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Abstract 1 

The early onset of weaning in modern humans has been linked to the high nutritional 2 

demand of brain development that is intimately connected with infant physiology and 3 

growth rate. In Neanderthals, ontogenetic patterns in early life are still debated, with 4 

some studies suggesting an accelerated development and others indicating only subtle 5 

differences to modern humans. Here we report the onset of weaning and rates of enamel 6 

growth using an unprecedented sample set of three late (~70-50 ka) Neanderthals and one 7 

Upper Paleolithic modern human from Northeastern-Italy via spatially-resolved 8 

chemical/isotopic analyses and histomorphometry of deciduous teeth. Our results reveal 9 

that the modern human nursing strategy, with onset of weaning at 5-6 months, was 10 

present among these Neanderthals. This evidence, combined with dental development 11 

akin to modern humans, highlights their similar metabolic constraints during early life 12 

and excludes late weaning as a factor contributing to Neanderthals' demise. 13 

Significance Statement 14 

The extent to which Neanderthals differ from us is the current focus of many studies in 15 

human evolution. There is debate about their pace of growth and early life metabolic 16 

constraints, both of which are still poorly understood. Here we use chemical and isotopic 17 

patterns in tandem with enamel growth rates of three Neanderthal milk teeth from 18 

Northeastern Italy to explore the early life of these individuals. Our study shows that 19 

these Neanderthals started to wean children at 5-6 months akin to modern humans, 20 

implying similar energy demands during early infancy. Dental growth rates confirm this 21 

and follow trajectories comparable with modern humans. Contrary to previous evidence, 22 

we suggest that differences in weaning age did not contribute to Neanderthals’ demise. 23 

 24 

 25 
Main Text 26 
 27 
Introduction 28 
 29 
Maternal physiology, breastfeeding and the first introduction of supplementary foods are 30 

key determinants of human growth (1). The high nutritional demands of the human brain 31 



 

 

4 

 

during the first years of life has been identified as the main reason for the early weaning 32 

onset in modern humans (2, 3). Indeed, supplementary food is needed when infant's 33 

nutritional requirements exceed what the mother can provide through breastmilk only (4) 34 

and this dietary development can introduce foods that are higher in protein, calories and 35 

key micro-nutrients than maternal milk (4, 5). Weaning onset occurs in contemporary 36 

non-industrial human societies at a modal age of 6 months (6).  37 

At present, our knowledge about the link between the pace of child growth, maternal 38 

behavior and the onset of weaning among Neanderthals is still limited. Previous work 39 

based on permanent teeth from eight Neanderthal specimens reported that Neanderthal 40 

tooth crowns tend to develop faster than in modern humans, suggesting infant growth was 41 

generally accelerated (7). However, a permanent first molar and a second deciduous 42 

molar from La Chaise (France, 127-116 ka and <163 ka respectively) placed rates of 43 

Neanderthal tooth growth within the range of modern humans (8). Equally, the 44 

association between dental and skeletal growth in a 7-year-old Neanderthal from El 45 

Sidròn (Spain, 49 ka) indicated that Neanderthals and modern humans were similar in 46 

terms of ontogenetic development, with only small-scale dissimilarities in acceleration or 47 

deceleration of skeletal maturation (9). Finally, other work suggested that the early 48 

growth of the Neanderthal brain was as fast as in modern humans with similar energetic 49 

demands (10). Maps of Ba/Ca ratios of permanent tooth sections of two early 50 

Neanderthals (Payre 6, 250 ka and Scladina, 120 ka) have been interpreted 51 

(controversially, see below) as indicators of weaning onset at ~9 months (11) and 7 52 

months (12) of age respectively, later than the modal age in contemporary humans (6). 53 

Similarly, wear stage analyses of a large number of deciduous dentitions suggested that 54 

introduction of solid food in Neanderthals was delayed by one year compared to modern 55 

humans (13).  56 

Here we investigate such key aspects of early life in Neanderthals by combining new data 57 

on chemical detection of weaning onset with deciduous enamel growth rates. We utilize 58 

dental histomorphometry (8, 14), spatially-resolved chemical (15) and isotopic profiles 59 

(16, 17) of dental enamel to reconstruct growth rates (14), nursing practices (4) and 60 

mobility (16) during the Middle and Upper Paleolithic at high time resolution (up to 61 
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weekly). We analyzed an unprecedented set of teeth (n = 4) (SI Appendix, Text S1) from 62 

adjacent archaeological sites in Northeastern Italy (SI Appendix, Text S2), dated from the 63 

Late Middle to the Early Upper Paleolithic, from Neanderthal-modern human contexts 64 

(70-40 ka). These four exfoliated deciduous fossil teeth include three Neanderthals 65 

(Nadale 1, a lower right deciduous first molar (19), ~70 ka; Fumane 1, a lower left 66 

deciduous second molar (18), ~50 ka; Riparo Broion 1, an upper left deciduous canine 67 

(20), ~50 ka) and one Early Upper Paleolithic modern human (UPMH) as comparative 68 

specimen from the Fumane site (Fumane 2, an upper right deciduous second incisor (21), 69 

Protoaurignacian, ~40 ka) (Fig. 1). 70 

 71 

[Insert Figure 1 here] 72 

Figure 1. Geographical, paleoecological and chronological framework. (a) Oxygen 73 

isotope curve from NGRIP (22), with Greenland Stadials 5-21 highlighted. Chronologies 74 
of the human specimens are also reported (see Supplementary Information for details); 75 

Fumane 2 is UPMH (green), while Nadale 1, Riparo Broion 1 and Fumane 1 are 76 
Neanderthals (yellow). (b,c,d) Modelled Alpine glacier extent during the time intervals of 77 

the teeth recovered at the sites of Fumane Cave (b,c), Riparo Broion (c) and Nadale (d); 78 
location within Italy is shown in the inset. Simulations show a high temporal variability 79 
in the total modelled ice volume during Marine Isotope Stages 4 (70 ka snapshot) and 3 80 

(50, 40 ka snapshots) with glaciers flowing into the major valleys and possibly even onto 81 
the foreland (23).  82 

 83 

Exfoliated deciduous teeth derive from individuals who survived permanent tooth 84 

replacement and were thus unaffected by any mortality-related bias (24). All teeth come 85 

from the same geographic area within a ~55 km radius (Fig. 1), and Fumane 1 and 2 were 86 

recovered from different archaeological layers in the same cave, thus allowing direct 87 

comparisons in a well-constrained eco-geographical setting. 88 

We quantified enamel incremental growth parameters such as postnatal crown formation 89 

time and daily enamel secretion rates (25), and we detected the presence of the neonatal 90 

line as birth marker (26) by optical light microscopy on thin sections of the deciduous 91 

dental crowns. Weaning onset was investigated via Sr/Ca profiles on the same 92 

histological sections along the enamel-dentine junction (EDJ) by laser-ablation 93 
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inductively-coupled-plasma mass spectrometry (LA-ICPMS) (15). In order to detect 94 

mobility and/or potential non-local food sources in maternal diet, 87Sr/86Sr isotope ratio 95 

profiles were measured by LA-multi-collector-ICPMS (see Materials and Methods) (16, 96 

17). Moreover, we evaluated elemental ratio profiles in teeth from children with known 97 

life history (SI Appendix, Text S3, (15)). 98 

 99 
Results 100 
 101 

The neonatal lines marking birth were visible in all four archaeological specimens, 102 

despite their worn crowns (SI Appendix, Fig. S1), allowing the precise estimation of 103 

postnatal crown formation times (Fig. 2a). The deciduous first molar Nadale 1 and the 104 

deciduous canine Riparo Broion 1 lie within the modern human variability (27-30), while 105 

the second deciduous molar Fumane 1 shows a shorter postnatal crown formation time 106 

compared with the known archaeological and modern human range (27). The UPMH 107 

Fumane 2 deciduous lateral incisor postnatal crown formation time falls into the lower 108 

limit of the modern human range (28, 30). Overall, the enamel growth rates and the time 109 

to form postnatal enamel compares well with modern human data, regardless of 110 

differences in their relative tissue volumes and morphologies (7-9). 111 

Daily enamel secretion rates (DSRs) of all specimens, collected in the first 100 µm layer 112 

along the EDJ where laser tracks were run, are reported in Figure 2b, compared with 113 

range of variation (min., mean, max.) of modern humans (27-30). Neanderthal DSRs in 114 

the first 100 µm of the enamel layer are slower than the corresponding modern human 115 

range of variability. However, when the entire dental crown is considered, the 116 

distributions of Neanderthal DSRs lie within the lower variability ranges of modern 117 

humans (Fig. 2c). The UPMH Fumane 2 DSRs fit the lower portion of the modern human 118 

ranges (Fig. 2b,c). The postnatal crown formation times in Neanderthals couple with 119 

slower DSRs than in modern humans, as expected given the thinner enamel in 120 

Neanderthals' permanent and deciduous teeth (31, 32). 121 

 122 

[Insert Figure 2 here]  123 
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Fig. 2. Dental crown growth parameters. (a) Postnatal crown formation time in days 124 
from birth for the four investigated fossil deciduous teeth relative to the range of 125 
variability reported in literature for modern and archaeological individuals (red, blue, 126 
green lines). (b) Boxplot of the daily secretion rate (DSR) variation in the first 100 µm 127 
from the enamel-dentine-junction (min., second quartile, median, third quartile, max.) in 128 

cmparison to the corresponding variability (min., mean, max.) of modern humans (MH), 129 
re-assessed from (27-30). (c) Boxplot of the daily secretion rate variation across the 130 
whole crown (min., second quartile, median, third quartile, max.) and range of variation 131 
(min., mean, max.) of modern humans (MH), re-assessed from (27-30). Ldm1 = lower 132 

deciduous first molar; Ldm2 = lower deciduous second molar; Udc = upper deciduous 133 
canine; Ldi2 = lower deciduous later incisor. 134 
 135 

 136 

Weaning onset was determined using the topographical variation of the Sr/Ca ratio along 137 

the EDJ (15) (Fig. 3a, SI Appendix, Text S3). In exclusively breastfed newborns, the 138 

enamel Sr/Ca ratio is markedly lower relative to their prenatal levels (15, 33, 34). This is 139 

because human milk is highly enriched in Ca, i.e. Ca is selectively transferred, compared 140 

to Sr, across the mammary glands and the placenta (35, 36). Such behavior is confirmed 141 

by analyses of breastmilk and infant sera (37). In comparison to human, herbivore milk 142 

(and derived formula) is characterized by higher Sr/Ca levels, due to the lower initial 143 

trophic position (38). Our dietary model for early life (Fig. 3a, SI Appendix, Text S3) 144 

agrees with the expected Sr behavior (15, 34, 39), showing a decrease in Sr/Ca during 145 

exclusive breastfeeding and changes in the slope of the profile across the major dietary 146 

transitions (i.e. introduction of solid food and end of weaning; for additional discussion 147 

see SI Appendix, Text S3) (34). This model has been tested successfully in this study on a 148 

set of contemporary children’s teeth with known dietary histories, including their 149 

mothers’ eating habits (SI Appendix, Text S3 and Fig. S6-S8). Alternative literature 150 

models for Ba/Ca point to an increase of Ba/Ca in postnatal enamel during breastfeeding 151 

(11, 12); yet, due to even stronger discrimination across biological membranes, Ba/Ca 152 

behavior is expected to be similar to Sr/Ca (34), as indeed unequivocally observed here 153 

(SI Appendix, Text S3 and Fig. S6-S8) and elsewhere (15, 40-42).  154 

 155 

[Insert Figure 3 here] 156 
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Fig. 3. Nursing histories from time-resolved Sr/Ca variation in Middle-Upper 157 
Paleolithic deciduous teeth. NEA = Neanderthal; UPMH = Upper Paleolithic modern 158 
human. The elemental profiles (Sr/Ca; Ba/Ca for comparison) were analyzed within 159 
enamel closest to the enamel-dentine junction (EDJ); [U] is reported as diagenetic 160 
alteration proxy for all fossil specimens (15) (see SI Appendix, Text S4, Fig. S13); 161 

diagenetically-affected sections are greyed-out. All are plotted relative to secretion time 162 
(in days); the birth event is highlighted by a vertical line in each plot. Elemental ratios are 163 
reported mass (weight)-based, not as mol/mol (15). The compositional profiles were 164 
smoothed with a locally weighted polynomial regression fit (LOWESS), with its 165 

associated standard error range (±3 S.E.) for each predicted value. (a) Comparison 166 
between two contemporary individuals with known feeding histories, MCS1 (exclusively 167 
breastfed) and MCS2 (exclusively formula-fed); t1=transitional period, i.e. first time 168 
solid food starts; t2=progressively reduced breastfeeding during day; t3=transitional 169 

period ends, end of breastfeeding. (b) Nadale 1: the slight decrease of Sr/Ca indicates 170 
exclusive breastfeeding until the end of crown formation (4.7 months). (c) Fumane 1: 171 
Sr/Ca variation indicates breastfeeding until 4 months of age (fully comparable with 172 
MCS1 sample, see Supplementary Figure S6). (d) Riparo Broion 1: Sr/Ca profile 173 

indicates exclusive breastfeeding until 5 months of age. (e) Fumane 2: 55 days of 174 
available postnatal enamel shows exclusive breastfeeding. (f) Comparative Sr/Ca profiles 175 

of all fossil specimens adjusted to the birth event; the interpolated modelled profiles were 176 

calculated based on those portions unaffected by diagenesis ([U]< 0.05 ppm), with strong 177 

smoothing parameters to reveal the biogenic signal. Riparo Broion 1, the specimen most 178 
affected by diagenesis, retains the overall outline of a breastfeeding signal (see panel a). 179 

See Material and Methods section for details. 180 

 181 

 182 

Nadale 1 (Fig. 3b), Fumane 1 (Fig. 3c) and Fumane 2 (Fi. 3e) are sufficiently well-183 

preserved from a geochemical point of view. Riparo Broion 1 (Fig. 3d) in contrast shows 184 

some diagenetic overprint, but the overall biogenic elemental pattern can still be 185 

discerned (Fig. 3f, where only the portions with [U]<0.05 ppm are included in the 186 

interpolated profiles). Overall, Ba is more diagenetically affected than Sr (see SI 187 

Appendix, Text S4 for our diagenesis assessment strategy and detailed description of the 188 

diagenetic overprints).  189 

Two out of the three Neanderthals, Fumane 1 and Riparo Broion 1, clearly show a 190 

decreasing trend in Sr/Ca ratio immediately post-birth, followed by slope changes with 191 

the first introduction of non-breastmilk food at 115 days (3.8 months) and 160 days (5.3 192 

months; Fig. 3c,d), respectively. An even stronger signal of transitional food intake is 193 

visible in Fumane 1 at 200 days (6.6 months) in the form of a steep increase in Sr/Ca 194 
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ratio. For the oldest Neanderthal specimen Nadale 1, following a marked variability 195 

before birth, the Sr/Ca profile slightly decreases until 140 days (4.7 months, Fig. 3b). We 196 

cannot determine the weaning onset for this individual, who was still being exclusively 197 

breastfed by ~5 months of life. The UPMH Fumane 2 has a substantial portion of the 198 

prenatal enamel preserved and only a short postnatal enamel growth record (~85 days vs 199 

~55 days respectively, Fig. 3e). This precludes the chemical detection of the onset of 200 

weaning, although the Sr/Ca drop at birth clearly indicates breastfeeding. The prenatal 201 

Sr/Ca increase in Fumane 2 could be related to changing dietary habits of the mother 202 

during pregnancy. A similar trend in prenatal enamel is observable in MCS2 (Figure 3a), 203 

whose mother followed a diet poor in meat during pregnancy. The Sr isotope profiles of 204 

all investigated teeth show very limited intra-sample variability, confirming that Sr/Ca 205 

variations likely relate to changes in dietary end-members rather than diverse 206 

geographical provenance of food sources (Fig. 4). These data also give insights in 207 

Neanderthal mobility and resource gathering. The 87Sr/86Sr ratios of all Neanderthal teeth 208 

mostly overlap with the respective local baselines, defined through archaeological 209 

micromammals (43). This suggests that the mothers mostly exploited local food 210 

resources. Fumane 1 and Fumane 2, both from the same archaeological site, are 211 

characterized by contrasting mean 87Sr/86Sr ratios (0.7093 vs 0.7088), indicative of a 212 

different use of resources between Neanderthal (local resources) and early UPMH (non-213 

local resources). Such behavior might have been driven by climatic fluctuations, 214 

suggesting colder conditions at ~40 ka, dominated by steppe and Alpine meadows (44).  215 

 216 

[Insert Figure 4 here] 217 

Fig. 4. Mobility of the Middle-Upper Paleolithic infants via time-resolved 87Sr/86Sr 218 
profiles of their deciduous teeth. Grey horizontal bands represent the local Sr isotopic 219 
baselines defined via the Sr isotopic composition of archaeological rodent enamel (SI 220 
Appendix, Table S1). The birth event is indicated by a vertical line. (a,b) Nadale 1 / 221 
Fumane 1: exploitation of local food resources through the entire period; (c) Riparo 222 

Broion 1: possible limited seasonal mobility (non-local values between c. -45 and 85 223 

days, ~4 months); (d) Fumane 2: exploitation of non-local food resources through the 224 

entire period. 225 
 226 

Discussion  227 
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 228 

Nursing strategies are strictly linked to fertility rates, maternal energetic investment, 229 

immune development and infant mortality (45). All of these ultimately contribute to 230 

demographic changes of a specific population, with key relevance to the study of human 231 

evolution. Prolonged exclusive breastfeeding has a positive impact on an infant’s immune 232 

system; however, longer breastfeeding negatively influences women’s fertility via 233 

lactational amenorrhea and thus inter-birth intervals (46). It has been shown that the age 234 

peak for weaning onset is reached at around 2.1 times birth weight (47), implying that 235 

infants who grow more rapidly need to be weaned earlier than those with a slower pace of 236 

growth. Based on modern models, a sustainable timing for infant weaning onset would 237 

thus range between 3 and 5 months of age (4). However, contemporary non-industrial 238 

societies start weaning their children at a modal age of 6 months (6). Similarly, the World 239 

Health Organization recommends exclusive breastfeeding for the first six months of an 240 

infant’s life (48). This time frame broadly corresponds to the age at which the masticatory 241 

apparatus develops, favoring the chewing of first solid foods (4). Such evidence suggests 242 

that both skeletal development and infant energy demand contribute to the beginning of 243 

the weaning transition. Introduction of non-breastmilk foods is also crucial in reducing 244 

the energetic burden of lactation for the mother (6). Breastfeeding represents a substantial 245 

investment of energy resources (total caloric content of modern human breastmilk =~60 246 

kcal/100 mL) (49), entailing an optimal energy allocation between baby feeding and other 247 

subsistence-related activities.  248 

Our time-resolved chemical data point to an introduction of non-breastmilk foods at ~5-6 249 

months in the infant diet of two Neanderthals, sooner than previously observed (11, 12) 250 

and fully within the modern human pre-industrial figures (6). Neanderthals, therefore, 251 

were capable of being weaned at least from the fifth post-natal month in terms of 252 

supplementing the nutritional requirements of an infant that is growing a large brain with 253 

high energy requirements. This evidence, combined with deciduous dental growth akin to 254 

modern humans, indicates similar metabolic constraints for the two taxa during early life. 255 

The differential food exploitation of Fumane 1 and Fumane 2 mothers suggests a 256 

different human-environment interaction between Neanderthals and early UPMHs, as 257 
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seen in Sr isotope profiles. The UPMH Fumane 2 mother was consuming low-biopurified 258 

non-local foodstuff with elevated Sr/Ca and possibly spent the end of her pregnancy and 259 

the first 55 days after delivery away from the Fumane site. The most parsimonious 260 

interpretation is that mother and child of Fumane 2 likely lived away from Fumane Cave 261 

and that, many years after, the UPMH child lost his tooth at Fumane Cave, away from his 262 

original birthplace. Conversely, all Neanderthal mothers spent the last part of their 263 

pregnancies and the lactation periods locally and were consuming high-biopurified local 264 

food (see low Sr/Ca-values in Fig. 3f). Such evidence of a seeming limited mobility for 265 

these Neanderthals women counters previous hypotheses of a large home-range of 266 

Neanderthals (50, 51).   267 

The introduction of non-breastmilk food at ~5-6 months implies relatively short inter-268 

birth intervals for Neanderthals due to an earlier resumption of post-partum ovulation 269 

(52). Moreover, considering the birth weight model (47), we hypothesize that 270 

Neanderthal newborns were of similar weight to modern human neonates, pointing to a 271 

likely similar gestational history and early-life ontogeny. In a broader context, our results 272 

suggest that nursing mode and time among Late Pleistocene humans in Europe were 273 

likely not influenced by taxonomic differences in physiology. Therefore, our findings do 274 

not support the hypothesis that long postpartum infertility was a contributing factor to the 275 

demise of Neanderthals (13). On the other hand, genetic evidence indicates that 276 

Neanderthal groups were limited in size (53), which is not in agreement with the shorter 277 

inter-birth interval proposed here. Thus, other factors such as e.g. cultural behavior, 278 

shorter life-span and high juvenile mortality might have played a focal role in limiting 279 

Neanderthal’s group size (54, 55). 280 

 281 
 282 
Materials and Methods 283 
 284 
Thin slices of teeth preparation  285 

Prior to sectioning, a photographic record of the samples was collected. Thin sections of 286 

the dental crowns were obtained using the standard method in dental histology described 287 

in (56, 57) and prepared at the Service of Bioarchaeology of the Museo delle Civiltà in 288 

Rome. The sectioning protocol consists of a detailed embedding-cutting-mounting 289 
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procedure that makes use of dental adhesives, composite resins, and embedding resins. In 290 

order to be able to remove the crown from the resin block after sectioning and to restore 291 

the dental crowns, the teeth were initially embedded with a reversible resin (Crystalbond 292 

509, SPI Supplies) that does not contaminate chemically the dental tissues and is soluble 293 

in Crystalbond cleaning agent (Aramco Products, Inc.). A second embedding in epoxy 294 

resin (EpoThin 2, Buehler Ltd) guarantees the stability of the sample during the cutting 295 

procedure. The sample was cured for 24 hours at room temperature. Teeth were sectioned 296 

using an IsoMet low speed diamond blade microtome (Buehler Ltd). After the first cut, a 297 

microscope slide previously treated with liquid silane (3 M RelyX Ceramic Primer) was 298 

attached on the exposed surface using a light curing adhesive (3M Scotchbond Multi-299 

Purpose Adhesive) to prevent cracks and any damage during the cutting procedure. A 300 

single longitudinal bucco-lingual thin section, averaging 250 µm thick, was cut from each 301 

specimen. Each ground section was reduced to a thickness of ~150 µm using water 302 

resistant abrasive paper of different grits (Carbimet, Buehler Ltd). Finally, the sections 303 

were polished with a micro-tissue (Buehler Ltd) and diamond paste with 1 µm size (DB-304 

Suspension, M, Struers). 305 

Each thin section was digitally recorded through a camera (Nikon DSFI3) paired with a 306 

transmitted light microscope (Olympus BX 60) under polarized light, with different 307 

magnifications (40x, 100x, 400x, including the ocular magnifications). Overlapping 308 

pictures of the dental crown were assembled in a single micrograph using the software 309 

ICE 2.0 (Image Composite Editor, Microsoft Research Computational Photography 310 

Group) (SI Appendix, Fig. S1). 311 

After sectioning, the crowns were released from the epoxy block using the Crystalbond 312 

cleaning agent and reconstructed using light curing dental restoration resin (Heraeus 313 

Charisma Dental Composite Materials). 314 

Sr isotopic analysis by solution MC-ICPMS 315 

To determine local Sr isotope baselines we analyzed archaeological rodent teeth from the 316 

same sites where the human teeth were found (SI Appendix, Table S1). Samples were 317 

prepared at the Department of Chemical and Geological Sciences of the University of 318 
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Modena and Reggio Emilia, following protocols described elsewhere (16, 58) and briefly 319 

summarized here.  320 

From each archaeological site we selected several rodent teeth, according to the 321 

stratigraphic distribution of human samples. Enamel from micromammal incisors was 322 

manually removed using a scalpel. Few teeth were also analyzed as whole (dentine + 323 

enamel). Before the actual dissolution with 3M HNO3, samples (1-5 mg in mass) were 324 

washed with MilliQ (ultrasonic bath) and leached with ~0.5 M HNO3. Sr of the dissolved 325 

specimens was separated from the matrix using 30 μl columns and Eichrom Sr-Spec 326 

resin.  327 

Sr isotope ratios were measured using a Neptune (ThermoFisher) multi-collector 328 

inductively-coupled-plasma mass spectrometer (MC–ICPMS) housed at the Centro 329 

Interdipartimentale Grandi Strumenti (UNIMORE) during different analytical sessions. 330 

Seven Faraday detectors were used to collect signals of the following masses: 82Kr, 83Kr, 331 

84Sr, 85Rb, 86Sr, 87Sr, 88Sr. Sr solutions were diluted to ~50 ppb and introduced into the 332 

Neptune through an APEX desolvating system. Corrections for Kr and Rb interferences 333 

follow previous works (16). Mass bias corrections used an exponential law and a 88Sr/86Sr 334 

ratio of 8.375209 (59). The Sr ratios of samples were reported to a SRM987 value of 335 

0.710248 (60). During one session, SRM987 yielded an average 87Sr/86Sr ratio of 336 

0.710243 ± 0.000018 (2 S.D., n = 8). Total laboratory Sr blanks did not exceed 100 pg. 337 

Spatially-resolved Sr isotopic analysis by laser-ablation plasma mass spectrometry 338 

(LA-MC-ICPMS) 339 

LA-MC-ICPMS analyses were conducted at the Frankfurt Isotope and Element Research 340 

Center (FIERCE) at Goethe University, Frankfurt am Main (Germany) and closely follow 341 

analytical protocols described by Müller & Anczkiewicz (2016) (17); only a brief 342 

summary is provided here aiming at highlighting project-specific differences. A 193 nm 343 

ArF excimer laser (RESOlution S-155, formerly Resonetics, ASI, now Applied Spectra 344 

Inc.) equipped with a two-volume LA cell (Laurin Technic) was connected to a 345 

NeptunePlus (ThermoFisher) MC-ICPMS using nylon6-tubing and a ‘squid’ signal-346 

smoothing device (61). Ablation took place in a He atmosphere (300 ml/min), with ~1000 347 
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ml/min Ar added at the funnel of the two-volume LA cell and 3.5 ml/min N2 before the 348 

squid. Laser fluence on target was ~5 J/cm2.  349 

Spatially-resolved Sr isotopic analyses of dental enamel were performed on the thin 350 

sections (100-150 µm thick) used for enamel histology and trace element analysis (see 351 

below), in continuous profiling mode following the enamel-dentine-junction (EDJ) from 352 

apex to cervix (14), less than 100 µm away from the EDJ. Tuning of the LA-MC-ICPMS 353 

used NIST 616 glass for best sensitivity (88Sr) while maintaining robust plasma 354 

conditions, i.e. 232Th16O/232Th <0.5% and 232Th/238U>0.95 with RF-power of ~1360 W. 355 

In view of the low Sr concentrations in these human enamel samples (~60-100 µg/g), we 356 

utilized 130 μm spots, a scan speed of 5 μm/s and a repetition rate of 20 Hz to maintain 357 

88Sr ion currents of ~2-3.5 x 10-11 A. Nine Faraday detectors were used to collect the ion 358 

currents of the following masses (m/z): 83Kr, ~83.5, 84Sr, 85Rb, 86Sr, ~86.5, 87Sr, 88Sr, 359 

90Zr. Baseline, interference and mass bias corrections follow (17). The isotopically-360 

homogenous (Sr) enameloid of a modern shark was used to assess accuracy of the Sr-361 

isotopic analysis and yielded 87Sr/86Sr = 0.70916 ± 2 and 84Sr/86Sr = 0.0565 ± 1 (2 S.D.). 362 

Raw data are reported in Dataset S1. 363 

Spatially-resolved elemental ratio and concentration analysis by laser-ablation 364 

plasma mass spectrometry (LA- ICPMS) 365 

All LA-ICPMS analyses of archaeological samples were conducted at the Frankfurt 366 

Isotope and Element Research Center (FIERCE) at Goethe University, Frankfurt am 367 

Main (Germany), using the same LA system described above, but connected via a squid 368 

smoothing-device to an Element XR ICPMS. Analytical protocols follow those by Müller 369 

et al (2019) (15); and only a brief summary is provided here aimed at highlighting 370 

differences. LA-ICPMS trace element ratios/concentrations of the comparative 371 

contemporary teeth were obtained at Royal Holloway University of London (RHUL) 372 

using the RESOlution M-50 prototype LA system featuring a Laurin two-volume LA cell 373 

(58), coupled to an Agilent 8900 triple-quadrupole-ICPMS (ICP-QQQ or ICP-MS/MS).  374 

Compositional profiles were analyzed parallel and as close as possible to the EDJ, 375 

following the same tracks used for Sr isotope analyses. We employed 15 μm spot sizes 376 

(FIERCE) or 6 µm (MCS3, RHUL) and 34 µm (MCS1 and 2, RHUL), respectively, as 377 
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well as a scan speed of 5 μm/s and a repetition rate of 15 Hz; prior to acquisition, samples 378 

were pre-cleaned using slightly larger spot sizes (22 - 57 µm), 20 Hz and faster scan 379 

speeds (25 - 50 µm/s); laser fluence was ~5 J/cm2. The following isotopes (m/z) were 380 

analyzed: 25Mg, 27Al, 43Ca, (44Ca), 55Mn, 66Zn, 85Rb, (86Sr), 88Sr, 89Y, 138Ba, 140Ce, (166Er, 381 

172Yb), 208Pb, 238U. The total sweep times for the Element XR and the 8900 ICP-MS/MS 382 

were ~0.8 and 0.4-0.5 s, respectively; however, because of the slow scan speeds, this 383 

small difference has no effect on the compositional profiles presented here. Primary 384 

standardization was achieved using NIST SRM612. Ca was employed as internal 385 

standard (43Ca); [Ca] at 37 %m/m was used to calculate concentrations for unknown 386 

bioapatites, although not required for X/Ca ratios. Accuracy and reproducibility were 387 

assessed using repeated analyses of the STDP-X-glasses (62) as secondary reference 388 

materials; the respective values for Sr/Ca and Ba/Ca (the element/Ca ratios of principal 389 

interest) here are 1.8 ± 6.6% and -0.2 ± 6.0 % (%bias ± 2 S.D. (%)); this compares well 390 

with the long-term reproducibility for these analytes reported previously (63). Raw data 391 

are reported in Dataset S2 and S3. 392 

The compositional/isotopic profiles were smoothed with a locally weighted polynomial 393 

regression fit (LOWESS), with its associated standard error range (±3 S.E.) for each 394 

predicted value (64). The statistical package R (ver. 44.0.0) (65) was used for all 395 

statistical computations and generation of graphs. 396 

Assessment of the enamel growth parameters and of the chronologies along the laser 397 

tracks 398 

Dental enamel is capable of recording, at microscopic level during its formation, regular 399 

physiological and rhythmic growth markers (66-68). These incremental markings are 400 

visible under transmitted light in longitudinal histological thin sections of dental crowns. 401 

Enamel forms in a rhythmic manner, reflecting the regular incremental secretion of the 402 

matrix by the ameloblasts (i.e. the enamel forming cells). The rhythmical growth of 403 

enamel is expressed in humans at two different levels: a circadian rhythm that produces 404 

the daily cross striations(69, 70) and a longer period rhythmic marking (near- weekly in 405 

humans) that give rise to the Retzius lines (71). Physiological stresses affecting the 406 

individual during tooth growth cause a disruption of the enamel matrix secretion and 407 
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mark the corresponding position of the secretory ameloblast front, producing Accentuated 408 

(Retzius) Lines (ALs) (72, 73). The birth event is recorded in the forming enamel of 409 

individuals surviving the perinatal stage, and leaves - usually the first - Accentuated Line, 410 

namely the Neonatal Line (NL) (26, 74, 75). 411 

The time taken to form the dental crown after birth was measured on each thin section 412 

adapting the methods described in literature (30, 76). 413 

A prism segment starting from the most apical available point on the enamel dentine 414 

junction (EDJ) and extending from this point to an isochronous incremental line (i.e. the 415 

NL, an AL or a Retzius line) was measured. The incremental line was followed back to 416 

the EDJ and a second prism segment was measured in the same way. The process was 417 

repeated until the most cervical enamel was reached. The crown formation time is equal 418 

to the sum of the single prism segments. To obtain time (in days) from the prism length 419 

measurements, local daily secretion rates (25) (DSR) were calculated around the prism 420 

segments and within 100 µm from the EDJ, by counting visible consecutive cross 421 

striations and dividing it by the corresponding prism length. The chronologies of 422 

accentuated lines (ALs) in the modern sample closely match the timing of known 423 

disruptive life history events in the mother (illness, surgery) and infant, and so are well 424 

within the range or error (1.2-4.4%) observed for this histological ageing method (67). 425 

DSRs were collected across the whole crown on spots chosen randomly in order to get 426 

the DSRs distribution. Groups of cross striations ranging from 3 to 7 were measured. For 427 

each crown the number of measured spots ranges between 49 and 233.  428 

After LA-ICPMS analyses, a micrograph highlighting the laser tracks was acquired at 429 

50x magnification. This was superimposed to a second micrograph of the same thin 430 

section at 100x magnification, to gain better visibility of the enamel microstructural 431 

features. The chronologies along the laser tracks were obtained matching the tracks with 432 

the isochronous lines. 433 
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