Electronic Supplementary Information

Structural and Electronic Evolution in the Cu₃SbS₄- Cu₃SnS₄ Solid Solution

Kan Chen, Cono Di Paola, Savio Laricchia, Mike Reece, Cedric Weber, Emma McCabe, Isaac Abrahams and Nicola Bonini.

Table S1. Compositional analysis of representative samples $Cu_3SbS_4(BM)$, Cu_3SbS_4 , $Cu_3Sb_{0.3}Sn_{0.7}S_4$ and Cu_3SnS_4 . The Cu, Sb and Sn contents were determined by inductively coupled plasma optical emission spectrometry (ICP-OES) and the S content was determined by combustion analysis (LECO).

Sample Name		wt. %				Relative	
		Cu	Sb	Sn	S	Density	
Cu₃SbS₄(BM)	Nominal	43.3	27.6	-	29.1	NA	
	Actual	43.4	27.2		29.4		
Cu₃SbS₄	Nominal	43.3	27.6	-	29.1	98%	
	Actual	43.1	27.4		29.4	0070	
Cu ₃ Sb _{0.3} Sn _{0.7} S ₄	Nominal	43.5	8.3	19.0	29.3	99%	
	Actual	43.4	8.2	18.9	29.5	0070	
Cu₃SnS₄	Nominal	43.6	-	27.1	29.3	100%	
	Actual	43.2	-	27.3	29.5		

1

		y = 0.0	y = 0.4	y = 0.7	y = 1.0
		x = 0.0	x = 0.4	x = 0.7	x – 1.0
Ordered	Rwp neut bs	0.0227	0.0235	0.0230	0.0228
model	Rwp neut la	0.0237	0.0271	0.0264	0.0296
Sb/Sn in 2a	Rwp X-ray	0.0956	0.0686	0.0704	0.1152
	χ ²	44.37	41.37	41.36	61.57
Disordered	Rwp neut bs	0.0228	0.0233	0.0230	0.0229
model	Rwp neut la	0.0240	0.0268	0.0265	0.0296
	Rwp X-ray	0.1124	0.0948	0.0831	0.1040
	χ^2	45.39	41.47	41.93	61.41

Table S2. Comparison of R-factors in ordered and disordered models for Cu_3Sb_{1-} _xSn_xS₄ (bs = back scattering bank and la = low angle bank).

Table S3. Comparison of (a) R-factors, and (b) isotropic thermal parameters ($Å^2$) for different cation ordering models in Cu₃SnS₄ (bs = back scattering bank and la = low angle bank).

Atomic positions: 2a = 0, 0, 0; 2b = 0, 0, ½; 4d = 0, ½, ¼

(a)

Model	Rwp neut bs	Rwp neut la	Rwp X-ray	χ ²
2: All Sn in 2a	0.0228	0.0296	0.1152	61.57
3: Sn in all sites varying	0.0228	0.0296	0.1040	61.42
4:All Sn in 2b	0.0228	0.0296	0.1152	61.57
5: All Sn in 4d	0.0228	0.0297	0.1075	61.63
6: Sn in 2a and 2b	0.0228	0.0297	0.1075	61.56
7: Sn in 2a and 4d	0.0227	0.0296	0.1040	61.31
8: Sn in 2b and 4d	0.0227	0.0296	0.1040	61.33
9: Sn in all sites	0.0228	0.0296	0.1040	61.41

(b)

Model	2a	2b	4d
2: All Sn in 2a	0.00977	0.02894	0.01627
3: Sn in all sites varying	0.01067	0.02099	0.01690
4:All Sn in 2b	0.02927	0.00989	0.01612
5: All Sn in 4d	0.01267	0.01825	0.01982
6: Sn in 2a and 2b	0.01398	0.01613	0.02328
7: Sn in 2a and 4d	0.00940	0.01920	0.02067
8: Sn in 2b and 4d	0.01901	0.00957	0.02063
9: Sn in all sites	0.01045	0.01655	0.02131

	<i>x</i> = 0.0	<i>x</i> = 0.1	<i>x</i> = 0.3	<i>x</i> = 0.5	<i>x</i> = 0.7	<i>x</i> = 0.9	<i>x</i> = 1.0
Cu 2p _{1/2}	952.3	952.2	952.2	952.1	952.2	952.1	952.1
Cu 2p _{3/2}	932.5	932.4	932.4	932.3	932.4	932.3	932.3
S 2p _{1/2}	163.1	163.0	162.9	162.9	162.8	162.7	162.8
S 2p _{3/2}	162.0	161.8	161.7	161.7	161.6	161.5	161.6
S' 2p _{1/2}	NA	NA	163.7	163.8	163.7	163.6	163.7
S' 2p _{3/2}	NA	NA	162.5	162.6	162.5	162.4	162.5
Sb 3d _{3/2}	539.6	539.5	539.5	539.4	539.5	539.4	NA
Sb 3d _{5/2}	530.2	530.1	530.1	530.0	530.1	530.0	NA
Sn 3d _{3/2}	NA	494.5	494.4	494.5	494.5	494.5	494.7
Sn 3d _{5/2}	NA	486.1	486.1	486.1	486.1	486.1	486.3

Table S4. XPS Cu 2p, Sb 3d, Sn 3d and S 2p binding energies (eV) for compositions in the $Cu_3Sb_{1-x}Sn_xS_4$ system.

Fig. S1. Fitted diffraction profiles for Cu_3SbS_4 : (a) neutron back-scattering; (b) neutron low-angle; and (c) X-ray data. Observed (circles), calculated (red line) and difference (blue) profiles are shown, with reflection positions indicated by markers.

Fig. S2. Fitted diffraction profiles for $Cu_3Sb_{0.6}Sn_{0.4}S_4$: (a) neutron back-scattering; (b) neutron low-angle; and (c) X-ray data. Observed (circles), calculated (red line) and difference (blue) profiles are shown, with reflection positions indicated by markers.

Fig. S3. Fitted diffraction profiles for $Cu_3Sb_{0.3}Sn_{0.7}S_4$: (a) neutron back-scattering; (b) neutron low-angle; and (c) X-ray data. Observed (circles), calculated (red line) and difference (blue) profiles are shown, with reflection positions indicated by markers.

Fig. S4. Fitted diffraction profiles for Cu_3SnS_4 : (a) neutron back-scattering; (b) neutron low-angle; and (c) X-ray data. Observed (circles), calculated (red line) and difference (blue) profiles are shown, with reflection positions indicated by markers Cu_3SnS_4 (black), CuS (red).

Fig. S5. Compositional variation of lattice parameter *a* (upper) and lattice parameter ratio, *c*/2*a* (lower).

Fig. S6. Fitted high resolution XPS spectra for compositions in the Cu₃Sb_{1-x}Sn_xS₄ system. All spectra were calibrated using C1s with a binding energy of 284.8 eV. For $x = 0.3 \sim 1.0$ sample, S2p peaks were fitted into two different S species of S²⁻ and S²⁻^{δ}. The ratio of S²⁻ and S^{2- δ} and values of δ were listed.