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Abstract

Recent work showed neural-network based approaches to reconstructing im-
ages from compressively sensed measurements offer significant improvements
in accuracy and signal compression. Such methods can dramatically boost
the capability of computational imaging hardware. However, to date, there
have been two major drawbacks: (1) the high-precision real-valued sensing
patterns proposed in the majority of existing works can prove problematic
when used with computational imaging hardware such as a digital micromir-
ror sampling device and (2) the network structures for image reconstruction
involve intensive computation, which is also not suitable for hardware de-
ployment. To address these problems, we propose a novel hardware-friendly
solution based on mixed-weights neural networks for computational imag-
ing. In particular, learned binary-weight sensing patterns are tailored to the
sampling device. Moreover, we proposed a recursive network structure for
low-resolution image sampling and high-resolution reconstruction scheme. It
reduces both the required number of measurements and reconstruction com-
putation by operating convolution on small intermediate feature maps. The
recursive structure further reduced the model size, making the network more
computationally efficient when deployed with the hardware. Our method has
been validated on benchmark datasets and achieved state of the art recon-
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struction accuracy. We tested our proposed network in conjunction with a
proof-of-concept hardware setup.

Keywords:
single pixel camera, computational imaging, neural network, image
reconstruction, super resolution, binary weights

1. Introduction

In the context of structural signal recovery, the task of image recon-
struction from the compressive sampling has been closely associated with
computational imaging [1] using a single pixel camera [2, 3]. Single pixel
camera architectures are of particular interest when imaging outside the visi-
ble range of the electromagnetic spectrum in cases where detector technology
is expensive or difficult to manufacture. This approach to image acquisition
involves illuminating an object scene using a sampling device which produces
structured light in the form of 2D pseudo-random patterns. For each pat-
tern, the intensity of the back scattered light is measured by a single pixel
photo-detector. In the computational imaging paradigm [2], each measure-
ment corresponds to the inner product between a sensing pattern and the
image to be reconstructed. This can be formulated as:

y = Φx+ e (1)

where x ∈ Rn is the image rearranged as a vector, Φ ∈ Rm×n, m � n, are
m random sensing patterns (also concatenated into vector form), e ∈ Rm

are measurement errors and y ∈ Rm are the measurements. The number
of sensing patterns m can be much fewer than the total number of pixels
n comprising the reconstructed image, resulting in a measurement ratio of
R = m

n
.

A digital micro-mirror device (DMD) is widely used as the sampling com-
ponent in single pixel camera architectures and for coded aperture imaging
[4, 5, 6, 7, 8, 9]. It contains a 2d array of micro-mirrors (hence the name)
and each micro-mirror can be positioned at one of two angles to be in ei-
ther an activated or inactivated state. When the array is illuminated by a
uniform light source, shifting the micromirrors between states produces dif-
ferent binary sensing patterns, such as random Bernoulli, Hadamard, which
are projected onto the object scene of interest. Given an incident, uniform,
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light source, shifting mirrors between states produces different binary sensing
patterns, such as random Bernoulli, Hadamard, which are used to illuminate
the object scene of interest.

To reconstruct signals/images from compressively sampled measurements,
Compressed sensing (CS)[10, 11], to be exact sparse optimization methods
such as NESTA[12], ADMM [13] etc. have been proposed and have become
the predominant algorithms using in a variety of applications. However, one
major drawback of these numerical nonlinear optimization methods is that
they often take a few minutes to recover a single large image at good quality.

Deep neural networks (DNNs) have become prevalent in a broad range of
image processing tasks [14, 15, 16, 17, 18]. Specifically, DNN has been shown
to achieve favorable results in image recovery [19]. Motivated by this suc-
cess in image reconstruction tasks, DNNs were subsequently investigated for
image reconstruction problems based on compressively sensed image data,
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. These neural network based solu-
tions were reported to outperform the state-of-the-art in compressed sensing
algorithms in terms of speed, accuracy and data compression.

Although a variety of different network architectures were proposed, few
were deliberately designed to be adaptable to the sensing hardware. To
date, there have been two issues that remain to be solved. First, the real-
valued sensing patterns of all existing neural network implementations for
this application were stored in 32-bit floating-point format. Although high-
precision sensing patterns can be used for software simulation of image sam-
pling on modern GPUs, this is not a realistic representation of sampling
using structured light sensing hardware, where instead binary patterns are
used to reduce sampling complexity. Second, previous methods assumed
that the sensing patterns and the reconstructed images have the same reso-
lution. Therefore, the size of the recovered image is dependent on the size of
the sensing patterns (for dense-connection based methods) or the number of
convolutional patch-sampling operations (for convolutional-based methods).
For large images, these methods result in large intermediate feature maps and
increase the number of operations required for recovering an image. This is
because the number of sampling measurements and convolutional computa-
tions depends on the size of the feature maps. In addition, when the patterns
are loaded in hardware, such as a DMD, the maximum reconstruction reso-
lution will be limited by the size of the mirror array (which is fixed) used in
the sensing device.

The limitations of previous methods motivated us to design a hardware-
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friendly deep learning solution, incorporating binary sensing patterns to re-
construct high-resolution images. Previous papers have highlighted the im-
portance of integrating the DNN solutions with hardware [28, 29]. In this
respect, we go one step further than previous work and provide evidence that
our architecture performs well with imaging hardware. We propose a new
network architecture that:

1. Uses a mixed-weights network with sparse binary patterns which lends
itself naturally to hardware implementation and can be trained in an
end-to-end manner. Unlike floating-point numbers, binary patterns are
appropriate for both sampling and measuring hardware. Specifically,
the sparse binary patterns can be represented on a DMD without the
need for any additional modulation and require less on-board memory
usage. Our approach effectively increases the light intensity sensitivity
of the single pixel camera (the photo-diode) and the analogue to digital
conversion range, compared with methods based on real-valued sensing
patterns.

2. Uses a novel sensing-reconstruction scheme, which we term low-resolution
sensing with high-resolution reconstruction (LSHR), to directly recon-
struct high-resolution images from low-resolution sampled measure-
ments. Given a pattern generated by a DMD of fixed size, the network
reconstructs a high-resolution image which has more pixels than the
number of micro-mirrors in the array. This low-throughput sampling
scheme results in smaller feature maps, and therefore, fewer computa-
tional operations are required. Hence, it is more efficient than previ-
ously reported methods for use with hardware imaging set-ups.

3. Has a residual-correction sub-net that consists of a chain of recursive
residual blocks, where weights are shared between different blocks.
Compared with previous methods, our structure further reduces the
model size, making it ideal for the limited onboard memory capacity
of the hardware (e.g. single pixel camera) while yielding higher recon-
struction PSNR accuracy.

4. Achieves state-of-the-art results on benchmark datasets and has been
validated on proof-of-concept hardware.

The remainder of this paper is organized as follows: In Section 2, we review
the related work on sensing patterns. We describe the design of our proposed
network in Section 3. In Section 4 we show software simulation results for our
model and compare them with existing methods. In Section 5, we present
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the work of integrating the model with hardware. Finally, in Section 6 we
conclude our discussion and suggest potential future directions for the work.

2. Related work

The concept of neural network based image reconstruction was first im-
plemented using a fully-connected network [20]. Thereafter, the problem was
approached using convolutional neural networks which avoid the fixed size
input image constraint. We organized the related methods [20, 24, 25, 22,
21, 23, 26, 27, 31, 32, 28, 29, 30] into three categories according to the type of
sensing pattern used (randomly generated, learned and binary) and discuss
relevant prior work below.

Networks based on pre-generated (static) patterns. A stacked denois-
ing auto-encoder (SDA) was previously implemented [20] comprising fully-
connected layers. It was trained with measurements acquired by sensing
images with pre-generated random Gaussian patterns. Inspired by SDA,
ReconNet [24] was subsequently proposed. It improved the accuracy by ex-
tending the network with additional convolutional layers of different kernel
sizes. However the fully-connected layer caused heavy computation and large
model size, the sensing area was constrained to small patches of the original
image. In the post-processing step, the reconstructed small patches were
concatenated to form the whole image. The BM3D [33] was then applied
to smooth the edges between patches. The performance of the ReconNet
was further improved by DR2-Net [25]. Here the convolutional layers were
replaced with residual blocks which make the network easier to train. But
the sensing was still done in small patches. In contrast to previous methods
that used fixed (pre-generated) Gaussian sensing patterns, DeepInverse [22]
used real time generation of random patterns for sampling images.

Networks based on learned patterns. Some of the work described in the
previous paragraph has been modified such that the sensing patterns adapt
to a particular set of images through a learning process. The SDA was fur-
ther adapted to learn the patterns with a fully-connected layer that inputs
an image x directly into the network. The fully-connected layer was trained
to obtain the measurements y when presented with x. This operation can
be represented as y = σ(Wx + b) where the σ(·) is an activation function
and W and b are the weights and bias of the fully-connected layer. A similar
structure to SDA was also proposed that employed a fully-connected neural
network to implement the block-based compressed sensing [21]. The model
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was trained to jointly optimize the sensing patterns and the network weights.
DeepInverse was also optimized resulting in a new model named DeepCod-
edec [23]. It had an encoder-decoder architecture. The network was trained
to take measurements from images using several convolutional layers. Unlike
SDA, it gradually reduced the dimension of the intermediate feature maps
prior to generating the measurements. The efficiency was improved by ap-
plying convolutional layers. The ReconNet was also further improved using
learned patterns [26] and [28]. Before training, the fully-connected layer was
initialized with random Gaussian patterns. It was then updated during the
training. For testing the network, the trained patterns were fixed to perform
the sensing. The results showed further improvements in reconstruction accu-
racy due to learning the patterns. However, the fully-connected layer caused
intensive computation and blocking artifacts to appear in the reconstructed
images. To deal with the aforementioned limitations, the authors proposed
two networks, [27] and [29], that sensed images with a convolutional layer
with a small stride step to avoid the blocking artifacts.

Networks based on a binary matrix. Neural networks with binary weights
were initially designed for image classification tasks, [34, 35]. A network
for video reconstruction, using binary patterns, was described in [31]. The
network applied a 3D binary sampling matrix to down-sample a sequence of
the temporal video frames and learned a non-linear rule, mapping between
the measurements and the reconstructed frames via fully-connected layers.
In more recent network, DeepBinaryMask [32], followed the same strategy
of using a binary down-sampling matrix for sensing video frames but intro-
duced a learning procedure for generating the masks. However, their work
focused on temporal compression which is functionally different from the
spatial compression task which is the focus of our work. Inspired by the
SDA, a network with an improved architecture was proposed to implement
the CS image reconstruction [30]. Differently from previous reconstruction
methods, it is initial reconstruction consisted of multiple 1× 1 convolutions
and a reshape operation. The 1× 1 convolution, in principle, is functionally
equivalent to a fully-connected layer, which fixed the reconstructed image
size. After the convolution, the reconstructed 1D vector was reshaped into
an initial 2D image. In this work, they experimentally tested their model
with binary weights and bipolar weights for image sampling. However, the
simple replacement of sampling patterns did not involve the optimization of
the overall network. The reported results indicated that the reconstruction
accuracy of these two types of weights was sub-optimal compared with their
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floating-points-based model.
In Section 3, we describe our own network architecture, which aims to

solve the aforementioned limitations of the existing methods.

3. Overview of the proposed network

In this section, the network structure is explained in detail. The architec-
ture is shown in Figure 1. It is functionally divided into two parts, i.e. the
image reconstruction sub-net, and the residual correction sub-net.

Figure 1: The schematic of the proposed network. Our Network has two parts: one that
performs image reconstruction and a second part that determines the residual correction.
For the image reconstruction part, the network compressively senses the low-resolution
input image with static or learned binary patterns and reconstructs the preliminary image.
After that, the residual correction sub-net extracts the features from the preliminary image
and corrects the reconstruction error using a sequence of recursive residual blocks. Each
of these blocks is connected to the original feature maps through identity branches to
gradually learn the errors. Then the preliminary image and residuals maps are upscaled
through two branches and combined element-wise to generate the final output image.

Our LSHR scheme assumes an object scene is sampled with low-resolution
patterns. In practical applications, ground truth, high-resolution, images are
not known a priori. During the training stage, we use the original images
as our ground-truth and resample these at low resolution for the purposes
of simulating image quality typical of current single pixel imaging systems.
These low resolution and ground truth image pairs are used to train our
network.

The image reconstruction sub-net samples the low-resolution input im-
ages with binary patterns to generate the measurements. From those mea-
surements, the transposed convolution layer learns a non-linear mapping to
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generate a low-resolution version of the reconstructed image. After that, the
residual correction sub-net learns the detail corrections and up-scales the im-
age to the final high-resolution size with a phase shift operation. Together
these two parts are able to reconstruct the high-resolution image directly
from the low-resolution sampling.

3.1. Image reconstruction sub-net

The image reconstruction sub-net learns both the binary patterns and
how to reconstruct the image from the measurements. During the training,
the sampling process of the computational imaging is done using a convolu-
tional layer where the convolutional kernels act as the digital mirror array and
the kernel values (weights) act as binary patterns. When the trained model
is integrated with the hardware, the learned kernel values can be uploaded
to the digital mirror array to do the sampling and the measurements of the
back scattered light intensity are sent back to the network to reconstruct the
image.

The schematic of the image reconstruction sub-net is shown in Figure 2.
The sampling and reconstruction can be formulated as

x̃ = Fd(y,Wr) + b

= Fd(F(ϕ(x),Wb),Wr) + b
(2)

where x̃ is the reconstructed preliminary image. The Fd(·) is the transposed
convolution with Wr and b are the real-valued kernels and bias respectively.
The ϕ(·) down-scales the original images for simulating the sampling process.
The measurements y are generated by the convolution F(·) of image x and
the binary kernels Wb where each kernel corresponds to a sensing pattern.
In our work, we studied two approaches to generate the binary patterns, i.e.
the pre-generated and learned patterns. We describe these in detail below
and compare their performance (Section 4).

Randomly pre-generated binary weights. In this approach, the patterns
were randomly generated and remained static during the training. Before
the training, we initialized the binary weights from the random Bernoulli
distribution with Pr(1) = 0.5. The distribution was applied to each kernel
independently. During the training process, we updated the weights for the
rest of the network. In this approach, the network was trained to fit to
a specific set of static binary patterns. In our experiments, we compared
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this scheme with the learned binary weights to study the benefit of weight
optimization during the training.

Learned binary weights. The kernels were initialized with real-valued
weights following the uniform distribution within range [−1, 1]. This ensured
the initialized weights were equally assigned to positive and negative values.
Since the real-valued weights were necessary for the network optimizer during
training, these were used for gradient calculation. These were then mapped
to binary values and applied to the sensing kernels for forward propagation.
The binarization scheme is,

wb =

{
1 if wr > 0,
0 if wr ≤ 0,

(3)

where the wb are the 0, 1 binary weights and the wr are the real-valued
weights. Note that in our network, only the binary kernels were involved in

Figure 2: The operation of the image reconstruction part. Training stage: the low-
resolution image is sampled with binary kernels using a convolutional layer. Each con-
volution operation generates a measurement, shown as the black element. By sliding the
binary kernel through the image, the measurement map for the corresponding binary ker-
nel is generated. After convolution with all binary kernels, the transposed convolutional
layer is used to reconstruct the low-resolution preliminary image from the measurements.
Operational stage: the learned patterns are uploaded to the DMD hardware to do the sam-
pling, the measurements recorded by the photodiode detector are send back to network to
compute the reconstructed image.
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Figure 3: The schematic of the residual correction sub-net. The network feeds in the
reconstructed preliminary image as input node and then extracts the original features.
The feature maps are then passed to the recursive residual blocks, shown as dashed green
lines. Each residual block has an identity branch that connects the original features with
its output. Thereafter the residuals and the original features are added, element-wise, to
generate the input to the next residual block. For each residual block, we applied leaky
ReLU as the pre-activation function. At the end of the network, an extra convolutional
layer and an upscaling layer is added to generate the residual output.

the convolution operations. In addition, we clipped the real-valued weights to
fit within the range [−1, 1]. This ensured the effective binarizaiton mapping
since the very large values out of the range did not have significant impact
on the binarization process. We also applied an `2 norm regularization to
the weights to avoid the risk of gradient explosion.

3.2. Residual correction sub-net

Taking the output of the image reconstruction sub-net as input, the resid-
ual correction sub-net predicts the fine details resulting in a high-resolution
output image. The schematic of the residual correction sub-net is shown in
the red block in Figure 1. This sub-net has two branches: up-scaling and
residual mapping. During the training, the upscaling branch interpolates the
intermediate input image to the required size of the high-resolution output.
The residual mapping branch learns the reconstruction residual (fine details)
between the upscaled intermediate input image and the original ground truth
image using the long-term recursive residual blocks. The outputs of the two
branches are added element-wise to reconstruct the final high-resolution im-
age. In the remainder of the section, we describe the long-term recursive
residual blocks and the image upscaling processes.

The conventional residual block is formulated as â = R(a) = F(a,W ) +
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h(a) where a and â are the input and output of the residual block, W indi-
cates the weights of the residual block, F(a,W ) learns the residual mapping
between the input and the output and h(a) is the identity mapping function.
Our approach differs from the conventional residual block formulation. All of
our blocks have skip connections with the intermediate reconstructed images,
which we refer to as long-term connections. Each block share weights, form-
ing a recursive chain. The sequence of the blocks in our network is shown in
Figure 3. We used two convolutional layers with a pre-activation function in
each block. For the identity mapping, we connected the feature maps associ-
ated with the low resolution input (generated by the first convolutional layer)
to the output of each block. This long-term connection directly related these
features with the outputs of the deep residual blocks. This can be formulated
as

âj = Rj(âj−1) = F(âj−1,W j) + h(a0)

F(âj−1,W j) = W j
2σ(W j

1σ(âj−1))
(4)

where Rj is the residual mapping function of the j-th block, a0 is the initial
features, and âj is the output of j-th block. W j is the weight and σ is the
Leaky ReLU activation function [36]. The ith-layer in each block shared
the same weights Wi where i ∈ 1, 2. This formed a recursive structure and
reduced the total amount of model parameters significantly.

The image upscaling was implemented at the end of the residual correc-
tion sub-net. After the residual mapping branch extracted the residual from
the preliminary low-resolution image, we applied a phase shift layer [37] to
enlarge the size of the learned residual by a factor of s to have high-resolution
residual features. We set the network such that the high-resolution residual
features have the same number of channels (one for grayscale and three for
RGB) as the final image. In the up-scaling branch, we also enlarged the
image size by s with the phase shift operation. Then the residual and the
image were added, element-wise, to generate the output image in the high-
resolution. In our experiment, we set the upscaling factor s as 2.

3.3. Network training

The details of the network structure used in our experiment are illustrated
in Figure 4. The network structure code can be downloaded at our GitHub
repository . The proposed network consists of two functionally different sub-
nets which contain different types of weights respectively. A straightforward
strategy, used in previous work, to train such a heterogeneous network, is
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Figure 4: The details of the network structure. The diagram illustrates the feature map
convolution, in which we take an image of size H = 32 and W = 32 as input. The image
sampling is done at downscaled resolution and the output is at original resolution. The
first yellow block illustrate the inner structure of the recursive residual blocks, which were
simplified in the later blocks.

to train the two parts separately in a pipeline manner. Hence, the image-
reconstruction sub-net is first trained and then used as a pre-trained model
for training the whole network. This approach can be viewed as either a
two-step training strategy or as a semi-decoupled strategy [25]. In contrast,
we trained the heterogeneous network with pure end-to-end learning. These
two parts of the network were trained jointly with a separate learning-rate
update scheme for each. Specifically, for the image reconstruction sub-net,
we set a larger initial learning rate with faster decay. This encouraged a
rapid updating of the binary weights in the early stages of training and a
slower update in the later stages, facilitating the residual correction sub-net
to recover the fine image details. For the the residual correction sub-net, we
initialized a relatively small learning rate with a slower decay rate since the
residual correction for the details is more difficult to learn.

Denoting the original image as x, we aim to train the whole network f
to reconstruct the high-resolution image x̃ = f(x,W ), where W denotes the
weights of the model. We associated the loss function with the output of both
sub-nets (parts), i.e. the reconstructed low-resolution image and the upscaled
high-resolution image, to train the network. In contrast to the common `2-
norm loss function, used in previous work, we trained the network using the
Charbonnier loss function, which is a variant of the `1-norm function. Given
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x̃s the generated image at s upscaling factor, then our loss function is written
as

L(x, x̃,W ) =
1

N

N∑

i=1

S∑

s=1

ωα(xsi − x̃si ) +
λ

2N

∑

W

w2 (5)

where N is the batch size and α(µ) =
√
µ2 + ε denotes the Charbonnier

penalty. The second term is the `2-norm regularization for the weights.
Our experiments indicated that images generated using the Charbonnier loss
function were usually sharper than the results obtained using an `2 norm loss
function. We accumulated the loss of both sub-nets. The ground truth image
x1i was generated by downsizing the original image using the bicubic interpo-
lation method. The scalar weight ω controls the influence of each xsi in the
loss function. In our experiment, we set ω = 2s for each part. This multi-loss
function forms a supervision scheme that can control the residual training at
each part of the network.

4. Experiments

We conducted a series of tests to study the performance of the network.
First, we evaluated the image reconstruction quality (see Section 4.3) on
three datasets. Our learned and fixed-pattern binary models showed the
first and second highest peak signal-to-noise ratio (PSNR) compared to the
four methods reviewed in Section 2. In Section 4.4, we analyze how fixed and
learned patterns affected the model training process. Finally, in Section 4.5,
we assess the reconstruction efficiency of the network in comparison with
other tested methods.

4.1. Datasets

We used the DIV2K image dataset [38] for training and validation. We
applied data augmentation to the training images. Specifically, we randomly
cropped 50 small patches of size 256 × 256 from each of the 800 images,
that comprise the DIV2K dataset, to generate 40, 000 training images. In
addition, we randomly applied flipping and rotation to the original patches.
We used the cropped image patches as ground truth images for the high-
resolution output.

Three datasets were used to test the model’s performance. First we used
a benchmark dataset of 11 test images, which has been used in existing
work, to evaluate the reconstructed image quality and compare it with the
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results of previous methods. Secondly, we evaluated the proposed method
on a much larger dataset – the test set of ILSVRC2017, comprising 50000
natural images from 1000 classes [39]. It is known that natural images are
often approximately sparse in the domain of the discrete cosine transforma-
tion (DCT) and the wavelet transform [40], and CS is an efficient method for
approximate recovery of such images. Since our method is an alternative to
CS, we have also evaluated the performance of our structured signal recovery
method with images of various levels of sparsity. For this experiment, we
generated a DCT-sparse version of the ILSVRC2017 test set and we con-
trolled the sparsity of the DCT coefficients as follows: Each image was first
transferred into the DCT domain where the coefficients were reordered based
on their magnitude, then we set 5 percentage threshold cases for coefficient
magnitude such that 100%, 20%, 10%, 5% or 1% of the coefficients were
retained and all other coefficients were set to zero.

4.2. Setting network parameters and hyperparameters

For the image reconstruction sub-net, we used 16× 16 patterns for both
the sensing kernels and the transposed convolution kernels. For the residual
blocks, the kernel size for the convolutional layers was 3 × 3 and we used
leaky ReLU activation with leaky rate p = 0.2. We used 64 channels for each
of the convolutional layers.

The network was trained with a batch size of 16 using the Adam optimizer
for 300 epochs. For the image reconstruction sub-net, we set the initial
learning rate and the decay rate to 1 × 10−4 and 0.25 respectively. For the
residual correction sub-net, we set the initial learning rate and the decay rate
to 1 × 10−5 and 0.75 respectively. We set the decay step to 200, 000. The
proposed method was trained on an NVidia GeForce GTX 1080Ti GPU.

In our experiment, we trained the network with different measurement
ratios, R = m

N
, of 0.01, 0.10 and 0.25, where m is the number of sampling

kernels and N is the number of pixels in the sensing images. Accordingly,
the number of binary kernels for the 128×128 benchmark sampling images
are 164, 1638 and 4096.

4.3. Image reconstruction results

We evaluated our model on the benchmark dataset and compared the
results with seven recently proposed methods: ReconNet [24], DR2-Net [25],
Adp-Rec [26], Fully-Conv [27], 2FC2Res [28], Fully-Block Net [29], and CSNet+

[30]. To be consistent with previous work, we used the PSNR as the metric.
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(a) Original (b) ReconNet
(18.93dB)

(c) DR2-Net
(18.01dB)

(d) Adp-Rec
(21.67dB)

(e) Fully-Conv
(22.49dB)

(f) Ours static
(22.57dB)

(g) Ours learned
(23.01dB)

Figure 5: The reconstruction result of the tested methods, including two of ours, at the
compression ratio of R = 0.01.
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(a) Original (b) ReconNet
(19.04dB)

(c) DR2-Net
(21.09dB)

(d) Adp-Rec
(23.83dB)

(e) Fully-Conv
(24.98dB)

(f) Ours (static)
(24.34dB)

(g) Ours (learned)
(24.66dB)

Figure 6: The reconstruction result of the tested methods, including two of ours, at the
compression ratio of R = 0.10.

The comparison results are summarized in Table 3. From the table, it can
be seen that our network with learned patterns achieved the highest aver-
age PSNR at all three measurement ratios. Note the comparison with the
Fully-Block Net and CSNet+ follows protocols that were reported in their
work. Our model with learned patterns indicates better results using the
same protocol.

The example images reconstructed by different methods at measurement
ratios of 0.01,0.10 and 0.25 are shown in Figures 5, 6 and 7 respectively.
Our model reconstructed more details than other methods, resulting in im-
ages that are visually sharper. At the lowest measurement ratio 0.01, the
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(a) Original (b) ReconNet
(23.48dB)

(c) DR2-Net
(25.62dB)

(d) Adp-Rec
(27.11dB)

(e) Fully-Conv
(28.99dB)

(f) Ours (static)
(28.68dB)

(g) Ours (learned)
(30.63dB)

Figure 7: The reconstruction result of the tested methods, including two of ours, at the
compression ratio of R = 0.25.

block effect is not observed in the output images generated by the Fully-
Conv network and our network. This is because both methods used the
convolutional layer rather than the fully-connected layer to implement the
sensing. Therefore the network could be trained in an end-to-end fashion
and post-processing was not required to smooth the output images. At the
measurement ratio of 0.10, the blocking effect can be eliminated for all meth-
ods since a sufficient number of measurements were acquired. At the highest
measurement ratio 0.25, the Fully-Conv network is visually comparable to
our method but our learned-weights model still achieved a higher PSNR
value.

17

                  



The difference between the results relating to the static patterns and
the learned patterns, of our network, is significant at the measurement ratio
of 0.01. The learned-patterns model achieved better average PSNR and
reconstructed more detail. This implies that learning binary weights can
help preserve more detail for the same measurement ratio and make the
model converge faster, thereby reducing the training time.

Table 1: The sample images from reconstruction of the large scale test dataset. The
rows denotes the reconstruction at different sparsity in DCT domain. The fist row is the
reconstruction of the original images. The second to last rows showing the reconstruction
of the sparsity-controlled images. Specifically, the sparsity of the images are at 100%, 20%,
10%, 5% and 1% of the original images. The first column shows the ground truth images
and the second to last column show the reconstruction at compression ratio of 0.25, 0.1
and 0.01.

Sparsity Raw image
Reconstruction

R = 0.25 R = 0.1 R = 0.01

original

20%

10%

5%

1%

Next, we evaluated the model on the ILSVRC2017 test dataset. Figure 8
shows the mean PSNR values of the reconstructed images from ILSVRC2017
test set. The mean PSNR values produced by our method in a large-scale
test are similar to those produced on a small benchmark set, indicating good
generalization. Furthermore, PSNR values increase with increased sparsity.
This indicates that the model performs well also on DCT-sparse images.

We also found that the PSNR of the reconstructed images, at three mea-
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Figure 8: The evaluation of the learned binary model on the ILSVRC2017 test set. The
trained learned-binary model was tested on the original ILSVRC2017 test set and the
sparsified images in three measurement ratios (R = 0.01, 0.1 and 0.25). For the dataset,
we controlled the sparsity of the images in the DCT domain. Specifically, we fixed the
sparsity of the original images in the DCT domain such that 20%, 10%, 5% and 1% of the
original DCT coefficients were retained. The results show that the trained model works
well on the large-scale image dataset, indicating the ability of the model to generalize. It is
also observed that the mean PSNR values increase with increasing sparsity. This denotes
that the model also performs well on DCT-sparse images.

surement ratios, tend to be similar when we increase the sparsity of the
image in the DCT domain. We present examples of reconstructed images in
Table 1.

4.4. Model training analysis with fixed and binary sampling schemes

First, we analyzed the training efficiency by monitoring the validation loss
in both sampling schemes. We found that training with the learned patterns
produced a faster loss reduction for all three measurement ratios (as shown
in Figure 9) than training with fixed patterns. When the measurement ratio
was increased, the discrepancy between the losses of the two networks also
increased. Furthermore, the network with learned patterns yielded a lower
final loss, than the fixed patterns network, especially for R of 0.1 and 0.25.
Even though the learned patterns network showed some instability compared
to the fixed patterns network 1, it still is beneficial since it can be trained

1In the static scheme, the sampling patterns were not involved in the calculation of back-
propagation. Only the real-valued weights in the rest of the network were updated. In the
learned scheme, the binary weights were updated in each step. The binarization function
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Figure 9: The validation losses of models with static (blue lines) and learned (orange lines)
binary patterns. Each pattern type was validated for three measurement ratios (R = 0.01,
0.1 and 0.25). The validation loss with learned patters drops faster than that with the
static patterns. The losses of both models at R = 0.01 are close at the end of training,
but for higher measurement ratio the difference is large.

more quickly.
Next, we analyzed the sparsity of learned patterns by exploring the per-

centage of valid pixels (with value 1) in the patterns during pattern update.
In compressive sampling theory, we typically use a small number of dense
sensing patterns (equal numbers of ones and zeros) in contrast with a raster
scan sensing in which each pattern is maximally sparse (contains one on pixel)
and records the intensity of single pixel values one at a time. Conversely the
sparse patterns are more efficient for single pixel imaging hardware as they
require less on-board memory usage. Our approach effectively adapts the
sparsity of patterns according to the measurement ratios and hence finds an
optimal compromise between sensing efficiency and hardware performance.
Specifically, we initialized all patterns using a single precision uniform distri-
bution within the range [−1, 1] (as required for model optimization), which
were subsequently binarized to form patterns with a similar number of ones
and zeros. However, the number of ones decreased dramatically during train-
ing since the model at large sampling rates does not necessarily need dense
patterns. In contrast, for a relatively small measurement ratio of R = 0.01,
the number of ones remained consistently high, which suggests that more

introduced fluctuations in the gradient calculation, which made the training progress less
stable.
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Figure 10: During training the binary patterns adapt differently for each measurement
ratio. Notice that the fraction of ones contained in the binary patterns is inversely at
R = 0.25, while for the very small measurement ratio R = 0.01, the fraction of ones
remains constant because more information needs to be sensed by each pattern.

information was sampled by each pattern. As a result, the sampling patterns
at R = 0.1 and R = 0.25 contain fewer ones compared to the patterns at
R = 0.01, as seen in Figure 10. This variation due to R implies that the
learning process can generate efficient binary sampling patterns that adapt
to different measurements.
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Table 2: Efficiency comparison of the tested methods in restoring an image of size 32 ×
32, with the sampling measurement ratio of R=0.01. The Ospace and Otime denote the
space and time complexity of the reconstruction layer. The number of convolutional layers
and blocks of Fully-Conv were not reported in their work.

Reconstruction efficiency and model size of 8 methods
Image-restoration Residual-correction

Name Ospace Otime # Weights Format # Conv layers Structure Share weights Kernel size

ReconNet 1.024× 104 1.024× 104 1024 32-bit 6 Plain No 32× 32
DR2-Net 1.024× 104 1.024× 104 1024 32-bit 12 4 Blocks No 32× 32
Adp-Rec 1.024× 104 1.024× 104 1024 32-bit 6 Plain No 32× 32
2FC2Res 1.024× 104 1.024× 104 1024 32-bit 6 2 Blocks No 32× 32

Fully-Conv 2560 2.62144× 106 256 32-bit - - No 32× 32
Fully-Block Net 2560 2.62144× 106 256 32-bit 25 12 Blocks No 32× 32

CSNet2 1.024× 104 1.024× 104 1024 32-bit 12 5 Blocks No 32× 32
Ours 2560 6.5536× 105 256 1-bit 12 6 Blocks Yes 16× 16
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4.5. Analysis of the reconstruction efficiency
We analyzed the computational efficiency of the network by calculating

the time and space complexity, which are introduced in the following content.
The results demonstrated that our model has a good balance between the
computational cost and the model size for the best image quality.

To determine the relative computational efficiency of our network, we
compared the model size (space complexity) and the number of operations
(time complexity) of our network’s image reconstruction layer with the other
4 networks used in prior work (see Table 2). The comparison is based on the
reconstruction of a single channel (greyscale) image of size 32 × 32 with a
measurement ratio R = 0.01. The comparison is valid for any image size. The
time and space complexity are formulated as Time ∼ O(M2 ·K2 ·Cin ·Cout)
and Space ∼ O(K2 ·Cin ·Cout), where M is the size of the feature map, K is
the size of the kernel, Cin and Cout are number of input and output channels
separately.

Our network has the smallest model size among all the tested networks
and lower time complexity than the Fully-Conv network. Note that the
ReconNet, DR2-Net, Adp-Rec, and 2RC2Res perform fewer operations in the
initial image reconstruction step because these networks use fully-connected
layers. However, the fully-connected layer can only be trained for a specific
image size, which is less practical.

For the residual-correction part, our recursive residual block with LSHR
sampling scheme generates smaller intermediate feature maps and uses fewer
model weights, thereby reducing the computational burden. In the Fully-
Conv and Fully-Block Net networks, images were reconstructed directly back
to the high-resolution size. The network then corrected the reconstruction
error by applying convolution to the feature maps that had the same size as
the high-resolution test image. Since the time complexity is directly related
to M2, which is the square of the image size, the computational cost of these
three networks increases quadratically when the output image size is doubled.
In contrast, our own network reconstructs the image at low resolution, and
then convolutional operations are performed on small feature maps. These
are upscaled back to the original size only at the last layer. Therefore, the
number of operations performed by our network is order of M2

4
, which is four

times less than the Fully-Conv and Fully-Block Net. Furthermore, the num-
ber of blocks does not affect the total number of weights since weights are
shared between blocks forming a recursive residual block structure. Specifi-
cally, the weights are only shared between the first layers (or second layers)
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among each of the six, two-layer, recursive residual blocks.
The last part of our analysis evaluated the performance of the network

for different numbers of residual blocks in our recursive structure. The depth
of the recursive residual block affects the reconstruction accuracy. It is seen
in Figure 11 that the image quality increases by adding more blocks and the
best performance (time and accuracy) is obtained with the 6-block structure.
Adding more blocks leads to degradation of the image quality. In principle,
adding more residual blocks could improve the capability of the residual
mapping, but in practice, training a deeper network is harder. It is also
observed in Figure 11 that the reconstruction time increases linearly with
the addition of blocks. Therefore, our final model was constructed by using 6
blocks, which gave the best performance and reasonable reconstruction time.
It was found that the accuracy increased and reached the best performance
with 6 blocks, which was used in our final model.

Figure 11: The average PSNR and the reconstruction time as a function of numbers of
residual blocks in the recursive structure. The number of residual blocks influences the
performance. The PSNR value was maximized when 6 blocks were used in the recursive
structure. The average reconstruction time increased approximately linearly.

5. Implementation on hardware

In real-world applications, the signal/image sampling is usually done by
optical devices which inevitably introduce noise and artifacts into the im-
age data. Computer simulations alone provide no guarantees that an image
recovery network architecture will be robust to these aspects of practical
single-pixel imaging systems. Therefore it is important to validate the effi-
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cacy of our LSHR-Net software solution, which uses learned binary patterns,
with respect to typical single pixel imaging hardware.

Our hardware comprised a silicon planar photo-detector with a purposely
designed amplifier circuit, lenses and a light projector. The photo-detector
had a peak sensitivity at the wavelength of 930nm and its sensitive area
was 93.6mm2. We connected the circuit to an Arduino circuit board which
performed 10-bit analog-to-digital conversion (1024 scales). For evaluation
purposes, we used test images from a database as an alternative to setting up
unique object scenes. Test images were multiplied, in software, with each of
the sampling patterns (forming modulated images) and projected using a TI
DLP LightCrafter evaluation module consisting of a built-in DMD plane with
a 608×684 array. The size, in pixels, of the sampling patterns was constrained
by the sensitivity of the photo-detector and the analog-to-digital conversion
resolution. A good practical resolution for the sampling patterns was found
to be 16x16 pixels. Each of the modulated test images were focused onto the
photo-detector using a set of lenses with focal length of 40mm, 50mm and
100mm. A filter with fixed attenuation was used to reduce light intensity
at the photo-detector thereby avoiding saturation. We recorded the light
intensity of the modulated images and sent these measurements as inputs
data to the model.

For the hardware experiments, we trained our model with the MNIST
dataset [41] using the same training settings described in Section 4. The
network was trained with 10, 000 MNIST images. The model was evaluated
using 18 randomly selected test images of handwritten digits (9 each from
MNIST and the Omniglot datasets). We used the Omniglot dataset [42],
which consists of a set of natural language characters, to demonstrate that the
proposed method can generalize to datasets containing images that contains
with different image structure from the training set.

The model reconstructed images directly from the photo-detector mea-
surements at a super resolution size of 32 × 32. We evaluated performance
at the same measurement ratios used in Section 4.2. Results on MNIST
and Omniglot are shown in Figure 12 and 13 respectively. It is observed
that the reconstruction quality of the character structure was improved by
increasing the number of measurements. At the same time, artifacts in the
reconstructed images can be seen. These are caused predominantly by noise
in the hardware setup (e.g. by the amplifier circuit). The average SNR of
the recorded measurement signal was 15.7dB. Moreover, in Figure 12 and 13
it can be seen that the reconstructed images of R = 0.25 are more pixelated
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Figure 12: The figure shows the reconstruction results of 9 random selected MNIST hand-
written numbers using the hardware measurements. The images at the top row are the
original ground truth images and the images from the second to the last row are recon-
structed results at R = 0.01, 0.1 and 0.25.

Figure 13: The figure shows the reconstruction results of 9 random selected Omniglot
characters using the hardware measurements. The images at the top row are the original
ground truth images and the images from the second to the last row are reconstructed
results at R = 0.01, 0.1 and 0.25.

than those of R = 0.1 and R = 0.01. Visually, the model resulted in better
reconstruction quality. This is however due to the smoothing effect which is
also seen in Figure 5.

6. Conclusions

In this paper, we have proposed a hardware-friendly method for image re-
construction from compressively sensed measurements, using mixed-weights
deep neural networks. The proposed method, which consists of sampling
and reconstruction networks, was specially designed to ease hardware real-
ization, particularly to integrate our work with single pixel camera. Our
novel LSHR network uses trainable binary sampling patterns that can be
deployed on a single pixel camera’s DMD sampling array. LSHR net sam-
ples light intensity functions at low-resolution and reconstructs images with
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high-resolution details. Effectively, it reduces the number of measurements at
the same measurement ratio and reduces the convolutional computing cost.
Hence, it improves the efficiency of the reconstruction process significantly
compared with previous work. For the purpose of reducing the hardware stor-
age requirement for image reconstruction, the reconstruction network equips
long-term recursive residual blocks. It has a weights-sharing strategy that
makes the trained models of our method much more compact than those
of previously reported network architectures and requires less onboard stor-
age in the imaging hardware. The experimental results on the benchmark
image datasets indicate that our method yields better image quality than
those reported in previous work for a number of different measurement ra-
tios. We also implemented our method on proof-of-concept hardware and
demonstrated that it can sample images as compact measurements and then
recover them from the measurements successfully. Our network architecture
has potential applications beyond the scope of single pixel imaging. For
example, it may be adapted for similar imaging modalities such as coded
aperture imaging and structured light sensing. An efficient approach to net-
work training for different imaging modalities may involve transfer learning
and this could be the focus of future work in this area. Moreover, for a
specific hardware setup, fine-tuning after the initial deployment of hardware
can potentially yield improvements in image quality using software alone.
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Table 3: The PSNR of 11 test image in dB from recent six methods at three measurement ratios. The reported mean is the average PSNR value for
all images. The red figures and the blue figures denote the first and second highest value among all the methods. Our network based on learned binary
weights yields the highest average PSNR at all three measurement ratios.

Image Methods
measurement ratio

Image Methods
measurement ratio

R=0.25 R=0.1 R=0.01 R=0.25 R=0.1 R=0.01

Barbara

ReconNet 23.58dB 22.17dB 19.08dB

Boats

ReconNet 27.83dB 24.56dB 18.82dB
DR2-Net 25.77dB 22.69dB 18.65dB DR2-Net 30.09dB 25.58dB 18.67dB
Adp-Rec 27.40dB 24.28dB 21.36dB Adp-Rec 32.47dB 28.80dB 21.09dB

Fully-Conv 28.59dB 24.28dB 22.06dB Fully-Conv 33.88dB 29.48dB 22.3dB
2FC2Res 27.92dB 24.27dB 21.48dB 2FC2Res 33.59dB 29.12dB 21.29dB

Ours (static) 27.52dB 24.57dB 22.03dB Ours (static) 32.05dB 29.55dB 22.59dB
Ours (Learned) 31.11dB 24.56dB 22.34dB Ours (Learned) 34.13dB 29.59dB 23.31dB

Fingerprint

ReconNet 26.15dB 20.99dB 15.01dB

Cameraman

ReconNet 23.48dB 21.54dB 17.51dB
DR2-Net 27.65dB 22.03dB 14.73dB DR2-Net 25.62dB 22.46dB 17.08dB
Adp-Rec 32.31dB 26.55dB 16.22dB Adp-Rec 27.11dB 24.97dB 19.74dB

Fully-Conv 32.91dB 27.36dB 16.33dB Fully-Conv 28.99dB 25.62dB 20.63dB
2FC2Res 32.17dB 25.92dB 16.22dB 2FC2Res 28.84dB 25.07dB 19.98dB

Ours (static) 30.36dB 26.07dB 17.10dB Ours (static) 28.68dB 26.53dB 20.84dB
Ours (Learned) 33.38dB 26.40dB 17.23dB Ours (Learned) 30.63dB 26.56dB 21.35dB

Flinstones

ReconNet 22.74dB 19.04dB 14.14dB

Foreman

ReconNet 32.08dB 29.02dB 22.03dB
DR2-Net 26.19dB 21.09dB 14.01dB DR2-Net 33.53dB 29.20dB 20.59dB
Adp-Rec 27.94dB 23.83dB 16.12dB Adp-Rec 36.18dB 33.51dB 25.53dB

Fully-Conv 30.26dB 24.98dB 16.92dB Fully-Conv 38.10dB 34.00dB 27.26dB
2FC2Res 29.72dB 24.94dB 16.27dB 2FC2Res 38.25dB 34.29dB 25.77dB

Ours (static) 28.00dB 24.34dB 16.81dB Ours (static) 35.34dB 33.13dB 26.36dB
Ours (Learned) 31.01dB 24.66dB 17.27dB Ours (Learned) 36.91dB 33.45dB 27.13dB

Lena

ReconNet 27.47dB 24.48dB 18.51dB

House

ReconNet 29.96dB 26.74dB 20.30dB
DR2-Net 29.42dB 25.39dB 17.97dB DR2-Net 31.83dB 27.53dB 19.61dB
Adp-Rec 31.63dB 28.50dB 21.49dB Adp-Rec 34.38dB 31.43dB 22.93dB

Fully-Conv 33.00dB 28.97dB 22.51dB Fully-Conv 36.22dB 32.36dB 23.67dB
2FC2Res 32.97dB 28.86dB 21.57dB 2FC2Res 35.35dB 31.45dB 22.92dB

Ours (static) 31.60dB 29.37dB 23.13dB Ours (static) 34.80dB 32.55dB 24.82dB
Ours (Learned) 34.18dB 29.57dB 23.52dB Ours (Learned) 36.61dB 33.73dB 25.12dB

Monarch

ReconNet 24.95dB 21.49dB 15.61dB

Peppers

ReconNet 25.74dB 22.72dB 17.39dB
DR2-Net 27.95dB 23.10dB 15.33dB DR2-Net 28.49dB 24.32dB 16.90dB
Adp-Rec 29.25dB 26.65dB 17.70dB Adp-Rec 29.65dB 26.67dB 19.75dB

Fully-Conv 32.63dB 27.61dB 18.46dB Fully-Conv 32.90dB 28.72dB 21.38dB
2FC2Res 32.46dB 27.60dB 17.85dB 2FC2Res 32.82dB 27.52dB 20.05dB

Ours (static) 31.51dB 28.71dB 20.09dB Ours (static) 31.20dB 28.23dB 21.52dB
Ours (Learned) 34.20dB 29.07dB 20.79dB Ours (Learned) 33.51dB 28.61dB 22.10dB

Parrot

ReconNet 26.66dB 23.36dB 18.93dB

Mean

ReconNet 26.42dB 23.28dB 17.94dB
DR2-Net 28.73dB 23.94dB 18.01dB DR2-Net 28.66dB 24.32dB 17.44dB
Adp-Rec 30.51dB 27.59dB 21.67dB Adp-Rec 30.80dB 27.53dB 20.33dB

Fully-Conv 32.13dB 27.92dB 22.49dB Fully-Conv 32.69dB 28.30dB 21.27dB
2FC2Res 31.89dB 27.93dB 21.77dB 2FC2Res 32.36dB 27.91dB 20.47dB

Ours (static) 32.64dB 29.84dB 22.57dB Ours (static) 31.25dB 28.44dB 21.62dB
Ours (Learned) 34.75dB 30.18dB 23.01dB Ours (Learned) 33.68dB 28.67dB 22.11dB

Mean♦
CSNet {0,1} - 26.39dB 20.62dB

Mean♥CSNet+ - 28.37dB 21.02dB Fully-Block Net 33.57dB 28.94dB 22.12dB
Ours (Learned) 33.68dB 28.67dB 22.11dB Ours (Learned) 33.66dB 29.04dB 22.79dB

♦ Results of CSNet0,1 and CSNet+ at R = 25% were not reported in their work [30].
♥ The Fully-Block Net [29] was tested only on a subset of the standard benchmark. To be specific, seven images from the
standard benchmark set were selected for testing. To compare with their results, we presented in the table our results on the
same subset.
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