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Restoration to offset the impacts of developments at a landscape 32 

scale reveals opportunities, challenges and tough choices 33 

Abstract 34 

When development impacts a broad landscape and causes the loss of multiple ecosystem services, 35 

decisions about which of these impacts to offset must be made. We use industrial oil-palm 36 

developments in Kalimantan and quantify the potential for restoration to offset oil-palm impacts on 37 

carbon storage and biodiversity. We developed a unique backcasting approach combined with a 38 

spatial conservation prioritisation framework to identify priority areas for restoration offsetting. We 39 

calculated the past impacts of oil-palm development, quantified the future benefits of restoration 40 

for carbon storage and biodiversity over one oil-palm planting cycle of 25 years, and prioritised areas 41 

for restoration to balance the impacts and benefits for the least cost. We estimate that offsetting 42 

the carbon emissions attributable to the existing 4.6 Mha of industrial oil-palm plantation in 43 

Kalimantan is most cost-effectively achieved by restoring 0.4–1.6 Mha of degraded peatlands, 44 

including failed agricultural projects, at a cost of US$0.7–2.9 billion. On the other hand, offsetting 45 

biodiversity losses would require at least 4.7 Mha of degraded areas to be restored (equating to 46 

8.7% of Kalimantan) at a cost of US$7.7 billion. We show that priority areas for offsetting biodiversity 47 

losses overlap poorly with those for compensating carbon emissions. Our analysis suggests that 48 

reconciling multiple impacts at landscape scales will necessitate difficult choices among contested 49 

socio-political preferences. Our findings also clarify the fundamental importance of conserving 50 

biodiversity-rich primary forests and peatlands in the tropics and the need to avoid converting these 51 

areas in the future. 52 

Keywords: Restoration planning; Elaeis guineensis; carbon storage; biodiversity habitat; trade-off; 53 

Indonesian Borneo  54 
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1. Introduction  55 

Global attention to forest and landscape restoration has been rapidly growing in recent decades as a 56 

response to the deterioration of ecosystem services and the acceleration of both species extinction 57 

and climate change (Dobson et al., 1997; Lamb et al., 2005; Chazdon et al., 2017). The Convention on 58 

Biological Diversity (CBD) through Aichi Target 15 has pledged to restore at least 15% of degraded 59 

ecosystems by 2020 for ecosystem resilience, biodiversity conservation and carbon enhancement 60 

(Convention on Biological Diversity, 2011). More recently, various global initiatives for restoration 61 

have emerged such as the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem 62 

Services (IPBES) through Objective 3(b)(i), and an international commitment through the Bonn 63 

Challenge with ambitious targets to restore 350 million ha of degraded and deforested lands by 2030 64 

(IPBES, 2013; IUCN, 2014). The knowledge to support such policy commitments has, however, lagged 65 

(Suding, 2011; Menz et al., 2013; Chazdon et al., 2017) and this is an obstacle for the effective 66 

implementation of large-scale restoration efforts (Calmon et al., 2011; Murcia et al., 2016; Chazdon 67 

et al., 2017). This includes limited knowledge on how financing large-scale restoration, for example, 68 

through environmental offsetting (BBOP, 2012; Chazdon et al., 2017).  69 

Environmental offsetting is a policy tool used to mitigate the damaging impacts of development 70 

activities such as mining, infrastructure development, and agriculture expansion (Kiesecker et al., 71 

2009b; Madsen et al., 2010; RSPO, 2014; Maron et al., 2015). Offsets aim to counterbalance 72 

environmental damage by generating an equivalent benefit elsewhere, such as through protection 73 

and/or restoration. Such policies have been gaining popularity, and attracting financing of up to 74 

US$4 billion annually (Madsen et al., 2010; OECD, 2013). Its legitimacy is, however, contested, 75 

including whether it can contribute to achievement of existing commitments such as the Aichi 76 

Targets that otherwise would not be achieved, and unresolved ethical, social, technical and 77 

governance issues (McKenney & Kiesecker, 2010; Maron et al., 2016a; Maron et al., 2016b).  78 

Until now, most offsetting studies focus on single impacts, commonly on biodiversity (e.g. Bull et al., 79 

2014; Kormos et al., 2014; Sonter et al., 2014). When offsetting landscape scale developments, such 80 

as industrial agriculture, multiple impacts will require consideration simultaneously (OECD, 2013, 81 

2016; Sonter et al., 2018). Furthermore, existing offsetting mechanisms have been focused on a site-82 

scale approach (including that employed in the Remediation and Compensation Procedure by the 83 

Roundtable on Sustainable Palm Oil (RSPO, 2014)). This could potentially lead to sub-optimal 84 

performance in compensating environmental damage at a landscape scale due to the uneven 85 

distribution of biodiversity and services derived from ecosystems, the degree of degradation, the 86 
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cost of restoration, and the economic value of land (Goldstein et al., 2008; Birch et al., 2010; Wilson 87 

et al., 2011; Budiharta et al., 2014a; Budiharta et al., 2016). 88 

Here, we develop a unique decision-making framework to support restoration offsetting and to 89 

reveal choices that will be invoked. We illustrate this with the example of extensive oil-palm 90 

developments in Kalimantan (Indonesian Borneo). The island of Borneo is a global biodiversity 91 

(Rafiqpoor et al., 2005; Kreft et al., 2008) and regional evolutionary hotspot (de Bruyn et al., 2014) 92 

with 574 threatened species (IUCN, 2015). The region also has high carbon storage capacity in the 93 

form of forest biomass and peat soil carbon (Page et al., 2002; Carlson et al., 2013). In the last four 94 

decades, however, Borneo has been undergoing rapid land-use changes with more than one third of 95 

its old-growth forests converted into non-forest land-uses (Koh et al., 2011; Carlson et al., 2013; 96 

Gaveau et al., 2014a; Gaveau et al., 2016). Oil-palm is a major driver of these processes, with the 97 

industrial oil-palm estate estimated to have caused up to 3.9 million ha (20.9%) of natural forest 98 

cover loss in Borneo alone (Gaveau et al., 2016). 99 

We employed a backcasting approach combined with a spatial conservation prioritisation framework 100 

to identify priority areas for restoration offsetting. We developed our decision-making framework 101 

by: (1) calculating the impacts of oil-palm development on carbon emissions and biodiversity losses 102 

in terms of native vegetation and mammal habitat using recently-developed maps of land 103 

conversion for industrial-scale oil-palm plantation; (2)  spatially quantifying the benefits of 104 

restoration over one oil-palm planting cycle (25 years) in terms of carbon sequestration and avoided 105 

emissions, re-establishment of native vegetation and mammal habitat if degraded areas outside oil-106 

palm plantations are restored; (3) using a spatial decision-support tool to prioritise areas for 107 

restoration at a landscape scale with the target that restoration benefits gained were at least equal 108 

to the impacts from oil-palm development for the least cost.  109 

2. Materials and methods 110 

2.1. Oil palm-driven land conversion data 111 

Spatial data of oil-palm driven land-cover change over the period 1973–2013 was extracted from 112 

Gaveau et al. (2016). These data were generated from 357 LANDSAT images using a 5-year interval 113 

to detect the trajectory of land-cover change and to determine the existing land cover prior to 114 

industrial scale (>100 ha) oil-palm plantation establishment (Gaveau et al., 2016). We cross-checked 115 

the oil-palm map (Gaveau et al., 2016) with land-cover maps produced by Indonesian Ministry of 116 

Forestry (Ministry of Forestry, 2012b) to delineate existing land-cover being replaced by oil-palm 117 
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plantation into six classes: intact forest, logged forest, scrub/burned forest, agroforest, non-118 

forest/grassland and uncertain/cloud. 119 

2.2. Impacts by oil-palm plantations 120 

2.2.1. Carbon emissions  121 

We calculated carbon dynamics from oil-palm plantation establishment using a loss-gain method 122 

(IPCC, 2006; Murdiyarso et al., 2010). We spatially stratified parameters used in the models (i.e. 123 

existing land cover class, mineral or peat soils and peat depth) to allow for better accuracy and to 124 

reduce uncertainty (Paoli et al., 2011). For oil-palm plantations occurring on mineral soils/non-125 

peatlands, carbon loss was estimated as the loss of above-ground biomass (AGB) of existing 126 

vegetation during land clearing while gain was calculated as AGB stored in oil-palm plantations 127 

(Equation 1). We used a 0.5 conversion factor as a fraction of carbon in dry biomass (Brown & Lugo, 128 

1982). 129 

ΔCmineral = CAGB(i) - CAGB(OP)   Eq. (1) 

where ΔCmineral is net carbon emissions in above-ground biomass on mineral soils/non peatlands, CAGB 130 

(i) is the AGB carbon stock under land cover class i, and (CAGB (OP)) is the AGB carbon of oil-palm 131 

plantations. We did not account for the changes in soil carbon from the conversion of forest into oil 132 

palm plantation in mineral soils as there are large uncertainties associated with the quantification of 133 

this change (Falloon & Smith, 2003). As such, we assumed that soil carbon in mineral soils remained 134 

constant before and after oil palm is planted. 135 

For intact forest we used the mean value of AGB carbon (238 + 58.5 MgC ha-1) obtained from 62 136 

sites of old growth forest on mineral soils across Borneo (Slik et al., 2010; Budiharta et al., 2014b). 137 

The estimates of AGB carbon for logged forest (130.0 + 74.67 MgC ha-1) were obtained from a pilot 138 

study that measured typical logged forests prior to conversion into oil-palm plantations (Dewi et al., 139 

2009). Gaveau et al. (2016) defined scrub as degraded forest following forest fires. For this land 140 

cover class, we employed the average AGB carbon of burned forest in East Kalimantan with value of 141 

57.0 + 39.61 MgC ha-1 (Van der Laan et al., 2014). For agroforest, we extracted a value range of AGB 142 

carbon of agroforests and fallow lands across Kalimantan resulting in 41 + 16 MgC ha-1 (Ziegler et al., 143 

2012). We assumed non-forested land to be severely degraded land dominated by grasses (e.g. 144 

Imperata cylindrica) and pioneer ferns and shrubs (e.g. Macaranga spp.), and assigned an input 145 

value of 10 + 8 MgC ha-1 (Otsamo, 1998; Dewi et al., 2009; Ziegler et al., 2012).  146 
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The AGB carbon of oil-palm plantations (CAGB (OP)) was defined as the time-averaged AGB carbon over 147 

a 25-year planting cycle based on field data from Central Kalimantan (Dewi et al., 2009) with a value 148 

of 39 + 7.4 MgC ha-1, assuming 19% variability of the mean value (Morel et al., 2011). This value 149 

applied similarly to both mineral and peat soils (see below).  150 

We added two additional emission sources when calculating carbon dynamics on peatlands 151 

(Equation 2): below-ground carbon emissions from peat burning, and oxidation (decomposition) due 152 

to draining (Page et al., 2002; Hooijer et al., 2010).  153 

ΔCpeat = CAGB(i) + Coxid(j)  + Cburn - CAGB(OP) Eq. (2) 

where ΔCpeat is the net carbon emissions in peat soils, CAGB (i) is the AGB carbon stock under land 154 

cover class i, Coxid (j)  is carbon emissions from oxidation under peat depth j and Cburn is carbon 155 

emissions from peat burning. We used the average value of AGB carbon of old growth peat swamp 156 

forest (174.35 + 40.47 MgC ha-1) from seven sites across Borneo as input for intact forest on peat 157 

soils (Budiharta et al., 2014b). For logged forest, we assumed that 54.6% AGB carbon is retained as 158 

in mineral soils (Dewi et al., 2009) resulting in an input value of 95.2 + 54.7 MgC ha-1. We assigned 159 

values of AGB carbon for scrub, agroforest and non-forest similar to those in mineral soils with 57.0 160 

+ 39.61 MgC ha-1 , 41 + 15 MgC ha-1 and 10 + 8 MgC ha-1 respectively.  161 

As carbon emissions from peat oxidation increase with drainage depth at a rate of 2.5 MgC ha-1 yr-1 162 

for every 10 cm of additional depth (Couwenberg et al., 2010), we differentiated two levels of 163 

emissions from this source. For shallow peat soils (peat depth up to 50 cm), we used carbon 164 

emissions of 12.5 MgC ha-1 yr-1, while for deep peat soils (peat depth more than 50 cm) we employed 165 

20 MgC ha-1 yr-1, assuming the recommended maximum drainage depth was 80 cm (Ministry of 166 

Agriculture, 2009). We used the peatlands base map developed by Sekala and Wetland International 167 

to assign peat depth (Gingold et al., 2012).  168 

Carbon emissions from peat burning have a large uncertainty as they are heavily influenced by 169 

management practices of oil-palm planters and environmental conditions, such as prolonged 170 

meteorological and hydrological drought during El Niño events (Casson, 2000; Obidzinski et al., 2012; 171 

Taufik et al., 2017). We therefore used estimates of 217.5 MgC ha-1 to account for the annual 172 

probability of burning on drained peatlands in Southeast Asia (Hooijer et al., 2006; Venter et al., 173 

2009). This value is comparable to the average carbon emissions from peat burning across Indonesia 174 

by another study with 203 MgC ha-1 (Carlson et al., 2013). We then used the low and high values (72-175 

386 MgC ha-1) to account for uncertainty (Carlson et al., 2013). 176 
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2.2.2. The loss of native vegetation 177 

Our first measure of biodiversity loss was the clearing of native vegetation replaced by oil-palm 178 

monoculture plantations. We used floristic eco-regions to represent the potential distribution of 179 

native vegetation in Kalimantan (Raes, 2009). Raes (2009) classified Borneo into floristic eco-regions 180 

based on species distribution modelling using the MaxEnt algorithm (Phillips & Dudík, 2008) of more 181 

than 2,270 vascular plant species, using 44,000 herbarium records. Raes (2009) clustered the 182 

resultant matrix of species distributions using a hierarchical clustering analysis and generated eleven 183 

floristic eco-regions, of which all occur in Kalimantan, using an indicator species analysis.  184 

We masked the floristic eco-region map (Raes, 2009) with the oil-palm driven land conversion map 185 

(Gaveau et al., 2016). As the condition of existing vegetation cover varies due  to anthropogenic and 186 

environmental factors such as logging and forest fires (Klein et al., 2009; Etter et al., 2011), we used 187 

‘intactness-adjusted area’ (IAA) as the metric for native vegetation loss (Habib et al., 2013). The IAA 188 

was calculated as follows: 189 

IAA(i)  = A(i) x I(j)   Eq. (3) 

where IAA(i)  is intactness-adjusted area for floristic eco-region i, A(i) is the extent of area lost due to 190 

oil-palm establishment under floristic eco-region i, and I(j) is the intactness index for land cover class 191 

j. We used species richness of native trees to generate the parameters of a floristic intactness index 192 

with the rationale that Borneo’s terrestrial ecosystems were historically composed of tree-193 

dominated ecosystems (i.e. forests) with limited evidence of the prevalence of other vegetation 194 

types in the past (e.g. savannahs) (Raes et al., 2014). We assumed that intact forest serves as a 195 

baseline system with an intactness index of 1. We assigned an average intactness value of 0.77 to 196 

logged forest, as species-area curves per hectare showed that this land cover type retains 74-80% of 197 

tree species of intact forest (Cannon et al., 1998; Imai et al., 2012). For scrub, we assumed that 198 

burned forest has 30% floristic similarity in trees to intact forest (Slik et al., 2008), resulting in a value 199 

of 0.3 for the intactness index. An intactness index of 0.23 was assigned to agroforest according to 200 

the average similarity indices between primary forest and forest garden systems in Maluku, 201 

Indonesia (Kaya et al., 2002). We assigned a zero value of the intactness index for non-forested areas 202 

as tree species richness there is extremely low, especially on I. cylindrica grassland (Potter, 1996). 203 

We acknowledge that this method does not account for species-area effects or stem density effects, 204 

but this was unavoidable due to the large scale of our analysis and limited fine resolution data. 205 

2.2.3. The loss of mammal habitat  206 
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A second measure of biodiversity loss was the loss of original habitat of mammal species impacted 207 

by oil-palm development. Mammals have been frequently used as conservation flagship species 208 

(Fitzherbert et al., 2008), and most mammals are negatively affected by oil-palm plantations 209 

(Danielsen et al., 2009). We employed recently-developed habitat suitability maps of 81 mammal 210 

species belonging to three groups: carnivores (23 species), primates (13 species) and bats (45 211 

species) that represent a diverse suite of life-history traits and extinction risks (Struebig et al., 212 

2015b). Struebig et al. (2015b) employed the Maximum Entropy (MaxEnt) algorithm (Phillips & 213 

Dudík, 2008) to map an environmental envelope for each species using bioclimatic variables (i.e. 214 

climates, topographic, and distances to water, wetlands and limestone karst). They then corrected 215 

the resultant environmental envelope map with mammal sensitivity to land cover following Wilting 216 

et al. (2010) and consulted 70 experts resulting in habitat suitability maps for all species. For our 217 

analysis, we employed a habitat suitability map with strict treatment of possible omission errors (i.e. 218 

25%), reflecting the core habitat inside the known geographical range of the species (Struebig et al., 219 

2015a). We calculated habitat loss for each mammal by masking its habitat suitability map onto the 220 

oil-palm plantation map (Gaveau et al., 2016). 221 

2.3. Potential areas for restoration  222 

We defined potential areas for restoration offsetting as areas outside oil-palm plantations that were 223 

currently deforested or degraded. To identify deforested and degraded areas, we employed the land 224 

cover map generated from ALOS PALSAR data (Gaveau et al., 2014a) which classified land cover into 225 

nine categories. For our analysis, deforested and degraded areas were those under the class of non-226 

forest/grassland, agroforest, scrub/burned forest and logged forest. Within these areas, we mapped 227 

‘future’ landscapes assuming all degraded areas are restored accounting for the benefits of 228 

restoration in terms of carbon, reestablishment of native vegetation, and mammal habitat 229 

suitability. 230 

2.4. The benefits of restoration 231 

2.4.1. Carbon  232 

We calculated and mapped the carbon benefit based on the difference in value between the initial 233 

condition and the restored state (Maron et al., 2013; Evans et al., 2015). We differentiated potential 234 

sources of carbon benefits from restoration between mineral soils and peatlands. For mineral soils, 235 

the carbon benefit was formulated as: 236 
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ΔCmineral = Cseq(ij) - CAGB(i)   Eq. (4) 

where ΔCmineral is net carbon gain from restoration arising from Cseq(ij), the total AGB carbon 237 

sequestered on a restored site currently under land cover class i and floristic eco-region j, and CAGB 238 

the initial AGB carbon stock under land cover class i.  239 

We calculated carbon sequestration using the 3-PG (physiological principle for predicting growth) 240 

model (Landsberg & Waring, 1997; Budiharta et al., 2014b) over 25 years—equating to one oil-palm 241 

cycle. Soil texture classes, fertility ratings and maximum and minimum plant-available soil water 242 

were obtained from the Harmonised World Soil Database (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). 243 

Climate variables including monthly temperature, monthly precipitation and vapour pressure deficit 244 

were obtained from the WorldClim database (Hijmans et al., 2005), and solar radiation data from the 245 

POWER project (The Prediction of Worldwide Energy Resource) (NASA, 2013). We parameterised 246 

physiological inputs for the model for each floristic eco-region (Budiharta et al., 2014a; Budiharta et 247 

al., 2014b). 248 

Degraded peatlands are generally drained using canal systems (Harrison et al., 2009; Gaveau et al., 249 

2014b). Canalisation lowers the water table and makes degraded peatlands susceptible to repeated 250 

burning, especially during drought years (Taufik et al., 2017). As such, for restoration on peatlands, 251 

we accounted for carbon benefits from peat burning and peat oxidation in the absence of 252 

restoration (i.e. business as usual scenario) (Equation 5):  253 

ΔCpeat = Cseq(i) + Coxid(j) + Cburn - CAGB(i)                                      Eq. (5) 

where ΔCpeat is net carbon gain from restoration on peatlands, Cseq(i) is the total AGB carbon 254 

sequestered on a restored peatland site under land cover class i, Coxid(j) is the avoided carbon 255 

emissions from peat oxidation under peat depth j, Cburn is the avoided carbon emissions from peat 256 

burning, and CAGB(i) is the initial AGB carbon stock under land cover class i.  We explored the 257 

sensitivity of the assumption that restoration would fail to prevent fires on peat by omitting Cburn 258 

from Equation 5 (i.e. fires would also occur on restored peatlands and carbon emissions from peat 259 

burning would continue). We assigned parameter values for avoided carbon emissions from peat 260 

oxidation and burning, similar to when calculating carbon loss. 261 

2.4.2. The establishment of native vegetation 262 

We calculated the benefit of restoration on native vegetation establishment by subtracting the 263 

restored state by the initial state before restoration occurs (Evans et al., 2015). We assumed that 264 

restoration would fully recover native vegetation on the degraded areas and thus accumulate area in 265 
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the intact condition class and determined the net gain in extent (measured as the intactness-266 

adjusted area, ΔIAA(i)) for each floristic eco-region i (Equation 6): 267 

ΔIAA(i)   = A(i) [1 - I(j)]   Eq. (6) 

where A(i) is the extent of area restored under floristic eco-region i and I(j) is intactness index of the 268 

initial state for land cover class j. We assigned parameter values for the intactness index for each 269 

land cover class as per the calculations for native vegetation loss. 270 

2.4.3. The establishment of mammal habitat  271 

The contribution of each potential restoration offset site to mammal habitat was calculated as the 272 

extent of degraded areas that occurred within historical suitable habitat (i.e. prior industrialisation in 273 

Kalimantan, which commenced in the 1950s). As such, we assumed that restoration would fully 274 

recover the degraded areas to their pre-1950 condition. Historical suitable habitat was delineated 275 

using the MaxEnt algorithm (Phillips & Dudík, 2008) and bioclimatic variables as predictors (i.e. 276 

environmental envelopes) (Struebig et al., 2015b), and was then corrected with historical land cover 277 

(Struebig et al., 2015a). We employed a strict commission error threshold of 25% to assign habitat 278 

suitability of restored sites into binary categories.  279 

2.5. Restoration approaches and costs 280 

We employed restoration approaches used by Budiharta et al. (2014a) for restoring heterogeneous 281 

tropical landscapes in Kalimantan which are developed based on scientific papers, technical reports, 282 

government regulations and personal communications. Budiharta et al. (2014a) divided landscapes 283 

into several zones representing various levels of landscape degradation and assigned plausible 284 

restoration approach for each zone with the main activity being planting of native tree species. For 285 

example, in critically degraded areas intensive-square planting was assigned, while in highly 286 

degraded and moderately degraded forest strip planting and gap planting was used respectively. 287 

We calculated the restoration cost as a combination of the implementation and opportunity costs. 288 

The implementation cost was based on the standard cost of forest rehabilitation in Indonesia as 289 

prescribed by the Ministry of Forestry and differentiated by the restoration approach implemented 290 

and the starting degradation level (Ministry of Forestry, 2012a; Budiharta et al., 2014a). This cost 291 

captures expenses related to planting activities and maintenance (including fire prevention) up to 292 

fourth year after planting as suggested by Hardiansyah (2011). For restoration occurring on 293 

degraded peatlands, we also accounted for the cost of rehabilitation of hydrological conditions 294 



11 
 

assuming that dam construction was required to decommission canals (Kalimantan Forest Carbon 295 

Partnership, 2009; Budiharta et al., 2014a).  296 

The opportunity costs were defined as the revenues forgone for alternative forms of land 297 

management (Table S1). We considered oil-palm plantations, logging and agroforestry as the most 298 

relevant alternative land uses in the region (Venter et al., 2009; Carlson et al., 2013; Gaveau et al., 299 

2014a). We employed the Net Present Value (NPV) of oil-palm plantations managed by listed 300 

companies as the baseline opportunity cost (Irawan et al., 2013). We differentiated the NPV on the 301 

basis of land suitability mapped using 11 biophysical variables (Table S2). We added potential 302 

revenues from timber extraction during land clearing, if the areas suitable for oil-palm plantations 303 

overlapped with extant forest (Venter et al., 2009). For areas not suitable for oil palm, the 304 

opportunity cost was derived from timber revenue if it occurred on logged and burned forest, and 305 

from timber and non-timber forest products if it occurred on agroforest. 306 

2.6. Prioritising areas for restoration offsetting 307 

We prioritised potential areas for restoration offsetting using the decision support tool           308 

Zonation v. 4 (Moilanen et al., 2014). For each feature (i.e. carbon, floristic eco-regions and mammal 309 

habitat) we determined the loss incurred due to the development of oil-palm plantations (as 310 

detailed above) and employed this as a target in the prioritisation analysis. A target-based algorithm 311 

sought the most cost-efficient combination of areas to meet these targets. We also investigated the 312 

resultant priority areas by seeking to compensate for the loss of: (a) carbon only; (b) floristic eco-313 

regions only; (c) mammal habitat only; (d) floristic eco-regions and mammal habitat; (e) carbon and 314 

floristic eco-regions; (f) carbon and mammal habitat. All input layers (and the resultant priority 315 

maps) had a spatial resolution of 100 ha to align with the minimum size of industrial-scale oil-palm 316 

plantations (Gaveau et al., 2016). 317 

3. Results  318 

3.1. Impacts of oil-palm development on carbon and biodiversity 319 

Extracting data from Gaveau et al. (2016) indicated that 4.6 million ha of industrial oil-palm 320 

plantations were established in Kalimantan between 1973 and 2013 (Fig. S1). Using a loss-gain 321 

method, we estimated net emissions of 0.7 GtC (0.4–1.0 GtC) of carbon over a 25-year planting cycle 322 

(Fig. 1). While only 14.3% of the oil-palm plantations were on peatlands (Figs. S1 and S2), they 323 

contributed 74.8% of total carbon emissions from oil-palm development (Fig. 1). Net carbon 324 
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emissions per hectare from peatland conversion (averaged across land-cover classes and peat 325 

depths) was 745 tC ha-1 (340–1045 tC ha-1) more than five times higher than mean emissions from 326 

converting forests (of intact and logged condition) on mineral soils (136 tC ha-1) (Fig. S3). Conversely, 327 

establishing oil-palm plantations on mineral soils in non-forested areas, including grasslands, 328 

resulted in a net carbon gain (29 tC ha-1).  329 

 330 

Fig. 1. Oil palm-driven carbon emissions in Kalimantan between 1973 and 2013. Total net carbon emissions 331 

across land-cover classes and soil types, assuming a 25-year oil-palm planting cycle. Extent of land-cover class 332 

per soil type and net emissions per hectare are detailed in Figs. S2 and S3. Scrub refers to degraded forest that 333 

have become converted to short vegetation following recurrent forest fires. Negative carbon emissions 334 

indicate net carbon gain (carbon sequestered from oil-palm plantation exceeds carbon loss associated with 335 

converting non-forested areas). Error bars are lower and upper estimates of net carbon emissions.  336 

Industrial oil-palm plantations of 4.6 million ha have converted the equivalent of 1.9 million ha of 337 

intact floristic eco-regions (Table 1; Fig. S4). Lowland forest of ‘southern Kalimantan’ is the eco-338 

region that has been most extensively replaced with oil-palm with a total extent of 1.0 million ha, 339 

equivalent to IAA of 0.5 million ha. Heath forest has had the greatest proportional replacement with 340 

18.7% of the historical extent converted to oil-palm plantations. The most intensely impacted eco-341 

region (with the highest IAA relative to oil-palm extent) is lowland forest of ‘northern Kalimantan’ as 342 

plantations have replaced most of its intact and logged forests.  343 
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Table 1. Extent of native vegetation in Kalimantan replaced by oil-palm plantations. Intactness-adjusted area (IAA) represents ecological integrity of extant 344 

native vegetation (e.g. logged forest, burned forest) relative to intact forest. Native vegetation is represented by floristic eco-region using clustering 345 

analyses (Raes, 2009; Fig. S4). For the purpose of this paper, some nomenclatures of the eco-regions were modified from the original dataset described by 346 

Raes (2009). 347 

Floristic eco-region name Historical 
extent 
(000 ha) 

Extent occupied by oil-palm plantations (000 ha)  IAA 
(000 ha) 

IAA relative 
to oil-palm 
extent (%) 

Intact  Logged  Scrub Agroforest  Non-
forest  

Uncertain  Total 
extent  

Per cent 
occupied (%) 

Freshwater swamp forest 4,971 71 99 156 69 95 23 515 10.38 211 41.0 

Peat swamp forest 4,575 67 113 161 152 123 21 639 13.98 238 37.3 

Heath forest 4,205 95 137 222 142 174 16 788 18.74 300 38.1 

Lowland forest of ‘western Kalimantan’ 4,865 14 11 0.308 80 37 41 186 3.82 41 22.5 

Lowland forest of ‘central Kalimantan’ 4,991 40 45 27 139 34 71 358 7.19 115 32.3 

Lowland forest of ‘southern Kalimantan’ 10,346 142 301 173 118 226 67 1,030 9.96 453 44.1 

Lowland forest of ‘northern Kalimantan’ 1,083 32 79 0.450 19 15 0 147 13.63 98 66.9 

Lowland forest of ‘eastern Kalimantan’ 8,056 132 141 466 44 85 11 881 10.94 391 44.4 

Hill forest  445 0 0 0 0 0 0 0 0.00 0 N/A 

Montane forest of upper Kapuas 3,529 0 0 0 0 0 0 0 0.00 0 N/A 

Montane forest of ‘eastern Kalimantan’ 5,765 0 0.479 0 0 0.246 0 0.725 0.01 0.368 50.9 

  348 
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We estimated that the suitable habitat of 78 mammal species (96.3% of the sample) has been 349 

planted with oil-palm with an average of 7.6% (+ 2.9%) of habitat having been converted to 350 

plantations (Table S3). For some charismatic mammals such as Bornean orangutan (Pongo 351 

pygmaeus) and proboscis monkey (Nasalis larvatus), oil-palm plantations have replaced more than 352 

10% of their suitable habitat across Kalimantan. Bornean banded langur (Presbytis chrysomelas), a 353 

Critically Endangered mammal and one of the rarest primates in Borneo (IUCN, 2015), suffered a loss 354 

of 11.3% of its habitat. The most severely-affected mammal was the white-collared fruit bat 355 

(Megaerops wetmorei), with 16.7% of its habitat lost to oil-palm development.   356 

3.2. Priority areas for restoration to offset carbon emissions 357 

We discovered that to offset the emitted carbon from the creation of industrial oil-palm plantations 358 

would require restoration of 0.8 million ha (0.4–1.2 million ha) and incur costs of US$1.3 billion 359 

(US$0.7–2.0 billion) assuming that restoration would avoid emissions from further peat fires (Figs. 2a 360 

and 2b). The areas selected for offsetting carbon impacts are primarily severely logged and 361 

frequently burned peatlands with deep peat including the site of the failed Ex-Mega Rice Project 362 

(EMRP) in Central Kalimantan (Fig. 3a). Restoration of these areas avoids carbon emissions from peat 363 

oxidation and burning (Fig. S5) while incurring low opportunity costs due to low suitability for timber 364 

extraction and palm-oil production, although the cost of hydrological rehabilitation is high (Fig. S6). If 365 

restoration failed to prevent peat fires, the required area for compensation would increase to 1.1 366 

million ha (0.6–1.6 million ha) with the cost of restoration rising to US$1.8 billion (US$1.0–2.9 billion) 367 

(Figs. S7 and S8).  368 

3.3. Priority areas for restoration to offset biodiversity impacts 369 

To offset the combined biodiversity losses due to industrial oil-palm plantations developed between 370 

1973 and 2013, the oil-palm industry would need to restore vegetation across 8.7% of Kalimantan’s 371 

landmass. Offsetting the loss of floristic eco-regions measured as intactness-adjusted areas would 372 

require the restoration of 2.2 million ha at a cost of US$3.6 billion (Figs. 2a, 2b and 3b). To offset the 373 

loss of mammal habitat would require 4.6 million ha to be restored at a predicted cost of US$7.6 374 

billion (Figs. 2a, 2b and 3c). Simultaneously offsetting the losses of floristic eco-regions and mammal 375 

habitat slightly increased the total area to restore and cost compared to when targeting mammal 376 

habitat with 4.7 million ha at a cost of US$7.7 billion (Figs. 2a and 2b). The relatively similar cost and 377 

extent when offsetting the combined biodiversity losses with offsetting only for the loss of mammal 378 

habitat indicates that achieving mammal habitat targets would also simultaneously achieve the 379 

targets for floristic eco-regions. Priority areas for offsetting the combined biodiversity features 380 
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would include severely degraded lowland forests in East Kalimantan and logged forests in Central 381 

Kalimantan (Fig. 3d). These areas have low suitability for oil-palm plantation, resulting in low 382 

opportunity cost (Fig. S5).  383 

3.4. Priority areas for restoration to offset carbon and biodiversity losses 384 

When attempting to achieve the offset targets for restoration of floristic eco-regions and carbon 385 

simultaneously, the extent of offsets is similar to that required when compensating the loss of 386 

floristic eco-regions alone, but the priority areas change to include degraded peatlands in the EMRP 387 

(Fig. 3e). This spatial shift would incur a higher cost of US$3.7 billion (US$3.6–4.1 billion) (Figs. 2a 388 

and 2b). When carbon offset targets were included with mammal habitat targets, the extent of 389 

offsets increases to 4.6 million ha costing US$7.7 billion (Figs. 2a, 2b and 3f), indicating offsetting the 390 

loss of mammal habitat would achieve the target for carbon.  391 

 392 

Fig. 2. Resources required to offset the impacts of oil-palm plantation in Kalimantan. a, Extent of landscape 393 

selected for restoration offsetting. b, Total offsetting costs accounting for opportunity and implementation 394 

costs. Each offsetting scenario aims to compensate for the loss of: carbon (scenario C); floristic eco-region 395 

(scenario F); mammal habitat (scenario M); floristic eco-region and mammal habitat (scenario F&M); carbon 396 

and floristic eco-region (scenario C&F); carbon and mammal habitat (scenario C&M). Error bars represent the 397 

range of results accounting for lower and higher estimates of total carbon emissions as such the bars only 398 

apply for scenarios involving carbon. 399 
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  400 

Fig. 3. Priority areas for offsetting the impacts of oil-palm development via restoration in Kalimantan. Each figure represents different scenarios for compensating the loss 401 

of: (a) carbon; (b) floristic eco-region; (c) mammal habitat; (d) floristic eco-region and mammal habitat; (e) carbon and floristic eco-region; (f) carbon and mammal habitat. 402 

Priority areas were identified through spatial decision support using a target-based algorithm while minimising cost (Supplementary Methods). The target was set to reflect 403 

the loss of carbon and biodiversity that has been incurred due to the development of oil-palm plantations. Labels refer to province: West Kalimantan (WK), Central 404 

Kalimantan (CK), South Kalimantan (SK), East Kalimantan (EK) and North Kalimantan (NK).405 
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When we overlaid the priority areas for offsetting carbon only (Fig. 2a) and biodiversity combined 406 

(Fig. 2d), only 0.2 million ha of the priority areas overlapped (Fig. 4), equivalent to 25% of the extent 407 

of priority areas for offsetting carbon and 4% of priority areas when targeting biodiversity. The 408 

overlapping areas include the degraded peatlands in Kutai, East Kalimantan and in Sampit, Central 409 

Kalimantan (Fig. 4). The small extent of overlap indicates a limited opportunity for synergy between 410 

achieving the target for carbon and biodiversity in the context of Kalimantan. 411 

 412 

Fig. 4. Overlapping priority areas between offsetting the impacts of oil-palm development on carbon emissions 413 
and compensating biodiversity losses (i.e. mammal’s habitat and floristic ecoregion combined) in Kalimantan. 414 

4. Discussion  415 

Offsetting the environmental impacts of development may appear to be an opportunity to finance 416 

restoration whenever global ambitious targets on forest and landscape restoration are not 417 

otherwise likely to be achieved (Maron et al., 2016a; Chazdon et al., 2017). However, we 418 

demonstrate here that even assuming perfect restoration effectiveness, difficult decisions are 419 

required when offsetting large-scale impacts, with important associated implications for the cost 420 

and area requiring restoration. Our findings suggest that reconciling multiple impacts at landscape 421 

and larger scales will necessitate difficult choices among contested socio-political preferences. 422 

4.1. What to offset? 423 
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When solely targeting for carbon, restoring degraded deep peatlands is the priority strategy to offset 424 

carbon emissions from industrial oil-palm development in Kalimantan. To fully offset the emissions 425 

from palm oil plantations, an extent in the range of 0.4–1.6 Mha at a cost up to US$2.9 billion would 426 

need to be restored. Despite concerns over carbon emissions from conversion to oil-palm 427 

plantations (e.g. Koh et al., 2011; Carlson et al., 2013; Busch et al., 2015), offsetting carbon impacts 428 

from development is not yet popular in existing offsetting policies and practices. For example, 429 

current Remediation and Compensation Procedures developed by the Roundtable on Sustainable 430 

Palm Oil do not explicitly state carbon emissions ought to be compensated (RSPO, 2014). Also, if 431 

implemented, there are likely further debates in relation to other policy arenas, such as whether 432 

carbon offsetting may be included into or should be separated from Reducing Emissions from 433 

Deforestation and Forest Degradation (REDD+) mechanism (Solheim & Natalegawa, 2010).  434 

On the other hand, the compensation for two elements of biodiversity loss would require 435 

restoration of 4.7 Mha degraded lands, equivalent to the overall extent of Kalimantan’s industrial oil-436 

palm plantation estate. This is even assuming perfect restoration success, which is highly implausible 437 

(Maron et al., 2012). Restoration of the vast extent required to compensate fully for biodiversity 438 

losses would be politically constrained by regional and national development targets aiming for the 439 

expansion of oil-palm and industrial timber plantations, logging and mining (Abood et al., 2015; 440 

Runting et al., 2015). The high costs incurred (i.e. US$7.7 billion) also raises questions about the 441 

capacity of the oil-palm industry to finance the offsetting mechanism. To put this into perspective, 442 

the net present value (NPV) of oil-palm plantation per hectare is US$6,355 in one planting cycle 443 

(Irawan et al., 2013) – equating to a total NPV for industrial oil-palm plantation in Kalimantan of 444 

US$29.6 billion. Considering this economic capacity, covering the cost of biodiversity offsetting is 445 

likely not feasible for the oil-palm industry.   446 

The difference in both the amount of restoration required and the locations of priority areas for 447 

compensating carbon emissions and biodiversity makes a synergistic solution problematic. Our 448 

finding echoes other works that there are trade-offs among desired outcomes when making 449 

decisions for restoration of ecosystem services (Budiharta et al., 2014a; Gourevitch et al., 2016). In 450 

the context of Kalimantan, the trade-offs between carbon and biodiversity mirrors REDD+ policy 451 

implementation, where there is spatial mismatch between areas best targeted for climate change 452 

mitigation (by protecting carbon-rich sites such as peatlands) or biodiversity conservation (by 453 

focusing on species-rich areas) (Paoli et al., 2010; Murray et al., 2015). While there is opportunity to 454 

compensate for carbon emissions by restoring degraded deep peatlands in the region, this choice 455 

will have limited co-benefits for biodiversity. Conversely, if restoration is used in an attempt to offset 456 
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biodiversity loss, the costs and areas required would be much higher, which becomes the hindrance 457 

to convince policy makers with limited interest in conservation. 458 

Our analysis illustrates the ethical and social complexity associated with the offsetting mechanism 459 

when multiple impacts are considered (Maron et al., 2016b; Sonter et al., 2018). The situation 460 

becomes even more complicated if the impacts are mostly intangible, such as socio-cultural values 461 

of the forests that have been lost (Ives & Bekessy, 2015). In Kalimantan, local communities perceive 462 

forest as important for their spiritual and subsistence needs (Meijaard et al., 2013; Abram et al., 463 

2014), triggering social conflict when the forest is converted to oil-palm plantation (Abram et al., 464 

2017). Further understanding is therefore required to resolve competing preferences held by 465 

societies on the choices of what to compensate in environmental offsetting whenever compensating 466 

multiple impacts is not feasible. 467 

4.2. Policy implications for the study area 468 

Beside enriching knowledge in restoration and offsetting studies, our analysis provides insights for 469 

land-use policy in Kalimantan and Indonesia. Degraded peatlands in the form of grasslands, 470 

shrublands and logged forests have been converted to agriculture, either by large companies or 471 

small-scale farmers, through draining and burning (Harrison et al., 2009; Gaveau et al., 2014b). 472 

These activities led to the release of carbon emissions between 0.81–2.57 GtC in one El Niño event 473 

alone (Page et al., 2002). Peat fires also cause up to US$33 billion in economic losses and severe 474 

public health problems (Chan, 2015). Our findings suggest that no extractive activities should take 475 

place in degraded peatlands and that these areas are potential for carbon offsetting through 476 

restoration. 477 

If carbon emissions due to oil-palm plantation development in Kalimantan can be fully compensated 478 

through peatland restoration, this strategy alone could reduce by 11% the total emissions from land-479 

use and land-cover change in Indonesia (Busch et al., 2015). Also, through large scale peatland 480 

restoration using rewetting and revegetation of drained peatlands, the risks of peat burning could be 481 

reduced to mitigate social and economic impacts caused by haze problems (Forsyth, 2014; Taufik et 482 

al., 2017; Dohong et al., 2018). To enhance social benefits for local community, restoration offsetting 483 

on peatlands could be integrated with emerging policy of community forestry since there are limited 484 

restoration investments and capacity building programs currently directed toward community 485 

forests located on degraded peatland (Santika et al., 2017). The Peatland Restoration Agency 486 

(https://brg.go.id) was formed by the Indonesian Government to coordinate and facilitate 487 

restoration of two million hectares of degraded peatlands in Indonesia, mainly in Sumatra and 488 

https://brg.go.id/
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Kalimantan. The Agency may serve to facilitate the implementation of carbon offsetting through 489 

peatland restoration.  490 

Our results also clarify the fundamental role of conserving biodiversity-rich primary forests and 491 

peatlands in the tropics (Gibson et al., 2011; Page et al., 2011; Wijedasa et al., 2017) and the costs 492 

associated when these areas are damaged. The costs of repairing damaged landscapes to 493 

compensate biodiversity loss are extremely high. This reinforces the importance of the early stages 494 

of the mitigation hierarchy (i.e. avoid and minimise (Kiesecker et al., 2009a; Pilgrim et al., 2013; 495 

Maron et al., 2016b)) when planning for oil-palm development. Oil-palm plantations are predicted to 496 

expand between 6.9–9.4 Mha over the next 5 years in Kalimantan alone (Carlson et al., 2013; Abood 497 

et al., 2015; Runting et al., 2015). To minimise carbon emissions, there should be no future oil-palm 498 

development on peatlands, including those in a degraded condition. Also, expansion should be 499 

directed toward degraded lands with limited forest cover (Smit et al., 2013; Santika et al., 2015) to 500 

reduce impacts on biodiversity.  501 

4.3. Biases and uncertainties  502 

While we developed a unique framework decision-making in restoration offsetting that account for 503 

biophysical and economic heterogeneity of a landscape, our analysis did not consider the social 504 

realm. Local communities may not accept the restoration offsetting we describe, especially 505 

considering the challenges of community land-claims and conflicts in Kalimantan (Thaler & Anandi, 506 

2016; Abram et al., 2017; Prabowo et al., 2017; Santika et al., 2017). Incorporating social variables, 507 

such as community acceptance of restoration, will likely change the priority areas for offsetting with 508 

potential increase in costs and/or area extent (Budiharta et al., 2016). As such, the outputs of our 509 

analysis should not be used prescriptively. 510 

When calculating the benefits of restoration for biodiversity, we also assumed that restoration will 511 

successfully recover native vegetation and the habitat of mammals. In reality, there are long time-512 

lags and uncertainties in restoring sites to the level of intact systems, sometimes requiring centuries 513 

(Curran et al., 2013), although there is some evidence in the tropics that some species rapidly 514 

colonise the restored sites within three decades (e.g. Edwards et al., 2009; Ansell et al., 2011; Gilroy 515 

et al., 2014). Accounting for these constraints in our spatial analysis will likely result in the offset 516 

lands needing to be much larger than the original impacted area (Maron et al., 2012) – indeed, it 517 

may render full compensation impossible.  518 

4.4. Way forward 519 
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Offsetting is an emerging tool for environmental protection and rehabilitation, and has both 520 

prospects and limitations. Our study reveals tough choices. To which ecological impacts ought 521 

offsetting apply? Who will make these value judgements? If there are trade-offs among outcomes, 522 

will civil society accept the compromise? As achieving ambitious global restoration targets is a 523 

matter of political will, scientific exercises to answer such questions needs to involve social and 524 

political sciences where values and judgments can be incorporated.   525 
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