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SCIENCE FOR SOCIETY Respiratory illnesses are among the most common diseases globally and are
worsened by exposure to air pollution. The risk of pollution causing severe illness is greatest in developing
countries where land-use change, healthcare provisions, and weather patterns complicate the study of
pollution and health. Resolving the links between human activities, pollution, and health and the magnitude
of health impacts can help reveal solutions to reverse current trends.
Sumatra, Indonesia, is famed for its land fires causing transboundary haze. We tracked changes in land
cover, climate, socioeconomic factors, and air pollution and linked this information to healthcare attendance
over 18 years. We found respiratory ailments increased during dry years and in deforested areas, particularly
where fires spread into peatlands. Using data on healthcare facilities, we show how air pollution can further
affect respiratory illnesses in the future, posing more challenges to public health.
SUMMARY
Air pollution associated with agricultural activities and land-cover change poses significant health problems
in developing countries. However, studies on the respiratory health impacts of these activities are scarce. Su-
matra, Indonesia, is a region well known for its frequent land fires and haze. Here, we link data on healthcare
attendances for respiratory illnesses between 2001 and 2018 with biophysical and socioeconomic variables
known to be important drivers of respiratory ailments. We show that the prevalence of respiratory illnesses
increased by 8.5% during dry years over the last two decades. This was largely attributed to changes in rain-
fall patterns and land cover. Increasingly severe drought during El Niño events, combinedwith reduced forest
cover and increased land degradation on peatland, has further escalated fires with concomitant air pollution
impacts on respiratory health. Our study highlights the need to explicitly incorporate health costs of environ-
mental damage into land-use planning and public health interventions.
INTRODUCTION
 cause of death after cardiovascular diseases and neoplasms.2
Respiratory illnesses, such as chronic obstructive pulmonary

disease (COPD), asthma, and acute respiratory tract infection

(ARI), are among the most common diseases worldwide.1 In

2017, these illnesses affected 545 million people, an increase

of 40% since 19902 and representing a global prevalence of

7%. Respiratory diseases accounted for 4 million deaths in

2017 (an increase of 18% since 1990) and were the third leading
290 One Earth 6, 290–302, March 17, 2023 ª 2023 The Authors. Pub
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Although smoking has been the most prevalent risk factor in

high-income countries, exposure to ambient air pollution has

been the major cause of respiratory diseases in low- and mid-

dle-income countries.2 Resource constraints typical of health-

care systems in these countries further exacerbate the impacts

of pollution on human health and well-being.3–5 Respiratory dis-

eases, such as ARI, can have long-term detrimental effects on

fetal development, infants, and children, predisposing them to
lished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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chronic diseases and morbidity later in life.6,7 Air pollution in

developing countries is associated with socioeconomic factors

including poverty, trade, and weak enforcement of environ-

mental laws and standards,8,9 and it is sourced largely from fac-

tories, transport, household solid-fuel combustion, and open

burning for agricultural purposes.5,10–13

Open burning has been practiced for thousands of years across

tropical regions toclear land for agricultureorofcrop residuesafter

harvest.14,15 However, rapid changes from traditional agroforestry

systems to extensive monoculture over recent decades have

altered fire regimes and have led to more widespread and intense

burning.15–17Complex interactionsbetween changes in landman-

agement, vegetation degradation condition, soil type (i.e., peat

and non-peat soil), and climate are increasing the number of land-

scape fires, especially in dry years during the El Niño-Southern

Oscillation (ENSO).18–20 Landscape fires cause highly elevated

particulate matter concentrations over short periods of time.21–23

During the 2015 El Niño episode, for example, the total particulate

matter emissions fromfires inSoutheastAsiawereestimated tobe

1.8 Tg over a 2-month period, equating to 2.2 times the annual

average between 2002 and 2014.21 Tropical peatlands that have

been deforested, drained, and degraded are more vulnerable to

fires during dry seasons,24–28 and peatland fires release much

larger amounts of carbon dioxide and fine particulate matter

compared with fires on other soils.16,22,29–31

Despite tropical fire events causing severe air pollution and

having profound repercussions on health, sparse hospital or

healthcare records are unable to provide reliable estimates of

thenumber of people affected.32–34Recent advancements in sat-

ellite-derived data andmodeling between aerosol emissions and

relative health risk have enabled the approximation of broad-

scale health implications of large-scale fires.35–37 Nonetheless,

uncertainty remains about the real magnitude of impact of these

fires on human health. This is especially the case for impacts on

the respiratory system across different geographical areas and

timeperiods. Such knowledgewould guide tangible public health

intervention and land-use planning at the sub-national level.32–34

Here we explore the relationship between healthcare atten-

dance for respiratory illnesses and changing interannual tropical

land-cover and climate patterns using data from Sumatra,

Indonesia (Figure S1), a region known for its frequent land fire ep-

isodes. We link data on healthcare attendance for respiratory ill-

nesses between 2001 and 2018 collected by local health

agencies (Figure S2) with biophysical and socioeconomic vari-

ables known to have important effects on respiratory health

(Table S1). Pathways through which change in biophysical and

socioeconomic conditions leads to negative respiratory out-

comes underlies our analytical framework (Figure S3,

Table S2). Respiratory illnesses captured include asthma,

COPD, ARI, bronchitis, pneumonia, nasopharyngitis, and influ-

enza. The biophysical variables investigated include the annual

rainfall variability (Figure S4), land-cover change (Figure S5),

soil type, fire occurrences (Figure S6), and total fine particulate

matter concentration (PM2.5) from all pollution sources (Fig-

ure S7), and the socioeconomic variables include poverty rates

and human population density (Figure S8). We specifically

answer the following questions: (1) how have rainfall patterns in

Sumatra changed over recent decades? (2) How has deforesta-

tion and land degradation affected the fire and PM2.5 response to
rainfall variability and change? (3) What are the associations be-

tween respiratory cases and the change in climate, environment,

and socioeconomic conditions? By linking multiple datasets, we

reconstruct detailed interannual spatiotemporal distribution of

respiratory illnesses over the last two decades across Sumatra’s

131 regencies (or kabupaten). Using data on the number of phy-

sicians in public hospitals and healthcare facilities across Suma-

tran regencies,38 we further show howpollution-induced respira-

tory illnesses can exacerbate local public health challenges.

RESULTS

Sumatra’s changing climate patterns
Sumatra’s rainfall fluctuates each year and is driven largely by

the El Niño (warm) and La Niña (cool) events in the tropical Pa-

cific.39 Based on rainfall data obtained from the Climate Hazards

Group Infra-Red Precipitation with Station (CHIRPS) data,40 we

estimated that the mean annual rainfall over the island between

2000 and 2019 was 235 mm/month (Figure 1A). El Niño phases

(in 2002, 2004, 2006, 2014, 2015, 2018, and 2019) typically

cause prolonged dry spells, and the annual rainfall during these

dry years could be as low as 200 mm/month on average (Fig-

ure 1A). On the other hand, La Niña phases (in 2000, 2007,

2008, 2010, 2016, and 2017) typically cause wet weather condi-

tions, and the annual rainfall during these wet years could be as

high as 255 mm/month on average (Figure 1A).

TheCHIRPSdata reveal that there has been a change in rainfall

patterns across Sumatra over the last two decades. The interan-

nual rainfall variability was larger after 2010 comparedwith previ-

ous years (95% confidence interval [CI] 220–245 mm for the

2000–2009 period andCI 205–253mm for the 2010–2019 period,

F-test p < 0.001; Figure 1B), suggesting that rainfall patterns

became more erratic. Moreover, during dry years (when average

rainfall is below 235 mm/month, usually coinciding with El Niño

events), the mean monthly rainfall reduced by 0.95 mm per year

(p < 0.001) between 2000 and 2019 (Figures 1C and S9A;

Table S3). Conversely, during wet years (when the average rain-

fall was above 235 mm/month, usually coinciding with La Niña

events), the mean monthly rainfall increased marginally by

0.27 mm per year (p = 0.165) over the same period (Figures 1C

and S9A; Table S3). When considering the seasonal variation in

rainfall, we obtained different patterns for dry months (May to

October) compared with wet months (November to April). In dry

months, the mean monthly rainfall during dry years between

2000 and 2019 reduced significantly by 1.53 mm per year

(p < 0.001), but during wet years it increased significantly by

0.52 mm per year (p = 0.03) (Figure S9B; Table S3). On the other

hand, inwetmonths themeanmonthly rainfall remained relatively

constant during both dry years andwet years over the 2000–2019

period (Figure S9C; Table S3). This indicates that the region had

become increasingly dry during dry years but wetter during wet

years, especially in the dry months, and this pattern confirms

thebroader regional climate changepatternsoutlined in the latest

Intergovernmental Panel on Climate Change (IPCC) report.41

Deforestation, climate change, fire, and air pollution
Sumatra lost 25% of its natural forest in the last two decades (Fig-

ure 2A). Regencies with a high proportion of peatland were more

likely to be deforested during this period (Figure 2B). Deforestation
One Earth 6, 290–302, March 17, 2023 291



Figure 1. Rainfall distribution and the trends through time
(A) Rainfall distribution across regencies in Sumatra, averaged across all years, dry years (when the average rainfall in a given year is below 235 mm per month;

usually coincides with the El Niño event), and wet years (when the average rainfall in a given year is above 235 mm per month; usually coincides with the La

Niña event).

(B) The annual trends in meanmonthly rainfall across regencies between 2000 and 2019 (with 95% confidence interval [CI] error bars). Rainfall variability is higher

after 2010 compared with previous years.

(C) The annual trends in mean monthly rainfall across regencies between 2000 and 2019 (with 95% CI error bars) broken down by dry years and wet years. The

regression line shows a significantly decreasing trend for dry years, but a marginally increasing trend for wet years.
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was also more prevalent in regencies with a higher proportion of

their land allocated to timber and agro-industrial concessions

(Figure 2C).

Deforestation and the subsequent land degradationwere associ-

atedwith increasedfireoccurrences,especially duringdryyearsbe-

tween2000and2019,but theextent differedbetweenareasonpeat

soil andmineral soil (Figure 3A). In degradedpeatland, thedensity of

fire increased by 0.08 per 1,000 km2 per year (p < 0.001) (Figure 3A;

Table S4) following the observed decline in rainfall (Figure 1C),

whereas, in degraded mineral soil, fire density had been relatively

constant (Figure 3A). In contrast, the fire density in forested areas

onpeat soil ormineral soil remained relatively low (Figure3A)despite

a reduction in rainfall during dry years. This demonstrates that, in an

undisturbedstate, tropicalpeatlandshaveahighdegreeoffire resis-

tance, as the entire peat layers, together with the living forest

biomass, is nearly permanently moist. However, when peat forests

are cleared and subsequently degraded (typically through drainage

via canal construction), peatland can no longer sustain its water ta-
292 One Earth 6, 290–302, March 17, 2023
ble against increasing drought intensity, which then leads to

increased risk of fire.16,25,29,42 During wet years between 2000 and

2019, fires were rare regardless of soil type, and the annual density

of fires hasmarginally decreased (Figure 3A; Table S4) following the

observed marginal increase in rainfall (Figure 1C).

The density of fires between 2000 and 2019 over Sumatran re-

gencies was positively correlated with the concentration of

PM2.5, but this relationship varied by soil type and level of forest

cover (Figure S10; Table S5). Non-forest areas tend to have higher

density of fires than in forest areas due to more extensive human

activities and land degradation. However, the ratio between

PM2.5 concentration and fire density was higher for forest areas

compared with non-forest areas, as tropical forest burning pro-

duces greater emissions of PM2.5 due to higher biomass density

compared with fires in savannah, grassland, or crop residue

burning in non-forested areas. This suggests that the locations of

fire do not necessarily correspond to the locations where there

will be the greatest impact on air quality associated with fires.43,44



Figure 2. Forest cover and the rates of forest loss

(A) Forest cover across regencies in Sumatra in 2000 and 2020, and the rates of forest loss between the two time periods.

(B) Percentage of regency’s land area located on peatland, and the rates of forest loss between 2000 and 2020 by peatland percentage (with 95%CI error bars).

(C) Percentage of regency’s land area allocated to timber and plantation concessions, and the rates of forest loss between 2000 and 2020 by percentage of

concessions (with 95% CI error bars).

ll
OPEN ACCESSArticle
The annual trends in PM2.5 concentration (Figure 3B) show

similar patterns to the trends infire occurrences (Figure3A). During

dry years, PM2.5 concentration in peatland had increased by

0.78 mg m�3 per year (p < 0.001) (Figure 3B; Table S6) following

the decline in rainfall (Figure 1C). Conversely, in lands on mineral

soil, PM2.5 concentration had increased only marginally by

0.18 mgm�3 per year (Figure 3B). Duringwet years, PM2.5 concen-

trationboth in landsonpeatsoil andmineral soil hadalso increased

marginally (Figure3B;TableS6). Theheighteningofanthropogenic

activities through time, such as increased emissions from indus-

tries and vehicles, may be partly responsible for the overall in-

crease in PM2.5 for all soil types and climate regimes.

Respiratory cases and environmental change
The prevalence of respiratory illnesses between 2001 and 2018

across Sumatran regencies was estimated to be 12.2% (CI

11.7%–12.7%) or 122 cases per 1,000 people on average per

year, almost twice the prevalence at a global level.2 On a whole,
the prevalence appears to have increased marginally over the

last two decades (Figure 4A). However, the trend for dry years

and wet years differed. During dry years, the prevalence of res-

piratory illnesses became more prominent; it increased from

118 to 128 cases per 1,000 people between 2001 and 2018

(p = 0.048). In contrast, during wet years, the prevalence

declined; it decreased from 123 to 114 cases per 1,000 people

over the same period (p = 0.041) (Figure 4A; Table S7). This

pattern is correlated with the change in rainfall patterns across

Sumatra over the last two decades (Figure 1B), during which

time the local climate became increasingly dry during the

drought years but wetter during wet years.

Despite a marginal increase in the overall prevalence between

2001 and 2018, the annual respiratory cases per regency

increased markedly by 19.6% (from approximately 38,000 to

47,000 cases, on average) (Figure 4B), linked to growth in the hu-

man population.45 As the number of people populating regencies

with considerable extents of peatland (more than 10% of the
One Earth 6, 290–302, March 17, 2023 293



Figure 3. Trends in fire density and PM2.5

concentration

(A) Trends in mean annual density of fire across

regencies in Sumatra between 2000 and 2019,

broken down by rainfall condition (i.e., dry years

when the annual rainfall is below 235 mm per

month and wet years when the annual rainfall is

above 235 mm per month), soil type (i.e., peat and

mineral soil), and deforestation status. Error bars

represent 95% CIs.

(B) Trends in mean annual PM2.5 concentration

between 2000 and 2019, broken down by rainfall

condition (i.e., dry years and wet years) and soil

type (i.e., peat and mineral soil). Error bars are

95% CIs.
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total land area on peatland; 37 regencies mostly in the coastland

lowlands) is 34% higher than in regencies composed mostly of

mineral soil (that is, more than 90% of the total land area located

on mineral soil; 94 regencies), the number of respiratory cases in

hospitals is also higher in regencies located on peatland. For

these peat-dominated regencies, 54,748 people (95% CI,

48,903–60,592) were estimated to be affected by respiratory ill-

nesses annually on average between 2001 and 2018 (Figure 4B).

Comparatively, for those regencies mostly on mineral soils, the

annual respiratory incidence over the same period was 38,133

people on average (95% CI, 35,865–40,401) (Figure 4B).
294 One Earth 6, 290–302, March 17, 2023
We fitted the regency annual respiratory

illnesses data (Figure S2) with generalized

boosted regression models (GBMs)46 to

explore the link between variation in envi-

ronmental and socioeconomic factors

and respiratory prevalence among re-

gencies. Considering that drivers of

respiratory prevalence are likely different

between peat and mineral soil, we con-

ducted separate analyses for each soil

type. Our findings show that, in regencies

with mineral soil, higher prevalence of res-

piratory diseases was largely associated

with reduced poverty (explaining 24.4%

of the total variation in respiratory preva-

lence), increased human population

density (21.6%), reduced mean monthly

rainfall (19.7%), and reduced forest cover

(16.1%), whereas the contributions of ur-

ban areas, density of fires, and PM2.5

were marginal (<8%) (Figure 5A). On the

other hand, in regencies on peat soil, high

respiratory disease prevalencewas largely

associated with reduced forest cover

(explaining 20.1% of the total variation in

respiratory prevalence), increased fire

occurrence (18.3%), reduced mean

monthly rainfall (17%), increased PM2.5

(16.8%), and increased poverty (13%),

whereas the contributions of urban areas

and population density were marginal

(<8%) (Figure5B). This implies that respira-
tory ailments in areas of mineral soil are likely to be directly attrib-

uted to higher anthropogenic activities and development following

deforestation, such as factories in productive and in developed

areas where poverty rates are comparatively low. On the other

hand, in areas on peat soil, respiratory illnesses were associated

largely with multiple anthropogenic land-use change and environ-

mental effects, such as air pollution from fires due to peatland

deforestation and draining in areas where poverty rates are high.

The GBMmodels allow us to reconstruct the predicted spatio-

temporal changes in the prevalence of respiratory illnesses

between 2001 and 2018 across all 131 Sumatran regencies



Figure 4. Trends in respiratory illnesses

(A) Trends in the average prevalence of respiratory

illnesses across regencies in Sumatra between

2001 and 2018, and the trends broken down by

dry years and wet years.

(B) Trends in the mean number of respiratory ca-

ses across regencies between 2001 and 2018,

and the trends broken down by peat soil regencies

and mineral soil regencies.
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(Figure S11) and the interannual number of respiratory cases

(Figure 6). The models predict the respiratory prevalence data

with 98.2% accuracy. Between 2001 and 2009, we estimated

5.15 million (95% CI, 4.83–5.47 million) cases of respiratory ill-

nesses were experienced annually over Sumatra, on average,

and this was similar between dry and wet years (Figure 6). How-

ever, between 2010 and 2018, the annual respiratory cases

increased to 6.15 million (95% CI, 5.74–6.56 million) during the

dry years, while the number of cases during the wet years was

5.40 million (95% CI, 5.24–5.56 million).

DISCUSSION

There has been a significant body of literature on the impacts

of ambient pollution on respiratory health globally, but contribu-

tions from developing countries are underrepresented.47 More-

over, studies from Southeast Asia are mostly focused on

relatively developed countries such as Singapore and

Malaysia32–34 (Table S2). These studies often utilize hospital re-

cords in urban areas and concentrate primarily on the physiology

and demography of diseases to inform local public health inter-

vention.48–52 Studies investigating the epidemiology and envi-

ronmental health of pollution-induced illnesses over broad areas

are lacking, and, in the absence of healthcare facility data, have

needed to rely on coarse pollution indices or aerosol emission in-

formation to estimate the relative risk to health.35,36 Our study

evaluates the large-scale spatiotemporal change in respiratory

cases in Southeast Asia, which utilizes time-series hospital and

healthcare facility records. This approach allowed for the recon-

struction of the annual prevalence of respiratory illness across

regencies over the last two decades and revealed how respira-

tory cases develop in relation to local patterns in climate, land-

use, and socioeconomic changes.

We found that the absolute number of respiratory cases over

Sumatra increased over the last two decades, and this differed

markedly between wet years (associated with the La Niña epi-

sodes) and dry years (associated with the El Niño episodes

when the risk of fires is high). During wet years, cases increased

by 5% (from 5.14 million cases per year over the entire island in

2001–2009 to 5.40 million cases per year in 2010–2018) (Fig-

ure 6). However, during dry years, the number increased mark-
O

edly by 19% (from 5.16 million cases

per year in 2001–2009 to 6.15 million

cases per year in 2010–2018) (Figure 6).

Thus, in recent years, the number of hos-

pital attendances due to respiratory com-

plaints during dry years was 14% higher

(or 756,180 cases higher for the whole
of Sumatra) on average than during the wet years. Our findings

corroborate earlier results from other Southeast Asian cities on

the significant increase in hospital outpatient attendance and ad-

missions for respiratory illnesses in the fire and associated haze

season (during the dry years) compared with the non-haze sea-

son (during the wet years).48–52 For example, the fire and haze

season in the region has been found to be associated with

increased lung cancer diagnosis in non-smoking adults49 and a

marked reduction in lung functioning among adolescents.48

Ambient air pollution is known to have significant negative re-

percussions on lung development during the prenatal period

(fetal development) and childhood, predisposing children to

chronic respiratory illness.6,7,53 Recent studies have further high-

lighted the impact of air pollution on the impairment of brain

structure and cognitive development in infants and children.54,55

We did not have detailed data on the age of patients attending

and admitted to hospital to be able to estimate the number of

children affected by respiratory illnesses. However, data from

the National Board for Disaster Management of Indonesia

(BNPB) and provincial health agencies that were most affected

by haze (captured from various reports; Table S8) indicate that

infants and children under the age of 5 years comprised approx-

imately 42% of the total hospital attendance for respiratory ill-

nesses, mainly ARI. Based on this proportion, we estimate that

the number of children under the age of 5 years with respiratory

health problems during the dry years between 2010 and 2018

across Sumatra is approximately 2.59 million per year, a surge

of 314,293 cases during the dry years compared with the wet

years. This surge could represent a critical intergenerational

loss and the societal long-term costs associated with fire and

haze. Poor families with inadequate dwelling conditions and ac-

cess to sufficient healthcare are likely to bear most of this

burden, potentially leading to a poverty trap across genera-

tions.56 It is worth noting that our estimates are based on the

year-long hospital attendance on various respiratory complaints,

including patients diagnosed with ARI, pneumonia, bronchitis,

asthma, COPD, nasopharyngitis, and influenza. Our estimates

are therefore greater than those captured by the BNPB or provin-

cial health agency reports, which are often based solely on the

incidence of ARI aggregated to provinces with the highest prev-

alence of fires (Table S8).
ne Earth 6, 290–302, March 17, 2023 295



Figure 5. Drivers of respiratory illnesses across regencies by dominant soil type

(A and B) The effects and importance of population density, poverty rates, mean monthly rainfall, forest cover, fire density, PM2.5 concentration, and rural-urban

area on the prevalence of respiratory illnesses in Sumatra in a given year, for (A) mineral soil regencies (i.e., more than 90% of the total land area is located on

mineral soil), and (B) peat soil regencies (i.e., more than 10% of the total land area is on peatland).
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Our study provides evidence of the complex interlinkages be-

tween the shifts in local climatepatterns, land-useand land-cover

change, fine particulatematter emission fromfire, and respiratory

diseases. We found that climate patterns in Sumatra changed

over the last decades, with drought becoming more pronounced

during the El Niño phase and conversely the intensity of heavy

rains increasing during the La Niña phase. Several studies have

examined the change in rainfall patterns over Southeast Asia
296 One Earth 6, 290–302, March 17, 2023
and the Indonesian archipelago, but none have focused specif-

ically on Sumatra, where land fires are most prominent

(Table S2). We found that rapid deforestation and land degrada-

tion in Sumatra, especially on peatland, increased the vulnera-

bility of soil to extreme drought brought by the El Niño season,

and consequently inflated the risk of fire, and the concomitant

air pollution and respiratory illnesses in people. Our results

corroborate findings from past studies (see analysis scope 2–3



Figure 6. Number of respiratory cases across regencies between 2001 and 2018

These numbers were estimated by the generalized boosted regression models (GBMs). The number inside the parentheses below each map represents the total

respiratory cases (as captured from healthcare attendance data) in the corresponding year.
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in Table S2 and Figure S3). Existing research has, however,

mainly focused on the relationship between climate variability,

land-use change, and fire occurrence or air pollution patterns

over broad areas using remote sensing and environmental

science.26,57,58 Another bodyof researchhas focusedon the rela-

tionship between ambient air pollution and respiratory illnesses,

usually in large cities where hospital data are readily avail-

able.48–52 Bridging these two lines of enquiry, we comprehen-

sively analyzed the path from change in climate and land cover

to respiratory health outcomes in an interdisciplinary way.

The rising incidence of respiratory illnesses in Sumatra in the

past two decades associated with the complex linkages of defor-

estation, soil degradation, climatic change, and fire-related air

pollution is a significant public health concern. Although public
hospitals and healthcare centers across Indonesia have substan-

tially increased in numbers over the sameperiod as this study, this

is not commensurate with the rise in the human population, and

many of these institutions still lack medical facilities, equipment

(e.g., ventilators), and personnel. In Sumatra, four physicians are

currently serving 10,000 people, on average38 (Figure 7A).

Although this number meets the national requirement of doctor-

population ratio of 1:2,500 (Regulation of the Minister of Law

and Human Rights of the Republic of Indonesia No. 34/2016),

there are substantial geographical disparities, especially between

urban and rural regencies. Our analysis of the public health data38

shows that 70%of Sumatra’s rural regencies are falling below the

national requirement (Figure 7B). Indonesia is also behind other

Southeast Asian countries in the number of medical doctors
One Earth 6, 290–302, March 17, 2023 297



Figure 7. Physician-population ratio

(A) Number of physicians per 10,000 population across regencies in Sumatra,

and the average physician-population ratio by urban and rural regencies (with

95% CI error bars).

(B) The proportion of regencies with physician-population ratio below the

national standard of four doctors per 10,000 population, and the proportion

broken down by urban and rural regencies.
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overall, for example comparedwith Singapore andMalaysia (with

23 and 15 physicians per 10,000 people, respectively),59 despite

experiencing greater problems from land fires, smoke, and

haze. As fire and smoke haze are known to have detrimental im-

pacts not only on respiratory health but also on other illnesses

such as cardiovascular diseases,60–62 skin diseases63–65 and

rheumatoid arthritis,66–68 hospital attendancewill likely rise signif-

icantly for multiple illnesses during the haze season. Conse-

quently, this will further stretch the local healthcare system

(Figure S12), especially in rural areas where extensive fire and

smoke occur in disputed lands between local communities and

agro-industries.69,70 Hence, substantial public health investment,

particularly during the haze season, will be required.

Almost every year in recent decades, the Southeast Asia re-

gion is blanketed with smoke and haze. Smoke and haze from

land fires in Sumatra pose significant environmental health

threats to residents. Respiratory illnesses may increase as

drought becomes more intense in the future due to heightening

of the El Niño event.41 Mitigation measures that can reduce for-

est and landscape fire are important pre-emptive strategies to

mitigate problems related to haze-induced respiratory diseases,

and these include (1) moratorium on conversion of natural forest

and peatland, especially for development of industrial-scale
298 One Earth 6, 290–302, March 17, 2023
agricultural or paper/pulp plantations; (2) zero-burning policies

on peatland; (3) pre-emptive hotspot surveillance and resource

deployment of fire mitigation in fire-sensitive areas during dry

years; and (4) restoration of degraded (i.e., deforested, cana-

lized, drained, and converted) peatland ecosystems. The large-

scale exploitation of land that occurred in Sumatra over the

last decades has resulted in significant environmental damage,

with the social and health impacts particularly felt by rural or

poorer households. Reducing this societal burden will require

active involvement of major land actors and concession holders

to adopt fire mitigation measures and ecological restoration and

to incorporate the health costs of environmental damage into

public health interventions.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Truly Santika (T.Santika@greenwich.ac.uk).

Materials availability

This study did not generate new unique materials.

Data and code availability

All data used in this paper are derived from the cited references or databases.

Data and code supporting the findings of this study are deposited at https://

doi.org/10.5281/zenodo.7652710 and publicly available as of the date of pub-

lication. Any additional information required for reanalyzing the data reported

in this paper is available from the lead contact upon request.

Study area and data

We used regency administration boundary and year as the spatial and tempo-

ral unit of analysis, respectively. There are 131 regencies across Sumatra over

the last 18 years (from 2001 to 2018). We included both urban and rural re-

gencies in the evaluation. The size of urban regencies is substantially smaller

than that of the rural regencies (414 km2 compared with 4,210 km2, on

average), and the population density in urban regencies is also markedly

higher (2,738 compared with 135 people per km2, on average, in 2018).

Yearly hospital and healthcare attendances for respiratory illnesses be-

tween 2001 and 2018 were obtained from local health agencies across Suma-

tra as part of annual censuses conducted by the Bureau of Statistics of

Indonesia.71 We converted the attendance counts to prevalence (per 100 pop-

ulations). The number of regencies reporting healthcare attendances

increased from 13–43 regencies in the period of 2001–2006 to 55–85 regencies

in 2013–2018 (Figure S2).

We included biophysical variables rainfall (Figure S4), land-cover change

(Figure S5), soil type, fire occurrences (Figure S6), and total PM2.5from all sour-

ces (Figure S7). Year-on-yearmeanmonthly rainfall figures were obtained from

CHIRPS,40 which combines rainfall precipitation surfaces captured from satel-

lites and precipitation records from rainfall weather stations. Annual land-

cover change was estimated by combining data on the extent of primary

and secondary forest in Sumatra in 200072 and forest loss from the Global For-

est Change (GFC) database.73 Soil type, describing the extent of peat and

mineral soil, was obtained from the Peatland Hydrological Map.74 Monthly

fire occurrences were obtained from the MODIS MCD14ML,75 and monthly

PM2.5 concentrations were obtained from the Surface PM2.5 database

(V5.GL.02).76 Both the MODIS MCD14ML and the Surface PM2.5 datasets

have a spatial resolution of 1 km. Socioeconomic variables, including poverty

rates and human population density (Figure S8), were derived from govern-

ment censuses between 2001 and 2018.71

Analytical framework

We performed three stages of analysis corresponding to the three most impor-

tant nodes within the climate (rainfall), fire, air pollution, and respiratory disease

pathways (FigureS3), namely (1) examining thespatiotemporal change in rainfall

patterns over the last two decades; (2) evaluating the response of fire and PM2.5

to change in forest cover, land degradation, and rainfall variability; and (3)

mailto:T.Santika@greenwich.ac.uk
https://doi.org/10.5281/zenodo.7652710
https://doi.org/10.5281/zenodo.7652710
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evaluating the response of respiratory illnesses to change in climate, environ-

ment, and socioeconomic conditions. The analysis process is outlined below.

Change in rainfall patterns

Several studies have assessed the change in rainfall patterns across Indonesia

and the Southeast Asia region, but those focusing on Sumatra are lacking

(Table S2). Broad analyses over the region demonstrate that the overall

monthly rainfall decreased77 but variability increased,78 with rainfall becoming

more intense, especially during the wet season (typically between December

and March).79 Informed by these broad-scale studies, we examined the inter-

annual change in monthly rainfall between 2000 and 2019 (derived from the

CHIRPS dataset). Given that El Niño and La Niña episodes play important roles

in regulating rainfall intensities across the tropics, we further evaluated how

rainfall patterns change during the dry and wet years (brought by the El Niño

and La Niña phases, respectively). We investigated the shift in rainfall over

all months and in different seasons; i.e., dry months (May to October) and

wet months (November to April). To verify the trends in rainfall (RAIN) over

time (YEAR) in each Sumatran regency i for rainfall regime r ˛ {dry years,

wet years} and season k ˛ {all months, dry months, wet months}, we fitted

the ordinary linear regression models:

RAINirk = a0rk +a1rkYEARirk (Equation 1)

for r ˛ fdry years;wet yearsg and k˛ fall months;dry months;wet monthsg

where a0rkand a1rk are the parameters to be estimated.

Fire and air pollution response to change in land cover and rainfall

patterns

Numerous studies have evaluated fire patterns in Indonesia and Malaysia in

relation to rainfall variability, soil type, and land-cover change (Table S2). We

analyzed data from Sumatra to validate the patterns found in previous studies.

For each year and regency, we intersected area defined as forest and non-for-

est (overlaid data of primary and secondary forest in 2000 and forest loss from

the GFC database) with area defined as peat and mineral soil (derived from the

Peatland Hydrological Map). These intersected areas formed our unit of anal-

ysis. We then calculated the density of fires (derived from the MODIS

MCD14ML datasets) in each of these combinations of land cover and soil

type (i.e., peat forest, non-forest land on peatland, forest on mineral soil, and

non-forest land on mineral soil) each year. Density of fire was then grouped

by rainfall regime of dry and wet years (derived from the CHIRPS data). The

trends in the density of fire (FIRE) over time (YEAR) in each regency i in rainfall

regime r˛ {dry years,wet years} and landcover andsoil type l˛ {1=peat forest,

2 = non-forest land onpeatland, 3 = forest onmineral soil, 4 = non-forest land on

mineral soil} were then verified by fitting the ordinary linear regression models:

FIREirl = b0rl + b1rlYEARirl (Equation 2)

for r ˛ fdry years;wet yearsg and l˛ f1; 2; 3; 4g

where b0rland b1rl the parameters to be estimated.

The link between fire occurrence (FIRE) and air pollution level as indicated by

the PM2.5 (PM25) in each regency i in land cover and soil type l ˛ {1 = peat for-

est, 2 = non-forest land on peatland, 3 = forest on mineral soil, 4 = non-forest

land on mineral soil} was estimated by fitting the ordinary linear regression

models:

PM25il = g0l +g1lFIREil for l˛ f1; 2; 3; 4g (Equation 3)

where g0land g1l are the parameters to be estimated. The trends in the con-

centration of PM2.5 (PM25) over time (YEAR) in each regency i in rainfall regime

r ˛ {dry years, wet years} and soil type s ˛ {peat soil, mineral soil} were further

assessed by fitting the ordinary linear regression models:

PM25irs = d0rs + d1rsYEARirs

for r ˛ fdry years;wet yearsg and s˛ fpeat;mineralg (Equation 4)

where d0rsand d1rs are the parameters to be estimated.
Respiratory response to changes in land cover, rainfall, fire, air

pollution, and socioeconomic factors

Our literature review from studies in Southeast Asia (Table S2) suggests that

ambient air pollution affects respiratory healthmainly through three types of pol-

lutants: (A) gas and smoke emissions generated from vegetation fire; (B) sand

and dust pollutants and gas emissions from smoldering degraded peat (without

fire being necessarily detected or observed on the surface); and (C) emissions

from solid-fuel households, vehicles, and factories. These three types of pollut-

ants can be driven by the same biophysical and socioeconomic factors,

although some factors are likely to be more prominent than others (Figure S3).

Gasandsmokeemissions fromvegetationfireare thought tobedrivenbyacom-

plex interrelation between atmospheric factors (such as rainfall variability induced

by the El Niño episodes), terrestrial factors (such as soil type and land degradation,

withdrainedanddegradedpeatlandbeingsignificantlymorepronetofire thanother

land types), and socioeconomic factors (such as poverty, livelihoods, the presence

of industrial concessions that are associated with land pressure).20,80 Atmospheric

and terrestrial biophysical factors play significant roles in determining the interan-

nual and regional variability in fire occurrence, whereas the socioeconomic factors

may be less critical at the regional level but can be a significant driver at the local

level.20,56 Sand and dust pollutants can be more prevalent during drought, espe-

cially in dry lands that had become increasingly arid due to land degradation.81,82

Drought can also exacerbate the rates of gas emissions fromsmoldering degraded

peat.16Unlikepollutant typeA (gasandsmokeemissions fromfire)and typeB (sand

and dust pollutants, and gas emissions from smoldering peat), which are both

significantly driven by biophysical factors such as interannual climate condi-

tions,16,20,81,82 the intensity of pollutant type C (emissions from solid-fuel house-

holds, vehicles, and factories) is likely to be largely attributed to socioeconomic fac-

tors and anthropogenic activities that may fluctuate less on an annual basis.8,83

We first analyzed the annual trends in respiratory prevalence across Suma-

tran regencies, overall and broken down by dry and wet years. Ordinary linear

regression models were fitted to the relationship between the mean annual

respiratory prevalence (RESP) and the year (YEAR) at regency I:

RESPir = z0r + z1rYEARir for r ˛ fdry years;wet yearsg (Equation 5)

where z0rand z1r are the parameters to be estimated.

We then evaluated the relationship between biophysical factors, socioeco-

nomic factors, and respiratory prevalence. The biophysical factors include the

mean monthly rainfall (RAIN), forest cover (FOREST), fire density (FIRE), and

PM2.5 concentration (PM25). The socioeconomic factors include population

density (POPDENS), poverty rates (POVERTY), and rural-urban categories

(URBAN). Considering that the process of fire and the resulting PM2.5 emis-

sions differ between peatlands and lands on mineral soil, we fitted a separate

model to regencies based on these soil characteristics. We defined peat soil

regency as regency with more than 10% of the total land area located on peat-

land, which comprised 37 regencies mainly located in Sumatra’s lowlands.

The remaining regencies are then defined as mineral soil regency, which

comprised 94 regencies. The 10% threshold was based on themedian propor-

tion of peatland area across regencies with peat soil. We fitted a GBM34 to the

respiratory variable (RESP) at regency i and year t:

RESPit = f1ðRAINitÞ + f2ðFORESTitÞ + f3ðFIREitÞ + f4ðPM25itÞ + f5ðURBANiÞ
+ f6ðPOPDENSitÞ + f7ðPOVERTYitÞ

(Equation 6)

The maximum absolute correlation among predictor variables is 0.456 for

mineral soil regencies and 0.519 for peat soil regencies (Figure S13); therefore,

we included all these variables in the assessment.
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