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Abstract

This study is inspired by a challenging logistic problem encountered in the cleaning service
sector. The company wishes to solve the consistent vehicle routing problem over a three-month
planning horizon. The company has a heterogeneous vehicle fleet to guarantee multiple frequencies
of visits to its customers. The objective is to minimize the number of vehicles used and the total
distance traveled. This problem is a generalization of the periodic vehicle routing problem. We
decompose the problem into two sub-problems, namely, the planning and routing optimization
sub-problems. We construct a mathematical model for the former and a large neighborhood search
for the latter. We evaluate the performance of our approach using the results of the industrial
partner and instances from the literature on problems that are closely related to our case study.
Our approach is found to be effective and robust. Our results outperform the existing company’s
plan in terms of solution quality, and staff convenience, and speed. We also discovered new best
solutions on some of the instances from the literature.

Keywords. routing, driver consistency, mixed-integer linear programming, large neighborhood

search

1 Introduction

The vehicle routing problem (VRP) is used to model several real applications, mainly in the transporta-

tion area. Since the introduction of the classical VRP by [17], several variants have been investigated

and some are motivated by real life applications. One of these variants is the Periodic Vehicle Routing

Problem, short for PVRP. Here, a planning horizon of several days is usually considered alongside a

set of customers that are to be visited more than once with different frequencies. These visits are

performed evenly at the route planning level such that customer’ demands are spread in a balanced

manner over the planning horizon allowing (i) an efficient management of company’ resources such as

drivers and vehicles and (ii) the design pf basic cyclic routes in each corresponding planning period

∗Corresponding author: ammar.oulamara@univ-lorraine.fr
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[26]. It is also worth noting that the companies do now give considerable importance to the satisfac-

tion of their customers. This quality of service is, for the case of routing, enhanced by a personalized

service, where for example, a driver is dedicated to serve the same set of customers which allows to

establish a personal relationship. Developing these customer-based aspects of relationship requires

routing to be consistent over multiple time periods. This type of consistency can be either temporal

in which customer is visited at roughly the same time of the day and at regular intervals [19], or

driver-oriented, in which the same driver regularly visits the same customers [22]. For instance, in

several studies including [30], [54] and [61] both temporal and driver consistencies are considered. The

integration of consistency in routing problems combined with the periodicity challenge, led operations

managers to develop routing plans that make the best use of the available resources while gaining a

competitive advantage for their organization.

To this end, this paper addresses a new practical and complex industrial periodic VRP in the cleaning

sector with consistency constraints. Here, consistency constraints relate to (a) the driver consistency

in which each driver visits the same customers over the planning horizon and (b) day consistency in

which visits to the same customer are scheduled in the same day of the week over the planning horizon.

The rest of the paper is organized as follows: in Section 2, we present the industrial case study and

summarizes our contributions. Section 3 provides a brief review focusing on two categories, namely,

the periodic VRP and consistency VRP problems. In Section 4, provides a formal description and

the necessary notations and develop a mathematical model formulation of the problem. Our solution

method is presented in Section 5. Computational results are provided and analysed in Section 6.

Finally, some conclusions and research directions are outlined in Section 7.

2 Industrial application and contributions

We address a logistic problem faced by a French company that provides a washroom cleaning service

for business clients, including the supply of products such as cleaning gel and toilet paper, among

others.

Currently, the company serves about 6,000 customers over a 12 week cyclical planning horizon. Cus-

tomers are geographically located in the Ile-De-France region (about 12,000 km2 area in France). The

company systematically assigns each customer to the same agent (driver). This is performed so that

each agent becomes efficient at carrying out his/her other work. This may include identifying the

toilets location at the customers’ sites, especially those with several toilets scattered in different levels
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of the same building.

The company has a vehicle fleet of 40 heterogeneous vehicles and each vehicle starts and ends its

route at the depot the time. The maximum duration of each route is imposed by regulations and

cannot be violated. The company offers 14 different products. A customer’s request consists of a

list of products and for each product, a quantity and a delivery frequency over the 12-week planning

horizon. A frequency represents the number of customer visits (product delivery) over the 12 weeks

and is predefined by the value set 1, 2, 3, 6 and 12. Customers usually require more than one product.

For example, a customer wants to have toilet paper delivered once a week (frequency equal to 12)

and hand cleaning gel every two weeks (frequency equal to 6). The service time for a customer visit

consists of the cleaning service time plus the product delivery service time. The objective is to meet

customer demands with the smallest number of vehicles, while respecting the following operational

constraints,

(i) vehicle capacity - the demand of customers on each route must not exceed the capacity of the

vehicle,

(ii) the duration of a route - the total duration of a route must not exceed the duration of a working

shift,

(iii) same day of visit - each customer is visited on the same day of the week (day consistency), and

he/she must be visited no more than once a week, and finally

(iv) same agent for a visit - each customer is visited by the same agent (driver consistency) when a

visit is scheduled for this customer.

To plan the delivery routes to its customers, the company currently uses a basic vehicle routing

software. Due to the high level of customer service requirements and for the company to retain its

competitive advantage, this software does no longer meet all the company’s constraints. This weakness

often results in requiring several modifications that are to be performed by hand. These changes can, in

some circumstances, be very difficult to carry out manually. Besides, this often requires the assistance

of an expert who is familiar with the functioning of the company. The quality of the solution that is

generated, in most cases, falls short of the standard expected by the company. This is particularly

reflected in terms of the total distance travelled and the number of vehicles used. In addition, for

simplicity the management team wishes also to reduce the dependency on the human expertise.
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The purpose of this work is to develop a new optimization tool based on a decomposition approach

and metaheuristic that incorporates all constraints regarding the planning and the routing while

minimizing the number of vehicles used and the total distance travelled. It is worth noting that

minimizing the number of vehicles used every day of the planning horizon needs to take into account

the important aspect of driver consistency with respect to balancing of the workload between days

and weeks. As a by-product, one of the practical goals is also to reduce, or even avoid, the reliance on

manual changes to the solution obtained. This is important as it may cause human errors and extra

unnecessary costs and resources that can be reduced providing an additional competitive edge to the

company.

More generally, this paper addresses a practical variant of a periodic routing problem with driver

and day consistency constraints as described in the industrial case study. It is worth noting that our

approach can be applied not only to this specific industrial application in the cleaning sector, but also

in several other areas including home health care services as investigated by ([2]) where nurses always

visit the same patients at regular periods. The objective is to minimize the number of vehicles used

and the total distance travelled. The problem of this industrial case study falls under the category

known as multi-level combinatorial optimization. This interesting logistical practical problem was

introduced by [38] where a simple two-phase approach was presented. In phase one, the customers

are first assigned to weeks and then to each day of the week. In the second phase, a basic routing

heuristic is used to construct the delivery routes. An initial testing of this basic approach against the

implementation of the company was positively received by Senior Management who invited us to carry

out a deeper study by investigating thoroughly many of the aspects. This study, though is based on

the same application, it has several differences as clearly outlined in the following contributions:

(i) We reexamine and formally introduce the two phase decomposition approach of [38]. In the

first phase, a novel customers clustering approach based on location analysis is introduced for

scheduling customers on weeks and days. In the second phase a more innovative and powerful

routing method is developed. This is demonstrated by the massive reduction in the number of

vehicles (from 5 to 17) when tested against the current implementation of the company. This

will be shown in Section 5.2.

(ii) We transformed our approach into a more flexible and powerful technique that also tackle related

routing problems efficiently. This is adapted accordingly and tested against the state-of-the-art

methods on instances from problems in the literature that are closely related to our case study.
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The results obtained are found to be encouraging including the discovery of new best solutions.

As will be shown in the section 3, to the best of our knowledge, this problem of periodic vehicle

routing with consistent constraints has not been considered in the literature, it is characterized by

the following characteristics: (i) double granularity of the planning horizon, namely, week and day

granularity, (ii) each customer requires several products, and each product has its own frequency of

visits, (iii) the days and weeks of customer visits are decision variables, and (iv) a double consistency,

i.e., agent consistency and day consistency.

3 Literature review

In this section we provide a review on two related routing problems to ours, namely, the periodic

vehicle routing problem and the consistent vehicle routing problem.

3.1 Periodic vehicle routing problem

The periodic vehicle routing problem (PVRP) is a generalization of the classical vehicle routing prob-

lem (VRP) where the planning horizon (e.g., one or several weeks) is composed of multiple periods

(e.g., several days) and customers are visited several times according to either a set of visit alternatives

based on the frequency of the requested products/services or a fixed set of periods specified by the

customer. For example, if the planning horizon is one week (5 working days), and either the customer

fixes the number of visits, e.g., needs to be visited twice a week with at least two days between two

consecutive visits, then the possible pairs of visit days would be (1, 4), (1, 5) and (2, 5) or the customer

fixes the periods of visits e.g., days 1 and 4. The problem is to determine the visiting option for each

customer simultaneously with the routing decision while minimizing the total cost over the planning

horizon.

The PVRP has attracted a considerable amount of interest among researchers and practitioners

[57]. This is mainly due to the wide range of real-world applications that fit into this class of routing.

Among the applications, we can cite a few such as waste and garbage collection ([56], [37]), animal

waste ([15]), home health care services ([2]), delivery of blood products to hospitals ([25]), retail stock

supply ([43]), maintenance service ([8]), perishable products ([21]), and maritime surveillance [18].

Other real life applications are reported in [10].

The problem was introduced by [7] where the authors studied the routing problem related to mu-

nicipal waste collection. They considered a one week planning horizon with the objective of minimizing
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both the number of used vehicles and the total travel time. Constructive heuristics were developed to

solve independent VRPs for each day of the period. [48] proposed a formal definition of the problem

and developed three cluster-based constructive methods with the aim to minimize the total distance

travelled per week. In that study, the number of vehicles was considered given. [14] provided the first

mathematical formulation for the PVRP and proposed a decomposition approach where customers

are first assigned to days followed by solving a VRP for each day.

There is a lack of research on exact methods for the PVRP compared to its VRP counterpart.

A special case of the PVRP is considered in [36] where a branch-and-cut method is developed. The

objective is to minimize the total distance for a two-period travelling salesman problem in which some

customers are visited in both periods while the others are visited in either one of the two periods.

[20] studied a variant of the PVRP in which the service frequency is also a decision variable with the

objective of maximizing service benefits and minimizing routing costs. They proposed an interesting

hybrid solution method based on Lagrangian relaxation and a branch-and-bound procedure. [40] put

forward an exact method for the PVRP with the objective of balancing the workload across vehicles

and spacial compactness of the routes. The authors developed a Dantzig-Wolfe reformulation and a

column generation approach to solve the relaxed problem. [5] proposed a new formulation in generating

strong lower bounds for the problem which are then used to restrict the set of routes without affecting

optimality. [46] addresses the periodic vehicle routing problem with time windows (PVRPTW). An

exact branch-and-price-and-cut algorithm is proposed in which the pricing problems are elementary

shortest-path problems with resource constraints. In [26] authors address a PVRP in which grocery

retailer are supplied from a distribution center according to repetitive delivery patterns. The authors

model the problem as a mixed integer program, then they propose a sequential heuristic procedure

that construct a set of retailers clusters first, then in second step assign delivery pattern to customer

and routes of vehicles. A numerical study shows that operational costs is significantly reduced. [3]

introduces the flexible PVRP where each customer has a total demand that has to be satisfied by

the end of the planning horizon and the quantity delivered at each visit is a decision variable and

should not exceed the customer storage capacity. They propose a mathematical formulation for the

problem, together with some valid inequalities. [4] extends the work of [3] and proposes a two-phase

matheuristic approach, where an initial solution is built using a MILP model in phase one, followed by

a Tabu Search in the second phase. It seems that no contribution to the exact solution of the classical

PVRP has been achieved after [5]. The main works in the literature has so far been focused on the
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study of new variants inspired by applications [39] instead.

Meta-heuristics are the most adopted approaches for solving the PVRP and its variants. For

instance, [49] presented a solution method that consists of an initial route design, followed by three

different improvement phases aimed at escaping from the local optima. [16] presented a tabu search

method for solving the periodic multi-depot vehicle routing problem (MDVRP) in which two types

of neighborhood operators are proposed. [1] considered a periodic pick-up of raw materials for a

manufacturer of automobile parts. They proposed a Scatter Search based on a two-phase approach

for which the first phase assigns orders to days and the second constructs routes for each day. [25] put

forward a variable neighborhood search (VNS) algorithm with the solution acceptance being based on

simulated annealing, [58] developed a hybrid genetic algorithm (GA) for the PVRP, and [62] proposed

an adaptive large neighborhood search (ALNS). Others recent works have been mostly on variants

of the basic PVRP including the consideration of time windows (PVRPTW), where customers are

allowed to be served within a specific time interval of each period. For instance, [41] proposed a

hybrid genetic algorithm, and [60] developed a heuristic algorithm based on improved ant colony

optimization (IACO) enhanced by simulated annealing (SA). Another variant that has mostly been

considered in the literature is the multi-depot PVRP in which the customers are allowed to be served

from multiple depots. Here, [12] developed a reactive greedy randomized adaptive search procedure,

and [13] proposed a hybrid genetic algorithm. Interesting and informative surveys on periodic vehicle

routing problems can be found in [10] and [39].

3.2 Consistent vehicle routing problem

In recent years, Vehicle Routing Problems (VRPs) with consistency features have received significant

attention due to their practical importance. Three types of consistency are usually considered in the

literature [59]; (i) driver consistency, (ii) time consistency and (iii) quantity-delivered consistency.

Driver consistency imposes that the same driver visits the same customers on each day they require

service over a planning horizon. Time consistency on the other hand requires visits to the same

customers at approximately the same time on each day they require service. Finally, the quantity-

delivered consistency constrains delivery quantities within lower and upper bounds at each visit to the

same customer while satisfying the total quantity at the end of the planning horizon. The consistency

constraints (driver and time consistencies) are particularly important in real applications. For example,

in home healthcare service [47] where the operator (driver) knows the needs and preference of their
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patients (customers).

The consistency constraints (driver and time consistencies) were formally introduced in [24]. They

developed a two-stage algorithm where the first stage constructs a template routes that consists only

of those customers that require several visits followed by the generation of the daily schedules in stage

two. [55] adopts the same template routes principle to propose a two-level tabu search algorithm, in

which template routes are constructed at the high level, and then the daily schedules are optimised at

the low tabu search level. In [30] a template-based Adaptive Large Neighbourhood Search algorithm

(ALNS) is developed to solve the driver and time consistent periodic VRP problem. [61] and [31]

also solve the same problem but using a variable neighborhood search (VNS) algorithm instead. In

[53] a hierarchical Tabu Search framework is proposed in which an upper-level Tabu Search method is

combined with variable neighbourhood descent algorithm. [38] considered a PVRP problem with day

visits and driver consistencies. A heuristic decomposition approach is proposed to solve the problem

with the objective of minimizing the number of vehicles and total cost. [19] considered the time

consistency only, in which the day is discretized in time windows and imposes consistency by bounding

the number of different time segments during which a customer is served. Here, a large neighborhood

search heuristic is proposed to solve the PVRP problem. Exact approaches are also developed in

the literature to the consistent periodic VRP problem. For example, [11] tackled a consistent VRP

in a pharmaceutical distribution company, with multiple daily deliveries. The authors developed an

interesting decomposition algorithm based on mathematical programming model. Other works include

[22] who proposed an exact method based on column generation, and [42]who constructed an integer

linear programming formulation. In the latter paper, several useful families of valid inequalities are

constructed and an exact branch-and-cut algorithm is then developed to solve the problem. Other

extensions for the consistent periodic VRP were also considered in the literature such as including

time windows of visits and flexible driver consistency. For instance, [52] focused on maximizing the

number of times a unique driver visits each customer and in both [9] and [34] a limit of the number of

different drivers serving any customer was imposed. In [35] a time and collaborative consistency were

considered where carriers can exchange customers who have to be serviced on a regular basis, and in

[54] driver consistency PVRP with profit was considered. Table 1 summarizes some of the published

work in this area.

In this study, we will be extending and enhancing the work of [38] mentioned in Section 1, and also

comparing our results against those recently produced by [42] and [22] to assess the performance of
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the proposed algorithm.

Table 1 – Comparison of our paper with with related works in the literature.

Paper Periods of Types of visits Consistency Others Constraints Objective (Min) Methods
the planing Constraints

[24] Days Known and fixed Driver consist. Vehicle capacity limit, Total travel time Record-to-Record
Arrival time consist. Travel time limit

[55] Days Known and fixed Driver consist. Vehicle capacity limit, Total travel time Template-based
Arrival time consist. Travel time limit Tabu search (TTS)

[30] Days Known and fixed Driver consist. Vehicle capacity limit, Total travel time Template-based ALNS
Arrival time consist. Travel time limit

[29] Days Known and fixed Limited number Vehicle capacity limit, Total travel time and Large neighbourhood
of drivers Travel time limit Arrival time difference search (ALNS)

[19] Days Known and fixed Visiting time consist. Vehicle capacity limit Total travel time Large neighbourhood
search (LNS)

[61] Days Known and fixed Driver consist. Vehicle capacity limit, Total travel time Variable neighbourhood
Arrival time consist. Travel time limit search (VNS)

[22] Days Known and fixed Driver consist. Vehicle capacity limit, Total travel time Exact method
Travel time limit (column generation)

[42] Days Decision variables Driver consist. Limited number of Total travel cost Exact method
from a set of patterns customers per route (branch-and-cut)

[54] Days Known and fixed Driver consist Vehicle capacity limit, Maximize the net Adaptive Tabu Search
Arrival time consist. Travel time limit profit

[31] Days Decision variables Driver consist. Vehicle capacity limit, Total travel distance Variable neighborhood
from a set of patterns Travel time limit search (VNS)

[53] Days Known and fixed Driver consist. Heterogeneous vehicles, Total travel cost Hierarchical Tabu
Compatibility vehicle-customer, Search (HTS)
Travel time limit Search (HTS)

This paper Weeks and Decision variables Driver consist. Heterogeneous vehicles, Total travel distance and Decomposition method
Days from a set of patterns Day consist. Vehicle capacity limit, number of vehicles (MIP and LNS)

Travel time limit,
Time windows,
Multi-products demand
per customer

4 Problem description, notations and formulation

4.1 Problem description and notations

The problem is defined as follows. Let G = (V,A) be a network with V = {0, . . . , n} a set of n + 1

nodes and A is a set of arcs. The customers to be visited are represented by nodes 1, . . . , n, and node

0 is the depot. For each arc (u, v) ∈ A, we define a travel time tuv and a travel distance duv. The

planning horizon consists of the set W = {1, . . . ,W} weeks and each week contains D = {1, . . . , D} of

days. A customer is visited during this time horizon according to frequencies that depend on the type

of requested products. We denote by P the set of types of products available at the depot. A visit to

a customer involves delivering a set of products as well as an on-site activity such as toilet cleaning.

Each customer i is characterized by a time window [ei, li] of visits and a list Pi of requested products

with Pi ⊆ P . For each product j ∈ Pi, the frequency fij of visits, the service time sij and the quantity

qij requested at each visit during the planning period are known. The frequency fij represents the

number of times customer i receives product j over the planning horizon of W weeks. Furthermore,

a customer is always visited on the same day of the week defining the day consistency, and by the

same agent representing the driver consistency. In our industrial case, the possible frequencies for
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each product are taken from the set {1, 2, 3, 6, 12} and the planning horizon W = 12. For example, if

fij = 3, customer i receives product j three times during the planning horizon and the visits must be

spread and well-balanced over the W weeks. Thus, for each frequency fij , we define a set Rij of all

possible combinations of weeks in the planning period, we call them patterns and only one pattern is

selected from Rij . For example, if fij = 3 then the set of possible delivery patterns of product j is

Rij = {(1, 5, 9); (2, 6, 10); (3, 7, 11); (4, 8, 12)} and for instance choosing the pattern (1, 5, 9) means that

product j is delivered to customer i on weeks 1, 5 and 9. A set M = {1, . . . ,m} of m heterogeneous

vehicles are available, and each vehicle k has a capacity Ck, k ∈ M, and the same maximum service

duration T , where the service duration includes the total service times and the total travel times. The

aim is to provide a visiting schedule for each customer and a set of routes for each day of the planning

horizon. This is achieved by minimizing the number of vehicles used and minimizing the total travel

distance. An illustrative example is given in the following section.

4.2 Illustrative example

To illustrate the problem, let consider a PVRP with a simplified planing horizon of 6 weeks (W = 6)

where each week consists of one day delivery period. As shown in Figure 1, there are two available

vehicles to handle demands of six customers for two products P1 and P2. For each product, visit

patterns for clients are given in Table 2. In this example, vehicle one is responsible for delivering

demands of customers 1, 2 and 3, while vehicle two, is in charge of customers 4, 5 and 6. Figure

1 illustrates a schematic of a transportation plan when choosing patterns are represented in bold in

Table 2. Figure 1 shows that agent consistency is respected as each customer is visited by the same

agent when a visit is scheduled.

Table 2 – Illustrative example of visiting patterns of customers

customers Patterns of P1 Patterns of P2

1 {(1,4);(2,5);(3,6)} ∅
2 {(1,3,5);(2,4,6)} {(1,4);(2,5);(3,6)}
3 ∅ {(1;2;3;4;5;6)}
4 {(1;2;3;4;5;6)} ∅
5 {(1,4);(2,5);(3,6)} {(1,3,5); (2,4,6)}
6 ∅ {(1,3,5);(2,4,6)}
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Figure 1 – Illustrative example of transportation plan corresponding to patterns in bold in Table 2.

4.3 Mathematical formulation

This section formulates the problem using 5 sets of variables as follows: the binary variable zijr which

is equal to 1 if pattern r of set Rij is selected, 0 otherwise; the binary variable viw specifies whether

or not customer i is visited during week w of the planning horizon; the binary variable yikw specifies

whether or not the customer i is visited by vehicle (agent) k during week w; the binary variable hikdw

specifies whether or not the customer i is visited by vehicle (agent) k during day d of week w; the

binary variable xijkdw specifies whether or not the customer j is visited after customer i by vehicle k

during day d of week w, the binary variable ukdw specifies whether or not the vehicle k is used during

the day d of week w. Continuous variables lidw denote the arrival time at customer i on day d of week

w. Finally, we use the parameter aijwr which is equal to 1 if week w is within pattern r of set Rij .

Minimize
∑
i∈V

∑
j∈V

∑
k∈K

∑
d∈D

∑
w∈W

tijxijkdw +
∑
k∈K

∑
d∈D

∑
w∈W

ukdw (1)

Subject to ∑
r∈Rij

zijr = 1 ∀i ∈ V \ {0}, ∀j ∈ Pi (2)

aijwrzijr ≤ viw ∀i ∈ V \ {0}, ∀j ∈ Pi, ∀w ∈ W (3)∑
j∈Pi

aijwrzijr ≥ viw ∀i ∈ V \ {0}, ∀w ∈ W (4)

∑
k∈M

yikw = viw ∀i ∈ V \ {0}, ∀w ∈ W (5)
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y0kw = 1 ∀k ∈M, ∀w ∈ W (6)

hikdw ≤ ukdw ∀i ∈ V ∀k ∈M, ∀d ∈ D, ∀w ∈ W (7)∑
d∈M

hikdw = yikw ∀i ∈ V \ {0}, ∀k ∈M, ∀w ∈ W (8)

∑
j∈V

xijkdw =
∑
j∈V

xjikdw = hikdw ∀i ∈ V \ {0}, ∀k ∈M, ∀d ∈ D, ∀wW (9)

∑
i∈V

∑
j∈V

tijxijkdw +
∑
i∈V

sihikdw ≤ T ∀k ∈M, ∀d ∈ D, ∀w ∈ W (10)

∑
i∈S

∑
j∈S

xijkdw ≤ |S| − 1 ∀k ∈M, ∀d ∈ D, ∀w ∈ W ∀S ⊆ N, |S| ≥ 2 (11)

∑
i∈V

∑
j∈Pi

aijrwqijhikdw ≤ Qk ∀k ∈M, ∀d ∈ D, ∀w ∈ W (12)

M(hikdw − 1) + hikdw +

W∑
u=1:u6=w

D∑
l=1:l 6=d

hiklu ≤ yikw ∀i ∈ V \ {0}, ∀k ∈M, ∀w ∈ W (13)

lidw + (si + tij)xijkdw− (1−xijkdw)T ≤ ljdw ∀i, j ∈ V \{0}, ∀k ∈M, ∀d ∈ D, ∀w ∈ W (14)

lidw + (si + tij)xijkdw + (1−xijkdw)T ≥ ljdw ∀i, j ∈ V \{0}, ∀k ∈M, ∀d ∈ D, ∀w ∈ W (15)

lidw + si + ti0 ≤ T ∀i ∈ V \ {0}, ∀d ∈ D, ∀w ∈ W (16)

ei ≤ lidw ≤ li ∀i ∈ V \ {0}, ∀d ∈ D, ∀w ∈ W (17)

xijkdw ∈ {0, 1} ∀i, j ∈ V ∀k ∈ K, ∀d ∈ D, ∀w ∈ W (18)

hikdw ∈ {0, 1} ∀i ∈ V ∀k ∈ K, ∀d ∈ D, ∀w ∈ W (19)

yikw ∈ {0, 1} ∀i ∈ V ∀k ∈ K, ∀w ∈ W (20)

ukdw ∈ {0, 1} ∀k ∈ K, ∀d ∈ D, ∀w ∈ W (21)

viw ∈ {0, 1} ∀i ∈ V ∀w ∈ W (22)

zijr ∈ {0, 1} ∀i ∈ V ∀j ∈ Pi ∀r ∈ Rij (23)

lidw ≥ 0 ∀i ∈ V \ {0}, ∀d ∈ D, ∀w ∈ W (24)

The objective function (1) minimizes the total travel distance and the number of vehicles used. Con-

straints (2) make sure that exactly one pattern is selected for every product of customers. Constraints

(3) ensure that a customer is visited on weeks of the selected pattern. Constraints (4) ensure that a

customer is not visited on weeks that are not in the selected pattern. Constraints (5) guarantee that

each customer is serviced by exactly one vehicle on each week he/she requires service. Constraints (6)
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ensure that each route starts from the depot. Constraints (7) ensure that each customer is serviced

by a used vehicle. Constraints (8) guarantee that each customer is serviced only on one day of a week

he/she requires service. Constraints (9) are flow conservation constraints. Constraints (10) keep the

number of driving hours for every vehicle the daily restrictions. Constraints (11) are subtour elimina-

tion constraints. Constraints (12) limit the vehicle capacity. Constraints (13) ensure the driver and

the day consistency. Constraints (14) and (15) set the arrival times at the customers. Constraints (16)

enforce that vehicles return to the depot in time. Constraints (17) ensure the Time window feasibility.

Constraints (18) - (24) define the domains of the decision variables.

The problem is NP hard as it is a generalization of the classical VRP problem. One way forward is

to tackle this challenging problem using a decomposition based approach that combines both mathe-

matical models as well as metaheuristics as will be shown in the rest of the paper.

5 Solution methods

Since the considered routing problem is NP-hard as it is an extension of the VRP, its resolution is made

even more complex given the large size of the real application, which often exceeds 6,000 customers.

In other words, it is not suitable to solve the problem optimally with an exact method. In this study,

we adopt a decomposition method which is a practical method for the PVRP problem, widely used

in the literature [27], [15], [33]. Our decomposition method is similar to the one initiated in [38]. The

method consists of two phases, namely, the planning phase and the routing phase. In the planning

phase, customers are assigned to weeks based on their requested products and their frequencies. Then,

customers are assigned to the days of the weeks. The primary goal in the planning phase is to balance

the workload of the week’s days. The routing phase consists in constructing daily routes over the

planning horizon. The aim here is to minimize the number of vehicles used and the total distance

travelled by the vehicles while respecting driver consistency constraints.

In [38] a heuristic method based on a day-pattern modeling was developed. This method proceeds in

three steps: (i) construct a set of day-patterns where each day-pattern corresponds to the same day of

the week over the 12 weeks of the planning horizon. For example, the first day-pattern corresponds to

the 12 Mondays of the planning horizon. A list of customers is associated to each day-pattern, and for

each customer a set of requested products is provided. This set contains all products requested over

the 12 corresponding days of the planning horizon, and each product is requested with an estimated

demand corresponding to the average value of the quantities requested over the 12 corresponding days

13



of the planning horizon; (ii) generate optimized routes for each day-pattern using a local search, and

finally (iii) schedule and adjust the obtained routes over the days of the planning horizon by removing

from each route those customers for which visits are not planned.

This section uses the planning optimization phase for the assignment of customers to weeks and days

while introducing the following three aspects: (a) the customer assignment over the weeks and days of

the planning horizon takes into account the geographical position of the customers, i.e. the clustering

of the customers is integrated in the assignment phase, (b) a novel approach for the routing phase

based on the LNS methodology is developed and (c), instead of estimating the customer demand with

the average quantity, which can be too simplistic and in some cases even misleading, an effective data

structure is designed instead. This powerful scheme uses a requests vector which considers, in an

intelligent way, the quantities needed by customers for each week in the planning horizon.

5.1 The planning phase

The objective of the planning phase is to assign customers to weeks based on their respective geo-

graphical locations, requested products and their frequencies which is then followed by the assignment

of customers to the days of the weeks. The goal of this phase is to balance the drivers workload during

the week’s days and thus reduce the number of vehicles used.

5.1.1 The week planning model

The week planning model focuses on the problem of assigning customers to weeks. The objective is

to balance the workload over the W weeks of the planning horizon while satisfying the requests of

customers and reducing the number of visits for each customer over the planning horizon.

Given a set of customers V , and a set P of products, each customer i requests a subset of products

Pi. Also, for each product j ∈ Pi there is an associated quantity qij , a service time sij and a delivery

frequency fij over the W weeks of the planning horizon. As described in Section 4, the value fij

defines the set Sij of possible delivery scenarios. It is worth noting that choosing a pattern for a

product j is equivalent to selecting the week v1 of the first visit, and the kth visit occurs in week

vk = v1 + (k − 1) W
fij

, k = 1, . . . , fij . Since each customer requests several products and each product

has its own frequency of visits, it is therefore convenient to choose appropriate patterns that reduce

the number of visits. In other words, we choose the patterns for the products so that the weeks of

visits for the different products coincide as much as possible.

Let define rij = W
fij

, ∀i ∈ V , j ∈ Pi, then a solution of the week planning problem consists in
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selecting, for each product j with frequency fij , the first visit in the set {1, 2, . . . , rij}. Furthermore,

we define the frequency fi of customer i as the maximum of the frequencies of the products requested

by customer i, and the index of the product requested by i with the frequency fi as gi. Let hijgi be the

greatest common divisor between rigi and rij , ∀j ∈ Pi and ∀i ∈ V . Finally, we introduce the notation

u[s] ≡ v[t] which means that (u mod s) = (v mod t) that will be useful in the description of the

mathematical model below.

In order to consider the location of customers in the assignment of customers to weeks, we proceed

to a partition of the customers into a K clusters set using a fast implementation of k-medoids clus-

tering algorithm ([51]) before assigning scenario’s to customers. This clustering algorithm partitions

the customers into K clusters with the objective of minimizing the squared distances between the

customers in a cluster and its center which is defined as the medoid of that cluster which for simplicity

is one of the customer sites. The algorithm starts by choosing K random customer locations, assign

the other customers to these centers and compute the sum of the squared distances. The algorithm

improves the clustering by considering all possible changes of medoids with non-medoids, which gives

K(n − K) candidate for swapping. The best change that reduces the sum of squared distances the

most is then chosen. This process is repeated until no further improvements are found. Note that

this simple scheme is also well known in the location analysis literature particularly in the p-median

problem. The number of clusters K used in our partition will be discussed in the experimentation

section. Let uil be a parameter equal to 1 if customer i is in cluster l, l = 1, . . . ,K.

In the following, we use a mixed integer linear program (MIP1) to model the weeks planning

problem which takes clusters into account when assigning customers to weeks. The binary variable

xijw specifies whether or not the delivery of product j of customer i is performed during week w and

the binary variable ylw specifies whether or not the customer of cluster l is visited during week w. The
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objective is to minimize the sum of clusters visited over the the W weeks.

(MIP1) min
∑
l∈K

∑
w∈W

ylw∑
i∈V

∑
j∈Pi

uilxijw ≤Mylw ∀l ∈ K, ∀w ∈ W (25)

∑
i∈V

∑
j∈Pi

sijxijw ≤ L∗ ∀w ∈ W (26)

∑
i∈V

∑
j∈Pi

qijxi,j,w ≤ C ∀w ∈ W (27)

rij∑
w=1

xijw = 1 ∀i ∈ V, ∀j ∈ Pi (28)

xijw = xij(w+k.rij) ∀i ∈ V, ∀j ∈ Pi, w = 1, . . . , rij ,

k = 1, . . . , fij − 1 (29)

xigiw ≤
∑

u∈Hw

xiju ∀i ∈ V, ∀j ∈ Pi, w = 1, . . . , rij ,

Hw = {u = 1, . . . , rij : u[hijgi ] ≡ w[hijgi ]} (30)

xijw ∈ {0, 1} i ∈ V, j ∈ Pi, w = 1, . . .W (31)

Constraints (25) ensure that no customer of a cluster is visited if this cluster is not selected. Constraints

(26) limits the total workload of each week to L∗, where the value of L∗ is obtained by the mixed integer

linear program (MIP2) described below. Constraints (27) ensure that vehicles weekly capacity are not

exceeded. Constraints (28) show that exactly one week is chosen for the first visit for each product

and each customer and so that the customer is visited according to the frequency of the product in the

following weeks as stated in Constraints (29). Constraints (30) restrict the number of visits to each

customer, depending on the requested products and their frequencies. Constraints (31) refer to the

binary variables. For instance, for a given customer who requests two products, say p1 and p2 with

frequencies 3 and 2, respectively, over the 12 weeks planning period, the first visit of the customer

for product p1 takes its value in the set {1, 2, 3, 4} while the first visit of the customer for product p2

takes its value in the set {1, 2, 3, 4, 5, 6}. Thus, if the MIP chooses week 1 for p1 then, the first visit

for the product p2 is restricted to the set H1 = {1, 3, 5} which allows to restrict the number of visits

to the customer for the products p1 and p2, see Figure 2. Note that some combinations of frequencies

mean that the number of visits cannot be reduced. For example, if p1 and p2 have frequencies 4 and

3, respectively, then the first visit for product p1 takes its values in the set {1, 2, 3, 4} while that of p2

takes its values in the set {1, 2, 3}. If week 1 is chosen for p1, then set of possible visits for p2 remains

{1, 2, 3}, see Figure 3.
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Figure 2 – Example of delivery options for p1 with a reduction of the possible delivery options for p2

Figure 3 – Example of delivery options for p1 without a reduction of the possible delivery options for
p2

In order to fix the value of L∗ in constraints (26) we solve the same week planning problem

described above without considering the locations of customers. More precisely, we solve the following

mixed integer linear problem (MIP2).

(MIP2) L∗ = min L

s.t.
∑
i∈V

∑
j∈Pi

sijxijw ≤ L ∀w ∈ W (32)

(27)− (31)

We solve both (MIP1) and (MIP2) problems optimally using the optimization solver. Thus the

complete schema of the planning model is given by the Algorithm 1.

Algorithm 1: Week planning approach

Result: assignment of customers to weeks
1 Apply the fast k-medoids clustering algorithm to partition clients into K clusters.
2 Solve the (MIP2) problem and obtain the value of L∗

3 Solve the (MIP1) problem and obtain the assignement of customers to weeks

5.1.2 The days planning model

The second step of the planning phase focuses on the problem of assigning the customers to days of

the week. Since the day consistency constraint must be satisfied, this second step ensures that each
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customer is assigned to the same day of the week over all weeks of the planning horizon once the

customer’s visits are scheduled. The objective of the days planning model is to balance the workload

between days of the week.

Given a set of customer Nw assigned to week w, let si,w and Qi,w be the service time and the

demand quantity of customer i during week w, respectively, obtained by solving the week planning

model. Let Nw,f be the set of customers assigned to week w having a frequency equals to f . In the

following we use a mixed integer linear program to model the days planning problem. The decision

variable T represents the maximum service time of all customers during each day of the planning

horizon and the binary variable xid specifies whether or not customer i is visited on day d. The

objective of the daily planning model is to balance the workload measured in terms working time

between the days of the week.

min T

T ≥
∑

i∈Nw

siwxid ∀w ∈ W, ∀d ∈ D (33)

C ≥
∑

i∈Nw

Qiwxid ∀w ∈ W, ∀d ∈ D (34)∑
d∈D

xid = 1 ∀i ∈ C (35)

∑
i∈Nwf

xid ≤
⌈
|Nwf |
D

⌉
∀w ∈ D, ∀d ∈ D, ∀f (36)

xid ∈ {0, 1} ∀i ∈ C, ∀d ∈ D (37)

Constraints (33) restrict the total workload of each day. Constraints (34) guarantee that each

vehicle daily capacity C is not exceeded. Constraints (35) ensure that exactly one day is selected for

every customer. Constraints (36) balance different frequencies of the customers between days of the

week and constraints (37) refer to the binary variables. Note that constraints (36) are not imposed by

the industrial case, but they allow balancing the distribution of customers with the same frequency

on the days of the week. This is useful for balancing the routes in the second phase of the solution

approach.

5.2 The routing phase

After assigning all customers to the days of the planning horizon using the week and the days planning

models (Sections 5.1.1 and 5.1.2) respectively, we now solve for each day of the planning horizon a
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variant of the VRP. More specifically, in addition to the classical VRP constraints such as vehicle

capacities, time windows of visits and the limited driving hours per vehicle per day, there is the

requirement that a customer visits need to be performed by the same driver (driver consistency). This

is an important constraint which imposes that solving the VRP for each day of the planning horizon

cannot be performed independently. The objective of the routing step is therefore to build optimized

routes for each day of the planning horizon while guaranteeing that customers are visited by the same

vehicle. In other words, this problem is equivalent to selecting a subset of customers to be visited by

each vehicle throughout the planning horizon, and for each subset, the route must be optimized in

terms of distance. The main challenge is to balance the routes. This is achieved by avoiding routes

such that for some weeks a given route is overloaded where the number of visits is much higher while

in the other weeks the same route is under-loaded requiring a relatively much lower number of visits.

In this section we develop an LNS meta-heuristic to solve the routing problem considering the

effective quantities requested by customers for each week in the planning horizon. In fact, as we have

the same set of customers for each day of the week over all weeks of the planning horizon, we will

focus here on solving D vehicle routing problems where each one is related to the same day of the

week over the W weeks of the planning horizon. In the following, we present our method on a given

day d of the week where VRP(d) refers to solving the VRP on day d over W weeks of the planning

horizon. Note that the method remains valid on the other days, since each customer is visited at

most once a week.

For each individual problem such as the VRP(d), a heterogeneous fleet of vehicles is available

and each vehicle k has a vector capacity (Ck, Ck, . . . , Ck) of size W where the lth component of the

vector corresponds the lth week of the planning horizon. Let Sd be a set of customers to be served

on day d over W weeks of the planning horizon. For each customer i, i ∈ Sd, we define a vector of

requested products-quantities P̃d,i with P̃d,i = (P̃ 1
d,i, . . . , P̃

W
d,i ), where P̃ l

d,i is a list of couples (pd,i; qd,i)

of all products and quantities requested by customer i during week l. When a product is not required

during a given week l we set its requested quantity to zero and when a customer is not visited in that

week we also set its quantities of its requested products to zero. Thus in the VRP(d) problem, a route

is feasible if the time window of each customer is satisfied and the quantities requested by customers
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do not exceed the capacity of the vehicles. In other words, for a given route R we have∑
i∈R

∑
pdi∈P̃ l

di

qdi ≤ Ck, l = 1, . . . ,W. (38)

The VRP(d) problem can be seen as a classic VRP problem with vectors of customer demands.

To solve this problem we develop a LNS method where each customer is represented by a vector

of demands. Such a method provides us with master-routes that are feasible for redday d of each

week of the planning horizon. This is then followed by a post-optimization for each week, where

customers with zero demands are then removed from each master-route, and the master-route

is re-optimized again as a TSP problem. Our LNS method constructs master-routes of VRP(d)

with the objective of minimizing the number of used vehicles and the total distance traveled. The

classical LNS algorithm is an iterative process where, at each iteration, part of the current solution

is destroyed and then reconstructed in order to find a better solution. The destruction step consists

of removing some nodes from the existing routes using removal operators to make up the unassigned

set. Then the construction step, also known as the building or the repair step, inserts the nodes from

the unassigned set into the routes of the partial solution using the repair operators. From a set of

destruction and repair operators, a random selection of these operators is applied in each phase based

on a wheel selection mechanism. This succession of destroy and repair steps is carried out within a

simulated annealing (SA) framework to manage the acceptance of the new solutions. An overview

of the proposed LNS approach is described in Algorithm 2. For more information on heuristics and

metaheuristics in general and for LNS in particular see [50].

Algorithm 2: LNS outline

Result: best feasible solution sb

1 initialization: sb ← s,
2 while stop criterion is not met do
3 selectOperators(Ω−,Ω+);
4 st ← repair(destroy(s));
5 if accept(st, s) then
6 sb ← st;
7 end

8 if obj(st) < obj(sb) then
9 sb ← st

10 end

11 end

In the following we describe the construction and destruction operators used in our method.

a. Destruction operators. These operators aim to disconnect q nodes from the current solution, with
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q ∈ [n · ξmin, n · ξmax], where n is the number of nodes in the current solution, and ξmin and ξmax are

parameters. We adapt a removal strategy that combines randomness and some form of guidance. In

our study, a Random-Removal, a Cluster-Removal, and a Route-Removal operators are used.

• Random-Removal. Select q nodes randomly and remove them from the current solution.

• Cluster-Removal. Here, a large set of the closest nodes in terms of distance is disconnected

instead. The cluster removal process which was introduced in [45] begins with a random selection

of a route, followed by a clustering step. The latter step consists in partitioning the nodes of the

current route into two clusters using a modified Kruskal’s algorithm for the minimum spanning

tree problem. One of the two clusters is randomly selected, its nodes disconnected and then

added to the unassigned set. The process is repeated until q nodes are removed.

• Routes-Removal. Aims to eliminate one or more complete routes. This avoids the multi-step

setting of upper bounds for the number of vehicles used as adopted in some LNS implementations

that minimize the number of vehicles (e.g. [44]). This operator first selects a route randomly,

then removes all nodes contained in the route and adds them to the list of nodes to be inserted.

The procedure is repeated until at least q nodes are deleted.

b. Construction operators. These operators aim to insert into the current solution the nodes that

either have been deleted and placed in an unassigned set or could not be inserted in the previous

solution. We refer this set of nodes to R. In this study, we use both the Best-Insertion and the

Regret-Insertion operators.

• Best-Insertion. From the set R of nodes, the one with the lowest insertion cost considering all

possible insertion is performed. The process is repeated till R is empty or none nodes of R can

be inserted.

• Regret-Insertion. At each iteration, a node i of R with the highest value
∑k

l=1(fi,l − fi,1) is

selected and inserted in its best position, where fi,l is the insertion cost of node i in its lth best

position over all routes.

At each iteration of the LNS method, the quality of the solution is evaluated using three metrics:

(i) the total distance traveled by all vehicles in the current solution, (ii) the number of vehicles required

and (iii) the number of unassigned customers. These three metrics are weighted by coefficients α, β

and γ respectively.
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The master-routes constructed by the LNS method allow the same customers to be served by

the same vehicle. However, when scheduling the master-routes on the days of the planning horizon,

some customers in these routes may not necessarily be scheduled for a visit in certain weeks. In this

case, those unplanned customers are removed from these master-routes resulting in re-optimizing these

routes again. Here, the intra-route re-optimization problem reduces to the TSP problem [6]. In this

step, for simplicity, we use the Lin-Kernighan heuristic ([32]) though other more powerful heuristics

could also be adopted instead.

6 Experimental results

The proposed algorithms are implemented in Java and the mathematical models of the first and

the second stages of our approach are solved using CPLEX 12.8. In the following, we present our

experimental results on (i) the industrial instances, then followed by (ii) benchmarks from the literature

on instances that are closely related to the current logistical problem.

6.1 Industrial instance

In the following, detailed characteristics of the industrial instance are provided and experimental

results are analysed. The results of our computational experiments are discussed in terms of the

objective set at each step of our approach, while the final result is compared against the solution

already used by the company. Given that the industrial application does not impose limitations

on the calculation time used, for consistency the computations time are therefore not reported in

this experiment. However, the running times of the different phases of our approach are given for

information only.

6.1.1 Instance description

The company covers 6062 customers in the Ile-de-France region (France). The planning horizon is

12 weeks, with 5 working days in each week. The company provides 14 types of products, and these

products are requested with frequencies 1, 2, 3, 6 and 12. Each customer requests a subset of products

and the frequency of delivery for each product over the planning horizon. In total, there are 69951

product-customers-frequencies requests which corresponds on average to 11.54 requests per customer.

The service times of customers is in the range [2, 328] minutes. A summary of the distribution of

customers by the number of requested products and by the maximum frequency of visits are given in

Tables 3 and 4, respectively.
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The company uses 40 vehicles of 12 different capacity types (payloads), ranging from 500 kg to 1600

kg. The maximum driving and servicing time is limited to 7 hours and 30 minutes per day for each

driver. Note that in the initial experiment conducted in Messaoudi et al. [38], the maximum routing

time was set to 7 hours for each vehicle (agent). However, the reorganization of the company’s internal

logistics allowed 30 additional minutes of working shift to be used in the routing phase. Therefore,

for consistency we will also compare the additional gain obtained by the extension of the maximum

route duration.

Table 3 – Distribution of customers by the number of requested products

Products 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Customers 1400 545 1235 1103 1109 328 182 79 43 25 9 1 3 0

Table 4 – Distribution of customers by their maximum requested frequencies

Frequency 1 2 3 6 12

Customers 247 369 3403 1259 784

6.1.2 Week planning results

The mixed integer linear programs of the week planning model defined in Algorithm 1 (Section 5.1.1)

are optimally solved in a very short time, less than 2 minutes. MIP1 is solved with the values of K

in the set A = {60, 84, 120}. These values are chosen such that on average there are between 1 and

2 clusters per day during the 12 weeks. The results of the three values of K are presented in Table

5. For completeness, we also provide at the end of this table the results of the week planning without

clustering which are originally produced by [38]. Besides, we also report in Table 5, for each week of

the time horizon, the total service time of customers in hours (TST), the number of customers assigned

to that week (Nb-C) and the maximum travel distance between two customers (MD) in kilometres.

The results clearly show a well balanced total service time between the weeks for all values of K, with

a slight advantage for K = 60 followed by K = 120. For each value of K, the maximum difference

between the busiest week and the lightest week are found to be 10 minutes for CL-60, 15 minutes for

CL-120, 18 minutes for CL-120 and 26 minutes for Messaoudi et al. [38]. However, we can also observe

that the number of customers is less balanced between weeks. Table 6 provides statistical metrics on

the distribution of customers over the weeks. It can also be noted that the standard deviation of the

average number of customers per week is smallest for the case CL-60 with std.dev = 48.32, which

shows a balanced distribution of customers over all weeks. This is followed by CL-120 with std.dev
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= 69.40. In addition, it is worth mentioning that the effect of the customer clustering approach is

significant as it clearly improves the distribution of customers over the weeks compared to the results

of [38] where the standard deviation value reaches 445.27. Besides, the average value of the maximum

distance between customers (DM) is also found to be smallest in the CL-60 case.

Table 5 – Results of the weeks planning model

Week 1 2 3 4 5 6 7 8 9 10 11 12

Results obtained with K = 60 clusters (CL-60)

TST 547.93 548.03 547.98 547.92 548.02 548.00 547.90 547.87 548.05 547.92 547.90 548.03
Nb-C. 2283 2341 2393 2415 2278 2325 2367 2417 2295 2331 2373 2404
MD 81.17 76.17 81.04 76.17 72.76 76.17 71.17 76.17 82.76 72.17 81.04 71.17

Results obtained with K = 84 clusters (CL-84)

TST 547.95 548.07 547.98 548.00 548.03 548.05 548.00 547.95 547.80 548.03 548.10 547.98
Nb-C. 2471 2221 2495 2213 2474 2211 2511 2239 2457 2181 2515 2237
MD 83.64 87.08 82.61 76.15 84.75 87.08 83.30 86.86 83.64 87.08 84.75 76.15

Results obtained with K = 120 clusters (CL-120)

TST 548 547.87 548.12 547.95 548.05 547.93 548.07 547.95 547.93 547.97 548.05 548.07
Nb-C. 2389 2242 2415 2367 2399 2232 2423 2365 2365 2246 2435 2347
MD 86.49 75.62 87.21 76.00 86.49 75.62 86.79 76.00 87.21 75.62 86.79 76.00

Results obtained in Messaoudi et al. [38]

TST 547.72 548.13 547.98 548.15 547.83 547.92 547.97 547.98 548.08 548.12 548.08 548.08
Nb-C. 3120 2308 2137 1987 3043 2240 2171 1839 3051 2386 2123 1823
MD 86.76 86.90 86.10 86.91 86.76 86.90 86.10 82.59 86.76 87.04 87.76 82.69

TST. total service time (hours), Nb-C. number of customers, MD. Maximum distance between clients (km)

Table 6 – Statistical data on the distribution of clients in the week planning model

min max average std. deviation

CL-60 TST 547.87 548.05 547.96 0.06
Nb-C 2278 2417 2351.83 48.32
DM 71.17 82.76 76.50 4

CL-84 TST 547.80 548.10 548 0.07
Nb-C 2181 2515 2352.08 136.62
DM 76.15 87.08 83.59 3.67

CL-120 TST 547.87 548.12 548 0.07
Nb-C 2232 2435 2352.08 69.40
DM 75.62 87.21 81.32 5.52

Messaoudi et al. [38] TST 547.72 548.15 548 0.13
Nb-C 1823 3120 2352.33 445.27
DM 82.59 87.76 86.11 1.60

6.1.3 Days planning results

The MILP of the days planning model is solved with a gap of 0.2% in 3 minutes. Table 7 reports,

for each value of K and each week of the planing horizon, the minimum (min-ST) and the maximum

(max-ST) service time in hours over the five days, with the results obtained in [38] also given at

the bottom of this table for completeness. We observe a perfect balance of service time between all

days of the week, regardless of the value of K, and these results are similar to those of [38]. Table 8
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summarizes the distribution of the number of clients over the days of the week. We observe that the

clustering of the customers, regardless of the value of K, gives a balanced distribution of the customers

on the days of the weeks. We can see a clear benefit of the clustering with K = 60 (CL-60) with the

lowest standard deviation, followed by K = 120 (CL-120). The clustering of the customers largely

dominates the approach of [38] which does not consider the effect of clustering. Thus, for the routing

phase we will use the CL-60 clustering days planning results only.

Table 7 – Service time distribution in days planning model

Weeks 1 2 3 4 5 6 7 8 9 10 11 12

Results obtained with 60 clusters

min-ST 109.40 109.50 109.32 109.40 109.47 109.37 109.42 109.17 109.35 109.35 109.47 109.47
max-ST 109.75 109.70 109.75 109.77 109.75 109.80 109.78 109.77 109.75 109.73 109.73 109.75

Results obtained with 84 clusters

min-ST 109.33 109.68 109.08 109.23 109.47 109.75 109.10 109.45 109.27 109.38 109.40 109.67
max-ST 109.77 109.98 109.88 109.87 109.72 109.97 109.85 109.77 109.80 109.77 109.78 109.95

Results obtained with 120 clusters

min-ST 109.43 109.40 109.57 109.18 109.43 109.42 109.43 109.47 109.47 109.35 109.52 109.42
max-ST 109.70 109.67 109.67 109.73 109.73 109.73 109.73 109.72 109.75 109.73 109.73 109.75

Results obtained in Messaoudi et al. [38]

min-ST 109.27 109.35 109.13 109.38 109.23 109.18 109.53 109.08 109.42 109.45 109.48 109.35
max-ST 109.72 109.77 109.78 109.85 109.82 109.78 109.57 109.87 109.87 109.77 109.75 109.75

Table 8 – Statistical parameters on the distribution of clients in the days planning model

parameters days min nb of cust. max nb of cust. average std deviation

CL-60 Monday 456 482 469.83 9.25
Tuesday 453 482 469.50 9.68
Wednesday 456 484 470.08 9.47
Thursday 456 485 471.42 9.91
Friday 454 486 471.00 10.61

CL-84 Monday 435 504 469.58 27.75
Tuesday 431 503 469.00 28.59
Wednesday 439 504 471.42 26.58
Thursday 438 503 470.67 26.27
Friday 438 505 471.42 27.60

CL-120 Monday 444 486 470.58 14.26
Tuesday 446 488 471.42 14.57
Wednesday 447 488 470.75 13.67
Thursday 447 487 469.92 13.50
Friday 444 487 469.42 13.72

Messaoudi et.al. Monday 367 625 471.50 89.01
Tuesday 365 621 469.92 88.50
Wednesday 362 623 470.00 88.75
Thursday 365 626 470.25 89.22
Friday 363 625 470.67 89.83

6.1.4 Routing results

In this phase we use the LNS algorithm developed in Section 5.2 to solve the VRP problem for each day

of the week. Some preliminary experiments are conducted to calibrate the values of the parameters

of our LNS. The number of nodes to be removed in each iteration is randomly chosen in the interval

[ξmin, ξmax], with ξmin = min(7, 0.1×n) and ξmax = min(40, 0.25×n), where n refers to the number of
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nodes contained in the current solution. The parameters of our simulated annealing include the initial

temperature and the cooling schedule [28]. As stated in [44], the initial temperature Tinit depends

strongly on the instance of the problem. In this study, the initial temperature is set to a value such

that the new solution is accepted with a probability of 0.5 if the value of its objective function is

at most w% far away from the objective value of the current solution, where w is fixed to 40. The

temperature decrease is given as follows: Titer+1 = Titer − c, where c is fixed to 0.88. Finally, the

coefficients of the objective function are set to (α, β, γ) = (1, 3000, 120000). Time and distance travel

matrices are computed using Google Distance Matrix API ([23]). In the following, we present the

results of LNS metaheuristic, and we compare that results with results of [38].

Each customer’s demand is represented as a product-quantity vector for the 12 weeks of the

planning horizon. For each day, we restricted the route duration limit to 450 minutes (7 hours and

30 minutes) per driver as explained in Section 6.1.1. A computing time limit of 2 hours was also set.

First, in Table 9 we evaluate the effect of increasing the maximum duration of the routes from 420

minutes (7 hours) to 450 minutes (7 hours and 30 minutes) in the resolution of the problem with the

pattern method of [38]. It is good to note that the number of vehicles used has not changed, there are

still 35 vehicles used in both cases. However, in terms of the number of kilometers travelled, according

to Table 9, there is a massive decrease of 10.3% (i.e., 13,136.3 kms) due to the extra flexibility in

allowing a small increase of 30 minutes. This demonstrates that time flexibility in routing can be

paramount and ought not to be overlooked.

Table 9 – Total distances obtained for real instance over 12 weeks with pattern method [38]

Weeks

1 2 3 4 5 6 7 8 9 10 11 12 total

Km (420 min) 11235.9 10722 10391.7 10333.5 11166.8 10734.5 10477.8 9965.3 11129.2 10994 10393.6 10026.3 127,570.6

Km (450 min) 11051.6 10371.1 10253 10086.7 10988.3 10371.4 10320.5 9774.1 10990.3 10547.6 10255.1 9796 114,434.3

In the following section we compare the pattern method [38] with the vector method with a

maximum route duration of 450 minutes.

Comparison of Vector vs Pattern - Using the vector method, the number of vehicles used is 24, 23,

25, 24 and 25 for Monday, Tuesday, Wednesday, Thursday and Friday, respectively, while the pattern

method uses 35 vehicles for each day of the week [38]. The results empirically demonstrate that this

innovative idea of modeling customer demand as a vector can drastically reduce the number of vehicles

used where the reduction varies between 10 and 12 vehicles.

Tables 10 reports the total distance obtained for each day of each week alongside the results
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provided by the pattern method of [38]. It was found that the average distances travelled, shown

in bold, are reduced by nearly 16% ((2181.9 − 1834.5)/2181.9) for Monday and up to over 18% for

Wednesday. Table 11 shows the average routing duration obtained for each day of each week, and

comparison with [38] is also provided. We can see that the average service duration of the agents are

very close to the total service limit per agent. This shows that resources are better exploited while

respecting operational constraints. Figure 4 provides an illustrative comparison of the distribution of

the duration of the routes between the results of [38] and those found by the proposed LNS method

using box plots for the first day of the week. A similar pattern to the one shown in Figure 4 is observed

for the rest four days of the week.

Table 10 – Total distances obtained for real instances over 12 weeks (in kilometres)

Monday Tuesday Wednesday Thursday Friday
Vector Pattern Vector Pattern Vector Pattern Vector Pattern Vector Pattern

Week 1 1834.5 2181.9 1731.7 2087.0 1893.3 2319.9 1848.4 2258.1 1921.8 2204.7
Week 2 1813.5 2090.0 1626.4 2031.0 1837.9 2143.8 1881.1 2127.5 1680.0 1978.8
Week 3 1738.9 2058.7 1610.0 1990.4 1661.9 2136.9 1555.9 1984.3 1684.4 2082.7
Week 4 1846.6 2069.4 1695.8 2041.7 1670.7 2011.6 1678.1 2025.6 1585.1 1938.4
Week 5 1824.3 2182.5 1725.3 2083.1 1810.7 2295.3 1792.1 2227.9 1844.5 2199.5
Week 6 1794.9 2057.3 1620.6 2013.7 1829.5 2209.5 1863.2 2113.7 1683.7 1977.2
Week 7 1807.3 2101.7 1612.5 1992.5 1735.1 2141.7 1564.4 1990.8 1767.0 2093.8
Week 8 1546.8 1941.8 1508.2 1991.1 1611.2 1964.6 1476.4 1911.7 1647.5 1964.9
Week 9 1832.1 2181.0 1731.5 2084.5 1809.1 2296.5 1795.6 2229.2 1844.2 2199.1
Week 10 1895.5 2149.7 1858.9 2090.5 1831.3 2153.4 1894.4 2145.3 1703.9 2008.7
Week 11 1794.1 2097.8 1616.1 1993.1 1654.3 2109.7 1551.7 1962.0 1685.6 2092.5
Week 12 1557.0 1940.0 1506.7 1993.0 1622.8 2033.3 1525.7 1932.3 1540.1 1897.4

Average 1773.8 2087.7 1653.6 2032.6 1747.3 2151.3 1702.2 2075.7 1715.6 2053.2

Vector: The proposed LNS method, Pattern: Method of [38]

Table 11 – Average routing durations obtained for real instances over 12 weeks (in hours)

Monday Tuesday Wednesday Thursday Friday
Vector Pattern Vector Pattern Vector Pattern Vector Pattern Vector Pattern

Week 1 6.95 5.37 7.02 5.72 6.80 5.58 6.82 5.43 6.91 5.67
Week 2 6.87 5.28 6.86 5.37 6.70 5.25 6.85 5.30 6.81 5.27
Week 3 6.74 5.36 6.65 5.12 6.38 4.98 6.55 4.91 6.55 5.38
Week 4 6.56 4.82 6.70 4.99 6.45 5.01 6.78 5.10 6.40 5.04
Week 5 6.93 5.37 7.00 5.64 6.77 5.45 6.62 5.29 6.76 5.59
Week 6 6.88 5.06 6.83 5.33 6.64 5.40 6.58 5.08 6.86 5.20
Week 7 6.75 5.31 6.80 5.17 6.49 5.12 6.56 4.88 6.51 5.30
Week 8 6.53 4.82 6.72 4.95 6.30 4.96 6.70 4.97 6.41 5.07
Week 9 6.89 5.45 6.98 5.52 6.77 5.65 6.87 5.44 6.77 5.56
Week 10 6.88 5.25 7.09 5.43 6.75 5.35 6.83 5.34 6.86 5.31
Week 11 6.63 5.31 6.80 5.21 6.40 5.08 6.47 4.75 6.51 5.24
Week 12 6.54 4.85 6.48 4.99 6.28 4.74 6.68 4.97 6.35 5.07

Average 6.76 5.19 6.83 5.29 6.56 5.21 6.69 5.12 6.64 5.31

Average % of agent 90.13 69.20 87.46 70.53 87.46 69.46 89.20 68.26 88.53 70.80
service time

Vector: The proposed LNS method, Pattern: Method of [38]
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Figure 4 – Distribution of route durations with the Vector and Pattern methods for Monday

6.2 State-of-the-art results on related problems

In this section, we assess the performance of our approach by benchmarking our results against the

best known results from the literature on those similar problems (instances) to ours. We have chosen

the two recent works, one by [22] and the other by Rodŕıguez-Mart́ın et al. [42] where the best known

results are also reported.

6.2.1 Comparison with [22]

In [22], the periodic vehicle routing problem assumes that the visit schedule of each customer is given

and the objective is to minimize the total vehicle operating time over the time horizon while satisfying

the driver and the arrival-time consistency constraints. Arrival-time consistency refers to customers

being served at roughly the same time on every day of the planning horizon on which the service is

required. This is measured as a maximum allowed time difference L between the latest and the earliest

arrival time at each customer over the planning horizon. In the experiments below, we compare our

results when L = +∞ referring to the arrival-time consistency being relaxed. Furthermore, only the

routes construction phase of our approach is used for comparison since the subset of days on which

each customer must be served is given in their paper. Three sets A, B and C of instances are used. The

set A contains five instances with 10 customers each and five instances with 12 customers each. Here,

a planning horizon of three days is used. The set B contains 12 instances with 50 to 199 customers
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and a planning horizon of five days. The set C is an extension of the set B in which different values

of L and frequency of visits are generated to obtain a total of 144 instances. Since the set A contains

only small instances, and the set C is an extension of the set B, we focus in presenting the results on

instances of the set C with value L = +∞. To be consistent with [22], we have also adapted our LNS

method to the same objective function to be minimized, and we have set the number of iterations to

25000. We kept the other parameters as in their work. Table 12 reports the instance name (Instance),

the best known solution (BKS) from [22], the average solution value of the 10 runs (Avg), the best

solution value of the 10 runs (Best), average computing time (t) in seconds, and the gap of the best

solution value to the BKS.

Although the routes construction of our approach has not been built specifically to cater for

the problem in [22], our results are found to be significant. Indeed, the average deviation from the

BKS is between 0.32% and 0.66% only, and our worst result is recorded as 1.88%. In addition, our

approach discovers new best results on three instances out of the 36 (this refers to 12 for each of the

3 frequencies). One of the solutions is related to a frequency of 0.5 and the other two are found when

the frequency is 0.9. These best results are shown in bold.

6.2.2 Comparison with [42]

In [42], Rodŕıguez-Mart́ın et al. consider the periodic VRP with driver consistency constraint and

additional bounds on the minimal and the maximal number of customers in each route. Also, each

customer has an associated set of allowable visit schedules. The objective is to design a set of minimum

cost routes that service all customers while respecting their visit requirements, the driver consistency,

and the bounds on the number of customers in each route. The authors use a branch-and-cut algorithm

to solve the problem. They generate 240 new instances with 10 to 70 customers. They also the number

of vehicles to be between 2 and 4, and a planning horizon of 2 to 5 days.

In order to test our approach against theirs, we have adapted the day planning phase to take into

account the specific constraints of [42]. As they do not consider the service time and the customers

demand, we set the service time to 0 and the demand for all customers to 1. The aim is to balance the

total number of customers visits over the days. In the MILP of the days planning model we retain the

binary variable xi,d which is equal to 1 when customer i is visited on day d. We also add new decision

variables where yi,p equals to 1 when pattern p of customer i is selected. Let pd be a parameter equal
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Table 12 – Consistent VRP results: comparison with [22]

Service
frequency

Instance |C| BKS Avg. Best t (seconds) Gap (%)

0.5 1 5 0.5 50 1616.37 1657.86 1646.77 48.44 1.88
2 5 0.5 75 2554.83 2610.63 2584.19 64.37 1.15
3 5 0.5 100 2632.43 2736.43 2651.82 220.90 0.74
4 5 0.5 150 3317.49 3385.18 3332.86 450.57 0.46
5 5 0.5 199 3986.56 4095.72 4017.07 548.54 0.77
6 5 0.5 50 2863.55 2872.46 2868.98 27.81 0.19
7 5 0.5 75 4632.31 4668.79 4642.51 44.40 0.22
8 5 0.5 100 5332.55 5361.56 5336.30 126.78 0.07
9 5 0.5 150 7347.4 7398.62 7356.00 252.32 0.12
10 5 0.5 199 9267.06 9347.53 9262.88 344.34 -0.05
11 5 0.5 120 3245.08 3378.13 3269.51 517.97 0.75
12 5 0.5 100 2835.65 2929.18 2881.57 159.96 1.62

Average 233.86 0.66

0.7 1 5 0.7 50 2105.39 2129.74 2117.01 47.67 0.55
2 5 0.7 75 3481.82 3540.07 3486.68 63.53 0.14
3 5 0.7 100 3266.77 3322.87 3301.90 217.71 1.08
4 5 0.7 150 4346.38 4511.06 4408.95 479.03 1.44
5 5 0.7 199 5464.52 5614.85 5539.88 613.35 1.38
6 5 0.7 50 4048.96 4064.34 4064.34 24.01 0.38
7 5 0.7 75 6645.05 6701.97 6652.18 41.90 0.11
8 5 0.7 100 7092.22 7174.47 7114.69 110.83 0.32
9 5 0.7 150 10316.71 10399.34 10355.96 259.06 0.38
10 5 0.7 199 12827.08 12976.35 12920.60 362.16 0.73
11 5 0.7 120 4443.76 4537.43 4462.58 352.23 0.42
12 5 0.7 100 3408.55 3471.76 3422.27 178.94 0.40

Average 229.20 0.61

0.9 1 5 0.9 50 2478.84 2507.08 2492.51 39.69 0.55
2 5 0.9 75 4001.08 4040.55 4005.57 68.31 0.11
3 5 0.9 100 3974.74 4056.31 4011.96 239.28 0.94
4 5 0.9 150 4942.23 5058.15 4952.25 465.22 0.20
5 5 0.9 199 6376.09 6418.95 6340.84 668.03 -0.55
6 5 0.9 50 4751.79 4784.07 4767.65 25.45 0.33
7 5 0.9 75 7705.73 7751.22 7710.09 43.28 0.06
8 5 0.9 100 8733.72 8784.01 8747.48 127.37 0.16
9 5 0.9 150 12377.6 12464.26 12428.56 275.15 0.41
10 5 0.9 199 15820.63 15950.97 15897.26 387.22 0.48
11 5 0.9 120 4986.96 5012.73 4980.10 391.32 -0.14
12 5 0.9 100 4011.73 4080.31 4061.19 179.63 1.23

Average 242.49 0.32
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to 1 if day d is included in pattern p. The resulting modified MILP model is as follows.

min K∑
p∈Pi

yi,p = 1 ∀i ∈ C (39)

xi,d =
∑
p∈Pi

pd · yi,p ∀i ∈ C; d = 1, . . . , D (40)

K ≥
∑
i∈C

xi,d d = 1, . . . , D (41)

xi,d ∈ {0, 1} i ∈ C; d = 1, . . . , D (42)

Constraints (39) ensure that only one pattern is selected for each customer. Constraints (40) define

variables xid. Constraints (41) restrict the total number of visited customers for each day to Cd which

is minimized in the objective function. Constraints (42) refer to the binary decision variables.

The instances in [42] contain a maximum of 70 customers that are spread over a planning horizon

of no more than 5 days. This leads to a non-dense distribution of customers over the days. Thus,

balancing the number of customers per day is not entirely efficient in this case. In this situation, it

could be more efficient to cluster the customers prior to the MILP to take into account the sparsity

of the customers and thus balance the clusters served each day of the planning horizon.

In our LNS, we have integrated the bound on the maximum number of customers per route.

However, the bound on the minimum number of customers per route is not added to our LNS since it

completely modifies the structure of our model. Here, we have considered the solution to be infeasible

when the minimum bound on the number of customers is not satisfied. We set the number of iterations

in the LNS algorithm to 50,000 which takes at most 15 minutes in computing time for all instances.

This time remains relatively much lower than the time limit of two hours fixed in [42]. The computing

time of the MILP model using CPLEX is found to be negligible and hence not recorded here.

This study presents the results for the instances with 60 and 70 customers and are shown in Tables

13 and 14, respectively. These tables report the number of customers (|C|), the number of days in

the planning horizon (|D|), the number of vehicles (|V |), the type of instances (Inst), the best known

solution (BKS) from [42] and the type of the selected solution (OPT(BKS)) by noting whether the

BKS solution is either optimal (O), feasible (F) or there is no feasible solution found (U) in 2 hours

of computing time. We also report the average computing time to find BKS (t(BKS)), the average

solution value over 10 runs of LNS (Avg), the best value of the 10 runs (Best), and the gap (in %) of

the best solution value of LNS to the BKS defined as gap(%) = Best−BKS
BKS .100.

The results obtained are very encouraging. This is particularly important for large instances with
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60 and 70 customers, where we discovered feasible solutions for 10 instances for which no feasible

solution was initially reported in [42]. In addition, we also obtained better results for 2 instances

with 60 and 70 customers respectively. Furthermore, over all instances, our solutions are on average

between 3.68% and 6.3% worse only. It is worth noting that the obtained results, especially the worst

ones, are strongly related to the results of the MILP of customer assignment to days. This is important

as we do not take into account the distances between customers in our MILP, but the balancing of

the number of customers between days only.

7 Conclusion and Suggestions

In this paper, we have investigated the design of tactical plans for a challenging periodic routing

problem encountered in a company in the cleaning service sector. We modeled the problem as a

multiple periods VRP and proposed a decomposition approach based on a hybridisation of integer

programming models and the LNS method with the addition of a new feature to respect the consistency

of the routes. Our optimisation tool improves on the current implementation of the company by

requiring up to 17 fewer vehicles compared to the 40 vehicles used by the company over the planning

horizon. This saving represents a massive 40% reduction in the fixed costs which can provide a

significant competitive advantage to the company.

From an academic contribution view point, we have developed a new and innovative approach

in the LNS. We introduce a vector of demands of customers that takes into account the consistency

constraint making the search relatively much more efficient. We have also incorporated the effect of

customers clustering into our search. This is performed by using a simple but powerful clustering

scheme to reflect the effect of customer locations in the decision. For completeness, we have also

provided an additional assessment by modifying our approach accordingly so to suit the two most

recent and related studies to ours that treat PVRPs. To our surprise, we discovered three new best

results in the study of [24] while identifying 8 new upper bounds which were not found previously in

[42]. This is an important and encouraging result given our approach was not originally designed for

these PVRP related problems. This demonstrates empirically that our approach is robust and hence

practically useful to be relied upon in real life.

The following future research avenues could be worth considering:

(i) Sophisticated optimization techniques for the weeks and days planning models that consider

distances between customers could be explored. This can be achieved by adapting column
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Table 13 – PVRP with driver consistency results for instances with 60 customers

|C| |D| |V | Inst. BKS opt (BKS) t (BKS) Avg. Best t (sec.) Gap (%)

60 2 2 a 1183.54 O 152.77 1242.99 1218.36 143.2 2.94
b 1151.32 O 70.33 1180.76 1177.31 141.64 2.26
c 1141.72 O 75.6 1196.51 1165.5 145.35 2.08

3 b 1224.35 O 419.13 1259.41 1252.1 69.9 2.27
c 1240.17 O 2970.31 1293.99 1265.62 70.31 2.05

4 a 1348.38 F 7200 1400.94 1396.66 54.87 3.58
b 1332.15 O 3365.16 1377.03 1374.13 55.49 3.15
c 1332.19 O 1564.16 1367.19 1364.46 55.07 2.42

3 2 a 1756.59 O 440.41 1870.66 1866.29 194.59 6.25
b 1710.43 O 665.05 1801.11 1799.82 200.12 5.23
c 1606.92 O 440.94 1691.87 1684.41 195.77 4.82

3 a 1846.13 O 1789.75 1943.76 1931.94 91.27 4.65
b 1856.51 O 5737.73 1980.97 1967.44 92.92 5.98
c 1748.09 O 5201.29 1852.4 1839.3 94.63 5.22

4 a 2080.98 F 7200 2085.29 2085.29 67.45 0.21
b 1987.7 F 7200 2053.12 2052.55 71.44 3.26
c 1903.19 F 7200 1988.2 1984.04 73.07 4.25

4 2 a 2217.47 O 1003.59 2326.62 2323.39 273.93 4.78
b 1991.91 O 773.91 2178.9 2162.81 310.96 8.58
c 2007.89 O 974.76 2144.06 2132.19 331.88 6.19

3 a 2381.97 O 6978.88 2517.53 2487.37 123 4.42
b 2177.16 F 7200 2350.03 2337.74 131.05 7.38
c 2195.61 F 7200 2304.99 2300.1 151.07 4.76

4 a 2728.02 F 7200 2611.51 2608.19 105.03 -4.39
b 2316.39 F 7200 2501.39 2452.24 100.64 5.86
c 2238.48 F 7200 2441.38 2382.51 99.04 6.43

5 2 a 2482.63 O 364.01 2698.08 2682.27 398.58 8.04
b 2430.1 O 505.12 2598.63 2598.58 446.31 6.93
c 2617.31 F 7200 2794.72 2779.23 345.84 6.19

3 a 2722.17 F 7200 2917.27 2908.63 184.43 6.85
b 2648.87 F 7200 2884.59 2871.54 191.61 8.41
c 2847.49 F 7200 3003.76 2978.56 156.2 4.6

4 a 2891.74 F 7200 3114.82 3035.03 127.83 4.96
b 2757.69 F 7200 2990.42 2966.2 129.87 7.56
c NA U 7200 3260.25 3249.54 121.54 NA

Average 4248.37 158.45 4.65
F: feasible solution, O: optimal solution, U: no feasible solution found, NA: not available.

33



Table 14 – PVRP with driver consistency results for large instances with 70 customers

|C| |D| |V | Inst. BKS opt (BKS) t (BKS) Avg. Best t (sec.) Gap (%)

70 2 2 a 1266.34 O 143.63 1337.62 1289.67 243.88 1.84
b 1219.47 O 329.47 1260.45 1255.81 248.16 2.98
c 1199.9 O 89.15 1251.24 1245.48 251.05 3.80

3 a 1371.05 O 1295.82 1413.68 1377.57 117.61 0.48
b 1302.41 O 4894.69 1326.73 1322.86 115.51 1.57
c 1278.2 O 343.31 1316.57 1316.57 115.73 3.00

4 a 1457.6 O 7201.60 1493.62 1474.98 86.75 1.19
b 1406.92 F 7200.00 1426.64 1424.22 91.27 1.23
c 1351.38 O 1839.77 1388.95 1387.62 90.49 2.68

3 2 a 1666.67 O 596.59 1804.86 1783.81 389.8 7.03
b 1650.93 O 480.56 1773.65 1771.15 400.36 7.28
c 1602.37 O 315.57 1685.38 1671.06 436 4.29

3 a 1799.03 O 5929.94 1937.01 1916.68 171.13 6.54
b 1761.31 O 3150.72 1884.82 1874.7 189.2 6.44
c 1720.3 O 709.02 1835.82 1816.73 191.11 5.61

4 a 1964.17 F 7200.00 2085.11 2075.99 134.25 5.69
b 1945.41 F 7200.00 2028.39 2022.15 132.22 3.94
c 1882.63 F 7200.00 1979.14 1969.21 131.38 4.60

4 2 a 2186.3 O 1678.45 2361.28 2329 556.76 6.53
b 2201.65 F 7200.00 2379.49 2331.33 526.82 5.89
c 2189.53 O 284.23 2370.45 2323.57 494.44 6.12

3 a 2465.64 F 7200.00 2508.74 2493.86 243.12 1.14
b 2525.04 F 7200.00 2500.74 2485.57 221.33 -1.56
c 2381.88 F 7200.00 2528.07 2507.46 226.7 5.27

4 a NA U 7200.00 2707.43 2694.38 158.82 NA
b 2589.37 F 7200.00 2635.52 2622.95 162.73 1.30

5 2 a 2885.63 O 7108.68 3153.64 3059.35 592.48 6.02
b 2621.04 F 7200.00 2798.67 2779.76 635.1 6.06
c 2580.35 O 5430.72 2816.88 2792.76 729.3 8.23

3 a NA U 7200.00 3329.47 3318.06 276.52 NA
b NA U 7200.00 3015.39 3005.93 279.41 NA
c 2773.14 F 7200.00 2949.77 2916.22 328.39 5.16

4 a NA U 7200.00 3530.81 3530.81 197.94 NA
b NA U 7200.00 3224.13 3223.16 199.41 NA
c 2887.95 F 7200.00 3158.75 3131.24 190.56 8.42

Average 4274.06 273.02 3.68
F: feasible solution, O: optimal solution, U: no feasible solution found, NA: not available.
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generation techniques.

(ii) A backtracking mechanism between the three optimization phases could be implemented. This

needs to improve the route construction by the reassignment of customers to weeks and days.

(iii) Other powerful meta-heuristics that do not incorporate MILP models could also be considered.

This latter issue is rather important as some companies may like to be self sufficient by relying

on in-house developments and prefer not to have commercial optimisation solvers as a part of

their IT systems.

(iv) It is also worth highlighting that in many real life applications, parameter’ uncertainty is usually

common and therefore ought not be ignored. Concepts inspired from stochastic optimisation

or/and fuzzy logic could be one way forward.
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