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ABSTRACT  

Global biodiversity is currently facing the sixth mass extinction with species disappearing at a 

rate 100 times background levels - mostly driven by anthropogenic pressures. Island species 

are often evolutionarily distinctive and are highly vulnerable to novel disturbances due to 

having small geographic ranges. The isolation of Bermuda has led to the evolution of a unique 

ecosystem with many endemic species. However, native species across Bermuda have 

become especially vulnerable ever since human colonisation, due to habitat loss and 

destruction, and predation and competition by several introduced species. The Bermuda 

skink (Plestiodon longirostris) was once widespread and commonly found along stone walls 

and cedar groves across Bermuda. By 1965, the population had become extremely 

fragmented and was declining across Bermuda and its offshore islands.  

 

This thesis investigates the threats to the Bermuda skink, listed as Critically Endangered by 

the International Union for the Conservation of Nature. Surveys were conducted between 

2015 and 2017 across Bermuda to (1) estimate population parameters such as abundance, 

capture and survival probabilities; (2) estimate occupancy, colonisation, extinction and 

detection rates; (3) determine if skink sub-populations are morphologically different; and (4) 

compare the body condition between sub-populations that may provide warning signs of 

issues in the environment such as changes in the level of competition, predation or available 

habitat. Additionally, recommendations are provided for the conservation management and 

recovery of this species. 

 

From capture-mark-recapture surveys and subsequent robust design modelling, it was found 

that the two largest populations fluctuated in size at both sites over the three-year survey 

period, and are imminently threatened by increasing anthropogenic activities, invasive 

species, and habitat loss in Bermuda. Using dynamic occupancy modelling across Bermuda, 

skinks were detected at 13 locations. The probability of detection was higher on island sites 

and with the presence of seabirds, prickly pears and coastal habitat. However, skinks were 

unlikely to be detected at sites with cat and rat predators. We demonstrate that 

morphological diversification has occurred, possibly in response to isolation and changes to 

habitat and predator levels over time, especially on these small offshore islands. Finally, our 

study showed that trends in body condition differed between sub-populations with the two 

largest sub-populations – on Castle and Southampton Islands – having higher body condition 
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compared to other populations. Overall, body condition has declined significantly over the 

past 15 – 20 years.  

 
After more than 50 years of study of the skinks, there is sufficient evidence to identify the 

reasons for their population decline. Although future studies may be needed to monitor 

populations, long-term the ongoing threats these populations face should be mitigated to 

help prevent extinction. 
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1.1 GLOBAL BIODIVERSITY CONSERVATION  
 

Global biodiversity is currently facing the sixth mass extinction, with species disappearing at 

least 100 times the expected natural rate (Ceballos et al., 2017). According to the International 

Union for Conservation of Nature (IUCN), which is recognised as the most comprehensive 

inventory evaluating the threat status of various plant and animal species, the home ranges 

of more than 27,600 species of land vertebrates have shrunk by a third, between 1900 and 

2015, with more than an eighth of all birds, a quarter of all mammals, a fifth of all reptiles, a 

third of all amphibians now known to be in a perilous position, ultimately caused by human 

overpopulation and continued population growth (Ceballos et al., 2017; IUCN, 2018a). Studies 

worldwide increasingly demonstrate human-induced global environmental changes 

influencing wildlife, particularly through habitat loss linked to agricultural changes, 

urbanisation and industrial development (e.g. Brashares et al., 2001). In total, about 80% of 

all the forests that covered the Earth 8,000 years ago have been cleared or degraded by man, 

and by 2030 it is estimated only 10% will remain (Nielsen, 2006).  

 

Global conservation efforts have created more than 44,000 wildlife reserves as well as 

preventing the extinction of several species. Notable successes in individual conservation 

projects include bringing Golden lion tamarins (Leontopithecus rosalia), Black-footed ferrets 

(Mustela nigripes), American bison (Bison bison), and Mauritius kestrels (Falco punctatus) 

back from the brink of extinction, through concerted captive breeding programmes and 

reintroducing individuals back to the wild (Jones et al., 1994; Dobson and Lyles, 2000; Hedrick, 

2009; Kierulff et al., 2012). Local extinctions result from threats to their habitats, such as over-

exploitation (i.e. poaching, pet trade), habitat loss, disease, pressures from competition from 

introduced (or alien) animals and plants. Additionally, climate change is becoming an 

increasingly significant problem (Atkinson, 1996; Burns et al., 2003; Rodrigues, 2006; Smith et 

al., 2006; Zhang et al., 2008; Bouché et al., 2012). As the majority are human-driven, human 

actions alone can therefore prevent many species from becoming extinct.  

 

Islands are biodiversity hotspots that contribute to the maintenance of many ecosystem 

functions such as providing defence against natural disasters, supporting nutrient cycling, and 

soil and sand formation (Whittaker and Fernandez-Palacios, 2007). The importance of islands 
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in revealing evolutionary processes has been recognized since Darwin’s work on the 

Galapagos (Darwin, 1859; 1909) and Wallace’s work in the Malay Archipelago (Wallace, 1876).  

Because isolation is a driver of speciation, island species display an astonishing variety of traits 

and species are often found nowhere else in the world. Island biogeography has provided 

many examples of the evolutionary mechanisms involved in generating biodiversity, including 

geological processes and colonisation and isolation (Emerson, 2008; Gillespie et al., 2008; 

Parent et al., 2008). Essentially, island biogeography theory predicts that larger islands will 

have a greater number of species than smaller islands, and the probability of colonisation of 

large islands will be higher than that of small islands. Thus, the larger the island and closer it 

is to the mainland, the more potential species will arrive. Species will also more readily go 

extinct on small islands than large, due to factors such as smaller population sizes and less 

available habitat (MacArthur and Wilson, 2001). This simple model is quite powerful and 

remains fundamentally important in understanding the effects of habitat fragmentation and 

predicting species richness to assist with conservation efforts, which are often neglected 

within oceanic islands (Kier et al., 2009).  

 

The potential consequences of global climate change for animal populations have emerged 

as ranking amongst the greatest perceived threats to biodiversity (e.g. Hughes, 

2000; McCarty, 2001; Walther et al., 2002). There have been significant periods of global 

warming and cooling in the Earth’s past, with higher than average global temperatures 

compared to current temperatures (Zachos et al., 2001). Many species have adapted to and 

survived through these events (Huber, 2009), but it is the rapid rate at which temperature is 

increasing today which is unprecedented (Houghton, 1997; Root et al., 2003). With this rate 

of change in environmental conditions it will be beyond the ability of many species to adapt 

to or evolve (Markham, 1996; Kingsolver, 2009) and this will have implications for 

biodiversity. 

 

While both mainland and islands suffer from several major threats to biodiversity the current 

threat is significantly higher on islands (Frankham, 1998; Bryant, 2002; Clout and Veitch, 

2002). Sea-level rise remains one of the least studied of all climate-change issues (Courchamp 

et al., 2014). Many low-lying islands will simply be entirely submerged, threatening island 

biodiversity and any benefits from recent conservation actions (Glasspool, 2008). A recent 
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analysis focusing on 4,500 islands in ten biodiversity hotspots suggested that 6–19% of these 

islands could be entirely submerged with a 1–6 m sea-level rise, threatening over 300 endemic 

species with extinction (Bellard et al., 2013). Islands also have the highest proportion of 

recorded species extinctions, 80% of known species extinctions have occurred on islands and 

currently 45% of IUCN Red List endangered species occur on islands (IUCN, 2018b). Before 

human colonisation, New Zealand had 94 species of native land birds; 35 were exterminated 

prehistorically and 8 more have become extinct in the historical period. Hence 46% of the 

original bird fauna is now extinct, including all 11 species of large flightless birds called Moas 

(Bryant, 2002). Not only were the flightless birds probably easy prey for humans, but the 

dense human population also cleared large areas of forest and introduced pigs (Sus scrofa 

domestica), domestic dogs (Canis familiaris), and chickens (Gallus domesticus), which may 

have additionally introduced avian diseases to the native birds.  

 

After the Polynesians arrived in the Hawaiian Islands in the 13th century, a wave of avian 

extinctions occurred, where 51% of native land birds became extinct. This may have been 

largely due to the Polynesians accidentally introducing rats (Rattus exulans), which may have 

fed on the eggs and chicks of ground-nesting birds (Bryant, 2002). These novel disturbances 

decimate native island wildlife and change entire island ecosystems. It is estimated that 

between 5% and 20% of all invasive species are regarded as a major threat to native 

ecosystems and to global biodiversity (IUCN, 2018c). 

 

1.2 GLOBAL REPTILE DECLINES  
 

Our state of knowledge for the conservation status of reptiles is much less complete than for 

other taxa. Of the 10,973 species of known reptiles, only 1,437 have sufficient data to have 

been evaluated for conservation status. That leaves 87% of reptiles for which we lack 

sufficient data to know whether their populations are fluctuating or remain stable. 

Furthermore, the means of determining a species’ conservation status is a rigorous and time-

consuming process, and therefore many threatened species may be underestimated due to 

data deficiency. While effective conservation measures are increasing populations of some 

species, gaps in knowledge need to be addressed to ensure that reptiles continue to thrive 

around the world as the current levels of conservation are insufficient (Hoffmann et al., 2011). 
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Reptiles and amphibians are recognised as integral parts of natural ecosystems and as 

indicators of environmental quality (Gibbons and Stangel, 1999). Although the amphibian 

decline problem is a serious threat, reptiles appear to be in even greater danger of extinction 

worldwide (Gibbons et al., 2000). Despite conservation measures to save them, hundreds of 

reptile species are expected to become extinct over the next century. Six significant threats 

to reptile populations established by (PARC) Partners in Amphibian and Reptile Conservation 

(Gibbons and Stangel, 1999) are: habitat loss and degradation , introduced invasive species, 

environmental pollution, disease, unsustainable use and global climate change. An additional 

category comprises unexplained declines. For example, thousands of reptiles are killed by 

traffic on roads every day (Aresco, 2005; Van der Ree, 2015) and many populations have 

become locally extinct through the flooding of valleys as a result of heavy rainfall or dam 

construction projects throughout the world (Cooper, 1984).  

 

Reptiles are also hunted for food, their eggs, or the pet trade (Spotila et al., 1996; Gibbons 

and Stangel, 1999). In particular, the harvesting of sea turtles and their eggs caused a 

significant decline in many nesting populations around the world (Pritchard, 1980; Tomillo et 

al., 2008; Tapilatu et al., 2013). During this time, nearly all loggerhead turtle (Caretta caretta) 

eggs laid along the Brazilian coast were removed, and most nesting females were taken for 

meat (Marcovaldi et al., 2005; Marcovaldi and Chaloupka, 2007). Despite international 

protection, sea turtles are still at risk of global extinction (Dutton et al., 2005) as poaching still 

continues (Koch et al., 2007), and in more recent years, they have become exposed to other 

hazards such as marine debris, pollution (Bugoni et al., 2001) and fishery-induced mortality 

(Soto et al., 2003, Kotas et al., 2004; Koch et al., 2007).  

 

Even some species that were common and widespread a few decades ago are becoming 

scarce. For example, forest skinks (Emoia nativitatis) have gone from being abundant to 

absent across the rainforests of the 135 km2 Christmas Island. In 1998, more than 80 individual 

forest skinks were recorded basking and foraging around a single fallen tree. Then began a 

rapid and apparently inexorable decline. By 2003, they were confined to scattered pockets in 

remote parts of the island. By 2008, a targeted survey found them at only one remaining site. 

Now, recent repeated searches and trapping have failed, and the species appears to have 

disappeared completely from its natural habitat (Smith et al., 2012). Five of the six reptile 
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species on Christmas Island have now declined to near extinction and it is likely that predation 

by introduced species is the major factor (Smith et al., 2012). 

 

Regrettably, many reptile populations that are thought to be declining have not been 

monitored over long periods of time, making short-term changes in population size difficult 

to evaluate critically. Among reptiles, declines in sea turtles are perhaps the best documented 

because populations of sea turtles engage in site-specific annual breeding (Bolten and 

Witherington, 2003). In contrast the majority of reptile species do not congregate to breed or 

hibernate and do not occur at particularly high densities within their habitats. Population 

declines can be difficult to detect; hence, long-term studies of natural populations and 

communities are fundamental to understanding natural population trends and fluctuations 

(Tinkle, 1979). Natural population fluctuations and local extinctions are common in reptiles 

especially on islands (Case et al., 1992) and generally are no cause for alarm, but not all 

declines are natural (Gibbons et al., 2000). As of 2017, the IUCN listed 31 species of reptile 

that have become extinct in recent years. Twenty-nine of these lived on islands. (Maas, 2017; 

IUCN, 2018a). Island species are especially vulnerable because their environment is affected 

by human impact and by the introduction of predatory animals. For example, all eight 

endemic reptiles went extinct due to the impact of invasive species on the island of Rodrigues 

in the Indian Ocean (Cheke and Hume, 2008).  

 

1.2.1 Global skink declines 

Skinks are among the most threatened reptile species and are at a high risk of extinction 

(Purvis et al., 2000). In part, this is because they have small geographical ranges, and are often 

endemic and only found on small oceanic islands (e.g. Otago and Grand skinks Oligosoma 

otagense and O. grande respectively, in New Zealand, Bojer's skink Gongylomorphus bojerii, 

Telfair’s skink Leiolopisma telfairii, Macchabé skink Gongylomorphus fontenayi and Orange 

tailed skinks Gongylomorphus spp. in Mauritius, blue tailed skinks Cryptoblepharus egeriae of 

Christmas Island and prehensile-tailed skinks Corucia zebrata in the Solomon Islands). As 

skinks are generally cryptic, rare, secretive, or are burrowing species they tend to be difficult 

to study and are therefore poorly understood (Beheregaray and Caccone, 2007).  

 

In 2002, 24 new species of skinks, all from islands in the Caribbean, were discovered and 

scientifically named through examination of museum specimens (Hedges and Conn, 2012). 
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However, all of the newly identified endemic Caribbean skinks are near extinction (or are 

already extinct) due to introduced predators including mongooses (Herpestes javanicus) and 

cats (Felis catus), as well as large-scale habitat destruction due to development and 

agriculture (Hedges and Conn, 2012). This loss is alarming because reptiles play a number of 

important roles as predators, prey and seed or fungal spore dispersal in their ecosystems and 

are consequently valuable indicators of environmental health (Heatwole, 1976; Hartup, 1996; 

Burger and Gibbons, 1998; Aguire and Lutz, 2004; Beaupre and Douglas, 2009; Cooper and 

Viernes, 2011; Valencia-Aguilar et al., 2013). Reptiles are often associated with extreme 

habitats and extreme environmental conditions, so it is easy to assume that they will be 

resilient in a changing world. However, many species are highly specialised in terms of habitat 

use and the climatic conditions they require. This makes them particularly sensitive to 

environmental changes (Hedges and Conn, 2012). 

 

1.3 BERMUDA  

Bermuda lies at 32.20°N and -64.45°W and is a British overseas territory situated in the 

Atlantic Ocean 1,052 km east of Cape Hatteras, North Carolina, United States which is the 

closest point of land (Procter and Fleming, 1999; Fig. 1.1).  

 

 

 

 

 

 

 

 

 

 

 

 

The Bermuda ecoregion is a crescent-shaped chain with approximately 193 islands and islets 

as a result of extensive volcanic activity along the mid-Atlantic ridge from 110 million years 

FIGURE 1.1. Location of Bermuda in the North Atlantic Ocean                                              
(Image created in ArcMap 10.5). 
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ago (mya) establishing a series of volcanic peaks (Fig. 1.2). They ceased activity around 33 mya 

(Ellison, 1996; Copeland, 2011).  

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Volcanic peaks gradually eroded below sea level by wave action, in the shallows. Limestone 

was deposited from the calcareous algae, resulting in a thick (15 - 100 m) limestone cap 

covering Bermuda, in which the limestone surface is overlain by a very shallow layer of fertile 

soil. As a result, the ecoregion has no rivers or surface streams and the shoreline is composed 

of bays and inlets, with coral sand beaches lining the shores, primarily in the south (Sterrer, 

1998). As the Bermuda seamount is situated near the middle of the oceanic portion of the 

North American tectonic plate, Bermuda additionally experiences significant seismic activity. 

In the last 350 years, a total of 56 earthquakes have affected Bermuda (Brewer, 2014). Other 

evidence that Bermuda has been subjected to episodic instability comes from rock fractures 

which can range from mere cracks, to 0.75 m wide fissures across the islands (Rowe, 1998). 

Certainly, many of these fractures have locally been enhanced by coastal erosion, but to what 

extent is hard to assess. Either way, erosion of the sand dunes and limestone rock makes the 

coastal areas incredibly vulnerable. 

 

Bermuda has a total land area of 55 km², stretching 55 km in length and 1.61 km across. It is 

moderately low lying, with the highest elevation reaching only 78 m (Copeland, 2011). Sixty-

FIGURE 1.2. Evidence of Bermuda’s volcanic past: an aerial 
view of two calderas within the Great Sound and Castle 

Harbour, Bermuda (Photo Credit: NOAA). 
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four of the Bermuda islands have a history of human habitation. Of these, eight of the main 

larger islands are currently connected by bridges or causeways (Copeland, 2011). 

 

Bermuda holds the distinction of having passed the first conservation legislation in the New 

World (Sterrer, 1995), protecting the Bermuda petrel also known as the Cahow (Pterodroma 

cahow) and other birds as early as 1616 and limiting the uses of native cedar as early as 1622 

(Rueger and von Wallmenich, 1996). A comprehensive and well-managed protected areas 

system currently exists, comprising 58 nature reserves that cover some 48 hectares, as well 

as 75 amenity parks and at least 8,299 recorded species, 4,597 of which are marine and 3,702 

are terrestrial (Copeland, 2011). Of these 110 marine species (2.4%) and 137 terrestrial 

species (3.7%) are considered endemic (Sterrer, 1998; Copeland, 2011). Endemic species are 

especially vulnerable as Bermuda has already witnessed the extinction of at least 60 known 

species of endemic flora and fauna since the time of human settlement. These include: two 

Bermuda land snails (Poecilozonites nelsoni and P. reinianus) due to the introduction of 

carnivorous snails (Euglandina rosea) and flatworms (Bipalium vagum), the Bermuda cicada 

(Tibicen bermudiana) and the geometrical moth (Semiothisa ochrifascia) due to the near-

eradication of the Bermuda cedar (Sterrer, 1998; Olsen et al., 2006) and the Bermuda tortoise 

(Hesperotestudo bermudae), however the cause of the species extinction is still undetermined 

as only two bone fragments have ever been found (Olson and Meylan, 2009). Among birds, 

at least ten presumed endemics are known from Pleistocene fossils. These include a crane 

(Grus latipes), a duck (Anas paschyscelus), a night heron (Nyctanassa carcinocatactes), three 

species of rail (Rallus ibycus, Porzana piercei, Rallus recesss), a woodpecker (Colaptes 

oceanicus), a hawk (Bermuteo avivorus), a heavy-billed passerine (Pipilo naufragus), and a 

small owl (Aegolius gradyi; Sterrer, 1998; Olson and Wingate, 2000; Olson, 2012). Most of 

these birds are thought to have gone extinct due to sea level changes (up to 21 meters above 

present levels; Olson and Wingate, 2000) before human settlement, although the passerine, 

heron and owl were present at the time of the first settlers (Sterrer, 1998). An estimated 16 

insect species have disappeared in the last century, including the flightless grasshopper 

(Paroxya bermudensis), seven true fly (Diptera) species, and the only endemic nemertean 

(Pantinonemertes agricola) a type of ribbon worm (Sterrer, 1998). Several other endemic 

species remain on the brink of extinction including two further Bermuda land snail 

species (Poecilozonites circumfirmatus and Poecilozonites bermudensis), the Bermuda ant 
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(Odontomachus insularis), Bermuda buckeye butterfly (Junonia coenia), Bermuda killifish 

(Fundulus bermudae), Bermuda cave shrimp (Mictocaris halope) and the Bermuda petrel.  

 

Bermuda’s position as an isolated oceanic island has contributed to a flora and fauna quite 

distinctive from any continental area or from Neotropical islands to the south (due to 

prehistoric sea level fluctuations as well as a lack of anthropogenic influence prior to the 

1600). As a result, Bermuda contains no native mammal or amphibian residents, although 

four species of visiting bats have been recorded. This has led to the evolution of some unique 

endemic species, one of those being the Bermuda skink Plestiodon longirostris previously 

known as Eumeces longirostris (Smith, 2005).  

 

1.4 THE ORIGIN OF SKINKS IN BERMUDA 

There are approximately 5,634 recognised species of lizards worldwide (Pincheira-Donoso et 

al., 2013). Of these, skinks number more than 1,230 described species and are currently the 

largest group of lizards (Utez et al., 2018). They are found on every continent, with the 

exception of Antarctica, and are most abundant in the tropics (Cash, 2015). Skinks are 

classified into a group of lizards belonging to the family Scincidae and the infraorder 

Scincomorpha (Cash, 2015), which includes spiny-tailed lizards (Agamidae), night lizards 

(Xantusiidae), wall lizards (Podarcis), spectacled lizards (Gymnophthalmidae) and whiptails 

(Cnemidophorus). Almost all skinks have smooth, shiny scales, long cylindrical bodies with no 

pronounced neck (Cash, 2015). They have moderately short limbs, but several genera have 

no limbs at all (e.g. Typhlosaurus), so their locomotion resembles that of snakes more than 

that of lizards with well-developed limbs (Cash, 2015). 

 

The Bermuda skink was first described in the 1861 by the American herpetologist Edward 

Drinker Cope. More recently, the discovery and analysis of fossil bones indicates that skinks 

were living on Bermuda more than 400,000 years ago. Further paleontological and geological 

evidence suggest they may have been present for 1 – 2 million years from as early as the 

Pleistocene epoch (Olsen et al., 2006). Bayesian phylogenetic analyses also strongly suggests 

that Bermuda skinks are descended from a Plestiodon species that once inhabited the Eastern 

USA (Brandley et al., 2010), and it is believed to be the only representative of one of the oldest 

extant Plestiodon lineages diverging more than 12 million years ago (Brandley et al., 2012). 
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This implies that, within a short geological timeframe, mainland North American ancestors 

of Bermuda skinks colonised the recently emergent Bermuda and the entire lineage 

subsequently vanished from the United States (Brandley et al., 2010). 

 

Skinks or their eggs may have arrived in Bermuda via oceanic currents on vegetation rafts 

from North America, the closest landmass to Bermuda (Raine, 1998). To date, evidence for 

successful rafting has been found in more than 1,200 species, including plants, invertebrates, 

insects, reptiles, amphibians and mammals (Morton, 2013). Specifically, during the 

Pleistocene era it has been documented that many skink species had dispersed by rafting on 

fallen branches, trees or mats of vegetation washed into the ocean during floods or 

hurricanes. For example, Chioninia species are thought to have travelled from west Africa to 

Cape Verde and between its Barlavento and Sotavento islands (Austin and Adler, 1995) and 

Leiolopisma species from New Caledonia or Australia to New Zealand (Kuschel, 1975). This 

shows that this type of migration is entirely possible. The skinks would have been well 

adapted to deal with the harsh salty and sunny conditions of weeks at sea with little to no 

food, surviving their crossings by entering a hibernation-like state to conserve energy 

(Morton, 2013). Records show that no mammal or amphibian species travelled further than 

450 km from the mainland (Darwin, 1859) and Bermuda is over 965 km from North America. 

Distance therefore explains why there is an absence of native amphibians and terrestrial 

mammals on Bermuda, as it does not lie close enough to the continent for them to survive 

the challenging journey across the sea.  

 

Because of its isolation, the Bermuda skink has retained various primitive morphological 

characteristics such as a long tapering head and body. It is also more snakelike than other 

Plestiodon species of eastern North America (Heilprin, 1889). Hence the name ‘longirostris’, 

meaning long snout in Latin. The skinks also have powerful jaws with many extremely small 

pleurodont teeth, which is where the genus name is derived from the Greek words pleistos 

meaning “many” and odontos meaning “teeth”. 

1.5 BERMUDA SKINK LIFE HISTORY 

The Bermuda rock lizard or skink is unique in being the only non-avian, endemic terrestrial 

vertebrate in Bermuda (Edgar et al., 2010). The Bermuda skink, a diurnal, medium sized 
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scincid lizard [adult snout to vent length (SVL): 72 - 94 mm and 12 - 30 g body mass] was first 

described by Jones and Hurdis in Bermuda, defining the status of the skinks in the 1840s 

(Jones et al., 1859; Barnes and Edy, 1987). Despite once being common across Bermuda, 

relatively little is known of its ecology, behaviour, and general biology because of its secretive 

habits and semi-fossorial lifestyle.  

 

Adult skinks are dark grey and their lower jaw edges and cheeks are mostly a salmon pink to 

orange colour. The dorsum of the sub-adults varies between shiny dark brown to grey body 

scales with two sets of dorsolateral black and white stripes extending from the head to the 

base of the tail. Juveniles have a very similar body colour to the sub-adults but with distinctive 

bright blue tails, which they can shed to distract predator attention away from the body 

(Heilprin, 1889; Davenport et al, 1997). 

 

The skinks have short, stout legs with clawed feet and a long tapering tail. They are well 

adapted for burrowing, so will feed around the grasses, rock walls and narrow rock crevices. 

They mostly prey on small invertebrates such as ants (Pheidole megacephala), beetles 

(Coleoptera), cockroach nymphs (Periplaneta americana) and woodlice (Armadillidium 

vulgare; Wingate, 1965). However, they are also natural scavengers with a keen sense of smell 

that attracts them to carrion, unlike most reptiles (Garber, 1988). It is thought they have a 

mutualistic relationship with the white-tailed tropicbirds (Phaethon lepturus catesbyi) and 

Bermuda petrels (Pterodroma cahow): the skinks benefit from eating any broken eggs, dead 

chicks and dropped fish in the nests, while the birds benefit from skinks cleaning the nest 

ready for the next breeding season, thereby reducing parasites or diseases (Garber, 1988; 

Wingate, 1965). As they feed opportunistically, skinks have even been observed eating 

baygrape fruits (Coccolbis uvifera), prickly pear fruits (Opuntia dillenii) and appear to be very 

fond of cheese (Wingate, 1965; Davenport et al., 1997). 

 

The skinks typically live within coastal habitats that include sand and dune, rocky coastal 

outcrops and upland coastal scrub habitat (see Supplementary Material 4 for vegetation 

found within each habitat type). Within these areas they are limited to patches with leaf litter, 

matted crab grasses (Digitaria sanguinalis), sea oxeye (Borrichia frutescens), seaside 

goldenrod (Solidago sempervirens), buttonwood (Conocarpus erectus) and bay grapes 
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(Coccolbis uvifera), that provide ideal ground cover with rich insect abundance and 

concealment from predatory birds (Wingate, 1965). 

 

Bermuda skinks are active all year round with peak activity in the summer months, retreating 

into deep cliff crevices, rock walls or the ruins of old forts when the temperature drops below 

21°C (Wingate, 1965). Equally, the skinks will avoid the heat of the day and exhibit crepuscular 

activity patterns. Breeding season begins in spring with males developing bright orange 

cheeks and lower jaws (Fig. 1.3) and exhibit territorial and aggressive behaviour (Pyron and 

Camp, 2007; Vitt and Cooper, 1986). There is strong evidence in other lizards that this 

conspicuous coloration developed during the breeding season is a sexual characteristic used 

in male-male competition (Cooper and Vitt, 1993) and individuals with more intense 

colouration or larger areas of colouration were more likely to have mating success (Salvador 

et al., 2013; Zucker, 1994; Olsson, 1994). Between May - June, females will lay three to seven 

eggs in deep rock crevices, hatching around 40 days later. She will guard the eggs but does 

not take care of young and will aggressively chase them away, thus dispersing them (Edgar et 

al., 2010). Skinks will reach sexual maturity between two and four years old (Edgar et al., 

2010). 

 

 

 

 

 

 

 

 

 

 

 

 

As Bermuda skinks have never been studied long-term their life span still remains unclear. 

Although it was thought that some individuals from a toe-clipping study were still being 

observed fifteen years later (Glasspool and Outerbridge, 2004), it is more likely this was 

FIGURE 1.3. Differences in cheek colourations between adult Bermuda skinks.  
(Photo Credit: Turner. H, 2015). 
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mistaken for natural toe loss. It is thought the Bermuda skinks have a limited home range of 

around 10 m² (Davenport et al., 1997). Similar to other Plestiodon species the Bermuda skinks 

home range probably varies in size and shape in accordance with the age and gender of the 

individual skink (Fitch, 1956).  

1.6 CONSERVATION BACKGROUND 

The skinks were described as ‘very common’ throughout Bermuda in the 1800s and were 

often found around old stone walls and rocks within the cedar groves (Jones et al., 1859; 

Cope, 1861). Verrill (1902) reported that skinks were ‘by no means common’, rarely seen on 

the mainland and were prevalent only on Castle Island around the forts and cliffs. The 

difference between these reports suggests that there was a notable decline of Bermuda 

skinks within four decades. However, it is possible that the skinks were never particularly 

conspicuous. Observations by Bermuda’s Department of Agriculture began in 1956 and 

continued sporadically until 1963 when populations remained on the mainland particularly 

on the North Shore in Devonshire and the Castle Harbour Islands, but their distribution was 

patchy and local residents had noticed a dramatic decline in numbers (Wingate, 1965; Garber, 

1988). 

 

A population survey was undertaken on Nonsuch Island in 1970 and it was found that there 

was a large sub-adult and juvenile population. Again, in the 1990s the few remaining areas 

that skinks remained were largely dominated by old adults, signifying a high mortality of 

hatchlings and juveniles, possibly due to an increase in predation (Griffith and Wingate, 1994). 

As a result of the skink’s current limited and patchy distribution, the concern for the skink’s 

survival began and further action was taken (Griffith et al., 1991). The Bermuda skink was 

listed as Critically Endangered by the Species Survival Commission of the IUCN in 1996 

(Conyers and Wingate, 1996; Baillie and Groombridge, 1996; IUCN, 2015). They receive the 

highest protection (Level 1) under Bermuda law since 2003 (Protected Species Act, 2003; 

2011). Any offenders would be liable to a fine of $5,000, and up to $10,000 for continued 

offences, for wilful damage or destruction, removal of habitat, importing, exporting, selling, 

purchasing or having a protected species in possession. 
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Following this, two skinks were captured from Spittal pond nature reserve (located on the 

coast of Smith's Parish), the largest wildlife sanctuary in Bermuda and thought to hold the 

majority of the mainland population of skinks. The individuals were displayed at the Bermuda 

Aquarium, Museum and Zoo (BAMZ) in the ‘Local Tails’ exhibit providing an important 

educational attraction for the public as well as an opportunity to learn more about their 

natural history. However, the exhibit was removed in 2016, to make space for a new 

quarantine facility. By the end of 1998, a three-month campaign in partnership with John 

Barritt and Sons Ltd called ‘Have a drink, save a skink’ was launched in which all ginger beer 

cans displayed a picture of the Bermuda skinks with a message about the threat of leaving 

cans as rubbish (Fig. 1.4). Visitors bringing the can with them received half price admission to 

BAMZ. However, a small amount of negative feedback terminated this initiative, because a 

fear of lizards meant some people refused to buy the cans as they had a picture of a lizard on 

them (B. Barritt, pers. comm. 2015).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the summer of 1998, a questionnaire designed by the Bermuda Zoological Society (BZS), 

was mailed to 33,000 households with support from the Bermuda Electric Light Company 

(BELCO), seeking island-wide information regarding the distribution of the skinks, including a 

picture of the lizard and asking where and when they had seen any. Over 150 people 

responded to the survey and showed areas where skinks still appeared to be present 

particularly along Bermuda’s south shore (Glasspool, 2000). These included Horseshoe Bay, 

FIGURE 1.4. Bermuda skink campaign in 1999. A 
collaboration between Barritts Ginger Beer company 

and the Bermuda Aquarium, Museum and Zoo. 
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Warwick Long Bay, and Astwood Park, but the results showed many isolated populations 

across the mainland (See Supplementary Material 1 for map of skink sightings). Although the 

low response rate may not have been a true reflection of the skink distribution, the sightings 

provided a starting point for future skink surveys, particularly on the mainland (See 

Supplementary Material 2 for summarised data on skink surveys). 

 

Various population assessments have been undertaken over the past two decades (See 

Supplementary Material 1 and 2) with sub-populations (i.e. a subset of the population) of 

skinks being reported from at least 24 sites (i.e. a site being a local area where skinks can be 

found, often an island or nature reserve) across Bermuda (Edgar et al., 2010). The greatest 

concentration is found within Castle Harbour, (several islands that make up the protected 

nature reserve), where the largest sub-population is currently found there, on Southampton 

Island (estimated at 582 skinks; Glasspool and Outerbridge, 2004). 

 

Throughout this thesis a ‘population’ refers to the whole Bermuda skink population, whereas 

a sub-population refers to a subset of a larger population. Multiple sub-populations across 

Bermuda also act as metapopulations which means various sub-populations interact at some 

level via dispersal. The concept of a metapopulation was introduced by Richard Levins in 1969. 

The current most popular approach ‘The Levins model’ or ‘The classical metapopulation 

model’ is based on a population with occupied and unoccupied patches and an adequate rate 

of migration (immigration into vacant patches and emigration from occupied patches) among 

patches (Levins, 1969; Harrison and Taylor, 1997). An important assumption is that all sub-

populations have a significant risk of extinction but are sufficiently close to neighbouring sub-

populations for dispersal and therefore recolonisation to occur (Stith et al., 1996).  

 

Other metapopulation models include: (1) ‘The patchy metapopulation model’, where all sub-

populations are sufficiently close to function as a single population. That means that enough 

individuals are migrating between sub-populations that the sub-populations are not at risk of 

going extinct (Stith et al., 1996). In this model, the sub-populations are not independent, and 

their demographics are closely linked and when a sub-population goes extinct it is not noticed 

because it is part of a large continuous metapopulation. However, if a single large sub-

population acting as a ‘source’ goes extinct then the wider metapopulation may crash. (2) 

‘The non-equilibrium metapopulation model’, where each sub-population acts as a separate 
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metapopulation (Stith et al., 1996). Each metapopulation is prone to extinction because of its 

isolation and small size. In this model, the sub-populations are completely independent, and 

their demographics are not linked (Stith et al., 1996). (3) ‘The Mainland-island 

metapopulation model’, where dispersers from the mainland can reach each of the small sub-

populations (Ricklefs and Miller, 2000). It is therefore assumed the mainland population does 

not go extinct (Ricklefs and Miller, 2000). If the mainland population does not go extinct 

neither does the metapopulation (Hanski and Simberloff, 1997).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

The sub-populations of skinks within Bermuda represent a combination of the classical 

metapopulation structure and a mainland-island model (Fig 1.5). All the sites are small, 

isolated, vary in quality (e.g. in terms of food availability, cover, nest sites, impact of 

predation), and mostly independent with no migration. However, it is possible that 

interactions such as movement of individuals from one sub-population to another is possible 

between a few islands with Castle harbour, particularly Southampton Island, where rock falls 

or high sea levels wash skinks across to other low lying islands, especially during tropical 

storms and hurricanes. However, any migration that does occur is severely restricted. For 

some sub-population’s emigration/immigration is not possible because of environmental 

conditions, the distance between islands or the dispersal ability of the species. As a result of 

FIGURE 1.5. Metapopulation structure (Based on 
Stith et al., 1996; Harrison and Taylor, 1997). 
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this lack of recolonization, some of the isolated sub-populations may be more susceptible to 

extinction. 

 

Biology of metapopulations has become a key issue in conservation, especially with respect 

to how the dynamics, long-term survival and evolution of species are affected by habitat 

fragmentation (see Hanski, 1994; Hastings and Harrison, 1994; Hanski and Gilpin, 1997; 

Ricklefs and Miller 2000). Therefore, models of metapopulation dynamics are important tools 

in the field of conservation biology and island biogeography.  

 

One of the consequences of increased habitat fragmentation is reduced potential for 

maintaining genetic variation in local populations and across the entire metapopulation 

(Frankham, 1998). Although genetic differentiation between Bermuda skink sub-populations 

is not the subject of this thesis, the results are currently being analysed separately to further 

inform conservation measures. 

 

Recovery plans were put into place in 2010 by the Government of Bermuda to protect the 

species. They planned to do this by (1) restoring populations of the skink island-wide to reach 

sustainable levels; (2) ensuring suitable habitat for the skinks; (3) ensuring active reproduction 

and growth; and (4) reducing fragmentation of the population. However, the plans do not 

make it clear at what point the population is deemed to reach a sustainable level; how 

suitable habitat will be maintained; how reproduction and growth of skink populations could 

be demonstrated at a minimum of 75% of sites deemed suitable; or how fragmentation of the 

population would be measured and therefore reduced. Consequently, the imprecise 

objectives stated in the action plan make achieving targets problematical, and as a result 

there has been no regular monitoring of the skink populations on Bermuda or its offshore 

islands (Government of Bermuda, 2003) and no research has been published on the Bermuda 

skinks since 2005 (Edgar et al., 2010).  

 

In 2013, a safety-net population of 12 adult skinks were collected for a captive breeding 

program at Chester Zoo (UK) that could secure a breeding population in the event of a natural 

disaster that decimated the wild population. In September 2017 skinks were successfully bred 

outside of Bermuda for the first time, producing seven hatchlings from two clutches. As a 

result, husbandry guidelines are currently being complied which could help optimise captive 
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conditions and breeding success, potentially leading to reintroductions back to the wild in the 

near future. 

 

1.7 CURRENT THREATS TO BERMUDA SKINKS  
 

1.7.1 Habitat destruction, loss and fragmentation 

Although the skinks were once a common sight across Bermuda historically (Jones et al., 1859; 

Cope, 1861), no records of skink presence in the northeast of Bermuda, particularly in St. 

Georges, exist. Although it is possible that the skinks were present but just not recorded, this 

seems unlikely as St. Georges was the first island to be settled in July 1612 by sixty British 

settlers (Cook et al., 1980). Since then, extensive methods have been used to burn and clear 

land for keeping livestock (Lee, 2015) and numerous buildings and fortifications were 

constructed from the native coral limestone rock, in some cases extracted from coastal areas 

(Verrill, 1907; Sterrer et al., 2004). During World War 2 (1939 – 1945), many small islands in 

Castle Harbour were amalgamated or eliminated to provide a land-based airfield for US 

military aircraft in Bermuda (Forbes, 2019). Bermudians also launched into shipping, a highly 

successful industry until the advent of steam in the early nineteenth century, taking 

advantage of the prolific Bermuda cedar for timber (Wilkinson, 1973; Sterrer et al., 2004). 

Tourism then started to bring money and development in the form of new hotels and growing 

towns across Bermuda. If skinks did exist in St. Georges originally, their populations would 

have struggled to survive the continuous anthropogenic disturbances in the area.  

 

By 1965, the mainland skink populations had become noticeably smaller and their distribution 

more fragmented than the offshore island populations (Wingate, 1965). Over the past 

century, there has been vast changes in skink habitat across Bermuda, often going from one 

extreme to the other (e.g. barren to densely vegetated; Fig 1.6). Although Bermuda’s 

agricultural importance has declined, the pressures of development continue to grow due to 

intense human activity which is perhaps one of the leading causes of the skink’s population 

decline (Wingate, 1998). 
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The country remains one of the most densely populated in the world with 1,160 

people per km² (Sterrer, 1998; Government of Bermuda, 2016), in comparison the United 

Kingdom has 274 people per km² (Office for National Statistics, 2018). The demand for 

housing has grown with less than 33% of open space land remaining, (including National 

Parks, Nature Reserves, rural areas, golf courses and other recreational areas. Undisturbed 

areas of natural vegetation are rapidly diminishing (Government of Bermuda, 2018a). The 

pressure on biodiversity is intensified further by the arrival of more than half a million tourists 

each year (Government of Bermuda, 2018b). 

 

Even on Bermuda’s mainland there was an estimated 95% – 99% loss of the native Bermuda 

cedar (Juniperus bermudiana) in the 1950s following the accidental introduction of two 

coccoid scale insects (Gillespie and Clague, 2009). Although subsequent reforestation using a 

scale-resistant strain has returned the cedar to roughly 10% of its former abundance (Procter 

and Fleming, 1999), these efforts have been hampered by the introduction of highly invasive 

fast-growing casuarinas (Casuarina equisetifolia), Brazil pepper (Schinus terebinthifolius), 

Indian laurel (Ficus microcarpa), asparagus fern (Asparagus densiflorus) and other exotics into 

much of the cedar habitat (Sterrer, 1995). This has caused extensive ecological problems by 

FIGURE 1.6. Habitat changes: A) Barren coastline of Castle Island in the early 1900s and 
B) Present day highly vegetated aerial image of Castle Island (Photo Credit: Verrill, AH. 

1902; Bermuda Aerial Media, 2017). 

A) 

B) 
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over-shading native plants and increasing soil erosion (because of extensive underground 

root systems). Although up to 20% of Bermuda’s land area is covered by forest, woodland or 

scrub habitat (Procter and Fleming, 1999), only very small and fragmented areas of natural 

habitat remain that are suitable for skinks (Sterrer, 1998; Sterrer et al., 2004) resulting in small 

pockets of sub-populations, which puts the species at greater risk of extinction.  

 

1.7.2 Climate change 

Bermuda is particularly vulnerable to climate change due to a number of factors. For example, 

the small size of the island limits the options available for adaptation to climate change and 

sea level rise. Likewise, the relatively low‐lying nature of the land and the island’s 

geographical position makes it vulnerable to tropical storm activity and associated storm 

surge. The impacts of these factors are accentuated by increasing urbanisation and high 

population density; the close proximity to the coastline of much of the housing and 

infrastructure; limited natural resources such as fresh water; depletion of the island’s non‐

renewable resources; and the substantial distance to major international markets that drives 

a dependence on imports including food and oil.  

 

As the sea level rises, the impact of a hurricane on Bermuda’s shores will have a significantly 

greater impact on coastal erosion due to increased storm surge (Stevenson, 2014). A 

projected 55.8% of Bermuda’s beaches and dunes, and 52.7% of the rocky coastal habitat 

would be lost and more than 1,977 buildings would be affected with a 2 m sea level rise - the 

predicted maximum sea level rise likely this century (Glasspool, 2008; Pfeffer et al., 2008). 

Planning can play a key role in tackling climate change by helping to shape developments. 

Providing green spaces can help to reduce carbon dioxide emissions; minimise energy 

consumption; minimise vulnerability to flood risk and high temperatures; improve air quality, 

manage flood and surface water; and positively build community resilience to problems such 

as extreme heat or flood risk. 

 

Although the majority of the tropical storms and hurricanes that form in the Atlantic bypass 

Bermuda, when hurricanes do hit Bermuda, usually between September and October 

(Bermuda Weather Service, 2017), they are quite unpredictable in nature as they change 

direction and intensity and can get dangerous. However, the damage is often minimal 

(Bhattacharya, 2019). Notably there have been four hurricanes in the past decade (Hurricane 

http://www.eoearth.org/article/Habitat
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Fay, Gonzalo, Fabian and Nicole) that have caused significant damage to the island 

(Bhattacharya, 2019) not only uprooting vegetation, but causing flooding, structural damage 

to buildings, and the high winds weaken the limestone and cause rock falls, also destroying 

skink habitat (Fig. 1.7). 

 

 

 

 

 

 

 

 

 

 

1.7.3 Pollution 

Litter waste is a serious threat for marine environments and the negative effects of this debris 

on wildlife are well documented, such as sea turtles ingesting plastics floating in the ocean 

(Schuyler et al., 2014), whilst marine mammals, birds and fish are often entangled in non-

biodegradable materials (Derraik, 2002). Although plastic granules progressively disappear 

through oxidative ageing and other degradational processes, the amount of oceanic litter is 

increasing (Thompson et al., 2004; Cole et al., 2011; Bergmann and Klages, 2012) and plastic 

pollution is a common feature on Bermuda’s beaches (Gregory, 1983; Law et al., 2010). 

Additionally, plastics contain polycyclic aromatic hydrocarbons (PAH), polychlorinated 

biphenyls (PCBs), bisphenol A (BPAs), phalates, dioxins and dichlorodiphenyltrichloroethane 

(DDT). These can disrupt the human endocrine system and cause cancers and birth defects 

(Schug et al., 2011; Maqbool et al., 2016). Equally, plastic waste is capable of absorbing 

contaminants (Cózar et al., 2015) and can provide reservoirs for mosquitoes, Aedes aegypti 

to breed. These transmit viruses that cause dengue fever (DF), dengue haemorrhagic fever 

(DHF) and dengue shock syndrome (DSS). As dengue is one of the most widespread infectious 

diseases globally, it is a major public health problem with almost a half of the global human 

population at risk (Hoff and Foley, 2011; Arrizabalaga et al., 2016). 

 

FIGURE 1.7. Rock fall on Charles Island (before and after) following hurricane Nicole in 
2016. (Photo Credit: Dept. Conservation Services. 2000; Turner, H. 2016). 
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Discarded litter washing up on Bermuda’s coastlines also has a major impact on terrestrial 

species such as the Bermuda skinks. Glass and plastic bottles left in an upright position act as 

lethal traps for invertebrates such as cockroaches (Periplaneta americana) and small 

crustaceans such as woodlice (Armadillidium vulgare) which, in turn, attracts the skinks. As 

the skinks have clawed feet they cannot escape (unlike anoles) and remain trapped, 

eventually dying of starvation, drowning or heat stress (Hill, 2003; Fig. 1.8). Indeed, the 

decline of skinks on Castle and Charles Island may be mostly due to the litter left there as they 

are subject to high levels of anthropogenic activities during the summer months (Garber, 

1988).  

 

 

 

 

 

 

 

 

 

 

 
 

1.7.4 Predation and interspecific competition 

Historically, the only native predator of skinks may have been the Bermuda hawk, recently 

described from fossil records (Olson, 2008). Although it is long extinct, records of raptors 

observed on the island in 1603 may relate to the hawk. Exact time of extinction is not known, 

but presumably followed human settlement in the early 17th century and may have been the 

result of hunting and the introduction of invasive species (Birdlife, 2019). Occasional 

migratory birds such as egrets may predate skinks (Edgar et al., 2010) as their diet frequently 

includes small reptiles (Baxter and Fairweather. 1989). However, it is unlikely they had many 

predators or needed to compete with other species for resources (Edgar et al., 2010). Natives 

such as giant land crabs (Cardisoma guanhumi) and hermit crabs (Coenobita clypeatus) 

occupy coastal areas similar to the skinks and although they are predominately vegetarian 

FIGURE 1.8. The recent remains of a Bermuda skink found 
in a discarded bottle at Daniels Head. (Photo Credit: Turner, H. 2015). 
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they will occasionally scavenge bird nests too (Government of Bermuda, 2019a; Government 

of Bermuda, 2019b). The only other extant pre-colonial terrestrial vertebrate is the 

diamondback terrapin (Malaclemys terrapin) which occupies brackish coastal tidal marshes 

and is unlikely to encounter the skinks. 

 

Bermuda is particularly vulnerable to the introduction of invasive species through the 

importation of food, (i.e. plants, animals, seeds, fruit) or other consumer products which 

could accidentally introduce an invasive species that will seriously damage the environment 

(Government of Bermuda, 2018b). Of more than 1,600 resident terrestrial plants and animal 

species, only 27% are native (Sterrer et al., 2004). Deliberate and accidental introductions 

may have had a dramatic effect on skink populations (Raine, 1998; Wingate, 1998; Davenport 

et al., 2001). The first such animals on the island were probably domestic pigs, deliberately 

put ashore by Spanish sailors in about 1560 so that they could serve as food for passing ships 

(Sterrer et al, 2004). By 1593, feral pigs were already quite numerous and had destroyed 

breeding colonies of the Bermuda petrel (and possibly even sea turtles’ nests) on the main 

islands (Lee, 2015). Although there are no records of the feral pigs being removed from the 

island, any such livestock would have been unlikely to survive the famine of 1615 (Verrill 1902; 

Sterrer et al., 2004). 

 

The brown rat (Rattus norvegicus), the black rat (Rattus rattus) and feral and domestic cats 

(Felis domesticus) arrived in shipments to Bermuda sometime before 1614 (Government of 

Bermuda, 2015). The mouse (Mus musculus) was another early (but undocumented) arrival 

(Sterrer et al., 2004). In the 17th century these abundant introduced species became highly 

destructive on the islands and were controlled on Bermuda’s offshore islands by the repeated 

burning of the vegetation (Verrill, 1902) and skinks may have been eliminated from many 

islands as a result. However, thousands of feral and domestic cats remain on Bermuda’s 

mainland and cases of domestic cats catching and killing skinks have been frequently reported 

(Wingate, 1965; M. Outerbridge, 2016, pers. comm.). For example, in the 1980s an estimated 

50 cats became feral on Frick’s property at Castle Point (on the mainland) and during this time 

the owner of the property observed the skink population to decline (Garber, 1988). The cats 

have since been eliminated and the area restored to native vegetation, but careful 
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observations have failed to find any lizards. Verrill (1902) also suggested rats’ prey on skink 

eggs and young.  

 

Competitors introduced to Bermuda include the marine cane toads, (also known as giant 

toads, Rhinella marina formerly Bufo marinus), that were brought into Bermuda in 1885 from 

Guyana to control pest insects, particularly the cockroaches and centipedes, that are 

abundant on the island (Dunn and Conant, 1937). The toads compete for terrestrial 

invertebrate prey and even ingest smaller skinks (Wingate, 2011). Following an explosion in 

the number of toads on Nonsuch Island after a freshwater pond was created, skinks were 

observed dying after ingesting toadlets, which contain bufotoxins (Raine, 1998). Since then, a 

barrier has been erected around the perimeter of this particular pond and it seems to have 

prevented breeding of toads on Nonsuch Island, but they are common throughout Bermuda 

(Government of Bermuda, 2018c). A similar incident occurred with another scincid lizard in 

Australia, the blue tongued skink (Tiliqua scincoides intermedia). As soon as invasive cane 

toads were introduced, skink populations declined as a direct result of ingesting the 

neurotoxic toads (Price-Rees et al., 2010). Cane toads are therefore a significant threat to the 

Bermuda skinks (Davenport et al., 2001).  

 

Graham’s anole (Anolis grahami), native to Jamaica, were initially introduced to Bermuda in 

1905 (Wingate, 1965) to control the fruit fly populations that damaged local crops (Losos, 

1996). The Antiguan anole (Anolis bimaculatus leachii), locally known as ‘the Warwick lizard’, 

and the Barbados anole (Anolis roquet extremus), known as ‘the Somerset lizard’, were then 

accidently introduced in the early 1940s (Losos, 1996). The Jamaican anoles are now the most 

abundant of the three introduced lizards (Bacon et al., 2006a). As adult Jamaican anoles have 

been observed consuming juvenile skinks on Castle Island (Griffith and Wingate, 1994) it is 

likely the larger Antiguan and Barbados anoles would be able to as well (Griffith and Wingate, 

1994; Hailey et al., 2011). Now with well-established populations they have the potential to 

spread island-wide and compete directly with skinks (Stroud et al., 2017). 

 

In 2011 two species of gecko, the Mediterranean or Turkish gecko (Hemidactylus turcicus) and 

the Common or Asian house gecko (Hemidactylus frenatus) and the Cuban brown anole 

(Anolis sagrei) were reported to be accidentally introduced to Bermuda from cargo imports 

(Jones, 2013). Although these species have become established invasives in other parts of the 
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world, currently their populations seem to be restricted to just a few areas on the mainland 

(Stroud et al., 2017).  

 

All common crows (Corvus brachyrynchos) found in Bermuda are descended from one pair 

that were being kept as pets which escaped in 1848 (Sterrer et al., 2004). Their population in 

Bermuda has been increasing since the late 1860s and they frequently visit the Castle Harbour 

islands to consume the white-tailed tropicbird (Phaethon lepturus catsbyii) eggs and chicks 

(Maderios, 2011). The crows have never been directly observed to predate on the Bermuda 

skinks, but they will eat a wide variety of prey that includes lizards (McGill University, 2008) 

so it is very possible they could be consuming skinks as well. Similarly, many feral chickens are 

found throughout the mainland with more than 20,000 estimated in Bermuda (Government 

of Bermuda, 2017). Chickens are also opportunistic feeders and can even predate adult skinks 

(Fig. 1.9). 

 

 

 

 

 

 

 

 

 

 

 

Great kiskadee flycatchers (Pitangus sulphuratus) were introduced in 1957 from Trinidad as a 

biocontrol agent for the invasive Jamaican anoles (Anolis grahami) (Wingate, 1965), possibly 

because lizards form a common part of their diet in their natural range (Chadee et al., 1990). 

However, this initiative was unsuccessful, as both species (Great kiskadees and Graham’s 

anoles) are now widespread across Bermuda (Stroud et al., 2017). As the kiskadees have been 

observed preying on the skinks, they present a real threat to the skink’s survival (Bennett and 

Hughes, 1959; Samuel, 1975; Raine, 1998; Davenport et al., 2001; Thomas, 2004; Bacon et al. 

2006a). Additionally, kiskadees have played a significant role in the population declines of a 

FIGURE 1.9. Chicken eating an adult five lined skink 
Plestiodon fasciatus in North America. (Photo Credit: 

Natural chicken keeping, 2015). 
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number of other native species, including the Bermuda land snails (Poecilozonites 

circumfirmatus and Poecilozonites bermudensi) and extinction of the Bermuda cicadas 

(Tibicen bermudiana) (Cheeseman and Clubbe, 2007). 

 

When the endemic Bermuda night heron became extinct, a related species - the yellow-

crowned night heron (Nyctanassa violacea) - was deliberately introduced (1976 – 78) to 

control the burgeoning land crab population (Kushlan et al., 2011). However, unlike the 

extinct night heron, the introduced night heron does not have a crab-specific diet and 

although it did reduce the crab population, it also preyed upon the skinks (Griffith et al., 1991; 

Griffith and Wingate, 1994; Davenport et al., 1997; Wingate, 1998). Nevertheless, a sample 

of heron pellets collected in 1997 contained no traces of Bermuda skink material (Davenport 

et al., 1997). As samples were collected twenty years after the herons were introduced, the 

skink population may already have been depleted. Equally, the small sample size of pellets 

collected, the time of the year samples were collected and the fact that night herons are 

opportunistic feeders (Nellis, 2001), means that impacts on the skinks may still be possible.  

 

There are now a host of introduced or non-native species that have become established on 

Bermuda that pose a real threat not only to the Bermuda skink, but to the entire ecosystem 

(Outerbridge et al., 2003) through predation, competition, reducing food web complexity, 

hybridisation, competitive exclusion, and increasing the risk of extinction of native species 

(Mooney and Cleland, 2001). To date 1,139 non-native species have been recorded in 

Bermuda (414 plant species, 699 invertebrate species, 26 vertebrate species) (Glasspool et 

al., 2003). By contrast with other overseas territories, Bermuda has 175% more non-native 

species recorded than the second highest St Helena (Table 1.1), This is likely due to a lack of 

in depth recent studies, particularly in the Caribbean region, as a result these records may 

significantly under-estimate the true number of non-native species present (Varnham, 2006). 

It is also likely that a combination of factors including Bermuda’s high population, remoteness 

and optimal environmental conditions that would have allowed this number of non-natives 

to establish. However, the South Sandwich Islands currently have no non-native species 

(Varnham, 2006).  
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TABLE 1.1 
The number of non-native species recorded per British Overseas Territory in relation to 

territory size (km²), estimated population size and distance to the mainland (km²). 

British Overseas 
Territory 

Recorded no. of 
Non-Native 

Species 

Territory 
Size (km²) 

Estimated Population Size (2018 – 
2019) 

Distance 
to 

Mainland 
(km²) 

Anguilla 212 91 14,869 953 

Ascension 167 90 806 3,041 

Bermuda 1,139 54 62,506 1,052 

British Antarctic 
Territory 

5 1,709,400 0 
50 non-permanent in winter, over 

400 in summer (research 
personnel) 

5,716 

British Indian Ocean 
Territory 

234 60 0 
3,000 non-permanent (UK and US 

military and staff personnel) 

1,943 

British Virgin Islands 31 153 31,758 551 

Cayman Islands 109 264 68,076 512 

Cyprus Sovereign 
Base Areas 

0 255 7,700 
8,000 non-permanent (UK military 

personnel and their families) 

84 

Falkland Islands 224 12,713 3,377 
1,350 non-permanent (UK military 

personnel) 

520 

Gibraltar 80 6.5 33,701 
1,250 non-permanent (UK military 

personnel) 

0 

Guernsey 11 65 62,792 48 

Isle of Man 25 571 84,077 38 

Jersey 12 118 106,800 22 

Montserrat 39 101 5,215 428 

Pitcairn Islands 46 47 50 
6 non-permanent 

3,578 

South Georgia 51 3,528 0 
99 non-permanent (officials and 

research personnel) 

1,799 

South Sandwich 
Islands 

0 310 0 
99 non-permanent (officials and 

research personnel) 

2,354 

St Helena 414 121 4,349 1,878 

Tristan de Cunha 129 207 300 
9 non-permanent 

2,775 

Turks & Caicos 
Islands 

22 430 38,191 913 
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The Government of Bermuda’s Department of Environment and Natural Resources is 

continuing to control invasive species. Nevertheless, it has been challenging particularly as 

some of the key traits identified in invasive species are: (1) high population growth rate; (2) 

wide climatic or environmental tolerance; (3) short generation time; (4) prolific or consistent 

reproduction; (5) small seed or egg size; (6) good dispersal; (7) high capacity for uniparental 

reproduction; (8) absence of specialised germination or hatching requirements; (9) high 

competitive ability; and (10) ability to escape or survive natural enemies (Mooney and 

Cleland, 2001; Whitney and Gabler, 2008). Without prior knowledge of invader interactions, 

removal of only a single invader can lead to an increase in the population size of other invasive 

species or decrease the population size of native species (Zavaleta, Hobbs and 

Mooney, 2001). 

 

Invasive species may even affect native species indirectly by changing disease dynamics which 

can cause catastrophic species loss with knock-on effects for community structure (Prenter 

et al., 2004). Parasites may play a key role in mediating the impacts of biological invasions. 

For example, invasive hosts often have fewer parasite species and a lower prevalence of 

parasites than native hosts, which may provide them with a competitive advantage (Lymbery 

et al., 2014). Equally, if invasive hosts introduce new parasites, then these may be transmitted 

to native hosts, leading to the emergence of new disease in the natives (Daszak et al., 2000). 

 

Ranaviral disease in amphibians has been studied intensively during the last decade, as 

associated mass-mortality events are considered to be a global threat to wild animal 

populations (Daszak et al., 2000). Since the late 1990s, ranaviruses have also been detected 

more frequently in reptiles. Cases have been described in various chelonian, snake and lizard 

species, including brown anoles (Anolis sagrei), Asian glass lizards (Dopasia gracilis), green 

anoles (Anolis carolinensis), green iguanas (Iguana iguana), and a central bearded dragon 

(Pogona vitticeps) (Stöhr et al., 2013). Therefore, invasive anoles could potentially pose a 

threat to the Bermuda skinks as vectors of disease. Continued monitoring of all invasive 

species would help to detect early warnings signs (i.e. skin lesions, upper respiratory tract 

issues, lethargy and anorexia) in lizards.  
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1.7.5 Toxicological threats 

A high incidence of abnormalities observed in local cane toads, suggests they are affected by 

chemical pollutants, such as pesticides (Bacon et al., 2006b; Linzey et al., 2003). Rodenticides 

used in Bermuda and widely across the world, contain potent chemicals such as brodifacoum, 

an anticoagulant poison, and a known toxin to mammals, birds and reptiles (Department of 

Conservation New Zealand, 2001). Reptiles in particular have been reported to be more 

sensitive to the effects of persistent toxins in the environment than birds and mammals (Hall, 

1980). Although it has been suggested that invertebrates are unlikely to be directly killed by 

brodifacoum, residues of brodifacoum have been found in beetles collected from bait stations 

on Stewart Island (Wright and Eason, 1991). Equally, Godfrey (1985) reported secondary 

poisoning in a zoo where insectivorous birds such as golden plovers (Pluvialis apricaria), 

honey creepers (Cyanerpes sp.), finches (Aves: Fringillidae), thrushes (Aves: Turdidae), 

warblers (Aves: Parulidae), crakes (Aves: Rallidae), and rufous-faced antpittas (Grallaria 

erythrotis) all died due to ingesting ants and cockroaches that had eaten brodifacoum baits. 

The risks of non-target mortality and contamination after pest control must be carefully 

balanced against the benefits (Godfrey, 1985). For example, the eradication of rabbits using 

brodifacoum on Round Island, Mauritius in 1986 illustrates this most clearly. Telfair’s skinks 

and other lizards on the island were considered at risk from poisoning by eating poisoned 

insects and/or bait and some were killed in the process (Merton, 1987). Three years after 

eradication of rabbits there was a dramatic regeneration of vegetation and marked increase 

in the number of lizards including Telfair’s skinks (North et al., 1994). The eradication of rats 

from Korapuki Island in 1986 resulted in a 10-fold increase in lizard numbers in three years 

and a 30-fold increase in six years (Towns, 1994). This resulted in significantly improved 

survival rate of lizards with the reduction of introduced predators. However, if poison is used, 

bait stations should be off the ground to reduce possibilities of soil and water contamination 

leading to terrestrial invertebrates and even skinks accessing the bait. 

 

1.8 THESIS OVERVIEW  
 

Data were collected for this thesis on skinks in Bermuda between April and July 2015 and 

continued through the same time period in 2016 and 2017. Chapter 2 involved using passive 

integrated transponder (PIT) tags for the first time in this species, as a long-term marking 
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method for capture-mark-recapture sampling in two of the largest skink sub-populations. The 

data were analysed using a robust design model that provided precise estimates of 

abundance, capture and survival probabilities and temporary emigration. In Chapter 3 

detection and non-detection surveys were undertaken across Bermuda, and dynamic 

occupancy models were used with the inclusion of covariates as a tool to explicitly account 

for occupancy, colonisation, extinction and detection. This study provides an unbiased 

estimate of occupancy that can be used to compare the status of Bermuda skinks across 

different sites. Consequently, the research addresses important principles of survey 

methodology such as imperfect detection, that need to be accounted for in monitoring 

protocols for other reptile species. Chapter 4 compares the sizes and rates of growth amongst 

sub-populations and with historical data. This will provide a better understanding of the 

differentiation between sub-populations and rates of growth over time. Finally, in Chapter 5 

we provided new evidence that human-induced habitat deterioration may affect the body 

condition of Bermuda skinks and showed that using a body condition index can provide a 

surrogate measure of fitness. This could be applied to other elusive and endangered reptiles, 

especially species that occur over a large area, for which exhaustive sampling is unfeasible. 

 

In addition, data collected from this study will assist with the Bermuda skink’s future captive 

breeding management if reintroductions are to take place.  
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Glass jars (4.5 litres) - the current trapping method for capturing Bermuda skinks. 

(Photo Credit: Turner, H. 2016). 
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2.1 ABSTRACT 

Estimating reliable population parameters for highly secretive or critically endangered 

animals presents numerous challenges. We report on the status of the two largest remaining 

populations of critically endangered Bermuda skinks (Plestiodon longirostris), using a robust 

design capture-mark-recapture (CMR) analysis of PIT-tagged skinks on two islands over three 

years. The models provide precise estimates of abundance, capture and survival probabilities 

and temporary emigration. We estimated an abundance of N = 547 (± SE 63.5) skinks on 

Southampton Island and N = 277 (± SE 28.4) skinks on Castle Island. The populations do not 

appear to be stable and fluctuated at both sites over the three-year period. Despite these two 

seemingly healthy populations, the Bermuda skink remains threatened due to increasing 

anthropogenic activities, invasive species, and habitat loss.  
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2.2 INTRODUCTION 

Many endangered species are cryptic, elusive and challenging to survey reliably. The 

development of efficient survey methods to detect them is vitally important for conservation 

management. A wide variety of methods have been used in monitoring studies, including 

capture-mark-recapture (CMR) techniques to estimate abundance and survival (Krebs, 1999; 

Besbeas et al., 2002), which are both critical determinants of population viability (White and 

Burnham, 1999). Conventionally, marking is used to uniquely identify individuals in successive 

samples. For lizards, photographic identification using natural markings (Sacchi et al., 2010), 

tagging using passive integrated transponder (PIT) tags (Germano and Williams, 1993), and 

individual recognition from DNA sampling (Moore et al., 2009) have increased the utility and 

application of the CMR approach.  

 

The Bermuda skink (Plestiodon longirostris) is the country’s only extant endemic reptile (Edgar 

et al., 2010). Bermuda skink populations have undergone significant declines in the past 50 

years due to increased anthropogenic disturbances, habitat loss and degradation plus the 

introduction of invasive flora and fauna (Davenport et al., 1997; Glasspool and Outerbridge, 

2004). The continued threats are likely to have a major impact on the remaining populations. 

These are already fragmented and isolated, and the lizards are now only found within a few 

nature reserves and offshore islands with ca. 2,300 - 3,500 individuals thought to be left on 

Bermuda (Edgar et al., 2010). However, as it has been over ten years since any CMR surveys 

were undertaken (Glasspool and Outerbridge, 2004) the current state of the population 

remains unclear. 

 

We used a robust design model to monitor trends in abundance, survival, capture 

probabilities and temporary emigration, of the two largest skink populations on Bermuda. 

The robust design model of Pollock (1982) is an extension of the Cormack-Jolly-Seber (CJS) 

model and has become increasingly popular as it combines the advantages of both the live 

recapture model and the closed capture models. The model and its assumptions are described 

in detail by Cormack (1968), Kendall et al. (1995), Otis et al. (1978) and Seber (1982, 1986).  
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2.2.1 Study area 

This study was undertaken at two sites located within Castle Harbour, Bermuda (Fig. 2.1). 

Southampton Island (0.8 ha, 32.342 °N, -64.667 °W) and Castle Island (1.4 ha, 32.340 °N, -

64.672 °W). These two sites were chosen because they are thought to represent the 

healthiest known skink populations (Hammond, 2000; Glasspool and Outerbridge, 2004), are 

both within protected nature reserves and are considered the most suitable and viable areas 

to conserve. The islands are separated by a water channel that is 330 m wide and are similar 

in abiotic factors. Castle Island is closer to the main island (164 m), and therefore faces more 

threats from invasive species and anthropogenic activities which have been the main reasons 

for the skink’s decline across Bermuda. Additional sites across Bermuda were surveyed but 

sample sizes were too small (< 50 individuals), to provide reliable estimates. 

 

2.3 METHODOLOGY 

2.3.1 Skink capture and marking 

Methods were adapted from Davenport et al. (1997) using a consistent survey protocol across 

the two locations. Sixty-five, 4.5 litre glass jars (approximately 240 mm x 160 mm) were used 

as traps. Traps were set on 10 x 10 m grid systems because skink home ranges are 

approximately 10 m² (Davenport et al., 1997). Traps were mounted at a 45°-90° angle, with 

rocks or vegetation placed around so the skinks could gain access to the trap. Flagging tape 

was used to label each trap and locations were recorded using a handheld GPS (Garmin Etrex 

20, +/- 15 m). Palmetto fronds and small towels were used to shade the traps. The pitfall traps 

were baited every day with 10 ml of canned sardines (BUMBLEBEE® sardines in oil) which 

were placed in a small sealed tea strainer to prevent consumption, which could affect 

recapture rates. Additionally, 5 ml of cod liver oil was smeared around the rim of the trap to 

prevent escape and to deter ants (Davenport et al., 1997). The traps took around two hours 

to pre-bait and were then checked hourly between 1100 – 1600 hrs. Traps were closed by 

removing the bait and turning the jar upside down to prevent accidental captures. Surveys 

were rescheduled if the temperature dropped below 21°C or heavy rainfall or winds (> 15 – 

20 knots) were forecast as the lizards become less active (M. Outerbridge 2015, pers. comm., 

11 March) under such conditions and landing on the islands in bad weather becomes 

challenging.  
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On both islands data were collected over a five-day period in each month from May – July in 

2015, 2016 and 2017, resulting in a total of 15 sampling occasions. Each sampling occasion 
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FIGURE 2.1 A) Map of Bermuda with aerial view of trap locations B) On 
Castle Island and C) On Southampton Island, within Castle Harbour. 

(Image created in ArcMap 10.5). 
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consisted of five trap checks per day, with a total trapping time of 75 hours per year per island. 

At each capture, animals were weighed and measured (snout-vent length, SVL), unmarked 

animals were tagged, and tags of recaptured animals were recorded. All individuals (excluding 

juveniles: SVL < 64 mm, body mass < 11.5 g) in good health were tagged with a passive 

integrated transponder (PIT) tag. Any unmarked animals collected from the traps were 

implanted with tags (8 x 1.4 mm, 30 mg ID162B FDX-B Trovan®) operating at a frequency of 

134.2 kHz. The tags were inserted subcutaneously in either the left or right lateral side of the 

body, using a syringe implanter (IM-200) with a 1.25" 14-gauge sterile disposable hypodermic 

needle. Prior to tagging, the injection site was wiped with F10® antiseptic solution. 

Immediately after injection, a drop of Loctite® cyanoacrylate glue was applied over the 

injection site to prevent tag loss and speed wound healing (Germano and Williams, 1993; 

Gibbons and Andrews, 2004). Once implanted, the tags were checked using a PIT tag reader 

(Universal (LID-560) scanner-Trovan®) which showed the individual’s unique identification 

code. Even though the application of the internal tags may induce temporary stress (Langkilde 

and Shine, 2006), if inserted properly the tags are not known to cause any significant negative 

impacts (Ferner, 1979). Once processed, individuals were immediately released at the site of 

capture. (See Supplementary Material 3 for a more detailed description of the marking 

technique). 

 

2.3.2 Statistical analyses 

Capture histories were compiled as time series of zeros and ones, where one stands for a 

capture success and zero for a non-capture using a standard ‘X-matrix format’ (Otis et al., 

1978; Nichols, 1992). Rows represented the capture histories of each captured individual and 

columns represented the number of capture occasions. The CMR modelling was based on a 

robust design model (Nichols, 1992). This assumes the population to be closed to 

demographic parameters between secondary sampling occasions or days (i.e. no births, 

deaths, emigration, or immigration during each five day sampling period), but is assumed to 

be open to demographic changes between primary sampling occasions or years (over three 

years: 2015, 2016, 2017) where the population can experience these changes (Fig. 2.2). The 

resulting encounter history consisted of 15 capture occasions with unequal time spacing i.e. 

the five days were not always consecutive days nor was sampling undertaken on the same 

date each year due to weather or logistical challenges. 
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2.3.3 Model selection 

To monitor population trends between the two skink populations the robust design model 

provided estimations based on the probability of survival (𝜑), probability of capture (p), 

temporary emigration (𝛾) and population size (N). This was undertaken using the packages 

‘marked’ ‘descr’ and ‘Rcapture’ implemented in R v. 3.4.3 (Rivest and Baillargeon, 2014; R 

Core Team, 2016). Estimates of the demographic parameters were derived using maximum 

likelihood estimates of the loglinear parameters with the R functions ‘glm’, and standard 

errors were calculated by linearisation (Rivest and Daigle, 2004; Baillargeon and Rivest, 2007). 

 

Ten loglinear models were used to account for the (t) time and (h) heterogeneity effects of 

capture probabilities on the two islands (Table 2.1). These included the model with 

heterogeneity effects Mh (the average probability of capture); the model with time effects Mt 

(the capture probabilities for each capture occasion); the model with both time and 

heterogeneity effects Mth (the average probabilities of capture for each occasion); and the 

null model with no time or heterogeneity effects M0 (the capture probability at any capture 

occasion) (Rivest and Baillargeon, 2014). The Mth and Mh models were additionally fitted with 

four heterogeneity estimators: Chao (Chao, 1987), Poisson and Gamma (Rivest and 

Baillargeon, 2007) and Darroch (Darroch et al., 1993).  

 

FIGURE 2.2 Robust design example, with three primary trapping sessions 
each consisting of five secondary occasions. 
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Temporary emigration was additionally tested for each island (between year one – year two 

and year two – year three), as the probability of capturing an individual may vary between 

capture occasions. The models were fitted and compared based on the Akaike information 

criterion (AIC) values.  

 

2.4 RESULTS 

Over three years 536 skinks were captured at both study sites, of these, 47 individuals were 

caught on Castle Island but were not tagged (43 too small and 4 escaped) and 85 individuals 

on Southampton Island were not tagged (66 too small and 19 escaped). As some individuals 

escaped during the capture event, detection was not recorded. Overall, 404 individuals were 

PIT tagged and used in further analyses. More than half of the marked skinks were recaptured 

on Southampton Island (52.6%; 133 of 253) and (58.3%; 88 of 151) on Castle Island over the 

three years (Appendix 2A).  

 

The Mth model with Chao’s estimator for each period has the lowest AIC and hence the best 

fit to the data for both islands (Table 2.1). According to the model, estimates of abundance 

on Southampton Island were N = 547 ± 63.5 (SE) and estimates on Castle Island were N = 277 

± 28.4 (SE). Over the three years, estimates appeared to fluctuate between years on both 

islands (Fig. 2.3). When comparing mean abundance between Southampton Island (mean = 

253, SD = 105) and Castle Island (mean = 164.4, SD = 86.9) estimates followed a normal 

distribution (P < 0.05). 

 

Estimates of annual capture probability derived using the model Mth were found to be slightly 

higher on Southampton Island (mean, p = 0.50 ± 0.04 (SE)) compared to Castle Island (mean, 

p = 0.42 ± 0.06 (SE)). Capture probabilities were lowest on Southampton Island in year one (p 

= 0.44 ± 0.05) and highest in year two (p = 0.57 ± 0.09). Similarly, on Castle Island, capture 

probabilities were lowest in year one (p = 0.34 ± 0.08) and highest in year two (p = 0.54 ± 

0.08). The estimates were very precise (small standard errors) due to relatively high capture 

probabilities (Fig. 2.4). 
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TABLE 2.1. 
Model selection criteria fit to Bermuda skink CMR data for Southampton Island and Castle 
Island, Bermuda. All models include abundance estimates and standard errors (SE). 

 
Location 

 
Model Estimate SE AIC ∆AIC df Deviance 

Southampton Island Mth Chao 547.2 63.5 571.53 0.00 32740 332.39 

 Mth Poisson 595.5 80.4 574.31 2.78 32743 336.17 

 Mth Gamma 724.1 91.6 574.44 2.91 32745 340.30 

 Mth Darroch 719.0 86.3 576.44 4.91 32745 337.30 

 Mt  482.2 43.5 589.20 17.67 32746 357.06 

 Mh Darroch 718.7 86.2 607.07 35.54 32757 396.93 

 Mh Poisson 601.1 81.7 609.85 38.32 32755 395.72 

 Mh Gamma 722.5 91.3 609.86 38.33 32757 399.72 

 Mh Chao 555.2 65.0 612.34 40.81 32752 392.20 

M0  490.9 44.7 622.94 51.41 32758 414.80 

Castle Island Mth Chao 294.8 31.5 416.95 0.00 32745 249.36 

 Mt 274.7 27.5 418.64 1.69 32747 251.66 

 Mth Gamma 196.6 41.8 420.45 3.50 32743 247.36 

 Mth Darroch 183.6 24.1 421.06 4.11 32743 247.79 

 Mth Poisson 175.2 30.7 421.55 4.60 32743 248.27 

 M0 292.7 30.6 521.41 104.46 32759 380.12 

 Mh Gamma 193.8 37.1 523.69 106.74 32755 374.41 

 Mh Chao 294.8 31.5 523.73 106.78 32757 378.45 

 Mh Darroch 183.5 24.1 523.99 107.04 32755 374.71 

Mt Poisson 176.9 32.5 524.27 107.32 32755 374.98 

 

Annual survival of skinks on Southampton Island (𝜑 = 0.58 ± 0.21 (SE)) was higher than on 

Castle Island (𝜑 = 0.40 ± 0.09 (SE)). Survival was lower at both sites from 2015 – 16 but 

increased by 113.52% on Southampton Island and by 58.72% on Castle Island from 2016 – 17.  
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FIGURE 2.4. Capture probability. Comparison of Mth Chao robust design model 
of capture probability with standard error (vertical bars) of Bermuda skinks 
Plestiodon longirostris on Southampton Island and Castle Island, Bermuda 

between 2015 – 2017. 
 

FIGURE 2.3 Abundance estimation. Comparison of Mth Chao robust design model of 
abundance estimates with standard error (vertical bars) of Bermuda skinks Plestiodon 
longirostris on Southampton Island and Castle Island, Bermuda between 2015 – 2017. 
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When comparing models, the best fit models for both islands included temporary emigration 

between years, indicating that a small number of individuals were not available for capture 

within the sampling areas. Between 2015 and 2016, temporary emigration was highest on 

Southampton Island but was not apparent on Castle Island. Between 2016 and 2017 

temporary emigration was higher on Southampton but also occurred on Castle Island (Table 

2.2).  

 

TABLE 2.2. 
Estimated rates of Bermuda skink survival probability and temporary emigration with 
standard error (SE) between Southampton Island and Castle Island, Bermuda using a Mth Chao 
robust design model between 2015 – 2017. 

 

Location 

 

Sampling Period 

Survival 

probability 

 𝜑 ± SE 

Temporary 

emigration 

𝛾 ± SE 

Southampton Island Year 1 (2015) → Year 2 (2016) 0.372 ± 0.08 39.1 ± 32.2 

 Year 2 (2016) → Year 3 (2017) 0.794 ± 0.19 36.7 ± 49.8 

Castle Island Year 1 (2015) → Year 2 (2016) 0.309 ± 0.06 0 ± 0.0 

 Year 2 (2016) → Year 3 (2017) 0.490 ± 0.19 26 ± 11.9 

 

2.5 DISCUSSION 

2.5.1 Population trends over time 

The study provided precise estimates of abundance, capture and survival probabilities of a 

critically endangered lizard at two study sites. Our results demonstrate the advantages of 

using PIT tags, a reliable method for marking lizards long-term, as well as using a robust design 

model, as an effective approach to monitoring trends in skink populations. 

 

Previous population estimates of Bermuda skinks were calculated using the simple Lincoln-

Petersen method, which may be subject to bias (Seber, 1982). During previous surveys 

temporary marking methods (acrylic paint spots) were used, therefore recaptures may have been 

undercounted and the population over-estimated. Additionally, juveniles were not accounted 

for (due to the trapping method), and because studies were undertaken during the breeding 

season, brooding females were assumed unavailable for capture. Nevertheless, skink 

population sizes of 414 in 1997 (Davenport et al., 1997), and 582 in 2004 (Glasspool and 
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Outerbridge, 2004) were calculated for Southampton Island. On Castle Island 116 individuals 

were estimated in 2000 (Hammond, 2000). Population estimates were also calculated in 1998 

at four other sites on Bermuda, where 44 individuals were estimated on Palm Island in Sandys 

Parish, 52 on Inner Pear Rock, 123 on Charles Island (both in St. George’s Parish), and 124 at 

Spittal Pond a mainland nature reserve in Smith’s Parish (Raine, 1998; Wingate, 1998). 

Although these populations showed reasonable proportions of juvenile and potential 

breeding individuals at the time, twenty years later none of them had large enough 

populations to have confidence in their long-term future (Davenport et al., 2001). 

 

Estimating survival is important in demographic studies. For example, if skink recruitment is 

low then persistence, repeated breeding, and longevity may be a key factor in their recovery. 

At both sites there was a year of low survival between 2015 and 2016 which resulted in a 

population decrease, then a year of high survival between 2016 and 2017 which led to an 

increase in recruitment of the larger size classes. This was most likely the result of El Niño (a 

cyclic shift in atmospheric patterns) between 2015 and 2016. Although it resulted in fewer 

major impacts such as tropical storms and hurricanes affecting Bermuda, there was increased 

precipitation and stronger winds recorded during this time than in 2017 (Bermuda Weather 

Service, 2017). These unfavourable conditions would have led to fewer opportunities for 

foraging, basking, breeding, and incubating eggs as well as impacting seasonal food 

abundance.  

 

Populations fluctuated widely on the two islands between years. However, fluctuations 

followed similar trends on the two islands. The exact causes of these synchronized 

fluctuations are unknown, but it is possible they result from variation in the availability of 

prey, impact of predators and climatic conditions. Alternatively, the fluctuations may be 

related to social interactions, resource availability, habitat quality, sampling variability or the 

populations even reaching environmental carrying capacity. Southampton Island continues to 

have the highest density of skinks in Bermuda, mostly because landing is prohibited and 

introduced predators and competitors (i.e rats Rattus sp., kiskadee flycatchers Pitangus 

sulphuratus, cats Felis catus, anolis lizards Anolis sp., and yellow-crowned night-herons 

Nyctanassa violacea), invasive plant species (i.e asparagus fern Asparagus densiflorus and 

casuarina trees Casuarina equisetifolia) and anthropogenic threats are largely absent. 
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However, these threats are present on Castle Island and may explain why abundance may 

take slightly longer to recover from dips (Fig. 3). Studying longer-term population dynamics 

may reveal whether these estimates are cyclic or stable, together with factors limiting 

population growth.  

 

2.5.2 Meeting model assumptions 

Lizards may shift territories frequently during the breeding season (Ruby, 1978), or in 

response to fluctuations in food availability (Hews, 1993). Consequently, animals are more 

likely to be captured at some locations and times than others. This violates the standard 

assumptions of basic CMR models (Seber, 1982; Hammond, 1986). However, the interval 

between the primary capture trapping sessions (approximately one year) was sufficiently long 

to ensure that gains (births and immigration) and losses (deaths and emigration) would occur 

and the sample size collected was large enough to detect heterogeneity and the Mth model to 

fit well.  

 

Temporary emigration may occur when a proportion of the population remains unavailable 

for capture. For example, skinks often spend a considerable time within rock refugia where 

they are difficult to capture. During the breeding season many females may be sedentary due 

to nest guarding (Glasspool and Outerbridge, 2004) and are therefore unavailable for capture. 

If temporary emigration is not tested for it can lead to negatively biased population estimates 

and model assumptions may be violated (Hammond, 1986, 1990).  

 

For the management of small, threatened populations, the potential ramifications of under-

estimating (negative bias) or over-estimating (positive bias) abundance are clearly important. 

As the robust design uses two levels of sampling it allows for more parameters to be 

estimated and for finer control over the relative precision of each parameter (Kendall and 

Pollock, 1992; Kendall et al., 1995). The only major problem associated with the robust design 

is the large trapping effort required (Pollock, 1982), i.e. a minimum of five days at each site 

recommended (Otis et al., 1978; Nichols, 1992), and the consequent cost of sampling 

intensively. We therefore recommend this design for future CMR studies aimed at estimating 

reptile demographic parameters, particularly for those that need to detect population 

declines before they become critical. 
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Overall, we found the ten different models produced quite different abundance estimates, 

which ranged between 175.2 – 294.8 individuals on Castle Island and 418.2 – 724.1 individuals 

on Southampton Island (both excluding juveniles). However, the abundance estimates based 

on Mth are reliable and using Chao’s estimator provided lower bound conservative estimates 

that produced better fits than other estimators such as Darroch, Poisson and Gamma that can 

be highly variable (Rivest and Daigle, 2004), especially in small scale CMR studies (Chao, 1987). 

To estimate abundance with little bias, capture probability must be relatively high (Otis et al., 

1978; Burnham and Overton, 1979). Skinks had a moderate probability of capture on both 

Southampton and Castle Island (between 0.33 – 0.54 and 0.44 – 0.57, respectively), so the 

trapping method is adequate to describe the dynamics of these populations. In general, the 

Mth  estimator works well if most individuals are captured many times and when the 

population size is estimated to be >100 individuals (Otis et al., 1978).  

 

In 2016, population sizes were low at both sites. However, at this time capture probability 

was at its highest. Although a considerable number of skinks were caught during this time 

(243 individuals in total), 53% were recaptured individuals (compared to 12% in 2015 and 36% 

in 2017) which explains lower abundance estimates.  

 

2.5.3 Conclusion 

Although two relatively large populations of skinks have been identified, the population 

fluctuations suggest that they remain vulnerable and may not be viable long-term without 

management, such as predator control (Towns, 1991; Newman, 1994; Towns and Ferreira, 

2001; Reardon et al., 2012), habitat restoration (Towns, 1994; Webb and Shine, 2000) and the 

creation of suitable burrows (Souter et al., 2004). Such interventions may be especially 

needed during these periods of fluctuation or when population growth is slow. We 

recommend using robust design models for evaluating population parameters when samples 

are taken over multiple days and years, as these can provide timely insights into population 

trends and the mechanisms driving them, which has important implications for future 

conservation and research efforts.  
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APPENDIX 2A - PIT Tagging Breakdown between 2015 and 2017. 

 

   
Year 1 

 
Year 2 

 
Year 3 

 

Castle Island Individuals Caught 112 22 17 
 Recaptured Individuals 18 49 21 
 Not Tagged 16 20 7 
 Escapees 3 0 1 

Southampton Island Individuals Caught 90 57 106 
 Recaptured Individuals 17 55 61 
 Not Tagged 10 30 26 
 Escapees 8 7 4 

 
 
 
 
 

 

 

 

 

 

 

 

 



Population Status and Conservation of the Critically Endangered Bermuda Skink 

 

82 

 

CHAPTER 3 

DYNAMIC OCCUPANCY MODELLING TO 

DETERMINE THE STATUS OF A CRITICALLY 

ENDANGERED LIZARD 
 

HELENA TURNER, RICHARD A. GRIFFITHS, MARK E. OUTERBRIDGE AND GERARDO GARCIA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Nonsuch Island within Castle Harbour, Bermuda. (Photo Credit: Bermuda 
Aerial Media, 2017). 
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3.1 ABSTRACT 
 

Monitoring of cryptic or endangered species poses multiple challenges for population 

assessment and conservation. Failing to account for imperfect detection can lead to biased 

estimates and misleading inferences about population status. We used a dynamic occupancy 

model that explicitly accounted for occupancy, detectability, colonisation and local extinction 

as a tool for monitoring the critically endangered Bermuda skink (Plestiodon longirostris). 

Using a standard survey method across Bermuda, 40 sites were monitored between 2015 and 

2017, and skinks were detected at 13 locations, two of which were new records. Ten 

observation level and site-specific covariates were combined and considered to influence 

occupancy and detectability. 

 

Although Bermuda skinks were only observed at 20% of the sites, predicted occupancy was 

estimated to be about 25%. The probability of detection was P = 0.45 and was positively 

influenced by the site being an island, the presence of seabirds, prickly pears and coastal 

habitat. However, skinks were unlikely to be detected on sites with cat and rat predators. Our 

study provides unbiased estimates of occupancy that can be used to compare the status of 

Bermuda skinks across different sites and as a basis for long term monitoring. We recommend 

that this information be used in setting priorities to ensure conservation of the species. 
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3.2 INTRODUCTION 
 

Monitoring long-term population change in reptiles is an integral part of effective 

conservation research and management. Since censuses across whole geographical ranges 

are logistically difficult, in a study of occupancy, population monitoring focuses on assessing 

subsets of populations known as sites, and the basic parameter of interest is the proportion 

of those sites occupied by a species at a given time t (Kendall and White, 2009).  

 

As occupancy models have a long history of use in ecological studies, this approach is 

frequently used to guide management decisions for endangered or threatened species (Linkie 

et al., 2007) especially as they are often less expensive to collect than full capture-mark-

recapture surveys or entire demographic datasets, used to estimate abundance or population 

size (Kendall and White, 2009; MacKenzie et al., 2017). Data are often collected using a variety 

of direct and indirect sampling approaches to target a particular species (e.g. counts of faecal 

material, camera trapping, mist netting, vocalisations or environmental DNA (eDNA)) and 

define the proportion of an area where the species is present, without the need to mark 

individuals in the population. Compared to standard or ‘static’ occupancy models, dynamic 

occupancy models can be used to consider changes that may occur over time and space 

(Geissler and Fuller, 1986; MacKenzie et al., 2002; Royle and Nichols, 2003). Variation in 

detectability in time and space is one of the main sources of error in many monitoring studies 

(Yoccoz et al., 2001; Mackenzie et al., 2002). If studies fail to account for imperfect detection 

it can result in some sites appearing to be unoccupied that are actually occupied (i.e. ‘false 

absences’) which is common in elusive species where individuals may be missed or go 

undetected (Yoccoz et al., 2001; Thompson, 2004). Although occupancy alone is a useful state 

variable, extinction and colonisation probabilities estimated over time can also be modelled 

in relation to site characteristics. These can provide a greater understanding of the dynamic 

processes that drive changes in occupancy and allow stronger inferences on the patterns 

observed. 

 

The Bermuda skink (Plestiodon (= Eumeces) longirostris) is a cryptic, critically endangered 

lizard (according to the IUCN; Conyers and Wingate, 1996) and the only endemic terrestrial 

vertebrate on Bermuda (Davenport et al., 2001). Once abundant across Bermuda, the 

population continues to decline as a result of habitat loss, anthropogenic activities and 
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invasive species. Their decline was originally noticed in the early 1900s when it was reported 

that they were rarely seen on the mainland, but prevalent on offshore islands particularly 

around the coastal cliffs (Verrill, 1902). However, concern for their survival only began nearly 

a century later, when a campaign was undertaken through the Bermuda Zoological Society 

with more than 33,000 questionnaire surveys distributed island wide. Over 158 people 

reported skink sightings, some of which helped identify additional sites across the mainland 

but very few of these sightings were recent, with some dating back several years and were 

unlikely to still exist. Monitoring commenced shortly after, with a focus on the sites with 

recent sightings in an attempt to further understand the various population sizes and 

demographic characteristics (Raine, 1998; Wingate, 1998; Davenport et al., 2001; Glasspool 

and Outerbridge, 2004). Due to difficulties in monitoring Bermuda skinks, an accurate island-

wide population status is lacking, although, given that it was roughly estimated that 2,300 – 

3,500 skinks remained in Bermuda, it was suggested that 5,000 or more animals might be 

present if new sites were found (Edgar et al., 2010). These estimates were based on previous 

population studies undertaken between 1997 and 2004, in which Southampton Island was 

estimated to have between 600 and 800 individuals (Davenport et al., 1997; Glasspool and 

Outerbridge, 2004) and Nonsuch island less than 100 individuals (Davenport et al., 1997), 

and the results were extrapolated to all other sites. For example, apart from Spittal pond at 

least 16 other mainland sub-populations were believed to exist on the mainland so 1,000 – 

1,800 adults were estimated. Similarly, there are six other islands within Castle harbour 

(Palm Island, Charles Island, Rushy Island, Horn Rock, Inner and Outer Pear Islands) in which 

another 600 – 800 skinks were estimated (Edgar et al., 2010). The estimates are a rough 

guide and likely overestimate the true population, so determining present day distribution 

and population status is urgently needed to inform conservation of the species. 

 

 This study used three years of presence-absence surveys across Bermuda to predict 

occupancy, colonisation, local extinction and detectability. In establishing estimates using a 

dynamic occupancy model we hope to inform future management actions and define areas 

of conservation importance throughout Bermuda.  
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3.3 METHODOLOGY 
 

3.3.1 Sampling and field methods 

Forty locations were sampled across Bermuda (Fig. 3.1) using detection – non-detections, to 

survey for skinks between 2015 and 2017. Although Bermuda skinks are active all year round, 

surveys were undertaken between April – July when they are thought to be most active (Edgar 

et al., 2010). As it was not feasible to survey the entire population of Bermuda skinks, sites 

were selected based on historic records, the emphasis being on sites which had not been 

surveyed for more than ten years (Glasspool and Outerbridge, 2004). All locations were either 

isolated islets or islands or situated at least 100 m apart to ensure independence among sites.  
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The methodology followed that of Davenport et al. (1997) whereby skinks were initially 

captured using baited pit-fall traps. As the Bermuda skinks have small home ranges of around 

10 m² (Davenport et al., 1997), traps were placed 5 - 20 m apart. Between 10 and 72 traps 

were set at each site, and more traps were set at larger sites to increase the chances of 

capturing skinks. Average trap density was 31 traps per site (0.008 traps per m²; see Appendix 

3A). The traps were deployed between 1000 hrs and 1100 hrs and opened between 1100 hrs 

and 1600 hrs (the skink’s peak activity times; Davenport et al., 1997) with hourly checks to 

prevent trapped skinks from overheating, resulting in five rounds of checks per day. Each site 

was surveyed between two and fifteen times (depending on the weather and site access), for 

which skinks were either detected or not detected. To increase chances of detectability, 

surveys were not conducted during rain or high winds (> 40 kph), as suggested by Rhodes et 

al. (2006).  

 

3.3.2 Statistical analyses 

All statistical analyses were undertaken using R v. 3.3.2 statistical software (R Core Team, 

2016) and the function ‘colext’ in the package ‘unmarked’ (Fiske and Chandler, 2011). 

Occupancy modelling methods were applied using detection and non-detection data and a 

multi-season model to assess occupancy, colonisation, extinction, detectability and probable 

distribution of P. longirostris across Bermuda. The parameters are defined as:  = probability 

of a site being occupied, 𝑝 = probability of being detected given presence, 𝛾 = probability of 

colonisation and 𝜀 = probability of local extinction. Within each year, model parameters , 𝑝, 

, , must be constant, but changes in occupancy are modelled over time, from one year to 

the next and can be a function of covariates (i.e. site-specific habitat features). For each 

survey, model 𝑝, can vary among surveys with observation level covariates such as observers, 

survey equipment, environmental conditions, etc. 

 

There are five critical assumptions that must be met during multi-season sampling for 

occupancy models (MacKenzie et al., 2005): 

1) Another species is never wrongly identified as the target species.  

2) Detection histories at each location are independent. Skinks must not be able to move 

between sites (i.e. the same individuals must not be detected at multiple sites). 
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3) There is no unmodelled heterogeneity in occupancy. Probability of occupancy is either 

constant across sites or differences are modelled using covariates.  

4) There is no unmodelled heterogeneity in detection. Detectability is either constant 

across sites and surveys or differences are modelled using covariates. 

5) Occupancy state is assumed ‘closed’. Occupancy status at each site does not change 

during the survey year, meaning the site is closed to changes in occupancy so skinks 

must be present at occupied sites for the duration of the survey year. This means no 

colonisation and extinction between secondary periods and no unmodelled 

heterogeneity in colonisation or extinction between primary periods. 

If the assumptions are violated, estimates of occupancy, colonisation, extinction and 

detectability can be biased and inferences about factors that influence these parameters may 

be flawed (Gu and Swihart, 2004; MacKenzie et al., 2017). 

 

3.3.3 Model covariates 

Occupancy probabilities may depend on covariates, which are incorporated into the models. 

Five site-specific covariates identified through previous studies (Davenport et al., 1997; Raine, 

1998; Wingate, 1998; Glasspool and Outerbridge, 2004) and discussions with experienced 

local ecologists were included in the models (Table 3.1). These did not change with repeated 

visits and potentially explain site-to-site variability in occupancy, colonisation and extinction. 

Site-specific covariates included the site type (i.e. mainland or island), because anthropogenic 

disturbances on the mainland (i.e. coastal developments, coastal and beach activities and 

litter, which can be lethal) are known to threaten the skinks (Davenport et al., 1997, 2001; 

Raine, 1998; Wingate, 1998). Habitat type was included as the most prevalent habitat type at 

each site e.g. dense forest or coastal rock and scrub). As both nesting seabird colonies and 

seasonal fruits are thought to provide the skinks with an abundance of food (Davenport et al., 

2001; Maderios, 2005). The presence of nesting seabirds (i.e. white-tailed tropicbirds 

Phaethon lepturus catsbyii and Bermuda petrels Pterodroma cahow) and prickly pears 

(Opuntia dillenii), were also included as site-specific covariates. Five selected introduced 

species (black and brown rats Rattus sp., kiskadee flycatchers Pitangus sulphuratus, cats Felis 

catus, Jamaican anoles Anolis grahami and Yellow-crowned night herons Nyctanassa 

violacea) were used as observation level covariates as these are associated with predatory 

threats to the skinks (see Chapter 1 for background on introduced species).  
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TABLE 3.1. 
Five site specific and five observation level predictor covariates influencing Bermuda skink 
site use during trapping occasions including descriptions, values and data classification type. 

 Covariate Description Value 

 

Type 

 

Site specific Site Type (ST) Mainland or Island site 0 Mainland or 1 

Island 

Dichotomous 

 Habitat Type (HT) Site is mostly dense/forest 

habitat or coastal rock/scrub 

habitat 

0 Forest or 1 Coastal Dichotomous 

 Prickly Pears (PP) Prickly pears present at site 0 Absent or 1 

Present 

Dichotomous 

 Seabird Nest (SN) Nesting seabirds present at site 0 Absent or 1 

Present 

Dichotomous 

 No. of traps (NT) Number of traps used 10 - 72 Discrete 

Observation 

level 

Presence of Pitangus sulphuratus 

(PK) 

Kiskadees present at site 0 Absent or 1 

Present 

Dichotomous 

 Presence of Felis catus (PC) Cats present at site  0 Absent or 1 

Present 

Dichotomous 

 Presence of Nyctanassa violacea 

(PH) 

Yellow crowned night herons 

present at site 

0 Absent or 1 

Present 

Dichotomous 

 Presence of Anolis sp. (PA) Anoles present at site 0 Absent or 1 

Present 

Dichotomous 

 Presence of Rattus sp. (PR) Rats present at site 0 Absent or 1 

Present 

Dichotomous 

 

Although additional predators and competitors are present (Anolis leachi, Anolis sagrei, Anolis 

extremus, domestic chickens Gallus domesticus, and American crows Corvus brachyrhynchos; 

Wingate, 2011; Stroud et al., 2017) insufficient data were collected on their distribution to be 

included in this study. Visual cues were used to either confirm the presence or absence of 

each of the five observation level covariates during each trapping occasion. The number of 

traps used depended on the size of the site, therefore these were also included as covariates 

of detection. 

 

3.3.4 Model selection and averaging 

In our first analysis (the null model), we assumed that all parameters (y, ɣ, ε, p) were constant 

across sites and surveys and this was denoted by (.) to indicate that no covariates were being 

estimated. We used this model to provide a basic description for comparison with the 
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unadjusted (i.e. naïve occupancy) proportion of sites where at least one skink was detected 

over the three-year survey period. 

 

In a second analysis, we included covariates (MacKenzie et al., 2002, 2005) for each of the 

parameters that might affect occupancy, colonisation, extinction or detection probabilities 

using a maximum likelihood approach (MacKenzie et al., 2005). This allowed investigation into 

the relationships between the covariates, where estimates of occupancy may vary from year 

to year depending on covariates. All covariates were standardised (z-score) to ensure that 

each had equal predictive power and that the logit scale coefficients (𝛽መ) were not skewed by 

unevenly large ranges in the data (MacKenzie et al., 2005). Where logit scale coefficient (𝛽መ) 

estimates and associated standard errors (SE (𝛽መ)) are reported, a positive number suggests a 

positive relationship between the covariate and the model parameter it is a predictor of, and 

vice versa.  

 

Logit scale coefficient (𝛽መ) estimates were back transformed using the ‘plogis’ function in R to 

give the model parameter estimates. Finally, using the package ‘AICcmodavg’, we assessed 

the fit of our models using a goodness-of-fit test (MacKenzie-Bailey test) based on 

bootstrapping (10,000 iterations) and Pearson’s χ2. The level of significance was set at P=0.05, 

with larger values indicating a lack of fit (MacKenzie and Bailey, 2004; Wright et al., 2016). To 

identify the most parsimonious and biologically plausible models for the observed data and 

assess which combination of covariates best explained the detection histories observed, we 

obtained and ranked Akaike’s Information Criterion (AIC) values for model comparison 

(Akaike, 1973; Burnham and Anderson, 2002). A set of candidate models was generated by 

selecting those that had a summed AIC weight of at least 0.95, indicating there was 95% 

confidence that these models best explained the data. If there were multiple top ranked 

models, a weighted model averaging technique was applied (Burnham and Anderson, 2002; 

Linkie et al., 2007) to estimate the occupancy, colonisation, local extinction and detection 

probabilities (with standard errors). 

 

Finally, to optimise the survey design, the probability of detecting Bermuda skinks at least 

once if visiting a site K times was calculated from our best model to determine if the species 

is truly absent from a site, using the following mathematical expression (Pellet and Schmidt, 

2005; Barata et al., 2017):   
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K  =  log(1 – p*)/ log(1 – p) 

 

. Where p is the detection probability; p* is the desired probability of detecting the species 

at an occupied site on at least one of the K visits, and was set to 0.8, 0.9, 0.95 and 0.99 and 

log computes natural logarithms by default. 

 

3.4 RESULTS 
 

Out of the 40 sites surveyed, skinks were confirmed at 13 sites and sites were visited on 

average 5 times (range 2 – 15 visits). The distribution and frequency of captures are shown in 

Appendices 3A and 3B. The mean naïve occupancy (calculated by the number of sites 

presence was confirmed at) was 0.20 ± 0.06 (SE) over three years, 0.20 (8/40) in 2015, 0.30 

(12/40) in 2016 and 0.10 (4/40) in 2017. The results showed that the naïve occupancy status 

did not remain constant across years, and estimates fluctuated across the sub-populations, 

with an increase in occupancy in year two. In comparison, the estimated probability of 

occupancy using the null model (AIC = 233.91) was 0.22 ± 0.08 (SE) across the three years. 

The difference between the naïve and the null model indicates that skinks may have been 

missed at 11% of sites, equating to three potential additional sites where skinks were present 

but remained undetected.  

 

The top three models were selected as they had a cumulative weight of 0.96 indicating these 

models best explained the data (Table 3.2). Since the goodness-of-fit test gave a P-value lower 

than the level of significance (0.05), we accept the hypothesis that the models adequately fit 

the data (model 1: χ2 = 205.4, P = 0.02, model 2: χ2 = 187.1, P = 0.03, model 3: χ2 = 140.5, P = 

0.01). The weighted model averaged estimates of occupancy (), colonisation (ɣ), local 

extinction (ε) and detection (p) probabilities were taken as the final estimates. The estimate 

of occupancy (0.25 ± 0.06) did not vary considerably from the naïve occupancy estimate 

because the detection probability was relatively high (0.45 ± 0.06), therefore estimates are 

reasonably unbiased (MacKenzie et al., 2002; Table 3.3). 
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TABLE 3.2. 
Relative differences in AIC values, delta AIC (∆ AIC), AIC model weights (wi), the cumulative 
AIC model weights (cw) and the numbers of parameters in the models (K). Results are only 
presented for the top three ranked occupancy models with 95% confidence. Covariates 
include PR, presence of rats, PC, presence of cats, HT, Habitat type, ST, Site type, NT, No. of 
traps, PP, presence of prickly pears, SB, presence of nesting seabirds. 

Model 

No. 
Occupancy Model Notation AIC ∆ AIC wi cw K 

1.  (PP + ST + HT), γ (PC + SB), 𝜀 (HT + PP), 𝑝 (SB + PR + PP + CC + HT) 168.12 0.00 0.71 0.71 12 

2.  (SB + PP + ST + HT), γ (PC + ST + SB), 𝜀 (HT + PP), 𝑝 (PR + PP + HT) 171.33 3.21 0.14 0.85 16 

3.  (.), γ (.), 𝜀 (.), 𝑝 (SB + PR + PP + PC + HT + ST) 173.69 5.57 0.11 0.96 10 

 
 

Parameter estimates using the top model (AIC value = 168.12) suggest that there was a 

positive relationship between skink presence and coastal habitat type (2.44 ± 0.61 (𝛽መ  ± SE)), 

the presence of prickly pears (1.48 ± 0.55) and island sites (1.48 ± 0.55). The presence of cats 

(-0.32 ± 0.65) negatively influenced colonisation, whereas the presence of seabirds (3.10 ± 

0.39) positively influenced colonisation. Local extinction was less likely in the presence of 

coastal habitat type (-3.10 ± 0.39) and presence of prickly pears (-3.10 ± 0.39). Detection was 

positively influenced by the presence of seabirds (7.10 ± 0.21), coastal habitat type (5.34 ± 

0.22) and prickly pears (3.54 ± 0.54), whereas skinks were unlikely to be detected with the 

presence of rats (-2.94 ± 0.45) and even less so with cats (-4.30 ± 0.25). As all three of the top 

models were influenced by the same covariates and in the same directions, this suggests that 

there is a large amount of support for their inclusion. However, we found no support for the 

influence of the presence of kiskadees, herons or anoles, or the number of traps used on state 

variables. 
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TABLE 3.3. 

Transformed beta (𝛽መ) estimates with weighted model averages. All associated standard errors 
(SE) are included. The first, second and third set of coefficients are for model terms associated 
with the occupancy (y), colonisation (𝛾) and local extinction (𝜀) parameters, respectively. The 
fourth set of coefficients explained heterogeneity in detection probabilities (𝑝) associated 
with different revisits. 

Occupancy Model Notation y ± SE 𝛾 ± SE 𝜀 ± SE 
 

𝑝 ± SE 
 

 (PP + ST + HT), γ (PC + SB), 𝜀 (HT + PP), 𝑝 (SB + PR + PP + CC + HT) 0.251 ± 0.05 0.128 ± 0.08 0.401 ± 0.08 0.456 ± 0.05 

 (SB + PP + ST + HT), γ (PC + ST + SB), 𝜀 (HT + PP), 𝑝 (PR + PP + HT) 0.249 ± 0.06 0.350.± 0.09 0.294 ± 0.07 0.444 ± 0.06 

 (.), γ (.), 𝜀 (.), 𝑝 (SB + PR + PP + PC + HT + ST) 0.236 ± 0.08 0.132 ± 0.06 0.312 ± 0.07 0.431 ± 0.09 

     

Weighted model averages 0.248 ± 0.06 0.203 ± 0.08 0.351 ± 0.08 0.448 ± 0.06 

 
 

 3.4.1 Minimum number of surveys 

To improve the sampling protocol design, the number of surveys required to detect the 

Bermuda skink at a given site were calculated. Assuming skinks are imperfectly detected 

(detection probability <1), a detection probability between 80 and 99% was chosen to give 

the best chance to be able to monitor such a cryptic lizard. We found that 3 (mean: 2.74) visits 

were needed for an 80% probability of detecting skink presence, 4 (mean: 3.92) visits for a 

90% probability of detecting skink presence, 5 (5.10) visits for a 95% probability and 8 (mean: 7.85) 

visits for a 99% probability that the Bermuda skink will be detected at a site (Fig. 3.2). 

 

 

 

 

 

 

 

 

 

 

 FIGURE 3.2. Probability of detecting Bermuda skinks at least once if visiting a site K 
times where model-averaged detection (p) = 0.448. 
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3.5 DISCUSSION 
 

Conservationists increasingly rely on predictive models as a means for estimating patterns of 

species distribution. Monitoring programs are widely used to assess changes in wildlife 

populations, but they often implicitly assume constant detectability when documenting 

species occurrence (Pollock et al., 2002). This assumption is rarely met in practice because 

detectability varies across time and space. As a result, detectability of a species can be 

influenced by several physical, biological, or anthropogenic factors (e.g. weather, seasonality, 

topography, vegetation or even sampling methods). To evaluate some of these influences, we 

estimated site occupancy rates for P. longirostris using a multi-season model that explicitly 

takes detection, colonisation, extinction and occupancy probabilities into account, including 

a number of covariates assumed to be important in predicting skink occupancy, detection, 

colonisation and extinction.  

 

3.5.1 Occupancy probability 

The estimated actual occupancy was higher than the naïve occupancy estimate, which 

indicates the importance of deriving robust estimates of parameters that take incomplete 

detectability into account (Pollock et al., 2002). Occupancy was related to the habitat type, 

the site type and the presence of prickly pears. This provides initial evidence that rocky coastal 

habitat and fortifications, particularly on offshore islands, continue to support and maintain 

skink populations (Glasspool and Outerbridge, 2004). Those sites with increased habitat 

degradation and habitat loss (especially on the mainland) were less likely to be occupied than 

islands (five mainland sites compared to nine island sites). This suggests that skinks require 

relatively undisturbed native habitats to thrive and they could therefore act as important 

biological indicators of the condition of coastal habitats in Bermuda.  

 

The presence of scrub vegetation, such as prickly pears, may provide a seasonal supply of 

fruit; attract a plentiful supply of invertebrates; provide important shelter and refugia for 

skinks; and even play a key role in erosion control (Le Houérou, 1996). Raine (1998) also noted 

an association between skinks and areas dominated by coastal vegetation such as sea oxeye 

(Borrichia arborescens) and salt grass (Spartina patens) on Inner Pear, Charles Island and 

Spittal Pond. 
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Therefore, clearing areas of dense woodland (especially invasive vegetation such as Brazil 

pepper Schinus terebinthifolia and asparagus fern Asparagus densiflorus) in suitable coastal 

locations would be beneficial to skink survival. This action would simplify migration between 

population fragments and ultimately, increase the probability of population survival.  

 

Although historical surveys conducted between 1998 and 2014 did not report on occupancy 

or detectability of the Bermuda skink, this study has shown that their range is declining 

because skinks were only detected at 12 of the 26 sites previously occupied in the past 20 

years. Furthermore, only seven sites had more than one sampling occasion that detected a 

skink. As 67% of detections were located at the eastern end of Bermuda (i.e. within the Castle 

Harbour area), these populations remain extremely vulnerable to the continued threats from 

predation and habitat loss from hurricane damage. Those islands should therefore be 

provided with increased habitat management to control invasive species and reduce the 

harmful effects of litter (i.e. discarded empty bottles and cans), which can be lethal to the 

skinks (Jones, 2015).  

 

3.5.2 Colonisation and extinction probabilities 

Seabirds were found to be important predictors of colonisation. The results confirm previous 

suggestions that skinks have a mutualistic relationship with Bermuda’s nesting seabirds as the 

skinks will opportunistically forage in the seabird’s nests, feeding on failed eggs, carrion such 

as dead chicks and dropped fish eaten by the skinks (Davenport et al., 1997). The installation 

of artificial nesting burrows has been an important component of the recovery of Bermuda’s 

breeding white-tailed tropicbirds (Phaethon lepturus catesbyi) and Bermuda petrels 

(Madeiros, 2008), so the continuation of this process may help to sustain skinks and even 

encourage the colonisation of new skink sub-populations. 

 

However, the probability of colonisation of skinks in the presence of cats will be highly 

unlikely, since cats have been observed predating skinks on many occasions (Garber, 1988). 

Domestic and feral cats have long been recognised by conservationists as one of the greatest 

threats to biodiversity (Woinarski et al., 2018) and are responsible for at least 14% of global 

bird, small mammal, and reptile extinctions and are the principal threat to almost 8% of 

critically endangered endemic species (Medina et al., 2011). In Australia, the average feral cat 

was reported to kill 225 reptiles per year (Woinarski et al., 2018). Therefore, with the growing 
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number of domestic and especially feral cats in Bermuda (McGrath, 2014), a strategy 

describing all aspects of cat management on Bermuda, including the creation of a legislative 

and regulatory framework, is urgently needed. 

 

Surprisingly, local extinction was not influenced by any predator covariates, but the lack of 

prickly pears and rocky coastal habitat were key factors. Therefore, changes in habitat are 

most likely to be important indicators in predicting local extinction. Average extinction 

probabilities tended to be higher than average colonisation probabilities. The variability in 

average colonisation and extinction probabilities suggest that populations are going through 

fluctuations in site occupancy. Population fluctuation is a common problem encountered in 

animal surveys. Monitoring occupancy can reveal changes in the status of a species over 

broad areas and may be appropriate for species that exhibit population fluctuations over 

short time periods.  

 

3.5.3 Detectability probability 

We assessed the presence of multiple predator species alongside the detection of skinks at 

each site to determine which species pose threats to remnant skink populations. Although 

kiskadees, herons and anoles were thought to be a major problem for Bermuda skinks 

(Davenport et al., 1997), these were not covariates retained in the top models (anoles: AIC > 

234.93, herons: AIC > 234.04 and kiskadees: AIC > 234.30). Birds are certainly capable of 

accessing all sites and Jamaican anoles are widespread across Bermuda (Stroud, et al., 2017), 

but they may not have always been observed at the sites because of the presence of humans. 

It is likely such predators are present more frequently at sites, but further information is 

needed to confirm this. However, the presence of rats and cats were found to negatively 

affect detection of the skinks. Continued monitoring of the prevalence of predators at each 

study site would determine the threat level they pose to the skinks and whether the 

management of introduced predators or competitors at a site would allow for effective 

recovery of skinks. Fortunately, introduced species can be eradicated, even from large islands. 

For example, coypu (Myocastor coypus) were eradicated from Great Britain (233,000 km²; 

Gosling and Baker, 1989), rats (Rattus norvegicus) were eradicated from Langara Island, 

Canada (31 km²; Taylor et al., 2000), and exotic herbivores are being removed from 

increasingly larger islands (Towns and Ballantine, 1993; Simberloff, 2001). Many of these 
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projects benefited from the development of new poisoning and hunting techniques that have 

dramatically improved eradication techniques for goats (Capra hircus) (Campbell and Donlan, 

2005), commensal rodents (Rattus sp. and Mus musculus) (Thomas and Taylor, 2002), rabbits 

(Oryctolagus cuniculus) (Chapuis et al., 2001), and pigs (Sus scrofa) (Cruz et al., 2005). In 

contrast, some invasive species such as cats, remain very difficult to eradicate from islands 

(Veitch, 2001). The largest island where cats have been successfully eradicated is Marion 

island, South Africa (290 km²), a project that took over 10 years (Bloomer and Bester, 1992). 

The second largest island where cat eradication has been successful is Little Barrier Island, 

New Zealand (28.1 km²); a project that took three years after previous failed attempts (Veitch, 

2001). Now a rural village in New Zealand is even looking at banning domestic cats altogether 

to protect its native wildlife (Cooper, 2018). Unfortunately, there has not been many new 

developments in culling programs directed at managing these invasive populations. There is 

a strong reliance on broad scale use of chemical pesticides or other lethal methods of control. 

However, commonly used rodenticides such as brodifacoum are often toxic to the 

environment due to secondary and even tertiary poisoning (Mendenhall and Pank, 1980; 

Alterio, 1996; Eason et al., 1999). Therefore, a greater emphasis on ecologically based 

management would assist in reducing unintended effects of culling. Additionally, testing the 

success of different techniques to eradicate abundant invasives would greatly enhance 

current efforts to protect Bermuda’s native wildlife. 

 

3.5.4 Improving parameter estimates 

Precise estimates of occupancy require a large number of sites, but for endangered species 

there may be insufficient sites for rigorous site replication. Due to poor weather and limited 

access, many of the sites in this study were visited only twice (resulting in an estimated 80% 

detectability). Consequently, lower precision with higher standard errors in estimates are 

likely. Therefore, increasing the number of sampling occasions to at least five should result in 

a 95% detection probability, to improve the precision of the estimated occupancy rate. 

However, there would be little gain in precision by undertaking more than five sampling 

occasions. 
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3.5.5 Future considerations 

Alternative methods to live-trapping skinks in the future could include the use of camera traps 

or drones with thermal imaging cameras for detecting these highly cryptic animals, 

particularly at rugged sites where the use of pitfall traps would not be feasible (Welbourne, 

2013). Either motion-activated or devices on a timer can be deployed for consecutive days 

and have proved effective in detecting Spenomorphus skinks (Bennett and Clements, 2014). 

Both of these methods do have disadvantages. For example, drones at low altitude may 

disturb skinks, while drones at high altitude may be unable to detect the skinks or 

differentiate them from other non-native lizards, and they can be expensive especially for 

large-scale surveys. Nevertheless, the current traditional survey methods require significant 

human resources and bulky equipment, a boat to access sites, calm sea conditions to land 

personnel and equipment, and several days at each site to collect data. Additionally, the 

lizards need to be actively searching for food in order to enter traps. Camera traps and drones 

could circumvent some of these issues and incur minimal environmental disturbance 

(Henschel and Ray, 2003; Silveira et al., 2003). Equally, data from different methods can be 

combined in the same model to increase precision (Furnas and McGrann, 2018). Furthermore, 

they may provide the opportunity to collect additional information on habitat use (Henschel 

and Ray, 2003; Silveira at al. 2003), population structure, behaviour or diet (Silveira at el., 

2003; Wegge et al., 2004), or even the presence of other species in the vicinity, which is not 

possible using the current method of pitfall trapping.  

 

The use of dogs for detecting endangered or elusive species are also becoming a popular 

conservation method (Reed et al., 2011). Specially trained hunting dogs such as Jack Russell 

terriers are often trained to hunt or flush out rats or cats. Consequently, using sniffer dogs to 

target where species are present would greatly aid trap placement. Although dogs from elite 

hunting lines are often valued at around USD1000 – USD2000 each, they are often much 

easier to train and perform more effectively than non-hunting pet dogs (Wood et al., 2002). 

 

Whichever method is chosen to detect species, future work should aim to achieve multiple 

annual presence/absence surveys at a variety of sites across Bermuda, in order to assess 

changes (e.g. trends) in site occupancy over time. Using models for estimating the dynamics 

of interacting species (e.g. competitors or predators) from replicated, presence-absence data 
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would help to predict the current and potential distributions of invasive species which in turn 

could inform management decisions. 

 

3.5.6 Conclusion 

Bermuda skinks exhibit high variation in occupancy and abundance between years (Turner et 

al., 2019). This seems to indicate high turnover of individuals, potentially indicative of a 

species with a high mortality rate or short life span. The Bermuda skinks had been thought to 

have a life span of around 21 years (Davenport et al., 1997). However, other closely related 

Plestiodon lizards have lifespans of 2–7 years in the wild (Clark et al., 2005). The patchy 

distribution of Bermuda skinks and the relatively high number of threats are additional 

constraints on dispersal and recruitment. As predators such as rats and cats clearly have a 

negative effect on the dynamics of the skink sub-populations, restoring native coastal habitat 

on offshore islands as well as the continuation of invasive species removal are priorities. 

Additionally, reviewing the success of survey methods regularly is beneficial to refining 

protocols and achieving the best trapping results. 
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APPENDIX 3A – Catch Per Unit Effort 

Trapping summary at each site between 2015 and 2017: number of traps set during each 
survey, area surveyed (in square meters / acres), total number of skinks caught, number of 
surveyors, number of days and hours spent surveying, total trap hours, trap density (number 
of traps/land area) and catch per unit effort (CPUE) required to catch a skink. In comparison 
CPUE on Southampton Island in 1997 was 14.2 trap hours per skink (Davenport et al., 1997) 
and 2.95 trap hours per skink in 2004 (Glasspool and Outerbridge. 2004) and 8.9 trap hours 
per skink on Nonsuch Island (Davenport et al., 1997). 

 Site No. 
of 

Traps 

Area surveyed 
(m² / acres) 

No. of 
skinks 
caught 

No of 
surveyors 

No of 
days 

(hours) 
surveyed 

Trap 
hours 

Trap Density 
(m² / acres) 

CPUE 

1. North Cock Rock 10 1457 / 0.36 2 1 2 (10) 100 0.00686 / 27.78 50 
2. South Cock Rock 10 850 / 0.21 1 1 2 (10) 100 0.01176 / 47.62 100 
3. Inner (Inner) Pear Rock 4 405 / 0.10 0 3 2 (10) 40 0.00988 / 40.00 - 
4. Ferry Point Island 10 5301 / 1.31 0 3 2 (10) 100 0.00188 /7.63 - 
5. Bird Rock 15 1174 / 0.29 0 1 2 (10) 150 0.01277 /34.48 - 
6. Idol Island 15 728 / 0.18 0 1 2 (10) 150 0.02060 / 83.33 - 
7. Scaur Hill Fort 20 4856 / 1.20 0 1 2 (10) 200 0.00411 /16.67 - 
8. East Elbow Beach 20 5463 / 1.35 0 1 2 (10) 200 0.00366 / 14.81 - 
9. Shelley Bay 20 4452 / 1.10 0 1 2 (10) 200 0.00449 /18.18 - 

10. Spittal Pond (Jeffries Hole) 21 2954 / 0.73 37 4 15 (75) 1575 0.0071 / 28.76 42.57 
11. Spittal Pond (Checkerboard) 21 7325 / 1.81 0 4 15 (75) 1575 0.00286 / 21.73 - 
12. Inner (Middle) Pear 19 890 / 0.22 0 3 2 (10) 190 0.0213 / 86.36 - 
13. Sinky Bay 25 3440 / 0.85 0 3 6 (30) 750 0.0073 / 29.41 - 
14. Long Rock 25 5463 / 1.35 0 3 2 (10) 250 0.00457 / 18.52 - 
15. Rushy Island 25 3237 / 0.80 1 2 2 (10) 250 0.00772 /31.25 250 
16. Coney Island 25 8498 / 2.10 0 2 2 (10) 250 0.00294 / 11.09 - 
17. Charles Island 25 11979 / 2.96 0 2 6 (30) 750 0.00209 /8.45 - 
18. Grazbury Island 25 3399 / 0.84 0 3 2 (10) 250 0.00736 / 29.76 - 
19. Inner (Outer) Pear 25 1578 / 0.39 2 3 2 (10) 250 0.0158 /64.10 125 
20. Outer Pear Rock 25 1821 / 0.45 0 3 2 (10) 250 0.01373/55.56 - 
21. Hog Bay Park 27 6111 / 1.51 0 3 2 (10) 270 0.01419 /17.88 - 
22. Astwood Park 25 4249 / 1.05 0 3 2 (10) 250 0.00588/23.81 - 
23. Horn Rock 27 1902 / 0.47 2 3 6 (30) 810 0.01419/57.45 405 
24. Church Bay 30 4087 / 1.01 0 3 2 (10) 300 0.00734/29.70 - 
25. John Smiths Bay 30 4452 / 1.10 0 2 2 (10) 300 0.00674/27.27 - 
26. Warwick Long Bay 30 13152 / 3.25 0 3 2 (10) 300 0.00228/9.23 - 
27. Green Island 30 2226 / 0.55 0 3 2 (10) 300 0.0135/54.55 - 
28. Ferry Point Park 20 15378 / 3.80 0 3 2 (10) 200 0.00130/ 5.26 - 
29. 35 North Shore 30 2711 / 0.67 0 2 2 (10) 300 0.0111/44.77 - 
30. Devonshire Bay Park 30 9915 / 2.45 0 2 2 (10) 300 0.00303/12.24 - 
31. Nonsuch Island 72 57142 / 14.12 97 4 15 (75) 2400 0.00126/5.10 24.74 
32. Spittal Pond (East End) 33 9551 / 2.36 8 4 15 (75) 2475 0.003455/13.98 309.38 
33. Daniels Head 35 7487 / 1.85 2 2 2 (10) 350 0.004675/18.92 175 
34. Great Head Park 40 9186 / 2.27 0 3 2 (10) 400 0.00435/17.62 - 
35. Little Head Park 40 9389 / 2.32 0 3 2 (10) 400 0.00426/17.24 - 
36. Coopers Island 45 12950 / 3.20 2 3 6 (30) 1350 0.00347/14.06 675 
37. Fricks Beach 60 4006 / 0.99 0 3 2 (10) 600 0.0150/60.61 - 
38. Palm Island 65 2671 / 0.66 1 2 6 (30) 1950 0.02436/98.48 1950 
39. Castle Island 65 16309 / 4.03 327 4 15 (75) 4875 0.00399/16.13 14.91 
40. Southampton Island 65 8903 / 2.20 692 4 15 (75) 4875 0.0073/29.55 7.04 
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APPENDIX 3B – Aerial images of spatial placement and numbering of traps. Black circles 

indicate a skink was captured (Images edited in ArcMap 10.5). 
 

Aerial image of North Cock Rock showing spatial placement and numbering of traps (10 
traps set).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Aerial image of South Cock Rock showing spatial placement and numbering of traps (10 
traps set). 
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Aerial image of Bird Rock showing spatial placement and numbering of traps (15 traps set). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Aerial image of Idol Island showing spatial placement and numbering of traps (15 traps set). 
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Aerial image of Fricks Beach showing spatial placement and numbering of traps (60 traps 
set). 
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Aerial image of Charles Island showing spatial placement and numbering of traps (25 traps 
set). 
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Aerial image of Coney Island showing spatial placement and numbering of traps (25 traps 
set). 
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Aerial image of Coopers Island showing spatial placement and numbering of traps (45 traps 
set). 
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Aerial image of Scaur Hill Fort Park showing spatial placement and numbering of traps (20 
traps set). 
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Aerial image of Daniels Head showing spatial placement and numbering of traps (35 traps 
set).  
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Aerial image of Devonshire Bay showing spatial placement and numbering of traps (30 traps 
set). 
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Aerial image of Elbow Beach showing spatial placement and numbering of traps (20 traps 
set). 
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Aerial image of Ferry Point Park and Ferry Point Island showing spatial placement and 
numbering of traps (30 traps set). 
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Aerial image of Shelley Bay showing spatial placement and numbering of traps (20 traps 
set).  
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Aerial image of Hog Bay Park showing spatial placement and numbering of traps (27 traps 
set).  
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Aerial image of Rushy Island showing spatial placement and numbering of traps (25 traps 
set). 
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Aerial image of Sinky Bay showing spatial placement and numbering of traps (25 traps set). 
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Aerial image of Palm Island showing spatial placement and numbering of traps (65 traps 
set). 
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Aerial image of Astwood Park showing spatial placement and numbering of traps (25 traps 
set). 
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Aerial image of Long Rock showing spatial placement and numbering of traps (25 traps set).  
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Aerial image of Grazbury’s Island showing spatial placement and numbering of traps (25 
traps set). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Aerial image of Little Head Park showing spatial placement and numbering of traps (40 traps 
set). 
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Aerial image of 35 North Shore showing spatial placement and numbering of traps (30 traps 
set). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Aerial image of Inner (Outer) Pear Rock showing spatial placement and numbering of traps 
(25 traps set). 
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Aerial image of Southampton Island showing spatial placement and numbering of traps (65 
traps set). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
63 

 39  
49 

 
64  

29 

 8 

 
50 

 16 
 

34 

 
45 

 
62 

 53 

 
33 

 
21 

 
31 

 30  
20 

 
19 

 
40 

 59 

 22 

 7 

 6 

 
15 

 32 

 
14 

 
65 

 60 

 
61 

 51 

 
43 

 
42 

 41 

 1 

 3 

 
9  

2 

 
4 

 12  
5 

 
54 

 
11 

 10 

 
28 

 18  
13 

 
38 

 
46  

35 

 
57 

 
17 

 23 

 
55 

 58 

 
37 

 
47 

 
27 

 
48 

 25 

 
26 

 24 
 

36 



Population Status and Conservation of the Critically Endangered Bermuda Skink 

 

127 

 

Aerial image of Inner (Inner) Pear Rock and Inner (Middle) Pear Rock showing spatial 
placement and numbering of traps (23 traps set). 
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Aerial image of Castle Island showing spatial placement and numbering of traps (65 traps 
set). 
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Aerial image of Nonsuch Island showing spatial placement and numbering of traps (72 traps 
set).  
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Aerial image of Spittal Pond- Checkerboard showing spatial placement and numbering of 
traps (21 traps set). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Aerial image of Spittal Pond- Jefferies Hole showing spatial placement and numbering of 
traps (21 traps set). 
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Aerial image of Spittal Pond- East End showing spatial placement and numbering of traps 
(23 traps set). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Aerial image of Horn Rock showing spatial placement and numbering of traps (27 traps set). 
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Aerial image of Outer Pear Rock showing spatial placement and numbering of traps (25 
traps set).  
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Aerial image of Green Rock showing spatial placement and numbering of traps (30 traps 
set).  
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Aerial image of John Smiths Park showing spatial placement and numbering of traps (30 
traps set). 
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Aerial image of Church Bay Park showing spatial placement and numbering of traps (30 
traps set).  
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Aerial image of Great Head Park showing spatial placement and numbering of traps (40 
traps set). 
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Aerial image of Warwick long bay showing spatial placement and numbering of traps (30 
traps set).  
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APPENDIX 3C – Frequency of skink captures on Southampton Island, Castle Island, 

Nonsuch Island and Spittal Pond between 2015 and 2017. 
 
Frequency of skinks on Southampton Island.  
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Frequency of skink captures on Castle Island. 
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Frequency of skink captures on Nonsuch Island. 
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Frequency of skink captures at Spittal Pond. 
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CHAPTER 4 

VARIATION IN BODY CONDITION OF BERMUDA 

SKINKS IN SPACE AND TIME: IMPLICATIONS FOR 

HABITAT CHANGE AND CONSERVATION.  
 

HELENA TURNER AND RICHARD A. GRIFFITHS 

 

 

 

 

 

 

 

 

 

 

 

 An adult Bermuda Skink (Plestiodon longirostris). 
(Photo credit: Labisko. J, 2016). 
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4.1 ABSTRACT 
 

Measuring body condition can provide a surrogate measure of an animal’s fitness. Here, we 

compare the scaled mass index (SMI) – a body condition index based on mass–length 

relationships – to compare fitness between seven geographically isolated Bermuda skink 

(Plestiodon longirostris) sub-populations across Bermuda. Data were collected over two-time 

periods separated by at least 15 years (1997 – 2000 and 2015 – 2017). This allowed 

comparisons to be made over time, between sub-populations and between different habitats. 

Body condition varied between sub-populations, but at the overall population level, declined 

significantly over the past 15 – 20 years. Skinks in suboptimal forested habitats had lower 

body condition than those from more favourable coastal rock and scrub habitats. The two 

largest sub-populations – on Castle and Southampton Islands – had significantly higher body 

condition compared to other sub-populations. The body condition of those from the smallest 

fragmented rocky islets (Inner Pear Rock and Palm Island) decreased over time and currently 

have the poorest body conditions compared with those from other sub-populations. These 

patterns possibly reflect environmental stressors, such as losses of optimal and available 

habitat and resources, increased predation and other anthropogenic threats the skinks face.  
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4.2 INTRODUCTION 
 

External measures of animal size such as body mass, snout-vent length (SVL), and internal 

measures such as fat, organ mass, lipid, water or protein content (e.g. Cavallini, 1996; Sears, 

1998; MacCracken et al., 2012; Weatherhead et al., 1996) are essential indicators used to 

develop body condition indices (Green, 2001). Body condition indices can be used to reveal 

the stresses or limitations affecting those individuals (Schulte-Hostedde et al., 2001) and can 

be an indicator of an animal’s foraging success (Blanckenhorn, 1991), ability to cope with 

competition (Strain and Johnson, 2009), environmental pressures (Carrascal et al., 1998), 

mating behaviour (Shine et al., 2003), or nutrition (Eley et al., 1989). However, some methods 

to measure body condition can be invasive, time-consuming and difficult to implement in the 

field (Kotiaho, 1999; Marshall et al., 1999). Indeed, invasive measures can even be fatal for 

the animal (Schulte-Hostedde et al., 2005).  

 

Body condition can be measured using a range of different indices, most of which involve a 

measure of body mass that controls for variation in size. For example, a simple method is the 

residual index, which uses the residuals from an ordinary least squares (OLS) regression of 

body mass against one or more length measurements (Sokal and Rohlf, 1995; Bancila et al., 

2010; Cattet et al., 2002). However, some indices may yield misleading information about 

body condition. For example, the cube root of mass divided by length may in fact reflect 

variation in size rather than condition (Bradshaw and De’ath, 1991), and may not account for 

changes in body proportions during growth (Dudek et al., 2015). Consequently, the choice of 

index can influence results (Jakob et al., 1996).  

 

As previously demonstrated in amphibians, birds and mammals (Peig and Green, 2009, 2010; 

MacCracken and Stebbings, 2012), the scaled mass index (hereafter SMI) is a useful tool that 

may perform better than other alternative methods as a measure of body condition (Peig and 

Green, 2009). So far, the SMI has not yet been adopted in scincid lizards. A major benefit of 

the SMI (defined formally in the Methods section below) is that it is based on the scaling 

relationship between body mass and length, allowing all individuals to be at the same growth 

phase, so that the changing relationship with body size can be accounted for (Peig and 

Green, 2010).  
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The Bermuda skink (Plestiodon longirostris) is an endemic species that was once widespread 

across Bermuda. However, populations have been declining since the 1970s (Davenport et 

al., 2001), and they are now classed as critically endangered since only a few isolated sub-

populations remain. The main threats include anthropogenic disturbances, coastal 

developments, habitat loss and the introduction of invasive flora and fauna (Raine, 1998; 

Wingate, 1998). Despite conservation concerns, detailed life history data is difficult to obtain 

because of the cryptic behaviour of the species. 

 

The aim of this study was to calculate body condition indices using a scaled mass index (SMI) 

to compare Bermuda skink body condition between seven sub-populations. We predict that 

skinks living in areas of degraded forest habitat will have a lower SMI than those in less 

disturbed coastal habitats, and that SMI may have changed over time as habitats have 

become more degraded and disturbed. Understanding how these factors shape an animal’s 

condition can be used as a novel indicator of ecosystem health to help develop effective 

management strategies.  

 

4.3 METHODOLOGY 
 

4.3.1 Study area 

Skinks were sampled from seven of the largest sub-populations across Bermuda: Palm Island, 

Spittal Pond, Castle Island, Charles Island, Southampton Island, Nonsuch Island, and Inner 

Pear Rock (Fig. 4.1). Data from earlier surveys were made available by the Government of 

Bermuda, Department of Environment and Natural Resources. Data from surveys on Palm 

Island and Castle Island were collated from Wingate (1998); data from surveys at Spittal Pond, 

Inner Pear Rock and Charles Island were collated from Raine (1998). To increase the sample 

size from Castle Island additional data from Hammond (2000) were also included. Although 

surveys were undertaken on Nonsuch Island by Griffith et al. (1993) and on Southampton 

Island by Davenport et al. (1997) and Glasspool and Outerbridge (2004), body mass data were 

not collected so lizard body condition could not be estimated. Data from ‘present’ surveys 

were collected between 2015 and 2017. Although Bermuda skinks are active all year round 

(Edgar et al., 2010) all population monitoring was carried out between June and September 

when skinks are most active (Raine, 1998).  
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4.3.2 Live capture and handling 

The methodology was consistent between surveys and followed Davenport et al. (1997) 

where individuals were captured using glass jar (4.5 litres) pit fall traps and Bumblebee® 

sardines in oil as bait. Traps were placed approximately every 5 – 10 metres, as this is 

considered to embrace different home ranges (Raine, 1998). Each trap was placed at a 45° 

angle against a rock to prevent escapes and covered with a large palmetto leaf or damp towel 

to prevent the traps overheating. The number of traps set depended on the size of the site 

and varied between 30 and 104. Traps were checked hourly between 1100 and 1600 hrs.  

 

Individuals captured in ‘Present’ surveys (2015 – 2017) were recognised individually by having 

their passive integrated transponder (PIT) tag scanned (see Chapter 2). For individuals 
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FIGURE 4.1. Map showing seven localities from which morphometric data 
were collected across Bermuda between 1997 and 2017.  

(Images created in ArcMap 10.5). 
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surveyed in the ‘Past’ studies (1997 – 2000) or those that were too small to be tagged (< 11.0 

g), a spot of coloured paint was applied to either the limbs or dorsal surface that would be 

detectable for the duration of the study. Lizards that had been captured already were 

immediately released from the trap they were caught. 

 

A combination of body scale colouration and morphological measurements were used to 

classify specimens into four age classes: hatchlings, juveniles, sub-adults or adults (Davenport 

et al., 1997; Raine, 1998; Wingate, 1998; Glasspool and Outerbridge, 2004; Appendix 4A). Any 

scars or injuries to the body, limb or tail were also recorded for each individual.  

 

4.3.3 Measurement of body size and mass 

All skinks collected from the traps were immediately placed in a polythene bag and weighed 

using a 60 g Microline Pesola® spring balance (precision: ± 0.3 g) to record individual body 

mass (g). Snout-vent length (SVL) was measured with a ruler (to the nearest 1.0 mm) that 

provided a flat surface to support the lizard, so they could be measured accurately and 

reduced the number of escapes. Once processed, all lizards were released at the point of 

capture. 

 

4.3.4 Calculation of indices and statistical analyses 

We used the scaled mass index (SMI) to assess skink body condition, as recommended by Peig 

and Green (2009). The SMI accounts for normal growth processes (i.e. scaling) between body 

mass (M) and length measurements (L). It therefore allows comparisons to be made between 

individuals from the same species but differing in body size by standardising all individuals to 

the same growth phase (Lleonart et al., 2000). 

 

SMIi =  �̂�i  ×  (
L0

Li
)b 

 

Where �̂�𝑖  and 𝐿𝑖  are, respectively, the body mass and the snout-vent length of the  𝑖 th 

individual; and 𝐿0 , is mean value of snout-vent length for the study population. The 

calculation of b, known as the ‘allometric or scaling exponent’, was the slope estimate of a 

standardised major axis (SMA) regression for all lizards within each sub-population (b values 

shown in Appendix 4B). 
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After verifying that residuals of SMI were normally distributed (Kolmogorov-Smirnov test) and 

had homoscedastic variance, the resulting SMI indices were used to assess trends in skink 

body condition by using a linear mixed-effects model (LMM). Models were fitted and 

compared using a restricted maximum likelihood estimation method. We used SMI as the 

dependent variable and included site, habitat and age class as dependent fixed-effects, and 

the time (past and present), as an independent random effect. Upon finding a significant 

effect of time on skink body condition, we explored temporal trends in body condition 

between habitat and age classes. Body condition could only be compared between four of 

the seven sub-populations as no ‘Present’ data were available for Charles Island and no ‘Past’ 

data for Southampton Island or Nonsuch Island. 

 

Post-hoc pairwise comparisons of SMI were based on estimated marginal means and were 

Bonferroni corrected (Rice, 1989). Comparisons of the mutilation rate between ‘past’ (1997 – 

2000) and ‘present’ (2015 – 2017) were conducted using the "N-1" Chi-squared test as 

recommended by Campbell (2007) for small sample sizes.  

 

The level of significance was set at 0.05 and all computations unless stated otherwise were 

performed using the ‘lmer’ function in the ‘lme4’ package in R software (version 3.4.3, R Core 

Team, 2017). 

 

4.4 RESULTS 
 

4.4.1 Comparisons between sub-populations 

A total of 921lizard measurements were collected from seven Bermuda skink sub-

populations: Southampton Island, Castle Island, Nonsuch Island, Spittal Pond, Inner Pear 

Rock, Charles Island and Palm Island between 1997 and2017(Table 4.1). There were 

significant differences in body condition between sites (LMM: F(6,912) = 6.11, P < 0.01; Fig. 

4.2). Post-hoc analysis showed three significant groupings (P < 0.01): A) Southampton Island 

and Castle Island B) Charles Island, Nonsuch Island and Spittal Pond and C) Palm Island, and 

Inner Pear Rock. Group A had the greatest SMI, whereas group C had the lowest SMI. 
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TABLE 4.1. 
Sample sizes (N), mean snout-vent length (SVL, mm), mass (g), scaled mass indices (SMI) and 
standard errors (SE) for seven Bermuda skink sub-populations. Both ‘Past’ and ‘Present’ data 
(1997 – 2017) are combined.  

Site N Body mass ± SE SVL ± SE SMI ± SE 

Charles Island 62 16.30 ± 0.53 80.70 ± 1.12 15.98 ± 0.16 

Castle Island 249 17.12 ± 0.28 76.61 ± 0.54 17.21 ± 0.10 

Inner Pear Rock 41 9.00 ± 0.46 64.47 ± 1.23 9.84 ± 0.32 

Nonsuch Island 49 19.50 ± 0.90 79.00 ± 0.87 15.92 ± 0.35 

Palm Island 30 13.11 ± 0.71 78.20 ± 1.37 12.51 ± 0.20 

Southampton Island 406 20.31 ± 0.27 81.86 ± 0.46 17.46 ± 0.10 

Spittal Pond 84 15.44 ± 0.50 75.69 ± 0.81 15.08 ± 0.22 

Total 921 15.83 ± 0.52 76.65 ± 0.91 14.86 ± 0.21 

 
 

4.4.2 Changes in body condition over time 

Associations were evident (Fig. 4.2) between body condition and habitat type (LMM: F(2,916) 

= 9.55, P < 0.05). Skinks caught in scrub habitats (n = 507, mean SMI = 17.57 ± 0.57) had a 

higher mean SMI than those caught in rock (n = 330, mean SMI = 14.76 ± 0.42) or forest 

habitats (n = 84; mean SMI = 12.91 ± 0.36).  
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Interactions between time and habitat type showed that those caught in the past from scrub 

habitat (n = 157, mean SMI = 19.86 ± 0.29) had higher SMI compared to those caught in the 

past, in rock habitat (n = 172, mean SMI = 15.98 ± 0.55) or forest habitat (n = 75, mean SMI = 

14.36 ± 0.49, LMM: F(2,397) = 10.02, P < 0.01). Comparing the SMI between those caught in 

the past and present, the SMI of those caught in rock habitat declined by 15.5%, those caught 

in scrub habitat declined by 22.9% and those caught in forest habitat declined by 20.4% (Fig. 

4.3). 

 

Although there was no significant interaction between body condition and age classes (LMM: 

F(2,916) = 0.21, P = 0.813), there was an interaction between time and age class (LMM: 

F(2,397) = 4.29, P < 0.05). Over time, juvenile body condition declined by 17.3%, sub-adults 

by 17.5 % and adults by 24.0% (Fig. 4.3). 

 

 

 

 

FIGURE 4.2. Mean scaled mass index (SMI) between A) site B) time C) habitat type and D) age 
classes. Data collected from seven Bermuda skink sub-populations (CHI = Charles Island, CI = 
Castle Island, IP = Inner Pear Rock, NI = Nonsuch Island, PI = Palm Island, SI = Southampton 

Island, SP = Spittal Pond) between 1997 and 2017.  
 



Population Status and Conservation of the Critically Endangered Bermuda Skink 

 

151 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The random effects model showed body condition significantly decreased at Palm Island and 

Inner Pear Rock over time (Table 4.2). Overall, results showed there was a 19.6% decline in 

SMI over time (LMM: F(1,917) = 13.91, P < 0.05) between past sites (n = 169, mean SMI = 

16.72 ± 0.45) and present sites (n = 230, mean SMI = 13.44 ± 0.32). 

 

 

 

B) A) 

FIGURE 4.3. Mean scaled mass index (SMI) interactions between A) time (Past and Present) and 
age classes (Juvenile, Sub-adult, Adult) and between B) time (Past and Present) and habitat type 

(Rock, Scrub, Forest). 
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TABLE 4.2. 
Results of random effects model of body condition comparisons between four of the seven 
Bermuda skink sub-populations over the periods 1997 – 2000 and 2015 – 2017. Direction of t-
values (positive or negative) indicates the direction of the linear trend over time. 

Site t  df P-Value 

Castle Island 2.677 6.36  0.495 

Inner Pear Rock -2.422 8.19 < 0.05* 

Palm Island -3.004 8.04 < 0.05* 

Spittal Pond -1.781 8.93 0.089 

 

4.4.3 Mutilation rate 

More than half of the skinks caught in both the past and the present time periods exhibited 

some form of mutilation. There was a significant relationship between the number of 

individuals that had tail or toe mutilations between the past and the present (χ² = 80.47, df = 

1, P < 0.001). Tail loss increased by 32.4% over time compared to toe loss which has decreased 

by 9.3% over time (Table 4.3). 

TABLE 4.3. 
Percentage (%) of mutilation among skinks captured at each site in the ‘Past’ surveys between 
1997 – 2000 and the ‘Present’ surveys between 2015 – 2017 and mean percentages used to 
compare samples. A hyphen (-) indicates insufficient data available. 

Site Past Present 

 Tail Loss Toe Loss Tail Loss Toe Loss 

Charles Island 61 (38/62) 10 (6/62) - - 

Castle Island 50 (39/78) 21 (16/78) 88 (150/170) 3 (5/170) 

Inner Pear Rock 60 (22/37) 11 (4/37) 100 (2/2) 0 (0/2) 

Nonsuch Island - - 98 (45/46) 4 (2/46) 

Palm Island 63 (19/30) 10 (3/30) 100 (1/1) 0 (0/1) 

Southampton Island - - 86 (258/299) 4 (13/299) 

Spittal Pond 73 (45/62) 8 (5/62) 91 (20/22) 5 (1/22) 

Mean percentage 61.4 % 12.0 % 93.8 % 2.67 % 

Past survey data collected by: Raine (1998), Wingate (1998) and Hammond (2000). 
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4.5 DISCUSSION 
 

Using the SMI provides a simple, reliable, non-invasive procedure to compare the body 

condition between conspecifics regardless of age, reproductive state, geographical 

population, or date of capture. Inner Pear Rock and Palm Island were found to have the lowest 

body condition indices. Both are small (< 0.4 hectares) inhospitable offshore islands. 

Differences in SMI may be due to availability of resources, especially as the two largest sites, 

Southampton and Castle Island, had the highest SMI in comparison. The body condition of 

skinks on Castle Island increased over time, whereas it declined on Inner Pear Rock and Palm 

Island. As Inner Pear Rock and Palm Island are the smallest sites surveyed, they only have a 

very small number of seabirds that nest annually. Consequently, the supply of dropped fish 

or broken eggs from nesting seabirds may not always be available for the skinks. Although 

prickly pears are found on both islands, their fruits are also only seasonally available, again 

reducing the amount of available resources. Body condition has been found to deteriorate in 

Marine iguana (Amblyrhynchus cristatus) populations in the Galapagos as a result of changing 

environmental conditions. The largest animals (males) on each island were the first to die 

once environmental conditions deteriorated especially during El Niño events 

(Wikelski and Trillmich, 1997; Wikelski and Thom, 2000). Possibly there is size-related 

mortality amongst Bermuda skinks living in poorer quality environments. However, there is 

much stronger sexual size dimorphism in marine iguanas compared to Bermuda skinks. 

 

Individuals caught in forest habitat had the lowest mean body condition compared to those 

caught in rock or scrub habitat. Although Bermuda skinks are most commonly found within 

rocky coastal habitat (Glasspool and Outerbridge, 2004), the islands within Castle Harbour 

have increasing amounts of non-native vegetation such as dense stands of asparagus fern 

(Asparagus densiflorus), Brazil pepper (Schinus terebinthifolia) and casuarina trees (Casuarina 

equisetifolia; Bernews, 2015). There has been a 26.2% increase in the resident human 

population in Bermuda in the past 50 years (50,520 in 1960 to 63,779 in 2010; Government 

of Bermuda, 1960; Government of Bermuda, 2016) and suitable native habitat is slowly being 

lost across Bermuda (Griffith et al., 1993). Habitat has changed particularly on the coastlines 

from a predominantly tussocked crabgrass (Stenotaphrum secundatum) habitat, to a more 

complex mixed forest, more suitable for invasive species such as Kiskadee flycatchers 
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Pitangus sulphuratus, yellow-crowned night herons Nycticorax violacea, brown and black rats 

Rattus sp. and Jamaican anoles Anolis grahami known to predate the skinks (Griffith et al., 

1993). These forested habitats are unsuitable for the skinks because they reduce 

opportunities to forage, bask and nest. Several studies have shown that invasive plants 

generate changes to the structure and composition of original communities, reducing species 

richness and abundance of native plants (Higgins et al., 1999; Ferdinands et al., 2005), 

invertebrates (Herrera and Dudley, 2003), and vertebrate populations (Meik et al., 2002). 

Introduced plants may even alter localised environmental conditions by changing the 

temperature and humidity (Marchante et al., 2008). The introduction of invasive vegetation 

would also create unfavourable nesting conditions to native seabirds. As a result, birds may 

have problems accessing nests which may limit breeding opportunities and therefore reduce 

the amount of available resources (e.g. dropped fish and broken eggs) to the skinks.  

 

 The Bermuda skink population is clearly in decline, with no skinks seen at Charles Island, only 

one skink recorded at Palm Island and numbers on the mainland - especially at Spittal Pond - 

declining fast. This is particularly worrying considering that the earlier surveys in 1998 

suggested the populations were healthy (Raine, 1998; Wingate, 1998). It is likely that a 

combination of suboptimal habitat and high predation levels is influencing the fitness of the 

skinks, and ultimately, population size.  

 

Juveniles in poorest body condition were caught at Nonsuch Island and Spittal Pond. Although 

fewer juveniles were caught at these two sites compared to the other sub-populations, 

previous studies found Nonsuch Island and Spittal pond to have ageing populations and poor 

recruitment into the breeding population (Griffith et al., 1993; Raine, 1998; Wingate, 1998). 

This may lead to reduced population viability to habitat quality, predation levels or low 

fertility due to inbreeding. 

 

Although the single largest individual was caught on Nonsuch island (32 g), mean body 

condition at Spittal pond and Nonsuch Island has declined by an average 7.28% over the past 

twenty years. During surveys undertaken between 2015 and 2017, Bermuda experienced an 

El Niño event, which resulted in milder weather. Such environmental fluctuations can result 

in seasonal changes in food availability which many studies on reptiles have shown feeding 

success correlates with growth rates (e.g. Jakob and Dingle, 1990; Passos et al., 2014) and egg 
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production (e.g. Morse, 1988), and could also temporarily affect the lizards’ ability to bask 

and undertake natural foraging and breeding behaviours, which ultimately affects their future 

fitness. 

 

There was a significant difference between tail and toe mutilations over time. Tail loss has 

been found to reduce mating success, reduce activity levels and affect locomotion in lizards, 

so may therefore decrease the fitness of individuals (Vitt, 1983; Martin and Salvador, 1995, 

1997; Salvador et al., 1995; Martin and Avery, 1998). However, if mutilation is related to high 

rates of predator-inflicted injuries, this could reflect predator inefficiency rather than 

predation pressure (Schoener, 1979; Arnold, 1988). High frequencies of toe loss in lizards are 

unlikely to have a severe effect on survival (Bloch and Irschick, 2004). They are often an 

indication of intraspecific competition (e.g. Chadwick, 1991; Soederbaeck, 1995) or 

aggression (e.g. Kramer, 1951; Blair, 1960; Tinkle, 1967; Pianka, 1973), especially in high 

density populations (Vervust et al., 2009). However, as toe mutilations decreased over time 

this may indicate less intraspecific competition for resources as skink populations become 

less abundant.  

 

4.5.1 Conclusion 

Monitoring environmental conditions and microhabitats alongside the body condition of 

Bermuda skinks may provide early warning signs to detect fluctuations that may negatively 

impact survival. Although body condition is just a surrogate index of potential pressures on 

populations, this study provides important information for conservation managers. Further 

studies should compare the response of SMI to specific health indicators, such as parasite 

load, growth rates, diet quality, survivorship and reproductive success that are likely to 

influence the variation in individual fitness. Likewise, the use of non-invasive methods (i.e. 

collection of faecal samples; buccal swabs; visual health checks; behavioural observations) 

may generate data that could usefully be explored in relation to body condition. Although it 

is acknowledged that sample sizes may be smaller than working with more abundant species, 

this information will be valuable to further understand pressures on endangered species such 

as the Bermuda skink. Lastly, with a captive breeding programme for the Bermuda skinks 

underway, past and present body condition data from the field will provide an informative 

baseline for monitoring ex situ populations. 
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APPENDIX 4A – Bermuda skink age class determination (Photo Credit: Turner, H. 2017). 

Life 
Stage 

Measurements Description Image 

Hatchling  
 

 50 -60 mm SVL  
< 3.5 g  

Hatchlings (< three months old) have bright 
blue tails and black and cream stripes 
extending from the head to the top of the 
tail with golden brown bodies (Wingate, 
2005). They have short slender legs with 
five digits on each clawed foot. The skink’s 
tail length is usually equal to or greater 
than, as much as 150 percent, of the 
animal’s snout-vent length. 
 

 

Juvenile  
 

48- 70 mm SVL 
3.0 - 8.0 g 

Juveniles (< one year old) progressively lose 
the blue colouration in their tails but still 
have bronzed dorsal coloration and two sets 
of dorsolateral black and cream stripes 
similar to hatchlings.  

 

Sub-
adult  

 

65- 85 mm SVL 
7.5 - 21.0 g 

Sub-adults (between one and two years old) 
no longer have any blue colouration on 
their tails. They look similar to juveniles 
with their dark brown to grey bodies and 
two distinct longitudinal black and yellow 
stripes on the dorsum, some also have 
orange chins and cheeks.  
 

 

Adult  
 

SVL > 72 mm - 95 mm  
> 13.0 g – 30.0 g 

Adults (> two years old) have a grey to black 
mottled dorsum with no striping, and 
salmon pink to vivid orange chin and 
cheeks. Venter colouration may vary 
between a beige, grey, yellow to orange 
colour.  
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CHAPTER 5 

MORPHOLOGICAL VARIATION BETWEEN 

ISOLATED BERMUDA SKINK  
PLESTIODON LONGIROSTRIS  

SUB-POPULATIONS 
 

HELENA TURNER AND RICHARD A. GRIFFITHS 

 

 

 

 

 

 

 

 

 

Adult skink on Nonsuch Island, Bermuda. (Photo Credit: Dept. of Environment and 
Natural Resources, Bermuda, 2004). 
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5.1 ABSTRACT 

We examined intraspecific morphological variation between geographically isolated sub-

populations of the endemic Bermuda skink (Plestiodon longirostris). We hypothesised that 

differences between the environments of isolated sub-populations (e.g. foraging 

opportunities and levels of predation) might create environmental or selective pressures 

resulting in morphological divergence between sub-populations. We present detailed 

morphometric data for seven sub-populations of P. longirostris. A total of ten linear biometric 

measurements were recorded from 1172 lizards. Morphometric variations were analysed 

using principal component and cluster analysis. Results indicated that seven sub-populations 

were clustered into three different groups: (1) Southampton Island, Nonsuch Island and Castle 

Island; (2) Charles Island, Spittal Pond (a mainland site) and Palm Island (located in the west 

of the Island chain); (3) Inner Pear Rock (located in the east of the island chain). Hind limb 

lengths and forearm lengths collected from skinks between 2015 and 2017 were also 

significantly shorter than those measured in earlier studies taken at least ten years before.  

 

We demonstrate that morphological variation has occurred at the subpopulation level in 

response to different environmental pressures such as isolation, changes to habitat and 

predator levels over time, especially on these small offshore islands. Invasive species can 

prompt adaptive responses, altering the nature of interactions between invaders and the 

natives they contact. 
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5.2 INTRODUCTION 

Phenotypic variation may reflect variation in fitness that arises through natural selection. 

Individual morphometric variation ultimately affects behaviour, growth rates, survivorship 

and reproductive success (Bjorklund, 1993; Post et al., 1997). These variables can be impacted 

as a result of isolation (e.g. Hendry et al., 2000), competition (e.g. Losos, 1994), predation 

(e.g. Langkilde, 2009), habitat change (e.g. Vitt et al., 1997), and environmental variables 

particularly temperature changes (e.g. Elphick and Shine, 1998). 

 

Numerous approaches have been used to compare ecology and morphology among closely 

related species of lizards. For example, the study of limb size and proportions, which directly 

reflect changes in habitat and lifestyle may affect locomotor performance or fitness (Losos, 

1990; Garland and Losos, 1994; Miles et al., 1995; Bonine and Garland, 1999). Therefore, 

lizard species may exhibit morphological specialisations that improve behavioural 

performance in the microhabitats they use (Melville and Swain, 2000). Given the widespread 

occurrence of these changes and their potential influence on the ways in which selection 

pressures translates into evolutionary shifts, we need a clearer understanding of the nature, 

magnitude and persistence of environmentally induced modifications. For example, on each 

of the Greater Antillean islands, different species of anoles occupying similar microhabitats 

tend to be similar in body size, limb and tail proportions, and other characteristics (Williams, 

1972). Similar anole communities have evolved independently at least four times in the West 

Indies (Williams, 1983; Losos, 1992; Irschick et al., 1997; Losos et al., 1998), suggesting a 

strong and highly predictable relationship between lizard ecology (habitat use) and general 

morphology. However, studies of other groups of lizards do not confirm the patterns found 

in Caribbean anoles (e.g. Jaksic et al., 1980; Miles, 1994; Vanhooydonck and Van Damme, 

1999). Although Caribbean Anolis lizards have been used in ecomorphological studies for 

many years they may not constitute a good model for other lizard groups (Vanhooydonck and 

Van Damme, 1999). Understanding differences in patterns of ecomorphological relationships 

is an important component for studying responses to the environment. 

 

Lizards of the family Scincidae are mostly distributed over South-east Asia, the South Pacific 

and North America. They have radiated extensively into habitats ranging from heathland and 

mountains, to tropical forests, semi-desert and desert, but are absent from boreal and polar 
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regions (Honda et al., 2000). Within these habitats, skinks occupy microhabitats that vary 

considerably. Some species are arboreal, frequently climbing shrubs or even trees (e.g. 

prehensile-tailed skinks Corucia zebrata, snake-eyed skinks Cryptoblepharus virgatus); some 

are saxicolous (e.g. sinbad skinks, Oligosoma pikitanga, five-lined mabuya Mabuya 

quinquetaeniata); some are cursorial and live on very open or highly vegetated terrain (e.g. 

open-litter rainbow skinks Carlia pectoralis, garden skinks Lampropholis delicata). However, 

many skinks are fossorial (e.g. Florida sand skinks Neoseps reynoldsi, Woodbush legless skink 

Acontias rieppeli), digging and burrowing in the ground.  

 

Bermuda skinks (Plestiodon longirostris) are considered critically endangered throughout 

their range. Natural disasters such as tropical storms and hurricanes as well as anthropogenic 

activities resulting in habitat loss, plus the introduction of invasive flora and fauna have all 

contributed to small and isolated sub-populations across Bermuda (Raine, 1998). Given the 

variation in the availability and quality of resources especially among these small oceanic 

islands, with differing levels of shelter, prey availability, competition and increased predation 

it is thought morphological differences may occur amongst subpopulations (Davenport et al., 

1997; Raine, 1998), since energy expenditure can be lowered by a reduction in body size 

(McNab, 1994). This suggests an important role of the environment in shaping variation in 

morphology. Isolation due to habitat loss exposes organisms to novel environmental 

challenges, often leading to reduced species richness and diversity due to small sub-

populations (McNab, 1994). In this study, we examine the extent of morphological variation 

amongst seven isolated P. longirostris sub-populations in Bermuda. 

 

5.3 METHODOLOGY 

5.3.1 Lizard collection  

The Bermuda skink is a medium sized [adult snout to vent length (SVL): 64-95 mm and 13.0 – 

30.0 g body mass] scincid lizard endemic to Bermuda (Glasspool and Outerbridge, 2004). 

Lizards were captured at various times between September 1997 and July 2017 (See 

Supplementary Material 1) across seven locations in Bermuda: Palm Island, Spittal Pond, 

Charles Island, Castle Island, Southampton Island, Nonsuch Island, and Inner Pear Rock (Fig. 

5.1).  
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The methodology was consistent between surveys and followed Davenport et al. (1997). 

Individuals were captured using glass jar pit fall traps (4.5 litres) with fish (Bumblebee® 

sardines in oil) as bait (Davenport et al., 1997; Glasspool and Outerbridge 2004). Traps were 

placed approximately every 5 – 10 metres, as this is considered to be within the skink’s home 

range (Raine, 1998). Each trap was placed at a 45°angle against a rock to prevent escapes and 

covered with a large palmetto leaf or damp towel to prevent the traps overheating. Traps 

were checked hourly between 1100 and 1600 hrs (i.e. five checks per day). The number of 

traps per site (between 30 and 104) and the number of days of trapping (3-5 days) depended 

on the size of the site surveyed.  
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FIGURE 5.1. Bermuda skinks collected from seven locations 1998 – 2017 for 
morphometric analyses across Bermuda. 

 (Images created in ArcMap 10.5). 
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5.3.2 Lizard sampling and measuring 

The following nine linear biometric measurements were systematically recorded for each 

skink captured: head length (HL), head width (HW), forearm length (FL), fore digit length 

(FDL), hind limb length (HLL), hind digit length (HDL), tail width (TW), tail length (TL), and SVL 

(all described in further detail in Appendix 5A). Morphological measurements were recorded 

using digital callipers (precision: ± 0.01 mm), except for tail length and SVL which were 

measured with a ruler (to the nearest 1 mm). The ruler provided a flat surface to support the 

lizard, so they could be measured accurately, and also reduced the number of escapes. All 

measures of limbs and digits were taken from the right side of the skink unless there was 

mutilation in which case the left limb or digit was used. Body mass (BM) was also determined 

by placing each individual lizard in a polythene bag and weighing it using a 60 g Microline 

Pesola® spring balance (precision: ± 0.3 g). 

 

Surveys were undertaken in two time periods, those in the ‘Past’ between 1997and 2004 by 

Davenport et al. (1997), Raine (1998), Wingate (1998), Hammond (2000) and Glasspool and 

Outerbridge (2004). Those surveys undertaken in the ‘Present’ were carried out by the author 

between 2015 and 2017. 

 

Individuals captured in ‘Present’ surveys were identified by tagging with passive integrated 

transponder (PIT) tags (see Chapter 2). For individuals surveyed in the ‘Past’ studies, or those 

that were too small to be tagged (< 11.0 g), a spot of green coloured paint was applied to 

either the limbs or dorsal surface that would be detectable for the duration of the study, 

ensuring the same individuals were not recorded multiple times. Body scale colourations 

were recorded in order to divide specimens into three age classes: juveniles, sub-adults or 

adults, in accordance with existing knowledge of skink colouration (Raine 1998). As there is 

very little sexual dimorphism between Bermuda skinks this was not thought to impact 

morphological analyses. However, skinks that could be sexed by the presence or absence of 

the hemipenes, were recorded. To reduce the effects of age as a source of variation in the 

data, we only considered adult individuals in the morphometric analyses. 

 

5.3.3 Statistical analyses 

A principal-components-based factor analysis (PCA) was used as different variables were 

measured on different scales (i.e. grams and millimetres), to reduce the dimensionality of the 
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variation and to capture most of the variability in the data. SVL was used as the body length 

metric rather than total length (TOTL), to avoid errors resulting from many specimens having 

partly regenerated tails (Meiri, 2008). To assess the normality of the nine morphological 

variables (BM, SVL, HL, HW, FAL, FDL, HLL, HDL, TW) the Kolmogorov-Smirnov test was applied 

(Sokal and Rohlf, 1995). All variables were normally distributed (P < 0.01). Various axis 

rotations were then tested, and one was selected for the optimal separation of the sub-

populations in multidimensional space (Kim and Mueller, 1978). A quartimax PCA was 

optimum due to simplifying the interpretation of the observed variables (Neuhaus and 

Wrigley, 1954). Ellipses were plotted with a 95% coverage. The principal components can be 

interpreted by examining which variables are most strongly correlated with each component, 

i.e. which of the eigenvalues is the farthest from zero in either direction. PCA computations 

were performed using R 3.3.2 using the following packages: doSNOW, ggpubr, readxl, dplyr, 

tidyr, SimComp, ggsci, factoextra, FactoMineR, lme4, ggsci, car, caret, lmtest, rcompanion, 

broom (R Core Team. 2016).  

 

Morphometric variation was then analysed using a multivariate analysis of variance 

(MANOVA). This used all nine dependent variables, a type III sum of squares and used Wilks’ 

lambda to compare multivariate sample means between the following groups (independent 

variables): between sex (males and females), time (past and present) and location (Palm 

Island, Spittal Pond, Charles Island, Castle Island, Southampton Island, Nonsuch Island, Inner 

Pear Rock). All morphological variables fulfilled the assumptions of normality (Shapiro-Wilk’s 

test, P > 0.05 in all cases) and homogeneity of variances (Bartlett’s test, P > 0.005 in all cases). 

MANOVA was followed by a post-hoc univariate ANOVA to assess which variables were 

significantly different between groups by comparing means (Zar, 1999). As only a limited 

number of individuals were sexed, a two-sample t-test was used to compare means between 

sexes. The level of significance was set at P ≤ 0·05 for all analyses, unless otherwise stated. 

 

The relative dissimilarity of populations was assessed using cluster analysis and multi-

dimensional scaling (MDS) with Primer v7 software (Clarke and Gorley, 2015). MDS analyses 

were considered complete when successive iterations decreased stress by less than 0.01. 

Cluster analyses were run using a normalised Bray-Curtis similarity index (with results given 

as percentile values) and MDS using normalised euclidean distances (Bray and Curtis, 1957). 
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5.4 RESULTS 

 5.4.1 Average body size and morphology 

In total, 1172 lizards were captured between 1997 and 2017 from seven sites across Bermuda 

(Southampton Island n = 638, Castle Island n = 249, Inner Pear Rock n = 41, Nonsuch Island n 

= 68, Charles Island n = 62, Palm Island n = 30, Spittal Pond n = 84). Of those caught, 66% were 

classed as adults (n = 773, 82.43 mm SVL, 19.42 g), 22% were classed as sub-adults (n = 261, 

73.16 mm SVL, 13.65 g) and 12% were classed as juveniles (n = 138, 60.03 mm SVL, 8.13 g).  

 

We found that using repeated measures (i.e. 50 skinks measured in the ‘Present’ by three 

different people), seven out of the nine morphological measurements yielded very high 

correlations between pairs of measures (Pearson’s correlation coefficient: BM: r = 0.955, SVL: 

r = 0.947, HL: r = 0.976, HW: r = 0.968, FL: r = 0.910, HLL: r = 0.906, TW: r = 0.934, n = 115). 

[With hind digit and fore digit measurements the repeatability was slightly lower (HDL: r = 

0.697, FDL: r = 0.649, n = 115) as error is often more significant for smaller measured values 

(Rabinovich, 2005)]. As 50% of lizards were found to have regenerated tails due to the varying 

degree of mutilations, tail length was removed from further analyses. 

 

5.4.2 Principal component analysis  

The quartimax rotated PCA showed that over 80% of the variance in the data set was 

explained by the first three principal components (58.1% for PCA1, 17.9% for PCA2 and 4.3% 

for PCA3). Variables that load near 1 are clearly important in the interpretation of the factor, 

and variables that load near 0 are unimportant therefore we report any correlations with a 

value above 0.5 to simplify the interpretation of the factors (Bryant and Yarnold, 1995). We 

found that the first principal component strongly positively correlated with almost all 

morphometric variables: BM, SVL, HL, HW, FAL, FDL, HDL and TW apart from HLL (Table 5.1). 

This suggests that these eight criteria vary together i.e. if one variable increases, then the 

remaining variables tend to increase as well. 
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TABLE 5.1. 
Eigenvalues of principal component axis with quartimax rotation of morphometric data. 
Correlations with a value above 0.5 are most strongly correlated and are shown in boldface. 

Variable 
Principal component analysis 

with quartimax rotation 
PCA1. PCA2. PCA3. 

 BM 0.868 -0.169 -0.074 
SVL 0.506 0.102 -0.126 
HL 0.896 -0.002 0.052 

HW 0.882 -0.058 -0.050 
FAL 0.589 0.516 0.285 
FDL 0.562 0.425 -0.539 
HLL 0.279 -0.756 0.446 
HDL 0.588 -0.076  0.507 
TW 0.800 0.056 -0.203 

Variance (%) 58.1 % 17.9 % 4.3 % 

  

 
The second and third principal components each have two values with minor correlations. 

The second principal is correlated with forearm length (FAL) and hind limb length (HLL). As 

hind limb length (HLL) decreases, forearm length (FAL) increases and the remaining 

components show little effect. The third principal component is correlated with fore digit 

length (FDL) and hind digit length (HDL). As fore digit length decreases the hind digit length 

increases and the remaining components show little effect. This suggests that limb and digit 

lengths vary considerably between individuals. However, as PCA 3 only accounts for 4.3 % of 

explained variance this component is relatively unimportant.  

 

Overall, the eigenvalues of principal components 1, 2 and 3, revealed some population-level 

morphological differentiation. We found variables were positively correlated and grouped 

together (whereas negatively correlated variables were positioned on opposite sides of the 

plot). There is a clear overlap between lizards from Nonsuch Island (NI), Southampton Island 

(SI) and Castle Island (CI), indicating close relationships. Lizards from Palm Island (PI), Spittal 

Pond (SP), Charles Island (CHI) and Inner Pear Rock (IP) are slightly more separated indicating 

some level of morphological differences, in particular between hind limb lengths and fore 

digit lengths (Fig. 5.2).  
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When using a PCA analyses to compare measurements over time, the results showed that 

time explains much variance. Individuals in the ‘Present’ exhibited significant positive 

correlations and therefore shorter hind limb lengths (r = 0.709, P < 0.001) and forearm lengths 

(r = 0.531, P < 0.001) than those in the ‘Past’ (Fig. 5.3). 

 

 

 

 

 

 

 

 

 

 

FIGURE 5.2. PCA1 vs. PCA2 of the principal component analysis showing 
differences between the seven locations (CHI = Charles Island, CI = Castle 

Island, IP = Inner Pear Rock, NI = Nonsuch Island, PI = Palm Island, SI = 
Southampton Island, SP = Spittal Pond). Each ellipse represents the region of 

graph space occupied by sub-population. 
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5.4.3 Multivariate analysis  

Using a MANOVA test, results show that independent variables were significantly associated 

with the linear combination of all dependent variables. This indicates that at least one of the 

measurements investigated was significantly different across time (F(9, 757) = 169.10, P < 

0.001) and site (F(54, 3864) = 33.91, P < 0.001; Table 5.2).  

 

There was no association between head length and hind digit length, which did not differ 

significantly between sites. Differences between measurements among other sites was 

mostly due to the smaller size of skinks on Inner Pear Rock. For example, skinks on 

Southampton Island had the greatest body mass (mean: 20.67 ± 0.53 g), whereas skinks on 

Inner Pear Rock had the lowest body mass (mean: 11.59 ± 0.41 g), SVL was greatest on 

Nonsuch Island (mean: 86.28 ± 0.33 mm) but lowest on Inner Pear Rock (mean: 73.61 ± 0.39 

mm). Individuals on Inner Pear Rock had the lowest mean across all measures apart from fore 

PCA 1 

(58.1%) 

P
C
A 
2 

(1

FIGURE 5.3. Association between time (‘Past’ and ‘Present’) and skink 
measurements where variation mostly accounts for differences between 

hind limb and fore digit lengths. 



Population Status and Conservation of the Critically Endangered Bermuda Skink 

 

173 

 

digit length which Palm Island had the smallest mean (6.43 ± 0.15 mm and 5.76 ± 0.23 mm, 

respectively). 

 

TABLE 5.2.  
MANOVA test results comparing site and time between Bermuda skink morphological 
measurements. 

Measurement Variable Wilks’ lambda (λ) df Err. df F 

 

P 

 

BM Site 0.837 6 765 24.48 < 0.01 

 Time 0.799 1 765 2.42 < 0.01 

SVL Site 0.859 6 765 20.65 < 0.01 

 Time 0.861 1 765 10.11 < 0.01 

HL Site 0.764 6 765 22.16 0.413 

 Time 0.852 1 765 17.42 0.309 

HW Site 0.896 6 765 14.46 < 0.01 

 Time 0.671 1 765 20.53 0.092 

FAL Site 0.862 6 765 4.42 < 0.01 

 Time 0.385 1 765 108.36 < 0.01 

FDL Site 0.891 6 765 15.38 < 0.01 

 Time 0.783 1 765 14.68 < 0.01 

HDL Site 0.804 6 765 32.75 0.180 

 Time 0.825 1 765 49.61 < 0.01 

HLL Site 0.396 6 765 233.80 < 0.01 

 Time 0.597 1 765 11.89  < 0.01 

TW Site 0.722 6 765 10.76 < 0.01 

 Time 0.785 1 765 3.39 0.087 

 

All measures differed over time apart from head length, head width and tail width. All past 

measurements were significantly larger than in the present (BM = 19.95 g and 18.42 g, SVL = 

82.97 mm and 80.49 mm, FAL = 17.60 mm and 12.57 mm, FDL = 6.79 mm and 6.37 mm, HDL 

= 12.48 mm and 11.84 mm, HLL = 25.65 mm and 22.70 mm, respectively). Skinks recorded 

from the ‘Past’ had an 8.31 % greater body mass and were 3.08 % longer SVL than skinks 

measured in the ‘Present’.  

 

5.4.4 Comparison between sexes 

Seventy-one percent of adults were sexed. In total, 252 individuals were female and 297 were 

male (Southampton Island n = 302, Castle Island n = 198, Nonsuch Island n = 30, Spittal Pond 

n = 19). The results show that there were significant differences in head width, head length, 
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tail width, hind limb length and body mass between sexes. Females had a slightly larger body 

mass than males (19.74 g and 19.08 g, respectively) but males had larger SVLs (81.68 mm and 

77.82 mm, respectively), head widths (13.60 mm and 12.55 mm, respectively), tail widths 

(9.82 mm and 9.20 mm, respectively), and hind limb lengths (22.41 mm and 20.96 mm, 

respectively; Table 5.3). 

 

TABLE 5.3.  
Two sample t -test results between adult male and female Bermuda skink and between nine 

morphological measurements. * Statistically significant at the P < 0.05 level after the 
Bonferroni adjustment (cut-off P-value = 0.005). 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
5.4.5 Cluster analysis and multi-dimensional scaling 

The results showed three groupings, where Bermuda skink sub-populations differed 

morphologically (Fig. 5.4A and 5.4B). However, all sub-populations were found to be more 

than 96% similar with Inner Pear Rock individuals being the most dissimilar from all other 

sites.  

 

 

 

 

 

 

 

Measurement 

Male (n = 297) 

Mean ± SEM 

Female (n = 252) 

Mean ± SEM 

 

t 

 

P 

BM 18.08 ± 0.28 18.74 ± 0.31 -4.00 < 0.001* 

SVL 82.68 ± 0.43 77.82 ± 0.53 -5.98 < 0.001* 

HL 19.56 ± 0.13 18.33 ± 0.16 -1.35 0.271 

HW 13.60 ± 0.11 12.55 ± 0.12 -6.44 < 0.001* 

FAL 17.40 ± 0.13 16.27 ± 0.14 2.19 0.345 

FDL 6.36 ± 0.051 6.13 ± 0.06 -2.16 0.084 

HLL 22.41 ± 0.15 20.96 ± 0.17 -5.61 < 0.001* 

HDL 12.58 ± 0.10 12.22 ± 0.09 0.65 0.063 

TW 9.82 ± 0.071 9.20 ± 0.08 -5.75 < 0.005* 
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FIGURE 5.4. Using seven Bermuda skink continuous morphological features 
A) Cluster analysis B) Multidimensional scaling. (Euclidean distance, stress 

< 0.01). 
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5.5 DISCUSSION 

5.5.1 Variation in lizard morphology 

We used multivariate analyses to compare morphologies between time and site, as well as to 

identify differences between sexes. The results revealed that there were differences between 

sub-populations. Although the majority of variation was attributed to general growth as the 

measurements increase together, skinks were found to have significantly shorter hind limb 

lengths and shorter forearm lengths in the ‘Present’ compared to the ‘Past’. 

 

Short hind limbs and forearms are often found in saxicolous (rock-dwelling) species (Snyder, 

1962; Jaksic et al., 1980; Pounds, 1988; Sinervo and Losos, 1991). When skinks were abundant 

across Bermuda, they were found in variety of habitats including sand and dune, coastal rock 

and scrub and along cedar groves (Edgar et al., 2010). It is therefore highly likely that 

anthropogenic disturbances, increased predation and loss of habitat have pushed skinks into 

suboptimal habitat. This implies that selective pressures may be altering skink morphology, 

as shorter limbs on ground dwelling lizards will help increase endurance, agility and 
manoeuvrability, allowing them to move quicker between rocks or through dense and narrow 

vegetation (Zaaf and Van Damme, 2001; Herrel et al., 2002; Van Damme et al., 2003; Kolbe et 

al., 2012; Kaliontzopoulou, 2013). Therefore, limb morphology is likely to influence lizard 

escape behaviour (Schulte et al., 2004). Agile lizards can also catch insects more efficiently 

which may also be beneficial on these smaller islands with limited resources. Limb size and 

digit reduction has also been found to correlate with habitat utilisation such as substrate 

conditions and burrowing behaviour (e.g. in the sand-swimming lizard genus Lerista (Greer, 

1990)). On the other hand, analyses of other lizard groups (Liolaemus: See Jaksic et al., 1980, 

Lacertidae: see Vanhooydonck and Van Damme, 2003) have failed to find clear correlations 

between limb morphology and habitat. 

 

In a recent study, Irschick et al. (1997) showed that ecomorphological patterns found in 

Caribbean anoles differ dramatically from those in mainland habitats found across Central 

and South America. Those from the mainland population at Spittal Pond were not found to 

differ morphologically from island populations and, in comparison, were very similar to Palm 

island and Charles island individuals. However, they did differ in colour. Skinks on the 

mainland had very white venter colourations compared to those from island populations 
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especially Inner Pear Rock which had bright orange venter colourations. As the colour 

differences are on the ventral surface, they are unlikely to be related to predator defence or 

attracting mates. However, they could be the result of carotenoid-based colours as a stress 

response, as observed in the common lizard (Fitze at al. 2009). 

 

Skinks from Inner Pear Rock were also significantly smaller in almost all measurements (apart 

from fore digit length). However, this is most likely due to Inner Pear Rock being the smallest 

island (< 2000 m²), so its resources will be limited, which may limit skink growth (Ballinger and 

Congdon, 1980; McNab, 1994). The rate of evolution is often accelerated on smaller islands, 

and species can evolve to greater extremes in size, in this case shifting towards dwarfism 

rather than gigantism (Filin and Ziv, 2004). Additionally, it may be beneficial being a smaller 

size as individuals will be less conspicuous and escape predation more easily (Herczeg et al., 

2009).  

 

5.5.2 Sexual dimorphism 

In many reptile species, determining sex can be ambiguous as morphology can vary 

seasonally, behaviourally, or environmentally. Although identifying sex is difficult, it can often 

be determined by the presence/absence of hemipenes (Davis and Leavitt, 2007) horns or 

dewlaps, colouration differences or even morphological differences as males attain greater 

body and head sizes than females (Herrel et al., 2007). However, fewer than 10% of geckos, 

skinks, and chameleons exhibit sexual dimorphism (Cooper and Greenberg, 1992). There 

were, however, some subtle differences noticed in morphology between the sexes. Females 

had larger body mass than males, which is most likely due to surveys being undertaken during 

breeding season (May-June), when females are more likely to be carrying eggs (Shine 1989; 

Griffith, 1990). Males generally had larger SVLs, head widths, hind limb lengths and tail 

widths. Sexual dimorphism in head sizes is often attributed to male-male combat or it could 

be an adaptation for holding onto the female during copulation (Carothers, 1984; Vitt and 

Cooper, 1985). As the hemipenes are located at the base of the tail, males often have wider 

tail widths than females (Radder et al., 2001). Male lizards also frequently show relatively 

longer hind limbs and therefore greater speed than females (Castilla and Labra, 1998; Cooper 

Jr, 1999; Martin and Lopez, 2001; Cooper Jr and Vitt, 2000). Females on the other hand do 

not engage in territorial activities and generally avoid predation by being more secretive, so 
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that selection on morphological traits will not occur as quickly as in males (Herrel et al., 2002). 

Understanding the differences between sexes will assist with managing the sex ratios in the 

current captive breeding programme. 

 

5.5.3 Sub-population similarity 

Bermuda skinks grouped into three morphologically different sub-populations. Group A 

(Castle Island, Nonsuch island, and Southampton Island, located in Castle Harbour); Group B 

(Inner Pear Rock, located in the far East of the island); and Group C (Spittal Pond a mainland 

site and Palm Island and Charles Island). The three groups are geographically isolated from 

each other (minimum distance between Groups A and B = 0.88 km, between Groups B and C 

= 7.71 km and between Groups A and C = 5.48 km), so differences in morphology are 

presumably due to separation for long periods of time. However, each site within Group C is 

also isolated and it is possible that larger sample sizes from Palm Island and Charles Island 

sites reveal further morphological separation. Overall, Castle Island, Nonsuch Island and 

Southampton Island were the most similar to each other, whereas Inner Pear Rock was found 

to be the most distinct of the sub-populations, but there was still more than 96 % similarity 

amongst individuals. Undertaking genetic analyses in the future may help resolve these 

clusters in terms of evolutionary history.  

 

The Bermuda skink is no longer widespread across Bermuda and now has a limited and patchy 

distribution, with 2,300 - 3,500 individuals estimated to be left in the wild (Edgar et al., 2010). 

We have found evidence to suggest that lizard morphology can vary in response to changing 

habitat characteristics, which will help to understand the effects that changes in habitat and 

predation may have on lizards. Progressive development of these traits implies that selective 

forces are operating and may be advantageous in certain environments.  
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APPENDIX 5A - Description of the ten linear morphometric measurements taken on 

Bermuda skinks.  
 

- Snout to vent length (SVL) was measured from the tip of the snout to the posterior 

end of the cloaca.  

- Head length (HL) was measured from the tip of the snout to the posterior edge of 

the tympanum. 

- Head width (HW) was measured at the widest part of the hinge of the jaw. 

- Tail width (TW) was measured at its widest point just below the cloaca. 

- Tail length (TL) was measured from the anterior end of the cloaca to the tip of the 

tail.  

- Fore limb length (FLL) and hind limb length (HLL) were measured as the distance 

from the proximal end to the start of the fourth digit. 

- Fore digit length (FDL) and hind digit length (HDL) were measured as the distance 

from the point where the fourth digit meets the palm to the extremity of the fourth 

digit, excluding the claw. 

- Regenerated tail length (RTL) was from the point of blastema to the tail tip. 

- Total length (TOTL) was measured from the tip of the snout to the tip of the tail.  
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GENERAL DISCUSSION 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hatchling Bermuda skink. (Photo credit: Chester Zoo, 2017). 
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6.1 GENERAL DISCUSSION 

6.1.1 Summary of the study 

Presence-absence surveys and mark-capture-recapture surveys were undertaken across 

Bermuda in 2015 – 2017 to investigate the current population status of the critically 

endangered Bermuda skink. PIT tags were used for the first time with this species to initiate 

long term monitoring. As a result, skinks were detected at 13 sites including two new sites, 

ranging from 1 - 692 captures per site. Two sites, Castle Island and Southampton Island 

located in Castle Harbour, are the main strongholds. However, the populations fluctuate in 

size, possibly in response to environmental conditions. All skink populations are affected by 

the effects of habitat loss, increased predation and anthropogenic threats, which have 

resulted in a decline in body condition and variations in morphology over time. Compared to 

surveys carried out at least 14 years earlier, skinks have become more restricted in their 

distribution, with the main strongholds being small uninhabited islands. However, even these 

stronghold populations are threatened by invasive species and extreme weather events.  

 

Surveys for skinks were made at 40 sites across Bermuda, but they were only observed at 20% 

of these sites. However, predicted occupancy was estimated at about 25%. More intensive 

surveys may therefore be needed to detect all remaining sub-populations, so they can be 

managed appropriately. A minimum of five surveys is needed for a 95% probability of skinks 

being detected at a site. Skinks were more likely to be detected on undisturbed rocky coastal 

offshore islands that featured the presence of seabirds and prickly pears. In contrast, skinks 

were unlikely to be detected on sites with cat and rat predators (Chapter 3). Covariates 

revealed potential drivers of population decline, as well as indicating key priority areas for the 

conservation of the Bermuda skinks. The focus on restoring native coastal habitat on offshore 

islands and removal of invasive flora and fauna are priorities for the future. Testing the 

success of different management techniques to eradicate invasive species on isolated islands 

would be beneficial.  

 

Capture-mark-recapture (CMR) surveys and robust design modelling found the two largest 

populations (on Castle Island and Southampton Island) fluctuated in size over the three-year 

period, and were threatened by increasing anthropogenic activities, invasive species, and 
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habitat loss (Chapter 2). Undertaking intensive CMR surveys at all other known populations 

across Bermuda would help to identify the main threats at each site.  

 

We demonstrate that differences between the isolated sub-populations (e.g. foraging 

opportunities and levels of predation) may create environmental or selective pressures 

resulting in morphological divergence, especially on the small offshore islands. As a result, 

individuals had smaller hind limb and forearm lengths than they did 1-2 decades previously. 

Out of seven sub-populations, three distinct groups were apparent (Chapter 4). Further 

genetic work using microsatellite analyses or next generation sequencing will determine the 

extent of gene flow and genetic variation between sub-populations, which will be vital to 

assist with population management in the future. 

 

Additionally, human-induced habitat deterioration may negatively affect the body condition 

of Bermuda skinks over time, possibly as a result of skinks being forced to use unsuitable 

habitat. Indeed, skinks in suboptimal forested habitats had lower body condition than those 

from more favourable coastal rock and scrub habitats (Chapter 5). Measuring body condition 

can provide a surrogate measure of an animal’s fitness, therefore, the continuation of the 

collection of biometric data would be valuable to help to help build up a bigger picture to 

compare populations dynamics across other sites and over a longer period of time.  

 

6.1.2 Limitations of this study  

PIT tagging was a satisfactory marking tool for the long-term monitoring of Bermuda skinks. 

However, only individuals over 11 g were tagged during this study to minimise the risk of 

reduced survival and tag loss (Welch et al., 2007; Smircich and Kelly, 2014). Current literature 

mentions as a rule of thumb that PIT tags should be no more than 2% of an animal’s body 

mass (Jepson et al., 2005; Smircich and Kelly, 2014). However, this is rule is largely based on 

fish studies. Currently the American Society of Ichthyologists and Herpetologists suggests an 

upper size limit of 10% of body mass for implanted devices in amphibians and reptiles but add 

that this percentage is clearly inappropriate for small species (ASIH, 2004). Throughout the 

study of Bermuda skinks, tags did not exceed 0.25% of the animal’s body mass so were well 

within current guidelines and did not appear to have any detrimental effects. Further studies 

should confirm the long-term effects of PIT tagging small skink species particularly regarding 

tag retention and longevity.  
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Juveniles are an important life stage to monitor in order to estimate critical population 

parameters, such as population viability. However, because individuals are small, secretive, 

and rarely caught, therefore data on juveniles is difficult to obtain (Pike et al, 2008). In this 

study, capture rates of juveniles were low and were deemed too small to be PIT tagged with 

the current 8 mm x 1.4 mm tags. Consequently, they were excluded from all analyses 

comparing variations over time. Although it would be important to account for juveniles to 

reduce any bias in future studies (which could be achieved by using a combination of smaller 

PIT tags and capturing hatchling individuals from artificially created nests) a study estimating 

juvenile reptile survival rates found they were highly correlated with adult survival rates (Pike 

et al, 2008). 

 

A major issue encountered in the study concerned logistics. Accessing and landing on offshore 

islands was especially difficult since most are surrounded by rock pinnacles and subject to 

significant sea swell. Therefore, settled marine conditions are required which can be difficult 

to predict. Consequently, the number of survey days available is much reduced and regular 

surveying undermined. New survey techniques, such as the use drones are becoming more 

popular methods for monitoring isolated and difficult to access populations (Koh and Wich, 

2012) as well as the use of camera traps for monitoring the behaviour of elusive and secretive 

species (Rowcliffe et al., 2008; Burton et al., 2015). With further development, these 

techniques could potentially be implemented more easily, and in some cases less expensively 

(i.e. with reduced human resources and boat costs) than the current methods. Additionally, 

as current trapping techniques include the use of bait, sampling relies on skinks actively 

foraging for food. Camera traps may be better able to monitor natural behaviours during 

other activity periods. Equally, surveying isolated locations or those that are difficult or unsafe 

to land on may be easier using drones. 

 

6.1.3 Implications for populations  

In the early 1900s the dune formations across Bermuda were analysed. The resulting layers 

of sediment indicated that during the Pleistocene era (when the skinks arrived at Bermuda) 

Bermuda would have been about 518 km2 compared to the present-day area of 55 km2. 

Consequently, Bermuda has significantly decreased in size due to the melting of the 

Pleistocene ice caps thereby increasing sea levels (Olsen et al., 2006). The dunes showed that 
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conditions in Bermuda during this time would have been stormier and even colder than the 

present climate as shown by a distinct lack of native vegetation present, which would not only 

aid the dune formation but equally explains why soil formation was restricted in Bermuda 

(Verrill, 1902; Sayles, 1931). Modern sand dunes are rare (Sayles, 1931), so Bermuda’s pre-

colonial habitat would have been predominately made of dunes and rocky coastal habitat 

with some native vegetation which has shown throughout this study as being the most 

suitable habitat for the Bermuda skinks (Chapters 2, 3, 4 and 5). Dense forest habitat 

appeared to have a negative impact, attracting predators such as rats that prefer to forage in 

dense understorey vegetation and adapt their feeding habitats to the available food types 

(Williams et al., 2003). Crows are also highly adaptable especially in their habitat 

requirements, and although their nesting sites are shifting from rural to urban areas, they still 

prefer to nest in densely forested areas occupying both deciduous and evergreen trees 

(Gorenzel and Salmon, 1992), which would not provide suitable basking or foraging spots for 

the skinks. Based on the results of this study, there are many threats that have played a 

significant role in the decline of the Bermuda skink and this study has provided a strong basis 

for progressing Bermuda skink conservation. For example, the removal of invasive flora and 

fauna and restoration of native habitat is highly recommended. Bermuda has a large human 

population with concomitant development of housing, roads and other infrastructure, thus 

reducing the size of available habitat as well as causing increased anthropogenic disturbances. 

To help mitigate these threats, artificial burrows, stone walls, rockeries or refugia should be 

created to increase the number of safe places for skinks to bask, escape predation and nest. 

Such artificial structures could prove to be important resources for skinks especially during 

cyclic weather events such as El Niño.  

 

Additionally, conservation activities involving seabird colonies (white-tailed tropicbirds and 

Bermuda petrels) may help to increase food abundance (e.g. in the form of carrion or failed 

bird eggs) for Bermuda skinks that co-exist with them (Edgar et al., 2010). An abundance of 

fossil snail shells can also be found in the deep soil layers (Sayles, 1931), indicating a plentiful 

supply during pre-colonial times. This suggests that recovery of native snail populations 

should also be promoted.  
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Vital skink habitat and nesting areas can be impacted due to anthropogenic disturbances 

especially the construction of ‘rock cairns’ (rock stacks balanced on top of each other) or 

‘tombstoning’, jumping into the sea from the coastal edges). As a result, access to the 

protected nature reserves within Castle Harbour should be restricted ‘by license only’ or via 

supervised tour groups to protect these fragile islands. Restricting access also allows bio 

secure methods to be implemented to prevent further invasive species being introduced, 

which could ultimately cause further decline to Bermuda’s species by destroying natural 

habitats, outcompeting, depredating, or poisoning native taxa (Mooney and Cleland, 2001). 

For example, fire ants (Solenopsis sp.) were accidently introduced to the US in the 1930s and 

their spread has impacted agriculture and public health (Langkilde, 2009). Additionally, they 

have they been reported to prey on fence lizards by lifting up a scale using their mandibles 

and envenomating them by inserting their sting shaft into the underlying soft skin. If a lizard 

fails to respond to such an attack it will become paralyzed and die (Langkilde, 2009). As both 

eggs (Moulis, 1997) and young (Allen et al., 1997) of reptiles are often targeted by fire ants, 

and they have been identified as a primary cause of extirpation of the Texas horned lizard 

(Phrynosoma cornutum) (Goin, 1992). In some cases, lizards have been shown to rapidly adapt 

to invaders in order to survive in the face of a novel predator (Langkilde, 2009). However, due 

to low genetic diversity present in the Bermuda skinks (Brandley et al., 2010) the population 

will likely struggle to adapt to these changes (Templeton et al., 2001). 

 

Although the Earth’s climate will continue to change, climatic changes in the distant past were 

driven by natural causes, such as variations in the Earth’s orbit or the carbon dioxide (CO2) 

content of the atmosphere. Now climatic variation is undergoing a period of rapid changes, 

enhanced due to anthropogenic activities during the past 100 years. Many activities 

associated with human economic development have changed our physical and chemical 

environment in ways that modify natural resources. Seemingly small, human-induced 

changes to the natural greenhouse gases are typically projected to result in a global warming 

of about 1.5°C to 6°C in the 21st century (Blaustein et al., 2010). This range, especially if 

beyond 2–3°C, would likely result in ecologically significant changes (Fischlin et al., 2007). 

Additionally, the oceans uptake of atmospheric CO2 will alter pH levels making it difficult for 

marine life to adapt (Hoegh-Guldberg et al., 2007; Doney et al., 2016). Global climate change 

is already having significant effects on species and ecosystems.  
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Climate change is therefore likely to impact Bermuda through changes in patterns of 

precipitation, levels of ultraviolet radiation, increases in tropical storms and a rising sea level. 

In turn, these will result in coastal erosion and loss of suitable habitat. Management options 

currently available include protecting coastal wetlands to allow for sea level rise; reducing the 

risks to wildlife from potential catastrophic events; and taking climate change into 

consideration when selecting the location and other characteristics of conservation 

areas. Ignoring climate change is likely to result in failure to reach wildlife management 

objectives. Assessing the vulnerability of populations to climate change and life on low-lying 

islands will inform decisions concerning whether skinks in such habitats (i.e. North and South 

Cock rocks) should be translocated to safer sites.  

 

6.1.4 Future research  

This study is the first to undertake multi-year monitoring using CMR and PIT tagging methods 

at multiple sites across Bermuda. Future studies should continue long-term monitoring to 

identify whether the observed trends or fluctuations in population dynamics (see Chapter 2 

or 3), or changes in body condition (see Chapter 4), or morphological features (see Chapter 5) 

are population specific depending on the threats they face.  

 

Trained ’detection’ dogs have been used to determine the presence of endangered species 

and invasive species (Wasser et al., 2012). Detection dogs can be used within citizen science 

programmes (with the use of smartphone apps) to record sightings (Bonney et al., 2014). 

Using radio-tracking tags could also be a useful tool to determine the skink movement 

patterns and microhabitat use. This would create a more detailed understanding of the 

habitat and environmental changes that affect skink populations, which could inform 

conservation efforts and management. Radio transmitters have been attached to lizards in a 

variety of different ways including surgical implants, direct attachment to the dorsal surface 

with cyanoacrylic glue and a backpack harness style method (Van Winkel and Ji, 2014). As 

surgery often results in high mortality and direct attachments often become detached 

(Salmon, 2002), backpack harnesses are being adopted more often, as they appear to have 

no significant effect on behaviour, movement, or health of the individuals after a month of 

use (Van Winkel and Ji, 2014).  
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Mainland sites are more challenging for conservation management than offshore islands 

because they typically support species-rich predator assemblages that are impossible to 

eradicate and difficult to control. For example, in New Zealand, predator control on mainland 

sites have not been successful (Tocher, 2006; Hoare et al., 2007). Large-scale, full predator-

proof enclosures and more effective predator control, although costly, may be the only 

remaining options for in situ management of threatened skinks at such sites. Both strategies 

have recently been successfully used to enhance survival of critically endangered Grand (O. 

grande) and Otago (O. otagense) skinks at Macraes Flat, New Zealand (Reardon et al., 2012), 

and could be developed on a smaller scale within Bermuda’s nature reserves. Therefore, 

conservation effort should initially be directed to those islands where skinks have most 

recently been recorded within Castle Harbour (Inner Pear Rock, Nonsuch Island, Southampton 

Island, Castle Island, Horn Rock, Charles Island and Rushy Island) and would provide the best 

hope for continued survival of the skink population. Ensuring viable populations on numerous 

islands will help to provide a safety net in the event of a tropical storm or hurricane in the 

area.  

 

 A direct result of removing invasive predators is increased survival rates, population sizes and 

habitat usage in a variety of lizard species (Case, 1983; Case and Bolger, 1991; Newman, 1994; 

Towns, 1995; Castellano and Valone, 2006; Lettink et al., 2010; Reardon et al., 2012; 

McCreless et al., 2016). As invasive species pose a threat to Bermuda’s biodiversity and are 

probably the main cause for skink declines, control measures should be a priority, especially 

on the smaller offshore islands. Due to an increase in cat feeding stations and abandonment 

of un-neutered pets, the only places the skinks remain are in cat-free protected areas or 

offshore islands. Indeed, there is a higher probability of being able to eradicate invasive 

species successfully on islands, compared to mainland sites (Clout and Veitch, 2002). A feral 

dog problem was resolved in Bermuda in the 1970s. This used an adoption or euthanasia 

programme, and a similar approach may reduce feral cats in areas in close proximity to 

protected areas. This is particularly the case at Spittal Pond and Coopers Island, where the 

illegal feeding of feral cats has been observed and also encourages the presence of rats and 

feral chickens (Bermuda Audubon Society, 2015). There are many other cost-effective 

measures to reduce predators. The use of rat bait should be re-evaluated due to evidence of 

secondary poisoning within the environment. Alternative methods could be used alongside 
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bait to reduce its use, such as systematic trapping grids (Howald et al., 2009), or the 

management of natural predators of rats using barn owls (Tyto alba) of which a small naturally 

colonised population already exists in Bermuda (Maderios, 1991). Removing pesticides from 

the environment, providing nest boxes and supplementary feeding, has shown to increase 

barn owl breeding populations (Marti et al., 1979). As rats and mice make up 85% of Barn owl 

diet in Bermuda and Antiguan anoles are also a significant prey item during the summer 

months, the value of Barn owls as a pest control agent in Bermuda in considerable, especially 

as a breeding pair can consume more than 3,000 small mammals annually (Maderios, 1991). 

Deterrents could also be used to reduce invasive bird presence by removing suitable roosting 

and nesting sites by shortening and thinning dense forest habitat, coating eggs with liquid 

paraffin (Baker et al., 1993), and playing recorded distress calls of the birds (Gorenzel and 

Salmon, 1993).  

 

As 96% of all skink captures during this study were found in the east of the Island within Castle 

Harbour, the remaining populations are vulnerable to natural disasters in the area. 

Translocations could alleviate the risk of extinction through the establishment of 

subpopulations in other less threatened locations. However, translocations are only feasible 

with sufficient detailed studies, background research and knowledge of the biology of wild 

populations to ensure sufficient resources are available year round and that long term effects 

on the species are considered (Conant, 1988; Dodd and Seigel, 1991; IUCN, 1996).  

 

Additionally, future translocations may help to establish new sites outside the skink’s natural 

range. Trunk Island (located within the Harrington Sound) has also been considered by the 

Department of Environment and Natural Resources as a release site due to being more 

sheltered from tropical storms within the Sound. Furthermore, the island has a dock that 

would allow easy access to the site and more frequent monitoring. However, continuous 

human presence on the island is equally likely to disturb the skinks and, unless bio secure 

procedures are investigated, invasive species have a high chance of being transferred from 

the mainland. There are other islands that could potentially support a viable skink population. 

Indeed, those lacking a dock or beach would deter landings, and reduce anthropogenic 

disturbance. Suitability of sites for reintroduction or translocation should there be 

determined by ensuring: (1) presence of breeding seabird populations; (2) absence of non-
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native terrestrial predators (i.e. cats, rats, toads, anoles); (3) absence of anthropogenic 

activities;, and (4) presence of low lying coastal vegetation, such as baygrape trees (Coccoloba 

uvifera), buttonwood (Conocarpus erectus), sea oxeye (Borrichia frutescens) and prickly pears 

(Opuntia dillenii). Inner Pear Rock and Palm Island are both small islands (< 0.4 hectares) 

already supporting skinks, and other small island sites that do not need significant habitat 

management and are unlikely to visited by tourists may also have potential (Pluess et al., 

2012). Intensive skink surveys would not necessarily need to be undertaken regularly at every 

site. Some sub-populations may experience extinction and recolonisation while the 

metapopulation as a whole remains relatively stable. These dynamics need to be considered 

when understanding the findings from the skink surveys on Bermuda. Although 

anthropogenic structures and urban areas dominate the landscape – coastlines, dunes, and 

protected nature reserves provide the mix of suitable habitats within which the 

metapopulation can function, providing there is connectivity between them. 

 

Although a monitoring programme may not need surveys every year, too long a gap between 

repeated surveys carries risks. Although natural populations fluctuate in size, they do not 

usually undergo severe reductions, followed immediately by restoration to the original 

population size. Rather, there is a gradual increase in population size (Maruyama and Fuerst, 

1984). Therefore, if the population size becomes too low it restricts population growth 

potential, resulting in a population ‘bottleneck’ which reduces genetic variability and can be 

difficult to recover from, especially for small populations (Westemeier, 1998). For example, 

on Charles Island skinks were last studied there in 1998 and the island was found to have a 

healthy population (Raine, 1998). Sixteen years later multiple surveys did not detect skinks. 

Although hurricane Fabian hit the island in 2003 (a powerful category 4 storm), it is unclear if 

this was the cause of their apparent extirpation. There are many other examples of 

conservation initiatives around the world where studies show the population was observed 

to be declining (i.e. Monteverde harlequin frog Atelopus sp. and the golden toad Bufo 

periglenes) but extinction occurred as action was not taken soon enough (Crump et al., 1992; 

Pounds et al., 2006). Ideally, conservationists should allow populations to naturally recover 

following habitat and/or invasive species management. However, if stochastic events (e.g. 

hurricanes) alter the underlying dynamics of recovery, further interventions – such as 

translocations or reintroductions – may be desirable. Likewise, if population numbers remain 
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are low, translocating individuals from larger, genetically diverse populations would help to 

increase fitness in smaller populations (Westemeier, 1998). Collecting remaining individuals 

for ex-situ conservation may also be beneficial by removing part of the population from a 

threatened habitat and placing it in a new location, which may be either in-situ or ex-situ. 

(IUCN, 2014).  

 

6.1.5 Conclusion 

The Bermuda skink represents the country’s only endemic terrestrial vertebrate, an extant 

species preserving millions of years of unique evolutionary history, and a high-profile flagship 

species for Bermuda and indicator of coastal environmental health. Within 370 years of 

human presence, skink populations have declined and have been extirpated from much of 

these formerly pristine islands and coastlines. This is due to the growing number of threats 

from habitat loss and destruction, increased predation, rapidly expanding coastal 

developments, lethal litter and anthropogenic activities (Davenport et al., 1997; Raine, 1998; 

Wingate, 1998; Glasspool and Outerbridge, 2004; Bacon et al., 2006; Edgar et al., 2010).  

 

This study contributes to our understanding of skink population ecology and distribution and 

identifies critical drivers of declines and extinctions. Paradoxically, because of their isolation, 

the island populations are more viable than mainland populations that have unprecedented 

pressure from disturbance, development, and invasive species. Nevertheless, the island skink 

populations are still extremely susceptible to stochastic events such as hurricanes and 

extreme weather. This study provides recommendations for the development of effective 

long-term conservation management plans, with prioritised actions including:  

(1) The continuation of island-wide population monitoring, including the use of PIT tagging 

individuals that will provide long-term data giving further insight into population trends, 

habitat use and movements between and within sites.  

(2) The removal of non-native and forest habitat that is unsuitable for skinks, especially on 

small islands. 

(3) Predator control, predator exclusion, and possibly some natural or artificial refuge 

supplementation (Lettink et al. 2010), which will allow skinks to escape predation.  

Undertaking these actions is a crucial step towards protecting these elusive and endangered 

lizards from complete extinction as well as conserving their unique ecosystem.  
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SUPPLEMENTARY MATERIAL 1. – Map 

showing historic skink sightings in Bermuda 
between 1985 - 2014. 
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SUPPLEMENTARY MATERIAL 2. – Summarised data 

from previously published and unpublished Plestiodon 
longirostris surveys.  

Location 
No. of Skinks 

Captured 
Survey 

year 
Source 

Abbots Cliff Park 0 2001 Kitson, L 
 0 2003 Kitson, L 

Admiralty Park 0 2002 Kitson, L 
 0 2003 Kitson, L 

Alton Hill 1 2003 Kitson, L 

Astwood Park 1 2001 Kitson, L 
 0 2016 Turner, H 

Baileys Bay 0 2003 Kitson, L 

Castle Island 22 1993 Conyers, J 
 39 1998 Wingate, R 
 21 2000 Hammond, M 
 - 2002 Kitson, L 
 150 2015 Turner, H 
 121 2016 Turner, H 
 56 2017 Turner, H 

Charles Island 62 1998 Raine, A 
 0 2016 Turner, H 
 0 2017 Turner, H 

Church Bay 1 2002 Kitson, L 
 0 2016 Turner, H 

Coney Island 0 2001 Kitson, L 
 0 2003 Kitson, L 
 0 2016 Turner, H 

Coopers Island 2 2013 Outerbridge, M & Garcia, G 
 2 2016 Turner, H 
 0 2017 Turner, H 

Coral Beach Reserve 0 2002 Kitson, L 
 1 2003 Kitson, L 

Daniels Head Point 1 2002 Kitson, L 
 2* 2015 Turner, H & Outerbridge, O 

Devonshire Bay 0 2002 Kitson, L 
 1 2003 Kitson, L 
 0 2016 Turner, H 

Duckling Stool Park 0 2002 Kitson, L 

Ferry Point Park 0 2001 Kitson, L 
 0 2003 Turner, H 
 0 2016 Turner, H 

Fort St Catherine 0 2002 Kitson, L 

Gilbert Hill 1 2002 Kitson, L 

Great Head Park 0 2002 Kitson, L 
 0 2003 Kitson, L 
 0 2016 Turner, H 
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Green Rock 0 1998 Raine, A 
 0 2017 Turner, H 

Hog Bay Park 2 2001 Kitson, L 
 0 2016 Turner, H 

Horn Rock - 1991 Griffith, H et al.,  
 33 2011 Glasspool, A & Ward, J 
 0 2016 Turner, H 

Horseshoe Bay 1 2001 Kitson, L 
 0 2016 Turner, H 

Howard Bay 1 2002 Kitson, L 

Hungry Bay 0 2000 Kitson, L 
 0 2003 Kitson, L 

Inner Pear Rock 37 1998 Raine, A 
 2 2016 Turner, H 
 0 2017 Turner, H 

Ireland Island South 0 2003 Kitson, L 

Little Head Park 0 2003 Kitson, L 
 0 2016 Turner, H 

Long Rock 0 1998 Raine, A 
 0 2016 Turner, H 

Nonsuch Island - 1991 Griffith, H et al.,  
 23 1997 Davenport, J 
 - 2002 Kitson, L 
 41 2015 Turner, H 
 17 2016 Turner, H 
 39 2017 Turner, H 

North Cock Rock 2 2016 Turner, H 

North Shore 1 2002 Kitson, L 
 0 2015 Turner, H & Outerbridge, O 

Outer Pear Island 12 2003 Kitson, L 
 0 2016 Turner, H 

Palm Island 44 1998 Wingate, R 
 2 2013 Outerbridge, M & Garcia, G 
 1 2015 Turner, H 

Rushy Island 14 2002 Kitson, L 
 1 2016 Turner, H 

Scaur Hill Fort 0 2001 Kitson, L 
 0 2002 Kitson, L 
 0 2016 Turner, H 

Sinky Bay 0* 2015 Turner, H 

Southampton Island 115 1997 Davenport, J 
 - 2002 Kitson, L 
 277 2004 Glasspool, A & Outerbridge, M 
 36 2013 Outerbridge, M & Garcia, G 
 125 2015 Turner, H 
 370 2016 Turner, H 
 197 2017 Turner, H 

South Cock Rock 1 2016 Turner, H 

Spittal Pond 54 1998 Raine, A 
 15 2013 Outerbridge, M & Garcia, G 
 21 2015 Turner, H 
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 13 2016 Turner, H 
 11 2017 Turner, H 

Tamarisk Hill 1 2002 Kitson, L 

Tuckers Town 1 2001 Kitson, L 

Warwick Long Bay 1 2003 Kitson, L 
 0 2016 Turner, H 

West Shelley Bay 1 2003 Kitson, L 
 0 2015 Turner, H 

Wreck Hill Estate 1 2001 Kitson, L 

* Indicates skink remains were also found at the site. 
n.b A hyphen(-) represents an unknown number of captures. 
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SUPPLEMENTARY MATERIAL 3. – Marking Method.  

 
 

For population monitoring studies, lizards are almost always assigned unique identifying 

marks. In short term monitoring studies, quick drying enamel paint or coloured tape are 

frequently applied in order to mark individuals (Blair, 1960; Dunham, 1981; Glasspool and 

Outerbridge, 2004; Shine and Olsson, 1998). However, these methods often wear off within 

a few days, disappear when the skink sloughs it skin and any external conspicuous markers 

may increase predation risk. Therefore, for monitoring studies over longer periods a variety 

of techniques have been used in order to mark lizards more permanently. Heat-branding has 

occasionally been used to mark lizards (Ekner et al. 2011). Tattooing has been used to mark 

snakes (Woodbury, 1948) and could be applied to lizards. However, one of the most 

commonly used methods includes toe-clipping (Bellairs and Bryant, 1968) where the distal 

phalanx of one or more digits are amputated to a coded pattern (Barwick, 1959; Blair, 1960; 

Brooks, 1967; Ballinger, 1973; Ruibal and Philibosian, 1974; Schoener and Schoener, 1982; 

Ruby and Dunham, 1984; Tinkle and Dunham, 1986). However, it has been termed an invasive 

identification method in some studies that have shown to negatively affect survival or 

behaviour in lizards (Schmidt and Schwarzkopf, 2010; Parris and McCarthy, 2001; McCarthy 

and Parris, 2004). Nevertheless, some studies show the procedure causes little trauma and 

there are no negative effects (Huey et al. 1990; Ott and Scott, 1999; Paulissen and Meyer, 

2000; Borges-Landaez and Shine, 2003). Nevertheless, it is not necessarily an accurate 

technique as toe loss naturally occurs quite frequently, particularly in skinks (Hudson, 1996). 

As a result, there would be a high chance of misidentification of individuals marked by toe-

clipping (Rand, 1965; Schoener and Schoener, 1980; Hudson, 1996) especially during long 

term monitoring.  

 

Passive integrated transponders (PIT tags) are a novel tagging method. Individuals can be 

tagged quickly and easily in the field, it prevents misidentification and will be permanent over 

their lifetime as the tags can be accurately read for as long as seventy-five years (Biomark, 

2015; Ott and Scott, 1999). The PIT tags are glass encased electromagnetic coils with a 

microchip that is implanted under the skin or into the body cavity. If a PIT tag is present, the 

reader generates a close-range, low electromagnetic field that immediately activates the tag, 



Population Status and Conservation of the Critically Endangered Bermuda Skink 

 

207 

 

which transmits its unique number back to the reader (Camper and Dixon, 1988) therefore it 

is not battery operated and can always be read by the PIT tag reader therefore handling the 

lizards in the future will be minimal and could reduce the chances of caudal autonomy. 

 

Even though the application of the internal tags may induce temporary stress (Langkilde and 

Shine, 2006), this is of short duration and highly variable between individuals and if inserted 

properly the tags are not known to cause any significant negative impacts (Ferner, 1979) or 

affect growth rates or locomotor performance of lizards (Keck, 1994; Jemison et al. 1995). As 

a result of using PIT tags, individuals can be monitored more closely in the long term by 

looking at the species growth, population density, dispersal or immigration over time that all 

require a permanent marking method (Jemison et al. 1995; Ott and Scott, 1999) as well as 

reducing handling time and causing potential injury from other marking methods.  

 

Previous studies involving Bermuda skink marking have used temporary marking techniques 

such as enamel paints (Glasspool and Outerbridge, 2004) and coloured tape (Shine and 

Olsson, 1998) that would not be suitable for this study as they would wear off within a few 

days, disappear when the skink sloughs it skin and any external conspicuous markers may 

increase predation risk. Therefore, skinks collected from the pit fall traps were implanted with 

a passive integrated transponder also known as a PIT tag (8 mm x 1.4 mm 25 mg ID162B FDX-

B Trovan® www.trovan.com) operating at a frequency of 134.2 kHz. All tags were inserted 

with a syringe type implanter (IM-200) and 1.25" 14-gauge sterile disposable hypodermic 

needle subcutaneously in either the left or right lateral side of the body, as the correct 

placement can reduce tag damage and loss (Germano and Williams, 1993). Prior to the 

injection, the sterile needle was loaded to the syringe and the injection site was wiped clean 

with diluted F10® antiseptic solution and the animal was positioned on its left lateral side. The 

needle was injected below a ventral scale (in the lower abdomen, to avoid all major organs) 

where the tag was pushed just below the skin (Fig. 2.3). Once implanted the tags were then 

read by passing a PIT tag reader (Universal (LID-560) scanner-Trovan®) within 34 cm of the 

animal which identified the individual’s unique identification code. Immediately after a drop 

of fast drying cyanoacrylate glue was applied over the injection site to prevent tag loss and 

speed wound healing (Gibbons and Andrews, 2004). Once individuals were marked, they were 

immediately released back into the population and resampled to see what fraction of the 
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individuals carry marks. As a result of using PIT tags, individuals can be monitored more 

closely in the long term by looking at the species growth, population density, dispersal or 

immigration over time that all require a permanent marking method (Ott and Scott, 1999; 

Jemison et al. 1995) as well as reducing handling time and causing potential injury from other 

marking methods. 

 

 

 

 

 

 

 

 

 

 

 

 Ethics statement  

This research was conducted under a ‘Level 1’ permit with consent from the Government of 

Bermuda Department of Conservation Services (DCS). As the Bermuda skink is categorised as 

a critically endangered species according to the IUCN (Conyers and Wingate, 1996) and is 

protected under the Protected Species Amendment Act (2011) all research was carried out in 

strict compliance with this legislation. An ethical review was also approved by the University 

of Kent, Chester Zoo and the Bermuda Aquarium, Museum and Zoo.  

 

Consideration to ethics 

The standard traps used are made from glass and covered in oil to attract skinks, this can 

cause them to reach high temperatures if left in direct sunlight (highest temperature record 

during this study was 70.84°C inside a glass jar). Trap mortality is therefore a serious 

consideration and every effort was put into place to prevent animals getting caught in traps 

and consequently becoming exhausted attempting to escape, becoming heat stressed due to 

the environmental conditions within the trap or being vulnerable to predation. Therefore, 

traps were checked at least once an hour and all traps closed off when not in use or become 

FIGURE 2.3. Using passive integrated transponder (PIT) tags to mark 
skinks for long-term monitoring (Photo Credit: Turner, H. 2015). 
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unmanageable, ensuring there are enough field assistants to do so. Traps were placed in 

shaded areas and where possible palm leaves were used to cover the top of the traps, to 

prevent overheating. All skinks caught were released as close to their point of capture, to give 

them the best chance of survival. 

  

General disturbances in the survey area were minimised as much as possible by checking the 

traps at scheduled times, taking care not to trample vegetation and by taking rubbish with us, 

which could otherwise prevent the skinks performing normal behaviours such as basking and 

foraging. Rarely, non-focal species were captured such as cockroach nymphs, Jamaican 

anoles, brown rats, a hermit crab and a toadlet were recorded in the traps but were not found 

to cause any injury to the skinks and were all released immediately away from the study area. 
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SUPPLEMENTARY MATERIAL 4. – Vegetation 

classification by habitat type.  

 

*Those highlighted in bold are considered an invasive, non-native species. 

Habitat Type Vegetation 

Beach / Dune / Rocky 
Outcrops 

 

Coastal spurge (Euphorbia mesembrianthemifolia), Sea purslane (Sesuvium 

portulacastrum), Sea oxeye (Borrichia arborescens), Bay bean (Canavalia 

rosea), Seacoast bulrush (Bolboschoenus robustus), Sea purslane (Sesuvium 

portulacastrum), Seaside morning glory (Ipomoea pes-caprae), Beach-tea 

croton (Croton punctatus), Seaside golden rod (Solidago sempervirens), 

Seaside evening-primrose (Oenothera humifusa), Beach Lobelia/Inkberry 

(Scaevola plumieri), Beach Naupaka (Scaevola sericea). 

 

 

Lowland Scrub Capeweed (Lippia nodiflora), Sea oxeye (Borrichia arborescens), Bermudiana 

(Juniperus bermudiana), Josephs coat (Euphorbia (Poinsettia) heterophylla), 

Erect prickly pear cactus (Opuntia dillenii), Plantain (Plantago lanceolata), 

West Indian grass (Eustachys petraea), Darrell's fleabane 

(Erigeron darrellianus), Black medick (Medicago lupulina), Seaside creeping 

daisy (Wedelia trilobata), Seaside golden rod (Solidago sempervirens), Iodine 

bush (Mallatonia gnaphalodes), Tassel plant (Suriana maritima), Sage 

bush/Lantana (Lantana camara), Turnera (Tutnera ulmifolia), St. Andrew's 

cross (Hypericum hypericoides), Bermuda Snowberry (Chiococca alba), White 

beggar's tick (Bidens pilosa), Common dandelion (Taraxacum officinale), St 

Augustine grass (Stenotaphrum secundatum), Crabgrass 

(Digitaria sanguinalis), Bermuda grass (Cynodon dactylon), Stinging nettles 

(Urtica dioica), Spiny sow thistle (Sonchus asper), Floppers (Kalanchoe 

pinnata).  

 

Dense scrub / Coastal 
Forest 

 
 
 
 

Seaside golden rod (Solidago sempervirens), Prickly pear cactus (Opuntia 

dillenii), Scurvy grass (Cakile lanceolata) , Asparagus fern (Asparagus 

densiflorus), Fennel (Foeniclum vulgare), Coast sophora (Sophora tomentosa), 

Box briar (Randia aculeata), Poison ivy (Toxicodendron radicans), Mexican 

petunia (Ruellia brittoniana), Golden mimosa (Acacia dealbata), Bay grape 

(Coccoloba uvifera),  

Tamarisk (Tamarix gallica), Casuarina (Casuarina equisetifolia), Bermuda 

palmetto (Sabal bermudana), Buttonwood (Conocarpus erectus), Bermuda 

cedar (Juniperus bermudiana), Brazil pepper (Schinus terebinthifolius), 

Spanish bayonet (Yucca aloifolia), Jamaica Dogwood (Dodonaea vicosa), 

Forestiera (Forestiera segregata). 
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SUPPLEMENTARY MATERIAL 5. – Publications 
 Turner, H., Griffiths, R.A., Garcia, G., and Outerbridge, M. (2017). Natural History 

Notes: Plestiodon longirostris (Bermuda Skink), Tail Bifurcation. Herpetological 
Review, 48(1): 199. 
 

 Turner, H. (2017). Geographic Distribution: Plestiodon longirostris (Bermuda Skink). 
Herpetological Review, 48(4): 812. 
 

 Turner, H. (2018). Bermuda skink project. The Natterjack, 216: 9-11. 
 

 Turner, H., Griffiths, R.A., Garcia, G., and Outerbridge, M. (2019). Estimating 
population parameters for the critically endangered Bermuda skink using robust 
design capture-mark-recapture modelling. Oryx, 18 
doi:10.1017/S0030605318001485 
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PLESTIODON LONGIROSTRIS (Bermuda skink). ECTOPARASITISM. During a mark-capture-

recapture study on the Bermuda skink between May – July 2016, several individuals were 

found to have ectoparasitic mites present, located inside the tympanic membrane. This 

finding represents a new host and locality record and what is the first ectoparasitic mite 

(Acari) species observed in Bermuda skinks Plestiodon longirostris (Sauria: Scincidae).  

Surveys were conducted throughout Bermuda’s mainland and offshore islands but only 

individuals on Southampton Island (32.3422°N, -64.6675°W), a 2.2-acre nature reserve and 

Castle Island (32.3408°N, -64.6722°W), a 3.5-acre nature reserve, Castle Harbour (the two 

largest remaining sub-populations of Bermuda skinks) had mites present. 

Thirty adult skinks [adult snout to vent length (SVL): 72-94 mm and 12-26 g body mass] were 

found to have mites, 11.42% from Southampton Island (24/274) and 15.17% from Castle 

Island (6/91).  

Twenty-one skinks had mites in just one side of their tympanum and the remaining nine had 

the mites in both sides with on average 3.6 mites per lizard with a maximum of thirteen mites. 

The adult skinks tympanum is between 5 – 6 mm in diameter and the mites were ≤ 0.05 mm 

in comparison (recorded using digital callipers: precision ± 0.01 mm; Fig.1).  

The high densities of lizards on these islands may increase host susceptibility to parasites. No 

juveniles or sub-adults or any individuals from other locations were noticed to have mites 

present. Ectoparasites are generally seasonal in abundance so it is possible they are present 

in other populations but were not observed. Although the effect of mites on host fitness is 

unclear it is hypothesised to be parasitic relationship and that the mites most likely arrived to 

the islands via invasive bird, rat or anole species. Although all skinks found with ear mites 

appeared to be in optimum health, if they are found to be living off the skinks blood supply 

and/or breeding within the tympanum it could potentially lead to bacterial infection 

transmission and alternations in blood composition leading to abnormal behaviour, have an 

impact on auditory cues or reduced survivorship as a result and should be further investigated 

in this critically endangered lizard. 

 

We thank the Government of Bermuda Department of Environment and Natural resources 

for protected species permits and access to sites, with special thanks to M.E. Outerbridge, 

R.A. Griffiths, G. Garcia and J. Maderios for their support. 
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FIG. 1. (A) An adult skink with several (Acari sp.) mites within the right tympanum: only 

observed in Southampton Island and Castle Island sub-populations (B) Close up of a mite 

within a skink’s tympanic membrane. 
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SUPPLEMENTARY MATERIAL 6. – Supporting Media 

ARTICLES 

 CHESTER ZOO SCIENCE REVIEW 2015 

 CHESTER ZOO SCIENCE REVIEW 2017 
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SUPPLEMENTARY MATERIAL 7. – Conference report 

PRESENTATIONS 

 Turner, H. 22nd February 2018. Losing lizards in the Bermuda Triangle. Chester Zoo 

Science Seminar. 

 Turner, H. 18th March 2017. Losing lizards in the Bermuda Triangle. The British 

Herpetological Society (BHS). Wildwood, Herne Bay, Kent. 

 Turner, H. 15th January 2017. Losing lizards in the Bermuda Triangle. Kent Amphibian 

and Reptile Group (KRAG) AGM Meeting. Tyland Barn, Kent Wildlife Trust, Kent. 
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POSTER PRESENTATION 

 Turner, H (2017) Losing lizards in the Bermuda Triangle. Poster Presentation 

Herpetofauna Workers Meeting (ARC UK), Oxford.  
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