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ABSTRACT. We use the gluing construction introduced by Jia Huang to explore the rings of in-
variants for a range of modular representations. We construct generating sets for the rings of
invariants of the maximal parabolic subgroups of a finite symplectic group and their common
Sylow p-subgroup. We also investigate the invariants of singular finite classical groups. We in-
troduce parabolic gluing and use this construction to compute the invariant field of fractions for
a range of representations. We use thin gluing to construct faithful representations of semidirect
products and to determine the minimum dimension of a faithful representation of the semidirect
product of a cyclic p-group acting on an elementary abelian p-group.

1. INTRODUCTION

In this paper we use the gluing construction introduced by Jia Huang [30] to explore the rings
of invariants for a range of modular representations. The gluing construction was motivated, in
part, by the work of Hewett [28], Kuhn and Mitchell [34], and Mui [37] on parabolic subgroups
of a finite general linear group. In Section 5, we use gluing methods to construct generating sets
for the rings of invariants of the maximal parabolic subgroups of a finite symplectic group and
their common Sylow p-subgroup. Our work in that section relies on the results of Carlisle and
Kropholler on the invariants of a finite symplectic group [2, §8]. We also use the gluing con-
struction to investigate the invariants of singular finite classical groups (Section 6). In Section 7,
we introduce parabolic gluing and use this construction to compute the invariant field of frac-
tions for a range of representations. We use thin gluing to construct faithful representations of
semidirect products (Theorem 2.3) and to determine the minimum dimension of a faithful repre-
sentation of the semidirect product of a cyclic p-group acting on an elementary abelian p-group
(Corollary 2.4).

Suppose V is a finite dimensional representation of a group G over a field F. We view V as
a left module over the group ring FG. There is a natural right action of G on the dual V ∗ =
homF(V,F): for φ ∈ V ∗, g ∈ G, and v ∈ V , (φ · g)(v) = φ(g · v). We use F[V ] to denote the
symmetric algebra on V ∗. The action of G on V ∗ extends to an action by degree preserving F-
algebra automorphisms on F[V ]. The ring of invariants of the representation is the subalgebra
F[V ]G := { f ∈ F[V ] | f ·g = f , ∀g∈G}. The elements of F[V ] represent polynomial functions on
V and the elements of F[V ]G represent polynomial functions on the orbits V/G. If G is finite and
F is algebraically closed, then F[V ]G is the ring of regular functions on the categorical quotient
V//G. For background material on the invariant theory of finite groups, see [2], [12], [19],
[26] and [38]. For background material on modular representation theory we suggest [1]. We
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occasionally make reference to Steenrod operations; see [38, §8] for the definition in the context
of invariant theory.

In Section 2 we introduce the gluing construction and define polynomial gluings, split gluings
and thin gluings. In Section 3 we summarise the relevant properties of tensor products of alge-
bras. In Section 4 we compute the image of the transfer for a polynomial gluing in terms of the
image of the transfer of the factors of the gluing. Section 5 is devoted to the maximal parabolic
subgroups of a finite symplectic group and Section 6 deals with finite singular classical groups.
In Section 7 we introduce parabolic gluing and compute the invariant field of fractions for a range
of representations. We conclude with Section 8, which introduces diagonal gluing and explores
a number of examples.

2. THE GLUING CONSTRUCTION

Let W1 and W2 denote representations over a field F of groups G1 and G2 respectively. The
vector space of linear transformations homF(W2,W1) is a left FG1/right FG2 bimodule: for g1 ∈
G1, ϕ ∈ homF(W2,W1), g2 ∈ G2 and v ∈W2 we have (g1 ·ϕ ·g2)(v) = g1 · (ϕ(g2 · v)). Using the
unique unital ring homomorphism from Z to F, every FGi-module is also a ZGi-module. LetM
denote a left ZG1/right ZG2 sub-bimodule of homF(W2,W1). We use G1×M G2 to denote the
semidirect product whose elements consist of triples (g1,ϕ,g2) ∈G1×M×G2 with the product
given by (g1,ϕ,g2) · (g′1,ϕ ′,g′2) = (g1g′1,g1ϕ ′+ϕg′2,g2g′2). We refer to G1×M G2 as the gluing
of G1 to G2 throughM. Note that, to perform this construction, we needM to be closed with
respect to addition and with respect to the group actions. There is a natural action of G1×M G2

on V := W1⊕W2 given by (g1,ϕ,g2)(w1⊕w2) = (g1w1 +ϕ(w2))⊕ g2w2. If W1 and W2 are
faithful, then V is a faithful representation of G1×M G2. If we choose bases for W1 and W2 and
denote the resulting matrices by [g1], [ϕ] and [g2], then the associated matrix group is given by{(

[g1] [ϕ]
0 [g2]

)
∈ GLm+n(F)

∣∣∣ g1 ∈ G1,g2 ∈ G2,ϕ ∈M
}

where m = dim(W1) and n = dim(W2). If W1 and W2 are both faithful, then the matrix group is
isomorphic to G1×M G2 .

Since M is a normal subgroup of G1×M G2 with quotient isomorphic to G1×G2, we can
compute the ring of invariants F[V ]G1×MG2 by first computing the invariants under the action of
M and then computing the invariants under the action of G1×G2, in other words, F[V ]G1×MG2 =

(F[V ]M)G1×G2 . We will routinely identify F[W2] with the subalgebra F⊗ F[W2] ⊂ F[W1]⊗
F[W2] = F[W1⊕W2] = F[V ]. Using this identification, we observe that F[W2] ⊂ F[V ]M. We
will say that the gluing is split if there exists a graded subalgebra A⊂ F[V ]M such that

• F[V ]M = A⊗F[W2],
• A is an F(G1×G2) submodule of F[V ]M and
• G2 acts trivially on A.

When we write F[V ]M = A⊗F[W2] above, we mean that there is an algebra isomorphism from
A⊗F[W2] to F[V ]M which restricts to the inclusion on each of the factors. If the gluing is split,
then F[V ]G1×MG2 = AG1⊗F[W2]

G2 .
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We are primarily interested in rings of invariants for finite groups. IfM is non-zero and F has
characteristic zero, thenM is an infinite group. For the remainder of the paper, we assume the
characteristic of F is a prime number p and thatM is finite. This means thatM is an elementary
abelian p-group and a vector space over the prime field Fp. Recent work on the rings of invariants
of modular representation of elementary abelian p-groups includes [11], [39] and [40].

We will use {y1, . . . ,ym} to denote a chosen basis for W ∗1 and {x1, . . . ,xn} to denote a cho-
sen basis for W ∗2 . Observe that F[x1, . . . ,xn] ⊂ F[V ]M. We can use orbit products to construct
additionalM-invariants: define NM(y j) :=

∏
{y j ·g | g ∈M}. The set

H := {x1, . . . ,xn,NM(y1), . . . ,NM(ym)}

is a homogeneous system of parameters for F[V ]M (see, for example, [26, Example 6]). If H
is a generating set for F[V ]M, we say that the chosen basis is a Nakajima basis for the FM-
module V . Recall that H is a generating set for F[V ]M if and only if the product of the degrees
of the elements ofH is equal to the order ofM (see, for example, [19, 3.7.5]). The polynomials
NM(y j) have a number of special properties. TheM-orbit of y j is of the form y j +U j where U j

is an Fp-subspace of W ∗2 = SpanF{x1, . . . ,xn}. Thus

NM(y j) =
∏

u∈U j

(y j +u) = yp` j

j +

` j−1∑
k=0

dk−` j, jy
pk

j

where ` j = dimFp(U j) and the di, j are Dickson polynomials associated to U j (see [49] or [20] ).
Therefore NM(y j) is additive as a function of y j and is invariant under any subgroup of GL(W2)

which stabilises U j.

Example 2.1. Suppose F = Fq, where q = pr for some r, and takeM = homFq(W2,W1). Then,
for all j, we have U j = W ∗2 and deg(NM(y j)) = qn. Therefore, since the order of M is qmn,
we have Fq[V ]M = Fq[x1, . . . ,xn,NM(y1), . . . ,NM(ym)]. Hence any basis consistent with the
decomposition V ∗ = W ∗1 ⊕W ∗2 is Nakajima. Furthermore, any subgroup of GL(W2) stabilises
W ∗2 . Thus G2 acts trivially on A = Fq[NM(y1), . . . ,NM(ym)] and so the gluing is split giving
Fq[V ]G1×MG2 = AG1⊗Fq[W1]

G2 . The algebra homomorphism from Fq[W1] to A which takes y j to
NM(y j) is a G1-equivariant isomorphism which takes elements of degree d to elements of degree
d · qn. This means that Fq[V ]G1×MG2 is isomorphic to Fq[W1]

G1 ⊗Fq[W2]
G2 by an isomorphism

which is not degree preserving but does restrict to an isomorphism of the augmentation ideals.

Definition 2.2. We say that a gluing is polynomial if there is a (G1×G2)-equivariant isomor-
phism of F-algebras from F[W1⊕W2] to F[V ]M.

In the case of a polynomial gluing, F[V ]G1×MG2 is isomorphic to F[W1]
G1⊗F[W2]

G2 . In most
of the polynomial gluings we consider, the F-algebra isomorphism ψ : F[W1⊕W2]→ F[V ]M is
an extension of the inclusion of F[W2] into F[V ]M and restricts to an isomorphism of F[W1] to
a subalgebra A ⊂ F[V ]M; in this case, the gluing is split and the induced map from F[W1] to A
is G1-equivariant. Example 2.1 provides a canonical example of a family of split polynomial
gluings.
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Jia Huang’s Gluing Lemma. Jia Huang’s Gluing Lemma [30, §2] is an extension of Exam-
ple 2.1. We reformulate his result in our notation. Suppose q = pr, Fq ⊆ F and M1 is an FqG1-
submodule of W1. Further suppose that M2 is an FqG2-submodule of W2 with F ·M2 = W2 and
dimFq(M2) = dimF(W2) = n. This means that every Fq-basis for M2 is an F-basis for W2. There-
fore, every element of homFq(M2,M1) extends uniquely to an element of homF(W2,W1), giving
an isomorphism from homFq(M2,M1) to a left FqG1/ right FqG2 sub-bimodule of homF(W2,W1);
takeM to be the image of this map. The gluing G1×M G2 is a split polynomial gluing. To see
this, first observe that U j = M∗2 for each j, which means that NM(y j) has degree qn and, as in Ex-
ample 2.1, F[V ]M = F[x1, . . . ,xn,NM(y1), . . . ,NM(ym)]. Then observe that, since any subgroup
of GL(M2) stabilises M∗2 , G2 acts trivially on A = Fq[NM(y1), . . . ,NM(ym)] .

Examples and Applications of Thin Gluing. We say that a gluing is thin if either dimF(W1) = 1
or dimF(W2) = 1. If dimF(W1) = 1, then the gluing is polynomial with A = F[NM(y1)]. If
dimF(W2) = 1, then the representation of M is what is known as a hyperplane representation;
the ring of invariants F[V ]M is still a polynomial algebra but the generators are not necessarily
orbit products of variables (see [9], [27] and [35]).

Theorem 2.3. If a finite group G acts on an elementary abelian p-group E and F is a sufficiently
large field of characteristic p, then there is a faithful representation of the semidirect product
GnE of dimension |G|+1 over F .

Proof. The action of G on E makes E a module over the group ring FpG. Every FpG module has
an injective envelope. Since injective FpG-modules are projective, this means we can embed E
into a free FpG-module, say F =⊕r

i=1FpGbi. Choose elements c1, . . . ,cr ∈ F so that {c1, . . . ,cr}
is linearly independent over Fp. Then we can embed F into FG using the FpG-module map
which takes bi to ci. Composing the map from E to F with the map from F to FG gives an FpG-
module isomorphism from E to an FpG-submodule of FG, say E . If we take G1 = G, W1 = FG,
G2 = 1 = {1} and W2 = F, the thin gluing G×E 1 is isomorphic to GnE and the associated
representation is faithful with dimension |G|+1. �

Corollary 2.4. If the cyclic p-group of order pr, Cpr , acts on an elementary abelian p-group E
and E contains a free FpCpr-submodule , then the minimum dimension of a faithful representation
of Cpr nE over F is pr +1, for F sufficiently large.

Proof. If E contains a free FpCpr-submodule then Cpr nE contains an element of order pr+1

(otherwise Cpr nE has exponent pr). Since an element of p-power order in GLpr(F) has order at
most pr (see, for example, [12, Lemma 7.1.1]), the minimum dimension of a faithful representa-
tion is at least pr +1. If F is sufficiently large, then the existence of a faithful representation of
dimension pr +1 is given by Theorem 2.3. �

Example 2.5. Specialise Example 2.1 by taking W2 = FqG2 and W1 = FqG1. Then M =

homFq(FqG2,FqG1) can be given the structure of a left module over Fq(G1×G2) in a natural
way. With this choice of action,M is the principal module generated by the linear map which
maps 1 ∈ FqG2 to 1 ∈ FqG1 and is zero on all other group elements. This means that M is
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isomorphic to Fq(G1×G2). Using this observation, it is easy to verify that (G1×G2)nFq(G1×
G2) � G1×M G2. Therefore, the representation associated to G1×M G2 gives a faithful rep-
resentation of Gn FqG of dimension |G1|+ |G2| whenever G � G1×G2. Taking G1 = G2 =

Cp gives an upper bound of 2p on on the minimum dimension of a faithful representation of
(Cp×Cp)nFp(Cp×Cp).

Remark 2.6. Theorem 2.3 and Corollary 2.4 had their origins in a question from Alex Dun-
can related to his work with Christian Urech on representations of finite subgroups of Cremona
groups.

3. PROPERTIES OF TENSOR PRODUCTS

In this section we summarise a number of properties of F[W1]
G1⊗F[W2]

G2 which are inherited
from F[W1]

G1 and F[W2]
G2 . We expect that most of the results of this section will be familiar to

the experts. Throughout we identify F[W1]
G1 with F[W1]

G1⊗F⊂ F[W1]
G1⊗F[W2]

G2 and F[W2]
G2

with F⊗ F[W2]
G2 ⊂ F[W1]

G1 ⊗ F[W2]
G2 . Let A denote the category of finitely generated com-

mutative F-algebras which are graded over the non-negative integers and have both a unit and
an augmentation. Most of the results of this section are valid for objects in this category. One
approach to this material would be to follow the model developed in [5] for Noetherian local
rings. We have elected to take a more direct but ad hoc approach.

Lemma 3.1. Suppose B and C are objects in A. Then

dimF
(
(B⊗C)+ /(B⊗C)2

+

)
= dimF(B+/B2

+)+dimF(C+/C2
+).

Proof. Observe that (B⊗C)+ = (B+⊗F)⊕ (B+⊗C+)⊕ (F⊗C+) and (B⊗C)2
+ = (B2

+⊗F)⊕
( B+⊗C+)⊕ (F⊗C2

+). �

Note that if B is an object in A, then every set of minimal homogeneous generators for B
projects to a homogeneous basis for the finite dimensional graded vector space B+/B2

+. There-
fore, although B does not have a unique minimal homogeneous generating set, the degrees of a
minimal homogeneous generating set are given by the dimensions of the homogeneous compo-
nents of B+/B2

+. The following is a straightforward consequence of Lemma 3.1 and its proof.

Proposition 3.2. If { f1, . . . , fs} is a minimal set of homogeneous generators for F[W1]
G1 and

{h1, . . . ,hk} is a minimal set of homogeneous generators for F[W2]
G2 , then { f1, . . . , fs,h1, . . . ,hk}

is a minimal set of homogeneous generators for F[W1]
G1⊗F[W2]

G2 .

We will use Koszul complexes to relate properties of B⊗C to properties of B and C. We
suggest [7, §1.6] as a good reference for the basic properties of Koszul complexes. Suppose B is
an object inA and f1, . . . , fs is a minimal set of homogeneous generators for B. Let KB( f ) denote
the Koszul complex determined by the sequence f1, . . . , fs ∈ B. Similarly, let KC(h) denote the
Koszul complex determined by a minimal set of homogeneous generators h1, . . . ,hk for C. We
write KB⊗C( f ,h) for the Koszul complex determined by f1⊗ 1, . . . , fs⊗ 1,1⊗ h1, . . . ,1⊗ hk ∈
B⊗C. The following is essentially [7, Proposition 1.6.6].
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Lemma 3.3. There is an isomorphism of differential graded (B⊗C)-algebras from KB⊗C( f ,h)
to KB( f )⊗KC(h).

Proof. The differential graded algebra KB⊗C( f ,h) is the exterior algebra on the free (B⊗C)-
module generated {ei,b j | i = 1, . . . ,s; j = 1, . . . ,k} with the differential determined by d(ei) =

fi⊗1 and d(b j) = 1⊗h j. Using the univeral property of the exterior algebra, the map taking ei

to ei⊗ 1 and bi to 1⊗ bi, extends to an algebra map from KB⊗C( f ,h) to KB( f )⊗KC(h). Using
the Koszul sign convention to define the differential on KB( f )⊗KC(h), we see that the map is
a map of differential graded algebras. Since the graded components of both algebras are free
(B⊗C)-modules of the same rank and the map takes a basis to a basis, we have the required
isomorphism. �

It follows from Lemma 3.3 that the homology of KB⊗C( f ,h) is isomorphic to the homology
of KB( f )⊗KC(h). Since the tensor product is over a field, the Künneth formula [48, Theorem
3.6.3] gives

Hn
(
KB( f )⊗KC(h)

)
�
⊕

i+ j=n

Hi
(
KB( f )

)
⊗H j (KC(h)) .

Since the Koszul homology is independent of the choice of generating set we write H∗(B) for the
homology of KB( f ). Using this convention and the above observations, we have

(1) Hn (B⊗C) �
⊕

i+ j=n

Hi (B)⊗H j (C) .

Recall that, for an object B in A, the depth of B is grade(B+,B), the length of a maximal
B-regular sequence in B+. Since the grade can be computed using the Koszul complex, see [7,
Theorem 1.6.17], we have the following proposition.

Proposition 3.4. depth(F[W1]
G1⊗F[W2]

G2) = depth(F[W1]
G1)+depth(F[W2]

G2).

Since an object inA is Cohen-Macaulay if and only if the depth is equal to the Krull dimension,
we get the following.

Proposition 3.5. F[W1]
G1⊗F[W2]

G2 is Cohen-Macaulay if and only if both F[W1]
G1 and F[W2]

G2

are Cohen-Macaulay.

Suppose B is an object in A and f1, . . . , fs is a minimal set of homogeneous generators for B.
Denote R := F[X1, . . . ,Xs] and consider the resulting presentation ρ : R−→B given by ρ(Xi) = fi.
We say that B is a complete intersection if ker(ρ) is generated by a regular sequence. We use
dim(B) to denote the Krull dimension of B. The analogue of the following result is well-known
in the setting of Noetherian local rings, see for example [7, §2.3] and [36, §21].

Proposition 3.6. Suppose B is an integral domain. Using the above notation, B is a complete
intersection if and only if dimF(H1(B)) = s−dim(B).

Proof. Note that, since B is an integral domain, ker(ρ) is a prime ideal. Let µ(ker(ρ)) denote
the number of elements in a minimal generating set for ker(ρ). If B is a complete intersection
then µ(ker(ρ)) = grade(ker(ρ),R) = height(ker(ρ)). Conversely, since R is Cohen-Macaulay,



MODULAR INVARIANTS OF FINITE GLUING GROUPS 7

height(ker(ρ)) = grade(ker(ρ),R) and if grade(ker(ρ),R) = µ(ker(ρ)), then ker(ρ) is generated
by a regular sequence, see [42, Theorem 16.21]. Observe that KB( f ) � KR(X)⊗R B. Therefore
H1(KB( f )) � TorR

1 (F,B). The short exact sequence of R-modules 0→ ker(ρ)→ R→ B→ 0
gives a long exact sequence ending in

TorR
1 (F,R)→ TorR

1 (F,B)→ F⊗R ker(ρ)→ F⊗R R→ F⊗R B→ 0.

Note that F⊗R R � F � F⊗R B and TorR
1 (F,R) = 0. Hence

H1(B) � TorR
1 (F,B) � F⊗R ker(ρ) � ker(ρ)/(R+ ker(ρ))

and dimF(H1(B)) = µ(ker(ρ)) (compare with [36, page 170]). Recall that height(ker(ρ)) =
dim(R)−dim(B) (see, for example, [7, Theorem A.16]). Puting these ideas together, we see that
B is a complete intersection if and only if dimF(H1(B)) = dim(R)−dim(B) = s−dim(B). �

Proposition 3.7. F[W1]
G1 ⊗F[W2]

G2 is a complete intersection if and only if both F[W1]
G1 and

F[W2]
G2 are complete intersections.

Proof. Since F[W1]
G1 , F[W2]

G2 and F[W1⊕W2]
G1×G2 � F[W1]

G1 ⊗ F[W2]
G2 are all integral do-

mains, Proposition 3.6 applies. Using Equation 1, we have

dimF
(

H1(F[W1]
G1⊗F[W2]

G2)
)
= dimF

(
H1(F[W1]

G1)
)
+dimF

(
H1(F[W2]

G2)
)
.

Suppose { f1, . . . , fs} is a minimal set of homogeneous generators for F[W1]
G1 and {h1, . . . ,hk}

is a minimal set of homogeneous generators for F[W2]
G2 . Using Proposition 3.2, we see that

{ f1, . . . , fs,h1, . . . ,hk} is a minimal set of homogeneous generators for F[W1]
G1⊗F[W2]

G2 . There-
fore F[W1]

G1⊗F[W2]
G2 is a complete intersection if and only if

dimF
(

H1(F[W1]
G1⊗F[W2]

G2)
)
= (s+ k)−dim(F[W1]

G1⊗F[W2]
G2).

Since G1 and G2 are finite groups and F[W1]
G1⊗F[W2]

G2 � F[W1⊕W2]
G1×G2 , we have

dim(F[W1]
G1⊗F[W2]

G2) = dimF(W1⊕W2) = dim(F[W1]
G1)+dim(F[W2]

G2)

and the result follows. �

Proposition 3.8. F[W1]
G1⊗F[W2]

G2 is a unique factorisation domain if and only if both F[W1]
G1

and F[W2]
G2 are unique factorisation domains.

Proof. Again we identify F[W1]
G1⊗F[W2]

G2 with F[W1⊕W2]
G1×G2 . Using a result of Nakajima

(see [2, Corollary 3.9.3]), a ring of invariants of a finite group is a unique factorisation domain
if and only if there are no non-trivial homomorphisms from the group to the units of the field
taking the value one on every pseudoreflection. The pseudoreflections for the action of G1×G2

on W1⊕W2 are precisely the elements (g1,1) and (1,g2) for g1 a pseudoreflection for the action
of G1 on W1 and g2 a pseudoreflection for the action of G2 on W2. A homomorphism from
G1×G2 to F× is determined uniquely by the restrictions to G1×{1} and {1}×G2. Therefore,
any homomorphism φ : G1×G2 → F× which takes value one on every pseudoreflection will
restrict to give homomorphisms φ1 : G1→ F× and φ2 : G2→ F× which take value one on every
pseudoreflection. �
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For a representation V of a finite group G a subset { f1, . . . , fs} ⊂ F[V ]G is called a geometric
separating set if the elements of the set can be use to distinguish (separate) the G-orbits of V⊗FF,
where F is the algebraic closure of F (see, for example, [22]).

Proposition 3.9. If { f1, . . . , fs} is a homogeneous geometric separating set for F[W1]
G1 and

{h1, . . . ,hk} is a homogeneous geometric separating set for F[W2]
G2 , then { f1, . . . , fs,h1, . . . ,hk}

is a homogeneous geometric separating set for F[W1]
G1⊗F[W2]

G2 .

Proof. We identify F[W1]
G1 ⊗F[W2]

G2 with F[W1⊕W2]
G1×G2 . Let B1 denote the subalgebra of

F[W1] generated by { f1, . . . , fs} and let B2 denote the subalgebra of F[W2] generated by {h1, . . . ,hk}.
Then B := B1⊗B2 is the subalagebra of F[W1⊕W2] generated by { f1, . . . , fs,h1, . . . ,hk}. Us-
ing [22, Proposition 1.2], F[Wi]

Gi is the purely inseparable closure of Bi in F[Wi]. Let B de-
note the purely inseparable closure of B in F[W1⊕W2]. Since B ⊆ F[W1⊕W2]

G1×G2 , we see
that B ⊆ F[W1⊕W2]

G1×G2 . Therefore, we need only show that every homogeneous element
of F[W1⊕W2]

G1×G2 lies in B. Consider f ∈ F[W1⊕W2]
G1×G2 . Using Proposition 3.2, write

f =
∑`

j=1 α j ⊗ β j for some choice of α j ∈ F[W1] and β j ∈ F[W2]. Choose N ∈ Z+ so that

α
pN

j ∈ B1 and β
pN

j ∈ B2 for all j. Then, since taking the pN-power is additive, we have f pN
=∑`

j=1 α
pN

j ⊗β
pN

j ∈ B1⊗B2 = B, as required. �

Theorem 3.10. Suppose G1×M G2 is a polynomial gluing. Then

(i) F[V ]G1×MG2 is polynomial if and only if both F[W1]
G1 and F[W2]

G2 are polynomial;
(ii) F[V ]G1×MG2 is Cohen-Macaulay if and only if both F[W1]

G1 and F[W2]
G2 are Cohen-

Macaulay;
(iii) F[V ]G1×MG2 is a complete intersection if and only if both F[W1]

G1 and F[W2]
G2 are com-

plete intersections;
(iv) F[V ]G1×MG2 is unique factorisation domain if and only if both F[W1]

G1 and F[W2]
G2 are

unique factorisation domains.

Proof. Each of these properties is preserved by the gluing isomorphism. Therefore the results
follow from Propositions 3.2, 3.5, 3.7 and 3.8. �

Theorem 3.11. Suppose G1×M G2 is a split polynomial gluing. Then

depth(F[V ]G1×MG2) = depth(F[W1]
G1)+depth(F[W2]

G2).

Furthermore, if ψ : F[W1⊕W2]→ F[V ]M denotes an F-algebra isomorphism which is an exten-
sion of the inclusion of F[W2] into F[V ]M and restricts to a G1-equivariant isomorphism of F[W1]

to A which takes F[W1]+ to A+, then {ψ( f1), . . . ,ψ( fs),h1, . . . ,hk)} is a geometric separating set
for F[V ]G1×MG2 where { f1, . . . , fs} is a homogeneous geometric separating set for F[W1]

G1 and
{h1, . . . ,hk} is a homogeneous geometric separating set for F[W2]

G2 .

Proof. While the map ψ is not degree preserving, it maps F[W1⊕W2]
G1×G2
+ to F[V ]G1×MG2

+ .
Therefore, the results follow from Propositions 3.4 and 3.9. �
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4. THE IMAGE OF THE TRANSFER

Suppose G :=G1×MG2 is a polynomial gluing with gluing isomorphism ψ : F[V ]−→ F[V ]M

where F[V ] = F[W1⊕W2]. We continue to identify F[Wi] with the appropriate subalgebra of F[V ].
Recall that the transfer map TrG : F[V ]−→ F[V ]G is the morphism of F[V ]G-modules defined by
TrG( f ) :=

∑
g∈G f ·g. The image of the transfer is an ideal in F[V ]G. By a result of Bram Broer

[6], since M is a p-group and F[V ]M is polynomial, the image of TrM is a principal ideal in
F[V ]M. Let τ denote a generator for this ideal. There is a factorisation TrG = TrG1×G2 ◦TrM.
Furthermore, sinceM is a normal subgroup of G, G1×G2 stabilises the image of TrM; to see
this observe that (

∑
h∈M f ·h)g =

∑
h∈M( f ·g)(g−1hg). Therefore, for any g ∈G1×G2, we see

that τ · g is a scalar multiple of τ . Thus we define a character of G1×G2 by τ · g = χτ(g)τ . If
G1×G2 is a p-group, then χτ is trivial and τ ∈ F[V ]G1×G2 .

Proposition 4.1. Suppose {u1, . . .uk} is a generating set for the image of TrG1 , {v1, . . . ,vs} is
a generating set for the image of TrG2 and τ ∈ F[V ]G1×G2 is a generator for the image of TrM.
Then the image of TrG is the ideal generated by {τψ(uiv j) | 1 6 i 6 k,1 6 j 6 s}.

We give the proof of Proposition 4.1 after proving Lemma 4.3 below.

Example 4.2. In the context of Example 2.1, it follows from [41, Theorem 4.4] that τ = dn,n(W ∗2 )
m ∈

F[V ]G1×G2 . Hence, in this context, we can apply Proposition 4.1 to compute the image of TrG in
terms of the image of TrG1 and the image of TrG2 .

For instance, let U(n,Fp) be the group of n×n upper-triangular unipotent matrices over Fp and
consider G = U(4,Fp) and G1 = G2 = U(2,Fp). Then G = G1×MG2 withM= homFp(F

2
p,F

2
p).

By [41, Theorem 4.4] we see that the image of TrG is the principal ideal generated by

δ := d1,1(x1) ·d2,2(x1,x2) ·d3,3(x1,x2,y1)

where di, j denotes the Dickson invariants in the specified variables. In particular, d1,1(x1) = xp−1
1 ,

d2,2(x1,x2) = det
(

x1 xp
1

x2 xp
2

)p−1
and

d3,3(x1,x2,y1) = det

x1 xp
1 xp2

1

x2 xp
2 xp2

2

y1 yp
1 yp2

1


p−1

.

On the other hand, applying [41, Theorem 4.4] again we observe that the image of TrM is the
principal ideal generated by τ = d2,2(x1,x2)

2, which is G1×G2-invariant. The image of TrG1 is
generated by u := d1,1(x1) = xp−1

1 and the image of TrG2 is generated by v := d1,1(y1) = yp−1
1 .

Note that ψ(u) = d1,1(x1) and

ψ(v) = ψ(y1)
p−1 = (yp2

1 +d1,2(x1,x2)y
p
1 +d2,2(x1,x2)y1)

p−1.

Using Proposition 1.3(b) of [49], we see that d3,3(x1,x2,y1) = −d2,2(x1,x2)ψ(v). Therefore
τ ·ψ(u) ·ψ(v) = d2,2(x1,x2)

2 ·d1,1(x1) ·ψ(v) =−d1,1(x1) ·d2,2(x1,x2) ·d3,3(x1,x2,y1) =−δ .
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Lemma 4.3. Suppose {u1, . . .uk} is a generating set for the image of TrG1 and {v1, . . . ,vs} is a
generating set for the image of TrG2 . Then the image of TrG1×G2 is generated by {uiv j | 1 6 i 6
k,1 6 j 6 s}.

Proof. Let IG1×G2 denote the image of TrG1×G2 , let IG1 denote the image of TrG1 and let IG2

denote the image of TrG2 . Observe that TrG1×G2 = Tr{1}×G2 ◦TrG1×{1}. Choose fi ∈ F[W1] and
h j ∈ F[W2] so that TrG1( fi) = ui and TrG2(h j) = v j. Then

TrG1×G2( fih j) = Tr{1}×G2 ◦TrG1×{1}( fih j) = Tr{1}×G2(uih j) = uiv j ∈ IG1×G2.

On the other hand, for any f ∈ F[V ], write f =
∑

I,J cI,JxIyJ for exponent sequences I and J with
cI,J ∈ F. Then

TrG1×G2( f ) =
∑
I,J

cI,JTrG1×G2(xIyJ) =
∑
I,J

cI,JTrG2(xI)TrG1(yJ) ∈ IG1IG2.

Hence TrG1×G2( f ) is in the ideal generated by {uiv j | 1 6 i 6 k,1 6 j 6 s}. �

Proof of Proposition 4.1. Let IG denote the image of TrG. Choose fi ∈ F[W1] and h j ∈ F[W2] so
that TrG1( fi) = ui and TrG2(h j) = vk. Choose α ∈ F[V ] so that TrM(α) = τ . Then

TrG(ψ( fih j)α) = TrG1×G2 ◦TrM(ψ( fih j)α) = TrG1×G2(ψ( fih j)τ)

= τψ(TrG1×G2( fih j)) = τψ(uiv j) ∈ IG.

Suppose f = TrG( f ′). Then f = TrG1×G2(TrM( f ′)) = TrG1×G2( f̃ τ) for some f̃ ∈ F[V ]M. Since
τ ∈ F[V ]G1×G2 and ψ is a (G1×G2)-equivariant isomorphism, we get

f = τTrG1×G2(ψ( f ′′)) = τψ(TrG1×G2( f ′′))

for some f ′′ ∈ F[V ]. Therefore f is in the ideal generated by {τψ(uiv j) | 1 6 i 6 k,1 6 j 6 s}. �

5. MAXIMAL PARABOLIC SUBGROUPS OF FINITE SYMPLECTIC GROUPS

For this section, we let V denote the defining representation of the symplectic group Sp2m(Fq)

with q = pr. We choose an ordered basis e1,e2, . . . ,em, fm, fm−1, . . . , f1 for V with dual basis
y1, . . . ,ym,xm, . . . ,x1 so that the symplectic form is represented by the matrix

J =

(
0 Q
−Q 0

)
with Q =


0 0 0 · · · 0 0 1
0 0 0 · · · 0 1 0

...
0 1 0 · · · 0 0 0
1 0 0 · · · 0 0 0

 .

We identify Sp2m(Fq) with the set of matrices A ∈ GL2m(Fq) satisfying AT JA = J. Define

ξi := yqi

mxm− ymxqi

m + · · ·+ yqi

1 x1− y1xqi

1 . Carlisle and Kropholler proved that Fq[V ]Sp2m(Fq) is the
complete intersection generated by ξ1, . . . ,ξ2m−1 and the Dickson invariants d1,2m, . . . ,dm,2m, see
[2, Theorem 8.3.11]. Note that for i > 1, ξi can be constructed by applying Steenrod operations
to ξ1. Therefore Sp2m(Fq) is the subgroup of GL2m(Fq) which fixes ξ1.

The symplectic group Sp2m(Fq) has a BN-pair of type Cm (see [45] or [13, §1.11]). To con-
struct a maximal parabolic subgroup for Sp2m(Fq), we remove one of the m generating reflections
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from the associated Weyl group, N/(B∩N), and lift the resulting subgroup to get a subgroup of
N, say Ñ. The resulting parabolic subgroup is generated by B and Ñ. We label the vertices of
the Coxeter graph so that the edge of weight 4 joins vertex m− 1 and m. We will refer to the
maximal parabolic subgroup constructed by removing the reflection corresponding to vertex k as
a maximal parabolic of type k and denote this subgroup by Gk. The primary goal of this section is
to compute Fq[V ]Gk . In the following, we use Qk to represent the k×k submatrix of Q constructed
by removing the first m− k columns and the last m− k rows. Therefore

J =


0 0 0 Qk
0 0 Qm−k 0
0 −Qm−k 0 0

−Qk 0 0 0

 .

Let Pk denote the subgroup of GL2m(Fq) consisting of matrices of the form
Ik C1 C2 A
0 Im−k 0 B1
0 0 Im−k B2
0 0 0 Ik


subject to the relations C1 = −QkBT

2 Qm−k, C2 = QkBT
1 Qm−k and AT Qk−QkA = BT

2 Qm−kB1−
BT

1 Qm−kB2. Observe that Pk is a p-group and a subgroup of Sp2m(Fq) .

Proposition 5.1. The maximal parabolic subgroup Gk is isomorphic to(
GLk(Fq)×Sp2m−2k(Fq)

)
nPk

with the action of GLk(Fq)×Sp2m−2k(Fq) on Pk given by mapping (A,B)∈GLk(Fq)×Sp2m−2k(Fq)

to A 0 0
0 B 0
0 0 Qk(A−1)T Qk

 ∈ Sp2m(Fq).

Proof. We use the BN-pair for Sp2m(Fq) described in Chapter 8 of Taylor’s book [45]. The Borel
subgroup B is the group of upper triangular symplectic matrices and N is the group of symplectic
monomial matrices. The Weyl group is generated by reflections w1, . . . ,wm. For i < m, wi can
be lifted to the element ni ∈ N which takes ei to −ei+1, ei+1 to ei, fi to − fi+1, fi+1 to fi and
fixes the other basis vectors. The generator wm lifts to nm ∈ N which takes em to − fm, fm to em

and fixes the other basis elements. The maximal parabolic subgroup Gk is generated by B and
{n1, . . . ,nm}\{nk}.

Direct calculation verifies that Pk is precisely the set of symplectic matrices of the given block-
form and that the embedding of GLk(Fq)×Sp2m−2k(Fq) gives the set of symplectic matrices of
that corresponding block-form. A further explicit calculation verifies that the embedding of
GLk(Fq)×Sp2m−2k(Fq) normalises Pk. The removal of vertex k from the Coxeter graph gives
a graph of type Ak−1×Cm−k. The removal of the generator nk separates the basis vectors into
three sets: {e1, . . . ,ek}, {ek+1, . . . ,em, fm, . . . , fk+1}, { fk, . . . , f1}. We are left with the usual BN-
pair for GLk(Fq) on the span of {e1, . . . ,ek}, the usual BN-pair for Sp2m−2k(Fq) on the span of
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{ek+1, . . . ,em, fm, . . . , fk+1}, the action of GLk(Fq) on { fk, . . . , f1} determined by the symplectic
condition, extended by the normal subgroup Pk to recover the Borel subgroup. �

Let Uk denote the span of {e1, . . . ,ek} and let Sp2m(Fq)Uk denote the pointwise stabiliser sub-
group.

Corollary 5.2. The maximal parabolic subgroup Gk is isomorphic to

GLk(Fq)nSp2m(Fq)Uk

with the action of GLk(Fq) as described in Proposition 5.1.

Proof. With our chosen basis, the matrices representing elements of Sp2m(Fq)Uk are of the formIk A B
0 C D
0 E F


where {A,E} ⊂ Fk×(2m−2k)

q , {B,F} ⊂ Fk×k
q , C ∈ F(2m−2k)×(2m−2k)

q and D ∈ F(2m−2k)×k
q . The sym-

plectic condition forces E = 0, F = Ik and C ∈ Sp2m−2k(Fq). If we restrict to C = I2m−2k and
apply the symplectic condition, we recover Pk. Since the action of Sp2m−2k(Fq) normalises Pk,
we see that Sp2m(Fq)Uk is isomorphic to Sp2m−2k(Fq)nPk, and the result follows from Proposi-
tion 5.1. �

Notation 5.3. For the rest of this section, we use d̃i,` to denote the ith Dickson invariant in the first
` variables taken from the ordered list x1, . . . ,xm,ym, . . . ,y1. For example, d̃i,m is the ith Dickson
invariant in x1, . . . ,xm. Let Wk denote the span of {x1, . . . ,xm,ym, . . . ,y1}\{y1, . . . ,yk} and define

Nk(t) :=
∏

v∈Wk

(t + v) =
2m−k∑

j=0

tq2m−k− j
d̃ j,2m−k ∈ Fq[V ][t].

Note that Nk(xi) = 0 and Nk(yi) = 0 if i > k.

Theorem 5.4. The ring of invariants Fq[V ]Sp2m(Fq)Uk is generated by x1, . . . ,xk, ξ1, . . . ,ξ2m−1,
Nk(y1), . . . ,Nk(yk), and d̃i,2m−k for i = 1,2, . . . ,2m− k. Furthermore, this ring is a complete
intersection and, therefore, Cohen-Macaulay.

Proof. Since Fq[V ]Sp2m(Fq) is Cohen-Macaulay and a complete intersection, it follows from [32,
Theorem B] that Fq[V ]Sp2m(Fq)Uk is Cohen-Macaulay and a complete intersection.

We will use Kemper’s algorithm based on [32, Theorem 2.7] to compute a generating set
for Fq[V ]Sp2m(Fq)Uk . Given a G-invariant polynomial, Kemper’s algorithm produces a set of GU -
invariant polynomials. The algorithm uses only the input polynomials and the subspace U . Ap-
plying the algorithm to {di,2m | i = 1, . . . ,2m} produces a generating set for Fq[V ]GL2m(Fq)Uk . By
comparing the order of GL2m(Fq)Uk with product of the degrees, we see that Fq[V ]GL2m(Fq)Uk is
the polynomial algebra generated by {Nk(yi), d̃ j,2m−k | i = 1, . . . ,k; j = 1,2, . . . ,2m− k}. Apply-
ing the algorithm to the ξ j produces {x1, . . . ,xk,ξ1, . . . ,ξ2m−1}. We do not claim that this is a
minimal generating set. �
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Corollary 5.5. For k < m, the set

Hk := {x1, . . . ,xk,Nk(y1), . . . ,Nk(yk), d̃1,2m−k, . . . , d̃2m−2k,2m−k}

is a homogeneous system of parameters.

Proof. It is sufficient to show that the ideal generated by Hk in Fq[V ] is zero dimensional. Since
Fq[V ] is integral over Fq[V ]GL2m(Fq)Uk and, from the proof of Theorem 5.4, Fq[V ]GL2m(Fq)Uk is gen-
erated by S := {Nk(yi), d̃ j,2m−k | i = 1, . . . ,k; j = 1,2, . . . ,2m−k}, we see that the ideal generated
by S in Fq[V ] is zero dimensional. Thus the ideal generated byHk∪S is zero dimensional. How-
ever, it follows from the definition of d̃ j,2m−k, see Notation 5.3, that for j > 2m−2k, d̃ j,2m−k is
in the ideal in Fq[V ] generated by {x1, . . . ,xk} (one way to see this is to compute the lead term
of d̃ j,2m−k using a grevlex order with y1 > y2 > · · · > ym > xm > · · · > x1). Therefore the ideal
generated byHk coincides with ideal generated byHk∪S and so is zero dimensional. �

For k = m, we have

Sp2m(Fq)Um = Pm =

{(
Im A
0 Im

)
| A = QmAT Qm

}
,

which is an elementary abelian p-group of order q(m
2+m)/2.

Corollary 5.6. The ring of invariants Fq[V ]Pm is the complete intersection generated by x1, . . . ,xm,
ξ1, . . . ,ξm−1, and Nm(y1), . . . ,Nm(ym).

Proof. By Theorem 5.4, Fq[V ]Pm is the complete intersection generated by x1, . . . ,xm, ξ1, . . . ,ξ2m−1,
Nm(y1), . . . ,Nm(ym), and d̃i,m for i = 1,2, . . . ,m. Since d̃i,m ∈ Fq[x1, . . . ,xm], these generators are
redundant. An explicit calculation gives

ξm =

 m∑
j=1

x jNm(y j)

−(m−1∑
i=1

ξid̃m−i,m

)
.

Thus ξm is also a redundant generator. Similar relations can be constructed to eliminate ξ j for
j > m; one approach to doing this is to apply Steenrod operations to the relation for ξm. �

Remark 5.7. The above result is essentially Theorem 5.4.8 of [31].

The action of GLk(Fq) on V is the direct sum of the action as a vector and a covector on
Span(e1, . . . ,ek) and Span( fk, . . . , f1), in the sense of [3] or [14], and a trivial action on the re-
maining basis vectors. This means that we can use the results of [14] to compute generators for

Fq[V ]GLk(Fq). Our approach to the construction of generators for Fq[V ]Gk =
(
Fq[V ]Sp2m(Fq)Uk

)GLk(Fq)

is to apply a “diagonal gluing” to the invariants of Fq[V ]GLk(Fq). It is useful to start with the case
k = m, which is closely related to the Sylow p-subgroup of Sp2m(Fq). We use USp2m to denote
the group of upper-triangular unipotent symplectic matrices, a Sylow p-subgroup for Sp2m(Fq).
In the following theorem, we use N(xi) to denote the product of xi + v as v runs over the span of
x1, . . . ,xi−1.



14 YIN CHEN, R. JAMES SHANK, AND DAVID L. WEHLAU

Theorem 5.8. The ring of invariants Fq[V ]USp2m is the complete intersection generated by
ξ1, . . . ,ξ2m−2, N(x1), . . . ,N(xm) and Nm(ym),Nm−1(ym−1), . . . ,N1(y1).

Proof. Let H denote the upper triangular unipotent subgroup of GLm(Fq). Observe that USp2m is
isomorphic to H nPm with the action given by restricting the action of GLm(Fq) given in Propo-
sition 5.1 to the subgroup H. Furthermore, this restriction gives a vector/covector action of H on
V . Bonnafé and Kemper [3] showed that Fq[V ]H is a complete intersection generated by NH(yi),
N(xi) for i = 1, . . . ,m and additional invariants which they denote by u j for j = 2−m, . . . ,m−2.
Let S denote the algebra generated by x1, . . . ,xm, Nm(y1), . . . ,Nm(ym). Referring to Corollary 5.6,
we see that {x1, . . . ,xm, Nm(y1), . . . ,Nm(ym)} is a homogeneous system of parameters for Fq[V ]Pm

and that Fq[V ]Pm is a finitely generated free S-module. Furthermore, the S-module generators can
be taken to be monomials in the ξi. Therefore, since the ξi are H-invariant, adjoining the ξi to a
generating set for SH gives a generating set for Fq[V ]USp2m = (Fq[V ]Pm)H . The algebra homomor-
phism from Fq[V ] to S which fixes xi and maps yi to Nm(yi) is an H-equivariant isomorphism of
algebras. Thus we can construct generators for SH by substituting Nm(yi) for yi in the generators
for Fq[V ]H . Note that NH(Nm(yi)) = Ni(yi). Substituting Nm(yi) for yi in u j gives

ũ0 =
m∑

i=1

xiNm(yi)

ũ j =
m∑

i=1

xq j

i Nm(yi)

ũ− j =
m∑

i=1

xiNm(yi)
q j

for j = 1, . . . ,m. These invariants can be written in terms of the ξi and the Dickson invariants in
x1, . . . ,xm:

ũ0 =
m∑

i=1

ξid̃m−i,m

ũ j =

m− j−1∑
i=0

ξ
q j

m−i− jd̃i,m−
m∑

i=m− j+1

ξ
qm−i

i+ j−md̃i,m

ũ− j =

m∑
i=0

ξm+ j−id̃
q j

i,m

for j = 1, . . . ,m; see Lemma 5.10 below for details. Since the Dickson invariants d̃i,m can be
written as polynomials in N(x1), . . . ,N(xm), the ũ2−m, . . . , ũm−2 are redundant, as long as we in-
clude ξ1, . . . ,ξ2m−2 in our generating set (the invariants ũ−m, ũ1−m, ũm−1 and ũm require ξ2m−1

to rewrite). Define H := {N(x1), . . . ,N(xm),Nm(ym), . . . ,N1(y1)} and let A denote the algebra
generated H. Note that A is the ring of invariants for the upper triangular unipotent subgroup
of GL2m(Fq), each di,2m ∈ A and H is a homogeneous system of parameters. Furthermore,
Fq[V ]USp2m is a finite A-module and the module generators can be taken to be monomials in
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the ξi. The Bonnafé-Kemper relations [3, page 105] translate into relations which allow us
to rewrite powers of the ξi in terms of elements of A and powers of ξ j of lower total de-

gree. In particular, the translation of relation Rm− j rewrites ξ
qm− j−1

2 j+1 for j = 0, . . . ,m− 2, the

translation of R−m− j rewrites ξ
qm− j

2 j for j = 1, . . . ,m− 2 and the R+
1 rewrites ξ

q
2m−2; compare

with [3, Theorem 2.4]. Using these relations, we see that {ξ a1
1 · · ·ξ

a2m−2
2m−2 | ai < qdm−i/2e} is

a set of A-module generators for Fq[V ]USp2m . Observe that the product of the degrees of the
elements in H is qm(2m−1), the order of USp2m is qm2

and the number of module generators
is qm(m−1). Therefore Fq[V ]USp2m is Cohen-Macaulay, see [19, Theorem 3.7.1] or [12, Corol-
lary 3.1.4]. Since Fq[V ]USp2m is Cohen-Macaulay, the elements of H form a regular sequence.
Let h denote the ideal in Fq[V ]USp2m generated by the elements of H. The ring Fq[V ]USp2m

is a complete intersection if and only if Fq[V ]USp2m/h is a complete intersection (this follows
from [7, Theorem 2.3.4]). However, using the rewriting relations Fq[V ]USp2m/h is isomorphic to

Fq[ξ1, . . . ,ξ2m−2]/〈ξ qm−1

1 ,ξ
qm−1

2 ,ξ
qm−2

3 , . . . ,ξ
q2

2m−2〉, which is a complete intersection. �

The above is consistent with the calculation of Fq[V ]USp4 in [25]. Since USp2m is a Sylow p-
subgroup for all of the standard parabolic subgroups of Sp2m(Fq), the following is a consequence
of [10].

Corollary 5.9. If G is any parabolic subgroup of Sp2m(Fq), then Fq[V ]G is Cohen-Macaulay.

In the following, it is useful to take ξ0 = 0 and ξ
q j

−i =−ξ
q j−i

i for j ≥ i > 0.

Lemma 5.10. For k ≤ m and i, j ≥ 0, we have

k∑
s=1

xqi

s Nk(ys)
q j
=

2m−k∑
`=0

ξ
qi

2m−k−i−`+ jd̃
q j

`,2m−k.

Proof. We expand the right hand side giving

2m−k∑
`=0

ξ
qi

2m−k−i−`+ jd̃
q j

`,2m−k =
2m−k∑
`=0

(
m∑

s=1

(
xsyq2m−k−i−`+ j

s − ysxq2m−k−i−`+ j

s

))qi

d̃q j

`,2m−k

=
2m−k∑
`=0

(
m∑

s=1

xqi

s yq2m−k−`+ j

s − yqi

s xq2m−k−`+ j

s

)
d̃q j

`,2m−k

=
m∑

s=1

(xqi

s Nk(ys)
q j
− yqi

s Nk(xs)
q j
)

=

k∑
s=1

xqi

s Nk(ys)
q j
,

as required. �

Theorem 5.11. The ring of invariants Fq[V ]Gk is generated by ξ1, . . . ,ξ2m−1, d1,2m, . . . ,dk,2m,
d̃1,k, . . . , d̃k,k and d̃1,2m−k, . . . , d̃m−k,2m−k.
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Proof. Using Corollary 5.2, we have Fq[V ]Gk = (Fq[V ]Sp2m(Fq)Uk )GLk(Fq). A generating set for
Fq[V ]Sp2m(Fq)Uk was given in Theorem 5.4. Let S denote the subalgebra of Fq[V ]Sp2m(Fq)Uk gen-
erated by {x1, . . . ,xk,Nk(y1), . . . ,Nk(yk)} and let W denote the span of {e1, . . . ,ek, fk, . . . , f1}
so that Fq[W ] = Fq[y1, . . . ,yk,xk, . . . ,x1]. The action of GLk(Fq) on W is a vector/covector
action and the algebra homomorphism from Fq[W ] to S which takes yi to Nk(yi) and fixes
xi is GLk(Fq)-equivariant. Therefore, we can construct generators for SGLk(Fq) by substitut-
ing Nk(yi) for yi in the generators of Fq[W ]GLk(Fq) given in [14]. Let A denote the subalge-
bra of Fq[V ]Sp2m(Fq)Uk generated by {d̃1,2m−k, . . . , d̃2m−2k,2m−k}. It follows from Corollary 5.5
that {x1, . . . ,xk,Nk(y1), . . . ,Nk(yk), d̃1,2m−k, . . . , d̃2m−2k,2m−k} is a homogeneous system of pa-
rameters for Fq[V ]Sp2m(Fq)Uk and, therefore, Fq[V ]Sp2m(Fq)Uk is a free finitely generated (S⊗A)-
module. Furthermore, the (S⊗A)-module generators can be taken to be monomials in the ξi

and d̃ j,2m−k for j > 2m−2k. Since the d̃ j,2m−k are GLk(Fq)-invariant, we have (S⊗A)GLk(Fq) =

SGLk(Fq)⊗A. Since the ξi are also GLk(Fq)-invariant, to construct a generating set for Fq[V ]Gk =

(Fq[V ]Sp2m(Fq)Uk )GLk(Fq), we need only adjoin ξ1, . . . ,ξ2m−1 and d̃i,2m−k for i = 1,2, . . . ,2m− k
to a generating set for SGLk(Fq). It was shown in [14] that Fq[W ]GLk(Fq) is generated by Dick-
son invariants in the xi, Dickson invariants in the yi and the Bonnafé-Kemper invariants u j for
j = 1− k, . . . ,k− 1. Let d̄`,k denote the polynomial constructed by substituting Nk(yi) for yi in
the Dickson invariants in the yi. Then SGLk(Fq) is generated by {d̄i,k, d̃i,k, ũ j | i = 1, . . . ,k; j =

1− k, . . . ,k− 1} with ũ0 =
∑k

i=1 xiNk(yi), ũ` =
∑k

i=1 xq`
i Nk(yi) and ũ−` =

∑m
i=1 xiNk(yi)

q` for
` > 0.

For the remainder of this proof we use H to denote the parabolic subgroup of GL2m(Fq) as-
sociated to the partition (k,2m− 2k,k) and observe that Gk is a subgroup of H. We claim that
Fq[V ]H is generated by

{d̄i,k, d̃i,k, d̃ j,2m−k | i = 1, . . . ,k; j = 1, . . . ,2m−2k}.

First note that we have 2m elements in this set and the product of the degrees equals the order
of H. Thus we only need to show the set is a homogenerous system of parameters. We could
do this directly but prefer to take an alternate approach. The set {d̃i,k, d̃ j,2m−k | i = 1, . . . ,k; j =
1, . . . ,2m−2k} is the generating set for the parabolic subgroup of GL2m−k(Fq) associated to the
partition (2m−2k,k) constructed by Kuhn and Mitchell [34, Theorem 2.2]. We can then form H
as the polynomial gluing of this group with GLk(Fq). This shows that the given set is a generating
set for Fq[V ]H but this also means that we can replace the d̄i,k with di,2m in our generating set for
Fq[V ]Gk by using the Kuhn-Mitchell generators for Fq[V ]H .

To complete the proof we need to show that ũ j and d̃i,2m−k for i > m− k are redundant. To
show that the ũ j are redundant we use Lemma 5.10: taking i = 0 and j = 0 shows that ũ0 is
redundant, taking i = 0 and j > 0 shows that ũ− j is redundant, and taking i > 0 and j = 0 shows
that ũi is redundant.

Define R := Fq[yk+1, . . . ,ym,xm, . . . ,x1], let W k denote the span of {x1, . . . ,xk} and define
Nk(t) :=

∏
u∈W k

(t−u). Let di,2m−2k denote the element of R constructed by substituting Nk(y j)

for y j and Nk(x j) for x j into the ith Dickson invariant in the variables {yk+1, . . . ,ym,xm, . . . ,xk+1}.



MODULAR INVARIANTS OF FINITE GLUING GROUPS 17

Define

ξ i :=
m∑

j=k+1

Nk(x j)Nk(y j)
qi
−Nk(y j)Nk(x j)

qi
.

The action of Gk on R is a polynomial gluing of Sp2m−2k(Fq) and GLk(Fq). Using the Carlisle-
Kropholler generators for the symplectic invariants, the gluing construction and Theorem 3.10,
we see that the ring RGk is the complete intersection generated by d̃i,k for i = 1, . . . ,k, di,2m−2k for
i = 1, . . . ,m− k and ξ i for i = 1, . . . ,2m− 2k− 1. Using the expansion of Nk(t) in terms of the
Dickson invariants and the fact that Nk(xi) = 0 for i≤ k gives

ξ i =
m∑

j=1

( k∑
`=0

xqk−`

j d̃`,k

)(
k∑

s=0

yqk−s

j d̃s,k

)qi

−

(
k∑

`=0

yqk−`

j d̃`,k

)(
k∑

s=0

xqk−s

j d̃s,k

)qi
=

m∑
j=1

k∑
`=0

k∑
s=0

(
xqk−`

j yqk−s+i

j − xqk−s+i

j yqk−`

j

)
d̃`,kd̃qi

s,k

which gives

ξ i =
∑
`>s−i

ξ
qk−`

`−s+id̃`,kd̃qi

s,k +
∑
`<s−i

ξ
qk−s+i

s−`−i d̃`,kd̃qi

s,k.(2)

Therefore the ξi lie in the algebra generated by the ξi and the d̃i,k. Since d̃i,2m−k ∈ RGk , these
invariants can be re-written as polynomials in d̃i,k for i = 1, . . . ,k, di,2m−2k for i = 1, . . . ,m− k
and ξi for i = 1, . . . ,2m−2k−1. Using the Kuhn-Mitchel generators for the parabolic subgroup
of GL2m−k(Fq) associated to the partition (2m− 2k,k) and comparing degrees, di,2m−2k for i =
1, . . . ,m− k can be be rewritten using d̃i,2m−k for i = 1, . . . ,m− k and d̃i,k for i = 1, . . . ,k. �

Corollary 5.12. The ring Fq[V ]G1 is a complete intersection.

Proof. By Theorem 5.11, Fq[V ]G1 is generated by ξ1, . . . ,ξ2m−1, d̃1,2m−1, . . . , d̃m−1,2m−1, d1,2m

and d̃1,1 = xq−1
1 . Define

H := {xq−1
1 ,ξ1, . . . ,ξm−1, d̃1,2m−1, . . . , d̃m−1,2m−1,d1,2m}

and let h denote the ideal in Fq[V ]G1 generated byH. We will show that ξ
q−1
2m−1 ∈ h and ξ

q j−1

2m− j ∈ h
for j = 2, . . . ,m. From this it follows that H is a homogeneous system of parameters and that
the resulting module generators are monomials in ξm, . . . ,ξ2m−1. Since the order of the group is
qm2

(q−1)
∏m−1

i=1 (q2i−1), the product of the degrees of the elements ofH is

q(3m−1)m/2(q−1)2
m−1∏
i=1

(q2i−1),

and the ring is Cohen-Macaulay, we need (q−1)qm(m−1)/2 module generators. Therefore, there
are no further relations and Fq[V ]G1 is a complete intersection.

Lemma 5.10 with k = 1, i = 0 and j = 0 gives

x1N1(y1) =
2m−1∑
`=0

ξ2m−1−`d̃`,2m−1 = ξ2m−1 +
m−1∑
`=1

ξ2m−1−`d̃`,2m−1 +
m−1∑
s=1

ξsd̃2m−s−1,2m−1.
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Therefore x1N1(y1)− ξ2m−1 ∈ h. Furthermore d1,2m = d̃q
1,2m−1−N1(y1)

q−1. Hence ξ
q−1
2m−1 ≡h

(x1N1(y1))
q−1 ∈ h.

Equation 2 above with k = 1 and i∈ {m, . . . ,2m−2} gives ξ i = ξ
q
i −ξi+1xq−1

1 −ξi−1x(q−1)qi

1 +

ξix
(q−1)(qi+1)
1 . Therefore ξ

q
i ≡h ξ i. Using the notation of the proof of Theorem 5.11 with k = 1,

RG1 is a complete intersection with the relations coming through the gluing isomorphism from
the Carlisle-Kropholler relations for Sp2m−2k(Fq). Define

H := {xq−1
1 ,ξ1, . . . ,ξ m−2,d1,2m−2, . . . ,dm−2,2m−2}.

an let h denote the ideal in RG1 generated by H. Then h⊆ h∩RG1 . For i = m, . . . ,2m−2, we can

use the Carlisle-Kropholler relations to show that ξ
q2m−2−i

i ∈ h⊂ h. Therefore ξ
q j−1

2m− j ≡h ξ
q j−2

2m− j ∈ h
for j = 2, . . . ,m, as required. �

Example 5.13. Consider the type 2 parabolic for m = 2. By Theorem 5.11, the invariants are
generated by ξ1,ξ2,ξ3, d̃1,2, d̃2,2,d1,4,d2,4 which have degrees q+ 1,q2 + 1,q3 + 1,q2− q,q2−
1,q4−q3,q4−q2. There are two natural choices for a homogeneous system of parameters:

H1 := {ξ1,ξ2,d1,4,d2,4},

H2 := {d̃1,2, d̃2,2,d1,4,d2,4}.
For the first system of parameters, we need q(q2+1)(q+1) module generators and for the second
we need q2(q− 1)2(q+ 1) generators. Using the second system of paprameters, the module
generators can be taken to be monomials in the ξi. Using the Carlisle-Kropholler relation for
Fq[V ]Sp4(Fq), we have

ξ
q
3 +d1,4ξ

q
2 +d2,4ξ

q
1 = ξ1(ξ

q2+1
1 −ξ

q+1
2 +ξ

q
1 ξ3)

q−1 = ξ1d4,4.

This is essentially the translation of the relation T ∗1 from [14] into this context. Let h denote
the ideal in Fq[V ]G2 generated by H2. Since d4,4 ∈ Fq[d̃1,2, d̃2,2,d1,4,d2,4], the relation above

shows ξ
q
3 ∈ h. The translation of the relation T1 from [14] shows that ξ

q2

1 ∈ h. The translation
of the relation T00 shows that (ξ q+1

2 − ξ
q
1 ξ3)

q−1 ∈ h. Conjecture 16 from [14] suggests two
additional relations, T1,0 and T0,1. These relations would translate to relations in degrees q4−q

and q4−q3+q2−1. We can use the the relation T00 to show that ξ
q2−1
2 is congruent modulo h to a

linear combination of smaller monomials in the ξi (using the grevlex order with ξ3 > ξ2 > ξ1). We
conjecture that the relation in degree q4−q can be used to show that ξ3ξ

q2−q−1
2 is also congruent

to a linear combination of smaller monomials and that the relation in degree q4− q3 + q2− 1
shows that ξ

q
1 ξ

q2−q−1
2 is congruent to a linear combination of smaller monomials. If true, by

counting independent monomials, these conjectures would show that Fq[V ]G2 for m = 2 is not a
complete intersection. We have confirmed these conjectures for q = 3 and q = 5 using Magma
[4].

Remark 5.14. To an arbitrary parabolic subgroup of Sp2m(Fq) we can associate a partition
of 2m : λ = (r1, . . . ,r`,2m− 2k,r`, . . . ,r1) with r1 + · · ·+ r` = k. Let Gλ denote the parabolic
subgroup of Sp2m(Fq) associated to λ and let GLλ denote the parabolic subgroup of GL2m(Fq)
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associated to the partition λ . The ring Fq[V ]GLλ is a polynomial algebra generated by a collec-
tion of Dickson invariants. Since Fq[V ]Gλ is Cohen-Macaulay, it is a free Fq[V ]GLλ -module. We
conjecture that the module generators can be taken to be monomials in the ξi and that Fq[V ]Gλ

is generated by ξ1, . . . ,ξ2m−1 and a subset of a generating set for Fq[V ]GLλ .

6. SINGULAR FINITE CLASSICAL GROUPS

In this section Fwill denote a finite field and β an alternating, symmetric or Hermitian form on
V . We suggest [45] or [46] for background material on finite classical groups. Define Gβ := {g∈
GL(V ) | β (gv,gw) = β (v,w)∀v,w,∈ V}. Take W1 to be the radical of β , in other words, W1 :=
{u ∈ V | β (u,v) = 0∀v ∈ V}. Take G1 := GL(W1), W2 := V/W1 and G2 to be the image of Gβ

in GL(W2). It is a straight-forward observation that Gβ is the polynomial gluing G1×M G2 with
M = homF(W2,W1). Furthermore, β induces a non-degenerate form on W2. This construction
reproduces the content of [31, §4.7]. Following the convention of Section 2, we denote m =

dim(W1) and n = dim(W2).
If β is an alternating form, then n is even, G2 is isomorphic to Spn(F) and Gβ is isomorphic to

GLm(F)×M Spn(F). By the work of Carlisle and Kropholler [2, §8.3], we know that F[W2]
Spn(F)

is a complete intersection and a unique factorization domain. Therefore, using Theorem 3.10,
we see that F[V ]Gβ is a complete intersection and a unique factorization domain. Note that in this
case, we can identify Gβ with the subgroup of GLn+m(Fq) which fixes ξ := x1xq

2− xq
1x2 + · · ·+

xn−1xq
n− xq

n−1xn with F= Fq.
If β is Hermitian, then G2 is isomorphic to the unitary group Un(F) and Gβ is isomorphic to

GLm(F)×M Un(F). By the work of Chu and Jow [17], we know that F[W2]
Un(F) is a complete

intersection and a unique factorization domain. Therefore, using Theorem 3.10, we see that
F[V ]Gβ is a complete intersection and a unique factorization domain. Note that in this case,
we can identify Gβ with the subgroup of GLn+m(Fq2) which fixes ξ := xq+1

1 + · · ·+ xq+1
n with

F= Fq2 .
If β is symmetric and the characteristic of F is not 2, then β is the polarization of the quadratic

form Q(v) := β (v,v)/2 and G2 is isomorphic to the orthogonal group On(F,Q). While there
are some partial results and conjectures concerning F[W2]

On(F,Q), see [15] and [16], there is no
published refereed account of the general result. In characteristic 2, there is a breakdown in
the correspondence between quadratic forms and symmetric forms. We do have the work of
Kropholler et al. [33] which computes the ring of invariants for the orthogonal group associated
to a non-singular quadratic form on vector space over the field F2; in this context, the polarization
of the quadratic form is a possibly degenerate alternating form.

Example 6.1. Take q odd, n = 3 and consider the quadratic form ∆ = x2
2 − x1x3. Then G2

is O3(Fq). The order of O3(Fq) is 2q(q2− 1) and Fq[W2]
O3(Fq) is a polynomial algebra with

generators in degrees 2, q+1 and q(q−1), see [18] or [43]. The generator in degree 2 is ∆ and
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the generator in degree q+1 can be constructed by applying a Steenrod operation to ∆. Define

E :=


1 2c c2

0 1 c
0 0 1

 | c ∈ Fq

 .

Then E is a Sylow p-subgroup for O3(Fq). The ring of invariants Fq[W2]
E is the hypersurface

generated by ∆ and the orbit products of the variables, see [29] and, for the case q= p, [21]. Note
that we can identify W2 with the second symmetric power representation of SL2(Fq). The action
of SL2(Fq) on W2 is not faithful; the image of SL2(Fq) in W2 is isomorphic to SL2(Fq)/〈−1〉 and
has index 4 in O3(Fq) with coset representatives

(−1)e1 0 0
0 (−1)e2 0
0 0 (−1)e1

 | e1, e2 ∈ {0,1}

 .

The ring of invariants of Fq[W2]
SL2(Fq) is a hypersurface with generators in degrees 2, q+ 1,

q(q−1)/2 and q(q+1)/2, see [29] and, for the case q = p, [21]. It follows from Theorem 3.10
that the ring of invariants for GLm(Fq)×M O3(Fq) is a polynomial algebra and that the ring of
invariants for GLm(Fq)×M E and GLm(Fq)×M (SL2(Fq)/〈−1〉) are both hypersurfaces.

Example 6.2. Take q odd, n = 4 and consider the quadratic form u = x2x3− x1x4. Then G2 is
O+

4 (Fq). The order of O+
4 (Fq) is 2q2(q2−1)2 and Fq[W2]

O+
4 (Fq) is a hypersurface with generators

in degrees 2, q+1, q2 +1, q3−q2 and q3−q, see [15]. The generator in degree 2 is u and the
generators in degrees q+1 and q2 +1 can be constructed by applying Steenrod operations to u.
Define

E :=




1 c1 c2 c1c2
0 1 0 c2
0 0 1 c1
0 0 0 1

 | (c1,c2) ∈ F2
q

 .

Then E is a Sylow p-subgroup for O+
4 (Fq). The ring of invariants Fq[W2]

E is a complete intersec-
tion generated by u, an element in degree q+1 constructed by applying a Steenrod operation to
u, and the orbit products of the variables: NE(x4) of degree q3, NE(x2) and NE(x2) of degree q,
and x1 (see [25]). Let E1 denote the subgroup of E of order q corresponding to taking c2 = 0. It
is easy to show that Fq[W2]

E1 is the hypersurface generated by u and the E1-orbit products of the
variables; this calculation can also be interpreted as the n = 2 case of [3, Theorem 2.4]. Let E2

denote the subgroup of E of order q corresponding to taking c1 = 0. Since E2 is conjugate to E1,
Fq[V ]E2 is also a hypersurface. Note that there is vector/covector action of GL2(Fq) on W2 with
E1 as the image of the Sylow p-subgroup. It follows from [14] that Fq[W2]

GL2(Fq) is generated
by u, u1 = xq

2x3− xq
1x4, u−1 = x2xq

3− x1xq
4, and Dickson invariants: d1,2 and d2,2 in the vari-

ables x1 and x2, and d∗1,2 and d∗2,2 in the variables x3 and x4. Furthermore, while Fq[W2]
GL2(Fq)

is Gorenstein, it is not a complete intersection. Let B denote the upper triangular subgroup of
O+

4 (Fq). It follows from [3, Theorem 2.4] that Fq[W2]
B is the complete intersection generated

by u, u1, u−1, xq−1
1 , and NE(xi)

q−1 for i = 2,3,4. There are two equivalence classes of maximal
parabolic subgroups for O+

4 (Fq). One is represented by GL2(Fq)nE2 using the vector/covector
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action of GL2(Fq) and the other is represented by C2 nB, where C2 acts by exchanging x2 and
x3. The ring Fq[W1]

C2nB is the complete intersection generated by u, u1, u−1, xq−1
1 , NE(x4)

q−1,
NE(x2)

q−1+NE(x2)
q−1 and NE(x2)

q−1NE(x2)
q−1. The ring Fq[W2]

GL2(Fq)nE2 is Cohen-Macaulay
and is generated by d1,2, d2,2 and the five generators for Fq[W1]

O+
4 (Fq). If H is any of the above

subgroups of O+
4 (Fq), the results of Section 3 can be used to deduce properties of the ring of

invariants of GLm(Fq)×M H.

Recall that a group G acts on V as a rigid reflection group if every isotropy subgroup acts on
V as a reflection group (see, for example, [23]).

Theorem 6.3. If F[W2]
G2 has a homogeneous geometric separating set of size n then F[V ]Gβ has

a homogeneous geometric separating set of size m+ n and Gβ acts on V as a rigid reflection
group.

Proof. Since G1×M G2 is a split polynomial gluing and F[W1]
G1 = F[W1]

GL(W1) is a polynomial
algebra, it follows from Theorem 3.11 that F[V ]Gβ has a homogeneous geometric separating set
of size m+n. It then follows from [23] that Gβ acts on V as a rigid reflection group. �

Example 6.4. In this example, we consider an alternating form with n = 4. We will show that
Fq[W2]

Sp4(Fq) has a homogeneous geometric separating set of size 4 and therefore, using the
above theorem, GLm(Fq)×M Sp4(Fq) acts on V as a rigid reflection group. Using the work of
Carlisle and Kropholler [2, Section 8.3] we know that Fq[W2]

Sp4(Fq) is the hypersurface generated
by d1,4,d2,4,ξ1,ξ2,ξ3 subject to the relation

ξ
q
3 +d1,4ξ

q
2 +d2,4ξ

q
1 = ξ1(ξ

q2+1
1 −ξ

q+1
2 +ξ

q
1 ξ3)

q−1.

Write ξ1(ξ
q2+1
1 − ξ

q+1
2 + ξ

q
1 ξ3)

q−1 = α0 + ξ
q
1 (α1ξ3 + · · ·+αq−1ξ

q−1
3 ) for αi ∈ Fq[ξ1,ξ2] and

define f := d2,4− (α1ξ3 + · · ·+αq−1ξ
q−1
3 ) so that ξ

q
3 = α0− d1,4ξ

q
2 − f ξ

q
1 . We will show that

{ f ,d1,4,ξ1,ξ2} is a homogeneous geometric separating set for Fq[W1]
Sp4(Fq). Let Fq denote the

algebraic closure of Fq and define W 2 := W2⊗Fq Fq. Since ξ
q
3 and ξ3 separate the same points

in W 2, the value of ξ3 at any point w ∈W 2 is determined by the values of { f ,d1,4,ξ1,ξ2}. It then
follows from the definition of f that the values of { f ,d1,4,ξ1,ξ2} on w determine the value of d2,4

on w. The conclusion then follows from the fact that the generating set is a geometric separating
set.

7. PARABOLIC GLUING

Consider a vector space W over F with a flag

F = (F0(W ) = {0},F1(W ),F2(W ), . . . , F̀ (W ) =W )

so that Fi(W ) is a proper subspace of Fi+1(W ). Let PF denote the parabolic subgroup of GL(W )

consisting of invertible linear transformations which stabilise the flag. Define MF to be the
subset of homF(W,W ) consisting of linear transformations consistent with the flag F , i.e.,

MF = {φ ∈ homF(W,W ) | φ(Fi(W ))⊆ Fi(W ) for i = 1, . . . , `}.
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Choose G1 and G2 to be subgroups of PF and take W1 =W2 =W . ThenMF is a left FG1/ right
FG2 sub-bimodule of homF(W,W ) and we may form the parabolic gluing of G1 to G2 through
MF , which we denote by G1×F G2.

For the rest of this section, we assume F = Fq so that G1×F G2 is a finite group. If we
choose a basis for W which is consistent with the flag F then the matrices representing MF
are block upper-triangular with diagonal blocks of size ni×ni where ni = dim(Fi(W )/Fi−1(W )).
Denote rk = n1 + · · ·+nk. We continue to denote the basis for W ∗1 by {y1, . . . ,yn} and the basis
for W ∗2 by {x1, . . . ,xn} and assume the bases are consistent with the flag. Taking the dual of
the surjection from W to W/Fi(W ) gives an inclusion of (W/Fi(W ))∗ into W ∗. Define Ũi to be
the image of (W/Fi−1(W ))∗ in W ∗2 . Thus Ũ1 = SpanFq

{x1, . . . ,xn}, Ũ2 = SpanFq
{xn1+1, . . . ,xn},

Ũ3 = SpanFq
{xn1+n2+1, . . . ,xn}, and so on. Define Ni(t) :=

∏
u∈Ũi

(t +u). Then

H= {x1, . . . ,xn}∪

(⋃̀
i=1

{
Ni(y j) | ri−1 < j ≤ ri

})

is a generating set for Fq[V ]MF and any basis for V ∗ consistent with the flag is a Nakajima basis
for V as an FqMF -module. Since G2 stabilises the image of (W/Fi−1(W ))∗ in W ∗2 , we see that
G2 acts trivially on

A =
⊗̀
i=1

Fq[Ni(y j) | ri−1 < j ≤ ri]

and Fq[V ]M =A⊗Fq[W2]. However, in general, the algebra isomorphism from Fq[W1] to A which
takes y j to NMF (y j) is not G1-equivariant. For example, if we take n= 2 and choose the partition
(1,1) then A = Fq[N1(y1),N2(y2)] where N1(y1) has degree q2 and N2(y2) has degree q. If G1

contains an element g such that y1 ·g = y1 + y2, then

N1(y1) ·g = N1(y1)+N2(y2)
q +
(

d1,2(x1,x2)+ xq(q−1)
2

)
N2(y2).

Remark 7.1. The algebra isomorphism

Fq[W1/Fi(W1)] = Fq[yri+1, . . . ,yn]→ Fq[Ni+1(yri+1) . . . ,Ni+1(yn)]

which takes yk to Ni+1(yk) is G1-equivariant – compare with Example 2.1.

We will say that a sequence of homogeneous polynomials f1, f2, . . . , fn ∈ Fq[W1] is consistent
with the flag F if f j ∈ Fq[yri+1, . . . ,yn] whenever ri < j ≤ ri+1. In this case we write f̃ j for the
polynomial formed by substituting Ni+1(yk) for yk in f j.

Theorem 7.2. Suppose Fq[W1]
G1 = Fq[ f1, . . . , fn] where the sequence of homogeneous polyno-

mials f1, . . . , fn is consistent with F and Fq[W2]
G2 = Fq[h1, . . . ,hn] for homogeneous polynomials

h1, . . . ,hn. Then Fq[V ]G1×FG2 = Fq[ f̃1, . . . , f̃n,h1, . . . ,hn].

Proof. First observe that, since G1 stabilises the flag F , we have { f̃1, . . . , f̃n} ⊂ F[V ]G1×FG2 .
Furthermore, if ri < j ≤ ri+1, then deg( f̃ j) = qn−i deg( f j).
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For an ideal I ⊂ Fq[V ], let V(I) denote the variety in V =V⊗Fq cut out by I. Since Fq[W1]
G1 =

Fq[ f1, . . . , fn], we know that
∏n

j=1 deg( f j) = |G1| and V(〈 f1, . . . , fn〉) = V(〈y1, . . . ,yn〉) (see Cor-
rollary 3.2.6 and Lemma 2.6.3 of [12]). Similarly, since Fq[W2]

G2 = Fq[h1, . . . ,hn], we have∏n
j=1 deg(h j) = |G2| and V(〈h1, . . . ,hn〉) = V(〈x1, . . . ,xn〉). Observe that if w ∈ V(〈x1, . . . ,xn〉)

then f̃ j(w) = ( f j(w))qn−i
whenever ri < j < ri+1. Hence

V(〈 f̃1, . . . , f̃n,h1, . . . ,hn〉) = V(〈y1, . . . ,yn,x1, . . . ,xn〉)

and { f̃1, . . . , f̃n,h1, . . . ,hn} is a homogeneous system of parameters. It follows from the construc-
tion of f̃ j that

n∏
j=1

deg( f̃ j)deg(h j) =

 n∏
j=1

deg( f j)deg(h j)

∏̀
i=1

(qn−i−1)ni = |G1| · |G2| · |MF |= |G1×F G2|.

Therefore Fq[V ]G1×FG2 = Fq[ f̃1, . . . , f̃n,h1, . . . ,hn]. �

Example 7.3. Suppose G1 = PF . By choosing a basis for W consistent with the flag we can
think of the elements of PF as block upper-triangular matrices. Let ŨF denote the subgroup
consisting of the elements whose block-diagonal entries are 1ni . Then ŨF is a p-group and a
normal subgroup of PF . A generating set for Fq[W1]

PF is given by⋃̀
i=1

{
ds,ni

(
NŨF

(
y j
)
| ri−1 < j ≤ ri

)
| s = 1, . . . ,ni

}
where the Dickson invariants ds,ni are evaluated on the indicated ni-tuple of orbit products (the
resulting polynomial is independent of the order). To see this observe that the polynomials are
invariant, homogeneous, algebraically independent and the product of the degrees is the order of
PF . This construction is essentially the result of iterated polynomial gluing – compare with [28],
[34], and [37]. Since ds,ni(NŨF

(y j)) ∈ Fq[yri−1+1, . . . ,yn] whenever ri−1 < j ≤ ri, the hypotheses
of Theorem 7.2 are satisfied whenever Fq[W2]

G2 is a polynomial algebra.

Theorem 7.4. Suppose Fq(W1)
G1 = Fq( f1, . . . , fn) where f1, . . . , fn is a sequence of homogeneous

polynomials consistent with F . Then Fq(V )G1×FG2 = Fq( f̃1, . . . , f̃n)⊗Fq(W2)
G2 .

Proof. As in the proof of Theorem 7.2, first observe that { f̃1, . . . , f̃n} ⊂ Fq[V ]G1×FG2 . Also

observe that the image of f̃ j− f qn−i

j lies in the ideal 〈x1, . . . ,xn〉whenever ri < j≤ ri+1. Therefore

Fq( f̃1, . . . , f̃n)⊗Fq(W2)
G2 ⊂ Fq(V )G1×FG2 .

Since G1 and G2 are subgroups of PF , we have Fq(W1)
PF ⊂ Fq(W1)

G1 = Fq( f1, . . . , fn) and
Fq(W2)

PF ⊂ Fq(W2)
G2 . It then follows from Example 7.3 that

Fq(V )PF×FPF ⊂ Fq( f̃1, . . . , f̃n)⊗Fq(W2)
G2 ⊂ Fq(V )G1×FG2 ⊂ Fq(V ).

Therefore Fq( f̃1, . . . , f̃n)⊗Fq(W2)
G2 ⊂ Fq(V )is a Galois extension with Galois group H satisfying

PF ×F PF ≥ H ≥ G1×F G2 and Fq(V )H = Fq( f̃1, . . . , f̃n)⊗Fq(W2)
G2 . To complete the proof,

we need to show that H ≤G1×F G2. Suppose (h1,ϕ,h2) ∈H with hi ∈ PF and ϕ ∈MF . Since
f̃ j ∈ Fq(V )H , we have f̃ j ·(h1,ϕ,h2) = f̃ j. It then follows from Remark 7.1 that f j ·h1 = f j. Since
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this true for every j, by Galois Theory, we have h1 ∈ G1. For any f ∈ Fq(W2)
G2 ⊂ Fq(V )H , we

have f = f · (h1,ϕ,h2) = f ·h2 and, therefore, by another application of Galois Theory, h2 ∈G2.
Since h1 ∈ G1 and h2 ∈ G2, we have (h1,ϕ,h2) ∈ G1×F G2, as required. �

Example 7.5. Choose a basis consistent with the filtrationF and let G1 be a subgroup of GL(W1)

represented by a subgroup of the upper triangular unipotent matrices using this basis. Then G1

is a p-group and a subgroup of PF . Using the Campbell-Chuai construction from [8] gives a
generating set f1, f2, . . . , fn for the field of fractions Fq(W1)

G1 which is consistent with F . If
G2 is any subgroup of PF then the hypotheses of Theorem 7.4 are satisfied and Fq(V )G1×FG2 =

Fq( f̃1, . . . , f̃n)⊗Fq(W2)
G2 .

8. DIAGONAL GLUING

Suppose we have a gluing with G = G1 = G2. Embed G in G×G using the diagonal map:
g 7→ (g,g). Restricting the gluing to the image of the diagonal map gives a subgroup of G×M
G which we denote by GM and refer to as the diagonal gluing of G through M. Note that
homF(W2,W1) is a left FG-module with the action given by ϕ 7→ g ·ϕ · g−1 and M is an FG
submodule. Furthermore, GM is isomorphic to the semi-direct product G nM. There is an
action of GM on V =W1⊕W2 given by (g,ϕ) · (w1⊕w2) = (g ·w1+ϕ(w2))⊕ (g ·w2). SinceM
is a normal subgroup of GM , we have F[V ]GM = (F[V ]M)G. If there is a G-equivariant algebra
isomorphism ψ : F[V ]→ F[V ]M then the gluing is polynomial and ψ induces an isomorphism
from F[V ]G to F[V ]GM .

Example 8.1. Take F = Fq, G = GLn(Fq), W1 = W2 = F
n
q, andM = homFq(W1,W2). Then we

have a split polynomial gluing, see Example 2.1. In general, computing Fq[F
n
q⊕Fn

q]
GLn(Fq) is a

difficult problem. However, the field of fractions Fq(F
n
q⊕ Fn

q)
GLn(Fq) is rational over Fq and a

generating set is given in Section 3 of [44]. Applying the gluing isomorphism gives a generating
set for Fq(F

n
q⊕Fn

q)
GLn(Fq)M proving that this field is also rational over Fq.

Example 8.2. Take F= Fq, G = GLn(Fq), W1 = F
n
q, W2 = (Fn

q)
∗, andM= homFq(W1,W2). Then

again it follows from Example 2.1 that we have a split polynomial gluing. A generating set for
Fq[F

n
q⊕ (Fn

q)
∗]GLn(Fq) was computed in [14]; the ring is Cohen-Macaulay but not a complete

intersection. Applying the gluing isomorphism gives a generating set for Fq[F
n
q⊕ (Fn

q)
∗]GLn(Fq)M

and shows that this ring is also Cohen-Macaulay but not a complete intersection.

Example 8.3. Take F= Fq, G =Cp (the cyclic group of order p with q = pr), W1 =Vm, W2 =Vn

(indecomposable FqCp-modules) and M = homFq(W2,W1). It follows from Example 2.1 that
the gluing is split polynomial. Generating sets for Fq[Vm⊕Vn]

Cp are known for m,n ≤ 4, see
[47]. In each case, applying the gluing isomorphism gives a generating set for Fq[Vm⊕Vn]

(Cp)M .
By the celebrated formula of Ellinsgrud and Skjelbred (see [24] or [19, §3.9.2]) the depth of
Fq[Vm⊕Vn]

Cp is 4 as long as m+n > 3. Since the the gluing preserves the augmentation ideal,
this also holds for Fq[Vm⊕Vn]

(Cp)M .

Example 8.4. Take F = Fq, G = Cp and W1 = W2 = Vn. Let 1 denote the one dimensional sub-
module of homFq(Vn,Vn) given by scalar multiples of the identity function. The ring Fq[Vn⊕Vn]

1
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is polynomial for n = 1, a hypersurface for n = 2 and not Cohen-Macaulay for n > 2. Therefore
the gluing in not polynomial for n > 1. However, the field of fractions Fq(Vn⊕Vn)

1 is rational
over Fq. Define u j := y1x j− y jx1 for j = 2,3, . . . ,n and N := yq

1− y1xq−1
1 . Using the Campbell-

Chuai construction from [8], we have Fq[Vn⊕Vn]
1[x−1

1 ] = Fq[x1, . . . ,xn,N,u2, . . . ,un][x−1
1 ]. Let

g denote a generator for Cp and choose bases for W1 and W2 so that x jg = x j + x j−1, y jg =

y j + y j−1 for j > 1, x1g = x1 and y1g = y1. Then SpanFq
{u2, . . . ,un} is isomorphic as an

FqCp-module to V ∗n−1 and N ∈ Fq[Vn⊕Vn]
1. Therefore Fq[Vn⊕Vn]

(Cp)1[x−1
1 ] is isomorphic to

Fq[Vn−1⊕V1⊕Vn]
Cp[x−1

1 ] where the isomorphism is induced by the Cp-equivariant map taking
SpanFq

{u2, . . . ,un}⊕FqN⊕V ∗n to V ∗n−1⊕V ∗1 ⊕V ∗n .
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