r.t. θi, up to the time step t.

θt+1,i = θt,i −
α√

Gt,ii + ϵ
⊙ gt,i (C.15)

The implementation is now vectorised in C.15, by finding the vectorised–matrix ⊙ of Gt and gt.

The main benefit of Adagrad is that it takes away the the need to manually tune the learning rate. However, the

downfall is that due to the accumulation of the square gradients in the denominator, over time the accumulated

sum keeps growing, hence causing the learning rate to shrink and eventually become infinitesimally small to

a point where the algorithm is no longer able to learn.

Adadelta, [230], is a subset of Adagrad, and it seeks to reduce the aggressive reduction in the learning rate

caused by the squared gradient. Is is done by restricting the window of accumulated past gradients to a fixed

size. Rather than storing previous squared gradients, it is sum of the decaying average of all past gradients.

The running average, defined as E[g2]t, at time step t, depends on the fraction γ, which is similar to the

momentum term, and depends on the previous average and the current gradient C.16. Here, γ is set to a

similar value to which we would set the momentum term.

E[g2]t = γE[g2]t−1 + (1 − γ)gt
t (C.16)

For clarity, in Equation C.17, the simple SGD parameter update is shown as the parameter update ∆θt
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∆θt = −α · gt,i

θt+1 = θt + ∆θt

(C.17)

The parameter update vector is taken from Adagrad, which was previously derived, resulting in Equation

C.18.

∆θt = − α√
Gt,ii + ϵ

⊙ gt (C.18)

The diagonal matrix Gt is now replaced with the decaying average over the past squared gradients, E[g2]t.

∆θt = − α√
E[g2]t + ϵ

gt (C.19)

Now, in the denominator, all that remains is the root–mean squared, which can be replaced with RMS short-

hand, as shown in equation C.20.

∆θt = − α

RMS[g]t
(C.20)

We can see from the above that there is no requirement to set a default learning rate, as it has been eliminated

from the update rule.

RMSProp is a gradient based optimisation technique which was first introduced by Geoffrey Hinton, [231],

and is based off of SGD. It applies a clever technique in order to solve the vanishing or exploding gradient

of more complex functions. It uses a moving average of squared gradients in order to normalise the gradient

itself – i.e. it decreases the step size for a large gradient to avoid exploding, and increases the step size to avoid

vanishing gradients.

Both RMSProp and Adadelta were both created in order to resolve the diminishing gradient issue with Ada-

grad. They both have an identical update vector, C.21. However for RMSProp, the suggested γ value is 0.9,

and learning rate, α at 0.001.
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E[g2]t = 0.9E[g2]t−1 + 0.1G2
t

θt+1 = θt −
α√

E[gt]t + ϵ

(C.21)

Adaptive Moment Estimation, Adam, is another method which computes adaptive learning rates for each

parameter, much like Adadelta and RMSProp. It stores the exponentially decayed averages of past squares, vt

but it also exponentially decays the past gradients mt, similar to momentum. These are computed as observed

in Equations C.22. vt and mt as the estimates of the first moment, i.e. the mean, and the second moment, i.e.

the uncentered variance, giving Adam its name. Since vt and mt are both initially set to vectors of 0’s, it was

observed that they are also initially biased towards 0’s, especially during the initial time–steps, and also when

the decay rates are seen to be small, i.e β1 and β2 are close to 1. Here β1 represents the exponential decay rate

for the first moment estimates, and β2 represents the decay rate for the second moment estimates

mt = β1mt−1 + (1 − β1)gt

vt = β2vt−1 + (1 − β2)g2
t

(C.22)

In order to counteract these possible biases, by computing bias–corrected first and second moment estimates,

show in Equation C.23.

m̂t =
mt

1 − βt
1

v̂t =
vt

1 − βt
2

(C.23)

m̂t and v̂t are then used to update the parameters just as we have seen in Adadelta and RMSProp, given in the

Adam update rule, C.24

θt+1 = θt −
α√

v̂t + ϵ
m̂t (C.24)

It was suggested by the authors of Adam to set default values as follows: β1, 0.9, β2, 0.999 and ϵ, 10−8.

Adam was first introduced by Kingma et al. [232].The vt factor in the Adam update rule scales the gradient to



Appendix C. Deep Learning Optimisation 175

be inversely proportional to the l2 norm of past gradient, vt−1 and the current gradient |gt|2, as it was seen in

C.22. This update can be generalised to the lp norm, and also parametrise β2 to be β
p
2 , C.25.

vt = β
p
2vt−1 + (1 − β

p
2)|gt|p (C.25)

Norms for large values of p generally become numerically unstable – this is why l1 and l2. However it was

found that l∞ generally also converges to a stable value. In order to avoid confusion with Adam, ut is used to

denote the infinity constrained norm vt, C.26.

ut = β∞
2 vt−1 + (1 − β∞

2 )|gt|∞

= max(β2 · vt−1, |gt|)
(C.26)

This is then plugged into the Adam update rule, and
√

v̂t + ϵ is replace with ut, giving us the AdaMax update

rule to be C.27

θt+1 = θt −
α

ut
m̂t (C.27)

Nesterov-accelerated Adaptive Moment Estimation is a combination of Adam and Nesterov accelerated gra-

dient. In order to include Nesterov accelerated gradient into Adam, we first need to modify its momentum

term mt.

The update rule using the current notation is as follows, in equation C.28, where J is the objective function, γ

is the momentum decay and α is the step size. The expansion of these terms gives us the equation C.29, which

shows us that the momentum here involves us taking a step in the direction of the previous movement vector,

and following this takes a step in the current gradient.

gt = ∇θt J(θt)

mt = γmt−1 + αgt

θt+1 = θt − mt

(C.28)
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θt+1 = θt − (γmt−1 + αgt) (C.29)

It was proposed by Dozat [233], to rather than updating the gradient gt and the parameters separately θt+1,

the look–ahead momentum vector is updated directly to the current parameters in C.30.

gt = ∇θt J(θt − γmt−1)

mt = γmt−1 + αgt

θt+1 = θt − mt

(C.30)

Here in C.31, the current momentum vector is now used. In order to add the Nesterov momentum to Adam,

the previous momentum vector is also replaced with the current one.

gt = ∇θt J(θt)

mt = γmt−1 + αgt

θt+1 = θt − (γmt + αgt)

(C.31)

The Adam update rule was as follows, C.32.

mt = β1mt−1 + (1 − β1)gt

m̂t =
mt

1 − βt
1

θt+1 = θt −
α√

v̂t + ϵ
m̂t

(C.32)

It is then expanded, using the definitions of m̂t and mt in C.32.

θt+1 = θt −
α√

v̂t + ϵ
(

β1mt−1

1 − βt
1
+

(1 − β1)gt

1 − βt
1

) (C.33)

Here,
(1 − β1)gt

1 − βt
1

is the bias–corrected estimate of the momentum of the previous time step, and hence can be
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replaced with m̂t − 1.

θt+1 = θt −
α√

v̂t + ϵ
(β1m̂t−1 +

(1 − β1)gt

1 − βt
1

) (C.34)

In order to give us the Nadam update rule, Equation C.35, m̂t−1, the previous time step, is replaced with the

current momentum vector m̂t.

θt+1 = θt −
α√

v̂t + ϵ
(β1m̂t +

(1 − β1)gt

1 − βt
1

) (C.35)

AMSGrad, was first introduced in 2018 by Reddi et al, [234], and is the newest of the Optimsation algorithms.

They pinpointed that the square of past gradients was a reason for the poor generalisation behaviour of adap-

tive learning rate methods due to the short term memory which sometimes shows as a disadvantage. In order

to fix this issue, AMSGrad was proposed. Here they suggested to find the maximum of the past squared

gradients, vt, rather than using the exponential average in order to update the parameters. This results in a

non–increasing step–size, avoiding the issue which is faced by Adam. It is defined the same in Adam, C.36.

vt = β2vt−1 + (1 − β2)g2
t (C.36)

Now rather than using vt or the bias–corrected version v̂t, the previous, vt−1 is employed if it is larger than the

current value, C.37.

v̂t = max(v̂t−1, vt) (C.37)

Thus results in a non-increasing step–size, avoiding the issue which Adam faces. For simplicity the de-biasing

step is removed. AMSGrad updated without bias–corrected parameter updates is shown as follows in C.38.

mt = β1mt−1 + (1 − β1)gt

vt = β2vt−1 + (1 − β2)g2
t

v̂t = max(v̂t−1, vt)

θt+1 = θt −
α√

v̂t + ϵ
mt

(C.38)
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C.4 Network Structure

Activation functions are a quintessentially important feature of artificial neural networks. Without activation

functions, the weights and bias would do a linear transformation which is easily solved, and hence does not

have the capacity to address more complex problems, such as image classification, and predictions algorithms.

They decide whether a neuron should be activated or not during backpropagation, and makes this decision

based on the weight and bias information which it receives and applies these to the weights. Activation func-

tions are also crucial for squashing the output of the network to be within certain bounds. This is particularly

important when the outputs of the layer are very large values, where this will have a knock–on effect where

subsequent layers may produce even larger values, making the process computationally intractable.

Y = Activation(∑ (weight × input) + bias) (C.39)

Based on the equation C.39, the transformed output would be the input for the next layer of the network.

The binary function (Figure C.4) is the simplest of the activation functions, and is used in a binary classifier.

This is typically not used in practical applications. However, the gradient of this function is 0, and hence would

not backpropagate, and update weights. Hence there is no model improvement.
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Figure C.4: Binary Step Function

f (x) = 1, x >= 0 (C.40)
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The linear activation function (Figure C.5) allows inputs to pass it without applying any modification. The

function is defined as below, C.41. When applying backpropagation, the gradient is constant, C.42. For simple

tasks, linear activation functions would be useful, however due to the constant gradient, where multiple layers

would be required in the network, the output would only be a linear transformation of the input, and would

not be desirable for a complex task.

f (x) = ax (C.41)

f ′(x) = a (C.42)
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Figure C.5: Example of a Linear Activation Function: y = 2x

The Sigmoid Function (Figure C.6) has the ability to be constantly differentiable. The error is backpropagated,

and weights are updated appropriately. This function is typically used for classification problems, and popu-

larly used in the last layer of the network. However the sigmoid activation function has three main drawbacks.

Firstly, the vanishing gradient issue is commonplace with sigmoid activation function. They have near zero

gradients both when near 0 or near 1. During backward propagation through the network, some neurons may

become saturated i.e. near–zero gradients, and any weights which are subsequently connected to such neurons

are slowly updated as well. With more neurons becoming saturated, the network may not have the ability to

backpropagate. Secondly, the outputs of sigmoid functions are not zero-centred and finally, sigmoid functions

are computationally expensive due to the use of the exponential function as we can see in C.43.
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Figure C.6: Sigmoid Activation Function

f (x) =
1

(1 + e−x)
(C.43)

The tanh activation function, also known as the hyperbolic tangent function (Figure C.7), is a scaled version of

the sigmoid. Importantly, it addresses the zero-centred issue which the sigmoid activation function has. The

outputs of the tanh function are between −1 and 1, which is unlike the sigmoid function where the outputs

are between 0 and 1.

The gradient of the tanh function is steeper in comparison to the sigmoid. Choosing between the two functions

depends on the gradient which is required by the problem in question. However, like the sigmoid function it

has the drawback of vanishing gradients.

tanh(x) =
2

(1 + e−2x)
− 1 (C.44)

The softmax activation layer is a type of sigmoid function, and is also ideally usesd as the output layer of a

classification network. However unlike the sigmoid, it is able to handle more than two classes. It squeezes

the output for each class betweed 0 and 1 and divides this by the sum of the outputs i.e. the probability of the

input being in a particular class. The equation is given by C.45.

σ(z) =
ezj

∑K
k=1 ezk

f orj = 1, . . . , K. (C.45)

The ReLU is half–rectified from the bottom as can be seen in Figure C.8. It is currently widely used within
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Figure C.7: Tanh Activation Function

network architectures today, and is generally used for the hidden layers of the network. It is mathematically

given by a simple expression, given in Equation C.46. This means that where the input x < 0 the output is 0,

and if x > 0 the output is x. ReLU causes the network to converge quicker due to its structure, where if the

input is negative, the neuron would not get activated, thus making it computationally efficient. Due to this, it

does not allow saturation, thus solving the vanishing gradient problem. However, in backpropagation, some

gradients can move towards zero, and this may create dead neurons which will not get activated.

f (x) = max(0, x) (C.46)

−6 −4 −2 0 2 4 6

0

1

2

3

4

5

Figure C.8: ReLU Activation Function

The Leaky ReLU is a modified version of the ReLU. The original ReLU function has a gradient of x < 0,
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creating dead neurons. Leaky ReLU (Figure C.9) addresses this problem, where values which are less than 0

have an additional linear component a, where a is a small non-zero value. Now during backpropagation, the

gradient would not hit zero, thus no dead neurons.
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Figure C.9: Leaky Rectified Linear Unit

f (x) = ax x < 0

= x x >= 0
(C.47)

The layers which are between the input layer and the output layer are known as the hidden layers. The number

of hidden units controls the weights which are available for training, therefore controlling the complexity of

the learning space of the network. An increase of hidden units combined with other regularisation techniques

can increase accuracy. Neukart et al, [235], suggest to start with a hidden unit number close to the number of

input neurons, and output neurons and add more if generalisation is found to be low C.48.

(
neuronsinput

3
× 2) + neuronsoutput (C.48)

C.5 Additional Optimisation Strategies

In order to facilitate the learning process, it is usual that the initial values are normalised. However through the

training process, this normalisation is lost, and the training effectively slows down as the network goes deeper.
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Batch normalisation applies normalisation for every mini–batch, and back-propogates these changes through

this application as well. By doing this, we have the ability to use higher learning rates without having to pay

attention to the initial parameters. In addition, it also acts as a regulariser, reducing the need for Dropout, and

in some cases completely taking it out of the equation.

Neelakantan et al., [236],showed that adding noise would make networks more robust to poorly initialised

variables, and helps especially when training deep and complex networks. It was shown that given added

noise, the model has more of a chance to escape and find a new local minima. They added noise which

followed the Gaussian distribution N(0, σ2
t ) to each of the updated gradients, shown is C.49.

gt,i = gt,i + N(0, σ2
t ) (C.49)

The variance is then calculated using the following equation, C.50

σ2
t =

η

(1 + t)γ
(C.50)

C.6 Hyperparameters Selection

There are four methods which are used for hyperparameter selection: Manual Search, Grid Search, Random

Search and Bayesian Optimisation.

Manual Search, in other words is Trial and Error, where the user would manually modify the hyperparameters,

and run the algorithms. Using knowledge about the problem in question, and observation of the result, tweaks

can be made to the parameters in order to find the best possible combination. However this can be prove to be

time consuming, and long–winded.

Grid Search uses a simple methodology which tries all possible permutations and combinations of the hy-

perparameters, an example of this is shown in Fig C.10a. This is however computationally very expensive,

the more hyperparameters you have, and with more dimensions the time taken to acquire the result increases

exponentially.

In 2012, Bergstra and Bengio, [237], introduced Random Search where random combinations of the hyper-

parameters are used in order to find the best possible solution, an example is shown in Fig C.10b. For large

dimensions of hyperparameters, it gives better results with less iterations. The drawback of this search it that
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it yields high variance during computing, and since the selection of parameters is completely random, chance

plays into finding the best combination of hyperparameters.

(a) Grid Layout (b) Random Layout

Figure C.10: Visual representation of types of hyperparameters search [237]

In contrast to the other forms of optimisation searches, Bayeisan optimisation keeps track of past evaluation

results which are used to form a probabilistic model mapping hyperparameters to the probability of a score on

the objective function: P(score|hyperparameters). This model is known as a surrogate model for the objective

function. There are several disadvantages to Bayesian optimisation. Results are sensitive to the surrogate

model, which are generally fixed at some value. There is cost involved with searching the surrogate surface,

and hence is chapter to evaluate the original problem.
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