Kinetics of Molecular Decomposition under Irradiation of Gold Nanoparticles with Nanosecond Laser Pulses – A 5-Bromouracil Case Study

Telma Marques,^{#[c,f]} Robin Schürmann,^{#[a,b]} Kenny Ebel,^[a,b] Christian Heck,^[a] Małgorzata A. Śmiałek,^[c,d] Sam Eden,^[c] Nigel Mason,^[c,e] and Ilko Bald^{*[a,b]}

[a]	Physical Chemistry, Institute of Chemistry,
	University of Potsdam
	Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
[b]	Department of Analytical Chemistry
	BAM, Federal Institute of Material Research and Testing
	Richard-Willstätter-Str. 11, 12489 Berlin, Germany
[c]	Department of Physical Sciences, The Open University, Walton Hall, MK7 6AA, Milton Keynes, UK
L L	Department of Control and Power Engineering, Eaculty of Ocean Engineering and Ship Technology, Coansk Lloiversity of Tech

- [d] Department of Control and Power Engineering, Faculty of Ocean Engineering and Ship Technology, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland
- [e] School of Physical Sciences, University of Kent at Canterbury CT2 7NH, United Kingdom
- [f] CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- # Authors contributed equally to the manuscript.
- Corresponding author. E-mail: bald@uni-potsdam.de

Complete derivation of the reaction kinetics:

$$BrU \xrightarrow{k_1} small fragments \qquad (1)$$
$$BrU \xrightarrow{k_2} U \qquad (2)$$
$$U \xrightarrow{k_3} small fragments \qquad (3)$$

Based on equation (1) and (2) the decomposition of BrU is following a (pseudo-) first order reaction that can be described by the following equation:

$$\frac{d[BrU]}{dt} = -k_1[BrU] - k_2[BrU]$$
(4)

According to equation (2) and (3) the generation and decomposition of U can be described by:

$$\frac{d[U]}{dt} = -k_3[U] + k_2[BrU]$$
 (5)

From equation (4) we get for the concentration of [BrU] after an irradiation time t:

$$[BrU] = [BrU]_0 e^{-(k_1 + k_2)t}$$
(6)

Where $[BrU]_0$ is the initial concentration of BrU before the irradiation. If we insert this expression for [BrU] into equation (5) we get:

$$\frac{d[U]}{dt} + k_3[U] = k_2[BrU]_0 e^{-(k_1 + k_2)t}$$
(7)

By using the integral method, which allows to solve differential equations of the type: $\frac{dy}{dx} + f(x)y = g(x)$ by multiplication with $e^{\int f(x)dx} = e^{\int k_3dt} = e^{k_3t}$, we get:

$$e^{k_3 t} \frac{d[U]}{dt} + e^{k_3 t} k_3[U] = k_2 [BrU]_0 e^{-(k_1 + k_2)t} e^{k_3 t}$$
(8)

Which can be rearranged to:

$$\frac{d([U]e^{k_3t})}{dt} = k_2[BrU]_0 \ e^{-(k_1+k_2-k_3)t}$$
(9)

by using $\frac{d([U]e^{k_3t})}{dt} = e^{k_3t}\frac{d[U]}{dt} + e^{k_3t}k_3[U]$. Thus the integration of equation (9):

$$\int_{[U_0]e^0}^{[U]e^{k_3t}} d([U]e^{k_3t}) = k_2[BrU]_0 \int_0^t e^{-(k_1+k_2-k_3)t} dt \quad (10)$$

gives us:

$$[U]e^{k_3t} - [U_0] = \frac{k_2[BrU]_0}{k_3 - k_1 - k_2} (e^{-(k_1 + k_2 - k_3)t} - 1)$$
(11)

With $[U_0] = 0$, since there has been initially no U in the solution, we get for [U]:

$$[U] = \frac{k_2 [BrU]_0}{k_3 - k_1 - k_2} (e^{-(k_1 + k_2)t} - e^{-k_3t})$$
(12)

Consequently, the ratio of [U] and be [BrU] can be determined using equation (6) and (12):

$$\frac{[U]}{[BrU]} = \frac{k_2}{k_3 - k_1 - k_2} \left(1 - e^{-(k_3 - k_1 - k_2)t}\right)$$
(13)

By using the Taylor expansion: $e^x \approx 1 + x$ we can simplify the expression for short illumination times t to:

$$\frac{[U]}{[BrU]} \approx k_2 t \qquad (14)$$

Irradiation of BrU in the absence of AuNPs:

SI1: a) UV-Vis spectra of BrU solution irradiated with a focused 532 nm ns laser pulses with a repetition rate of 15 Hz with a maximum laser fluence of 4 10^{13} W/m² after 0 h, 2 h and 4 h of irradiation. b) Integrated Absorbance of the π - π * resonance of BrU as a function of the illumination time. c) Center wavelength of the π - π * resonance as a function of the illumination time.

SI2: Exemplary set of UV-Vis spectra of an AuNPs solution irradiated with a focused 532 nm ns laser pulses with a repetition rate of 15 Hz with a maximum laser fluence of 3.4 10^{12} W/m² used as background correction.

SI3: Concentration [BrU] plotted as a function of the irradiation time for different laser fluences: a) $19.9 \cdot 10^{12} \text{ W/m}^2 \text{ b}$) $13.7 \cdot 10^{12} \text{ W/m}^2 \text{ c}$) $10.3 \cdot 10^{12} \text{ W/m}^2 \text{ d}$) $5.48 \cdot 10^{12} \text{ W/m}^2 \text{ e}$) $4.83 \cdot 10^{12} \text{ W/m}^2 \text{ f}$) $3.39 \cdot 10^{12} \text{ W/m}^2 \text{ g}$) $3.23 \cdot 10^{12} \text{ W/m}^2 \text{ h}$) $2.13 \cdot 10^{12} \text{ W/m}^2 \text{ i}$) $1.92 \cdot 10^{12} \text{ W/m}^2 \text{ j}$) $1.45 \cdot 10^{12} \text{ W/m}^2 \text{ k}$) $1.05 \cdot 10^{12} \text{ W/m}^2$.

SI4: Histograms of the AuNPs sizes after laser illumination with different fluences.

Error calculation:

The error of the surface area of the irradiated surface area A_s has been calculated based on the error of P(r), which is given by:

$$\Delta P(r) = \frac{\Delta N(r)}{N_{ges}} + \frac{N(r)}{N_{ges}^2} \cdot \Delta N_{ges}$$
(15)

with

$$N = \sqrt{N} \tag{16}$$

Thus we get:

$$\Delta A_{S} = \left[\sum_{r} \left| \frac{\partial}{\partial P(r)} \frac{V_{gold}}{\sum_{r} P(r) \cdot \frac{4}{3} \pi \cdot r^{3}} \cdot \sum_{r} 4\pi \cdot P(r) \cdot r^{2} \right|^{2} \cdot \Delta P(r)^{2} \right]^{1/2}$$
(17)

Which can be written as:

$$\Delta A_{S} = \left[\left[\frac{V_{gold} \cdot \sum r_{3}^{4} \cdot \pi \cdot r^{3} \cdot \Delta P(r)}{\left(\sum_{r} P(r) \cdot \frac{4}{3} \cdot \pi \cdot r^{3}\right)^{2}} \cdot \sum_{r} 4\pi \cdot P(r) \cdot r^{2} \right]^{2} + \left[\frac{V_{gold}}{\sum_{r} P(r) \cdot \frac{4}{3} \cdot \pi \cdot r^{3}} \cdot \sum_{r} 4\pi \cdot r^{2} \cdot \Delta P(r) \right]^{2} \right]^{1/2}$$
(18)

The error for the illuminated surface area of the AuNPs is given by:

$$\Delta A_{ill} = \frac{V_{ill}}{V_{total}} \cdot \Delta A_S \tag{19}$$

The error for the absorbed heat by an individual AuNP:

$$Q = \frac{Abs \cdot \sum_{r} P(r) \cdot \frac{4}{3} \pi \cdot r^{3}}{V_{gold} \cdot N_{AuNP \ 40nm} \cdot l} \cdot I$$
(20)

has been calculated by:

$$\Delta Q = \left[\sum_{r} \left| \frac{\partial}{\partial P(r)} \frac{Abs \cdot \sum_{r} P(r) \cdot \frac{4}{3} \pi \cdot r^{3}}{V_{gold} \cdot N_{AuNP \ 40nm \cdot l}} \cdot I \right|^{2} \cdot \Delta P(r)^{2} \right]^{\frac{1}{2}} = \frac{Abs \cdot \sum_{r_{3}} \pi \cdot r^{3} \cdot \Delta P(r)}{V_{gold} \cdot N_{AuNP \ 40nm \cdot l}} \cdot I$$
(21)

Table 1: Ratio of [U] and [BrU] as a function of the irradiation time. Data presented in Fig. 3a).

Irradiation time (min)	0	1	5	10	20	30
[U]/[BrU]	0,0319	0,0524	0,0417	0,0462	0,0545	0,0749
Δ[U]/[BrU]	0,0017	0,0019	0,0021	0,0019	0,0022	0,0022
Irradiation time (min)	40	50	60	70	80	90
[U]/[BrU]	0,1006	0,1192	0,1318	0,1534	0,1685	0,1899
Δ[U]/[BrU]	0,0022	0,003	0,0033	0,0052	0,0081	0,0167

Table 2: Concentration [BrU] as a function of the irradiation time. Data presented in Fig. 3b).

Irradiation	0	1	5	10	20	30	40	50	60	70	80	90
time (min)												
[BrU]	12,37	11,14	10,28	9,67	8,54	7,40	6,30	5,20	4,29	3,37	2,56	1,62
Δ[BrU]	0,14	0,14	0,14	0,12	0,12	0,11	0,11	0,11	0,11	0,13	0,14	0,15

Table 3: Reaction rates as a function of the laser repetition rates. Data presented in Figure 4.

<u>40 mM BrU</u>								
Frequency (Hz)	k1 (puls ⁻¹)	∆k1 (puls ⁻¹)	k2 (puls ⁻¹)	∆k2 (puls ⁻¹)				
4	2,02184E-5	8,18345E-7	2,74703E-6	2,13321E-7				

6	1,99022E-5	7,23873E-7	1,46826E-6	2,55005E-7				
8	1,89349E-5	8,85859E-7	4,55324E-6	4,93752E-7				
10	1,82486E-5	7,50822E-7	1,34997E-6	1,57657E-7				
12	1,68431E-5	7,07432E-7	2,77589E-6	4,15534E-7				
14	1,53243E-5	3,71962E-7	1,95252E-6	2,16141E-7				
35 mM BrU								
Frequency (Hz)	k1 (puls ⁻¹)	∆k1 (puls ⁻¹)	k2 (puls ⁻¹)	∆k2 (puls⁻¹)				
3	1,84951E-5	9,57881E-7	3,83911E-7	3,40785E-8				
5	1,73793E-5	1,36372E-6	1,73427E-6	3,44217E-7				
7	1,54995E-5	1,31419E-6	2,31902E-6	4,55786E-7				
10	1,59941E-5	6,67977E-7	1,78483E-6	1,29012E-7				
12	1,68431E-5	7,07432E-7	2,77589E-6	4,15534E-7				
15	1,30933E-5	7,38898E-7	1,10882E-6	8,34434E-8				

Table 4: Reaction rates as a function of the laser repetition rates. Data presented in Figure 5 a).

Laser fluence 10 ¹² (W/m ²)	k1 (min ⁻¹)	Δk1 (min ⁻¹)	k2 (min ⁻¹)	∆k2 (min⁻¹)
19,91	0,00586	0,0011	0,00152	1,6E-4
13,74	0,0191	0,00146	0,00361	3,0E-4
10,26	0,02113	0,00196	0,00374	5,2E-4
5,48	0,01869	0,00118	0,00188	8,0E-5
4,83	0,01529	8,3E-4	0,00175	8,4E-5
3,40	0,00789	4,7E-4	8,22E-4	5,5E-5
3,23	0,0097	4,5E-4	0,00137	5,3E-5
2,13	0,00508	2,7E-4	7,85E-4	7,1E-5
1,92	0,00566	2,7E-4	5,14E-4	4,9E-5
1,45	0,00204	9,3E-5	3,51E-4	2,8E-5

1,05	0,00119	2,7E-5	8,16E-5	7,1E-6

Table 5: AuNP surface area as a function of the laser fluence. Data presented in Figure 6 d).

Laser fluence (W/m ²)	3,93E13	1,75E13	6,29E12	2,46E12	1,30E12	9,30E11
As (cm²/ml)	0,00199	0,00187	0,00138	0,00130	8,8E-4	9,2E-4
ΔAs (cm²/ml)	4,0E-4	2,3E-4	2,2E-4	2,9E-4	1,9E-4	3,1E-4

Table 6: Illuminated AuNP surface area as a function of the laser fluence. Data presented in Figure 6 *f*).

Laser fluence (W/m²)	3,93E13	1,75E13	6,29E12	2,46E12	1,30E12	9,30E11
A _{ill} (cm²/ml)	1,10E-4	1,23E-4	1,23E-4	1,72E-4	1,62E-4	2,07E-4
ΔA_{iii} (cm ² /ml)	2,2E-5	1,5E-5	2,0E-5	3,8E-5	3,5E-5	6,8E-5

Table 7: Heat absorbed by an individual AuNP as a function of the laser fluence. Data presented in Figure 7.

Laser fluence (W/m ²)	3,93E13	1,75E13	6,29E12	2,46E12	1,30E12	9,30E11
Q _{abs} (J)	1,42E-13	6,9E-14	6,8E-14	3,9E-14	4,9E-14	3,3E-14
ΔQ_{abs} (J)	3,5E-14	1,1E-14	1,3E-14	8,8E-15	1,1E-14	1,1E-14