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ABSTRACT

Background. Improving recognition of patients at increased risk of acute kidney injury (AKI) in the community may facilitate
earlier detection and implementation of proactive prevention measures that mitigate the impact of AKI. The aim of this
study was to develop and externally validate a practical risk score to predict the risk of AKI in either hospital or community
settings using routinely collected data.

Methods. Routinely collected linked datasets from Tayside, Scotland, were used to develop the risk score and datasets from
Kent in the UK and Alberta in Canada were used to externally validate it. AKI was defined using the Kidney Disease:
Improving Global Outcomes serum creatinine–based criteria. Multivariable logistic regression analysis was performed with
occurrence of AKI within 1 year as the dependent variable. Model performance was determined by assessing discrimination
(C-statistic) and calibration.

Results. The risk score was developed in 273 450 patients from the Tayside region of Scotland and externally validated into
two populations: 218 091 individuals from Kent, UK and 1 173 607 individuals from Alberta, Canada. Four variables were
independent predictors for AKI by logistic regression: older age, lower baseline estimated glomerular filtration rate, diabetes
and heart failure. A risk score including these four variables had good predictive performance, with a C-statistic of 0.80 [95%
confidence interval (CI) 0.80–0.81] in the development cohort and 0.71 (95% CI 0.70–0.72) in the Kent, UK external validation
cohort and 0.76 (95% CI 0.75–0.76) in the Canadian validation cohort.

Conclusion. We have devised and externally validated a simple risk score from routinely collected data that can aid both
primary and secondary care physicians in identifying patients at high risk of AKI.

Keywords: acute kidney, injury, epidemiology, risk score

INTRODUCTION

Acute kidney injury (AKI) affects �15% of all hospitalized patients
in developed countries, with a significant proportion originating
in the community [1, 2]. Even small changes in kidney function
are associated with adverse outcomes, including increased mor-
tality in patients with (Stage 1) AKI, defined as an increase in se-
rum creatinine of at least 26 lmol/L or 1.5 times the baseline [3, 4].
It has been suggested that up to 30% of AKI episodes may be pre-
ventable [5]. Recognition of individuals at risk of AKI is a critical
first step in implementing strategies to prevent AKI. Improving
recognition of patients at increased risk of AKI in the community
may facilitate earlier detection and implementation of proactive
prevention measures that mitigate the impact of AKI.

Current validated risk scores for AKI were developed to predict
hospital-acquired AKI and most focus on prediction of post-
operative AKI [3, 6–9] in selected populations within short time
periods during post-operative care. However, a recent population-
based study from Scotland showed that 39% of AKI episodes in
this geographic region in fact originated in the community, with
23% admitted to hospital and 16% not admitted to hospital [6–11].
Much less is known about how to predict the risk of AKI in the
general population, including the risk of community-acquired
AKI (CA-AKI), where most existing AKI risk scores were not devel-
oped for use [10]. No externally validated risk scores currently ex-
ist for predicting AKI in the general population.

The aim of this study was to develop and externally validate
a practical risk score that could be used in the general popula-
tion to predict the risk of AKI, occurring either in hospital or in
the community, based on routinely collected demographic,
comorbidity and biochemistry data.

MATERIALS AND METHODS

Reporting and methods of the study adhered to the Transparent
Reporting of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis statement [11].

Study population and data sources

We used routinely collected, linked datasets from the Tayside
region, Scotland, UK to develop the risk score and from Kent
(UK) and Alberta, Canada to externally validate the score.

The dataset used for derivation consisted of linked health-
care information on every person �18 years of age with at least
one creatinine measurement between 1 January 2004 and 31
December 2012. This dataset covered �80% of the entire adult
population of Tayside (�330 000 people), an area with limited
geographical mobility, a wide range of deprivation and a mix of
urban and rural environments. The population of Tayside is
>99% white ethnicity. Approximately 20% of the Tayside popu-
lation were not included in this dataset, as they had not had a
creatinine measurement during this time period. Data were col-
lected by the Health Informatics Centre, University of Dundee
[13]. The Health Informatics Centre enables anonymized health
record linkage from the population of Tayside using a unique
identifying Community Health Index number. Data were linked
between the following datasets: Scottish Morbidity Record of
hospital admissions (SMR01); laboratory results, medicines dis-
pensed by community pharmacies, Scottish Index of Multiple
Deprivation, the Scottish Care Initiative–Diabetes Collaboration
(SCI-DC), the Scottish Renal Registry and Scottish death registry
data held by the Scottish General Records Office. SMR01 pro-
vided information on age, sex, postcode and admission and dis-
charge dates. The SCI-DC provided information on diabetes
type. This system is used to record all diabetes clinical care in
Scotland, thereby capturing >99% of patients with diabetes [14].
Patients receiving chronic dialysis or following renal transplant
were identified using the Scottish Renal Registry.

East Kent Hospitals catchment area (�700 000 people) is a
mainly rural area with a large coastal community. The popula-
tion is mainly of white ethnicity (93.7%) with a significant mix
of areas of social deprivation and affluence. Data for the Kent
validation cohort were extracted from the data warehouse as
part of the Kent Predicted Patient Outcomes Database (KePPOD);
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laboratory results were extracted from regional laboratory sys-
tem and patients on haemodialysis were excluded.
Comorbidities were extracted from East Kent Hospitals’ patient
administration system. The Kent external validation cohort in-
cluded all residents �18 years of age with at least one creatinine
measurement between 1 April 2013 and 1 April 2016.

The external validation cohort from Alberta, Canada was
formed from the Alberta Kidney Disease Network (AKDN), a
population-based repository comprised of provincial adminis-
trative health and laboratory data that includes serum creati-
nine measurements from >1.8 million adults obtained from
acute care and outpatient settings for all residents of the prov-
ince of Alberta (2009 Alberta provincial population 3.5 million)
[15]. The Alberta external validation cohort included all Alberta
residents �18 years of age with at least one creatinine measure-
ment between 1 January 2007 and 31 December 2012.

The AKDN database includes patient-level data from all out-
patient and inpatient clinical laboratories as well as the provin-
cial administrative health sources of Alberta Health. Patient
comorbidities and procedures were characterized using
theInternational Classification of Diseases, 10th revision (ICD-
10) diagnosis and Canadian Classification of Heath Intervention
procedure codes applied to hospital discharge abstracts and
physicians’ claims databases. Patients receiving chronic dialysis
or kidney transplant were identified from physician claims and
the repositories of the northern and southern Alberta renal
programmes as previously described [16].

For external validation of the models in the Alberta external
validation cohort, those without end-stage kidney disease who
were alive on 1 January 2012 were included in the cohort, with
this date used as the index date for calculating the risk score.
Comorbidities including diabetes mellitus and heart failure
were identified using validated coding approaches based on
ICD-10 coding algorithms applied to the Alberta hospital
discharge abstract and physicians’ claims databases using a
lookback period extending back 6 years prior to the index date
[17, 18].

All estimated glomerular filtration rates (eGFRs) were based
on creatinine measurements traceable to isotope dilution mass
spectrometry for all cohorts.

Ethical statement

Anonymized record linkage was conducted according to the
Health Informatics Centre, University of Dundee [13] standard
operating procedure. The Tayside Research Ethics Committee
does not require submission of individual studies that follow
this standard operating procedure which is approved by the lo-
cal Data Protection Officer (Caldicott Guardian). Ethical approval
for the Kent (UK) validation dataset was sought through the
KePPOD database ethics (Oxford C 18/SC/0158), IRAS (Integrated
Research Application System) project ID 227612. Approval for
the Alberta cohort validation study was obtained from the
Conjoint Health Research Ethics board of the University of
Calgary, Alberta, Canada.

Development of risk score

We started development by exploring a large number of poten-
tial predictors in a development cohort described in the
Supplementary data, File S1. To derive a simple score that
would be generalizable for use at a population level, e.g. in pri-
mary care, we selected variables from the development cohort
with a P-value <0.05 using binary logistic regression. We then

excluded uncommon predictors defined as affecting <1% of the
population and those variables not readily available from rou-
tinely collected datasets.

Medications were not included in the parsimonious model,
as obtaining medication information in an easily analysable for-
mat from routine data is challenging and may adversely impact
the ability to apply the model in practice. In addition, medica-
tions are likely to be a key target for future interventions and so
would potentially affect the predictive properties of the model.

Furthermore, previous AKI was not included, as deriving this
variable from routine datasets may not be practical. Urological
surgery and renal artery stenting were not included despite rel-
atively high odds ratios, because of the small number of af-
fected individuals; such predictors added very little to the
predictive power of the score at a population level. Although we
included sex in the model, little difference in risk was seen be-
tween the sexes, therefore sex was not included in the final
score.

We therefore selected age, eGFR category, a previous dis-
charge diagnosis of heart failure using ICD-10 code I50
(Supplementary data, Table S1) and a diagnosis of diabetes mel-
litus as predictors for a parsimonious model. We then ran the
binary logistic regression analysis using only these variables in
a forced entry model and derived weighted scores based on the
beta values from the model.

Outcome

AKI was defined using the National Health Service (NHS)
England algorithm based on the Kidney Disease: Improving
Global Outcomes (KDIGO) serum creatinine–based criteria [4,
19]. We distinguish between any degree of AKI (Stages 1–3) or
more severe AKI (Stages 2 and 3), regardless of community or
hospital-onset of AKI. The change in creatinine from baseline
was calculated for each index creatinine measurement accord-
ing to the AKI detection algorithm used by NHS England [19].
This algorithm has been shown to perform well compared with
nephrologist diagnosis across a number of settings [20].
Baseline was taken as the median creatinine level in the period
between 8 and 365 days prior to the index creatinine measure-
ment or, if not available, the lowest level in the period 0–7 days
prior to the index measurement. In the absence of any baseline
measure, an increase of >26 mmol/L in the creatinine level in a
48-h window was also labelled as AKI Stage 1. For the Dundee
cohort, AKI was subcategorized into hospital acquired (>24 h af-
ter the date of admission to hospital) or community acquired, to
allow for subgroup analyses.

Statistical analyses

The regression coefficients from the final logistic regression
models in the derivation sample were fixed and the fitted mod-
els were applied to the validation cohorts to assess their predic-
tive performance based on discrimination and calibration. The
integer values were derived by dividing the beta weights for
each category of each variable by the lowest beta weight in the
model (and subtracting 1 from each integer).

RESULTS

The Tayside development cohort included 273 450 individuals.
The mean age of the cohort was 52 years [standard deviation
(SD) 18.6]. In total, 4761 (1.7%) individuals had an episode of AKI
during the calendar year 2010, of which 581 were hospital
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acquired. Of these, 1619 were Stage 2 or 3 AKI, of which 433
were hospital acquired. Table 1 presents the baseline details for
the development cohort along with the results of the regression
analysis for all AKI and Stages 2 and 3 AKI. In total, 16 785/
18 510 (90.6%) people with diabetes had Type 2 diabetes; there-
fore the type of diabetes was not subdivided in any analyses.
The Kent (UK) external validation cohort included 218 019 indi-
viduals, while the Alberta external validation cohort comprised
of 1 173 607 individuals. The baseline characteristics of the
Tayside development cohort and external validation cohorts
(Kent and Alberta) are presented in Table 2. The Kent validation
cohort was older with a mean age of 61.7 years (SD 17.8) com-
pared with the Dundee development cohort [52 years (SD 18.6)]
and Alberta validation cohort [52.9 years (SD17.9)]. The propor-
tion of patients with CKD defined as an eGFR <60 mL/min was
also higher in Kent (16.3%), compared with 9.75% in Alberta and
7.5% in Dundee. The AKI incidence was higher in the validation
cohorts compared with the development cohort: Alberta 3.31%,
Kent 2.93% and Dundee 1.74%.

Predictive model

Table 3 presents the results of the regression analysis and risk
score weights derived for the four-variable score. Table 4
presents the sensitivity, specificity and positive and negative
predictive values for a range of cut-off scores in the Dundee
cohort.

Sensitivity analyses

Supplementary data, Tables S2 and S3, show the inclusion of
male sex and previous AKI into the model. Inclusion of previous
AKI further improved the model performance for both any AKI
fC-statistic 0.88 [95% confidence interval (CI) 0.87–0.88]g and se-
vere AKI [C-statistic 0.84 (95% CI 0.83–0.85)].

Model performance

The C-statistics of the model for predicting any stage of AKI
were 0.80 (95% CI 0.80–0.81) in the development cohort, 0.71
(0.70–0.72) in the Kent (UK) external validation cohort and 0.76
(0.75–0.76) in the Canadian external validation cohort.
Discrimination for predicting Stage 2 or 3 AKI was slightly bet-
ter, with C-statistics of 0.81 (95% CI 0.80–0.82) in the develop-
ment cohort, 0.74 (0.73–0.75) in the Kent (UK) external validation
cohort and 0.78 (0.77–0.78) in the Canadian external validation
cohort (Table 5). The observed risk of AKI at each risk score in
all cohorts is shown in Figure 1. For the Dundee cohort, the dis-
crimination was further assessed separately for hospital-
acquired AKI and CA-AKI. For any AKI stage, the C-statistic was
0.82 (95% CI 0.80–0.84) for hospital-acquired AKI and 0.81 (0.80–
0.82) for CA-AKI. For AKI Stage 2 or 3, the C-statistic was 0.81
(95% CI 0.79–0.83) for hospital-acquired AKI and 0.81 (0.80–0.82)
for CA-AKI.

The calibration plots for the development and external vali-
dation cohorts are shown in Figures 2 and 3. The model pre-
dicted AKI accurately at lower risks of AKI but overestimated
risk at higher risks (>20% predicted probability) in all three

Table 1. Baseline data and multivariable regression analysis for development cohort: all AKI and AKI Stage 2 or 3

Any AKI AKI Stage 2 or 3

Covariate n (%) OR (95% CI) b OR (95% CI)

Age (years) (<20 as index) 4780 (1.7) – 1 – 1
20–29 35 994 (13.2) 0.213 1.24 (0.77–2.00) �0.657 0.52 (0.25–1.06)
30–39 36 247 (13.3) 0.438 1.55 (0.97–2.49) �0.234 0.79 (0.40–1.57)
40–49 48 411 (17.7) 0.445 1.56 (0.98–2.49) 0.110 1.12 (0.58–2.16)
50–59 47 340 (17.3) 0.680 1.97 (1.24–3.14) 0.120 1.13 (0.59–2.17)
60–69 45 887 (16.8) 0.935 2.55 (1.61–4.04) 0.232 1.26 (0.66–2.41)
70–79 33 656 (12.3) 1.059 2.89 (1.82–4.57) 0.278 1.32 (0.69–2.52)
80–89 18 118 (6.6) 1.068 2.91 (1.83–4.62) 0.225 1.25 (0.66–2.40)
>90 3107 (1.1) 1.021 2.78 (1.71–4.50) �0.107 0.90 (0.45–1.79)
Female sex 1 51 826 (55.5) – 1 – 1
Male sex 1 21 714 (44.5) 0.099 1.10 (1.04–1.19) 0.148 1.16 (1.05–1.29)
eGFR �60 mL/min/1.73 m2 2 53 233 (92.6) – 1 – 1
eGFR 45–59 mL/min/1.73 m2 13 500 (4.9) 0.535 1.71 (1.55–1.88) �0.088 0.92 (0.78–1.07)
eGFR 30–44 mL/min/1.73 m2 5286 (1.9) 0.678 1.97 (1.76–2.20) �0.159 0.85 (0.71–1.03)
eGFR <30 mL/min/1.73 m2 1521 (0.6) 1.749 5.75 (5.03–6.58) 1.236 3.44 (2.91–4.08)
Previous episode AKI 17 138 (6.3) 2.826 16.87 (15.70–18.13) 4.652 104.78 (88.43–124.15)
Diabetes mellitus 18 510 (6.8) 0.433 1.54 (1.42–1.67) NI NI
Liver disease 18 887 (6.9) 0.262 1.30 (1.18–1.43) NI NI
Heart failure 4860 (1.8) 0.153 1.17 (1.04–1.31) NI NI
Myocardial infarction 9274 (3.4) 0.230 1.26 (1.14–1.39) NI NI
Stroke 4039 (1.5) 0.262 1.30 (1.10–1.54) NI NI
Neurological disease 3537 (1.3) 0.234 1.26 (1.11–1.44) NI NI
AAA repair 394 (0.1) 0.692 2.00 (1.45–2.75) �0.723 0.49 (0.24–1.00)
Aldosterone antagonist 2219 (0.8) NI NI NI NI
Loop diuretic 11 767 (4.3) 0.211 1.24 (1.13–1.35) 0.398 1.49 (1.31–1.69)
Non-loop diuretic 17 339 (6.3) �0.165 0.85 (0.77–0.94) NI NI
NSAID 23 218 (8.5) NI NI 0.259 1.30 (1.07–1.57)

OR, odds ratio; AAA, abdominal aortic aneurysm; NSAID, non-steroiodal anti-inflammatory drug; NI, Not included in the model as it failed to reach significance.
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Table 3. Regression analysis for forced entry development model

AKI Stages 1–3 (4761 events) AKI Stages 2–3 (1619 events)

Covariate OR (95% CI) b Points OR (95% CI) b

Age (years) (<20 as index) 1 – 0 1 – –
20–29 1.20 (0.74–1.92) 0.178 0 0.49 (0.24–0.99) �0.713
30–39 1.56 (0.98–2.49) 0.445 2 0.80 (0.41–1.56) �0.225
40–49 1.59 (1.00–2.52) 0.462 2 1.12 (0.58–2.13) 0.109
50–59 2.28 (1.44–3.61) 0.824 4 1.54 (0.82–2.93) 0.435
60–69 3.51 (2.22–5.53) 1.254 6 2.53 (1.35–4.76) 0.928
70–79 4.89 (3.10–7.71) 1.586 8 3.85 (2.05–7.23) 1.347
80–89 5.74 (3.63–9.07) 1.747 9 4.50 (2.38–8.48) 1.503
>90 5.76 (3.58–9.28) 1.751 9 3.46 (1.76–6.81) 1.241
eGFR �60 mL/min/1.73 m2 1 – – 0 1 – –
eGFR 45–59 mL/min/1.73 m2 2.67 (2.44–2.92) 0.983 5 1.87 (1.60–2.20) 0.628
eGFR 30–44 mL/min/1.73 m2 4.66 (4.20–5.17) 1.539 8 2.87 (2.37–3.46) 1.053
eGFR <30 mL/min/1.73 m2 20.78 (18.37–23.50) 3.034 16 18.93 (15.95–22.47) 2.941
Diabetes mellitus 2.15 (1.99–2.32) 0.766 3 1.73 (1.53–1.97) 0.550
Heart failure 2.48 (2.24–2.75) 0.910 4 2.10 (1.78–2.49) 0.744
Constant – – �5.546 – – – �6.183

OR, odds ratio.

Table 4. Sensitivity, specificity and positive and negative predictive values for different score cut-offs in the Dundee cohort

Any AKI AKI Stage 2 or 3

Risk score No AKI Any AKI
Sensitivity

(%)
Specificity

(%)
PPV
(%)

NPV
(%)

No AKI
2/3

Any AKI
2/3

Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%)

0 40 072 152 96.8 14.9 2.0 99.6 40193 31 98.1 14.8 0.7 99.9
�1 2 28 707 4609 231728 1588
�4 1 64 429 829 82.6 61.2 3.6 99.5 165011 247 84.7 60.7 1.3 99.9
�5 1 04 350 3932 106910 1372
�9 2 45 430 2422 49.1 91.3 9.1 99.0 246989 863 46.7 90.8 2.9 99.7
�10 23 349 2339 24932 756
�14 2 61 077 3329 30.1 97.1 15.7 98.7 263271 1135 29.9 96.8 5.3 99.6
�15 7702 1432 8650 484

PPV, positive predictive value; NPV, negative predictive value.

FIGURE 1: Observed risk of AKI at each risk score in all cohorts.
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cohorts. This improved following recalibration in the Canadian
cohort. For prediction of Stage 2 or 3 AKI, the model performed
reasonably well at lower risk but overestimated risk at higher
risks; AKI observed risk remained stable at ~10% for predicted
risk values of >10%. Calibration plots for the Dundee develop-
ment model and Kent UK validation model are shown in
Figure 2. Calibration plots for the Canadian external validation
model and recalibrated model are shown in Figure 3.

DISCUSSION

We have developed and externally validated a simple risk score
comprised of four variables—age, eGFR category, diabetes and
heart failure—that can be used to predict the risk of AKI in the
general population using routinely collected data. Unlike other
prediction models for AKI in acute care settings, our externally
validated risk score for AKI can be used for prediction of AKI
events in community or hospital settings. This risk score could
enable identification of patients at either high risk (who might
be targeted for AKI prevention intervention) or low risk (and
hence could avoid unnecessary intervention) across broad
community-based and clinical settings.

Approaches to identifying patients at risk of CA-AKI are lack-
ing. Most of the available data examine the incidence of CA-AKI
in those admitted to hospital [1, 21, 22]. Sawhney et al. [23] ap-
plied the NHS England algorithm for AKI to a large Scottish co-
hort of >50 000 patients. They found the overall incidence of
AKI was 9%, with a CA-AKI incidence of 3.5%. Talabani et al. [24]
examined the incidence of CA-AKI from all outpatient creati-
nine measurements sent to a laboratory over a 1-month period.
Their incidence of CA-AKI was 0.7%. However, there are few
studies examining predictors of CA-AKI. Der Mesropian et al.
[25] compared patients with CA-AKI, hospital-acquired AKI and
no AKI from a cohort of hospitalized patients. In keeping with
our findings, they found increasing age, diabetes, CKD, coronary
artery disease and heart failure were associated with AKI [].
Similarly, risk factors for CA-AKI in a large cohort of Taiwanese
adults were diabetes, rheumatological diseases, CKD, liver dis-
ease, chronic pulmonary disease, cerebrovascular disease, heart
failure, peptic ulcer disease and malignancy [26].

There is a need for better risk stratification for AKI. Most re-
search to date has focused on patients undergoing cardiac sur-
gery. In this context, several externally validated risk scores
have been produced, although many include intraoperative var-
iables [27–30]. There are fewer non-cardiac surgery scores [7, 9,
31, 32]. A risk score derived and validated in two large Scottish
cohorts of patients undergoing orthopaedic surgery identified
several predictors similar to those in our score: age, sex, diabe-
tes, number of prescribed drugs, lower eGFR rate, use of angio-
tensin-converting enzyme inhibitors and American Society of
Anaesthesiologists grade [3]. However, a risk score that is also
useful for identifying high-risk patients in community settings
remains lacking. Future approaches might incorporate machine
learning, but the utility and additional value of such an ap-
proach in widespread clinical practice remain to be shown.

The strength of our study is the use of multiple, large
cohorts, providing the ability to evaluate several candidate pre-
dictor variables and to perform external validation in geograph-
ically distinct cohorts. Other strengths include the use of the
KDIGO creatinine-based criteria to identify AKI, allowing for de-
velopment and validation of a score to predict any stage of AKI
and more severe (KDIGO Stage 2 or 3) AKI. A potential limitation
is that the risk score was developed and validated in retrospec-
tively collected routine datasets and so diagnosis of AKI wasT
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dependent on creatinine testing, thereby potentially introduc-
ing ascertainment bias. However, by developing a risk score us-
ing routinely collected data, this score can be used for
predicting AKI risk in the general population without gathering
extra information, making it well suited for implementation
into primary care software systems. A further limitation was
that there was insufficient proteinuria data to allow its inclu-
sion into the model. Inclusion of proteinuria may have im-
proved the predictive performance of the model due to the well-
recognized association between albuminuria and AKI [33]. It is
also important to note that we did not include previous AKI in
the risk score, due to inconsistent coding, even though it was a
strong predictor. This may be a useful predictor in the future
once uniform coding and notation in medical records are estab-
lished. In addition, we did not have primary care data for
comorbidities such as heart failure, which may have led to an
underestimation. Conversely, the ICD-10 code for heart failure
lacks specificity, leading to potential false positives.
Furthermore, our risk score was developed and validated in pre-
dominantly Caucasian populations in high-income countries
that provide universal access to healthcare, therefore further
work is required to establish whether it is applicable to other
ethnicities, geographic regions and health systems.

It is surprising that the discriminant ability for AKI Stages 2
and 3 was no higher than for AKI 1 in the development cohort.
This may reflect the fact that the factors included in the risk
score are associated with occurrence, but other non-baseline
factors may be associated more closely with severity. For in-
stance, the severity of intercurrent illness that precipitates AKI
may align more closely with whether a patient develops mild or
severe AKI. However, such information cannot form part of a
predictive score, as it becomes known only at the point of kid-
ney injury. The incidence of AKI was lower in the Dundee cohort
compared with both validation cohorts, despite the use of a
consistent approach for AKI ascertainment based on the NHS
AKI detection algorithm. Possible explanations include the older
mean age and higher rates of baseline CKD in the Kent cohort
compared with the Dundee cohort. Also, measured or unmeas-
ured comorbidities, medication use or differences in clinician
behaviour driving different rates of biochemistry requesting
may have contributed. Despite these differences in AKI inci-
dence between the cohorts, discrimination of our risk score was
good in both the external validation datasets with C-statistics
>0.7 and was better for predicting more severe AKI. However,
the risk score overestimated the predicted risk for any stage
of AKI and AKI Stages 2 and 3 for individuals at high predicted

FIGURE 2: Calibration plots for Tayside and Kent data: observed versus predicted risk.
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risk. Recalibration to the incidence of AKI within a region is a
recognized method of improving differences in observed ver-
sus predicted risks [34, 35]. Recalibration of the risk score in
the Canadian cohort reduced the overestimation of predicted
risk of any stage of AKI, however, less so for AKI Stages 2 and
3. This difference in performance is likely to be due to the risk
score weights being derived from the regression model using
all AKI as a predictor. While it would be possible to calculate
a separate risk score for AKI Stages 2 and 3, this would com-
plicate the implementation of the score into clinical practice.
At a population level, the overestimation of risk at high risk
levels may not preclude clinical utility of the implementation
of the risk score to guide decisions based on certain risk
thresholds; the score could still be valuable to identify those
at high risk (e.g. >10% risk per year) and risk-stratify them
distinctly from those at low risk (e.g. <5% risk per year).
However, it remains unclear at what level of risk is it worth
intervening. Conversely, our findings suggest caution against
using our risk score to distinguish those at a high risk of AKI
Stages 2 and 3 (e.g. 10–20% risk per year) from a very high risk
of AKI Stages 2 and 3 (e.g. >20% risk per year).

Our study has several important clinical implications. The
four variables forming the risk score are readily available in the
UK and North American primary care clinical software systems,
allowing the potential for the score to be used to flag those at
high risk. The simplicity of both the variables used and the scor-
ing makes the score practical to apply across many healthcare

settings, facilitating implementation studies on AKI risk assess-
ment. This contrasts with other AKI risk stratification that relies
on proprietary algorithms, machine-learning approaches or the
use of prognostic biomarker tests, which are less amenable to
broad uptake. Our score could potentially be used for identifica-
tion of patients requiring closer monitoring during acute ill-
nesses, with earlier checking of kidney function and the use of
AKI prevention strategies that could mitigate progression to
more severe stages of AKI and potentially avoidance of hospital
admission. General practitioners (GPs) working in the commu-
nity have limited access to acute biochemical and haematologi-
cal tests and regularly need to make decisions about whether
unwell patients require hospital admission. Our risk score could
provide useful additional information to aid GPs with these diffi-
cult decisions, but it is important to note that risk may be overes-
timated with accompanying additional workload. It is important
to evaluate this additional workload against the potential bene-
fits. Furthermore, this score could potentially be utilized at the
point of hospitalization. However, implementation studies and
clinical impact analysis are required to establish the clinical value
of such approaches based on AKI risk stratification.

There remains a lack of evidence on the optimal ways of
preventing AKI (as opposed to mitigating established AKI).
Effective interventions in primary care will need to be simple,
inexpensive and carry minimal risk of harm; interventions
must be able to be deployed at scale without causing a major
burden on practitioners or patients [36, 37]. Potential

FIGURE 3: Calibration and recalibration plots for Alberta data: observed versus predicted risk.
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interventions include ensuring adequate hydration, identifying
and treating infections, avoidance of nephrotoxins and moni-
toring renal function. An important step in finding effective pre-
ventative interventions is to identify those patients at increased
risk of AKI who might benefit most from such targeted interven-
tions. This model may help to achieve this step. Conversely, it is
important to identify those at very low risk of AKI, as this group
can then be protected from the additional time, costs and po-
tential adverse consequences that result from trade-offs of ap-
plying preventative interventions.

CONCLUSION

Identification of patients in the community at high risk for AKI
is a key to early identification and prevention of AKI. We have
derived and externally validated a simple risk score from rou-
tinely collected data that can aid both primary and secondary
care physicians in identifying these patients within the general
population.
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