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Multiple orthogonal polynomials associated with confluent
hypergeometric functions

Hélder Lima∗and Ana Loureiro∗

August 16, 2020

ABSTRACT. We introduce and analyse a new family of multiple orthogonal polynomials of hypergeomet-
ric type with respect to two measures supported on the positive real line which can be described in terms
of confluent hypergeometric functions of the second kind. These two measures form a Nikishin system.
Our focus is on the multiple orthogonal polynomials for indices on the step line. The sequences of the
derivatives of both type I and type II polynomials with respect to these indices are again multiple orthogo-
nal and they correspond to the original sequences with shifted parameters. For the type I polynomials, we
provide a Rodrigues-type formula. We characterise the type II polynomials on the step line, also known as
d-orthogonal polynomials (where d is the number of measures involved so that here d = 2), via their explicit
expression as a terminating generalised hypergeometric series, as solutions to a third-order differential equa-
tion and via their recurrence relation. The latter involves recurrence coefficients which are unbounded and
asymptotically periodic. Based on this information we deduce the asymptotic behaviour of the largest zeros
of the type II polynomials. We also discuss limiting relations between these polynomials and the multiple
orthogonal polynomials with respect to the modified Bessel weights. Particular choices on the parameters
for the 2-orthogonal polynomials under discussion correspond to the cubic components of the already known
threefold symmetric Hahn-classical multiple orthogonal polynomials on star-like sets.
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Multiple orthogonal polynomials for confluent hypergeometric functions

1 Introduction and motivation

The main aim of this paper is to investigate the multiple orthogonal polynomials with respect to two abso-
lutely continuous measures supported on the positive real line and admitting an integral representation via
weight functions W (x;a,b;c) and W (x;a,b;c+1) where

W (x;a,b;c) =
Γ(c)

Γ(a)Γ(b)
e−xxa−1 U(c−b,a−b+1;x) . (1.1)

with a,b,c ∈ R+ such that c > max{a,b}. The weight functions involve the confluent hypergeometric func-
tion of the second kind U(α,β ;x), also known as the Tricomi function, which is a solution of the second-
order differential equation (see [6, Eq. 13.2.1])

x
d2y
dx2 +(β − x)

dy
dx
−αy = 0, (1.2)

and, provided that Re(α)> 0 and |arg(x)|< π

2
, it admits the integral representation (see [6, Eq. 13.4.4])

U(α,β ;x) =
1

Γ(α)

∫
∞

0
tα−1(t +1)β−α−1e−txdt, (1.3)

provided that Re(α)> 0 and |arg(x)|< π

2
, whilst (see [6, Eqs. 13.2.7 & 13.2.40])

U(0,β ;x) = 1 and U(α,β ;x) = x1−β U(α−β +1,2−β ;x) .

Note that the latter identity implies that W (x;a,b;c) =W (x;b,a;c). Furthermore, the conditions a,b,c∈R+

and c>max{a,b} guarantee the convergence of the integral of the modified Tricomi weight over the positive
real line. More precisely (see [12, Eq. (7.621.6)]),∫

∞

0
e−xxa U(c−b,a−b+1;x)dx =

Γ(a)Γ(b)
Γ(c)

. (1.4)

Therefore the weight function W (x;a,b;c) is a probability density function whose moments are given by∫
∞

0
xn W (x;a,b;c)dx =

(a)n (b)n
(c)n

, n ∈ N, (1.5)

where, as usual, (z)n denotes the Pochhammer symbol defined by

(z)0 = 1 and (z)n := z(z+1) · · ·(z+n−1), if n ∈ N\{0}. (1.6)

Here and throughout the text, N = Z+
0 = {0,1,2, · · ·}. When referring to {Pn(x)}n∈N as a polynomial se-

quence it is assumed that Pn is a polynomial of a single variable with degree exactly n and we consistently
deal with monic polynomials, unless stated otherwise.

Research on multiple orthogonal polynomials has received a focus of attention in the past decennia, partly
motivated by their applicability to different areas of mathematics and mathematical physics. In particular,
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they have been utilised in the description of rational solutions to Painlevé equations [4] as well as in ran-
dom matrix theory. For instance, the investigation of singular values of products of Ginibre matrices uses
multiple orthogonal polynomials associated with weight functions expressed in terms of Meijer G-functions
[18]. If only two measures are involved, then those Meijer G-functions are hypergeometric or confluent hy-
pergeometric functions. This research offers a thorough investigation of a collection of multiple orthogonal
polynomials that fits within this category.

Multiple orthogonal polynomials are a generalisation of (standard) orthogonal polynomials. Their orthogo-
nality measures are spread across a vector of r ∈ Z+ measures and they are polynomials on a single variable
depending on a multi-index~n = (n0, · · · ,nr−1) ∈ Nr of length |~n| = n0 + · · ·+nr−1. There are two types of
multiple orthogonal polynomials with respect to a system of r measures (µ0, · · · ,µr−1).

The type I multiple orthogonal polynomials for~n=(n0, · · · ,nr−1)∈Nr are given by a vector
(

A(0)
~n , · · · ,A(r−1)

~n

)
of r polynomials, with degA( j)

~n ≤ n j−1, for each 0≤ j ≤ r−1, satisfying the orthogonality and normalisa-
tion conditions

r−1

∑
j=0

∫
xkA( j)

~n (x)dµ j(x) =

{
0, if 0≤ k ≤ |~n|−2,

1, if k = |~n|−1.
(1.7)

If the measures µ j(x) are absolutely continuous with respect to a common positive measure µ , that is, if we
can write dµ j(x) = w j(x)dµ(x), for each 0≤ j ≤ r−1 and for some weight functions w j(x), then the type I
function is

Q~n(x) =
r−1

∑
j=0

A( j)
~n (x) w j(x) (1.8)

and the conditions in (1.7) become∫
xkQ~n(x)dµ(x) =

{
0, if 0≤ k ≤ |~n|−2,

1, if k = |~n|−1.
(1.9)

In the case of r = 2 measures, we use the notation A~n for A(0)
~n and B~n for A(1)

~n .

The type II multiple orthogonal polynomial for~n = (n0, · · · ,nr−1) ∈Nr consists of monic polynomials p~n of
degree |~n| which satisfies, for each 0≤ j ≤ r−1, the orthogonality conditions∫

xk p~n(x)dµ j(x) = 0, 0≤ k ≤ n j−1. (1.10)

For both types of multiple orthogonality, the case where the number of measures is r = 1 corresponds to
standard orthogonality. A polynomial sequence {Pn(x)}n∈N is orthogonal with respect to a measure µ if

∫
xkPn(x)dµ(x) =

{
0, if 0≤ k ≤ n−1,

Nn 6= 0, if n = k.
(1.11)
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Multiple orthogonal polynomials for confluent hypergeometric functions

The orthogonality conditions for type I and type II multiple orthogonal polynomials give a non-homogeneous
system of |~n| linear equations for the |~n| unknown coefficients of the vector of polynomials

(
A(0)
~n , · · · ,A(r−1)

~n

)
in (1.7) or the polynomials P~n(x) in (1.10). If the solution exists, it is unique and the corresponding matrices
of the system for type I and type II are the transpose to each other. However it is possible that this system
doesn’t have a solution, unless further conditions are imposed (unlike standard orthogonality on the real line,
the existence of such solutions is not a trivial matter). If there is a unique solution, then the multi-index~n is
called normal and if all multi-indices are normal, the system is a perfect system.

An example of systems known to be perfect are the Algebraic Tchebyshev systems, or simply AT-systems. A
vector of measures (µ0, · · · ,µr−1) is an AT-system on an interval ∆ for a multi-index~n = (n0, · · · ,nr−1)∈Nr

if the measures µ j(x) are absolutely continuous with respect to a common positive measure µ on ∆, that is,
dµ j(x) = w j(x)dµ(x), for each j = 0, · · · ,r−1 and for some weight functions w j(x), and the set of functions

r−1⋃
j=0

{
w j(x),xw j(x), · · · ,xn j−1w j(x)

}
forms a Chebyshev system on ∆, that is, if for any polynomials f j, j = 0, · · · ,r− 1, of degree not greater

than n j− 1, and not all equal to 0, the function
r−1

∑
j=0

f j(x)w j(x) has at most |~n|− 1 zeros on ∆. A vector of

measures (µ0, · · · ,µr−1) is an AT-system on an interval ∆ if it is an AT-system on ∆ for every multi-index in
Nr.

Another special example of a perfect system is a Nikishin system (first introduced in [25]). We say that two
measures (µ0,µ1) form a Nikishin system of order 2, if they are both supported on an interval ∆0 and if there
exists a positive measure σ on an interval ∆1 with ∆0∩∆1 = /0 such that

dµ1(x)
dµ0(x)

=
∫

∆1

dσ(t)
x− t

. (1.12)

The definition of a Nikishin system can be generalised to define a Nikishin system of r > 2 measures. It
was proved in [10] that every Nikishin system is perfect (see also [11] for the cases where the supports of
the measures are unbounded or where consecutive intervals touch at one point). More precisely, it is proved
in [10] and [11] that every Nikishin system is an AT-system, therefore it is perfect. Moreover, for every
AT-system and for any~n ∈Nr, the type I function for Q~n defined by (1.8) has exactly |~n|−1 sign changes on
∆ and the type II multiple orthogonal polynomial P~n has |~n| simple zeros on ∆ which satisfy an interlacing
property as there is always a zero of P~n between two consecutive zeros of P~n+~ek , for each 0 ≤ k ≤ r− 1,
where~ek ∈ Nr is the multi-index that has all entries equal to 0 except the entry of index k which is equal to
1. As a Nikishin system is always an AT-system, the same properties hold for Nikishin systems.

The main contribution of this paper is on multi-indices on the step line. A multi-index (n0, · · · ,nr−1) ∈ Nr

is on the step-line if n0 ≥ n1 ≥ ·· · ≥ nr−1 ≥ n0−1 or, equivalently, if there exists m ∈ N and 0≤ j ≤ r−1
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such that

nk =

{
m+1, if 0≤ k < j,

m, if j ≤ k ≤ r−1.
(1.13)

For any r ∈ Z+ and for each n ∈ N, there is a unique multi-index of length n on the step line of Nr. More
precisely, if n= rm+ j, with m, j ∈N and 0≤ j≤ r−1, the multi-index of length n is~n= (n0, · · · ,nr−1)∈Nr

with entries as described in (1.13). Hence, when the number of measures is fixed and we only consider multi-
indices on the step line, we can replace the multi-index of the multiple orthogonal polynomials of both type
I and type II by its length without any ambiguity. When r = 2, the indexes on the step line are illustrated in
Figure 1.

For the type II multiple orthogonal polynomials on the step line, we obtain a polynomial sequence with
exactly one polynomial of degree n for each n ∈N. These are often referred to as d-orthogonal polynomials
(where d is the number of measures, so here d = r), as introduced in [21]. A great deal of research in multiple
orthogonality is often specialised on d-orthogonality. For this, the corresponding polynomials satisfy higher
order recurrence relations and they have been referred in the literature as vector orthogonal polynomials (see
[16, 29]), as well as subcases of multidimensional orthogonal polynomials, Hermite-Padé polynomials or
simultaneous orthogonal polynomials, among others.

In the case of r = 2 measures, the type II multiple orthogonality conditions (1.10) on the step line correspond
to say that if we set

P2n(x) = Pn,n(x) and P2n+1(x) = Pn+1,n(x), (1.14)

then the polynomial sequence {Pn(x)}n∈N is 2-orthogonal with respect to a pair of measures (µ0,µ1):

∫
xkPn(x)dµ0(x) =

{
0, if n≥ 2k+1,

Nn 6= 0, if n = 2k,
and

∫
xkPn(x)dµ1(x) =

{
0, if n≥ 2k+2,

Nn 6= 0, if n = 2k+1.
(1.15)

In (1.14) and throughout we have considered the step line to be the lower step line as illustrated in Figure 1.
If we were to consider the polynomials on the upper step line, then these happened to be 2-orthogonal with
respect to the vector of measures (µ1,µ0).

There is a well-known connection between orthogonal polynomials and recurrence relations. The spectral
theorem for orthogonal polynomials (also known as Shohat-Favard theorem) states that a polynomial se-
quence {pn(x)}n∈N is orthogonal with respect to some measure µ if and only if it satisfies a second order
recurrence relation of the form

pn+1(x) = (x−βn)pn(x)− γn pn−1(x), (1.16)

with γn 6= 0, for all n≥ 1, and initial conditions p−1 = 0 and p0 = 1. Moreover, if βn ∈ R and γn+1 > 0, for
all n ∈ N, then µ is a positive measure on the real line.
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n1

n0

Figure 1: Upper and lower step line for the multi-index (n0,n1) in solid and dashed black line, respectively,
when r = 2.

Multiple orthogonal polynomials also satisfy recurrence relations, known as nearest neighbour recurrence
relations (see, for instance, [27]). In particular, when the multi-indexes lie on the step line, a polynomial
sequence {Pn(x)}n∈N is r-orthogonal if and only if it satisfies a higher order recurrence relation (precisely of
order r+1) of the form

Pn+1(x) = (x−βn)Pn(x)−
r

∑
j=1

γ
[ j]
n+1− j Pn− j(x), (1.17)

with γ
[r]
n 6= 0, for all n ≥ 1, and initial conditions P−(r−1) = · · · = P−1 = 0 and P0 = 1, see [21, Th. 2.1].

Naturally, when r = 2, the relation (1.17) reduces to the third order recurrence relation

Pn+1(x) = (x−βn)Pn(x)−αnPn−1(x)− γn−1Pn−2(x), (1.18)

with γn 6= 0, for all n≥ 1, and initial conditions P−2 = P−1 = 0 and P0 = 1. As such, a polynomial sequence
{Pn(x)}n≥0 satisfying the latter recurrence relation is 2-orthogonal, and therefore a pair of measures (µ0,µ1)

exists so that (1.15) holds.

For the type I multiple orthogonal polynomials on the step line for r = 2 measures, we have, for each n ∈N,

deg(An)≤
⌊

n−1
2

⌋
and deg(Bn)≤

⌊n
2

⌋
−1,

that is, deg(An) = m−1, if n = 2m or n = 2m−1, and deg(Bn) = m−1, if n = 2m or n = 2m+1. Moreover,
assuming that there exists a positive measure µ and a pair of weight functions (w0,w1) such that we can
write dµ0(x) = w0(x)dµ(x) and dµ1(x) = w1(x)dµ(x), the type I function is

Qn(x) = An(x)w0(x)+Bn(x)w1(x) (1.19)

and the orthogonality and normalisation conditions correspond to∫
xkQn(x)dµ(x) =

{
0, if 0≤ k ≤ n−2,

1, if k = n−1.
(1.20)

6



H. Lima and A. F. Loureiro

For further information about multiple orthogonal polynomials and Nikishin systems, we refer to [14, Ch. 23]
and [19].

In Section 2, we prove that the weight functions W (x;a,b;c) and W (x;a,b;c+ 1) defined in (1.1) form a
Nikishin system. This readily imply that the multiple orthogonal polynomials of both type I and type II with
respect to these weight functions exist and are unique for every multi-index~n = (n0,n1)∈N2 and their zeros
satisfy the properties mentioned before for Nikishin systems (and AT-systems in general). Then we obtain
differential equations satisfied by these weight functions, which we use to deduce differential properties for
the multiple orthogonal polynomials of both type I and type II on the step line (see Theorem 2.9) and a
Rodrigues-type formula for the type I polynomials (see Theorem 2.10).

Section 3 is devoted to the characterisation of the type II multiple orthogonal polynomials on the step-line
(ie, the 2-orthogonal polynomial sequences). A remarkable property of these polynomials (a straightforward
consequence of Theorem 2.9) is that they satisfy the so called Hahn’s property, meaning that the sequence
of its derivatives is again 2-orthogonal. As such, they stand as an example of a Hahn-classical 2-orthogonal
family. Our detailed characterisation of these polynomials includes: an explicit expression for these polyno-
mials as a terminating generalised hypergeometric series, more precisely a 2F2 (see Theorem 3.1); explicit
third order differential equation (in Theorem 3.3) as well as a third order recurrence relation (in Theorem
3.4) to which these type II polynomials on the step-line are a solution; an asymptotic upper bound for their
largest zeros; limiting relations between these polynomials and multiple orthogonal polynomials with res-
pect to weight functions involving the modified Bessel function of second kind Kν (x) (see (3.11)) studied
in [3] and [28]. It turns out that each of the sequences of recurrence coefficients is unbounded and asymp-
totically periodic of period 2. As such, we believe this is the first explicit example of a Nikishin system
associated with such periodic unbounded recurrence coefficients.

Earlier we mentioned generalised hypergeometric series, which are formally defined by

pFq

(
α1, · · · ,αp

β1, · · · ,βq
; z

)
=

∞

∑
n=0

(α1)n · · ·(αp)n
(β1)n · · ·(βq)n

zn

n!
, (1.21)

where p,q ∈ N, z,α1, · · · ,αp ∈ C and β1, · · · ,βp ∈ C\{−n : n ∈ N}. If one of the parameters α1, · · · ,αp is
a negative integer the series (1.21) terminates and defines a polynomial.

In Section 4 we explain that particular cases of the type II polynomials on the step line, characterised here,
have appeared in [20] as the components of 3-fold symmetric Hahn-classical 2-orthogonal polynomials on
star-like sets. A polynomial sequence {Pn(x)}n∈N is said to be 3-fold symmetric if, for any n ∈ N,

Pn

(
e

2πi
3 x
)
= e

2nπi
3 Pn(x) and Pn

(
e

4πi
3 x
)
= e

4nπi
3 Pn(x).

This property is commonly referred to as 2-symmetry, as introduced in [7, Definition 5.1]. We opt to follow
the terminology in [20], as it gives a better picture of the intrinsic symmetry. The definition is equivalent to
say that there exist three polynomial sequences

{
P[k]

n (x)
}

n∈N
, each supra indexed with k ∈ {0,1,2}, which

are called the cubic components of {Pn(x)}n∈N, such that

P3n+k(x) = xkP[k]
n (x3), for all n ∈ N. (1.22)
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Whenever a 3-fold symmetric is 2-orthogonal, then each of its cubic components are 2-orthogonal polyno-
mials [7, Théorème 5.2]. In this section we give a result of independent interest, Theorem 4.1, where we
show that all the three cubic components of 3-fold symmetric Hahn-classical 2-orthogonal polynomials are
themselves Hahn-classical.

The main contribution of this paper are the results in Sections 2 and 3 characterising multiple orthogonal
polynomials with respect to the Nikishin system. The centre of the analysis is for the indices on the upper
and lower step line (see Fig 1). The study of the multiple orthogonal polynomials with respect to the same
system for indices out of the step line and, in particular, the study of the (standard) orthogonal polynomials
with respect to the weight function W (x;a,b;c), defined by (1.1), remains an open (and challenging) prob-
lem. Partly this is due to the fact that when the weight function is a solution to a second order differential
equation, then known techniques to obtain closed or explicit formulas for recurrence coefficients of standard
orthogonal polynomials is, up to now, an onerous task. An example of such weights are those studied here
and given in (1.1) or those expressed in terms of Bessel functions in (3.11). Notwithstanding, a deep grasp of
the multiple orthogonal polynomials on the step line is at the core of applications. The present investigation
focus essentially on the latter.

2 Multiple orthogonality

The starting point of this investigation is on the weight function W (x;a,b;c) in (1.1). The goal is to describe
a system of multiple orthogonal polynomials with respect to W (x;a,b;c) and W (x;a,b;c+ 1). The first
question to address is on whether such a system exists and, if so, whether it is unique. We are able to
answer afirmatively to both issues because we are dealing with a Nikishin system of measures, as explained
in Section 2.1. From this we want to move on to the characterisation of such system of polynomials. We
succeed in doing so for the case where the indices lie on the step-line. Using key differential properties
for the vector of weights, derived in Section 2.2, we obtain differential properties for the corresponding
polynomials of both types in Section 2.3. We continue the analysis by providing a Rodrigues-type formula
for the type I functions in Section 2.4. Concerning the type II, we defer their investigation to Section 3.

2.1 Nikishin system

The vector of weight functions
[
W (x;a,b;c) , W (x;a,b;c+1)

]
forms a Nikishin system, as stated in Theo-

rem 2.1. An important consequence of this result is that both type I and II multiple orthogonal polynomials
with respect to the weight functions appearing on Theorem 2.1 exist and are unique for any multi-index
(n0,n1) ∈ N2. Moreover, the type I multiple orthogonal polynomials A(n0,n1) and B(n0,n1) have degree ex-
actly n0− 1 and n1− 1, respectively, and the type II multiple orthogonal polynomial P(n0,n1) has n0 + n1

positive real simple zeros that satisfy an interlacing property: there is always a zero of P(n0,n1) between two
consecutive zeros of P(n0+1,n1) or P(n0,n1+1).

8
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On the one hand, the Nikishin property can be deduced through the connection between continued fractions
and Stieltjes transforms, by guaranteeing the existence of a generating measure, as described in (1.12) .
On the other hand, this property can be proved by providing an integral representation for the generating
measure σ in (1.12) for this Nikishin system as given in Proposition 2.2.

To start with, we recall some properties from continued fractions and we follow the notation in [5] to describe
a continued fraction:

∞

K
n=0

(
αn

βn

)
:=

α0

β0 +
α1

β1 +
α2

β2 + · · ·

. (2.1)

Particularly relevant are the so-called S-fractions or Stieltjes continued fractions, which are obtained if in
(2.1) we set, for any n,k ∈ N, αn = 1 and β2k = a2k z and β2k+1 = a2k+1, with a2k,a2k+1 ∈ R+, to obtain

1

a0z+
1

a1 +
1

a2z+
1

a3 + · · ·

. (2.2)

Stieltjes showed in [26] that S-fractions can be represented as a Stieltjes transform of a measure with support
in (−∞,0], that is, an integral of the form∫ 0

−∞

dσ(−t)
x− t

=
∫

∞

0

dσ(u)
x+u

, (2.3)

where σ is a non decreasing bounded function such that σ(0) = 0 and lim
u→∞

σ(u) =
1
a0

.

Another special type of continued fractions, known as J-fraction and introduced by Jacobi, is obtained if, for
some cn,bn ∈ C, we set, in (2.1), α0 = c0, αn =−cn, for any n≥ 1, and βn = z+bn, for all n ∈ N, to obtain

c0

z+b0−
c1

z+b1−
c2

z+b2−·· ·

. (2.4)

If every cn,bn ∈ R+ then the J-fraction generated by them can be obtained by contraction from a S-fraction
(see [26]) and, as a result, it can also be represented as a Stieltjes transform with support in (−∞,0] as in

(2.3). Moreover, if (2.4) was obtained from (2.2) by contraction then c0 =
1
a0

hence lim
u→∞

σ(u) = c0 when

we represent the continued fraction (2.4) as in (2.3). These results about continued fractions and Stieltjes
transforms can also be found in [30, Ch. 13] and they are used here to prove the following result.
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Theorem 2.1. For a,b,c ∈ R+ such that c > max{a,b}, let W (x;a,b;c) be defined by (1.1), we have

W (x;a,b;c+1)
W (x;a,b;c)

=
−c

(c−a)(c−b)

∞

K
n=0

(
−(n+ c−a)(n+ c−b)
x+2n+2c−a−b+1

)
, (2.5)

and there exists a probability density function σ in R+ such that

W (x;a,b;c+1)
W (x;a,b;c)

= c
∫ 0

−∞

dσ(−t)
x− t

. (2.6)

As a result, the vector of weight functions
[
W (x;a,b;c),W (x;a,b;c+1)

]
forms a Nikishin system in R+.

Proof. Following the definition of W (x;a,b;c),

W (x;a,b;c+1)
W (x;a,b;c)

=
cU(c−b+1,a−b+1;x)

U(c−b,a−b+1;x)
. (2.7)

According to [6, Eq. 13.3.7], we have

(c−a)(c−b)U(c−b+1,a−b+1;x) = (x+2c−a−b−1)U(c−b,a−b+1;x)−U(c−b−1,a−b+1;x) ,
(2.8)

hence
W (x;a,b;c+1)

W (x;a,b;c)
=

c
(c−a)(c−b)

(
x+2c−a−b−1− U(c−b−1,a−b+1;x)

U(c−b,a−b+1;x)

)
. (2.9)

Furthermore, based on [5, Eq. 16.1.20], we also have

U(c−b−1,a−b+1;x)
U(c−b,a−b+1;x)

= x+2c−a−b−1+

∞

K
n=0

(
−(n+ c−a)(n+ c−b)
x+2n+2c−a−b+1

)
. (2.10)

Combining the two latter equations, we derive (2.5). Moreover, n+ c−a,n+ c−b,2n+2c−a−b+1 > 0,
for any n ∈ N, because c > max{a,b}. Therefore, (2.5) implies (2.6), which in turn shows that the vector of
measures

[
W (x;a,b;c),W (x;a,b;c+1)

]
forms a Nikishin system.

The generating measure σ in (2.6) can be found via the Stieltjes-Perron inversion formula. As such, we have

dσ(t)
dt

= g(t) = lim
ε→0+

c G(−t− iε)− c G(−t + iε)
2πi

(2.11)

where

G(x) =
W (x;a,b;c+1)
cW (x;a,b;c)

=
U(c−b+1,a−b+1;x)

U(c−b,a−b+1;x)
,

and it is well defined if c > max{a,b} where U(c−b,a−b+1;x) has no zeros in the sector |arg x|< π (see
[6, §13.9(ii)]). We use the identity [6, Eq. 13.3.10])

xU(c−b+1,a−b+2;x) = U(c−b,a−b+1;x)+(a− c)U(c−b+1,a−b+1;x) (2.12)

10
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followed by the expression for the derivative of the function U(α,β +1;x) [6, Eq. 13.3.22], to write

G(x) =
1

α(α−β )

(
x

U ′(α,β +1;x)
U(α,β +1;x)

+α

)
,

where α = c−b and β = a−b. Hence, (2.11) reads as

1
c

g(t) = lim
ε→0+

G(e−iπ(t + iε))−G(eiπ(t− iε))
2πi

= lim
ε→0+

(
e−πi(t + iε)U ′(α,β +1;e−πi(t + iε))U

(
α,β +1;eπi(t− iε)

)
2πiα(α−β ) |U(α,β +1;eπi(t− iε))|2

−
eπi(t− iε)U

(
α,β +1;e−πi(t + iε)

)
U ′(α,β +1;eπi(t− iε))

2πiα(α−β ) |U(α,β +1;eπi(t− iε))|2

)
.

In [15, (3.4)-(3.5], it was shown that, for noninteger values of β , we have

lim
ε→0+

(
U ′(α,β +1;e−πi(t + iε))U

(
α,β +1;eπi(t− iε)

)
−U

(
α,β +1;e−πi(t + iε)

)
U ′(α,β +1;eπi(t− iε))

2πi |U(α,β +1;eπi(t− iε))|2

)

=
−t−(β+1) e−t

Γ(α)Γ(α−β ) |U(α,β +1;eπit)|2
.

The latter was obtained by expressing the function U as a linear combination of two independent solutions
to the confluent differential equation as in [6, Eq. 13.2.42] to then use the expression for the wronskian of
those two functions given in [6, Eq. 13.2.34]. As a result, we conclude

1
c

g(t) =
tβ e−t

Γ(α +1)Γ(α−β +1) |U(α,β +1;eπit)|2
,

from which we deduce the following result.

Proposition 2.2. For a,b,c ∈ R+ such that c > max{a,b} and a−b /∈ Z, the relation (2.6) can be written
as

W (x;a,b;c+1)
W (x;a,b;c)

=
cU(c−b+1,a−b+1;x)

U(c−b,a−b+1;x)
=
∫ 0

−∞

c(−t)b−aet |U(c−b,a−b+1; t)|−2 dt
(x− t)Γ(c−b+1)Γ(c−a+1)

, (2.13)

where W (x;a,b;c) is given by (1.1).

2.2 Differential properties of the weight functions

From this point forth, we will index the vector of weights
[
W (x;a,b;c) , W (x;a,b;c+ 1)

]
with an extra

parameter d ∈ {0,1}, by considering

W
[d]
(x;a,b;c) :=

[
W (x;a,b;c+d)

W (x;a,b;c+1−d)

]
. (2.14)

11
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The parameter d ∈ {0,1} embodies the flip between the lower and the upper step line indexes of the corre-
sponding multiple orthogonal polynomials of both types. As a consequence, if

{
P[d]

n (x;a,b;c)
}

n∈N
is the

monic 2-orthogonal polynomial sequence and Q[d]
n (x;a,b;c) the type I function for the index of length n on

the step-line for W
[d]
(x;a,b;c), then

P[1]
2n (x;a,b;c) = P[0]

2n (x;a,b;c) and Q[1]
2n(x;a,b;c) = Q[0]

2n(x;a,b;c).

There are further motivations for the introduction of this parameter d. Under the action of the derivative
operator, the multiple orthogonal system for W

[d]
(x;a,b;c) bounces from the lower to the upper step line

(and reciprocally) with shifted parameters, as perceivable in Theorem 2.9. A result that comes as a conse-
quence of Theorem 2.5 where the vector of weights (2.14) is described as a solution to a matrix first order
differential equation. Its structure fits into the category of Hahn-classical type vector of weights, in the sense
expounded in [7]. Beforehand, in Proposition 2.3 we describe the weight function W (x;a,b;c) in (1.1) as a
solution to a second-order differential equation.

Proposition 2.3. Let a,b,c ∈ R+ such that c > max{a,b}. Then W (x;a,b;c) defined in (1.1) satisfies the
differential equation

x2W ′′(x;a,b;c)+(x− (a+b−3))xW ′(x;a,b;c)+((a−1)(b−1)− (c−2)x)W (x;a,b;c) = 0. (2.15)

Proof. To simplify the notation, let U(x) := U(c−b,a+1−b;x) and W (x) := W (x;a,b;c).

We differentiate (1.1) with respect to x to obtain

W ′(x) =
Γ(c)

Γ(a)Γ(b)
e−xxa−2 (xU′(x)+(a−1− x)U(x)

)
. (2.16)

Another differentiation brings

W ′′(x) =
Γ(c)

Γ(a)Γ(b)
e−xxa−3

(
x2U′′(x)+2(a−1− x)xU′(x)+

(
x2−2(a−1)x+(a−1)(a−2)

)
U(x)

)
.

Based on (1.2), we have

xU′′(x) = (x−a−1+b)U′(x)+(c−b)U(x)

so that

W ′′(x) =
Γ(c)

Γ(a)Γ(b)
e−xxa−3

(
(a+b−3− x)xU′(x)+

(
x2 +(c−b−2a−2)x+(a−1)(a−2)

)
U(x)

)
.

Finally, combining the latter expression, (2.16) and the definition of W (x), we deduce (2.15).

To prove Theorem 2.5 we need the following result, which allows us to write
d
dx

(xW (x;a,b;c+d)), with

d ∈ {0,1}, as a linear combination of W (x;a,b;c) and W (x;a,b;c+1).

12
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Lemma 2.4. For a,b,c∈R+ such that c > max{a,b}, let W
[d]
(x;a,b;c), d ∈ {0,1}, be defined as in (2.14).

Then

d
dx

(xW (x;a,b;c)) =−(x+ c−a−b)W (x;a,b;c)+
(c−a)(c−b)

c
W (x;a,b;c+1) (2.17)

and
d
dx

(xW (x;a,b;c+1)) = cW (x;a,b;c+1)− cW (x;a,b;c). (2.18)

Proof. From [6, Eq. 13.3.22],

d
dx

(
U(c−b,a−b+1;x)

)
= (b− c)U(c−b+1,a−b+2;x) .

Therefore, recalling (2.16), we obtain

W ′(x;a,b;c) =
Γ(c)

Γ(a)Γ(b)
e−xxa−2

(
(b− c)xU(c−b+1,a−b+2;x)+(a−1− x)U(c−b,a−b+1;x)

)
.

and (2.12) implies

W ′(x;a,b;c) =
Γ(c)

Γ(a)Γ(b)
e−xxa−2

(
(c−a)(c−b)U(c−b+1,a−b+1;x)− (x+ c−a−b+1)U(c−b,a−b+1;x)

)
,

which leads to (2.17).

The shift c→ c+1 in (2.17) brings

d
dx

(xW (x;a,b;c+1)) =−(x+ c−a−b+1)W (x;a,b;c+1)+
(c−a+1)(c−b+1)

c+1
W (x;a,b;c+2).

Using (2.8) with c→ c+1, the last term in the latter expression becomes

(c−a+1)(c−b+1)
c+1

W (x;a,b;c+2) = (x+2c−a−b+1)W (x;a,b;c+1)− cW (x;a,b;c).

and, combining the two latter equations, we derive (2.18).

Based on the previous, we can write the vector of weights W
[d]
(x;a,b;c) as a solution to a matrix first order

equation of Pearson type. More precisely, we have:

Theorem 2.5. For a,b,c ∈ R+ such that c > max{a,b}, let W
[d]
(x;a,b;c), d ∈ {0,1}, be defined as in

(2.14). Then
d
dx

(
xΦ

[d](x;a,b;c)W
[d]
(x;a,b;c)

)
+Ψ

[d](x;a,b;c)W
[d]
(x;a,b;c) = 0, (2.19)

13
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where

Φ
[0] =

 0
c+1
ab

c
ab

0

 and Ψ
[0](x) =

 c(c+1)
ab

−c(c+1)
ab

c
ab

(x+ c−a−b) − (c−a)(c−b)
ab

 ;

Φ
[1](x) =


c+1
ab

0

(c+1)(c+2)(x+2c−a−b+1)
ab(c−a+1)(c−b+1)

− c(c+1)(c+2)
ab(c−a+1)(c−b+1)

 and

Ψ
[1](x) =

 −c(c+1)
ab

c(c+1)
ab

− (c+1)2(c+2)
ab(c−a+1)(c−b+1)

(
x+ c− ab

c+1

)
c(c+1)2(c+2)

ab(c−a+1)(c−b+1)

 .

Moreover,
xΦ

[d](x;a,b;c)W
[d]
(x;a,b;c) = W

[1−d]
(x;a+1,b+1;c+1+d). (2.20)

Proof. To simplify the notation, let W
[d]
(x) = W

[d]
(x;a,b;c), d ∈ {0,1}. Then equations (2.17) and (2.18)

in Lemma 2.4 can be rewritten, for d ∈ {0,1}, as

d
dx

(
xW

[d]
(x;a,b;c)

)
=−Ω

[d](x)W
[d]
(x;a,b;c),

with

Ω
[0](x) =

−(x+ c−a−b)
(c−a)(c−b)

c
−c c

 and Ω
[1](x) =

 c −c
(c−a)(c−b)

c
−(x+ c−a−b)

 .

Multiplying the expressions for
d
dx

(
xW

[d]
(x;a,b;c)

)
by Φ[d](x), we obtain

d
dx

(
x Φ

[d](x) W
[d]
(x;a,b;c)

)
=

(
x

d
dx

(
Φ

[d](x)
)
−Φ

[d](x)Ω[d](x)
)

W
[d]
(x),

which corresponds to (2.19), after observing that, for both d ∈ {0,1},

Ψ
[d](x) = Φ

[d](x)Ω[d](x)− x
d
dx

(
Φ

[d](x)
)
.

Now, let [
V

[d]
0 (x)

V
[d]

1 (x)

]
= xΦ

[d](x)

[
W (x;a,b;c+d)

W (x;a,b;c+1−d)

]
, d ∈ {0,1}.

14
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In order to prove (2.20), we need to check that[
V

[d]
0 (x)

V
[d]

1 (x)

]
=

[
W (x;a+1,b+1;c+2)

W (x;a+1,b+1;c+1+2d)

]
, d ∈ {0,1}.

Indeed, we have

V
[1]

0 (x) = V
[0]

0 (x) =
c+1
ab

xW (x;a,b;c+1) =
Γ(c+2)

Γ(a+1)Γ(b+1)
e−xxa U(c−b+1,a−b+1;x) ,

hence

V
[1]

0 (x) = V
[0]

0 (x) = W (x;a+1,b+1;c+2),

as well as

V
[0]

1 (x) =
c

ab
xW (x;a,b;c) =

Γ(c+1)
Γ(a+1)Γ(b+1)

e−xxa U(c−b,a−b+1;x) = W (x;a+1,b+1;c+1).

and

V
[1]

1 (x) =
(c+1)(c+2)x

ab(c−a+1)(c−b+1)

(
(x+2c−a−b+1)W (x;a,b;c+1)− cW (x;a,b;c)

)
=

Γ(c+3)
Γ(a+1)Γ(b+1)

e−xxa (x+2c−a−b+1)U(c−b+1,a−b+1;x)−U(c−b,a−b+1;x)
(c−a+1)(c−b+1)

,

which, recalling (2.8) (with the shift c→ c+1), can be rewritten as

V
[1]

1 (x) =
Γ(c+3)

Γ(a+1)Γ(b+1)
e−xxa U(c−b+2,a−b+1;x) = W (x;a+1,b+1;c+3).

2.3 Differential properties of the multiple orthogonal polynomials

The main result of this section is Theorem 2.9, where we present a differential relation for multiple orthogo-
nal polynomials on the step line of type II in (2.25) and of type I in (2.26). More precisely, we show that the
differentiation with respect to the variable gives a shift on the parameters as well as on the index. Therefore,
we can see these polynomials as part of the Hahn-classical family, since both type II and type I multiple
orthogonal polynomials on the step line satisfy the Hahn-classical property.

To derive this theorem, we first prove Propositions 2.6 and 2.7 that give us differential properties for type II
and type I multiple orthogonal polynomials on the step line in more general contexts. Proposition 2.6 is a
consequence of the alternative characterisation of the Hahn-classical property for 2-orthogonal polynomials
(ie multiple orthogonal polynomials on the step line) derived by Douak and Maroni in [7] (see also [8,
Théorème 3.1] or [23, Proposition 6.2]). Here, we present an alternative proof, restricting ourselves to the
use of weight functions instead of linear functionals. Incidentally, evoking similar arguments, Proposition
2.7 is an analogous result for type I polynomials, which we believe to be new.
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Proposition 2.6. Let w(x) =

[
w0(x)

w1(x)

]
be a vector of weight functions satisfying a differential equation

d
dx

(xΦ(x)w(x))+Ψ(x)w(x) = 0, (2.21)

with Φ(x) =

[
φ00 φ01

ϕ(x) φ11

]
and Ψ(x) =

[
η0 η1

ψ(x) ξ

]
, for constants φ00, φ01, φ11, η0, η1 and ξ and polyno-

mials ϕ and ψ such that degϕ ≤ 1 and degψ = 1. Suppose that all multi-indices on the step-line are normal
with respect to both w(x) and xΦ(x)w(x) and let {Pn(x)}n∈N be the 2-orthogonal polynomial sequence with
respect to w(x). Then

{ 1
n+1

d
dx (Pn+1(x))

}
n∈N is 2-orthogonal with respect to xΦ(x)w(x).

Proof. Let v(x) = xΦ(x)w(x) =

[
v0(x)

v1(x)

]
. Based on the assumption (2.21), we have

d
dx

(v(x)) =−Ψ(x)w(x)

so that

d
dx

(
xkv(x)

)
= xk(kΦ(x)−Ψ(x)

)
w(x)

holds for any k ∈ N, and it amounts to the same as

d
dx

(
xkv0(x)

)
= xk

(
(kφ00−η0)w0(x)+(kφ01−η1)w1(x)

)
and

d
dx

(
xkv1(x)

)
= xk

(
(kϕ(x)−ψ(x))w0(x)+(kφ11−ξ )w1(x)

)
.

Performing integration by parts and then using the latter identities, we respectively have∫
∞

0
xkP′n+1(x)v0(x)dx =

∫
∞

0
(η0− kφ00)xkPn+1(x)w0(x)dx+

∫
∞

0
(η1− kφ01)xkPn+1(x)w1(x)dx

and ∫
∞

0
xkP′n+1(x)v1(x)dx =

∫
∞

0
(ψ(x)− kϕ(x))xkPn+1(x)w0(x)dx+

∫
∞

0
(ξ − kφ11)xkPn+1(x)w1(x)dx,

which are valid for any k ∈ N.

Arguing now with the 2-orthogonality of {Pn(x)}n∈N with respect to w(x), combined with the degrees of ϕ

and ψ not being greater than 1, we conclude that the polynomial sequence
{ 1

n+1 P′n+1(x)
}

n∈N is necessarily
2-orthogonal with respect to v(x).

A similar result can be deduced regarding multiple orthogonality of type I.
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Proposition 2.7. Let w(x) be a vector of weight functions satisfying (2.21) with Φ(x) and Ψ(x) being two
polynomial matrices as described in Proposition 2.6. Suppose that all multi-indices on the step-line are
normal with respect to both w(x) and xΦ(x)w(x) and let Qn(x) be the type I function for the index of length
n on the step-line with respect to xΦ(x)w(x). Then − 1

n
d
dx (Qn(x)) is the type I function for the index of

length n+1 on the step line with respect to w(x).

Proof. By a simple integration and then by definition of Qn(x) we have∫
∞

0
Q′n(x)dx = Qn(x)

∣∣∣∞
0
= 0,

whilst, after performing integration by parts to then argue with the definition of Qn(x), we obtain∫
∞

0
xk+1Q′n(x)dx =−(k+1)

∫
∞

0
xkQn(x)dx =

{
0, if 0≤ k ≤ n−2,

−n, if k = n−1.

Hence, it follows ∫
∞

0
−x j Q′n(x)

n
dx =

{
0, if 0≤ j ≤ n−1,

1, if j = n.

Therefore it is sufficient to show that there are polynomials An+1(x) and Bn+1(x) such that

− 1
n

Q′n(x) = An+1(x)w0(x)+Bn+1(x)w1(x) for all n ∈ N, (2.22)

and

deg(A2m(x)) ,deg(B2m(x)) ,deg(B2m+1(x))≤ m−1 and deg(A2m+1(x))≤ m, for any m ∈ N, (2.23)

because this implies that (An+1(x),Bn+1(x)) is the vector of type I multiple orthogonal polynomials for the
index of length n+ 1 on the step-line with respect to w(x). Consequently, this means that − 1

n
d
dx (Qn(x)) is

the type I function for the index of length n+1 on the step line with respect to w(x).

Consider the vector of weights v(x) = xΦ(x)w(x) and let v(x) =
[

v0(x)
v1(x)

]
. Then,

v0(x) = x(φ00 w0(x)+φ01 w1(x)) and v1(x) = x(ϕ(x)w0(x)+φ11 w1(x)) . (2.24a)

By virtue of equation (2.21), we have
d
dx

(v(x)) =−Ψ(x)w(x), which means

v′0(x) =−η0w0(x)−η1w1(x) and v′1(x) =−ψ(x)w0(x)−ξ w1(x). (2.24b)

For any n ∈ N, let (Cn(x),Dn(x)) be the vector of type I multiple orthogonal polynomials for the index of
length n on the step-line with respect to v(x). Then, by definition of the type I function,

Qn(x) =Cn(x)v0(x)+Dn(x)v1(x),
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with

deg(C2m(x)) ,deg(D2m(x)) ,deg(D2m+1(x))≤ m−1 and deg(C2m+1(x))≤ m, for any m ∈ N.

Differentiating the expression for Qn(x), we obtain

Q′n(x) =C′n(x)v0(x)+An(x)v′0(x)+D′n(x)v1(x)+Dn(x)v′1(x)

hence, using (2.24a) and (2.24b), we derive

Q′n(x) =
(

φ00xC′n(x)−η0Cn(x)+ xϕ(x)D′n(x)−ψ(x)Dn(x)
)

w0(x)

+
(

φ01xC′n(x)−η1Cn(x)+φ11xD′n(x)−ξ Dn(x)
)

w1(x).

The uniqueness of type I multiple orthogonal polynomials leads to (2.22) where

An+1(x) =−
1
n

(
φ00xC′n(x)−η0Cn(x)+ xϕ(x)D′n(x)−ψ(x)Dn(x)

)
and

Bn+1(x) =−
1
n

(
φ01xC′n(x)−η1Cn(x)+φ11xD′n(x)−ξ Dn(x)

)
.

Finally, the conditions on the degrees of Cn(x) and Dn(x), combined with the degrees of Φ and Ψ not being
greater than 1, imply that (2.23) holds.

Remark 2.8. As a straightforward consequence of Proposition 2.7, the type I multiple orthogonal polyno-
mials (An(x),Bn(x)) and (Cn(x),Dn(x)) for w(x) and for xΦ(x)w(x), respectively, are related by(

An+1(x)
Bn+1(x)

)
= xΦ(x)t

(
C ′n (x)
D ′n (x)

)
−Ψ(x)t

(
Cn(x)
Dn(x)

)
, for all n≥ 0,

where Φt and Ψt are the transpose of the matrices given in Proposition 2.6.

Combining Propositions 2.6 and 2.7 with Theorem 2.5, we deduce differential and difference properties for
type I and type II multiple polynomials, which are described in the following result.

Theorem 2.9. For a,b,c∈R+ such that c>max{a,b}, let
{

P[d]
n (x;a,b;c)

}
n∈N

and
{

Q[d]
n (x;a,b;c)

}
n∈N

be

the sequences of type II multiple orthogonal polynomials and type I functions, respectively, on the step-line
with respect to W

[d]
(x;a,b;c), defined as in (2.14). Then

d
dx

(
P[d]

n+1(x;a,b;c)
)
= (n+1)P[1−d]

n (x;a+1,b+1;c+1+d), (2.25)

and

d
dx

(
Q[1−d]

n (x;a+1,b+1;c+1+d)
)
=−nQ[d]

n+1(x;a,b;c). (2.26)
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Proof. Let Φ
[d](x;a,b;c) be defined as in Theorem 2.5. Then Proposition 2.6 ensures that{

1
n+1

d
dx

(
P[d]

n+1(x;a,b;c)
)}

n∈N
is 2-orthogonal with respect to xΦ

[d](x;a,b;c)W
[d]
(x;a,b;c). Besides, from

Proposition 2.7, we know that, if Q̃[d]
n (x;a,b;c) is the type I function for the index of length n on the step-line

with respect to xΦ
[d](x;a,b;c)W

[d]
(x;a,b;c), then− 1

n
d
dx

(
Q̃[d]

n (x;a,b;c)
)

is the type I function for the index

of length n+1 on the step line with respect to the vector of weights W
[d]
(x;a,b;c). Therefore, by virtue of

(2.20), we conclude that both (2.25) and (2.26) hold.

The differentiable properties described in Theorem 2.9 are the main pillars for further characterisation of the
multiple orthogonal polynomials under analysis. These intrinsic properties resemble those found within the
context of the very classical standard orthogonal polynomials.

2.4 Type I multiple orthogonal polynomials

Let us revisit Proposition 2.7 and Remark 2.8 for the case where the vector of weights w(x) is replaced by

W
[d]
(x;a,b;c) defined by (2.14). We recall (2.20) in Theorem 2.5 and (2.26) in Theorem 2.9 to conclude

that if
(

A[d]
n (x;a,b;c),B[d]

n (x;a,b;c)
)

is the vector of type I multiple orthogonal polynomials on the step line

for W
[d]
(x;a,b;c), then A[d]
n+1(x;a,b;c)

B[d]
n+1(x;a,b;c)

=

(
xΦ(x)t d

dx
−Ψ(x)t

) A[1−d]
n (x;a+1,b+1;c+d)

B[1−d]
n (x;a+1,b+1;c+d)

 , for all n≥ 0.

The type I multiple orthogonal functions on the step line can be generated by concatenated differentiation of
the weight function or, in other words, via a Rodrigues-type formula.

Theorem 2.10. For a,b,c ∈ R+ such that c > max{a,b}, δ ∈ {0,1} and n ∈ N, let
{

Q[d]
n (x;a,b;c)

}
n∈N

be

the sequence of type I functions on the step-line with respect to W
[d]
(x;a,b;c). Then, for any n ∈ N,

Q[d]
n+1(x;a,b;c) =

(−1)n

n!
dn

dxn

(
W

(
x;a+n,b+n;c+n+

⌊
n+1+d

2

⌋))
. (2.27)

Proof. We proceed by induction on n ∈ N. For n = 0, the relation (2.27) reads as

Q[d]
1 (x;a,b;c) = W (x;a,b;c+d), (2.28)

which holds trivially.
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Using (2.26) and then evoking the assumption that (2.27) holds for a fixed n ∈ N, we obtain

Q[d]
n+2(x;a,b;c) =− 1

n+1
d
dx

(
Q[1−d]

n+1 (x;a+1,b+1;c+1+d)
)

=
(−1)n+1

(n+1)!
dn+1

dxn+1

(
W

(
x;a+n+1,b+n+1;c+n+1+

⌊
n+2+d

2

⌋))
.

If we equate the first and latter members, we readily see that (2.27) holds for n+1 and, as a result, we can
state that it holds for all n ∈ N by induction.

From this point forth the focus will be on the type II multiple orthogonal polynomials.

3 Characterisation of the type II multiple orthogonal polynomials

One of the defining properties of the four families of the very classical orthogonal polynomials (of Hermite,
Laguerre, Bessel and Jacobi) is that the sequence of their derivatives is also orthogonal (ie, they satisfy
Hahn’s property). Together, these four families share a number of other properties. We highlight two of them.
They are polynomial solutions to a second order linear differential equation with polynomial coefficients (the
so called Bochner’s differential equation). Their orthogonality weight functions are solutions to a first order
homogeneous linear differential equation with polynomial coefficients (commonly referred to as the Pearson
equation).

The type II multiple polynomials on the step line
{

P[d]
n (x)

}
n∈N

orthogonal for W
[d]
(x;a,b;c) in (2.14) also

satisfy a number of properties that resemble those found among the classical polynomials. The relation be-
tween

{
P[d]

n (x;a,b;c)
}

n∈N
and its sequence of derivatives given in (2.25) clearly shows that{

P[d]
n (x;a,b;c)

}
n∈N

satisfy the Hahn’s property. Additionally, we show in Section 3.2 that they are solution
to a third order linear differential equation with polynomial coefficients and we have described the vector of
weight functions to be a solution to a first order homogeneous linear matrix differential equation resembling
a matrix version of the Pearson equation. Therefore, it makes all sense to perceive these polynomials as
(Hahn)-classical polynomials in the context of multiple orthogonality. (However, within this context, it is
worth to note that in the literature there are other notions of ”classical”.) As a matter of fact, such properties
are also shared by other Hahn-classical 2-orthogonal polynomials. In [20] the equivalence between these
three properties was proved for the threefold symmetric case.

3.1 Explicit expression

Based on (1.5), we deduce an explicit expression for the type II multiple orthogonal polynomials on the step
line

{
P[d]

n (x;a,b;c)
}

n∈N
as a generalised hypergeometric function.
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Theorem 3.1. Let a,b,c > 0 such that c > max{a,b} > 0 and d ∈ {0,1}. If the polynomial sequence{
P[d]

n (x) := P[d]
n (x;a,b;c)

}
n∈N

is monic and 2-orthogonal with respect to W
[d]
(x;a,b;c), then

P[d]
n (x) =

(−1)n (a)n (b)n(
c+
⌊ n+d

2

⌋)
n

2F2

(
−n,c+

⌊ n+d
2

⌋
a,b

; x

)
(3.1a)

or, equivalently,

P[d]
n (x) =

n

∑
j=0

τ
[d]
n, j xn− j, with τ

[d]
n, j = (−1) j

(
n
j

)
(a+n− j) j (b+n− j) j(

c+
⌊ n+d

2

⌋
+n− j

)
j

. (3.1b)

To prove this theorem we need to check that
{

P[d]
n (x)

}
n∈N

in (3.1b) satisfies the 2-orthogonality conditions

with respect to W
[d]
(x;a,b;c), which are:

∫
∞

0
xkP[d]

n (x)W (x;a,b;c+d)dx =

{
0, if n≥ 2k+1,

Nn 6= 0, if n = 2k,
(3.2a)

and ∫
∞

0
xkP[d]

n (x)W (x;a,b;c+1−d)dx =

{
0, if n≥ 2k+2,

Nn 6= 0, if n = 2k+1,
(3.2b)

where it is understood that Nn := N[d]
n (a,b;c) 6= 0 for all n ∈ N.

Actually, as we are dealing with a Nikishin system, the existence of a 2-orthogonal polynomial sequence
with respect to W

[d]
(x;a,b;c) is guaranteed. By virtue of the known differential formula for a generalised

hypergeometric series (see [6, Eq. 16.3.1]), it is rather straightforward to show that the polynomials given
by (3.1a) satisfy the differential property (2.25) stated in Proposition 2.6. A property that a 2-orthogonal
polynomial sequence with respect to W

[d]
(x;a,b;c) must satisfy. Therefore, it would be sufficient to check

the orthogonality conditions (3.2a)-(3.2b) when k = 0 to then prove the result by induction on n ∈ N (the
degree of the polynomials).

However, we opt for checking that the polynomials P[d]
n (x) in (3.1a) satisfy all the orthogonality conditions

(3.2a)-(3.2b). On the one hand, this process enables us to show directly that the polynomials in (3.1a) are
indeed 2-orthogonal with respect to W

[d]
(x;a,b;c) without arguing with the Nikishin property. On the other

hand, it provides a method to derive the following explicit expressions for the nonzero coefficients Nn in
(3.2a)-(3.2b):

N[d]
2k (a,b;c) =


(2k)!(a)2k (b)2k

(c)3k
if d = 0,

(2k)!(a)2k (b)2k (c−a+1)k (c−b+1)k
(c+ k)2k (c+1)3k

if d = 1.

(3.2c)
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and

N[d]
2k+1(a,b;c) =


−
(2k+1)!(a)2k+1 (b)2k+1 (c)k (c−a+1)k (c−b+1)k

(c)3k+1 (c+1)3k+1
, if d = 0,

(2k+1)!(a)2k+1 (b)2k+1

(c)3k+2
, if d = 1.

(3.2d)

Note that N[d]
2k+ j(a,b;c) is negative when j = 1 and d = 0 and positive for all other cases. The explicit

expression for N[d]
n (a,b;c) readily gives an explicit expression for the nonzero γ-coefficients in the third

order recurrence relation (1.18) satisfied by these polynomials. Such relation is discussed in Section 3.3.

In order to prove Theorem 3.1, we need the following result.

Lemma 3.2. Let n, p, and m1, · · · ,mp be positive integers such that m :=
p

∑
i=1

mi ≤ n and β , f1, · · · , fp be

complex numbers with positive real part. Then

p+1Fp

(
−n, f1 +m1, · · · , fp +mp

f1, · · · , fp
; 1

)
=


0 if m < n,

(−1)nn!
( f1)m1

· · ·( fp)mp

if m = n.
(3.3)

and

p+2Fp+1

(
−n,β , f1 +m1, · · · , fp +mp

β +1, f1, · · · , fp
; 1

)
=

n!( f1−β )m1
· · ·( fp−β )mp

(β +1)n ( f1)m1
· · ·( fp)mp

. (3.4)

Proof. Formula (3.4) was deduced by Minton in [24] (see also [17]) and (3.3) can be obtained by taking the
limit β →+∞ in (3.4).

Proof of Theorem 3.1. We evaluate the left hand side of (3.2a) for any k,n ∈ N, by using the expression for
the moments (1.5) and the polynomial expansion (3.1b). This successively gives∫

∞

0
xkP[d]

n (x;a,b;c)W (x;a,b;c+d)dx =
n

∑
j=0

(−1)n− j
(

n
j

)
(a+ j)n− j (b+ j)n− j(

c+
⌊ n+d

2

⌋
+ j
)

n− j

(a)k+ j (b)k+ j

(c+d)k+ j

=
(−1)n (a)n (b)n (a)k (b)k(

c+
⌊ n+d

2

⌋)
n (c+d)k

n

∑
j=0

(−n) j (a+ k) j (b+ k) j
(
c+
⌊ n+d

2

⌋)
j

j!(a) j (b) j (c+ k+d) j

=
(−1)n (a)n (b)n (a)k (b)k(

c+
⌊ n+d

2

⌋)
n (c+d)k

4F3

(
−n,a+ k,b+ k,c+

⌊ n+d
2

⌋
a,b,c+ k+d

; 1

)
.

Based on (3.3) in Lemma 3.2, we obtain

4F3

(
−n,a+ k,b+ k,c+

⌊ n+d
2

⌋
a,b,c+ k+d

; 1

)
= 0, for any n≥ 2k+1,
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so that ∫
∞

0
xkP[d]

n (x)W (x;a,b;c+d)dx = 0, for any n≥ 2k+1. (3.5a)

Besides,∫
∞

0
xkP[d]

2k (x;a,b;c)W (x;a,b;c+d)dx =
(a)2k (b)2k (a)k (b)k
(c+ k)2k (c+d)k

4F3

(
−2k,a+ k,b+ k,c+ k

a+1,b+1,c+ k+d
; 1

)
.

For the d = 0 the latter hypergeometric series simplifies to a 3F2 which, on account of the identity (3.3), can
be evaluated to

3F2

(
−2k,a+ k,b+ k

a,b
; 1

)
=

(2k)!
(a)k (b)k

,

whilst for the case where d = 1 we have to use (3.4) to get

4F3

(
−2k,a+ k,b+ k,c+ k

a,b,c+ k+1
; 1

)
=

(2k)!(c−a+1)k (c−b+1)k
(a)k (b)k (c+ k+1)2k

.

As a result, we have ∫
∞

0
xkP[d]

2k (x;a,b;c)W (x;a,b;c+d)dx = N[d]
2k (a,b;c), (3.5b)

with the values of N[d]
2k (a,b;c) being given by (3.2c), ensuring that (3.2a) holds for any k and n.

Using similar arguments as before, we recall (1.5) to write the left hand side of (3.2b) as∫
∞

0
xkP[d]

n (x;a,b;c)W (x;a,b;c+1−d)dx =
(−1)n (a)n (b)n (a)k (b)k(
c+
⌊ n+d

2

⌋)
n (c+1−d)k

4F3

(
−n,a+ k,b+ k,c+

⌊ n+d
2

⌋
a,b,c+ k+1−d

; 1

)
.

For any n≥ 2k+2, identity (3.3) in Lemma 3.2 implies that∫
∞

0
xkP[d]

n (x)W (x;a,b;c+1−d)dx = 0. (3.6a)

When n = 2k+1, in order to evaluate the terminating hypergeometric series in the latter expression, we use
(3.4) for the case where d = 0 and we use (3.3) when d = 1 to derive∫

∞

0
xkP[d]

2k+1(x;a,b;c)W (x;a,b;c+1−d)dx = N[d]
2k+1(a,b;c), (3.6b)

with the values of N[d]
2k+1(a,b;c) being given by (3.2d), ensuring that (3.2b) holds for any k and n.

3.2 Differential equation

The type II multiple orthogonal polynomials of hypergeometric type described in (3.1a) are solutions to
a third order differential equation. The structure of this differential equation resembles the structure of
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differential equations satisfied by other 2-orthogonal polynomials satisfying the Hahn property, that is, Hahn-
classical polynomials. Examples of such polynomials can be found for instance in [3, 7, 28] among other
works.

In a way this differential equation can be seen as a Bochner type differential equation satisfied by all the
classical (standardly) orthogonal polynomials.

Theorem 3.3. For a,b,c ∈ R+ such that c > max{a,b}, let
{

P[d]
n (x) := P[d]

n (x;a,b;c)
}

n∈N
, d ∈ {0,1}, be

the monic 2-orthogonal polynomial sequence with respect to W
[d]
(x;a,b;c). Then

x2 d3

dx3

(
P[d]

n (x)
)
− xϕ(x)

d2

dx2

(
P[d]

n (x)
)
+ψ

[d]
n (x)

d
dx

(
P[d]

n (x)
)
+n
(

c+
⌊

n+d
2

⌋)
P[d]

n (x) = 0, (3.7)

with ϕ(x) = x− (a+b+1) and ψ
[d]
n (x) =

(⌊
n+1−d

2

⌋
− (c+1)

)
x+ab.

Proof. Combining the explicit formula for the polynomials given by (3.1a) and the generalised hypergeo-
metric differential equation [6, Eq. 16.8.3], we obtain[

d
dx

(
x

d
dx

+a−1
)(

x
d
dx

+b−1
)]

P[d]
n (x) =

[(
x

d
dx

+ c+
⌊

n+d
2

⌋)(
x

d
dx
−n
)]

P[d]
n (x). (3.8)

Moreover, we have[(
x

d
dx

+a−1
)(

x
d
dx

+b−1
)](

P[d]
n (x)

)
= x2 d2

dx2

(
P[d]

n (x)
)
+(a+b−1)x

d
dx

(
P[d]

n (x)
)
+(a−1)(b−1)P[d]

n (x)

and, observing that c+
⌊

n+d
2

⌋
−n+1 = c+1−

⌊
n+1−d

2

⌋
, the right-hand side of (3.8) is

[(
x

d
dx

+ c+
⌊

n+d
2

⌋)(
x

d
dx
−n
)](

P[d]
n (x)

)
= x2 d2

dx2

(
P[d]

n (x)
)
+

(
c+1−

⌊
n+1−d

2

⌋)
x

d
dx

(
P[d]

n (x)
)
−n
(

c+
⌊

n+d
2

⌋)
Pn(x).

Furthermore, differentiating our expression for
[(

x
d
dx

+a−1
)(

x
d
dx

+b−1
)](

P[d]
n (x)

)
, we obtain

[
d
dx

(
x

d
dx

+a−1
)(

x
d
dx

+b−1
)]

Pn(x) = x2 d3

dx3

(
P[d]

n (x)
)
+(a+b+1)x

d2

dx2

(
P[d]

n (x)
)
+ab

d
dx

(
P[d]

n (x)
)
.

Finally, combining the former and the latter expressions, we derive the differential equation (3.7).
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The alternative representation (3.8) for the differential equation (3.7) highlights some symmetrical properties
of these polynomials that may be worth to explore.

3.3 Recurrence relation

One of the main features of the 2-orthogonal polynomials is the third order recurrence relation. The hyper-
geometric type polynomials defined by (3.1a) necessarily satisfy a recurrence relation of the type

P[d]
n+1(x) =

(
x−β

[d]
n

)
P[d]

n (x)−α
[d]
n P[d]

n−1(x)− γ
[d]
n−1P[d]

n−2(x). (3.9)

The key point here is to obtain explicit expressions for the recurrence coefficients triplet (β [d]
n ,α

[d]
n ,γ

[d]
n ) in

(3.9). For simplification, we have written β
[d]
n := β

[d]
n (a,b;c), α

[d]
n := α

[d]
n (a,b;c) and γ

[d]
n := γ

[d]
n (a,b;c).

Their expressions can be derived through the explicit expression given in (3.1a) or in (3.1b). As the poly-
nomials are terminating generalised hypergeometric series, one can use some well known symbolic com-
putation packages available in Maple (for instance) to deduce a difference equation on the parameter of the
hypergeometric function corresponding to the index of the polynomial. Ultimately, this gives a recurrence
relation and expressions for the recurrence coefficients. However, for a matter of completion, we deduce ex-
pressions for the recurrence coefficients via a standard algebraic method. In the recurrence relation (3.9) we
replace the polynomials P[d]

n+1− j(x) (with j = 0,1,2,3) by their corresponding expansion expression (3.1b).
The linear independence of {xn}n∈N implies that we can equate the expressions of both sides of the recur-
rence relation. After equating the coefficients of xn in (3.9), we obtain

β
[d]
n = τ

[d]
n,1− τ

[d]
n+1,1.

Similarly, a comparison of the coefficients of xn−1, combined with the latter formula, brings the identity

α
[d]
n = τ

[d]
n,2− τ

[d]
n+1,2−

(
τ
[d]
n,1

)2
+ τ

[d]
n,1τ

[d]
n+1,1.

Based on the expression for these τ-coefficients in (3.1b), we have

τ
[d]
n,1(a,b;c) =−n(a+n−1)(b+n−1)

c+
⌊ n+d

2

⌋
+n−1

and

τ
[d]
n,2(a,b;c) =

1
2

n(a+n−1)(b+n−1)(n−1)(a+n−2)(b+n−2)(
c+
⌊ n+d

2

⌋
+n−1

)(
c+
⌊ n+d

2

⌋
+n−2

) ,

which leads to

β
[d]
2m+d(a,b;c) =

(2m+d +1)(a+2m+d)(b+2m+d)
c+3m+2d

− (2m+d)(a+2m+d−1)(b+2m+d−1)
c+3m+2d−1

(3.10a)
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and

β
[1−d]
2m+d(a,b;c) =

(2m+d +1)(a+2m+d)(b+2m+d)
c+3m+d +1

− (2m+d)(a+2m+d−1)(b+2m+d−1)
c+3m+d−1

,

(3.10b)

as well as

α
[1−d]
2m+d(a,b;c+d) = α

[d]
2m+d(a,b;c) (3.10c)

=
(2m+d)(a+2m+d−1)(b+2m+d−1)

c+3m+2d−1

(
(2m+d−1)(a+2m+d−2)(b+2m+d−2)

2(c+3m+2d−2)
(3.10d)

− (2m+d)(a+2m+d−1)(b+2m+d−1)
c+b+3m+2d−1

+
(2m+d +1)(a+2m+d)(b+2m+d)

2(c+3m+2d)

)
.

The expressions for the coefficients γ
[d]
n could also be obtained in an analogous way after comparing the

coefficients of xn−2 in (3.9). However, it is rather easier from the computational point of view, to derive such
expressions directly from the 2-orthogonality conditions. Indeed, the 2-orthogonality conditions applied to
the recurrence relation (3.9), straightforwardly imply that

γ
[d]
2n+1(a,b;c) =

∫
∞

0 xn+1P[d]
2n+2(x;a,b;c)W (x;a,b;c+d)dx∫

∞

0 xnP[d]
2n (x;a,b;c)W (x;a,b;c+d)dx

and

γ
[d]
2n+2(a,b;c) =

∫
∞

0 xn+1P[d]
2n+3(x;a,b;c)W (x;a,b;c+1−d)dx∫

∞

0 xnP[d]
2n+1(x;a,b;c)W (x;a,b;c+1−d)dx

.

Based on the latter alongside with (3.2a)-(3.2d), we deduce

γ
[d]
2m+d(a,b;c) =

(2m+d)2 (a+2m+d−1)2 (b+2m+d−1)2 (c+m+d−1)(c−a+m+d)(c−b+m+d)
(c+3m+2d−2)3 (c+b+3m+2d−1)3

,

(3.10e)

and

γ
[1−d]
2m+d(a,b;c) =

(2m+d)2 (a+2m+d−1)2 (b+2m+d−1)2
(c+3m+d−1)3

. (3.10f)

As a consequence, we have just proved the following result.

Theorem 3.4. For a,b,c ∈ R+ such that c > max{a,b}, let
{

P[d]
n (x) := P[d]

n (x;a,b;c)
}

n∈N
, d ∈ {0,1}, be

the monic 2-orthogonal polynomial sequence with respect to W
[d]
(x;a,b;c). Then the recurrence relation
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(3.9) holds and the recurrence coefficients are given by (3.10a)-(3.10f) with γ
[d]
n+1(a,b;c) > 0 for all n ∈ N.

Furthermore, the coefficients have the following asymptotic behaviour of period 2:

β
[d]
2m+d(a,b;c)∼ 28

9
m, β

[1−d]
2m+d(a,b;c)∼ 20

9
m,

α
[1−d]
2m+d(a,b;c+d) = α

[d]
2m+d(a,b;c)∼ 208

81
m2,

γ
[d]
2m+d(a,b;c)∼ 26

36 m3 and γ
[1−d]
2m+d(a,b;c)∼ 26

33 m3, as m→ ∞.

3.4 Asymptotic behaviour of the largest zero

We have already stated that, because W (x;a,b;c) and W (x;a,b;c+ 1) form a Nikishin system, then, if
{Pn(x)}n∈N is the 2-orthogonal polynomial sequence with respect to these weight functions, Pn has n real
positive simple zeros and the zeros of consecutive polynomials interlace as there is always a zero of Pn

between two consecutive zeros of Pn+1. An asymptotic upper bound for the largest zero of 2-orthogonal
polynomial sequences is intimately related to the asymptotic behaviour of their recurrence relation coeffi-
cients, as explained in the following theorem.

Theorem 3.5. Let {Pn(x)}n∈N be a 2-orthogonal polynomial sequence satisfying (1.18) with γn > 0, for all
n ∈ N. Suppose there exists a non-decreasing positive sequence g : N→ R+ and real constants γ > 0 and
α,β ≥ 0 so that

|βn| ≤ β (g(n)+o(g(n))) , |αn| ≤ α

(
(g(n))2 +o

(
(g(n))2

))
, and |γn| ≤ γ

(
(g(n))3 +o

(
(g(n))3

))
,

and such that ∆ := γ
2 − α3

27
> 0. If x(n)n denotes the largest zero in absolute value of Pn(x), then, with

τ =
3
√

γ +
√

∆+
3
√

γ−
√

∆ , we have∣∣∣x(n)n

∣∣∣≤ (3
2

τ +β +
α

2τ

)
g(n)+o(g(n)) , as n→+∞.

Recalling the asymptotic behaviour for the recurrence coefficients obtained in Theorem 3.4, finding an
asymptotic upper bound for the largest zero of P[d]

n (x;a,b;c) is an immediate consequence of Theorem 3.5.

Corollary 3.6. For a,b,c ∈ R+ such that c > max{a,b}, let
{

P[d]
n (x;a,b;c)

}
n∈N

, d ∈ {0,1}, be the monic

2-orthogonal polynomial sequence with respect to W
[d]
(x;a,b;c). Then P[d]

n has n simple real positive zeros
and, if we denote by x(n)n the largest zero of P[d]

n (x;a,b;c), then

x(n)n < M ·n+o(n), as n→+∞,
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where M =
3
2

τ + β +
α

2τ
≈ 3.484, with α =

52
81

, β =
14
9

, γ =
8

27
, ∆ = γ

2− α3

27
=

1119104
14348907

> 0 and

τ =
3
√

γ +
√

∆+
3
√

γ−
√

∆.

We illustrate the latter result in Figure 2, produced in Maple. The curve y = 3.484n gives clearly an up-
per bound for the largest zero of P[d]

n (x;a,b;c) for each d ∈ {0,1}. As already explained, the even order
polynomials do not depend on d. Therefore, the zeros of P[0]

2n and P[1]
2n coincide, but a similar remark does

not apply for the odd order polynomials because P[0]
2n+1 6= P[1]

2n+1. A sharper upper bound could be obtained
if we consider further terms in the estimation and adapting the proof accordingly. For the purpose of this
investigation this is not so relevant.

Figure 2: Joint plots of the largest zeros of P[d]
n (x;3,2.5,7.5) for d = 0 (crosses) and d = 1 (dots) for each

n = 1, . . . ,100 with the upper bound curve y = 3.484n in solid line.

Observe that Theorem 3.5 is a generalisation of Theorem 2.2 in [20], since the latter can be obtained from
the former by setting α = β = 0 and g(n) = nλ with λ ≥ 0. Its proof is inspired on the one for [20, Th. 2.2].

Proof of Theorem 3.5. Consider the Hessenberg matrix

Hn =



β0 1 0 0 · · · 0
α1 β1 1 0 · · · 0

γ1 α2 β2 1
. . .

...

0
. . . . . . . . . . . . 0

...
. . . γn−3 αn−2 βn−2 1

0 · · · 0 γn−2 αn−1 βn−1


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so that the recurrence relation can be expressed as

Hn


P0(x)
P1(x)

...
Pn−2(x)
Pn−1(x)

= x


P0(x)
P1(x)

...
Pn−2(x)
Pn−1(x)

−Pn(x)


0
0
...
0
1


and each zero of Pn is an eigenvalue of the matrix Hn. Then, if ρ(Hn) = max{|λ | : λ is an eigenvalue of Hn}
is the spectral radius of the matrix Hn,

∣∣∣x(n)n

∣∣∣< ρ(Hn).

Moreover, ρ(Hn) is bounded from above by the matrix norm (see [13, Section 5.6])

‖Hn‖S = ‖S−1HnS‖∞ = max
1≤i≤n

{
n

∑
j=1
|(S−1HnS)i, j|

}
,

for a non-singular n× n matrix S. In particular, if we set S = diag(s1, · · · ,sn), with det(S) = s1 · · ·sn 6= 0,
then

‖Hn‖S = max
1≤i≤n

{∣∣∣∣ s2 +β0s1

s1

∣∣∣∣ , ∣∣∣∣ s3 +β1s2 +α1s1

s2

∣∣∣∣ ∣∣∣∣ s4 +β2s3 +α2s2 + γ1s1

s3

∣∣∣∣ , · · · ,∣∣∣∣ sn +βn−2sn−1 +αn−2sn−2 + γn−3sn−3

sn−1

∣∣∣∣ , ∣∣∣∣βn−1sn +αn−1sn−1 + γn−2sn−2

sn

∣∣∣∣}.

If we take sk =
k

∏
j=1

(sg( j)) = sk
k

∏
j=1

g( j) > 0, for some s > 0, then, using the asymptotic behaviour of the

recurrence coefficients in (3.9), as k→+∞ we have∣∣∣∣ sk +βk−2sk−1 +αk−2sk−2 + γk−3sk−3

sk−1

∣∣∣∣≤ sk

sk−1
+ |βk−2|+ |αk−2|

sk−2

sk−1
+ |γk−3|

sk−3

sk−1

≤sg(k)+βg(k−2)+α
(g(k−2))2

sg(k−1)
+ γ

(g(k−3))3

s2g(k−2)g(k−1)
+o(g(k))

≤
(

s+β +
α

s
+

γ

s2

)
g(k)+o(g(k)) .

As a result,

‖Hn‖S ≤
(

s+β +
α

s
+

γ

s2

)
g(n)+o(g(n)) , n→+∞.

To find a sharper upper bound for ‖Hn‖S

(
and, as a consequence, for

∣∣∣x(n)n

∣∣∣) given by this formula we need

to find the minimum value of f (s) = s+β +
α

s
+

γ

s2 on R+. With that purpose, we look for the roots of

f ′(s) = 1− α

s2 −
2γ

s3 =
1
s3

(
s3−αs−2γ

)
. Due to the condition ∆ > 0, we know that f ′ has one real root
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and two complex roots. Moreover, the real root is τ =
3
√

γ +
√

∆+
3
√

γ−
√

∆ > 0 (where we are taking real

and positive square and cubic roots). Furthermore, f ′′(s) =
2α

s3 +
6γ

s4 hence f ′′(τ) > 0 and, consequently,

the choice s = τ gives a minimum value to f (s) = s+β +
α

s
+

γ

s2 . Finally, f ′(τ) = 0 implies
2γ

τ3 = 1− α

τ

therefore f (τ) =
3
2

τ +β +
α

2τ
, which implies the result.

3.5 Confluence relation with the modified Bessel weights

There is a clear relation by confluence of these multiple orthogonal polynomials to those studied indepen-
dently in [3] and [28]. In the latter, the study addressed multiple orthogonal polynomials of both types,
while the former concentrated on the type II. In both works, the focus was on weights involving the modified
Bessel functions and defined on the positive real line, for parameters a,b ∈ R+, as follows

V (x;a,b) =
2

Γ(a)Γ(b)
x

a+b
2 −1Ka−b

(
2
√

x
)
, (3.11)

where, as mentioned in the introduction, Kν (x) is the modified Bessel function of second kind (also known
as Macdonald function).

Let {Rn(x;a,b)}n∈N be the 2-orthogonal polynomial sequence with respect to the vector of weight functions
[V (x;a,b), V (x;a,b+1)] supported on the positive real line. Similar to the 2-orthogonal polynomials with
respect to the modified Tricomi weights, this sequence can also be explicitly represented as a sequence of
generalised hypergeometric polynomials by

Rn(x;a,b) = (−1)n (a)n (b)n 1F2

(
−n

a,b
; x

)
. (3.12)

As a direct consequence of this representation, combined with the differential formula for the generalised hy-
pergeometric series (see [6, Eq. 16.3.1]), the sequence of derivatives of {Rn(x;a,b)}n∈N is also 2-orthogonal
and it corresponds to the same sequence with shifted parameters. More precisely, for any n ∈ N,

d
dx

(Rn+1(x;a,b)) = (n+1)Rn(x;a+1,b+1). (3.13)

So, it fits within the family of Hahn-classical 2-orthogonal polynomials.

To obtain a limiting relation between the 2-orthogonal polynomials with respect to the modified Bessel and
Tricomi weights, recall that, if p≤ q, then the generalised hypergeometric series p+1Fq satisfies the confluent
relation (see [6, Eq. 16.8.10])

lim
|α|→∞

p+1Fq

(
α1, · · · ,αp,α

β1, · · · ,βq
;

x
α

)
= pFq

(
α1, · · · ,αp

β1, · · · ,βq
; x

)
. (3.14)
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Using this formula to compare (3.1a) and (3.12), we obtain the confluent relation

lim
c→∞

P[d]
n

(x
c

;a,b,c
)
= Rn (x;a,b) . (3.15)

As expected, we can also obtain an equivalent confluent relation for the weight functions V (x;a,b) and
W (x;a,b;c) as

lim
c→∞

1
c

W
(x

c
;a,b,c

)
= V (x;a,b) ,

which is obtained after taking ν = b− a in the following limiting relation between the modified Bessel
function and the Tricomi function (see [9, p.266])

lim
c→∞

Γ(c+ν)U
(

a,1−ν ;
x
c

)
= 2x

ν
2 Kν (x) .

4 Connection with Hahn-classical 3-fold symmetric polynomials

There are four distinct families of Hahn-classical threefold symmetric 2-orthogonal polynomials, up to a
linear transformation of the variable. A fact that was highlighted in [7] and all these families were studied
in detail in [20]. The four arising cases were therein denominated as A, B1, B2 and C. The simplest is
case A, which consists of 2-orthogonal Appell polynomials, with no parameter dependence, and whose
cubic components are particular cases of the 2-orthogonal polynomials mentioned in Section 3.5 involving
modified Bessel weights and previously studied in [28] and [3]. The cases B1 and B2 have a richer structure,
depend on a parameter and are related to each other via differentiation articulated with parameter shift.
Their three cubic components are particular cases of the 2-orthogonal polynomials studied in Section 3.
In other words, particular choices on the parameters (a,b,c,d) in (3.1a) allows to describe the three cubic
components P[k]

n as in (1.22) for these two cases. More precisely, for each of the cubic components indexed
with k ∈ {0,1,2} we have

P[k]
n (x; µ) = P[dk]

n

(
x;ak,bk,

µ

3
+bk

)
in case B1

and

P[k]
n (x;ρ) = P[1−dk]

n

(
x;ak,bk,

ρ−1
3

+ak

)
in case B2,

where

(a0,b0) =

(
1
3
,

2
3

)
, (a1,b1) =

(
4
3
,

2
3

)
, (a2,b2) =

(
4
3
,

5
3

)
and dk =

1− (−1)k

2
. (4.1)

As reported above, the cubic components P[k]
n (x) for case A are obtained from particular choices on the

parameters of the 2-orthogonal polynomials {Rn(x;a,b)}n∈N in (3.12). Precisely, for each k ∈ {0,1,2} we
have P[k]

n (x) = Rn
( x

9 ;ak,bk
)

with (ak,bk) as in (4.1). As expected, the confluent relation (3.15) generalises
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a limiting relation observed in [7] for Hahn-classical 3-fold symmetric 2-orthogonal polynomials: by taking
µ,ρ → ∞ in cases B1 and B2, respectively, leads to case A.

Another observation lies on the fact that the cubic decomposition of threefold symmetric 2-orthogonal poly-
nomials preserves the Hahn-classical property. It is certainly true for cases A and B, if we take into account
the identities (3.13) and (2.25), respectively. This property is rather intrinsic to all threefold symmetric 2-
orthogonal polynomials Hahn-classical polynomials, as we show below in Theorem 4.1. As a consequence,
the cubic components in case C are also part of the Hahn-classical family. A further benefit from this result
is on the techniques involved. Among other things, they can be adapted to prove analogous results regarding
Hahn-classical polynomials with respect to other annihilating operators such as the q-derivative.

Theorem 4.1. Let {Pn(x)}n∈N be a 3-fold symmetric Hahn-classical 2-orthogonal polynomial sequence
satisfying (1.18) with βn = αn = 0 and γn+1 > 0, for all n ∈ N. Then each of the three cubic components{

P[k]
n (x)

}
n∈N

given by (1.22), with k ∈ {0,1,2}, is Hahn-classical.

The proof of Theorem 4.1 consists of showing that, under the assumptions,
{

1
n+1

d
dx P[k]

n+1(x)
}

n∈N
is also 2-

orthogonal. The result has already been proved in [7, Corollaire 5.1] for the case k = 0 and here we extend
for the remaining cubic components (when k = 1 or 2). To do so, we first need to derive the orthogonality
weights for the cubic components of a 3-fold symmetric Hahn-classical 2-orthogonal polynomial sequence,
which are explained in Proposition 4.4. For that purpose, we recall two auxiliary results obtained in [20] and
[21], respectively. The first providing the structure of the 2-orthogonality measures for threefold symmetric
Hahn-classical polynomials. The second to give the structure for the measures, written in terms of linear
functionals, associated with the corresponding cubic components. We recall the following result, which is
written here with a minor correction: it should be taken the maximum of the limit of the even and odd order
subsequences of the coefficients γn.

Proposition 4.2. (cf. [20, Theorem 3.3]) Let {Pn(x)}n∈N be a 3-fold symmetric Hahn-classical 2-orthogonal
polynomial sequence satisfying (1.18) with βn = αn = 0 and γn+1 > 0, for all n ∈ N. Then {Pn(x)}n∈N is

2-orthogonal with respect to a pair of measures (µ0,µ1) supported on S3 =
2⋃

k=0

[0,γ ω
k] with ω = e

2πi
3 and

admitting the integral representations

∫
S3

f (x)dµ j(x) =
1
3

(∫
γ

0
f (x)U j(x)dx+ω

2− j
∫

γω

0
f (x)U j(ω

2x)dx+ω
j+1
∫

γω2

0
f (x)U j(ωx)dx

)
, (4.2)

for each j ∈ {0,1}, where γ =
27
4

lim
n→∞

γn and U j : [0,γ]→R are twice differentiable functions satisfying the

matrix differential equation

d
dx

(
Φ(x)

[
U0(x)

U1(x)

])
+Ψ(x)

[
U0(x)

U1(x)

]
= 0, (4.3)
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where

Φ(x) =

 Θ1 (1−Θ1)x
2(1−Θ2)

γ1
x2 2Θ2−1

 and Ψ(x) =

 0 1
2
γ1

x 0

 , (4.4)

for some constants Θ1 and Θ2 such that Θ1,Θ2 6=
n−1

n
, for any n≥ 1.

In [7, Théorème 5.2] is shown that the cubic components of a threefold symmetric 2-orthogonal sequence
are also 2-orthogonal. The structure of the vector of two linear functionals for which the cubic components
are 2-orthogonal polynomial is also explained. We recall this result in Lemma 4.3. Beforehand, and for a
matter of completeness, we note that for any measure µ such that all moments exist and are finite, we can
naturally define in P ′ (the dual space of the vector space of polynomials P) a linear functional u such
that 〈u, p〉 =

∫
p(x)dµ(x), for all p ∈P . Given a polynomial sequence {Pn(x)}n∈N in P , we can build its

corresponding dual sequence {un}n∈N in P ′ through 〈un,Pm〉= δnm.

Lemma 4.3. [7, Proposition 6.2] (cf. [20, Lemma 2.3.]) Suppose {Pn(x)}n∈N is a threefold symmetric
2-orthogonal polynomial sequence with respect to a pair of linear functionals (u0,u1) and let {un}n∈N be

the corresponding dual sequence. Then, there exist three cubic components
{

P[k]
n (x)

}
n∈N

, with k ∈ {0,1,2},

satisfying (1.22) and they are 2-orthogonal with respect to the vector of linear functionals
(

u[k]0 ,u[k]1

)
given

by u[k]0 = σ3(xkuk) and u[k]1 = σ3(xkuk+3), where σ3 : P ′→P ′ represents the linear operator defined in P ′

by 〈σ3(v), p(x)〉 := 〈v, f (x3)〉 for any v ∈P ′ and p ∈P .

As explained in [22, 23], all elements of the dual sequence of a 2-orthogonal polynomial sequence can be
written as a combination of the first two elements. Namely, there exists polynomials En(x), an(x), Fn(x) and
bn(x) such that degEn = degFn = n, degan ≤ n and degbn ≤ n such that

u2n = En(x)u0 + an−1(x)u1 and u2n+1 = bn(x)u0 +Fn(x)u1, for all n ∈ N.

We have just used the product of a polynomial f by a linear functional u, which is defined by duality:
〈 f u, p〉 := 〈u, f p〉, for any p ∈P . The polynomials En, Fn, an and bn satisfy recursive relations, which can
be found in [22]. For our purpose, we need the expressions of the following ones:

u2 = E1u0 + a0u1 =
x
γ1

u0,

u3 = b1u0 +F1u1 =− 1
γ2

u0 +
x
γ2

u1 =
1
γ2
(xu1−u0) ,

u4 = E2u0 + a1u1 =
x2

γ1γ3
u0− 1

γ3
u1 =

1
γ1γ3

(
x2u0− γ1u1

)
,

u5 = b2u0 +F2u1 =−
(

1
γ1γ4

+ 1
γ2γ4

)
xu0 +

x2

γ2γ4
u1 =

1
γ2γ4

(
x2u1−

(
1+ γ2

γ1

)
xu0

)
.

(4.5)

The latter allows us to describe for each k ∈ {0,1,2} the vector of functionals
(

u[k]0 ,u[k]1

)
in Lemma 4.3,

which are used to derive the following result.
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Proposition 4.4. Suppose {Pn(x)}n∈N is a 3-fold symmetric polynomial sequence satisfying (1.18), with
βn = αn = 0 and γn+1 > 0, whose 2-orthogonality measures µ0 and µ1 admit the integral representations
given by (4.2). Then the cubic components

{
P[k]

n (x)
}

n∈N
, k ∈ {0,1,2}, are 2-orthogonal with respect to the

pairs of measures
(

µ
[k]
0 ,µ

[k]
1

)
admitting the integral representation

∫
f (x)dµ

[k]
j (x) =

∫
γ3

0
f (x)U [k]

j (x)dx, j = 0,1, (4.6)

where the weight functions U
[k]
j (x) are

U
[0]

0 (x) =
1
3

x−
2
3 U0

(
x

1
3

)
and U

[0]
1 (x) =

1
3γ2

(
x−

1
3 U1

(
x

1
3

)
− x−

2
3 U0

(
x

1
3

))
, (4.7a)

U
[1]

0 (x) =
1
3

x−
1
3 U1

(
x

1
3

)
and U

[1]
1 (x) =

1
3γ1γ3

(
x

1
3 U0

(
x

1
3

)
− γ1x−

1
3 U1

(
x

1
3

))
, (4.7b)

U
[2]

0 (x) =
1

3γ1
x

1
3 U0

(
x

1
3

)
and U

[2]
1 (x) =

1
3γ2γ4

(
x

2
3 U1

(
x

1
3

)
−
(

1+
γ2

γ1

)
x

1
3 U0

(
x

1
3

))
. (4.7c)

Proof. Note that it is sufficient to prove (4.6) for f (x) = xn, for all n ∈ N. Observe that the integral repre-
sentations given by (4.2) imply that, for j ∈ {0,1} and n ∈ N, 〈u j,x3n+k〉= 0, if k ∈ {0,1,2}\{ j}, and

〈u j,x3n+ j〉=
∫

γ

0
x3n+ j U j(x)dx =

1
3

∫
γ3

0
tn+ j−2

3 U j

(
t

1
3

)
dt. (4.8)

Then, using Lemma 4.3, we have∫
xndµ

[0]
0 (x) = 〈σ3(u0),xn〉= 〈u0,x3n〉= 1

3

∫
γ

0
xn− 2

3 W0

(
x

1
3

)
dx (4.9)

and ∫
xndµ

[1]
0 (x) = 〈σ3(xu1),xn〉= 〈xu1,x3n〉= 〈u1,x3n+1〉= 1

3

∫
γ

0
xn− 1

3 U1

(
x

1
3

)
dx, (4.10)

which give the expressions for U
[0]

0 (x) and U
[1]

0 (x) in (4.7a) and (4.7b), respectively.

Additionally, using the expressions for the elements of the dual sequence u2, u3, u4 and u5 given in (4.5), we
successively get:∫

xndµ
[2]
0 (x) = 〈σ3(x2u2),xn〉= 〈x2u2,x3n〉= 1

γ1
〈x3u0,x3n〉= 1

γ1
〈u0,x3n+3〉,∫

xndµ
[0]
1 (x) = 〈σ3(u3),xn〉= 〈u3,x3n〉= 1

γ2

(
〈u1,x3n+1〉−〈u0,x3n〉

)
,∫

xndµ
[1]
1 (x) = 〈σ3(xu4),xn〉= 〈xu4,x3n〉= 1

γ3

(
1
γ1
〈u0,x3n+3〉−〈u1,x3n+1〉

)
,∫

xndµ
[2]
1 (x) = 〈σ3(x2u5),xn〉= 〈x2u5,x3n〉= 1

γ2γ4

(
〈u1,x3n+4〉−

(
1+

γ2

γ1

)
〈u0,x3n+3〉

)
,
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which, because of the last identities in (4.9)-(4.10), lead to

U
[2]

0 (x) =
x
γ1

U
[0]

0 (x), U
[0]

1 (x) =
1
γ2

(
U

[1]
0 (x)−U

[0]
0 (x)

)
, U

[1]
1 (x) =

1
γ3

(
U

[2]
0 (x)−U

[1]
0 (x)

)
,

U
[2]

1 (x) =
x

γ2γ4

(
U

[1]
0 (x)−

(
1+

γ2

γ1

)
U

[0]
0 (x)

)
.

Finally, (4.7a)-(4.7c) follow directly from the latter identities, after we take into account the already obtained
expressions for U

[0]
0 (x) and U

[1]
0 (x).

We can now prove the main result in this section.

Proof of Theorem 4.1. If {Pn(x)}n∈N is a 3-fold symmetric Hahn-classical 2-orthogonal polynomial se-

quence, then the sequence of derivatives
{

Qn(x) :=
1

n+1
d
dx

(Pn(x))
}

n∈N
is also 3-fold symmetric and 2-

orthogonal and, recalling Lemma 4.3, the same holds for the cubic components
{

Q[k]
n (x)

}
n∈N

, k ∈ {0,1,2}.

As a result, it is straightforward to check that Theorem 4.1 is valid for k = 0, that is,
{

1
n+1

d
dx

P[0]
n+1(x)

}
n∈N

is a 2-orthogonal polynomial sequence because

d
dx

(
P[0]

n+1(x)
)
=

d
dx

(
P3n+3

(
x

1
3

))
=

x−
2
3

3
P′3n+3

(
x

1
3

)
= (n+1)x−

2
3 Q3n+2

(
x

1
3

)
= (n+1)Q[2]

n (x). (4.11)

This observation was already made by Douak and Maroni in [7, Corollaire 5.1]. However, an analogous

procedure does not give an obvious way to conclude about the 2-orthogonality of
{

1
n+1

d
dx

P[k]
n+1(x)

}
n∈N

,

for k ∈ {1,2}. So we take a different approach to prove this.

According to Proposition 2.6, to prove the Hahn-classical character of
{

P[k]
n (x)

}
n∈N

, it is sufficient to find

matrices Φ[k](x) =

[
φ00 φ01

ϕ(x) φ11

]
and Ψ[k](x) =

[
η0 η1

ψ(x) ξ

]
, for some constants φ00, φ01, φ11, η0, η1 and ξ

and polynomials ϕ and ψ with degϕ ≤ 1 and degψ = 1, such that

d
dx

(
xΦ

[k](x)U
[k]
(x)
)
+Ψ

[k](x)U
[k]
(x) = 0, (4.12)

where we use the notation U
[k]
(x) :=

[
U

[k]
0 (x)

U
[k]

1 (x)

]
. Similarly, we also consider U (x) :=

[
U0 (x)

U1 (x)

]
.

To find the matrices Φ
[k](x) and Ψ

[k](x), we start by rewriting formulas (4.7b) and (4.7c) as

U
[k]
(s) =

1
3

Tk(s)U
(

s
1
3

)
,
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where

T1(s) =

 0 s−
1
3

1
γ1γ3

s
1
3 − 1

γ3
s−

1
3

 and T2(s) =


1
γ1

s
1
3 0

− 1
γ4

(
1
γ2

+
1
γ1

)
s

1
3

1
γ2γ4

s
2
3

 .
These equations are naturally equivalent to

U
(

s
1
3

)
= 3T−1

k (s)U
[k]
(s),

with

T−1
1 (s) =

[
γ1 s−

1
3 γ3 γ1 s−

1
3

s
1
3 0

]
and T−1

2 (s) =

[
γ1 s−

1
3 0

(γ1 + γ2)s−
2
3 γ2 γ4 s−

2
3

]
.

If we consider the change of variable s = x
1
3 in matrix differential equation (4.3) and then use the previous

formula, we obtain, for both k ∈ {1,2},

9x
2
3

d
dx

(
Φ

(
x

1
3

)
T−1

k (x)U
[k]
(x)
)
+3Ψ

(
x

1
3

)
T−1

k (x)U
[k]
(x) = 0, (4.13)

or, equivalently,

3x
2
3 Φ

(
x

1
3

)
T−1

k (x)
d
dx

(
U

[k]
(x)
)
+

(
Ψ

(
x

1
3

)
T−1

k (x)+3x
2
3

d
dx

(
Φ

(
x

1
3

)
T−1

k (x)
))

U
[k]
(x) = 0. (4.14)

For k = 1, relation (4.14) reads as

3

[
(1−Θ1)x

4
3 +Θ1γ1x

1
3 Θ1γ1γ3x

1
3

x 6(1−Θ2)γ3 x

]
d
dx

(
U

[1]
(x)
)

+

[
(3−2Θ1)x

1
3 −Θ1γ1x−

2
3 −Θ1γ1γ3x−

2
3

3 −2(2Θ2−1)γ3

]
U

[1]
(x) = 0,

which, after a multiplication by

[
0 1

x
2
3 0

]
, leads to (4.12) for k = 1, with

Φ
[1](x) = 3

 1
2(2Θ2−1)γ3

1−Θ2

2Θ2−1
(1−Θ1)x+Θ1γ1 Θ1γ1γ3

 and Ψ
[1](x) =

[
0 1

(4Θ1−3)x−4Θ1γ1 −4Θ1γ1γ3

]
.

As a result,
{

P[1]
n (x)

}
n∈N

is a Hahn-classical 2-orthogonal polynomial sequence.
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To prove the result for k = 2, we start by using the relation γ1 =
1
3
(4Θ1−3)γ2 (see [20, Theorem 3.2] with

n = 0) to rewrite

T−1
2 (s) =

1
3
(4Θ1−3)γ2 s−

1
3 0

4
3

Θ1γ2s−
2
3 γ2 γ4 s−

2
3

 .
Therefore (4.14) becomes

3

 1
3

Θ1γ2 x
1
3 γ2γ4 (1−Θ1) x

1
3

2(1−Θ2)x+
4
3

γ2 (2Θ2−1) γ2γ4 (2Θ2−1)

 d
dx

(
U

[2]
(x)
)

+

 Θ1γ2 x−
2
3 Θ1γ2γ4 x−

2
3

2(2−Θ2)+
8
3

γ2 (1−2Θ2)x−1 −2γ2γ4 (2Θ2−1)x−1

U
[2]
(x) = 0,

which, after a multiplication by

[
x

2
3 0

0 x

]
, corresponds to (4.12) for k = 2, with

Φ
[2](x) =

 Θ1γ2

3γ1γ4
(1−Θ1)

γ2

γ1

ϕ
[2](x) 3(2Θ2−1)γ2γ4

 and Ψ
[2](x) =

[
0 1

ψ
[2](x) −5(2Θ2−1)γ2γ4

]
,

where ϕ
[2](x) = 6(1−Θ2)x+4(2Θ2−1)γ2 and ψ

[2](x) = 2(5Θ2−4)x− 20
3

Θ1 (2Θ2−1)γ2.

Hence,
{

P[2]
n (x)

}
n∈N

is Hahn-classical.

We have shown here that the type II multiple orthogonal polynomials characterised in Section 3 generalise
the cubic components of cases B1 and B2 of the Hahn-classical 3-fold symmetric 2-orthogonal polynomials
in a similar way to how the type II multiple orthogonal polynomials on the step line with respect to the
modified Bessel weights, defined by (3.11), generalise the cubic components of case A. As proved in The-
orem 4.1, the cubic components of case C are again Hahn-classical. It remains an open question if there
is an analogous generalisation for these components and, in case there is one, if that generalisation can be
such the differentiation gives a shift on parameters. In this scenario, we also expect the confluence relations
between case C and cases B1 and B2 to be preserved. We defer this investigation to a forthcoming work.

The study we have carried on Section 4 can be adjusted to more than two measures. Taking into account
results given in [1, 2, 8], the structure of the proof of Theorem 4.1 can be (routinely) adapted to study each
of the (d + 1) components of Hahn-classical d-orthogonal polynomials satisfying a (d + 1)-fold symmetry
(therefore satisfying a three term recurrence relation of order d +1).
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[19] G. López Lagomasino. An introduction to multiple orthogonal polynomials and Hermite-Padé approx-
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