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Abstract 

Antimicrobial resistance has become a major threat to mankind during the last century, no new 

antimicrobials have been discovered and pharmaceutical companies are no longer investing in the 

development of new antimicrobials. Due to the overuse and misuse of antibiotics, bacteria are 

evolving faster than ever. Research has shown that conventional antibiotics, that target specific 

enzymes, are becoming less effective, whereas amphiphilic antibiotics are still functional. This study 

aims at developing the efficacy of a novel class of amphiphilic compounds. Building on the work of 

Hiscock et al., DNA inspired amphiphiles, adenine analogue and thymine, were synthesised and its 

properties in the solid state, gas phase and solution state were studied. 

Analysis of the compounds shows that in the solid state, they tend to form extended structures 

with several binding modes and in the gas phase the low complex aggregates are visible, showing 

the strength of the interactions. In the solution state, the amphiphiles tend to form low complex 

species in DMSO, whereas in a H2O: EtOH 19:1 solution, the amphiphiles tend to form extended 

aggregates (> 100 nm). An investigation of 1:1 mixture of the adenine and thymine compounds was 

also carried out and the results show similar properties to the other compounds, however, the 

interactions between the amphiphiles were found to be weak. Antimicrobial screening of the 

amphiphiles and the mixture shows only the thymine inspired amphiphile inhibits bacterial growth. 

Based on these results, we can conclude the use of an analogue of adenine has impacted the 

strength of the complementary base pair interaction, therefore, the amphiphile will be 

resynthesised with a greater resemblance to adenine. 
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1. Introduction 

1.1 Development 

Jean-Marie Lehn coined the term supramolecular chemistry in 1987 during his Nobel Laureate 

lecture, he defined it as ‘chemistry beyond the molecule’.1 It is the study of the higher complex 

entities, formed by the result of non-covalent forces.2 Supramolecular chemistry is considered a 

young discipline, however, its concepts date back to the beginning of modern chemistry.  

Chemistry, as we know it today began when Friedrich Wöhler synthesised urea crystals from 

inorganic reactants.3 At the time, this was regarded as impossible as it did not obey the laws of 

vitalism;4 which states organic compounds could not be synthesised from inorganic components as 

it did not possess a certain energy required for life. Following this many other organic substances 

were synthesised without the use of organic reactants, disproving vitalism.5 Organic chemistry 

developed over the next few decades, however, the way the atoms were bonded still remained a 

controversial topic until 1916, where Gilbert N. Lewis proposed covalent bonding using a theory 

called ‘valence’ using a dot and cross diagram (Figure 1).6 Lewis theorised there were two types of 

covalent bonding; polar formed by the transfer of electrons and non-polar bonding formed by the 

sharing of electrons.7,8  

 

Figure 1 – Example of a dot and cross diagram to show a covalent bond in a water molecule. 
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1.2 Non-covalent interactions 

The intermolecular non-covalent interactions were first suggested in 1873 by Johannes Diderik 

van der Waals; a force between molecules which is now known as van der Waals interactions.9–11 

This led to, Emil Fischer proposing the lock and key principle for enzymes in 1894,12 stating that a 

specific substrate (key) is required to fit into the enzyme (lock), for the reaction to proceed (Figure 

2).  

 

Figure 2 – Illustration of the lock and key principle. The components are complimentary allowing them to bind together 

to form the final complex. 

Following this, Moore and Winmill hypothesised the presence of the hydrogen bond,13 which 

was further supported by Latimer and Rodebush.14 These concepts led to the synthesis of several 

host complexes that selectively bind to guest molecules; crown ether by Charles J. Pedersen,15 

macrocyclic cyclophanes by Donald J. Cram and cryptands by Jean-Marie Lehn (Figure 3).16,17 Over 

the past decade, supramolecular chemistry has become one of the fastest-growing fields of 

chemistry and has contributed to the development of nanotechnology, winning another noble prize 

for James Fraser Stoddart in 2016.18,19 
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Figure 3 – The series of host-guest complexes developed by Pedersen (crown ether), Lehn (cryptate) and Cram 

(spherand) respectively. 

Supramolecular complexes can self-organise or be preorganised. Preorganisation is where a 

molecule is designed to interact with a complementary molecule through non-covalent forces.20 

Whereas self-organisation is where the molecules assemble into higher ordered complex units 

through non-covalent interactions.21 A supermolecule can both self-organise and be designed to 

preorganise. 

The formation of a supramolecular complex is the result of a balance between electrostatic 

interactions and solvent interactions. There are many different types of non-covalent interaction, 

such as dipole-dipole interactions.22 Dipole-dipole interactions are the weakest types of 

interactions with energies of < 5 kJ/mol and are formed by the attraction of one dipole to another 

(Figure 4A).23 However, as the distance decreases the repulsive force between the electrons 

increase, therefore decreasing the energy and increasing the distance.24 π-π interactions occur 

between the electropositive and electronegative clouds on aromatic rings, they have energies of 0-

50 kJ/mol.25 There are three possible stacking configurations: edge to face (Figure 4B), face to face 

(Figure 4C) or offset stacking (Figure 4D).26 
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Figure 4 – Illustration of the non-covalent interactions A) dipole-dipole B) π-π edge to face C) π-π face to face D) π-π 

offset. 

The strongest type of non-covalent interaction is the ion-ion interaction, which is comparable 

in strength to the covalent bond, with energies of 100-350 kJ/mol and > 150 kJ/mol respectively. 

Other types of non-covalent interactions are the ion-dipole interactions which occur between a 

charged ion and a dipole on a polar molecule, the cation-π interactions which occur between 

cations and electron rich aromatic ring systems and the anion-π interaction which occurs between 

an anion and an electron deficient ring system (Figure 5).27–29 

 

Figure 5 – Illustrations of non-covalent interactions A) ion-dipole B) cation- π C) anion- π. 

Another non-covalent interaction is the hydrogen bond, the physical properties of the 

hydrogen bond have been studied extensively.30–32 It has an energy range of 4-165 kJ/mol, which 

can be further categorised into weak electrostatic (< 20 kJ/mol), electrostatic (20-60 kJ/mol) or 

covalent interactions (> 60 kJ/mol).33–35 The average bond lengths for electrostatic interactions are 

> 1.5 Å while covalent interactions are between 1.2-1.5 Å.36 Hydrogen bonds can adopt many 

different geometries, such as: linear, bent, bifurcated (accepting and donating), trifurcated and 

three-centred bifurcated (Figure 6).37 Hydrogen bonds are formed through hydrogen bond acceptor 

(HBA) groups, for example, oxygen, nitrogen and sulphur, interacting with electrostatically positive 
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acidic hydrogen atoms acting as hydrogen bond donating (HBD) groups. Although non-covalent 

interactions are weak compared to covalent bonds, the additive effect of many non-covalent 

interactions can stabilise molecular structures. 

 

Figure 6 – Examples of the geometries a hydrogen bond can adopt 1) linear 2) bent 3) accepting bifurcated 4) donating 

bifurcated 5) trifurcated 6) three-centred bifurcated. 

Natural systems contain many examples of supramolecular complex formation, which are vital 

for life. Proteins are an excellent example of supramolecular complexes. Enzymes catalyse all the 

chemical reactions in the body and antibodies bind to foreign particles to help protect it.38,39 These 

molecules are formed of a primary structure, an amino acid chain, which self assembles into a 

secondary structure; α-helixes and β-sheets through hydrogen bonds.40,41 Long amino acid chains 

can self-assemble into many separate secondary structures which folds into a three-dimensional 

structure through other non-covalent interactions, such as hydrophobic interactions, ionic 

interactions and hydrogen bonds, named the tertiary structure.42–44 Furthermore, multiple tertiary 

structures can self-assemble to form a quaternary structure (Figure 7).45 Another inspirational 

biological system is DNA (deoxyribonucleic acid), the structure of DNA was deduced by Francis Crick 

and James Watson in 1953, as two strands of polynucleotides that are complementary and interact 

to form a double helix.46 
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Figure 7 – Illustration of the structures within a protein. A) Primary structure, the amino-acid chain. B) Secondary 

structure, α-helix or β-pleated sheet. C) Tertiary structure, folding of secondary structure into a three-dimensional 

structure. D) Quaternary structure, interactions between two or more tertiary subunits.47 

1.3 DNA 

DNA contains all the genetic information for the construction, function and reproduction of all 

known organisms and viruses.48 DNA is polymer formed of repeating units of nucleotides,49 which 

consists of a nucleobase, sugar and phosphate backbone. A nucleobase bound to a sugar forms a 

nucleoside, then a nucleoside bound to a phosphate group forms a nucleotide (Figure 8).50 Two 

complementary polynucleotide strands interact to form a supra molecule. 

  



Page | 13 
 

 

Figure 8 – Illustration of the structure of a nucleic acid. 

Non-covalent interactions play a vital role in the formation of DNA, both hydrogen bonding and 

π-π interactions are required for the stabilisation of the double helix.51 There are four nucleobases 

in DNA, adenine, cytosine, guanine and thymine. Adenine and guanine are purines, while cytosine 

and thymine are pyrimidines. These types of molecules complement each other and bind through 

hydrogen bonding, forming adenine-thymine (A-T) and cytosine-guanine (C-G) bonds. Adenine 

interacts with thymine through two hydrogen bonds while cytosine interacts with guanine through 

three hydrogen bonds (Figure 9). Due to the additive effects of non-covalent interactions the C-G 

interaction is stronger than the A-T interaction.52 
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Figure 9 – Hydrogen bonding between the complementary base pairs. A) Adenine and thymine. B) Cytosine and 

guanine. 

The π-π interactions occur between the stacked nucleobases, then the stacked nucleobases 

form a dipole, which attracts another nucleobase through van der Waals forces, which is 

propagated throughout the entire polynucleotide. Although these forces are weaker than hydrogen 

bonds individually, recent studies have found that the π-π interactions contribute more to the 

stabilisation of DNA than previously thought.53 DNA replication requires the two strands to 

separate, an enzyme named DNA helicase separates the polynucleotide strands between the 

nucleobases by breaking the hydrogen bonds.54  

Due to the specific self-associating properties of DNA, the Watson-Crick base pairing, it inspired 

a new area of supramolecular chemistry termed ‘supramolecular DNA assembly’.55 By combining 

DNA complementary base pairing with synthetic chemistry, it is possible to design precise assembly 

of molecules. Oligonucleotides have been used as a supramolecular scaffold for the synthesis of 

functional molecules in the nanometre scale. Supramolecular DNA assembly evolved from 2D 

lattices into 3D lattices, starting from a 2D smiley face to lego-like structures which can self-

assemble to form larger 3D structures.56,57 From there, dynamic DNA nanostructures were 

synthesised by Sherman et al,58 where it was demonstrated a DNA footpath could be transversed 

by a DNA bipedal walking device through its oligonucleotide feet.59 While DNA and the interactions 

between it were being studied, chemists were simultaneously researching micelles and 

microemulsions.60 Micelles and microemulsions consist of amphiphiles aggregating through non-

covalent interactions to form extended structures.61 They play an important role in biology and 

have a wide range of consumer applications.  
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1.4 Amphiphiles 

Amphiphiles are molecules that consist of a hydrophilic and hydrophobic component.62 

Depending on the nature of the hydrophilic group, amphiphiles can be categorised as neutral, 

anionic, cationic or zwitterionic.63 Neutral amphiphiles do not carry a charge, their solubility is 

dependent on the functional groups and how easily they deprotonate (Figure 10A). Anionic 

amphiphiles carry a negative charge, common head groups are carboxylates, sulphates, sulfonates 

and phosphates (Figure 10B).64 Cationic amphiphiles carry a positively charged head group, amines 

or ammonium ions are common examples (Figure 10C).65 While a zwitterionic amphiphile carries 

both a positive and negative charge in the head group (Figure 10D).66 The hydrophobic component 

usually consists of a hydrocarbon chain, however, there are exceptions such as aromatic rings and 

trifluoromethyl functional groups.67,68 

 

Figure 10 – Examples of amphiphiles: A) Neutral; B) Anionic; C) Cationic; D) Zwitterionic. 

Amphiphiles can aggregate to form different structures, this is achieved by maximising the 

preferred interactions while minimising the non-preferred interactions. Which leads to the 

following structures: micelles, reverse micelles, lipid bilayers or vesicles. Micelle can form when the 

amphiphiles are in a polar solution (Figure 11A), whereas in a non-polar solution, the amphiphiles 

will form a reverse micelle (Figure 11B).69 The number of hydrophobic moieties of the amphiphile 

itself can affect the result of the aggregate formation. For example, Phospholipids with a single 

hydrocarbon chain can aggregate into micelles, while amphiphiles with multiple hydrocarbon 

chains form bilayer structures as the chains are too large to fit inside a micelle (Figure 11 C, D).70 
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These structures play an important role in biological systems. The lipid bilayers compartmentalise 

different cells to increase efficiency, while micelles and vesicles transport water insoluble products 

in and out of the cells.71 

 

Figure 11 – Examples of amphiphile aggregation. A) Single chain amphiphile in a polar solvent. B) Single chain amphiphile 

in a non-polar solvent. C) Double chain amphiphile forming a lipid bilayer. D) Double chain amphiphile forming a vesicle. 

Peptides are proteins that are produced in all living organisms and have shown 

pharmacological activity against microbes. The antimicrobial peptides are oligopeptides and most 

are charged amphiphiles that display minimal toxicity to mammalian cells.72–74 In contrast to other 

types antimicrobials, which target DNA or enzymes on the membrane, antimicrobial peptides 

associate with cell membranes of the microbes, this discovery has consequently led to the 

development of new amphiphilic drugs. Examples include: tranquilizers,75 antihistamines,76 

antibiotics,77 antidepressants,78,79 β-blockers and more.80 Over the last decade amphiphiles have 

been developed into supra-amphiphiles,81 they interact through non-covalent interactions.82 A 

study conducted by Wang et al., stated there are two main ways to create a supra-amphiphile; 

firstly, through the combination of the hydrophobic and hydrophilic components using non-

covalent interactions or dynamic covalent bonds to create the amphiphile.83 The other method was 
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to modify a molecule with non-covalent interactions, changing the physical properties of the 

molecule, such as the amphiphilicity.84  

Meanwhile, low molecular weight amphiphiles have been found to self-associate through 

hydrogen bonds,85 especially those with urea functional groups.86 Combining these concepts, 

Faustino et al. developed a series of anionic urea based salts derived from sulphur containing amino 

acids (Figure 12A, B).87 The studies show hydrogen bonding occurs at the urea moiety, however it 

did not affect micelle formation. The amphiphile also showed no antimicrobial activity which was 

presumed to be due to the short alkyl chains.  

Following this, Pittelkow et al. synthesised aromatic, anionic-urea salts derived from 

sweeteners (Figure 12C).88–90 However, the main focus of the research was on the complexation of 

dendrimers, thus the self-association properties of these low molecular anionic-urea compounds 

were not analysed. Hiscock et al. modified the sulfonate-urea salts and began to look at the self-

association properties of the compounds and found some of these amphiphilic salts showed signs 

of antimicrobial activity (Figure 12D).91 

 

Figure 12 – Illustration of the evolution of anionic urea amphiphile A) anionic monomeric urea amino acid B) anionic 

dimeric urea amino acid C) anionic aromatic urea D) modified anionic aromatic urea. 
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The amphiphile consists of an anionic hydrophilic HBA group and a urea groups which can 

adopt a minimum of four different binding modes. These binding modes cannot exist at the same 

time making the system ‘frustrated’. The amphiphile can self-assemble through the urea-urea or 

urea-anion through hydrogen bonding. Binding through the urea-urea can form a dimer or tape 

structure, whereas binding through the urea-anion the compound forms either a syn-stacking or 

anti-stacking structure (Figure 13). The research concluded the binding mode was dependant on 

the molecular structure of the amphiphile and the solvent system the aggregate was assembled in. 

 

Figure 13 – Possible self-associated hydrogen bonded modes of the modified anionic urea compounds.  

Subsequently, Hiscock et al. expanded the collection of amphiphiles while keeping the general 

structure.92 The functional groups on the hydrophobic aromatic ring were altered, electron 

withdrawing groups such as an amide or more electron donating group such as a nitro group were 

affixed. The urea moiety was swapped to a thiourea moiety and the cation was exchanged. The self-

association properties of these compounds were analysed in all three states: solid state, gas phase 

and solution state.93 

The research concluded that compounds containing urea-anionic moieties with a weakly 

coordinating counter cation forms urea-anion complex. These compounds formed dimeric species 

in the gas phase, additionally, within the solution state, these compounds also tend to form dimeric 
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species within DMSO. Whereas in H2O: EtOH 19:1 solution the compounds formed aggregates with 

a size of 91-460 nm, 3 of the compounds showed signs of antimicrobial activity when tested against 

Staphylococcus aureus (S.aureus) and Escherichia coli (E.coli).92,94 

The next step was to investigate the mode of action of the compounds and visualise them using 

microscopy, intrinsically fluorescent compounds were synthesised.93 The compounds aggregate 

and form micellular-like structures (Figure 14A), which coats the surface of the S.aureus cell (Figure 

14B, C). Finally, the compound penetrates the membrane, internalises within the cell and appears 

to associate with the nucleoid (Figure 14D, E).95 
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Figure 14 – A) Overlaid fluorescence and transmitted light microscopy image of green micellular aggregates binding to 

the bacterial membrane of S.aureus. B) Fluorescence confocal microscopy image of the aggregates (white) coating the 

bacterial membrane of S.aureus. C) Overlaid fluorescence and transmitted light microscopy image of the aggregates (pink) 

coating the bacterial membrane of S.aureus. D) Overlaid fluorescence and transmitted light microscopy image of the 

aggregates (pink) interacting with the nucleoid of S.aureus. E) Fluorescence confocal microscopy image of the aggregates 

(white) interacting with the nucleoid of S.aureus. Attributed to Jennifer Hiscock, Dan Mulvihil and Laura Blackholly. 

Due to the compounds interaction with the nucleoid, Hiscock et al. synthesised a DNA inspired 

molecule (Thymine) derived from the previous compounds;96 the study reports the molecule self-

associates to form dimers in DMSO and the DOSY NMR studies report the solvation sphere diameter 

at 1.6-1.8 nm depending on the concentration. The crystal structure of the molecule shows that it 
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dimerises then the dimers interact to form a tetramer. The tetramers then interact again to form a 

pseudo porous extended structure. The paper shows the tetramer forms through the amide NH 

leaving the thymine moiety free to interact (Figure 15). 

 

Figure 15 – Illustration of the dimer formation of the thymine inspired molecule. 

As the thymine moiety is free to interact and is part of a complementary base pair, an adenine 

inspired molecule can be synthesised to attempt to form a preorganised extended aggregate 

through DNA base pairing. 
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1.5 Project Aims  

The aims of this project are to synthesise a complementary molecule to the thymine inspired 

amphiphile.96 Hence, an adenine inspired amphiphile will be synthesised, characterised and the 

self-association and complex formation properties will be explored within the solid state, gas phase 

and solution state using single crystal X-ray diffraction, negative electrospray ionisation mass 

spectrometry (ESI-MS), NMR spectrometry, dynamic light scattering (DLS), zeta potential, 

tensiometry and low level computational modelling. Compounds 1 and 2 will be synthesised as the 

precursor to compounds 3-5. As compounds 3-5 are complex molecules, compounds 6-10 will be 

synthesised to break down the complex interactions between the DNA inspired molecules (Figure 

16). Previous amphiphiles have shown antimicrobial properties,94 therefore, compounds 3-5 will be 

also be tested for antimicrobial properties. It has been shown that the amphiphiles interact with 

the nucleoid, it is hypothesised that the DNA inspired amphiphiles will interact with any single 

stranded DNA and further increase efficacy. The amphiphiles will be tested against S.aureus and 

E.coli. 

 

Figure 16 – Structures of compounds 1-10. 
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2. Results and discussion 

2.1 Synthesis 

The synthesis of compounds 1 and 2 has been previously published,91,92 they are required for 

the synthesis of compounds 3-5 (Figure 17). Compound 3 was also previously published and 

synthesised accordingly, however; it could not be purified according to the method. Compound 4 

was synthesised through an amide couple reaction of compound 2, 2-nitroisonicotinic acid and 1-

Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) with a final yield of 51 %. Finally, compound 5 

was synthesised through a reduction of compound 4 using hydrazine hydrate and palladium on 

carbon (Pd/C) with a yield of 84 %.  

 

Figure 17 – Synthesis scheme for compounds 1-5.  

Compound 3 was synthesised with each attempt; however, many problems arose. Initially, 

there was still starting material in the crude product (Figure 18A), this was due to the reactant, 

N,N’-Carbonyldiimidazole (CDI) decomposing to form imidazole. The amount of CDI was increased 

to drive the reaction to completion; however, this caused the crude product to contain excess 
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imidazole, which was challenging to remove (Figure 18B). Hence, other coupling agents, such as 

N,N′- Dicyclohexylcarbodiimide (DCC) and 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) 

were used in an attempt to synthesis compound 3. DCC successfully yielded Compound 3, but 

contained excess TBA (Figure 18C). Separations, precipitations and columns were used to remove 

the excess TBA, however, all methods removed all the TBA instead (Figure 18D). After these 

attempts, a literature based method was found to use N-Hydroxysuccinimide (HOSu) to stabilize 

the thymine analogue from the contributing structures before the coupling process, this method 

was applied to the synthesis process and the yield increased to 54% (Figure 18E). 

 

Figure 18 - A) Overlaid 1H NMR of Compound 2 and compound 3 using the previously published method. B) 1H NMR of 

Compound 3 synthesised with additional CDI. C) 1H NMR of Compound 3 synthesised using DCC showing a higher ratio 

of TBA. D) 1H NMR of Compound 3 with TBA removed. E) 1H NMR of compound 3 synthesised using the final method. 
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2.2 Self-association in the solid state 

2.2.1 Single-crystal X-Ray diffraction 

A single crystal is a material in which the crystal lattice of the entire sample is continuous, 

single crystals can be formed from almost all materials. As the crystals have a repeating pattern, 

Max von Laue suggested the use of crystals as a grating for the diffraction of X-rays.97 Due to the 

non-destructive nature of the technique, it is used to obtain a three-dimensional structure of the 

material and it can observe both covalent and non-covalent interactions in the solid state.98 Crystals 

of compounds 4, 5, 7 and 10 were obtained through slow evaporation of a H2O: MeOH 19:1 

solution, while crystal structures of compounds 1-3 were previously published,92 compounds 1 and 

2 forms dimers through urea-anion interactions, while compound 3 forms a tetramer through urea 

oxygen-amide NH interactions. A crystal structure of the 1:1 mixture of compounds 3 and 5 was not 

obtained. Many solvent systems were attempted; however, a crystal was not produced. 

Crystallography data was obtained and refined by Dr. Jennifer Hiscock. 

2.2.1.1 Results and discussion 

The crystal structure of compound 4 exhibits a dimerization between the urea-anion through 

the formation of four hydrogen bonds, like previously published compounds (Figure 19).92 However, 

it also shows a water-bridged urea-pyridine and an amide-sulfonate hydrogen bond extending the 

aggregate species. 
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Figure 19 – Single crystal X-ray structure of compound 4, exhibiting hydrogen bonded extended structures. TBA counter 

cation has been omitted for clarity. 

Compound 5 also forms the dimeric species between the urea-anion with four hydrogen bonds 

(Figure 20). End-end interactions are also seen in the crystal structure through the HBD nitrogen 

and HBA amino functional group on the aminopyridine forming two hydrogen bonds. Sulfonate-

aminopyridine interactions are also seen within the crystal structure and are either directly bonded 

or water-bridged. 

 

Figure 20 – Single crystal X-ray structure of compound 5, exhibiting hydrogen bonded extended structures. TBA counter 

cation has been omitted for clarity. 
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Compound 7 forms a hydrogen bond between the amide-amide moiety, forming a syn-stacking 

structure (Figure 21).  

 

Figure 21 – Single crystal X-ray structure of compound 7, exhibiting hydrogen bonded syn-stacking through an amide-

amide binding mode. 

Compound 10 forms a dimer through two hydrogen bonds between the amide on the ring and 

the oxygen in between two nitrogen atoms (Figure 22). It was hypothesised that it interacts there 

due to the inductive effect of electron donating nitrogen causing the oxygen to be a stronger HBD. 

 

Figure 22 – Single crystal X-ray structure of compound 10, exhibiting a hydrogen bonded dimer.  
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To conclude, all crystal structures show the formation of a dimeric species and the sulfonate-

urea amphiphiles show the same interaction at the sulfonate-urea as with previously published 

amphiphiles.99  

2.3 Self-association in the gas phase 

2.3.1 Electrospray ionisation mass spectrometry 

ESI-MS has become an irreplaceable tool in science, it provides qualitative information about 

the analytes and it can preserve weak non-covalent bonds in the gas phase.100 However, molecules 

must be an ionic species or be converted into an ionic species to use this technique, this is achieved 

through injecting the sample into an ionisation source.101 Compounds 3-8 were analysed using 

negative ESI-MS to determine whether low complex formation could be seen in the gas phase. 

2.3.1.1 Results and discussion 

The data obtained from the ESI-MS show that compounds 3-8 behave the same as the previous 

compounds, existing as both the monomers and dimers in the gas phase. Compounds 3-5 are salts, 

therefore shows the monomeric state [M]- and dimeric state [M + M + H+]- (Table 1). The dimer is 

not limited to the hydrogen ion, other ions such as sodium and potassium can be seen,94 however, 

were not looked at here. Sample preparation was completed to ensure optimization, resulting in a 

very low concentration of the analysed sample (1 mg in 1 mL, diluted further by a factor of one 

hundred giving the concentrations at ≈ 1.6 x 10- 6 mol). 

Table 1 – High Resolution mass spectrometry theoretical and experimentally derived values for compounds 3-5. 

Compound 
m/z [M]- m/z [M + M + H+]- m/z [M + M + M + 2H+]- 

Theoretical Actual Theoretical Actual Theoretical Actual 

3a 410.0771 410.0755 821.1612 821.1591 1232.2453 N/A 

4 394.0458 394.0440 789.0986 789.0951 1184.1514 N/A 

5 364.0716 364.0702 729.1502 729.1471 1094.2288 1094.2227 

a – Previously published data.96 
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The protonated dimeric species for compounds 3-5 were observed. Using compound 4 as an 

example (Figure 23). The monomeric [M]- m/z peak is observed at 364.0702 and the protonated 

dimeric species [M + M + H+]- is observed at (2 x 410.0755) + 1.007 = 729.1471, this indicates that a 

dimerised species is present in the gaseous phase. This trend is apparent for compounds 3 and 5, 

moreover, compound 5 also indicates that a trimeric species [M + M + M + 2H+]- is present at (3 x 

364.0702) + (2 x 1.007) = 1094.2227. The appearance of the trimeric species in the gas phase has 

not yet been seen in any previously published compounds, further investigation of the trimer will 

be required to determine the reason for its presence. 

 

Figure 23 – Electrospray mass spectrometry spectrum of compound 5, showing both the monomeric, dimeric and trimeric 

species (A), monomeric species (B) and protonated species (C). 

Alternatively, compounds 6-8 are neutral species, therefore requires ionisation to show the 

monomeric state [M - H+]- (Table 2).  
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Table 2 – High Resolution mass spectrometry theoretical and experimentally derived values for compounds 6-8. 

Compound 
m/z [M – H+]- m/z [M + M – H+]- 

Theoretical Actual Theoretical Actual 

6 303.0738 303.0863 607.1546 607.1776 

7 310.0448 310.0433 621.0966 621.0916 

8 280.0706 280.0820 561.1482 561.1680 

The deprotonated dimeric species were observed for compounds 6-8. Using compound 6 as an 

example (Figure 24, 25). The monomeric [M - H+]- m/z peak is observed at 304.2620 – 1.007 = 

303.0863 and the deprotonated dimeric [M + M - H+]- m/z peak is observed at (2 x 304.2620) – 

1.007 = 607.1776. This trend is also apparent for compounds 7 and 8.  

 

Figure 24 – Electrospray mass spectrometry spectrum of compound 6 showing the monomeric species. 
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Figure 25 – Electrospray mass spectrometry spectrum of compound 6 showing the dimeric species. 

The ESI-MS data reveals that the non-covalent bonds of compounds 3-8 do not dissociate under 

these conditions, indicating the strength of the interactions of these low complex formations are 

quite strong. The strength of the interactions cannot be determined within the gas phase; 

therefore, the self-association properties of the compounds will be explored in the solution state. 

All ESI-MS for compounds 3-8 can be found in the appendix (Figures 89-100). 

2.4  Association in the solution state 

The solid state and gas phase complex formations occur in the absence of solvent-solute 

interactions. This allows us to observe the interactions between the compounds, however, in the 

solution state, solvent-solute interactions can alter the complex formation when self-associating. 

The solvent molecules can act as HBA or HBD which plays a role in the self-association of molecules. 

For example, water is a polar protic solvent, which interacts through the proton when hydrogen 

bonding, acting as a HBA. Whereas DMSO is a polar aprotic solvent, it interacts with solutes through 

the oxygen atom acting as a HBD.102 Previous studies by Hiscock et al. conclude that this class of 

novel amphiphiles tend to form dimers in DMSO, while in an aqueous H2O: EtOH 19:1 solution they 

form aggregates with an approximate size of 100-500 nm.92 Compounds 3-5 consists of the same 

hydrophilic sulfonate anion and urea moieties; these compounds will be analysed with the same 

techniques to investigate their self-association properties. 
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2.4.1 1H NMR quantification studies 

Quantitative 1H NMR (qNMR) is a technique which compares the compound with an internal 

standard to calculate the proportion of molecules in solution. This technique utilises an inherent 

property of NMR; the magnitude of each NMR signal is proportional to the number of nuclei 

responsible for the peak.103 Therefore, using a known standard and a known concentration of the 

compound, it is possible to calculate the percentage of molecules in the solvent. If the percentage 

is lower than 100% in the solvent, they are classified as being ‘NMR silent’ as it is outside the 

limitations of this technique. The limitations to solution state NMR spectroscopy are as followed, 

sensitivity, natural abundance of the isotope and solubility of the molecule. It is possible to restrict 

the limitations of sensitivity and natural abundance of the isotope by using a concentrated sample 

and a nucleus with a high natural abundance, in this case, 1H NMR.104 Therefore, if the compound 

is ‘NMR silent’ it will be due to the compound self-associating into an aggregate that adopts solid-

like characteristics and can no longer be seen by solution state NMR. 

Herein, compounds 3-5 and a 1:1 mixture of compounds 3 and 5 will be compared using 

previously used solvents, DMSO-d6 and water. The DMSO will be spiked with 1% DCM as the internal 

standard due to the peak appearing at 5.76 ppm, which appears away from the compound signals. 

The D2O will be spiked with 5% EtOH as the internal standard due to the peak appearing at 3.65 

ppm, away from the aromatic signals and can, therefore, be referenced. 

2.4.1.1 Results and discussion 

The data obtained from the qNMR studies show that there is no loss of compound in DMSO for 

compounds 4 and 5, whereas there is a loss of compound 3 and the mixture (Table 3). Compound 

3 shows no loss in the H2O: EtOH solution, while compounds 4,5 and the mixture shows a loss in 

the H2O: EtOH solution. 
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Table 3: Overview of the calculated % loss of compound at a total concentration of 111.12 mM in DMSO-d6 and a total 

concentration of 6.00 mM in H2O: EtOH 19:1 solution for compounds 3-5 and the 1:1 mixture of compounds 3 and 5. 

Compound 
% Loss 

DMSO-d6 w/ 1% DCM D2O w/ 5% EtOH 

3* 6 0 

4 0 29 

5 0 32 

3 and 5* 7 58 

* = repeated three times. 

The results show a small percentage of compound 3 and the mixture form aggregates with 

solid-like characteristic. This is unusual as most previously published compounds show no loss in 

DMSO-d6, similar to compounds 4 and 5. Therefore, this experiment was repeated three times to 

check the validity of the results, showing an average loss of 6 % and 7 % of compound 5 and the 1:1 

mixture, respectively. On the other hand, in D2O compound 3 shows no loss, while compounds 4, 5 

and the mixture shows a loss of 29, 32 and 58 %, respectively. Which indicates approximately a 

third of compounds 4 and 5 forms extended aggregates which cannot be seen by this technique 

and a combination of compounds 3 and 5 causes more molecules to be aggregated in D2O, 

indicating a greater interaction when the compounds are combined. Using compound 3 in DMSO 

as an example, the DCM peak is calculated to be 2.87. The CH2 peak at 3.65 ppm should integrate 

to be 2, however, it only shows 1.88 (Figure 26). Therefore, it is possible to see 94 % of the 

compound, while 6 % is lost to solid-like characteristics. Compound 3 is different from the 

previously published compounds, the results for the qNMR the opposite to what was found. It is 

hypothesised that as the functional group on compound 3 is not aromatic, it is less hydrophobic 

than compounds 4 and 5, hence, is more soluble in the H2O: EtOH solution. Further research will be 

carried out to find the cause of this anomaly. All qNMR spectra can be found in the appendix 

(Figures 101-108). 
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Figure 26 – 1H NMR spectrum (d1 = 60 s) of compound 3 (0.0364 g, 111.12 mM) and DCM (5 µl, 0.08 mM) in DMSO-d6. 6% 

loss of compound observed upon comparative signal integration. 

2.4.2 1H NMR DOSY studies 

1H NMR DOSY studies is used to calculate the hydrodynamic radius of the complex in solution. 

The 1H NMR DOSY experiment reports the diffusion coefficients for the individual resonances in a 

1H NMR spectrum, then using the Stokes-Einstein equation (Equation 1), the solvation sphere 

diameter can be calculated. 

Equation 1 – The Stokes-Einstein equation used to calculate the hydrodynamic diameter from the diffusion coefficient. 

 

To calculate the solvation sphere diameter of a compound, the calculation assumes that the 

particle is spherical, however, in practice the particle shapes are not spherical (Figure 27). 

Therefore, the size of particles obtained from this experiment will be treated as an estimate. 

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0
Chemical Shift (ppm)

1.882.87
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Additionally, the hydrodynamic diameter can only be determined if the compounds are fully 

observable in the solution with this technique. Herein, the 1H NMR DOSY will be carried out in 

DMSO-d6, compound 3 and the 1:1 mixture will be done in the future as due to synthetic troubles 

leading to time constraints. 

 

Figure 27 – Examples of non-spherical particles and how the hydrodynamic diameter would be calculated. 

2.4.2.1 Results and discussion 

The 1H NMR DOSY results calculate that compounds 4 and 5 have a diameter of 1.78 and 1.94 

nm, respectively (Table 4). Which represents low complex formation, such as monomers, dimers or 

trimers.  

Table 4 – Calculated hydrodynamic radius of compounds 4 and 5 (nm) in DMSO-d6 (111.12 mM). 

Compound 
Hydrodynamic diameter (nm) 

Anion Cation 

4 1.78 1.28 

5 1.94 1.37 

The results calculate the cation and anion have different diffusion constants, hence the 

compound and its counter cation, TBA, does not coordinate strongly in DMSO-d6. The 1H NMR DOSY 

spectra and the table of diffusion coefficients can be found below (Figure 28, 29). 
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Figure 28 – 1H DOSY NMR of compound 4 (111.12 mM) in DMSO-d6 conducted at 298.15 K. Anionic component 

highlighted in blue, TBA counter cation highlighted in red. Including the table representing the values for the diffusion 

constant for each peak used to calculate the hydrodynamic diameter (dH). Peaks 1-9 correspond to the anionic 

component of compound 4, while peaks 10-13 correspond to the cationic component of compound 4. 
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Figure 29 – 1H DOSY NMR of compound 5 (111.12 mM) in DMSO-d6 conducted at 298.15 K. Anionic component 

highlighted in blue, TBA counter cation highlighted in red. Including the table representing the values for the diffusion 

constant for each peak used to calculate the hydrodynamic diameter (dH). Peaks 1-10 correspond to the anionic 

component of compound 5, while peaks 11-14 correspond to the cationic component of compound 5. 
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 2.4.3 1H NMR self-association studies 

A series of 1H NMR dilution studies were performed to explore the strength of the molecular 

interactions. The dilution studies were conducted for compounds 4 and 5 in DMSO-d6 with 0.5 % 

H2O at a constant temperature of 298.15 K. This solvent system allowed the binding mechanism of 

the HBD urea NH groups to be studied. The data was processed under the assumption of the 

compounds forming low complex species from the DOSY results, the data obtained from 1H NMR 

dilution studies was used to calculate self-association constants using a program called Bindfit 

v0.5,105 showing the strength of the self-association within the molecule. The data was fitted to 

both dimerization/ equal K (EK) and cooperative equal K (CoEK) models. Both of these models 

assume one component, one-dimensional homogenous aggregation.106 The EK model assumes all 

self-association constants are identical (Equation 2A), whereas, the CoEK model assumes the first 

association event has a different energy compared to all of the subsequent events (Equation 2B).107 

If ρ < 1 there is positive cooperativity, if ρ > 1 then there is negative cooperativity and if ρ = 1 then 

it is non-cooperative. 

Equation 2 – One component general linear aggregation system and the EK (A) and CoEK binding model (B). 

 

2.4.3.1 Results and discussion 

The results of the self-association studies for compound 4 show that for the urea NH’s the 

chemical shift increases downfield as the concentration increases (Figure 30). This indicates the 

protons becomes more deshielded, suggesting the formation of a self-associating hydrogen bonded 

molecule at the urea NH. The amide NH (grey) has a negative change in chemical shift becoming 

more shielded, showing a hydrogen bond breaking. There are several hypothesises for this result; 
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inductive effects could cause the amide NH to be more shielded or it could already be a complexed 

molecule and the upfield change in chemical shift shows the complex breaking at the amide. 

 

Figure 30 – Graph illustrating the 1H NMR down-field change in chemical shift of NH resonances with increasing 

concentration of compound 4 in DMSO- d6 - 0.5 % H2O (298.15 K). 

Compound 5 shows a similar trend to compound 4 where the urea NH’s show a downfield 

change in chemical shift (Figure 31), while the amide NH also shows an upfield shift (grey). There is 

no change in chemical shift for the amine NH2 which shows there are no interactions at that point 

(yellow), which leaves it free to interact. 
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Figure 31 – Graph illustrating the 1H NMR down-field change in chemical shift of NH resonances with increasing 

concentration of compound 5 in DMSO- d6 - 0.5 % H2O (298.15 K). 

Both compounds were successfully fitted to both the dimerisation EK and CoEK model. 

Comparatively, the CoEK model shows a self-association constant approximately four times 

stronger than the EK model, however, considering the associated errors calculated for both models, 

the data supports the EK model. It is possible to conclude that the compounds dimerise with equal 

energies and the interacts are weak. 

Table 5 – Self-association constants (M-1) calculated for compounds 4 and 5 in a DMSO-d6 – 0.5% H2O solution at 298 K. 

These constants were obtained from the fitting of 1H NMR dilution data and refined to EK and CoEK models using 

Bindfit v0.5.105 The links for the Bindfit data are be provided within the appendix. 

Compound 
EK Model (M-1) CoEK Model (M-1) 

Ke Kdim Ke Kdim ρ 

4 1.41 (± 1.5 %) 0.71 (± 0.7 %) 10.91 (± 3.4 %) 5.45 (± 1.7 %) 0.30 (± 10.0 %) 

5 1.78 (± 0.6 %) 0.89 (± 0.3 %) 8.32 (± 3.1 %) 4.16 (± 1.6 %)  0.50 (± 5.2 %) 

1H NMR dilution studies will be performed on compounds 7 and 8 in the future to model the 

interactions at the nitro/aminopyridine.  
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2.4.4 1H NMR titration studies 

A series of 1H NMR titration studies were carried out for compounds 4, 5, 7-9 as hosts molecules 

with compounds 10 and TBA HSO4
- as guest molecules to mimic the thymine functional group and 

the sulfonate anion, respectively. This would allow us to calculate the strength of the interaction 

between the molecules. The titration results for compound 9 and TBA HSO4
- are previously 

published,96 it models the urea-sulfonate interaction and it is shown to interact with a weak 

association constant of 27 M-1. Association constants were calculated using Bindfit v0.5,105 refining 

it to three binding isotherms, these models assume one component, one-dimensional homogenous 

aggregation. Each NH resonance was separately refined to distinguish whether the interaction 

formed on a 1:1, 1:2 and 2:1 relationship. These studies were performed in collaboration with Milan 

Dimitrovski. 

2.4.4.1 Results and discussion 

The titration results of compound 4 with compound 10 show no correlation between the two 

compounds (Figure 32). The change in chemical shift between the compounds is negligible (< 0.01 

ppm), concluding that compound 4 does not interact with compound 10. 

 

Figure 32 – A graph showing the downfield 1H NMR change in chemical shift for each NH in compound 4 (host) with 

increasing the concentration of compound 10 (guest) in a DMSO-d6 – 0.5% H2O solution (298 K). 
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Titration results of compound 4 with TBA HSO4
- show an interaction between the molecules 

(Figure 33). However, it is not possible to fit these data to a binding model as multiple interactions 

are occurring within this system and is therefore no longer a one component system. 

 

Figure 33 – A graph showing the downfield 1H NMR change in chemical shift for each NH in compound 4 (host) with 

increasing the concentration of TBA HSO4- (guest) in a DMSO-d6 – 0.5% H2O solution (298 K). 

The titration results for compound 5 with compound 10 show no correlation, as the change in 

chemical shift is negligible (Figure 34). The two compounds were theorised to interact; however, it 

is hypothesised that the compound 5 interacts with the solvent, preventing the interaction between 

the compounds. 
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Figure 34 – A graph showing the downfield 1H NMR change in chemical shift for the NHs of compound 5 (host) with 

increasing the concentration of compound 10 (guest) in a DMSO-d6 – 0.5% H2O solution (298 K). 

The titration results of compound 5 with TBA HSO4
- show correlation with the urea NH and the 

amino group (Figure 35). The results correspond to the crystal structure showing an interaction 

between the sulfonate-urea (Figure 20). The graph also shows an interaction between the amino 

functional group and the sulfonate, which is also seen in the crystal structure. These data were 

unable to be fitted to the Bindfit model as multiple interactions are occurring in this system. 
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Figure 35 – A graph showing the downfield 1H NMR change in chemical shift for the NHs of compound 5 (host) with 

increasing the concentration of TBA HSO4- (guest) in a DMSO-d6 – 0.5% H2O solution (298 K). 

The titration results for compound 7 with compound 10 shows that there is no interaction 

between them as the change in chemical shift is negligible (< 0.01 ppm) (Figure 36). Using the results 

from this experiment and the titration between compound 4 and 10, there is no complex formation 

between compounds 7 and 10, this was expected as nitropyridine is not an analogue of adenine. 

 

Figure 36 – A graph showing the downfield 1H NMR change in chemical shift for the NHs of compound 7 (host) with 

increasing the concentration of compound 10 (guest) in a DMSO-d6 – 0.5% H2O solution (298 K). 



Page | 45 
 

The titration results for compound 7 with TBA HSO4
- show a weak association between them 

(Figure 37), it can be concluded that the compounds interact with a 1:1 ratio due to the numbers 

calculated for the 1:2 and 2:1 host: guest ratio either being too large or negative. However, the 

interaction between the sulfonate and the amide is weak. 

 

Figure 37 – A graph showing the downfield 1H NMR change in chemical shift for the NHs of compound 7 (host) with 

increasing the concentration of TBA+ HSO4- (guest) in a DMSO-d6 – 0.5% H2O solution (298 K). 

Table 6 – Association constants (M-1) calculated for each NH in compound 7 (host) titrated against TBA+ HSO4- (guest) in 

a DMSO-d6 – 0.5% H2O solution (298 K). The links for the Bindfit data is provided within the appendix. 

Host: Guest 1: 1 1: 2 2: 1 

NH K K11 K12 K11 K21 

Circle 
3.35 (± 1.1 %) 

436846684486 

(± 8309238 %) 
3.49 (± 1.8 %) 

-48.36  

(± -9.0 %) 

-24.69 

(± - 8.1 %) 

The titration results for compound 8 with compound 10 show a negative change in chemical 

shift, which here represents an upfield shift (Figure 38). However, these data could not be fitted to 

the Bindfit models as self-association is suspected, therefore, has multiple interactions occurring in 

this system. The dilution study of this compound is will be carried out in the future to figure out this 

complex system. 



Page | 46 
 

 

Figure 38 – A graph showing the downfield 1H NMR change in chemical shift for the NHs of compound 8 (host) with 

increasing the concentration of compound 10 (guest) in a DMSO-d6 – 0.5% H2O solution (298 K). 

The titration results for compounds 8 and TBA+ HSO4
- shows an interaction between the 

aminopyridine and the sulfonate (Figure 39). The initial upfield change in chemical shift suggests a 

hydrogen bond breaking, which is hypothesised to be the interruption of the self-associated 

species. Then the downfield change in chemical shift is hypothesised to be a complex formation 

between compounds 8 and 10 as the crystal structure of compound 5 shows an interaction between 

the aminopyridine-sulfonate (Figure 20). 
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Figure 39 – A graph showing the downfield 1H NMR change in chemical shift for the NHs of compound 8 (host) with 

increasing the concentration of TBA+ HSO4- (guest) in a DMSO-d6 – 0.5% H2O solution (298 K). 

The titration results for compound 9 and compound 10 shows that there is an interaction 

between them (Figure 40), there is a weak 1:1 association constant of 26 M-1 and 17 M-1 between 

the two NHs. The 1:2 and 2:1 binding models were not accepted as the errors are too large or the 

association constant is negative.  

 

Figure 40 – A graph showing the downfield 1H NMR change in chemical shift for the NHs of compound 9 (host) with 

increasing the concentration of compound 10 (guest) in a DMSO-d6 – 0.5% H2O solution (298 K). 
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Table 7  – Association constants (M-1) calculated for each NH in compound 9 (host) titrated against compound  10 -

(guest) in a DMSO-d6 – 0.5% H2O solution (298 K). The links for the Bindfit data is provided within the appendix. 

Host: Guest 1: 1 1: 2 2: 1 

NH K K11 K12 K11 K21 

Circle 
25.92 (± 5.7 %) 

2010437381651813 

(± 169434405 %) 
20.46 (± 9.7 %) 

56.18  

(± 97.5 %) 

639.76  

(± 112.9 %) 

Triangle 
17.33 (± 4.8 %) 38.31 (± 9.3 %) 

-5.25  

(± -24.1 %) 

0.00881 

(± 104.1 %) 

5400616 

(± 115.3 %) 

 

From the titration results, we can conclude that thymine does not interact with the 

nitropyridine amide functional group. However, the sulfonate shows interaction with the amide, 

hence, it is possible to form amide-sulfonate interactions, this is observed in the solid state (Figure 

19). As hypothesised, the thymine shows an interaction with the aminopyridine, but the 

aminopyridine also shows an interaction with the sulfonate and the thymine interacts with the 

urea. Therefore, it is hypothesised that with compound 5, there are competitive interactions 

between the sulfonate-aminopyridine, thymine-urea and thymine-aminopyridine weakening the 

thymine-aminopyridine interaction. 

2.4.5 Dynamic light scattering (DLS) and zeta potential 

DLS is a non-destructive technique used to determine the state of motion of particles and the 

spherical size of the particles which have been dissolved in a solvent system.108 Moreover, the lower 

limit of particle size in DLS is approximately 1 nm,109 therefore, low ordered complex species will be 

visible but the data will not be reliable. From the qNMR studies, the data shows over a quarter of 

the molecules in compounds 4, 5 and the mixture of compounds 3 and 5 forms an aggregate with 

solid-like characteristics in H2O: EtOH 19:1 solution, compound 3 was also tested in this study to 

compare with the mixture. It is assumed they form large aggregates that precipitate out of solution, 

DLS will be used to measure the size of these aggregates. DLS studies were not conducted for 

compound 3 as it did not show any loss of compound from the qNMR studies. These studies were 
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conducted at 3.00 mM due to solubility issues, then diluted to 0.30 mM to check whether the 

aggregates still form in a diluted sample. The sample was annealed to allow the aggregate to obtain 

a thermodynamic minimum. Zeta potential was also measured in the same solution to determine 

the stability of the aggregates formed in solution at 3.00 mM. Literature states that a zeta potential 

in between -30 mV and 30 mV is considered unstable.110  

2.4.5.1 Results and discussion 

The results show that compounds 4, 5 and the 1:1 mixture forms stable extended aggregates 

(> 50 nm and zeta potential < -30 mV) in a H2O: EtOH 19:1 solution (Table 11). The aggregates 

formed from compound 4 are larger than 5 and the mixture of compounds 3 and 5, however, the 

polydispersity index (PDI) increases from 26 % to 96 % which signifies it goes from a uniform 

distribution to a non-uniform distribution. Therefore, it is possible to conclude that this compound 

is relatively unstable in comparison to compound 5 and the mixture. This hypothesis is supported 

by the zeta potential, although it is considered stable at < -30 mV it is at the boundary of what is 

considered stable. Hence, it can be concluded that as the concentration decreases, the stability of 

the compound decreases too. Compound 5 forms aggregates with a size of 189 nm which decreases 

when the concentration decreases. However, as the concentration decreases, the PDI of the 

compound also decreases from 23 % to 14 %, which shows the aggregates become more uniform. 

The mixture of compounds 3 and 5 forms the smallest aggregates in comparison, with a size of 94 

nm down to 88 nm with decreasing concentration. As the PDI change is negligible as concentration 

decrease, it indicates that the aggregates remain stable. The addition of compound 3 to compound 

5 shows that it decreases the stability and size of the aggregates. This could be due to compound 3 

being more hydrophilic hence decreasing the stability of compound 5 in a H2O solution. Compound 

3 appears to form extended aggregates in a H2O: EtOH 19:1 solution, however, the zeta potential 

shows that the aggregates that are formed are unstable within this solution. This is hypothesised 

to be due to the hydrophilic properties of the compound.  
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Table 8 – Average intensity particle size distribution for compounds 3-5 and a 1:1 mixture of compounds 3 and 5 

calculated from 10 DLS runs at a total concentration of 3.00 mM and 0.3 mM. Zeta potential for compounds 3-5 and a 

1:1 mixture of compounds 3 and 5, calculated from 10 runs at a total concentration of 3.00 mM. Samples were 

prepared in series, with an aliquot of the most concentrated solution undergoing serial dilution and measured after 

heating to 40 ⁰C and cooling to 25 ⁰C. Error = standard error of the mean. 

Compound 
Peak maxima (nm) PDI (%) Zeta potential 

(mV) 3 mM 0.3 mM 3 mM 0.3 mM 

3 147.23 (± 7.4) 126.23 (± 2.85) 25.02 (± 0.7) 21.79 (± 0.3) -14.40 

4 230.97 (± 12.8) 222.45 (± 9.7) 26.13 (± 0.8) 96.25 (± 3.2) - 32.05 

5 189.30 (± 3.0) 128.41 (± 2.7) 23.56 (± 0.4) 14.20 (± 2.5) - 53.75 

3 and 5 94.47 (± 2.0) 88.61 (± 3.9) 24.69 (± 0.4) 25.68 (± 0.8) - 43.00 

All DLS graphs, DLS correlation functions and zeta potential graphs can be found in the 

appendix (Figures 126-145). 

2.4.6 Surface tension and critical micelle concentration (CMC)  

The CMC is the concentration at which the addition of any extra amphiphile will result in the 

formation of aggregates in solution,111 however, the aggregates can be present before the CMC is 

reached. The CMC will be determined as the concentration at which any addition of compound will 

no longer decrease the surface tension and has been found that a low CMC forms stable micelles.112 

The surfactant properties of the amphiphiles was tested using a pendant drop method in a H2O: 

EtOH 19:1 solution, corresponding to the DLS and zeta potential studies. Due to time constraints, 

the CMC for the mixture of compound 3 and 5 is not available, however, it will be done in the future. 

2.4.6.1 Results and discussion 

The CMC values were calculated for compounds 3-5 and the mixture (Table 12), it shows the 

following trend 3 > 4 > 5. Comparing the CMC to the zeta potential as the trend for zeta potential 

is as followed, 3 > 4 > 5, this shows the CMC and zeta potential have a positive correlation. The 

surface tension at CMC for compound 3 is the lowest, indicating that compound 3 is the best 

surfactant. 
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Table 9 – Overview of CMC and surface tension (obtained at CMC) measurements for compounds 3-5 at 25°C. 

Compound CMC (mM) Surface tension at CMC (mN/ m) 

3 24.98 53.70 

4 6.00 56.87 

5 4.24 57.70 

The 1:1 mixture was not studied with this technique due to time constraints, the CMC for the 

mixture will be done in the future. All CMC graphs can be found in the appendix (Figures 146-148). 

2.5 Low level in-silico modelling 

Computational chemistry is often combined with chemistry to help form hypothesis for 

problems that arise. An example of computational chemistry supporting chemistry is within 

synthetic chemistry, the electrostatic potential map can be calculated to help visualise the 

electronegative and electropositive areas of a compound and help support the hypothesis of the 

molecular interactions.113 Herein, computational chemistry will be used to calculate the 

electrostatic potential maps for compounds 3-10 using Spartan 16” with energy minimised semi-

empirical PM6 modelling methods to derive comparative Emax and Emin values.114 

2.5.1 Results and discussion 

The electrostatic potential maps show that for compound 3 the most negative point on the 

surface (Emin) of the molecules is predominately at the sulfonate (Figure 41), which is expected as 

the negative charge is carried there, however, there is also a negative point on the surface around 

the urea oxygen. Hence, the sulfonate and urea oxygen are the areas which are likely to be HBA 

groups. The most positive points on the surface (Emax) are compound 3 is at the urea NHs, amide 

NH and around the DNA moiety, therefore, these areas are likely to be HBD groups. This trend also 

occurs within compounds 4 and 5 (Figures 150-151). These electrostatic potential maps correlate 

with the crystal structures of compounds 4 and 5 as we see interactions between the sulfonate-

urea, the sulfonate-DNA moiety and the sulfonate-amide group (Figures 19-20). 
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Figure 41 – Electrostatic potential map calculated for the anionic component of 3. Emax and Emin values depicted in the 

Figure legends are given in kJ/mol. 

The electrostatic potential map for compound 7 shows that the Emin occurs around nitro 

functionality and amide oxygen (Figure 42), while the Emax occurs around the amide NH and nitrogen 

on the nitropyridine. However, when comparing to the crystal structure, it self-associates through 

the amide functionality showing that the Emin and Emax lies more towards the amide as opposed to 

the nitropyridine moiety. This trend is also apparent for compound 8 (Figure 154), however, a 

crystal structure was not obtained for compound 8, therefore, it is hypothesised that it would self-

associate through a similar motif. 
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Figure 42 – Electrostatic potential map calculated for compound 7. Emax and Emin values depicted in the Figure legends 

are given in kJ/mol. 

To conclude, the Emin areas are likely to be HBA groups while the Emax areas are likely to be HBD 

groups. It is hypothesised that low-level computational chemistry can be used to help predict where 

the hydrogen bonding will occur within the solid state.  

2.6 Antimicrobial properties 

Antimicrobial resistance is an ongoing problem and it is predicted to overtake cancer in the 

number of deaths by 2050,115 therefore, new antimicrobials must be discovered or the current 

antimicrobials must be improved to combat this problem. Antibiotics are often overused and 

misused, leading to a greater increase in antibiotic resistance.116 Bacteria can be classified into two 

types; Gram positive which have a single cell membrane and a thick cell wall, and Gram negative 

which have two cell membranes and a thin cell wall between the membranes. The amphiphiles will 

be tested on both types of bacteria, S.aureus for Gram positive and E.coli for Gram negative 

bacteria. The compounds will be screened at 3.33 mM, using a micro broth dilution method.117 

Compounds 3-5 and the 1:1 mixture were screened against S.aureus and E.coli, if a compound 

inhibits more than 10% of growth, the compound would be considered to show antimicrobial 

activity and will be taken further to calculate the MIC50. This study was conducted by Jess Boles. 
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2.6.1 Results and discussion 

The screening results for the compounds shows that for both S.aureus and E.coli, only 

compound 3 inhibits more than 10 % of growth for both types of bacteria (Figures 43-44), therefore 

only compound 3 will be taken further to calculate the MIC50.  

 

Figure 43 – Averaged growth curves created from absorbance readings of MRSA in the presence of compounds 3, 4, 5 

and 3 + 5 in combination at a total concentration of 3.3 mM.  

 

Figure 44 – Averaged growth curves created from absorbance readings of E. coli DH10B in the presence of compounds 

3, 4, 5 and 3 + 5 in combination at a total concentration of 3.3 mM. 
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2.7 Conclusion 

In conclusion, two novel DNA inspired amphiphiles were synthesised, characterised and self-

association properties were studied and shown to be in line with previously published methods. 

Novel comparative DNA inspired compounds were also synthesised to break down the complex 

interactions within the amphiphiles. Solid state, gas phase and solution state experiments showed 

the amphiphiles can self-associate and form low complex species in DMSO or aggregate into stable 

micelles in aqueous solutions. Only the thymine inspired amphiphile showed signs of antimicrobial 

activity against both S.aureus and E.coli. The titration results conclude that the adenine analogue 

amphiphile shows no interaction between the thymine comparative compound, this is 

hypothesised to be due to the competitive interactions of the functional groups between the 

compounds negating any changes.  

3. Future works 

The self-association and association properties of these novel amphiphiles were studied, they 

showed the formation of aggregates. They shared similar properties to previously published results 

from Hiscock et al. Hence, the future works that will be carried out are as followed: 

 As Compound 3 passed the antimicrobial screening, it will be taken further and the 

MIC50 will be calculated for Gram positive (S.aureus) and Gram negative (E.coli) 

bacteria. 

 DLS and DOSY studies will be carried out for compound 3 in DMSO. The CMC for the 

1:1 mixture of compounds 3 and 5 will be completed and self-association studies for 

compounds 6 and 7 will be carried out. A crystal structure of compound 8 will be 

obtained. 

 Synthesising the adenine inspired amphiphile and test the association properties with 

the thymine inspired amphiphile (Figure 45A). 
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 Synthesising a guanine and cytosine inspired amphiphiles and testing association 

properties between them (Figure 45 B, C). 

 

Figure 45 – Theoretical structures of DNA inspired amphiphiles A) adenine B) cytosine C) guanine. 
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4. Experimental techniques 

4.1 General remarks 

All reactions were performed under a slight positive pressure of nitrogen using oven-dried 

glassware. NMR spectra were determined using a Bruker AV2 400 MHz or Bruker AVNEO 400 MHz 

spectrometer with the chemical shifts reported in parts per million (ppm), calibrated to the centre 

of the solvent peak set. The data was processed using ACD Labs, all solvents and starting materials 

were purchased from commercial sources where available. High-resolution mass spectra were 

collected using a Bruker micrOTOF-Q mass spectrometer. Melting points were recorded in open 

capillaries using a Stuart SMP10 melting point apparatus. Infrared (IR) spectra were recorded using 

a Shimadzu IR-Affinity 1, the data was analysed in wavenumbers (cm-1) using IRsolution software. 

DLS and Zeta Potential studies were carried out using Anton Paar LitesizerTM 500 and processed 

using KalliopeTM Professional. 

4.2 DLS studies 

Studies conducted with compounds 4 and 5 were prepared in series with an aliquot of the most 

concentrated solution undergoing serial dilution. Sample sizes were kept to 1 mL. All solvents used 

for DLS studies were filtered to remove particulates from the solvents. Samples were heated to the 

appropriate temperature and allowed to equilibrate for 1 hour and then a series of 10 ‘runs’ were 

performed with each sample to give enough data to derive an appropriate average. In some 

instances, the raw correlation data indicated that a greater amount of time may be needed for the 

samples to reach a stable state. For this reason, only the last 9 ‘runs’ were included in the average 

size distribution calculations. 

4.3 Zeta potential studies 

All solvents used for Zeta potential studies were filtered to remove particulates from the 

solvents. Samples were heated to the appropriate temperature and allowed to equilibrate for 1 

hour and then a series of 10 ‘runs’ at 25 ⁰C were performed with each sample to give enough data 
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to derive an appropriate average. In some instances, the raw correlation data indicated that a 

greater amount of time may be needed for the samples to reach a stable state. For this reason, only 

the last 9 ‘runs’ were included in the average size distribution calculations. 

4.4 High-resolution mass spectra studies 

Samples were dissolved in HPLC-grade methanol at a concentration of 1 mg/mL before being 

diluted 1 in 100 in methanol. 10 μL of the sample was injected into a flowing stream of 10 mM 

ammonium acetate in 95% methanol in water (flow rate: 0.02 mL/min) and the flow directed into 

the electrospray source of the mass spectrometer. Mass spectra were acquired in the negative ion 

mode and data processed in Bruker’s Compass Data Analysis software. 

4.5 Self-association and association constant calculation 

All association constants were calculated using the freely available bindfit programme 

(http://app.supramolecular.org/bindfit/). All the data relating to the calculation of the association 

constants can be accessed online, through the links given for each complexation event. 

4.6 Single-crystal X-ray studies 

A suitable crystal of each amphiphile was selected and mounted on a Rigaku Oxford Diffraction 

Supernova diffractometer. Data were collected using Cu Kα radiation at 293 K. Structures were 

solved with the ShelXT118 or ShelXS structure solution programs via Direct Methods and refined with 

ShelXL119 by Least Squares minimisation. Olex2120 was used as an interface to all ShelX programs 

(CCDC 1866274-1866275) 

4. Synthesis 

Compound 1: This compound was synthesised in line with our previously published methods. 

Proton NMR were found to match our previously published values.91 1H NMR (400 MHz, DMSO-d6): 

0.93 (t, J = 7.34 Hz, 12H), 1.31 (s, J = 7.36 Hz, 8H), 1.56 (m, 8H), 3.16 (m, 8H), 3.92 (d, J = 6.00 Hz, 

2H), 6.99 (br s, NH), 7.58 (d, J = 9.20 Hz, 2H), 8.09 (d, J = 9.28 Hz, 2H), 9.56 (br s, NH). 
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Compound 2: This compound was synthesised in line with our previously published methods. 

Proton NMR were found to match our previously published values.92 1H NMR (400 MHz, DMSO-d6): 

0.93 (t, J = 7.24 Hz, 12H), 1.30 (m, 8H), 1.56 (m, 8H), 3.16 (m, 8H), 3.84 (d, J = 5.85 Hz, 2H), 4.62 (br 

s, 2H, NH2), 6.23 (m, NH), 6.45 (d, J = 8.68 Hz, 2H), 7.00 (d, J = 8.72 Hz, 2H), 8.26 (br s, NH). 

Compound 3: HOSu (0.118 g, 1.027 mM) was added to a stirring solution of thymine-1-acetic 

acid (0.190 g, 1.027 mM) and compound 2 (0.50 g, 1.027 mM) in DMF (2 mL) in an ice-bath for 30 

mins. After the 30 mins DCC (0.254 g, 1.233 mM) in DMF (2 mL) was added to the solution and taken 

out of the ice bath and left stirring overnight. Water (10 mL) was added, the precipitate was filtered 

and removed. The water was taken to dryness and the solid was dissolved DCM (20 mL). The 

precipitate was filtered, collected and dissolved in ethanol (20 mL). The precipitate was filtered, 

removed and the ethanol was taken to dryness. Pure product was obtained by precipitation with 

acetone yielding a white solid. Yield: 54% (0.36 g, 0.55 mM); 1H NMR (400 MHz, DMSO-d6): 0.93 (t, 

J = 14.60 Hz, 12H), 1.30 (m, 8H), 1.54 (m, 8H), 1.76 (s, 3H), 3.16 (m, 8H), 3.84 (d, J = 5.88 Hz, 2H), 

4.46 (s, 2H), 6.40 (br s, NH), 7.30 (d, J = 8.88 Hz, 2H), 7.41 (d, J = 9.08 Hz, 2H), 7.51 (s, 1H), 8.70 (s, 

NH), 10.12 (s, NH), 11.34(s, NH); 

Compound 4: EDC (0.087 g, 0.452 mM) was added to a stirring solution 2-nitroisonicotinic acid 

(0.07 g, 0.411 mM) and Compound 2 (0.20 g, 0.411 mM) in DMF (2 mL) in an ice-bath overnight. 

Water (10 mL) was added and separated with ethyl acetate (2 x 20 mL). The organic layer was taken 

to dryness, and the pure product was obtained by precipitation with water yielding a bright yellow 

solid. Yield: 51% (0.133 g, 0.209 mM); Melting point: 200°C; 1H NMR (400 MHz, DMSO-d6): 0.93 (t, 

J = 14.68 Hz, 12H), 1.30 (m, 8H), 1.56 (m, 8H), 3.16 (m, 8H), 3.87 (d, J = 5.76 Hz, 2H), 6.47 (m, NH), 

7.40 (d, J = 8.80 Hz, 2H), 7.63 (d, J = 8.92 Hz, 2H), 8.36 (d, J = 4.88 Hz, 1H), 8.78 (s, 1H), 8.81 (br s, 

NH), 8.87 (d, J = 4.96 Hz, 1H), 10.67 (br s, NH); 13C{1H} NMR (100 MHz, DMSO-d6): δ: 13.5 (CH3), 19.2 

(CH2), 23.1 (CH2), 56.1 (CH2), 57.5 (CH3), 116.2 (CH), 117.6 (CH), 121.2 (CH), 127.8 (CH), 131.6 (C), 

137.4 (C), 146.4 (C), 149.7 (CH), 154.6 (C), 157.0 (C), 161.2 (C); IR (film): ν = 3333 (NH stretch), 1693 

(C=O stretch), 1520 & 1312 (NO2 stretch) ; HRMS for the sulfonate-urea ion (C14H12N5O7S) (ESI-): 

m/z: act: 394.0440 [M]- cal: 394.3385 [M]-. 
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Compound 5: Compound 4 (3.50 g, 0.55 mM), hydrazine hydrate (1.00 mL, 28.75 mM) and 

Pd/C 10 % (0.10 g) were heated at reflux overnight in ethanol (20 mL). The Pd/C 10 % was removed 

by filtration and the remaining solution taken to dryness. Pure product was obtained by 

precipitation with acetone. Yield: 84% (2.80 g, 0.46 mM); Melting point: >200°C; 1H NMR (400 MHz, 

DMSO-d6): 0.93 (t, J = 7.24 Hz, 12H), 1.30 (m, 8H), 1.56 (m, 8H), 3.16 (m, 8H), 3.85 (d, J = 5.60 Hz, 

2H), 6.20 (s, NH2), 6.42 (m, NH), 6.85 (s, 1H), 6.91 (d, J = 4.96 Hz, 1H), 7.33 (d, J = 8.68 Hz, 2H), 7.58 

(d, J = 8.64 Hz, 2H), 8.02 (d, J = 5.16 Hz, 1H), 8.74 (br s, NH), 10.15 (s, NH); 13C{1H} NMR (100 MHz, 

DMSO-d6): δ: 13.6 (CH3), 19.2 (CH2), 23.1 (CH2), 56.1 (CH2), 57.5 (CH3), 106.2 (CH), 109.4 (CH), 117.6 

(CH), 121.0 (CH), 132.3 (C), 136.8 (C), 143.5 (C), 148.4 (CH), 154.6 (C), 160.3 (C), 164.4 (C); IR (film): 

ν = 3329 (NH stretch), 1676 (C=O stretch); HRMS for the sulfonate-urea ion (C14H14N5O5S) (ESI-): m/z: 

act: 364.0702 [M]- cal: 364.3565 [M]-. 

Compound 6: This compound was synthesised in line with our previously published methods. 

Proton NMR were found to match our previously published values.96 1H NMR (400 MHz, DMSO-d6): 

1.77 (s, 3H), 4.57 (s, 2H), 7.53 (s, 1H), 7.81 (d, J = 9.28 Hz, 2H), 8.24 (d, J = 9.28 Hz, 2H), 10.92 (s, 

NH), 11.41 (s, NH). 

Compound 7: 2-nitroisonicotinic acid (0.37 g, 2.17 mmol) was added to a stirred solution of CDI 

(0.387 g, 2.38 mmol) in chloroform (15 mL) and heated at reflux at 70 ͦC under nitrogen for 4 hours. 

4-(trifluoromethyl) aniline (0.45 mL, 2.17 mmol) was added to the mixture and left overnight. Crude 

product was diluted in chloroform (20 mL) and water (3 x 20 mL). The organic layer was reduced in 

volume and pure product was obtained by precipitation with hexane. Yield: 54% (0.366 g, 1.18 mM); 

Melting point: 195°C; 1H NMR (400 MHz, DMSO-d6): 7. 77 (d, J = 8.60 Hz, 2H), 8.01 (d, J = 8.52 Hz, 

2H), 8.37 (dd, J = 1.36, 4.94 Hz, 1H), 8.80 (s, 1H), 8.90 (d, J = 4.88 Hz, 1H), 11.09 (s, NH); 13C{1H} NMR 

(100 MHz, DMSO-d6): δ: 116.3 (ArCH), 120.5 (ArCH), 124.5 (CF3, J = 31.69 Hz), 126.1 (ArCH, J = 269.99 

Hz), 128.0 (ArCH, J = 3.79 Hz), 141.9 (ArC), 145.8 (ArC), 149.9 (ArCH), 156.9 (ArC), 162.4 (C=O); IR 

(film): ν = 3333 (NH stretch), 1662 (C=O stretch), 1535 & 1327 (N-O stretch); HRMS for the sulfonate-

urea ion (C13H8F3N3O3) (ESI-): m/z: act: 310.0433 [M]- cal: 311.2202 [M]-. 
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Compound 8: Hydrazine hydrate (0.5 mL, 10 mM) was added to a stirring solution of Compound 

7 (0.200 g, 0.64 mM) and Pd/C (0.05 g, mM) in ethanol (20 mL) and was heated to 80 ͦC. The solution 

was filtered and taken to dryness. Yield: 75% (0.136g, 0.48 mM); Melting point: >200°C; 1H NMR 

(400 MHz, DMSO-d6): 6.27 (br s, NH2), 6.88 (s, 1H), 6.93 (m, 1H), 7.72 (d, J = 8.52 Hz, 2H), 7.98 (d, J 

= 8.60 Hz, 2H), 8.07 (d, J = 5.24 Hz, 1H) 10.62 (br s, NH); 13C{1H} NMR (100 MHz, DMSO-d6): δ: 106.3 

(ArCH), 109.4 (ArCH), 120.2 (ArCH), 123.0 (q, J = 31.87 Hz, ArC), 123.9 (q, J = 270.00 Hz, CF3), 126.0 

(q, J = 3.79 Hz, ArCH), 142.5 (ArC), 143.0 (ArC), 148.4 (ArCH), 160.2 (C=O), 165.5 (ArC); IR (film): ν = 

3304 (NH stretch), 1676 (C=O stretch); HRMS for the sulfonate-urea ion (C13H10F3N3O) (ESI-): m/z: 

act: 280.0820 [M]- cal: 281.2382 [M]-. 

Compound 9: This compound was synthesised in line with our previously published methods. 

Proton NMR were found to match our previously published values.96 1H NMR (400 MHz, DMSO-d6): 

0.89 (t, J = 7.24 Hz, 3H), 1.30 (m, 2H), 1.41 (m, 2H), 3.10 (q, J = 5.76 Hz, 2H), 6.41 (m, NH), 7.61 (d, J 

= 9.36 Hz, 2H), 8.12 (d, J = 9.36 Hz, 2H), 9.19 (br s, NH).  

Compound 10: This compound was synthesised in line with previously published methods. 

Proton NMR were found to match previously published values.121 1H NMR (400 MHz, DMSO-d6): 

1.75 (d, J = 1.10 Hz, 3H), 3.68 (s, 3H), 4.48 (s, 2H), 7.50 (d, J = 1.2 Hz, 1H), 11.43 (br s, NH). 

5. References 

1 J. -M Lehn, Angew. Chemie Int. Ed., 1988, 27, 89–112. 

2 J. M. Lehn, Acc. Chem. Res., 1978, 11, 49–57. 

3 F. Wöhler, Ann. Phys., 1828, 88, 253–256. 

4 E. Kinne-Saffran and R. K. H. Kinne, Am. J. Nephrol., 1999, 19, 290–294. 

5 A. S. Travis, Technol. Cult., 1990, 31, 51. 

6 G. N. Lewis, J. Am. Chem. Soc., 1916, 38, 762–785. 

7 G. N. Lewis, J. Am. Chem. Soc., 1913, 35, 1448–1455. 

8 J. J. Thomson, London, Edinburgh, Dublin Philos. Mag. J. Sci., 1914, 27, 757–789. 

9 J. D. van der Waals, On the Continuity of the Gaseous and Liquid States, edited with an 
introduction by J. S. Rowlinson, Elsevier Science Ltd, Amsterdam; Oxford, 1988. 

10 J. D. van der Waals, Nature, 1874, 10, 477–480. 

11 H. Margenau, Rev. Mod. Phys., 1939, 11, 1–35. 



Page | 62 
 

12 E. Fischer, Berichte der Dtsch. Chem. Gesellschaft, 1894, 27, 3479–3483. 

13 T. S. Moore and T. F. Winmill, J. Chem. Soc. Trans., 1912, 101, 1635–1676. 

14 W. M. Latimer and W. H. Rodebush, J. Am. Chem. Soc., 1920, 42, 1419–1433. 

15 C. J. Pedersen, J. Am. Chem. Soc., 1967, 89, 7017–7036. 

16 D. J. Cram and R. H. Bauer, J. Am. Chem. Soc., 1959, 81, 5971–5977. 

17 B. Dietrich, J. M. Lehn and J. P. Sauvage, Tetrahedron Lett., 1969, 10, 2889–2892. 

18 K. E. Drexler, Engines of creation: The Coming Era of Nanotechnology, Anchor 
Press/Doubleday, New York, NY, 1986. 

19 J. F. Stoddart, Angew. Chemie Int. Ed., 2017, 56, 11094–11125. 

20 J. B. Wittenberg and L. Isaacs, in Supramolecular Chemistry, John Wiley & Sons, Ltd, 
Chichester, UK, 2012. 

21 G. M. Whitesides and M. Boncheva, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 4769–4774. 

22 X. Lin and M. W. Grinstaff, Isr. J. Chem., 2013, 53, 498–510. 

23 J. W. Steed and J. L. Atwood, Supramolecular Chemistry: Second Edition, John Wiley & Sons, 
Ltd, Chichester, UK, 2009. 

24 B. W. Ninham and V. A. Parsegian, Biophys. J., 1970, 10, 646–663. 

25 M. L. Waters, Curr. Opin. Chem. Biol., 2002, 6, 736–741. 

26 W. R. Zhuang, Y. Wang, P. F. Cui, L. Xing, J. Lee, D. Kim, H. L. Jiang and Y. K. Oh, J. Control. 
Release, 2019, 294, 311–326. 

27 B. Davarcioglu, Int. J. Mod. Eng. Res., 2011, 1, 443–454. 

28 D. A. Dougherty, Acc. Chem. Res., 2013, 46, 885–893. 

29 B. L. Schottel, H. T. Chifotides and K. R. Dunbar, Chem. Soc. Rev., 2008, 37, 68–83. 

30 M. M. Conn and J. Rebek, Chem. Rev., 1997, 97, 1647–1668. 

31 P. Dapporto, P. Paoli and S. Roelens, J. Org. Chem., 2001, 66, 4930–4933. 

32 G. Ono, A. Izuoka, T. Sugawara and Y. Sugawara, J. Mater. Chem., 1998, 8, 1703–1709. 

33 J. W. Larson and T. B. Mcmahon, Inorg. Chem., 1984, 23, 2029–2033. 

34 J. Emsley, Chem. Soc. Rev., 1980, 9, 91–124. 

35 J. J. Dannenberg, L. Haskamp and A. Masunov, J. Phys. Chem. A, 1999, 103, 7083–7086. 

36 T. Steiner, Angew. Chemie Int. Ed., 2002, 41, 48–76. 

37 R. Taylor and O. Kennard, Acc. Chem. Res., 1984, 17, 320–326. 

38 C. F. Baxter, Q. Rev. Biol., 1957, 32, 197–197. 

39 E. Kaneko and R. Niwa, BioDrugs, 2011, 25, 1–11. 

40 J. M. Berg, J. L. Tymoczko and L. Stryer, Biochemistry, W.H. Freeman, New York, NY, 5th 
edn., 2002. 

41 H. Lodish, A. Berk and C. A. Kaiser, Molecular Cell Biology, W.H. Freeman, New York, NY, 6th 
edn., 2007. 

42 K. P. Murphy, Methods Mol. Biol., 1995, 40, 1–34. 



Page | 63 
 

43 B. A. Shirley, Protein Stability and Folding, Humana Press, Totowa, NJ, 1st edn., 1995. 

44 N. Darby and T. E. Creighton, Methods Mol. Biol., 1995, 40, 219–252. 

45 J. Janin, R. P. Bahadur and P. Chakrabarti, Q. Rev. Biophys., 2008, 41, 133–180. 

46 J. D. Watson and Crick. F. H. C., Nature, 1953, 171, 737–738. 

47 R. J. Heyden, P. DeSaix, J. G. Betts, E. Johnson, J. E. Johnson, O. Korol, D. H. Kruse, B. Poe, J. 
A. Wise and K. A. Young, Anatomy & Physiology, Rice University, Houston, TX, 2013. 

48 S. Payne, Viruses: From understanding to investigation, Academic Press, Cambridge, MA, 1st 
edn., 2017. 

49 S. Neidle, Principles of Nucleic Acid Structure, Springer New York, New York, NY, 1st edn., 
2008. 

50 IUPAC-IUB-Commission, Biochemistry, 1970, 9, 4022–4027. 

51 C. F. Matta, N. Castillo and R. J. Boyd, J. Phys. Chem. B, 2006, 110, 563–578. 

52 E. N. Nikolova, H. Zhou, F. L. Gottardo, H. S. Alvey, I. J. Kimsey and H. M. Al-Hashimi, 
Biopolymers, 2013, 99, 955–968. 

53 P. Yakovchuk, E. Protozanova and M. D. Frank-Kamenetskii, Nucleic Acids Res., 2006, 34, 
564–574. 

54 S. S. Patel and I. Donmez, J. Biol. Chem., 2006, 281, 18265–18268. 

55 F. A. Aldaye, A. L. Palmer and H. F. Sleiman, Science, 2008, 321, 1795–1799. 

56 Y. Ke, J. Sharma, M. Liu, K. Jahn, Y. Liu and H. Yan, Nano Lett., 2009, 9, 2445–2447. 

57 Y. Ke, L. L. Ong, W. M. Shih and P. Yin, Science, 2012, 338, 1177–1183. 

58 W. B. Sherman and N. C. Seeman, Nano Lett., 2004, 4, 1203–1207. 

59 T. Omabegho, R. Sha and N. C. Seeman, Science, 2009, 324, 67–71. 

60 H. Berry and H. S. Bean, J. Pharm. Pharmacol., 1950, 2, 473–483. 

61 P. Fromherz, Chem. Phys. Lett., 1981, 77, 460–466. 

62 P. A. Hassan, G. Verma and R. Ganguly, in Functional Materials, Elsevier, Waltham, MA, 
2012, pp. 1–59. 

63 D. Lombardo, M. A. Kiselev, S. Magazù and P. Calandra, Adv. Condens. Matter Phys., 2015, 
1–22. 

64 R. Azarmi and A. Ashjaran, J. Chem. Pharm. Res., 2015, 7, 632–640. 

65 V. S. Kulkarni and C. Shaw, in Essential Chemistry for Formulators of Semisolid and Liquid 
Dosages, Academic Press, Cambridge, MA, 2016, pp. 5–19. 

66 A. Wu, Y. Gao and L. Zheng, Green Chem., 2019, 21, 4290–4312. 

67 G. Graziano, Biophys. Chem., 1999, 82, 69–79. 

68 R. Godawat, S. N. Jamadagni and S. Garde, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 15119–
15124. 

69 D. Bradburn and T. Bittinger, Micelles: Structural Biochemistry, Formation and Functions & 
Usage, Nova Science, Hauppauge, NY, 2013. 

70 B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, Molecular biology of the 



Page | 64 
 

cell, Garland Science, New York, NY, 1st edn., 2002. 

71 J. A. Shaeiwitz, Chem. Eng. Commun., 1987, 55, 225–234. 

72 P. M. Hwang and H. J. Vogel, Biochem. Cell Biol., 1998, 76, 235–246. 

73 A. Markey, V. L. Workman, I. A. Bruce, T. J. Woolford, B. Derby, A. F. Miller, S. H. Cartmell 
and A. Saiani, J. Pept. Sci., 2017, 23, 148–154. 

74 A. A. Bahar and D. Ren, Pharmaceuticals, 2013, 6, 1543–75. 

75 D. Attwood and J. A. Tolley, J. Pharm. Pharmacol., 1980, 32, 761–765. 

76 D. Causon, J. Gettins, J. Gormally, R. Greenwood, N. Natarajan and E. Wyn-Jones, J. Chem. 
Soc. Faraday Trans. 2 Mol. Chem. Phys., 1981, 77, 143–151. 

77 A. D. Atherton and B. W. Barry, J. Pharm. Pharmacol., 1985, 37, 854–862. 

78 F. Sarmiento, J. L. López-Fontán, G. Prieto, D. Attwood and V. Mosquera, Colloid Polym. Sci., 
1997, 275, 1144–1147. 

79 D. Attwood, V. Mosquera, M. Garcia, M. J. Suarez and F. Sarmiento, J. Colloid Interface Sci., 
1995, 175, 201–206. 

80 D. Attwood and S. P. Agarwal, J. Pharm. Pharmacol., 1979, 31, 392–395. 

81 B. Y. Wang, H. Xu and X. Zhang, Adv. Mater., 2009, 21, 2849–2864. 

82 X. Zhang and C. Wang, Chem. Soc. Rev., 2011, 40, 94–101. 

83 C. Wang, Z. Wang and X. Zhang, Acc. Chem. Res., 2012, 45, 608–618. 

84 Y. Kang, K. Liu and X. Zhang, Langmuir, 2014, 30, 5989–6001. 

85 P. Foley, A. Kermanshahi Pour, E. S. Beach and J. B. Zimmerman, Chem. Soc. Rev., 2012, 41, 
1499–1518. 

86 F. Lortie, S. Boileau and L. Bouteiller, Chem. Eur. J., 2003, 9, 3008–3014. 

87 C. M. C. Faustino, A. R. T. Calado and L. Garcia-Rio, J. Colloid Interface Sci., 2010, 351, 472–
477. 

88 M. Pittelkow, C. B. Nielsen, A. Kadziola and J. B. Christensen, J. Incl. Phenom. Macrocycl. 
Chem., 2009, 63, 257–266. 

89 M. Pittelkow, J. B. Christensen and E. W. Meijer, J. Polym. Sci. Part A Polym. Chem., 2004, 
42, 3792–3799. 

90 M. Pittelkow, C. B. Nielsen, M. A. C. Broeren, J. L. J. Van Dongen, M. H. P. Van Genderen, E. 
W. Meijer and J. B. Christensen, Chem. Eur. J., 2005, 11, 5126–5135. 

91 J. R. Hiscock, G. P. Bustone, B. Wilson, K. E. Belsey and L. R. Blackholly, Soft Matter, 2016, 
12, 4221–4228. 

92 L. J. White, S. N. Tyuleva, B. Wilson, H. J. Shepherd, K. K. L. Ng, S. J. Holder, E. R. Clark and J. 
R. Hiscock, Chem. Eur. J., 2018, 24, 7761–7773. 

93 L. J. White, N. J. Wells, L. R. Blackholly, H. J. Shepherd, B. Wilson, G. P. Bustone, T. J. 
Runacres and J. R. Hiscock, Chem. Sci., 2017, 8, 7620–7630. 

94 S. N. Tyuleva, N. Allen, L. J. White, A. Pépés, H. J. Shepherd, P. J. Saines, R. J. Ellaby, D. P. 
Mulvihill and J. R. Hiscock, Chem. Commun., 2019, 55, 95–98. 

95 L. R. Blackholly, MRes Thesis, University of Kent, 2017. 



Page | 65 
 

96 T. L. Gumbs, L. J. White, N. J. Wells, H. J. Shepherd and J. R. Hiscock, Supramol. Chem., 2018, 
30, 42–51. 

97 M. Eckert, Ann. Phys., 2012, 524, A83–A85. 

98 J. P. Zhang, P. Q. Liao, H. L. Zhou, R. B. Lin and X. M. Chen, Chem. Soc. Rev., 2014, 43, 5789–
5814. 

99 L. R. Blackholly, H. J. Shepherd and J. R. Hiscock, CrystEngComm, 2016, 18, 7021–7028. 

100 M. Przybylski and M. O. Glocker, Angew. Chemie Int. Ed., 1996, 35, 807–826. 

101 C. S. Ho, C. W. K. Lam, M. H. M. Chan, R. C. K. Cheung, L. K. Law, L. C. W. Lit, K. F. Ng, M. W. 
M. Suen and H. L. Tai, Clin. Biochem. Rev., 2003, 24, 3–12. 

102 V. M. Wallace, N. R. Dhumal, F. M. Zehentbauer, H. J. Kim and J. Kiefer, J. Phys. Chem. B, 
2015, 119, 14780–14789. 

103 R. F. Evilia, Anal. Lett., 2001, 34, 2227–2236. 

104 M. C. Malet-Martino and R. Martino, Clin. Pharmacokinet., 1991, 20, 337–349. 

105 P. Thordarson, K. Sewell and V. Efremova, Bindfit v0.5, http://supramolecular.org. 

106 L. K. S. Von Krbek, C. A. Schalley and P. Thordarson, Chem. Soc. Rev., 2017, 46, 2622–2637. 

107 R. B. Martin, Chem. Rev., 1996, 96, 3043–3064. 

108 W. I. Goldburg, Am. J. Phys., 1999, 67, 1152–1160. 

109 E. Tomaszewska, K. Soliwoda, K. Kadziola, B. Tkacz-Szczesna, G. Celichowski, M. Cichomski, 
W. Szmaja and J. Grobelny, J. Nanomater., 2013, 2013, 1–10. 

110 T. Tadros, Colloids and Surfaces, 1982, 5, 79–80. 

111 T. Tadros, in Encyclopedia of Colloid and Interface Science, Springer Berlin Heidelberg, 
Berlin, Heidelberg, 2013, pp. 209–210. 

112 Y. H. A. Hussein and M. Youssry, Materials (Basel)., 2018, 11, 688. 

113 M. Schaefer and C. Froemmel, J. Mol. Biol., 1990, 216, 1045–1066. 

114 J. J. P. Stewart, J. Mol. Model., 2007, 13, 1173–1213. 

115 J. O’Neill, Rev. Antimicrob. Resist., 2016, 1, 1–16. 

116 C. L. Ventola, P T, 2015, 40, 277–83. 

117 I. Wiegand, K. Hilpert and R. E. W. Hancock, Nat. Protoc., 2008, 3, 163–175. 

118 G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr., 2015, 71, 3–8. 

119 G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 3–8. 

120 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. 
Crystallogr., 2009, 42, 339–341. 

121 V. Vendrell-Criado, V. Lhiaubet-Vallet, M. Yamaji, M. C. Cuquerella and M. A. Miranda, Org. 
Biomol. Chem., 2016, 14, 4110–4115. 

 



Page | 66 
 

6. Appendix  

6.1 Characterisation NMR 

 

Figure 46 – 1H NMR of Compound 1 in DMSO - d6. 

 

Figure 47 – Enlarged 1H NMR of Compound 1 in DMSO - d6. 
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Figure 48 – Enlarged 1H NMR of Compound 1 in DMSO - d6. 

 

Figure 49 – 1H NMR of Compound 2 in DMSO - d6. 

 

Figure 50 – Enlarged 1H NMR of Compound 2 in DMSO - d6.  
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Figure 51 – Enlarged 1H NMR of Compound 2 in DMSO - d6. 

 

Figure 52 – 1H NMR of Compound 3 in DMSO - d6. 
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Figure 53 – Enlarged 1H NMR of Compound 3 in DMSO - d6. 

 

Figure 54 – Enlarged 1H NMR of Compound 3 in DMSO - d6. 

 

Figure 55 – 1H NMR of Compound 4 in DMSO - d6. 
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Figure 56 – Enlarged 1H NMR of Compound 4 in DMSO - d6. 

 

Figure 57 – Enlarged 1H NMR of Compound 4 in DMSO - d6. 

 

Figure 58 – 13C NMR of Compound 4 in DMSO - d6. 

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5
Chemical Shift (ppm)

1.001.991.981.022.921.00

1
0

.6
6

9
2

8
.8

7
2

7
8

.8
6

0
3

8
.7

7
8

2

8
.3

6
5

6
8

.3
5

3
4

7
.6

4
9

5
7

.6
2

7
2

7
.4

1
1

6
7

.3
8

9
6

6
.4

7
2

5

4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
Chemical Shift (ppm)

12.127.897.857.682.00

DMSO

Water

3
.8

8
3

8
3

.8
6

9
4

3
.1

7
9

2
3

.1
5

8
5

3
.1

3
7

2

1
.5

8
2

3
1

.5
6

3
5

1
.5

4
5

8
1

.3
3

3
9

1
.3

1
5

3
1

.2
9

7
2

1
.2

7
9

0
0

.9
4

9
9

0
.9

3
1

5
0

.9
1

3
2

160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16
Chemical Shift (ppm)

1
6

1
.1

8
5

9
1

5
6

.9
6

8
0

1
5

4
.5

5
4

6
1

4
9

.7
3

1
4

1
4

6
.3

5
4

0

1
3

7
.4

0
9

7

1
3

1
.6

1
7

0
1

2
7

.7
9

7
5

1
2

1
.2

1
3

6
1

1
7

.6
2

9
4

1
1

6
.1

6
6

5

5
7

.5
1

6
2

5
6

.1
1

0
3

2
3

.0
5

5
8

1
9

.1
9

6
5

1
3

.4
7

7
8



Page | 71 
 

 

Figure 59 – Enlarged 13C NMR of Compound 4 in DMSO - d6. 

 

Figure 60 – Enlarged 13C NMR of Compound 4 in DMSO - d6. 

 

Figure 61 – 1H NMR of Compound 5 in DMSO - d6. 
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Figure 62 – Enlarged 1H NMR of Compound 5 in DMSO - d6. 

 

Figure 63 – Enlarged 1H NMR of Compound 5 in DMSO - d6. 

 

Figure 64 – 13C NMR of Compound 5 in DMSO - d6. 
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Figure 65 – Enlarged 13C NMR of Compound 5 in DMSO - d6. 

 

Figure 66 – Enlarged 13C NMR of Compound 5 in DMSO - d6. 

 

Figure 67 – 1H NMR of Compound 6 in DMSO - d6. 
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Figure 68 – Enlarged 1H NMR of Compound 6 in DMSO - d6. 

 

Figure 69 – Enlarged 1H NMR of Compound 6 in DMSO - d6. 
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Figure 70 – 13C NMR of Compound 6 in DMSO - d6. 

 

Figure 71 – Enlarged 13C NMR of Compound 6 in DMSO - d6. 
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Figure 72 – Enlarged 13C NMR of Compound 6 in DMSO - d6. 

 

Figure 73 – 1H NMR of Compound 7 in DMSO - d6. 



Page | 77 
 

 

Figure 74 – Enlarged 1H NMR of Compound 7 in DMSO - d6. 

 

Figure 75 – 13C NMR of Compound 7 in DMSO - d6. 
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Figure 76 – Enlarged 13C NMR of Compound 7 in DMSO - d6. 

 

Figure 77 – 1H NMR of Compound 8 in DMSO - d6. 
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Figure 78 – Enlarged 1H NMR of Compound 8 in DMSO - d6. 

 

Figure 79 – 13C NMR of Compound 8 in DMSO - d6. 
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Figure 80 – Enlarged 13C NMR of Compound 8 in DMSO - d6. 

 

Figure 81 – 1H NMR of Compound 9 in DMSO - d6. 
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Figure 82 – Enlarged 1H NMR of Compound 9 in DMSO - d6. 

 

Figure 83 – Enlarged 1H NMR of Compound 9 in DMSO - d6. 

 

Figure 84 – 1H NMR of Compound 10 in DMSO - d6. 
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6.2 Single crystal X-ray structures 

 

Figure 85 – Single crystal X-ray structure of compound 4. 

 

Figure 86 – Single crystal X-ray structure of compound 5. 
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Figure 87 – Single crystal X-ray structure of compound 7. 

 

Figure 88 – Single crystal X-ray structure of compound 9. 
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6.3 Mass spectrum data 

 

Figure 89 – ESI- mass spectrum collected for compound 3. 

 

Figure 90 – ESI- mass spectrum collected for compound 3. 
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Figure 91 – ESI- mass spectrum collected for compound 4. 

 

Figure 92 – ESI- mass spectrum collected for compound 4. 
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Figure 93 – ESI- mass spectrum collected for compound 5. 

 

Figure 94 – ESI- mass spectrum collected for compound 5. 
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Figure 95 – ESI- mass spectrum collected for compound 6. 

 

Figure 96 – ESI- mass spectrum collected for compound 6. 
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Figure 97 – ESI- mass spectrum collected for compound 7. 

 

Figure 98 – ESI- mass spectrum collected for compound 7. 
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Figure 99 – ESI- mass spectrum collected for compound 8. 

 

Figure 100 – ESI- mass spectrum collected for compound 8. 

Table 10 – High Resolution mass spectrometry theoretical and experimentally derived values for compounds 3-5. 

Compound 
m/z [M]- m/z [M + M + H+]- 

Theoretical Actual Theoretical Actual 

3 410.3815 410.0755 821.7700 821.1591 

4 394.3385 394.0440 789.6840 789.0951 

5 364.3565 364.0702 729.7200 729.1471 
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Table 11 – High Resolution mass spectrometry theoretical and experimentally derived values for compounds 6-8. 

Compound 
m/z [M – H+]- m/z [M + M]- 

Theoretical Actual Theoretical Actual 

6 303.2550 303.0863 607.5170 607.1776 

7 310.2132 310.0433 621.4334 621.0916 

8 280.2312 280.0820 561.4694 561.1680 

6.4 1H NMR quantitative studies 

 

Figure 101 – 1H NMR spectrum (d1 = 60 s) of compound 3 (0.0364 g, 111.12 mM) and DCM (5 µl, 0.08 mM) in DMSO-d6. 

6% of compound observed upon comparative signal integration. 

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0
Chemical Shift (ppm)

1.882.87
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Figure 102 – 1H NMR spectrum (d1 = 60 s) of compound 3 (0.00197 g, 6.00 mM) and EtOH (5 µl, 0.43 mM) in D2O. No 

apparent loss of compound observed upon comparative signal integration. 

 

Figure 103 – 1H NMR spectrum (d1 = 60 s) of compound 4 (0.0354 g, 111.12 mM) and DCM (5 µl, 0.08 mM) in DMSO-d6. 

No apparent loss of compound observed upon comparative signal integration. 

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0
Chemical Shift (ppm)

285.002.042.091.02
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Figure 104 – 1H NMR spectrum (d1 = 60 s) of compound 4 (0.00190 g, 6.00 mM) and EtOH (5 µl, 0.43 mM) in D2O 29% 

loss of compound observed upon comparative signal integration. 

 

Figure 105 – 1H NMR spectrum (d1 = 60 s) of compound 5 (0.0337 g, 111.12 mM) and DCM (5 µl, 0.08 mM) in DMSO-d6. 

No apparent loss of compound observed upon comparative signal integration. 
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Figure 106 – 1H NMR spectrum (d1 = 60 s) of compound 5 (0.00184 g, 6.00 mM) and EtOH (5 µl, 0.43 mM) in D2O. 32% 

loss of compound observed upon comparative signal integration. 

 

Figure 107 – 1H NMR spectrum (d1 = 60 s) of compound 3 (0.01814 g, 55.56 mM), compound 5 (0.01687 g, 55.56 mM) 

and DCM (5 µl, 0.08 mM) in DMSO-d6. 7 % loss of compound observed upon comparative signal integration. 

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0
Chemical Shift (ppm)

5.768.40
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Figure 108 – 1H NMR spectrum (d1 = 60 s) of compound 3 (0.00196 g, 3.00 mM), compound 5 (0.00183 g, 3.00 mM) and 

DCM (5 µl, 0.08 mM) in D2O. 58 % loss of compound observed upon comparative signal integration. 

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
Chemical Shift (ppm)

286.453.80
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6.5 1H NMR DOSY studies 

 

Figure 109 – 1H DOSY NMR of compound 4 (111.12 mM) in DMSO-d6 conducted at 298.15 K. Anionic component 

highlighted in blue, TBA counter cation highlighted in red. 
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Table 12 – Diffusion data obtained from 1H DOSY NMR of compound 4 (111.12 mM) in DMSO-d6 conducted at 298.15 K. 
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Figure 110 – 1H DOSY NMR of compound 5 (111.12 mM) in DMSO-d6 conducted at 298.15 K. Anionic component 

highlighted in blue, TBA counter cation highlighted in red. 
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Table 13 – Diffusion data obtained from 1H DOSY NMR of compound 5 (111.12 mM) in DMSO-d6 conducted at 298.15 K. 

 

Table 14 – Calculated hydrodynamic diameter for compounds 4 and 5 in DMSO-d6 conducted at 298.15 K. 

Compound Anion (nm) Cation (nm) 

4 1.78 1.28 

5 1.94 1.37 

6.6 1H NMR self-association studies 

 

Figure 111 – 1H NMR stack plot of compound 4 in a DMSO- d6 0.5 % H2O solution. Samples were prepared in series with 

an aliquot of the most concentrated solution undergoing serial dilution. 
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Figure 112 – Enlarged 1H NMR stack plot of compound 4 in a DMSO- d6 0.5 % H2O solution. Samples were prepared in 

series with an aliquot of the most concentrated solution undergoing serial dilution. 

 

Figure 113 – Graph illustrating the 1H NMR down-field change in chemical shift of NH resonances with increasing 

concentration of compound 4 in DMSO- d6 w/ 0.5 % H2O (298.15 K). 

Self-association constant calculation 
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Table 15 – Dilution study of compound 4 in DMSO-d6 w/ 0.5 % H2O. Values calculated from data gathered from 2 NHs. 

Compound 
EK Model (M-1) CoEK Model (M-1) 

Ke Kdim Ke Kdim ρ 

4 1.41 (± 1.5 %) 0.71 (± 0.7 %) 10.91 (± 3.4 %) 5.45 (± 1.7 %) 0.30 (± 10.0 %) 

Link for EK http://app.supramolecular.org/bindfit/view/090bee18-4a16-4728-9d3a-565b04666500 

Link for CoEK http://app.supramolecular.org/bindfit/view/573b0ca3-687a-437f-bff5-3ded4a748198 

 

Figure 114 – 1H NMR stack plot of compound 5 in a DMSO-d6 0.5 % H2O solution. Samples were prepared in series with 

an aliquot of the most concentrated solution undergoing serial dilution. 

 

Figure 115 – Enlarged 1H NMR stack plot of compound 5 in a DMSO-d6 0.5 % H2O solution. Samples were prepared in 

series with an aliquot of the most concentrated solution undergoing serial dilution. 
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Figure 116 – Graph illustrating the 1H NMR down-field change in chemical shift of urea NH resonances with increasing 

concentration of compound 5 in DMSO-d6 0.5 % H2O (298.15 K). 

Self-association constant calculation 

Table 16 – Dilution study of compound 5 in DMSO-d6 5 % H2O. Values calculated from data gathered from 2 NH. 

Compound 
EK Model (M-1) CoEK Model (M-1) 

Ke Kdim Ke Kdim ρ 

5 1.78 (± 0.6 %) 0.89 (± 0.3 %) 8.32 (± 3.1 %) 4.16 (± 1.6 %)  0.50 (± 5.2 %) 

Link for EK http://app.supramolecular.org/bindfit/view/005255d3-873e-49e1-b066-d6b551ddc6fd 

Link for CoEK http://app.supramolecular.org/bindfit/view/96557a3e-c430-4e14-9bc4-11cc00d92277 
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6.7 1H NMR titration studies 

 

Figure 117 – A graph showing the downfield 1H NMR change in chemical shift for the NHs of compound 4 (host) with 

increasing the concentration of compound 10 (guest) in a DMSO-d6 – 0.5% H2O solution (298 K). 

 

Figure 118 – A graph showing the downfield 1H NMR change in chemical shift for the NHs of compound 4 (host) with 

increasing the concentration of TBA+ HSO4- (guest) in a DMSO-d6 – 0.5% H2O solution (298 K). 
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Figure 119 – A graph showing the downfield 1H NMR change in chemical shift for the NHs of compound 5 (host) with 

increasing the concentration of compound 10 (guest) in a DMSO-d6 – 0.5% H2O solution (298 K). 

 

Figure 120 – A graph showing the downfield 1H NMR change in chemical shift for the NHs of compound 5 (host) with 

increasing the concentration of TBA+ HSO4- (guest) in a DMSO-d6 – 0.5% H2O solution (298 K). 
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Figure 121 – A graph showing the downfield 1H NMR change in chemical shift for the NHs of compound 7 (host) with 

increasing the concentration of compound 10 (guest) in a DMSO-d6 – 0.5% H2O solution (298 K). 

 

Figure 122 – A graph showing the downfield 1H NMR change in chemical shift for the NHs of compound 7 (host) with 

increasing the concentration of TBA+ HSO4- (guest) in a DMSO-d6 – 0.5% H2O solution (298 K). 
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Table 17 – Association constants (M-1) calculated for each NH in compound 7 (host) titrated against TBA+ HSO4- (guest) in 

a DMSO-d6 – 0.5% H2O solution (298 K). 

Host: Guest 1: 1 1: 2 2: 1 

NH K K11 K12 K11 K21 

Circle 
3.35 (± 1.1 %) 

436846684486 

(± 8309238 %) 
3.49 (± 1.8 %) -48.9 (± 9.0 %) 

-24.69 (± - 8.1 

%) 

Link to 1:1 http://app.supramolecular.org/bindfit/view/f66937c8-9eab-4632-a8ff-b4085f79f1fc 

Link to 1:2 http://app.supramolecular.org/bindfit/view/0c7d2b13-9028-4787-a84c-f145c7f474d3 

Link to 2:1 http://app.supramolecular.org/bindfit/view/06b6b7a0-a00e-417f-bcf3-c8dec846d20d 

a – association constant too large (> 105 M-1) b – negative association constant. 

 

Figure 123 – A graph showing the downfield 1H NMR change in chemical shift for the NHs of compound 8 (host) with 

increasing the concentration of compound 10 (guest) in a DMSO-d6 – 0.5% H2O solution (298 K). 
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Figure 124 – A graph showing the downfield 1H NMR change in chemical shift for the NHs of compound 8 (host) with 

increasing the concentration of TBA+ HSO4- (guest) in a DMSO-d6 – 0.5% H2O solution (298 K).. 

 

Figure 125 – A graph showing the downfield 1H NMR change in chemical shift for the NHs of compound 9 (host) with 

increasing the concentration of compound 10 (guest) in a DMSO-d6 – 0.5% H2O solution (298 K). 
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Table 18 – Association constants (M-1) calculated for each NH in compound 9 (host) titrated against compound 10 

(guest) in a DMSO-d6 – 0.5% H2O solution (298 K). 

Host: 

Guest 

1: 1 1: 2 2: 1 

NH K K11 K12 K11 K21 

Circle 
25.92 (± 5.7 %) 

2010437381651813 

(± 169434405 %) 
20.46 (± 9.7 %) 

56.18  

(± 97.5 %) 

639.76  

(± 112.9 %) 

Link to 1:1 http://app.supramolecular.org/bindfit/view/b5b7f1f9-f026-4ac7-a3ff-349589218af0 

Link to 1:2 http://app.supramolecular.org/bindfit/view/c423c643-5207-4222-bd8f-9932be63f86f 

Link to 2:1 http://app.supramolecular.org/bindfit/view/cd5c2e7e-4eb6-4786-a37e-f6c106443e77 

Triangle 
17.33 (± 4.8 %) 38.31 (± 9.3 %) 

-5.25  

(± -24.1 %) 

0.00881 

(± 104.1 %) 

5400616 

(± 115.3 %) 

Link to 1:1 http://app.supramolecular.org/bindfit/view/2346a76b-c509-42ab-9a0c-df612552486e 

Link to 1:2 http://app.supramolecular.org/bindfit/view/b9d513ac-beb9-4d35-a767-24cdafe748d7 

Link to 2:1 http://app.supramolecular.org/bindfit/view/27939811-fa26-4a78-896f-bd0b27b0e951 
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6.8 DLS data 

 

Figure 126 – Average intensity particle size distribution, calculated from 9 DLS runs, of aggregates formed by dissolving 

compound 3 at a concentration of 3.00 mM in a solution of EtOH: H2O 1:19, after heating to 40 ⁰C and cooling to 25 ⁰C. 

 

Figure 127 – Correlation function data for 9 DLS runs of compound 3 at a concentration of 3.00 mM in a solution of 

EtOH: H2O 1:19, after heating to 40 ⁰C and cooling to 25 ⁰C. 
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Figure 128 – Average intensity particle size distribution, calculated from 10 DLS runs, of aggregates formed by dissolving 

compound 3 at a concentration of 0.30 mM in a solution of EtOH: H2O 1:19, after heating to 40 ⁰C and cooling to 25 ⁰C. 

 

Figure 129 – Correlation function data for 10 DLS runs of compound 3 at a concentration of 0.30 mM in a solution of 

EtOH: H2O 1:19, after heating to 40 ⁰C and cooling to 25 ⁰C. 
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Figure 130 – Average intensity particle size distribution, calculated from 10 DLS runs, of aggregates formed by dissolving 

compound 4 at a concentration of 3.00 mM in a solution of EtOH: H2O 1:19, after heating to 40 ⁰C and cooling to 25 ⁰C.  

 

Figure 131 – Correlation function data for 10 DLS runs of compound 4 at a concentration of 3.00 mM in a solution of 

EtOH: H2O 1:19, after heating to 40 ⁰C and cooling to 25 ⁰C. 
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Figure 132 – Average intensity particle size distribution, calculated from 10 DLS runs, of aggregates formed by dissolving 

compound 4 at a concentration of 0.30 mM in a solution of EtOH: H2O 1:19, after heating to 40 ⁰C and cooling to 25 ⁰C.  

 

Figure 133 – Correlation function data for 10 DLS runs of compounds 4 at a concentration of 0.30 mM in a solution of 

EtOH: H2O 1:19, after heating to 40 ⁰C and cooling to 25 ⁰C. 
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Figure 134 – Average intensity particle size distribution, calculated from 10 DLS runs, of aggregates formed by dissolving 

compound 5 at a concentration of 3.00 mM in a solution of EtOH: H2O 1:19, after heating to 40 ⁰C and cooling to 25 ⁰C. 

 

Figure 135 – Correlation function data for 10 DLS runs of compounds 5 at a concentration of 3.00 mM in a solution of 

EtOH: H2O 1:19, after heating to 40 ⁰C and cooling to 25 ⁰C. 
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Figure 136 – Average intensity particle size distribution, calculated from 10 DLS runs, of aggregates formed by dissolving 

compound 5 at a concentration of 0.30 mM in a solution of EtOH: H2O 1:19, after heating to 40 ⁰C and cooling to 25 ⁰C. 

 

Figure 137 – Correlation function data for 10 DLS runs of compound 5 at a concentration of 0.30 mM in a solution of 

EtOH: H2O 1:19, after heating to 40 ⁰C and cooling to 25 ⁰C. 
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Figure 138 – Average intensity particle size distribution, calculated from 8 DLS runs, of aggregates formed by dissolving 

compounds 3 and 5 at a concentration of 3.00 mM in a solution of EtOH: H2O 1:19, after heating to 40 ⁰C and cooling to 

25 ⁰C. 

 

Figure 139 – Correlation function data for 10 DLS runs of a mixture of compounds 3 and 5 at a total concentration of 

3.00 mM in a solution of EtOH: H2O 1:19, after heating to 40 ⁰C and cooling to 25 ⁰C 
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Figure 140 – Average intensity particle size distribution, calculated from 10 DLS runs, of aggregates formed by dissolving 

compounds 3 and 5 at a concentration of 0.30 mM in a solution of EtOH: H2O 1:19, after heating to 40 ⁰C and cooling to 

25 ⁰C. 

 

Figure 141 – Correlation function data for 10 DLS runs of a mixture of compounds 3 and 5 at a total concentration of 

0.30 mM in a solution of EtOH: H2O 1:19, after heating to 40 ⁰C and cooling to 25 ⁰C 
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Table 19 – Average intensity particle size distribution for compounds 4, 5 and a mixture of compounds 3 and 5, 

calculated from 10 DLS runs at 3.00 mM and 0.3 mM. Samples were prepared in series, with an aliquot of the most 

concentrated solution undergoing serial dilution and measured after heating to 40 ⁰C and cooling to 25 ⁰C. 

Compound 
Peak maxima (nm) PDI (%) 

3 mM 0.3 mM 3 mM 0.3 mM 

3 147.23 (± 7.4) 126.23 (± 2.85) 25.02 (± 0.7) 21.79 (± 0.3) 

4 230.97 (± 12.81) 222.45 (± 9.70) 26.13 (± 0.78) 96.25 (± 3.23) 

5 189.30 (± 2.96) 128.41 (± 2.66) 23.56 (± 0.41) 14.20 (± 2.52) 

3 and 5 94.47 (± 2.0) 88.61 (± 3.9) 24.69 (± 0.4) 25.68 (± 0.8) 

6.9 Zeta potential 

 

Figure 142 – The average zeta potential distribution calculated using 10 runs for compound 3 (3 mM) in an EtOH: H2O 

(1:19) solution at 298K. 
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Figure 143 – The average zeta potential distribution calculated using 10 runs for compound 4 (3 mM) in an EtOH: H2O 

(1:19) solution at 298K. 

 

Figure 144 – The average zeta potential distribution calculated using 10 runs for compound 5 (3 mM) in an EtOH: H2O 

(1:19) solution at 298K. 
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Figure 145 – The average zeta potential distribution calculated using 10 runs for a 1:1 mixture of compound 3 and 5 

(total 3 mM) in an EtOH: H2O (1:19) solution at 298K. 

Table 20 – The average zeta potential distribution calculated using 10 runs for compounds 4, 5 and a mixture of 3 and 5 

at 3 mM, in an EtOH: H2O (1:19) solution at 298K. 

Compound Mean Zeta Potential (mV) 

3 -14.40 

4 - 32.05 

5 - 53.75 

3 and 5 - 43.00 
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6.10 Critical micelle concentration 

 

Figure 146 – Calculation of CMC for compound 3 in an EtOH: H2O 1:19 mixture using surface tension measurements. 

 

Figure 147 – Calculation of CMC for compound 4 in an EtOH: H2O 1:19 mixture using surface tension measurements. 
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Figure 148 – Calculation of CMC for compound 5 in an EtOH: H2O 1:19 mixture using surface tension measurements. 

Table 21 – Overview of CMC and surface tension (obtained at CMC) measurements for compounds 3-5 at 25°C 

Compound CMC (mM) Surface tension at CMC (mN/m) 

3 24.98 53.70 

4 6.00 56.87 

5 4.24 57.70 
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6.11 Low level in-silico modelling 

 

Figure 149 – Electrostatic potential map calculated for the anionic component of 3. Emax and Emin values depicted in the 

Figure legends are given in kJ/mol. 

 

Figure 150 – Electrostatic potential map calculated for the anionic component of 4. Emax and Emin values depicted in the 

Figure legends are given in kJ/mol. 
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Figure 151 – Electrostatic potential map calculated for the anionic component of 5. Emax and Emin values depicted in the 

Figure legends are given in kJ/mol. 

 

Figure 152 – Electrostatic potential map calculated for compound 6. Emax and Emin values depicted in the Figure legends 

are given in kJ/mol. 
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Figure 153 – Electrostatic potential map calculated for compound 7. Emax and Emin values depicted in the Figure legends 

are given in kJ/mol. 

 

Figure 154 – Electrostatic potential map calculated for compound 8. Emax and Emin values depicted in the Figure legends 

are given in kJ/mol. 
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Figure 155 – Electrostatic potential map calculated for compound 9. Emax and Emin values depicted in the Figure legends 

are given in kJ/mol. 

 

Figure 156 – Electrostatic potential map calculated for compound 10. Emax and Emin values depicted in the Figure legends 

are given in kJ/mol. 
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Table 22 – Electrostatic potential calculated for compounds 3-10.  

Compound Emax (kJ/mol) Emin (kJ/mol) 

3 35.8994 -716.3030 

4 80.8152 -707.3240 

5 69.9097 -719.4140 

6 180.6490 -247.7910 

7 236.6470 -209.2530 

8 200.5310 -271.9090 

9 258.5900 -261.7770 

10 146.2110 -256.9050 

 


