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Abstract. The Internet of Things (IoT) is a rapidly growing collection
of “smart” devices capable of communicating over the Internet. Being
connected to the Internet brings new features and convenience, but it
also poses new security threats, such as IoT malware. IoT malware has
shown similar growth, making IoT devices highly vulnerable to remote
compromise. However, most IoT malware variants do not exhibit the
ability to gain persistence, as they typically lose control over the com-
promised device when the device is restarted. This paper investigates
how persistence for various IoT devices can be implemented by attack-
ers, such that they retain control even after the device has been rebooted.
Having persistence would make it harder to remove IoT malware. We in-
vestigated methods that could be used by an attacker to gain persistence
on a variety of IoT devices, and compiled the requirements and potential
issues faced by these methods, in order to understand how best to combat
this future threat. We successfully used these methods to gain persistence
on four vulnerable IoT devices with differing designs, features and archi-
tectures. We also identified ways to counter them. This work highlights
the enormous risk that persistence poses to potentially billions of IoT de-
vices, and we hope our results and study will encourage manufacturers
and developers to consider implementing our proposed countermeasures
or create new techniques to combat this nascent threat.

Keywords: IoT - security - malware - persistence - attack - proof of concept

1 Introduction

A standard piece of advice typically given to affected users for removing malware
from an Internet of Things (IoT) device is to restart it, as most forms of IoT
malware lack the ability to maintain persistence [3, 4]. This is because, in general,
IoT malware is stored and executed from within temporary filesystems that
reside in Random-Access Memory (RAM) [32]. As this type of memory is volatile,
the stored programs and data are lost when the device loses power, including
any changes that the attacker may have made to the filesystem.

However, there have been some families of IoT malware that are able to
maintain persistence in some form [15,27]. If persistent IoT malware becomes
more prevalent, many IoT devices will not be recoverable at all once they have
been infected. Therefore, it is increasingly crucial for IoT developers both to
understand their devices’ potential vulnerabilities to persistence and to implement
preventative measures to prohibit attackers from exploiting them. These two aims
serve as the motivation for our work.
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Contributions. The key contributions of this paper are:

— We summarise IoT persistence and its role in IoT based malware.

We explain the challenges currently preventing IoT malware from establish-

ing persistence.

— We outline methods that could be used by IoT malware to gain persistence.

— Finally, we explore how this will change the approach of IoT malware and
how attackers could achieve and use persistence to perform new and previ-
ously infeasible attacks, and what can be done to counter this threat.

The rest of the paper is organised as follows. Section 2 provides some back-
ground on Linux malware, IoT based malware and persistence. We also highlight
previous research and some of the challenges attackers may encounter when at-
tempting to gain persistence on IoT devices. Section 3 describes several methods
that could be used by attackers to gain persistence on various types of IoT de-
vice, along with their requirements and limitations. Section 4 shows the results
of attempting to gain persistence on four vulnerable IoT devices using these
methods. Section 5 discusses some potential countermeasures that could be im-
plemented to prevent an attacker from gaining persistence on an IoT device.
Section 6 covers our conclusions and defines some recommended further work.

2 Background

Various families of malware have increasingly attacked IoT devices. Popular bot-
nets such as Bashlite and Mirai have infected hundreds of thousands of devices
and have been responsible for one of the largest DDoS attacks in history [33, 11].
Fortunately, this type of IoT malware is relatively simple to remove. By restart-
ing the device, the malware will be unloaded from volatile memory, removing
the infection from the device when it reboots [3, 4].

However, some malware (such as Mirai) often exhibits worm-like behaviour
[5] and after hijacking a device, it will scan the Internet for more victims to
infect. While users would sometimes restart their devices (either deliberately or
coincidentally) and clear the infection, it would not remove the underlying issue.
The devices could easily be reinfected, possibly within minutes [3].

In effect, this behaviour has led to competitions between botnet authors, each
seeking to maximise their share of the limited number of vulnerable IoT devices.
Some malware even exhibited security features to remove competing malware.
Mirai, for instance, would search for strings present in competing malware, kill
any associated running processes and close any potentially vulnerable services
running on specific ports to prevent any further attacks by competitors [5].
However, as these changes were not persistent they were removed when the
device was reset.

2.1 Persistent IoT Malware

IoT malware capable of making persistent changes that secure its presence would
be able to maintain control over the device through reboots, both removing the



Persistence in Linux-Based IoT Malware 3

requirement to reinfect the equipment and helping towards keeping competitors
at bay. The ability to secure persistence would also allow significant changes to
the device to persist after rebooting, allowing for more creative types of malware
and attacks, such as ransomware [10] or long term spyware. This would also
provide a means for the malware operator to install additional malicious features,
such as modules that can attack other devices on the infected device’s network.

Currently, restarting an infected device will remove the majority of IoT mal-
ware, but with persistence, the user would have to modify the flash memory of
the device to remove the infection. This is something not usually readily avail-
able nor practical to an average user. If the malware can also prevent updates
or factory resets, specialist equipment or access to a debug/programming inter-
face may be required to clear the infection. This is considered too complicated
for most IoT users to perform and may lead to IoT devices being discarded, or
worse, knowingly left in an infected state.

2.2 Challenges With Gaining Persistence

There are two key challenges currently faced by IoT attackers when attempting
to gain persistence on IoT devices:

— Read-Only. IoT devices often have data that is set to read-only for vari-
ous reasons, such as to prevent accidental modifications due to programmer
error. This feature may also prevent attackers from making the necessary
modifications to the stored data or filesystems in order to gain persistence.

— Variance. Each device is likely to have different hardware, update mecha-
nisms, software, architecture and filesystem types. Fortunately for IoT de-
velopers, the variation in IoT devices makes it quite difficult for attackers
to create a universal method for gaining persistence. However, if an attacker
were to develop a method that affects a large number of devices with similar
implementation, it could reduce the required time investment immensely,
leading to persistent IoT Malware becoming more common.

2.3 Previous Persistent IoT Malware and Related Work

After identifying an increase in the presence of Linux based malware, researchers
analysed 10,548 samples over a year to gain a better understanding of the tech-
niques used by malware authors [12]. They highlighted the quick development
and deployment of insecure IoT devices as a potential motive for attackers to
target Linux for malware development.

As part of this analysis, they found that 21.10% (1,644) of the analysed sam-
ples implemented persistence methods. Some of these methods can be applied
to IoT devices, but the attacker must be able to modify the filesystem. As men-
tioned previously, IoT devices often set certain data as read only, which would
prevent these methods from working.

Some variants of IoT malware have achieved persistence, but these are less
common and they rely on the device having a writeable filesystem, which may
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reduce the applicability of this approach. We examine two examples of persistent
IoT malware below.

Torii is a variant of Mirai that adds several features, most notably the intro-
duction of six techniques to gain persistence [15]. Each technique modifies files
on the infected device which are executed as part of the boot process, such as:

— .bashrc, which is executed whenever an interactive bash session is started;

— initab, which is used to determine which processes should be ran during
the Linux boot process at certain runlevels;

— crontab, which is used to execute files at a certain time or interval.

Modifications to these files would allow the attacker to set particular pro-
grams or shell scripts to be run when the device boots.

VPNFilter is a complex IoT malware which affects a large number of
routers [30]. It is believed to have been developed by “Fancy Bear”, a Rus-
sian based hacker group [31]. Its modular structure allows many features to be
implemented, ranging from man-in-the-middle attacks to SCADA sniffing. Ad-
ditionally, VPNFilter seems to include a section of code to erase and rewrite
Memory Technology Devices (MTDs)!, which could potentially be used to brick
the device by wiping segments of the device’s storage [28]. VPNFilter modifies
the /etc/config/crontab file, which will run the malware (which has presum-
ably already been written to memory) every 5 minutes [27,29], even when the
device is rebooted.

3 Methods for Gaining Persistence

Due to the challenges described in section 2.2, no universal methods to gain
persistence on IoT devices have yet been identified. Instead, our approach is to
use a collection of methods to gain persistence on certain subsets of IoT devices.

We have identified several viable methods that could be used by an attacker
to gain persistence on a variety of IoT devices. A summary of these methods can
be found in Table 1 and a detailed overview of each is provided in the following
subsections. The description of each method includes a list of requirements for
its applicability, its feasibility, and any potential issues that may prevent it from
working effectively. A malware writer could perform reconnaissance to ascertain
which method should be used, or simply attempt each method sequentially until
they gain persistence. Some methods could be used in conjunction with others
to improve their chances of success.

The techniques described assume that the attacker has gained access to the
shell (such as via a guessable telnet password), and can run arbitrary commands.
Ideally, the attacker should be able to determine the storage capabilities of the
device and identify the device model. Many of these techniques also require the
identification and modification of filesystems and partitions in flash memory. The
/proc/mtd file contains the partition definition and a name set by the developer
via MTD, which may indicate its purpose. These partitions can be accessed by

1 Memory Technology Devices (MTD) are commonly used to communicate with flash
devices to manage storage on IoT devices.
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Table 1. IoT Persistence Methods

ID |Method Modified Partition| Ease of Use
A |Modifying Writeable Filesystems Filesystem Easy

B |Recreating Read-Only Filesystems Filesystem Medium

C |Initrd/Initramfs Modification Kernel

D |“Set Writeable Flag” Kernel Module N/A

E |Update Process Exploitation Filesystem/Kernel

F |UbootKit Bootloader

*Device update processes differ, so the complexity of exploits will vary.

using the files /dev/mtdX or /dev/mtdblockX where X is the partition index.
The attacker can also find a list of mount points and their filesystem types in
the /proc/mounts file, or use analytic tools such as Binwalk [25] to identify
recognisable file headers and metadata.

3.1 Modifying Writable Filesystems

When an IoT device has a writeable filesystem by default, the attacker should
be able to modify the filesystem directly via the shell, allowing them to edit
important files that run on startup.

Requirements: The device must use a writable filesystem (e.g. yaffs2/
jffs2). The MTD filesystem partitions must be writeable. The attacker must
be able to modify the startup scripts.

Feasibility: This is the simplest method and does not require any additional
tools. If the filesystem is writeable by default, the attacker can copy their mal-
ware to a known location on the device, then modify the startup scripts so that
it is executed when the device is rebooted. This is similar to the technique used
by VPNFilter and Torii, as described in section 2.1.

Potential Issues: The attacker must be able to obtain write permissions
for the files they are attempting to modify, which is dependent on the privileges
held by the exploited application or compromised account used by the attacker.

Furthermore, the writable filesystem must store files that can lead to the
execution of arbitrary code on startup. Otherwise, while the attacker may be
able to store malware permanently, they will not be able to set it to run when the
device is booted. The filesystem may also be mounted as read only, so additional
steps may be required to remount it as writeable.

3.2 Recreating Read-Only Filesystems

If the device is using a compressed read-only filesystem, the attacker will not be
able to modify its files directly. Instead, the attacker can use specialised tools to
recreate the filesystem.

Requirements: The device must use a compressed read-only filesystem
(such as cramfs/squashfs). The attacker must be able to modify the flash
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partition which contains the read-only filesystem. The attacker must have the
required software to recreate the filesystem.

Feasibility: While it is not possible to modify files within compressed read-
only filesystems, it is possible to replace the entire filesystem in flash memory
with a modified version. To create a new version of the filesystem the attacker
must first obtain the compressed version, which resides in flash memory.

Once the attacker has identified the partition that holds the filesystem, they
can use the MTD subsystem to read it from flash to a file, which can then be
extracted and modified to their requirements. The attacker can then re-pack it
in the correct format. For squashfs and cramfs filesystems, this requires using
the mksquashfs and mkcramfs utilities respectively. The old version stored in
the filesystem partition can then be overwritten via the MTD files in /dev.

Potential Issues: Filesystems can vary significantly, even those of the same
format. If the replacement filesystem type is different from what is expected by
the device, it might not be interpreted correctly, which will lead to a failure
during the boot process. For this approach to be practical, the attacker must
match the used filesystem as closely as possible.

Read-only filesystems may prove challenging to modify, as it is unlikely that
the tools used to build a new filesystem will be included on the exploited device.
For device updates, it would be expected that another machine would generate
a new filesystem that is then transferred to the device itself. To follow this same
philosophy, the attacker would need to copy the filesystem from the infected
device to an external computer, then modify it using the required tools. It would
then need to be uploaded back to the device for writing. Filesystems are likely
to be much larger than the average malware upload, and as they will need to
be uploaded to each infected device; this might not scale well if used for a large
number of devices.

Alternatively, attackers could compile and upload the required tools for use
on the devices themselves. However, as there are likely to be many different
filesystem types and device architectures, this may be not easy to manage.

3.3 Initrd and Initramfs Modification

As part of its booting processes, the Linux kernel may utilise an appended initrd
or initramfs filesystem [18]. This is an initial filesystem which allows some setup
of the device to be performed before mounting the real filesystem.
Requirements: The device must use an initrd or initramfs filesystem.
The attacker must be able to modify the flash partition that contains the kernel.
Feasibility: First, the attacker must identify the MTD partition that con-
tains the Linux kernel. Once the correct partition has been identified, the at-
tacker must analyse it and determine the offset of the filesystem that is appended
to the kernel. After carving out the relevant data, they must save the original
kernel and filesystem separately. The attacker can then extract and modify the
filesystem to include their required malware. Typically, an initramfs filesystem
will be contained in a CPIO archive, which will likely also be compressed, and
as such, this may require multiple extraction steps. The extraction process must
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then be reversed, and the resulting filesystem can then be appended to the orig-
inal kernel. Finally, this data can be used to overwrite the original kernel flash
partition.

Potential Issues: The kernel may be stored on the flash chip as an image for
use with a chosen bootloader. This may require the attacker to take additional
steps to recreate the image and maintain compatibility with the bootloader, such
as the inclusion of image headers that the bootloader may use to boot from the
partition effectively. As with Method B: unless the filesystem modifications are
performed locally, large amounts of data may need to be transferred via the
Internet, which might not scale well.

3.4 “Set Writeable Flag” Kernel Module

MTD can be used to manage partitions of flash memory. Developers may unset
the MTD_WRITEABLE flag for partitions that are unlikely to need modification,
which may also prevent attackers from making modifications that would al-
low them to gain persistence. This method allows an attacker to re-enable the
MTD_WRITEABLE flag from within userspace if the requirements are met. While
this method may not allow an attacker to gain persistence on its own, it may
allow other methods to circumvent the read-only protections that were put in
place by the developers.

Requirements: The Linux kernel must support loadable modules. Access
to a device’s kernel header files or source tree will improve the kernel module’s
odds of being compatible.

Feasibility: The MTD_WRITEABLE partition flag can be difficult to modify
from userspace at runtime. However, by using a Loadable Kernel Module (LKM),
an attacker could force this flag to be set from kernel space. There are existing
kernel modules that have been created to implement this [19, 16].

Kernel modules typically need to be compiled against the targeted kernel
source to be compatible. This is normally achieved by having access to either
the kernel’s headers or source tree [1]. If ToT developers use modified software
that falls under the GNU Public License (GPL), they may be required to make
the corresponding source code available [26]. The attacker can use this to compile
the kernel module for the targeted device.

After compiling and uploading the LKM to the target device, the attacker
can use the insmod utility to insert the module into the kernel. Once inserted,
the module is able to set all MTD partitions to be writeable, after which the
attacker can use one of the other techniques to gain persistence.

Potential Issues: If the device’s kernel header and source code are unavail-
able, it may be difficult to compile the LKM such that it remains compatible.
However, a defensive IoT tool “HADES-IoT” demonstrated that loadable kernel
modules could be compiled without the support of the original developer [9].

The developer may be able to prevent this method from being used by con-
figuring the Linux kernel to verify the signature of kernel modules when they are
loaded [2]. The attacker will not be able to forge a signature for kernel modules
if they do not have access to the developer’s cryptographic keys.
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3.5 Update Process Exploitation

Most devices are expected to receive updates over their lifetime, either to provide
new user features or patches for security issues. However, vulnerable update im-
plementations can potentially be used to attack the device and gain persistence.

Requirements: The device must implement a vulnerable update function,
such that the attacker can forge fake updates. The attacker must be able to
access the update function.

Feasibility: If an attacker gains access to a vulnerable update function, they
may be able to provide a false firmware update which is accepted by the device.
For example, researchers found vulnerabilities in devices produced by Disney [8]
and Netgear [7], which allowed them to upload modified firmware. An attacker
could use these modified updates to include malware and configuration files such
that arbitrary code is run each time the device is booted.

Potential Issues: The requirements for this method are quite niche. It not
only requires that the attacker has access to the update process (for which they
will likely need to be authorised), but the process itself must also be vulnerable
in such a way that the updates are not verified before being implemented.

As the update process will differ from device to device, what may work for one
is very unlikely to work on another. The attacker will need to reverse engineer
the required format of the update for each targeted device’s update process. If
the forged update is incorrectly formatted, the update process may be halted,
preventing the attacker from gaining persistence.

The attacker could attempt to modify the filesystem of an existing firmware
file provided by the developer, but the update process may also need to interpret
metadata defined by the developer. As such, the attacker will be expected to
recreate the metadata, such as file sizes or checksums. Some tools are available
that may assist in this process, such as the “Firmware Mod Kit” [24]. This
will not work for all update formats, especially if the developer has obfuscated,
encrypted or signed the firmware they make available.

3.6 Ubootkit

Das U-Boot (Normally shortened to U-Boot), is a universal bootloader designed
for use with a variety of embedded devices [14]. It is commonly used in IoT
devices to manage the booting process into the main operating system.

Requirements: The device must implement U-Boot as its bootloader. The
attacker must be able to modify the bootloader flash partition.

Feasibility: Researchers have produced an attack that demonstrates the
creation of persistent root-level access in IoT devices, dubbed “UbootKit” [35].

If the filesystem MTD partition is marked as read-only, it may prevent some
of the other methods from being used. UbootKit, however, targets the boot-
loader partition. If the bootloader partition is writeable, UbootKit can modify
U-Boot in such a way that when the device is next booted, it will run arbitrary
code written by the attacker. UbootKit will use this vulnerability to corrupt sub-
sequent boot stages and modify startup scripts during Linux’s boot sequence,
gaining the ability to make persistent changes.
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Table 2. Device Persistence Methods Exploits

Device Persistence Method(s) Exploit

Recreate Read-Only Filesystem & |Command Injection
“Set Writeable Flag” Kernel Module| CVE-2016-6277 [21]
D-Link DCS-932L Initrd/Initramfs Modification g%%;&‘;z%%gg [22]
Command Injection
CVE-2013-5758 [20]
Command Injection
CVE-2019-3929 [23]

Netgear R6250 Router

Yealink SIP-T38G Modify Writeable Filesystem

WiPG-1000 Modify Writeable Filesystem

Potential Issues: The authors of Ubootkit state that it can be applied
to other devices and architectures than those used in the demonstration [35],
but that it would require modification. This technique relies on patching the
bootloader and kernel of the device with new shellcode at specific offsets. As the
bootloader and kernel will differ slightly on each targeted device model and ver-
sion, determining the correct shellcode modifications may be time-consuming.

4 Experimental Proof of Concepts and Results

To test the viability of the techniques described in the previous section, we
applied them to a range of IoT devices. We chose these devices as they have
been known to be vulnerable, with publicly available exploits. Some had also
been previously targeted by IoT malware. For persistence to be considered a
viable and realistic attack method, the following two constraints were applied:

— No physical access to the device must be required during the process. Per-
sistence must be achievable remotely, preferably over the Internet.

— The method of persistence must allow an attacker to force the device to run
a custom application when the device is rebooted.

During our testing, we examined some local files on the device that are com-
monly found on Linux based systems to gather information about the device,
such as /proc/mtd to identify partitions and /proc/mounts to identify filesys-
tems. These would help determine the best technique to apply when attempting
to gain persistence on that device.

4.1 Netgear R6250 Router (using Methods B and D)

The Netgear R6250 router is one of many routers that had a command injection
vulnerability present in their web server [21,17]. We used this vulnerability to
gain access to the shell and begin reconnaissance.

First, we read the /proc/mounts file and found that the router used both a
jffs2 and squashfs filesystem. We initially targeted the jffs2 filesystem as it
was writeable by default and would have been the easiest to modify. However, it
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was mounted to /tmp/openvpn and only contained configuration files, so while
we were able to make persistent modifications to the directory, it would not
cause any arbitrary execution when the device was rebooted.

We instead decided to target the squashfs filesystem as it was mounted as
the root directory. We read /proc/mtd and identified a partition named “rootfs”,
which was most likely the root filesystem. We read the partition and found it
was using squashfs version 4.0, with xz compression.

Gaining Persistence. After extracting the files, we modified the result to
include a file named testfile in /bin, then re-created the filesystem using the
mksquashfs utility. We then uploaded the generated filesystem to the temporary
memory of the router. We overwrote the existing filesystem by writing our mod-
ified version to /dev/mtdblock15. When we rebooted the device, the testfile
was readable, indicating a persistent edit.

Read-Only MTD Partitions. During our exploitation of the device, we
found that some of the partitions, notably the bootloader, had been marked as
read-only via MTD. We were able to compile the Netgear’s mtd-rw kernel module
against the firmware’s GPL source (https://kb.netgear.com/2649/NETGEAR-
Open-Source-Code-for-Programmers-GPL) and confirmed that inserting the mod-
ule would allow attackers to set MTD partitions as writeable from userspace.

4.2 D-Link DCS-932L (using Method C)

The DCS-932L is a web-connected camera for both indoor and outdoor use. Cus-
tomers can access the camera remotely via a web browser or linked application.

This camera has a buffer overflow vulnerability that allows an attacker to
gain access to the shell and run arbitrary commands [22]. We used this to gain
access to the device and investigate how it manages its storage. We read the
mounts file and found only temporary and pseudo filesystems were being used,
leading us to believe that it was using rootfs as its main filesystem, which
should be appended to the end of the kernel. For this device, we used Method
C, modifying the initramfs so that a custom filesystem would be loaded.

We read the /proc/mtd file and identified an MTD partition named “kernel”
which we copied to a host machine to analyse. Using Binwalk [25], we found that
the filesystem could be extracted in three stages, as shown in Figure 1.

1. Stage one was the raw data of the partition as it was stored on the flash
chip. It was made up of a 64-bit ulmage Header, and LZMA compressed

Stage 1 Stage 2 Extract Stage 3

Extract

ulmage e /
Header - . /
oxa0 < Binary/ /
Kernel /’
Data / CPIO Extract  Root
LZMA // Archive Filesystem
Compressed 0X3AC000)
Data LZMA
Compressed
Data

Fig. 1. Extracting the DCS-932L’s Root Fﬁesystem from the Kernel Partition
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data. The ulmage header contained metadata that the U-Boot bootloader
can use to boot the kernel contained in the LZMA payload. We extracted
the LZMA compressed data in preparation for stage two.

2. Stage two consisted of the kernel and some further LZMA compressed data.
We identified that the LZMA data began at the offset 0x3AC000, so we carved
the data from this offset to the end of the file. We then decompressed this
data into stage three.

3. After extracting the LZMA data, we were left with a CPIO archive, which
we could then extract or mount to view the root filesystem of the device.

Gaining Persistence. To gain persistence on this device, we needed to
modify the kernel partition in such a way that the device would be able to boot
and mount it correctly. To test our process, we changed the root filesystem to
contain a file named testfile in the /bin directory, then began to reverse the
process we used to extract it. First, we compressed the filesystem into a CPIO
archive. We then needed to compress the CPIO archive using LZMA. However,
the compression used by the device was non-streamed. To recreate this as best as
possible, we used an old version of “LZMA utils” (https://tukaani.org/lzma/).
We then prepended the original binary/kernel data and compressed it using
LZMA. Finally, we had to add a new ulmage header. As ulmage headers include
checksums to check the integrity of the image contents and the header itself
[13], we could not simply prepend the original, as the checksums would fail
to match when the device starts, causing a fault. Instead, we created a new
header with the mkimage utility. The arguments to recreate the metadata, such
as the architecture, load address and firmware name, were found by referring
to the previous header. We uploaded the new image to the device in temporary
memory. As the kernel flash partition was writeable, we could copy it from
temporary memory to flash memory via the MTD subsystem.

After restarting the device, we found our testfile was present in /bin,
indicating a successful persistent modification. Attackers could use this tech-
nique to modify various startup scripts to perform malicious actions or even run
applications included in the new filesystem.

4.3 Yealink SIP-T38G (using Method A)

The SIP-T38G is an Internet-connected VoIP desk phone, allowing users to
manage multiple calls and messages. We gained control of the device using an
adaptation of an existing exploit for previous versions of the phone [20], which
allowed us to investigate the device further.

We read the /proc/mounts file and found that the device used yaffs2 filesys-
tems mounted to multiple locations, including the root (/), /boot, /phone,
/data, /config and /etc directories.

As yaffs2 is a writeable filesystem with an MTD user module, we wrote
to the filesystem via the shell. The /etc directory held scripts that are run at
boot-time, which we could modify to run custom shell commands or applications
when the system next boots.
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4.4 WiPG-1000 (using Method A)

The WiPG-1000 is a presenter that allows users to stream their screen from
other devices on the same network. We used a command injection vulnerability
[23, 6] to start a telnet daemon, which we used to interact with the device via
the shell remotely.

After connecting via telnet, we read /proc/mounts to identify the root
mount. We found that the presenter used two types of storage, a flash chip and
an Embedded Multi Media Card (eMMC). The eMMC used an ext?2 filesystem,
which was mounted to the root directory as read only. We were able to remount
it as write enabled with the mount utility, after which we were able to easily
modify the filesystem via shell commands, which persisted through reboots.

4.5 Results Summary

There were significant variations in the structure of the devices we sought to
exploit, with the different types of storage implementations requiring a variety
of methods to be applied. However, we were able to gain persistence on every
device by applying the described techniques.

While the implementation of these tests was performed manually for this
paper, aspects of these techniques could be automated. As device reconnais-
sance for selecting the correct method was very time-consuming, automation of
this step would be essential for large scale attacks. Hard coding the appropriate
method when a specific model of the device is detected is a possibility, but this
would require manually identifying the best method for each device. Alterna-
tively, method identification could be performed when a device is exploited, but
this may be quite complicated to implement without generating false positives.
If performed incorrectly, this could also lead to the device being bricked.

We have created a process graph to show the best method for gaining per-
sistence, by prioritising on those which require the lower complexity to be im-
plemented. This graph can be seen in Figure 2.

5 Countermeasures

We propose several countermeasures that could be used to mitigate the risk
or prevent the threat caused by these persistence methods. Due to the vari-
ance of IoT devices, there are no “perfect” countermeasures, but those that are
implemented will frustrate attackers in their attempt to gain persistence. As a
consequence, these countermeasures will make the device a less appealing target.

— Data Signing. The use of signatures allows verification that the data con-
tained on the flash chip has not been modified, which can prevent an attacker
from gaining persistence. For example, uBoot has a “trusted boot” feature
that can check whether an image is correctly signed before continuing the
boot process [34]. By cryptographically signing each stage of the booting pro-
cess — including the bootloader(s), operating system and filesystem — each
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Fig. 2. Process to Gain Persistence
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step can verify the signature of the next, creating a chain of trust. If a stage
has been modified, its signature will not be valid, and the device will fail to
boot. Immutable memory should be used to bootstrap the process, so that
an attacker cannot modify the chain of trust at the very first stage. As the
attacker should not have the developer’s cryptographic keys, they would not
be able to forge a signature for any modifications they might have made to
the protected stages.

— Principle of Least Privilege. All of these methods require an attacker to
modify data on the device. By running potentially exploitable applications
at a lower privilege level and only allowing certain privileged accounts to
interact with the storage device or make persistent changes to important
files, attackers would not be able to make modifications to gain persistence.

— HADES-IoT. HADES-IoT is a system designed for use on IoT devices,
which provides a process whitelisting feature [9]. HADES-IoT records a hash
of benign executables that are run in an uninfected state during a “profil-
ing” stage. When a new process is spawned, HADES-IoT can compare it
against its list of known benign executable hashes, preventing unknown pro-
cesses from being created. This can frustrate attackers attempting to gain
persistence and prevent uploaded malware from running.

— Device Updates. The methods outlined in our paper assume that an at-
tacker has shell access. Users can prevent attackers from abusing these meth-
ods by regularly updating their device to patch vulnerabilities and prevent
exploitation that would provide a shell access to the attacker.

— Effective Factory Resetting. IoT devices often include a “factory reset”
feature that can be used to restore corrupted partitions to their original
state. This could be used by victims to remove malware from the device if
the process can reset partitions that have been modified by an attacker.

6 Conclusions and Future Work

In this work, we have discussed the increasing threat of persistence in IoT mal-
ware. We outlined the challenges that currently prevent IoT persistence from
being easily achieved. We then detailed techniques that attackers could use to
gain persistence on IoT devices, describing their requirements, what methodol-
ogy they can use and which potential issues they might encounter. We demon-
strated our ability to achieve true persistence in a wide range of different IoT
devices. Based on our findings, we outlined a potential process to identify the
best method of obtaining persistence. Finally, we listed several possible coun-
termeasures that can be used to hinder attackers from getting persistence on
vulnerable IoT devices.

Whilst we were able to gain persistence on all of our targeted devices, the
variations on device structure and implementation meant that it was a time-
consuming process that involved significant manual work. An attacker would
almost certainly want to automate this for massive-scale attacks. One possible
approach is to search for or remotely fingerprint vulnerable devices and then
launch the method appropriate for that model.
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Additionally, whilst it was straightforward to gain persistence on some of

the devices we tested, others required more sophisticated methods that were
time-consuming to discover and implement. Attackers may soon look towards
automating both the discovery and the implementation of these more involved
methods for abusing them in large scale operations.

Finally, further research should be performed to discover new countermea-

sures against persistence attack on IoT devices, for example through novel net-
work intrusion detection systems that are effective for IoT scenarios.
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