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Abstract
1. There is growing interest in the ecological value of set-aside habitats around rivers 

in tropical agriculture. These riparian buffers typically comprise forest or other 
non-production habitat, and are established to maintain water quality and hy-
drological processes, while also supporting biodiversity, ecosystem function and 
landscape connectivity.

2. We investigated the capacity for riparian buffers to act as microclimatic refugia by 
combining field-based measurements of temperature, humidity and dung beetle 
communities with remotely sensed data from LiDAR across an oil palm dominated 
landscape in Borneo.

3. Riparian buffers offer a cool and humid habitat relative to surrounding oil palm 
plantations, with wider buffers characterised by conditions comparable to riparian 
sites in continuous logged forest.

4. High vegetation quality and topographic sheltering were strongly associated with 
cooler and more humid microclimates in riparian habitats across the landscape. 
Variance in beetle diversity was also predicted by both proximity-to-edge and mi-
croclimatic conditions within the buffer, suggesting that narrow buffers amplify 
the negative impacts that high temperatures have on biodiversity.

5. Synthesis and applications. Widely legislated riparian buffer widths of 20–30 m 
each side of a river may provide drier and less humid microclimatic conditions than 
continuous forest. Adopting wider buffers and maintaining high vegetation quality 
will ensure set-asides established for hydrological reasons bring co-benefits for 
terrestrial biodiversity, both now, and in the face of anthropogenic climate change.
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1  | INTRODUC TION

Microclimate determines how organisms interact with their sur-
roundings, from development and physiology, to behaviour, ecology, 
function and distribution (Jucker et al., 2020). The need to under-
stand how microclimate varies across land-use mosaics is acute 
in the wet tropics, where high biodiversity is threatened by the 
combined impacts of rapid land-use change and climatic warming 
(Travis, 2003). Fine-scale microclimate is shaped by multiple envi-
ronmental factors, including solar radiation, wind, topography and 
vegetation structure (Helmuth, 2009). As such, microclimatic gradi-
ents are particularly pronounced across tropical agriculture-forest 
mosaics, where vegetation structure can vary dramatically (Blonder 
et al., 2018; Jucker et al., 2018). Degraded forests have higher tem-
peratures and lower humidities than undisturbed forests (Hardwick 
et al., 2015), although both are cooler than farmland (Hardwick 
et al., 2015; Meijide et al., 2018; Silvério et al., 2015).

Riparian buffers, or riparian reserves, are areas of non-production 
habitat (often forest) retained around rivers in agricultural landscapes, 
primarily as a means of protecting water quality by reducing run-off 
(Tabacchi et al., 2000). In many tropical nations, riparian buffers of a des-
ignated width are required by law, often based on the size of the river 
in question (Luke, Slade, et al., 2019). In addition, policies on riparian 
buffer width have been adopted by groups such as the Roundtable on 
Sustainable Palm Oil (RSPO) as part of their certification criteria for mit-
igating the detrimental impacts of oil palm development on the environ-
ment and local communities (Luke, Slade, et al., 2019). In addition to their 
primary role in protecting water quality, riparian buffers provide a range 
of other ecosystem services, such as carbon storage (Mitchell et al., 2018), 
flood protection (Tabacchi et al., 2000) and subsidising water courses 
with terrestrially derived organic matter (Allan, 2004). Buffers can also 
provide co-benefits for a variety of terrestrial (Barlow et al., 2010; Keir 
et al., 2015; Zimbres et al., 2017) and aquatic taxa (Cunha & Juen, 2017; 
Giam et al., 2015). There are also examples of these habitat remnants 
serving as corridors between other forest areas, promoting connectivity 
for various taxa (Gray et al., 2019; Keuroghlian & Eaton, 2008).

In common with all habitat fragments, the efficacy of riparian 
buffers for safeguarding biodiversity and promoting connectivity 
will depend on habitat area and quality, the level of contrast with 
the surrounding matrix, and the biology of the taxa in question (Lees 
& Peres, 2008). In general, the attributes of riparian buffers that 
support terrestrial biodiversity remain poorly understood. Recent 
studies have demonstrated the role of buffer width for birds (Keir 
et al., 2015; Lees & Peres, 2008; Mitchell et al., 2018), mammals 
(Zimbres et al., 2017) and dung beetles (Barlow et al., 2010; Gray 
et al., 2017), with several subsequently linking observed biodiversity 
patterns to habitat quality (Lees & Peres, 2008; Mitchell et al., 2018). 

However, studies investigating riparian buffer microclimates and 
the features that shape them are scarce (e.g. Nagy et al., 2015).

Insights into the effects of microclimate on tropical biodiversity 
are often limited by issues of scale and accuracy (Jucker et al., 2018; 
Schulze et al., 2001), with most studies relying on coarse-resolution  
mapping databases such as WorldClim (Fick & Hijmans, 2017). 
Advances in technologies such as Light Detection And Ranging (LiDAR) 
make it possible to map landscapes and vegetation with unprecedented 
levels of accuracy and precision (Zellweger et al., 2019), allowing stud-
ies to better quantify and link physical habitat structure to microclimate 
(Jucker et al., 2018). The decreasing costs of microclimatic dataloggers 
have also catalysed an increase in research investigating fine-scale  
microclimatic conditions (e.g. Hardwick et al., 2015; Law et al., 2019).

Here we combine information from airborne LiDAR with field-
based microclimatic measurements to investigate the efficacy of 
forested riparian buffers of different widths and habitat composition 
for providing microrefugia within oil palm plantations. We deployed 
dataloggers across three riparian habitats: oil palm, riparian buffers 
and continuous logged-forest, in Sabah, Malaysian Borneo. First, we 
examine if riparian buffers in otherwise microclimatically extreme 
plantations maintain conditions similar to those found in continuous 
riparian forest. We then demonstrate how vegetation conditions and 
topography shape the microclimate within riparian buffers, and across 
human-modified landscapes as a whole, before evaluating how edge 
effects influence buffer microclimate and the implications this has 
for policy pertaining to buffer width. Finally, to assess the capacity of 
tropical riparian buffers to act as microrefugia for a key invertebrate 
indicator group (Scarabaeinae), we couple the microclimatic data with 
dung beetle community data across the modified landscape.

2  | MATERIAL S AND METHODS

2.1 | Study site

Fieldwork was conducted in and around the Stability of Altered Forest 
Ecosystems project (www.safep roject.net; 4°81′N 117°25′E – 4°43′N 
117°64′E, plot elevation ranged from 125 to 450 m a.s.l) in Sabah, 
Malaysia (Northern Borneo, Figure 1a). This region is characterised by a 
tropical climate, with annual rainfall ~2,700 mm and a mean annual tem-
perature of 26.7°C (Walsh & Newbery, 1999), although a recent study 
shows the region has become hotter and drier in recent years (Chapman 
et al., 2020). The area was formerly continuous lowland dipterocarp for-
est with much of the remaining forest having been selectively logged 
in the 1970s and 2000s, and subsequently salvage logged in 2013 and 
2015 in preparation for oil palm (Struebig et al., 2013). At the time of 
fieldwork, this forest was highly fragmented, bounded to the north 

K E Y W O R D S

agriculture, biodiversity, Borneo, climate change, habitat fragmentation, microclimate, riparian 
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by continuous forest, and surrounded by oil palm plantations (planted 
8–12 years previously) elsewhere (Figure 1).

Between December 2016 and May 2018, we deployed datalog-
gers (EasyLog USB, Lascar Electronics) in 300 locations across 60 tran-
sects (5 dataloggers per transect) on 20 rivers (3 transects per river) 
in the landscape: in oil palm plantations (OP: n = 2 rivers, 6 transects), 
riparian forest buffers within oil palm plantations (RB: n = 16 rivers, 48 
transects) and continuous logged forest (CF: n = 2 rivers, 6 transects). 
Distances between adjacent transects on a river were 342–591 m, 
with rivers varying from 0.5 to 48 km apart (median 18 km). In oil palm 
and continuous forest, dataloggers were deployed in transects per-
pendicular to the riverbank at distances of 5, 15, 25, 35 and 45 m. In ri-
parian buffer transects, dataloggers were deployed at 5 and 15 m from 
the riverbank and at ~5 m from the buffer-oil-palm edge, and at 5 and 
25 m into the oil palm Figure 1d). A range of buffer widths (0–324 m) 
were investigated to investigate the effect of proximity-to-edge on mi-
croclimate. All units were suspended at 3 m above the ground with a 
polystyrene plate rain-cover and left to record temperature (T, °C) and 
relative humidity (RH, %) for 3–7 weeks at intervals of 30 min.

2.2 | Microclimate data

Datalogger data were collated to calculate maximum (Tmax) and mean 
(Tmean) daily temperatures for each sampling day. RH was used to 
calculate vapour pressure deficit (VPD, hPa) - the difference in the 
partial pressure of water vapour in the air compared with saturated 
air at a given temperature (T):

Vapour pressure deficit represents the evaporative demand of the air, 
pulling water up through the soil-root-stem-leaf continuum. Thus, it is 
a critical determinant of plant ecology, strongly influencing potential 

evapotranspiration and the ability of plants to supply their leaves with 
sufficient water during the driest parts of the day, and thereby regulating 
seedling growth and mortality (Williams et al., 2013). Maximum (VPDmax) 
and mean (VPDmean) daily VPD were generated for each sampling day.

2.3 | Vegetation quality, topography and distance 
from buffer-oil-palm edge

To understand how vegetation quality and topography influence mi-
croclimate in riparian habitats we used airborne LiDAR data collected 
over part of the landscape (see Jucker et al., 2018). For the 35 tran-
sects coinciding with the 2014 LiDAR information, we extracted a set 
of vegetation and topographic metrics from the canopy height, digi-
tal terrain and plant area index model rasters, using a 12.5-m radius 
extraction. LiDAR-derived metrics were mean plant area index (PAI, 
log-transformed), maximum canopy height (Hmax), topographic position 
index (TPI), elevation, aspect and slope. PAI was calculated empirically 
from the raw LiDAR data as an integrated measure of canopy density 
(m2/m−2; Holst et al., 2004). Hmax (m) was calculated as the maximum 
canopy height value (after ground-normalising the LiDAR point cloud) 
within 12.5 m of the logger. Four topographic covariates were calcu-
lated using the terrain function in the raster package (Hijmans, 2016) in 
r 3.6.1 (R Development Core Team, 2008): elevation in (m a.s.l.), slope 
(in degrees), aspect (in radians) and TPI—the difference between the 
elevation of a point and the average of its surroundings (positive values 
on ridges and negative values in depressions). Aspect was sinewave 
transformed so that east- and west-facing slopes had positive and neg-
ative values respectively. Our metrics were selected a priori following 
Jucker et al. (2018), who chose them due to their weak correlation (see 
Figure S1), and known effects on microclimate in tropical rainforests. 
The distance into riparian buffers from the buffer-oil-palm edge was 
measured on the canopy height model in QGIS 3.10.4 using the ruler 
tool (QGIS Development Team, 2020), as a proxy for examining the 

VPD =
100 − RH

100
es, wherees = 6.112e

17.67T

T+243.5 .

F I G U R E  1   Study location and design. (a) Map of Southeast Asia with panel B denoted by a white rectangle. (b) Study landscape with the 
green silhouette denoting the airborne LiDAR-scan area, and points denoting the 20 study rivers. A black square denotes the area shown 
in panel c. (c) LiDAR-derived canopy height model of part of our study landscape. Yellow triangles denote sampling transects (n = 60). (d) 
Sampling design for a riparian buffer transect. Yellow circles denote datalogger points. Positions of dataloggers are (from river outwards) 5 m 
from the river, 15 m from the river, ~5 m from the buffer-oil-palm edge, 5 m into oil palm and 25 m into oil palm. The blue line denotes the river

(a) (c) (d)
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effects of manipulating buffer width on microclimate. For dataloggers 
associated with riparian buffers outside the LiDAR area (n = 22 tran-
sects), distances from the buffer-oil-palm edge were measured manu-
ally for buffer edge sites. River width was subtracted from total buffer 
width (as calculated from Google Earth imagery) and halved to give an 
estimate of buffer width for each transect. Distance from river was 
then subtracted from buffer width to give estimates of distance from 
edge for buffer core sites.

2.4 | Dung beetle diversity sampling

To understand how microclimate impacts the efficacy of ripar-
ian buffers as a means of supporting biodiversity, we carried out 
two dung beetle (Scarabaeinae) sampling campaigns, in January 
2015 and from September 2017 to March 2018. The climate in our 
study landscape is relatively aseasonal (Walsh & Newbery, 1999), 
although sampling dates broadly correspond to the marginally wet-
ter season (Marsh & Greer, 1992), where dung beetle activity is 
highest. Dung beetles are a useful indicator group due to their sen-
sitivity to disturbance, high diversity, well-established taxonomy, 
ease of sampling and importance for a range of ecosystem func-
tions (Nichols & Gardner, 2013). Like most tropical ectotherms, 
dung beetles are thought to be operating close to their thermal 
maxima, putting them at a greater risk of extinction due to cli-
matic shifts (Deutsch et al., 2008). Dung beetle assemblages were 
sampled using human-dung-baited pitfall traps (following Slade 
et al., 2011). For each datalogger transect in a buffer (n = 48), one 
trap was deployed for two trapping nights ~10 m from the river. 
The minimum distance between transects with traps was 381 m. 
Beetles were collected into 90% ethanol and identified to spe-
cies or morpho-species using reference collections housed at the 
Universiti Malaysia Sabah.

2.5 | Statistical analyses

2.5.1 | Riparian buffers as microclimatic refugia

To examine whether riparian buffers and plantations maintain 
microclimatic conditions similar to those found in continuous ri-
parian forest, we ran a mixed-effects model of each of our four 
microclimatic response variables (Tmax, Tmean, VPDmax and VPDmean) 
against a fixed effect of four habitat types: continuous forest, ri-
parian buffer core (buffer interior > 10 m from the buffer-oil-palm 
edge, hereafter referred to as buffer core), riparian buffer edge 
(buffer interior ≤ 10 m of the buffer-oil-palm edge, hereafter re-
ferred to as buffer edge) and oil palm. Sampling transect was fitted 
as a random effect, and models were run in the lme4 package in r 
(Bates et al., 2015) with a Gaussian error distribution. Habitat-type 
models were compared against the null model (only containing the 
random-effect) by comparing AIC, where a difference of −4 sup-
ports one nested model over another (Bolker, 2008).

2.5.2 | Effects of vegetation quality and topography 
on microclimate

To analyse the effects of vegetation quality and topography on 
microclimate, we took a subset of our data from 36 transects that 
coincided with LiDAR information. We defined separate maximal 
linear mixed-effects models for each of our four microclimatic re-
sponse variables (Tmax, Tmean, VPDmax and VPDmean) with all of our 
seven explanatory variables (PAI, Hmax, TPI, elevation, aspect, slope 
and habitat) fitted as fixed effects, and with one interaction term 
(Hmax: aspect) following Jucker et al. (2018), with sampling transect 
as a random effect and a Gaussian error distribution. By sequential 
removal of terms, every possible subset of each maximal model was 
generated (159 for each response variable) and ranked by AIC weight 
in the bbmle package in r (Bolker & R Development Core Team, 2017). 
Models were then subsetted to retain the fewest possible models 
that cumulatively accounted for 0.95 or more of the total AIC weight. 
The AIC weighted proportion of explanatory variable retention in 
the final models is reported.

2.5.3 | Edge effects on buffer microclimate

We examined the impact of edge effects on microclimatic condi-
tions using distance from buffer-oil-palm edge. We analysed a sub-
set of the full data that only included dataloggers deployed within 
riparian buffers (both buffer edge and core habitat types). Similar to 
the aforementioned habitat type analyses, each of the four micro-
climatic response variables (Tmax, Tmean, VPDmax and VPDmean) were 
entered into mixed-effects models with distance into buffer from 
edge fitted as a fixed effect, sampling transect as a random effect 
and a Gaussian error distribution. Models were then compared to 
respective null models using AIC.

2.5.4 | Buffer microclimate impacts on dung 
beetle diversity

To analyse how riparian buffer microclimate impacts biodiversity, 
we matched our dung beetle assemblage samples to buffer core 
dataloggers. Microclimate data from sites 5 m from the river were 
used, unless data were only available from points 15 m from the 
river. Dung beetle diversity, calculated as Shannon diversity in the 
vegan package in r (Oksanen et al., 2010), was fitted as the re-
sponse variable in four maximal linear models (for each of Tmax, 
Tmean, VPDmax and VPDmean) with a Gaussian error distribution. 
Each maximal model had distance from buffer edge (log-trans-
formed), the microclimate variable of interest and an interaction 
term between the two, as explanatory variables. For each mi-
croclimatic explanatory variable, all possible combinations of ex-
planatory variables were compared to the maximal model using 
dAIC. Similar analyses were conducted for species richness (see 
Appendix S1).
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3  | RESULTS

Of the 300 dataloggers deployed in riparian transects, 198 were re-
covered fully functioning, resulting in 5,438 days of microclimatic 
recordings. Of the 198 units, 110 were recovered within the LiDAR 
area, while 79 were located in riparian buffer core or edge and had 
width data available (see Table S1). All microclimatic variables (Tmax, 
Tmean, VPDmax and VPDmean) were strongly correlated (Pearson's 
r > 0.6, see Table S2).

3.1 | Riparian buffers as microclimatic refugia

We found strong support for the impact of habitat type on Tmax, 
Tmean, VPDmax and VPDmean, when compared to a null model (fit-
ted with only a random effect of transect; dAICs: Tmax =  −53.5; 
Tmean = −100.9; VPDmax = −40.8; VPDmean = −91.6). All microclimatic 
variables showed similar responses to habitat type (Figure 2), with 
the coolest and wettest conditions in continuous riparian forest 
(Table 1). Buffer core microclimates were intermediate between 
continuous forest and the hotter and drier oil palm, whereas buffer 
edge sites had maximum daily values greater than those of oil palm, 
and mean daily values similar to, or slightly less than, those of oil 
palm (Table 1).

3.2 | Effects of vegetation quality and topography 
on microclimate

Data from units within the LiDAR area were used to model the im-
pacts of vegetation quality and topography on microclimate across 
the study landscape, encompassing the riparian buffers and other 
habitat types. Of the best-fitting models that cumulatively ac-
counted for an AIC weight of 0.95, the lowest-weighted models 
were still strongly supported when compared to the null model for 
each microclimatic variable (dAIC: Tmax = −45.89; Tmean = −113.05; 
VPDmax = −21.21; VPDmean = −72.29). In these best-fitting models, 
variables relating to both vegetation quality and topography were 
retained. Specifically, PAI was a strong negative predictor of all four 
microclimatic variables and Hmax was a negative predictor of Tmean 
(Figure 3; Table 2). TPI was a strong positive predictor of all four 
microclimatic variables (Figure 3). Elevation was a weak predictor 
of Tmax and Tmean, with an increase of 100 m elevation resulting in 
a mean drop of 0.27°C (Table 2). Aspect was a weak predictor of 
Tmean and VPDmean, with east-facing slopes being hotter and drier 
than west-facing slopes (Table 2). Slope and the interaction term be-
tween Hmax and aspect were not frequently retained in best-fitting 
models (Table 2). Habitat type, the only non-LiDAR derived variable, 
was retained in the best-fitting models for Tmax, Tmean and VPDmean 
(Table 2).

F I G U R E  2   Violin plots of daily 
maximum (Tmax, panel a), and mean (Tmean, 
panel b) temperature, and daily maximum 
(VPDmax, panel c) and mean (VPDmean, 
panel d) vapour pressure deficit across 
habitat types. White circles are median 
values, the boxes are between the hinge 
values (25th and 75th percentiles), and 
the whiskers are the hinge values + or 
− interquartile range * 1.5. Data that lie 
outside of the box and whisker plots are 
denoted by dark circles
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TA B L E  1   Effect sizes and standard errors of habitat type on Tmax, Tmean, VPDmax and VPDmean using linear mixed-effects models

Response  
variables

Continuous forest Riparian buffer Buffer edge Oil palm

Estimate SE Estimate SE Estimate SE Estimate SE

Tmax (°C) 30.57 0.34 35.05 0.58 38.45 0.73 37.37 0.33

Tmean (°C) 23.53 0.12 24.96 0.11 25.66 0.14 25.75 0.08

VPDmax (hPa) 15.92 1.27 24.76 1.71 33.08 2.20 32.20 1.01

VPDmean (hPa) 0.93 0.11 2.71 0.25 4.15 0.31 4.53 0.14

F I G U R E  3   Scatter plots showing the effect of Plant Area Index (PAI; a–d) and Topographic Position Index (TPI; e–h) onTmax,Tmean, 
VPDmaxand VPDmean, and the effect of maximum canopy height (Hmax) onTmean(i). Solid lines are estimated effects from linear mixed effects 
models where TPI or PAI were the only fixed effect, with dashed lines denoting 95% confidence intervals. PAI is back-transformed from data 
used in analyses. A positive TPI is associated with ridges and a negative TPI with depressions

(a)

(d)

(g) (h) (i)
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3.3 | Edge effects on buffer microclimate

Linear mixed-effects models of distance into the buffer from 
the buffer-oil-palm edge (log-transformed) were strongly sup-
ported when compared to the null models (dAIC: Tmax =  −15.65; 
Tmean =  −20.75; VPDmax =  −10.58; VPDmean =  −17.96). All mi-
croclimatic response variables had negative relationships with 

distance from edge (Tmax = −1.40 ± 0.31, Tmean = −0.24 ± 0.05, 
VPDmax = −3.39 ± 0.93, VPDmean = −0.58 ± 0.12; Figure 4). At ap-
proximately 80–120 m from the edge, predicted curves for each mi-
croclimatic variable become relatively flat, and for Tmax, Tmean and 
VPDmean begin to be comparable to those of continuous riparian 
forest values, (Figure 4). All models had Cook's distances < 0.5 (see 
Figure S2).

TA B L E  2   Weighted proportions of the retention of each fixed effect across best-fitting models for Tmax, Tmean, VPDmax and VPDmean. AIC 
weights were generated for all models, before models were subsetted to include only those that cumulatively made up 0.95 of the total 
weight. AIC w. prop. is the proportion of the 0.95 cumulative weight constituted by models containing the fixed effect of interest. Values 
given in bold fell above an arbitrary threshold value of 0.5. Effect sizes of models with only a single explanatory variable are given, with 
the exception of habitat, as it is a categorical variable (see Table 1). PAI, TPI and Hmax are abbreviations for Plant Area Index, Topographic 
Position Index and maximum canopy height respectively. A positive TPI is associated with ridges and a negative TPI with depressions

Fixed effects

Tmax Tmean VPDmax VPDmean

AIC w.  
prop. Effect

AIC w.  
prop. Effect

AIC w.  
prop. Effect

AIC w.  
prop. Effect

PAI 0.930 −1.980 1.000 −0.512 0.950 −5.726 1.000 −1.279

Hmax 0.362 −0.134 0.642 −0.039 0.324 −0.384 0.410 −0.095

TPI 0.899 0.357 1.000 0.089 0.924 1.096 0.955 0.226

Elevation 0.692 −0.0011 1.000 −0.0027 0.275 −0.0010 0.273 0.0048

Aspect 0.366 0.182 0.978 0.224 0.304 1.640 0.559 0.427

Slope 0.310 −3.024 0.463 −1.58 0.273 −9.229 0.258 −4.041

Aspect: Hmax 0.090 0.220 0.176 0.072 0.047 0.006 0.065 0.011

Habitat type 1.000 — 1.000 — 0.467 — 0.861 —

F I G U R E  4   Scatter plots showing the 
effect of distance into the buffer from 
the buffer-oil-palm edge onTmax,Tmean, 
VPDmaxand VPDmean(panels a, b c and 
d, respectively). Black lines are back-
transformed from log-transformed 
distance predicted from linear mixed 
effects models, with dashed lines 
denoting 95% confidence intervals. Solid 
green lines denote mean microclimatic 
values for continuous riparian forest, with 
95% confidence intervals shown in green 
bands
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3.4 | Buffer microclimate impacts on dung 
beetle diversity

Of the 48 transects associated with riparian buffers, 31 had func-
tioning dataloggers in the buffer core, with associated data on both 
dung beetle diversity and distance from edge into buffer. Dung 
beetle diversity was driven by an interaction between distance 
from buffer edge and both Tmax and Tmean (Table 3). As distance 
from the edge decreased, the relationship between temperature 
(Tmax and Tmean) and dung beetle diversity became more negative, 
whereas at 80 m it is relatively flat (Figure 5). Responses for the 
interaction between VPD and distance from edge were similar to 
those of temperature but with lower AIC weight, particularly for 
VPDmean (Table 3). Further, lower dung beetle diversity was associ-
ated with higher Tmean, VPDmax and VPDmean, (Tables 3 and 4). Note, 
the VPDmax model lacking an interaction term failed our leverage 
tests and must be regarded with caution (see Figure S3). Species 
richness analyses showed similar responses to Shannon diversity 
(see Appendix S1).

4  | DISCUSSION

Our results demonstrate the capacity of riparian buffers to pro-
vide microclimatic refugia in human-modified tropical landscapes. 
All four measures of temperature and vapour pressure deficit (Tmax, 
Tmean, VPDmax and VPDmean) were lower in the core area of riparian 
buffers than in the surrounding oil palm, although these values were 

TA B L E  3   AIC weights of all models of Shannon Diversity for 
each microclimatic variable (Tmax, Tmean, VPDmax and VPDmean), 
where ‘interaction’ denotes models containing the interaction 
term between buffer width and microclimate, ‘additive’ denotes 
a model containing microclimate and buffer width, ‘buffer width’ 
and ‘microclimate’ denote models containing only that term, and 
‘null’ is the null model. Values given in bold make up the best-fitting 
models, as calculated by a cumulative ranked weight >0.95

Models Tmax Tmean VPDmax VPDmean

Interaction 0.959 0.914 0.723 0.354

Additive 0.038 0.068 0.271 0.573

Buffer width 0.003 0.018 0.005 0.068

Microclimate <0.001 <0.001 <0.001 0.005

Null <0.001 <0.001 <0.001 0.001

F I G U R E  5   Visualisations of the interaction between the effects 
of (a)Tmaxand (b)Tmean, and distance from edge on dung beetle 
diversity. Solid lines give the effect of temperature on diversity, 
given two set distances (20 and 80 m) from the edge of the buffer, 
as predicted using estimates from linear models (see Table 3), with 
dashed lines denoting 95% confidence intervals. Grey-scaling on 
points and lines gives the magnitude of distance from buffer edge 
(grey > black)
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TA B L E  4   Outputs of best-fitting linear models predicting the 
Shannon diversity of dung beetles (H′) sampled in riparian buffers. 
In the model column ‘~’ means ‘as a function of’ and ‘*’ means the 
two terms individually and the interaction between the two are 
included

Model Term Estimate SE

H′ ~ Tmax * distance 
from edge

Intercept 7.645 2.215

Tmax −0.223 0.067

Distance from edge −1.422 0.607

Tmax: distance from 
edge

0.053 0.018

H′ ~ Tmax + distance 
from edge

Intercept 1.355 0.532

Tmax −0.032 0.012

Distance from edge 0.333 0.073

H′ ~ Tmean * distance 
from edge

Intercept 28.66 9.446

Tmean −1.151 0.382

Distance from  
edge

−6.057 2.407

Tmean: distance 
from edge

0.259 0.098

H′ ~ Tmean + distance 
from edge

Intercept 3.939 1.821

Tmean −0.150 0.070

Distance from edge 0.338 0.077

H′ ~ VPDmax * 
distance from edge

Intercept 1.398 0.485

VPDmax −0.053 0.021

Distance from  
edge

0.903 0.129

VPDmax: distance 
from edge

0.012 0.006

H′ ~ VPDmax +  
distance from edge

Intercept 0.668 0.315

VPDmax −0.013 0.004

Distance from edge 0.300 0.072

H′ ~ VPDmean * 
distance from edge

Intercept 0.869 0.434

VPDmean −0.216 0.142

Distance from  
edge

0.214 0.109

VPDmean: distance 
from edge

0.039 0.041

H′ ~ VPDmean +  
distance from edge

Intercept 0.617 0.345

VPDmean −0.084 0.033

Distance from edge 0.285 0.080

H′ ~ distance from 
edge

Intercept 0.104 0.302

Distance from edge 0.365 0.080
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still higher than those in continuous riparian forest. We reveal that 
buffer edge effects mediate microclimate, with the interior of the 
buffer being substantially cooler and more humid than edges and 
plantation. We subsequently demonstrate the key roles that greater 
vegetation complexity and topographic sheltering play in increasing 
the microclimatic buffering capacity of these set-asides. Finally, we 
elucidate the link between buffer width and microclimate, and dung 
beetle communities, revealing that proximity-to-edge and tempera-
ture can synergistically decrease local diversity.

Consistent with our results, Nagy et al. (2015) found that 
microclimates in riparian buffer cores in the southern Amazon 
were comparable to those of continuous riparian forests. Cooler 
and wetter conditions here were more strongly associated with 
wide buffers, particularly those 80 m or more in width (Table 5). 
Although our buffer core sites were generally cooler than oil palm, 
edge habitat was characterised by more extreme conditions than 
adjacent plantation. Oil palm is a perennial crop with a peak yield 
occurring at an age of 9–18 years (Alam et al., 2015), with older 
plantations forming tall canopies with cooler microclimates (Luskin 
& Potts, 2011). We postulate that high Tmax and VPDmax in buffer 
edges is due to gaps in vegetation associated with riparian buf-
fer edges (JW personal observation). Such gaps are dominated by 
bare ground, grasses or low-lying vines, and may be due to clearing 
and spillover of herbicides from the plantation. The gaps could also  
elevate T and VPD for short periods of the day. The temperature 
and humidity extremes in buffer edges are consistent with well- 
documented microclimatic changes seen in other edge habitats, which 
are typically attributed to increased solar radiation and wind (see 
Williams-Linera, 1990).

We reveal the link between several vegetation and topographic 
features, and microclimate, across a human-modified tropical land-
scape. In particular, PAI, a measure of vegetation quality, had a strong 
influence on microclimate. Increased PAI is associated with more 
complex vegetation (Holst et al., 2004), causing decreased wind and 
light exposure to give cool, humid conditions (Hardwick et al., 2015). 
Hmax (maximum canopy height) was also strongly associated with 
Tmean, a relationship driven by increased shading by tall trees (Jucker 
et al., 2018). Like other edge habitats, riparian buffers are character-
ised by factors impacting vegetation structure, with reduced seedling 
abundance, tree basal area, canopy height and woody plant diversity 
compared with continuous riparian forest (Keir et al., 2015; Lees & 
Peres, 2007; Nagy et al., 2015). Topography was also a key predictor 
of our microclimatic variables, with TPI having strong positive cor-
relations with temperature and VPD. Such results are indicative of 
the relative exposure of ridges (high TPI) and depressions (low TPI) to 

light and wind (Dobrowski, 2011). Aspect had a small positive effect 
on Tmean and VPDmean, where east-facing slopes tended to be hotter 
and drier, likely due to daily solar radiation and wind patterns in the 
region (Smith, 1977). Elevation negatively predicted Tmax and Tmean, 
with a 100-m increase resulting in a mean drop of 0.27°C, a lower 
impact than we might expect given the literature (Jucker et al., 2018) 
and likely due to a limited range of elevations in our study. Our re-
sults highlight the importance of understanding how heterogeneous 
vegetation and topography must be taken into account when defin-
ing the extent of riparian buffers in environmental policies, as well 
as predicting landscape- or regional-level diversity responses under 
climate change scenarios (Elsen et al., 2020).

The cooler, wetter microclimate of riparian buffers described 
here makes them likely refugia for biodiversity in a hostile agri-
cultural matrix. Indeed, our results indicate that microclimate in 
buffers may be important for driving diversity patterns in dung 
beetles, a key invertebrate indicator group. We found that at 80 m 
from the edge, the response of beetle diversity to temperature 
was negligible. However, as proximity to the buffer-oil-palm edge 
increased, the negative effects of temperature on diversity were 
amplified, with beetle communities in 20 m buffers acutely sen-
sitive to higher temperatures. Previous research within the same 
landscape found riparian buffers support higher diversity than 
surrounding oil palm plantations, with dung beetle assemblages 
more similar to those of continuous riparian forests than oil palm 
(Gray et al., 2014). Further, Gray et al. (2016) demonstrated little 
spillover of dung beetle species within riparian buffers into the 
surrounding oil palm plantations. Combined with our findings, this 
suggests that riparian buffers may act as microrefugia for forest 
invertebrates. Note that the effects of microclimatic variables 
shown here could be correlative rather than causative. As we have 
demonstrated, topography and vegetation complexity can also 
drive microclimatic conditions, and it is difficult to disentangle 
these effects. This does not however, change the take-home mes-
sage of the results—to maximise co-benefits for terrestrial biodi-
versity in riparian buffers, simply regulating buffer width alone is 
likely to be insufficient if this does not preserve the vegetation 
and topographic features that are needed to help maintain a buff-
ered microclimate.

In addition to microclimate, we also found that distance from 
edge was associated with higher local diversity, supporting a 
pool of literature demonstrating the positive impact of increased 
buffer width on terrestrial biodiversity (Gray et al., 2017; Keir 
et al., 2015; Zimbres et al., 2018). Intriguingly, the widths recom-
mended by these previous studies to retain terrestrial biodiversity  

Response variables 5 m 20 m 40 m 80 m 300 m

Tmax (°C) 0.36 −1.58 −2.55 −3.51 −5.36

Tmean (°C) −0.23 −0.57 −0.73 −0.90 −1.23

VPDmax (hPa) −0.80 −5.50 −7.85 −10.21 −14.69

VPDmean (hPa) −0.57 −1.37 −1.77 −2.17 −2.94

TA B L E  5   Microclimate buffering 
with distance inward from buffer 
edge, as estimated from linear mixed-
effects models. Values given reflect the 
difference relative to the microclimate in 
oil palm (Table 1)
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(80 m for dung beetles and forest-specialising birds; Gray et al., 2017; 
Mitchell et al., 2018) are in the region where some of our proxim-
ity-to-edge microclimatic response curves intersect with the 95% 
confidence interval for continuous forest and where edge effects 
generally tail off in many systems (e.g. Didham & Lawton, 1999; 
Laurance et al., 2002). The consequences of edge effects for biodi-
versity may be more pronounced in tropical landscapes with sparse 
open habitat where species have not experienced long-term selec-
tion pressures for avoiding edges (Betts et al., 2020). Ideally, edge 
effects would be investigated in the same set of models as vegeta-
tion quality; however, due to strong correlations between proximi-
ty-to-edge and our LiDAR-derived variables, this was not possible.

4.1 | Policy implications

Our results are important to riparian buffer policies in human-
modified tropical landscapes, supporting suggestions that manda-
tory riparian buffer widths in the tropics should be wider than they 
currently are, that more attention should be given to buffer habi-
tat quality (Luke, Slade, et al., 2019), and that topography should 
also be considered when planning networks of buffers across 
landscapes. We show that buffers begin to reach microclimatic 
conditions comparable to those of continuous riparian forest at 
approximately 80 m and above, on each side of the river, a width 
previously suggested as adequate for maintaining representative 
levels of species diversity (Gray et al., 2017; Mitchell et al., 2018). 
At this buffer width, the negative impacts of temperature on bio-
diversity are far less pronounced than at 20 m, the width typi-
cally required by law in Sabah, Malaysia. These recommendations 
are emphasised by the finding that buffer edges, and thus narrow 
buffers (<10 m), may be more microclimatically extreme than no 
buffer at all. In addition, many tropical countries do not consider 
vegetation complexity in riparian management policies (Luke, 
Slade, et al., 2019), but doing so could help contribute to improved 
microclimate conditions and long-term sustainability of waterways 
in agricultural areas. We therefore advocate efforts to extend 
buffer widths, prevent further degradation and restore riparian 
buffers (Luke, Advento, et al., 2019). In addition, by determining 
the vegetation and topographic features that drive microclimate 
in tropical riparian buffers, we hope to inform the future planning 
of buffer locations and networks. Taken together, our results sug-
gest that safeguarding riparian buffer microclimate may help to 
limit the local extinction of species by providing microrefugia. This 
finding is likely to become increasingly important in the face of 
anthropogenic climate change (Hampe & Jump, 2011), particularly 
if demand for agricultural land near waterbodies increases with 
drier climates.

ACKNOWLEDG EMENTS
This work was funded by the Natural Environmental Research 
Council (NERC) through the Human Modified Tropical Forests 
programme (NE/K016261/1; NE/K016377/1), as well as the 

Newton-Ungku Omar Fund via the British Council and Malaysian 
Industry Government Group for High Technology (216433953). 
NERC also funded the PhD studentship for J.W. (NE/L002485/1) 
and research fellowship of T.J. (NE/S01537X/1). We are grateful 
to the Sabah Biodiversity Council for permission to conduct the 
fieldwork (S.H.L.: JKM/MBS.1000-2/2JLD.5(13); J.W.: JKM/MBS. 
1000-2/2JLD.7(83); E.M.S.: JKM/MBS.1000-2/2(381)), Jonathan  
Parrett for help with dung beetle identification, Sui Peng Heon for 
translating the abstract into Malay, Matilda Brindle for proof-reading  
the manuscript and the South East Asian Rainforest Research 
Programme staff, who made this work possible: Unding Jami, Johnny 
Larenus, Amir, Anis, David, Didy, Dino, Joanni, Kiki, Loly, Mudin,  
Noy and Zul.

AUTHORS'  CONTRIBUTIONS
M.J.S. and E.M.S. conceived the initial project and research design; 
S.H.L., E.M.S. and H.H. undertook the fieldwork; T.S., T.J. and D.A.C. 
contributed LiDAR data; J.W. and E.M.S. identified the dung beetles 
with support from AYCC; J.W. led the analysis and writing of the 
manuscript with input from the rest of the team.

DATA AVAIL ABILIT Y S TATEMENT
Microclimate data available via https://doi.org/10.5281/zenodo.400 
0206 (Williamson et al., 2020). LiDAR data available via https://doi.
org/10.5281/zenodo.4020697 (Swinfield et al., 2020). Dung beetle 
data for 2015 and 2017/2018 available via https://doi.org/10.5281/ze 
nodo.3906118 and https://doi.org/10.5281/zenodo.3906441 (Slade,  
Milne, et al., 2020; Slade, Williamson, et al., 2020).

ORCID
Joseph Williamson  https://orcid.org/0000-0003-4916-5386 
Eleanor M. Slade  https://orcid.org/0000-0002-6108-1196 
Sarah H. Luke  https://orcid.org/0000-0002-8335-5960 
Tom Swinfield  https://orcid.org/0000-0001-9354-5090 
Arthur Y. C. Chung  https://orcid.org/0000-0002-9529-4114 
David A. Coomes  https://orcid.org/0000-0002-8261-2582 
Tommaso Jucker  https://orcid.org/0000-0002-0751-6312 
Owen T. Lewis  https://orcid.org/0000-0001-7935-6111 
Charles S. Vairappan  https://orcid.org/0000-0001-7453-1718 
Stephen J. Rossiter  https://orcid.org/0000-0002-3881-4515 
Matthew J. Struebig  https://orcid.org/0000-0003-2058-8502 

R E FE R E N C E S
Alam, A. F., Er, A. C., & Begum, H. (2015). Malaysian oil palm industry: 

Prospect and problem. Journal of Food, Agriculture & Environment, 
13(2), 143–148.

Allan, J. D. (2004). Landscapes and riverscapes: The influence of land 
use on stream ecosystems. Annual Review of Ecology, Evolution and 
Systematics, 35, 257–284. https://doi.org/10.1146/annur ev.ecols ys. 
35.120202.110122

Barlow, J., Louzada, J., Parry, L., Hernández, M. I. M., Hawes, J., Peres, C. A., 
Vaz-de-Mello, F. Z., & Gardner, T. A. (2010). Improving the design and 
management of forest strips in human-dominated tropical landscapes: 
A field test on Amazonian dung beetles. Journal of Applied Ecology, 47, 
779–788. https://doi.org/10.1111/j.1365-2664.2010.01825.x

https://doi.org/10.5281/zenodo.4000206
https://doi.org/10.5281/zenodo.4000206
https://doi.org/10.5281/zenodo.4020697
https://doi.org/10.5281/zenodo.4020697
https://doi.org/10.5281/zenodo.3906118
https://doi.org/10.5281/zenodo.3906118
https://doi.org/10.5281/zenodo.3906441
https://orcid.org/0000-0003-4916-5386
https://orcid.org/0000-0003-4916-5386
https://orcid.org/0000-0002-6108-1196
https://orcid.org/0000-0002-6108-1196
https://orcid.org/0000-0002-8335-5960
https://orcid.org/0000-0002-8335-5960
https://orcid.org/0000-0001-9354-5090
https://orcid.org/0000-0001-9354-5090
https://orcid.org/0000-0002-9529-4114
https://orcid.org/0000-0002-9529-4114
https://orcid.org/0000-0002-8261-2582
https://orcid.org/0000-0002-8261-2582
https://orcid.org/0000-0002-0751-6312
https://orcid.org/0000-0002-0751-6312
https://orcid.org/0000-0001-7935-6111
https://orcid.org/0000-0001-7935-6111
https://orcid.org/0000-0001-7453-1718
https://orcid.org/0000-0001-7453-1718
https://orcid.org/0000-0002-3881-4515
https://orcid.org/0000-0002-3881-4515
https://orcid.org/0000-0003-2058-8502
https://orcid.org/0000-0003-2058-8502
https://doi.org/10.1146/annurev.ecolsys.35.120202.110122
https://doi.org/10.1146/annurev.ecolsys.35.120202.110122
https://doi.org/10.1111/j.1365-2664.2010.01825.x


     |  11Journal of Applied EcologyWILLIAMSON et AL.

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear 
mixed-effects models using lme4. Journal of Statistical Software, 
67(1), 1–48.

Betts, M. G., Wolf, C., Pfeifer, M., Banks-Leite, C., Arroyo-Rodríguez, 
V., Ribeiro, D. B., Barlow, J., Eigenbrod, F., Faria, D., Fletcher, R. J., 
Hadley, A. S., Hawes, J. E., Holt, R. D., Klingbeil, B., Kormann, U., 
Lens, L., Levi, T., Medina-Rangel, G. F., Melles, S. L., … Ewers, R. M. 
(2020). Extinction filters mediate the global effects of habitat frag-
mentation on animals. Science, 366(6470), 1236–1239. https://doi.
org/10.1126/scien ce.aax9387

Blonder, B., Both, S., Coomes, D. A., Elias, D., Jucker, T., Kvasnica, J., 
Majalap, N., Malhi, Y. S., Milodowski, D., Riutta, T., & Svátek, M. 
(2018). Extreme and highly heterogeneous microclimates in selec-
tively logged tropical forests. Frontiers in Forests and Global Change, 
1, 5. https://doi.org/10.3389/ffgc.2018.00005

Bolker, B. M. (2008). Ecological models and data in R (p. 210). Princeton 
University Press.

Bolker, B. & R Development Core Team. (2017). bbmle: Tools for general 
maximum likelihood estimation. R package version 1.0.20. Retrieved 
from https://cran.r-proje ct.org/web/packa ges/bbmle/ index.html

Chapman, S., Syktus, J., Trancoso, R., Salazar, A., Thatcher, M., Watson, J. 
E. M., Meijaard, E., Sheil, D., Dargusch, P., & McAlpine, C. A. (2020). 
Compounding impact of deforestation on Borneo's climate during El 
Niño events. Environmental Research Letters, 15, 084006. https://doi.
org/10.1088/1748-9326/AB86F5

Cunha, E. J., & Juen, L. (2017). Impacts of oil palm plantations on changes 
in environmental heterogeneity and Heteroptera (Gerromorpha and 
Nepomorpha) diversity. Journal of Insect Conservation, 21, 111–119. 
https://doi.org/10.1007/s1084 1-017-9959-1

Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, 
C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming 
on terrestrial ectotherms across latitude. Proceedings of the National 
Academy of Sciences of the United States of America, 105(18), 6668–
6672. https://doi.org/10.1073/pnas.07094 72105

Didham, R. K., & Lawton, J. H. (1999). Edge structure determines the 
magnitude of changes in microclimate and vegetation structure 
in tropical forest fragments. Biotropica, 31(1), 17–30. https://doi.
org/10.1111/j.1744-7429.1999.tb001 13.x

Dobrowski, S. Z. (2011). A climatic basis for microrefugia: The influ-
ence of terrain on climate. Global Change Biology, 17(2), 1022–1035. 
https://doi.org/10.1111/j.1365-2486.2010.02263.x

Elsen, P. R., Monahan, W. B., & Merenlender, A. M. (2020). Topography 
and human pressure in mountain ranges alter expected species re-
sponses to climate change. Nature Communications, 11(1), 1–10. 
https://doi.org/10.1038/s4146 7-020-15881 -x

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial reso-
lution climate surfaces for global land areas. International Journal of 
Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

Giam, X., Hadiaty, R. K., Tan, H. H., Parenti, L. R., Wowor, D., Sauri, S., 
Chong, K. Y., Yeo, D. C. J., & Wilcove, D. S. (2015). Mitigating the 
impact of oil-palm monoculture on freshwater fishes in Southeast 
Asia. Conservation Biology, 29, 1357–1367. https://doi.org/10.1111/
cobi.12483

Gray, C. L., Simmons, B. I., Fayle, T. M., Mann, D. J., & Slade, E. M. (2016). Are 
riparian forest reserves sources of invertebrate biodiversity spillover 
and associated ecosystem functions in oil palm landscapes? Biological 
Conservation, 194, 176–183. https://doi.org/10.1016/j.biocon.2015. 
12.017

Gray, C. L., Slade, E. M., Mann, D. J., & Lewis, O. T. (2014). Do riparian 
reserves support dung beetle biodiversity and ecosystem services in 
oil palm-dominated tropical landscapes? Ecology and Evolution, 4(7), 
1049–1060. https://doi.org/10.1002/ece3.1003

Gray, C., Slade, E., Mann, D., & Lewis, O. T. (2017). Designing oil palm 
landscapes to retain biodiversity using insights from a key ecological 
indicator group. bioRxiv. https://doi.org/10.1101/204347

Gray, R. E. J., Slade, E. M., Chung, A. Y., & Lewis, O. T. (2019). Movement 
of moths through riparian reserves within oil palm plantations. 
Frontiers in Forests and Global Change, 2, 68. https://doi.org/10.3389/
ffgc.2019.00068

Hampe, A., & Jump, A. S. (2011). Climate relicts: Past, present, future. 
Annual Review of Ecology, Evolution, and Systematics, 42, 313–333. 
https://doi.org/10.1146/annur ev-ecols ys-10271 0-145015

Hardwick, S. R., Toumi, R., Pfeifer, M., Turner, E. C., Nilus, R., & Ewers, R. 
M. (2015). The relationship between leaf area index and microclimate 
in tropical forest and oil palm plantation: Forest disturbance drives 
changes in microclimate. Agricultural and Forest Meteorology, 201, 
187–195. https://doi.org/10.1016/j.agrfo rmet.2014.11.010

Helmuth, B. (2009). From cells to coastlines: How can we use phys-
iology to forecast the impacts of climate change? Journal of 
Experimental Biology, 212(6), 753–760. https://doi.org/10.1242/
jeb.023861

Hijmans, R. J. (2016). raster: Geographic data analysis and modeling. R 
package version 2.5–8. Retrieved from https://CRAN.R-proje ct.org/
packa ge=raster

Holst, T., Hauser, S., Kirchgäßner, A., Matzarakis, A., Mayer, H., & 
Schindler, D. (2004). Measuring and modelling plant area index in 
beech stands. International Journal of Biometeorology, 48(4), 192–201. 
https://doi.org/10.1007/s0048 4-004-0201-y

Jucker, T., Hardwick, S. R., Both, S., Elias, D. M. O., Ewers, R. M., 
Milodowski, D. T., Swinfield, T., & Coomes, D. A. (2018). Canopy 
structure and topography jointly constrain the microclimate of hu-
man-modified tropical landscapes. Global Change Biology, 24(11), 
5243–5258. https://doi.org/10.1111/gcb.14415

Jucker, T., Jackson, T. D., Zellweger, F., Swinfield, T., Gregory, N., 
Williamson, J., Slade, E. M., Phillips, J. W., Bittencourt, P. R. L., 
Blonder, B., Boyle, M. J. W., Ellwood, M. D. F., Hemprich-Bennett, 
D., Lewis, O. T., Matula, R., Senior, R. A., Shenkin, A., Svátek, M., & 
Coomes, D. A. (2020). A research agenda for microclimate ecology 
in human-modified tropical forests. Frontiers in Forests and Global 
Change, 2, 92. https://doi.org/10.3389/ffgc.2019.00092

Keir, A. F., Pearson, R. G., & Congdon, R. A. (2015). Determinants of bird 
assemblage composition in riparian vegetation on sugarcane farms in 
the Queensland wet tropics. Pacific Conservation Biology, 21, 60–73. 
https://doi.org/10.1071/PC14904

Keuroghlian, A., & Eaton, D. P. (2008). Importance of rare habitats and 
riparian zones in a tropical forest fragment: Preferential use by 
Tayassu pecari, a wide-ranging frugivore. Journal of Zoology, 275(3), 
283–293. https://doi.org/10.1111/j.1469-7998.2008.00440.x

Laurance, W. F., Lovejoy, T. E., Vasconcelos, H. L., Bruna, E. M., Didham, 
R. K., Stouffer, P. C., Gascon, C., Bierregaard, R. O., Laurance, S. G., & 
Sampaio, E. (2002). Ecosystem decay of Amazonian forest fragments: 
A 22-year investigation. Conservation Biology, 16, 605–618. https://
doi.org/10.1046/j.1523-1739.2002.01025.x

Law, S. J., Bishop, T. R., Eggleton, P., Griffiths, H., Ashton, L., & Parr, C. 
(2020). Darker ants dominate the canopy: Testing macroecological 
hypotheses for patterns in colour along a microclimatic gradient. 
Journal of Animal Ecology, 89(2), 347–359. https://doi.org/10.1111/ 
1365-2656.13110

Lees, A. C., & Peres, C. A. (2008). Conservation value of remnant ri-
parian forest corridors of varying quality for Amazonian birds and 
mammals. Conservation Biology, 22(2), 439–449. https://doi.org/ 
10.1111/j.1523-1739.2007.00870.x

Luke, S. H., Advento, A. D., Aryawan, A. A. K., Adhy, D. N., Ashton-Butt, 
A., Barclay, H., Dewi, J. P., Drewer, J., Dumbrell, A. J., Edi,  Eycott, A. 
E., Harianja, M. F., Hinsch, J. K., Hood, A. S. C., Kurniawan, C., Kurz, 
D. J., Mann, D. J., Matthews Nicholass, K. J., Naim, M., … Turner, E. 
C. (2019). Managing oil palm plantations more sustainably: Large-
scale experiments within the Biodiversity and Ecosystem Function 
in Tropical Agriculture (BEFTA) Programme. Frontiers in Forests and 
Global Change, 2, 75. https://doi.org/10.3389/ffgc.2019.00075

https://doi.org/10.1126/science.aax9387
https://doi.org/10.1126/science.aax9387
https://doi.org/10.3389/ffgc.2018.00005
https://cran.r-project.org/web/packages/bbmle/index.html
https://doi.org/10.1088/1748-9326/AB86F5
https://doi.org/10.1088/1748-9326/AB86F5
https://doi.org/10.1007/s10841-017-9959-1
https://doi.org/10.1073/pnas.0709472105
https://doi.org/10.1111/j.1744-7429.1999.tb00113.x
https://doi.org/10.1111/j.1744-7429.1999.tb00113.x
https://doi.org/10.1111/j.1365-2486.2010.02263.x
https://doi.org/10.1038/s41467-020-15881-x
https://doi.org/10.1002/joc.5086
https://doi.org/10.1111/cobi.12483
https://doi.org/10.1111/cobi.12483
https://doi.org/10.1016/j.biocon.2015.12.017
https://doi.org/10.1016/j.biocon.2015.12.017
https://doi.org/10.1002/ece3.1003
https://doi.org/10.1101/204347
https://doi.org/10.3389/ffgc.2019.00068
https://doi.org/10.3389/ffgc.2019.00068
https://doi.org/10.1146/annurev-ecolsys-102710-145015
https://doi.org/10.1016/j.agrformet.2014.11.010
https://doi.org/10.1242/jeb.023861
https://doi.org/10.1242/jeb.023861
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=raster
https://doi.org/10.1007/s00484-004-0201-y
https://doi.org/10.1111/gcb.14415
https://doi.org/10.3389/ffgc.2019.00092
https://doi.org/10.1071/PC14904
https://doi.org/10.1111/j.1469-7998.2008.00440.x
https://doi.org/10.1046/j.1523-1739.2002.01025.x
https://doi.org/10.1046/j.1523-1739.2002.01025.x
https://doi.org/10.1111/1365-2656.13110
https://doi.org/10.1111/1365-2656.13110
https://doi.org/10.1111/j.1523-1739.2007.00870.x
https://doi.org/10.1111/j.1523-1739.2007.00870.x
https://doi.org/10.3389/ffgc.2019.00075


12  |    Journal of Applied Ecology WILLIAMSON et AL.

Luke, S. H., Slade, E. M., Gray, C. L., Annammala, K. V., Drewer, J., 
Williamson, J., Agama, A. L., Ationg, M., Mitchell, S. L., Vairappan, C. 
S., & Struebig, M. J. (2019). Riparian buffers in tropical agriculture: 
Scientific support, effectiveness and directions for policy. Journal of 
Applied Ecology, 56, 85–92. https://doi.org/10.1111/1365-2664.13280

Luskin, M. S., & Potts, M. D. (2011). Microclimate and habitat heteroge-
neity through the oil palm lifecycle. Basic and Applied Ecology, 12(6), 
540–551. https://doi.org/10.1016/j.baae.2011.06.004

Marsh, C. W., & Greer, A. G. (1992). Forest land-use in Sabah, Malaysia: 
An introduction to Danum Valley. Philosophical Transactions of the 
Royal Society of London. Series B: Biological Sciences, 335(1275), 331–
339. https://doi.org/10.1098/rstb.1992.0025

Meijide, A., Badu, C. S., Moyano, F., Tiralla, N., Gunawan, D., & Knohl, A. 
(2018). Impact of forest conversion to oil palm and rubber plantations 
on microclimate and the role of the 2015 ENSO event. Agricultural 
and Forest Meteorology, 252, 208–219. https://doi.org/10.1016/ 
j.agrfo rmet.2018.01.013

Mitchell, S. L., Edwards, D. P., Bernard, H., Coomes, D., Jucker, T., Davies, 
Z. G., & Struebig, M. J. (2018). Riparian reserves help protect for-
est bird communities in oil palm dominated landscapes. Journal of 
Applied Ecology, 55(6), 2744–2755. https://doi.org/10.1111/1365- 
2664.13233

Nagy, R. C., Porder, S., Neill, C., Brando, P., Quintino, R. M., & Nascimento, 
S. A. D. (2015). Structure and composition of altered riparian forests 
in an agricultural Amazonian landscape. Ecological Applications, 25(6), 
1725–1738. https://doi.org/10.1890/14-1740.1

Nichols, E. S., & Gardner, T. A. (2011). Dung beetles as a candidate study 
taxon in applied biodiversity conservation research. Ecology and 
Evolution of Dung Beetles, 267–291. https://doi.org/10.1002/97814 
44342 000.ch13

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., O'hara, R. B., 
Simpson, G. L., & Wagner, H. (2010). Vegan: Community ecology pack-
age. R package version 1.17-4. Retrieved from http://CRAN.R-proje 
ct.org/packa ge=vegan

Park Williams, A., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. 
A., Meko, D. M., Swetnam, T. W., Rauscher, S. A., Seager, R., Grissino-
Mayer, H. D., Dean, J. S., Cook, E. R., Gangodagamage, C., Cai, M., & 
McDowell, N. G. (2013). Temperature as a potent driver of regional 
forest drought stress and tree mortality. Nature Climate Change, 3(3), 
292–297. https://doi.org/10.1038/nclim ate1693

QGIS Development Team. (2020). QGIS geographic information system. 
Open Source Geospatial Foundation Project. Retrieved from http://
qgis.osgeo.org

R Development Core Team. (2008). R: A language and environment for sta-
tistical computing. R Foundation for Statistical Computing. Retrieved 
from http://www.R-proje ct.org.ISBN3 -90005 1-07-0

Schulze, C. H., Linsenmair, K. E., & Fiedler, K. (2001). Understorey ver-
sus canopy: Patterns of vertical stratification and diversity among 
Lepidoptera in a Bornean rain forest. Plant Ecology, 153, 133–152. 
https://doi.org/10.1023/A:10175 89711553

Silvério, D. V., Brando, P. M., Macedo, M. N., Beck, P. S., Bustamante, 
M., & Coe, M. T. (2015). Agricultural expansion dominates climate 
changes in southeastern Amazonia: The overlooked non-GHG forc-
ing. Environmental Research Letters, 10(10), 104015. https://doi.
org/10.1088/1748-9326/10/10/104015

Slade, E. M., Mann, D. J., & Lewis, O. T. (2011). Biodiversity and eco-
system function of tropical forest dung beetles under contrasting 
logging regimes. Biological Conservation, 144(1), 166–174. https://doi.
org/10.1016/j.biocon.2010.08.011

Slade, E. M., Milne, S., Chung, A. Y. C., Williamson, J., & Parrett, J. (2020). 
Dung beetle community and dung removal data 2015. Zenodo, 
https://doi.org/10.5281/zenodo.3906118

Slade, E. M., Williamson, J., Chung, A. Y. C., Parrett, J., & Heroin, H. (2020). 
Dung beetle community 2017/18. Zenodo, https://doi.org/10.5281/
zenodo.3906441

Smith, J. M. B. (1977). Vegetation and microclimate of east-and west-fac-
ing slopes in the grasslands of Mt Wilhelm, Papua New Guinea. The 
Journal of Ecology, 65(1), 39–53. https://doi.org/10.2307/2259061

Struebig, M. J., Turner, A., Giles, E., Lasmana, F., Tollington, S., Bernard, 
H., & Bell, D. (2013). Quantifying the biodiversity value of repeat-
edly logged rainforests: Gradient and comparative approaches from 
Borneo. Advances in Ecological Research, 48, 183–224. https://doi.
org/10.1016/B978-0-12-41719 9-2.00003 -3

Swinfield, T., Milodowski, D., Jucker, T., Dalponte, M., & Coomes, 
D. A. (2020). LiDAR canopy structure 2014. Zenodo, https://doi.
org/10.5281/zenodo.4020697

Tabacchi, E., Lambs, L., Guilloy, H., Planty-Tabacchi, A. M., Muller, E., & 
Decamps, H. (2000). Impacts of riparian vegetation on hydrological 
processes. Hydrological Processes, 14(16–17), 2959–2976. https://doi.
org/10.1002/1099-1085(20001 1/12)14:16/17<2959:AID-HYP12 
9>3.0.CO;2-B

Travis, J. M. J. (2003). Climate change and habitat destruction: A 
deadly anthropogenic cocktail. Proceedings of the Royal Society of 
London. Series B: Biological Sciences, 270(1514), 467–473. https://doi.
org/10.1098/rspb.2002.2246

Walsh, R. P. D., & Newbery, D. M. (1999). The ecoclimatology of Danum, 
Sabah, in the context of the world's rainforest regions, with particular 
reference to dry periods and their impact. Philosophical Transactions 
of the Royal Society of London. Series B: Biological Sciences, 354(1391), 
1869–1883. https://doi.org/10.1098/rstb.1999.0528

Williams-Linera, G. (1990). Vegetation structure and environmental 
conditions of forest edges in Panama. The Journal of Ecology, 78(2), 
356–373. https://doi.org/10.2307/2261117

Williamson, J., Luke, S. H., Heroin, H., Vairappan, C. S., Slade, E. M., & 
Struebig, M. J. (2020). Riparian microclimates. Zenodo, https://doi.
org/10.5281/zenodo.4000207

Zellweger, F., De Frenne, P., Lenoir, J., Rocchini, D., & Coomes, D. (2019). 
Advances in microclimate ecology arising from remote sensing. Trends 
in Ecology & Evolution, 34(4), 327–341. https://doi.org/10.1016/j.
tree.2018.12.012

Zimbres, B., Peres, C. A., & Machado, R. B. (2017). Terrestrial mammal re-
sponses to habitat structure and quality of remnant riparian forests 
in an Amazonian cattle-ranching landscape. Biological Conservation, 
206, 283–292. https://doi.org/10.1016/j.biocon.2016.11.033

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.

How to cite this article: Williamson J, Slade EM, Luke SH,  
et al. Riparian buffers act as microclimatic refugia in oil palm 
landscapes. J Appl Ecol. 2020;00:1–12. https://doi.
org/10.1111/1365-2664.13784

https://doi.org/10.1111/1365-2664.13280
https://doi.org/10.1016/j.baae.2011.06.004
https://doi.org/10.1098/rstb.1992.0025
https://doi.org/10.1016/j.agrformet.2018.01.013
https://doi.org/10.1016/j.agrformet.2018.01.013
https://doi.org/10.1111/1365-2664.13233
https://doi.org/10.1111/1365-2664.13233
https://doi.org/10.1890/14-1740.1
https://doi.org/10.1002/9781444342000.ch13
https://doi.org/10.1002/9781444342000.ch13
http://CRAN.R-project.org/package=vegan
http://CRAN.R-project.org/package=vegan
https://doi.org/10.1038/nclimate1693
http://qgis.osgeo.org
http://qgis.osgeo.org
http://www.R-project.org.ISBN3-900051-07-0
https://doi.org/10.1023/A:1017589711553
https://doi.org/10.1088/1748-9326/10/10/104015
https://doi.org/10.1088/1748-9326/10/10/104015
https://doi.org/10.1016/j.biocon.2010.08.011
https://doi.org/10.1016/j.biocon.2010.08.011
https://doi.org/10.5281/zenodo.3906118
https://doi.org/10.5281/zenodo.3906441
https://doi.org/10.5281/zenodo.3906441
https://doi.org/10.2307/2259061
https://doi.org/10.1016/B978-0-12-417199-2.00003-3
https://doi.org/10.1016/B978-0-12-417199-2.00003-3
https://doi.org/10.5281/zenodo.4020697
https://doi.org/10.5281/zenodo.4020697
https://doi.org/10.1002/1099-1085(200011/12)14:16/17%3C2959:AID-HYP129%3E3.0.CO;2-B
https://doi.org/10.1002/1099-1085(200011/12)14:16/17%3C2959:AID-HYP129%3E3.0.CO;2-B
https://doi.org/10.1002/1099-1085(200011/12)14:16/17%3C2959:AID-HYP129%3E3.0.CO;2-B
https://doi.org/10.1098/rspb.2002.2246
https://doi.org/10.1098/rspb.2002.2246
https://doi.org/10.1098/rstb.1999.0528
https://doi.org/10.2307/2261117
https://doi.org/10.5281/zenodo.4000207
https://doi.org/10.5281/zenodo.4000207
https://doi.org/10.1016/j.tree.2018.12.012
https://doi.org/10.1016/j.tree.2018.12.012
https://doi.org/10.1016/j.biocon.2016.11.033
https://doi.org/10.1111/1365-2664.13784
https://doi.org/10.1111/1365-2664.13784

