
Packing Rectangles into a Fixed Size Circular Container:
Constructive and Metaheuristic Search Approaches

Mouaouia Cherif Bouzid1 and Said Salhi2
1LTI-Laboratory, Department of Logistics and Transport Engineering, ENST, Dergana, Algiers, Algeria.

2Centre for Logistics & Heuristic Optimisation, Kent Business School, The University of Kent, Canterbury, Kent
CT2 7PE, UK.

(3rd March 2020)
Abstract

We investigate the orthogonal packing of rectangular objects into a circular container of fixed
radius. We propose a new constructive heuristic called pack which builds a feasible packing starting
from an ordered list of rectangles. This decoding procedure is polynomial and permits to move
from the permutations search space to the packings search space by means of simple combinatorial
moves combined with powerful geometrical analytical forms. The pack procedure is integrated into
two well known metaheuristics, namely, a variable neighbourhood search (VNS) and a simulated
annealing (SA). Two variants, namely xVNS and xSA, which stand as accelerated versions of VNS
and SA are also presented. The proposed methodology produces 32 new best solutions out of the 54
benchmark instances while requiring less computational effort than the state-of-the-art method. In
addition, we conduct experiments on newly generated larger instances which we have made publicly
available alongside their respective results obtained from the proposed metaheuristics.

Keywords: Rectangle packing, fixed size circular container, constructive heuristic, variable neigh-
bourhood search, simulated annealing.

1 Introduction and literature review

A packing problem can be defined as the optimisation of the choice and the location of a subset of objects
into a container in such a way that no two objects overlap with each other and every object lies entirely
within the container’s perimeter while satisfying possible additional constraints. Several variants of the
problem exist depending on features such as the dimensionality, the objects and container’s shapes, the
objective, etc (see Wäscher et al. (2007) for a typology of cutting and packing problems).

The complexity of packing problems have been tackled by several authors. For instance, Li and
Cheng (1994) showed that deciding whether a set of squares can be packed into a larger rectangle is
strongly NP-complete. Leung et al. (1990) also proved the same result when the target shape is a square.

Email addresses: m.cherif.bouzid@enst.dz (M.C. Bouzid, Corresponding author), s.salhi@kent.ac.uk (S. Salhi)

1

Two decades later, Demaine et al. (2010) showed that deciding whether a given set of circles can be
packed into a rectangle, an equilateral triangle, or a unit square are NP-hard problems. To the best of our
knowledge, the complexity of deciding whether a set of rectangles can be packed into a circular container
of fixed size has not been tackled yet in the literature.

Table 1 summarises the references that addressed the packing of rectangular objects into containers
having either a circular or an arbitrary convex shape. The first column indicates the reference. The next
four columns describe the features of the problem considered while the last two columns indicate even-
tual additional constraints and the method adopted by the authors. Two main applications arise, one in
the timber industry (Hinostroza et al., 2013) and the other in the satellite module layout design denoted
SMLD (see for instance Zhong et al. (2019)). The latter consists in packing, inside a satellite module, a
set of weighted objects on one or two bearing plates having a circular shape while optimising the inertia
performance of the whole system and respecting some additional constraints such as ensuring a mini-
mal equilibrium. This problem, which can be considered as a sophisticated multi-level two-dimensional
packing problem where each level corresponds to a packing problem into a circular container, received
some attention in the last two decades. Starting with Feng et al. (1999), the authors proposed to solve
the problem by means of graph theory, group theory and global optimisation. Later, Teng et al. (2001)
adopted a two-phases heuristic method which first solves a two-dimensional packing problem then trans-
lates bearing plates to improve the centre of mass of the satellite. Also, Sun and Teng (2003) proposed a
two-phases heuristic based on non-linear programming which first distributes the objects on the bearing
plates by means of a genetic algorithm and then solves several two-dimensional packing problems using
ant colony optimisation. Xu et al. (2007) designed a particle swarm-based method while Liu and Teng
(2008) put forward an evolutionary algorithm with expert knowledge. The latter formulated the problem
as a non-linear program where the violation of the constraints is penalised into the objective function.
Wang and Teng (2009) adopted a similar approach in a slightly different problem. Zhang et al. (2008)
proposed a two-phases heuristic while Xu et al. (2010) designed a constructive heuristic based on an or-
dering of rectangles which is then embedded into a genetic algorithm. An interesting heuristic approach
which relies heavily on physics notions such as energy and forces is put forward by Li et al. (2014).
Their heuristic is applied on five SMLD examples with interesting results. Zhao et al. (2014) tackled
the problem using particle swarm optimisation and immune algorithms with expert knowledge while
Li et al. (2016) proposed an approach based on ant colony and particle swarm optimisation with expert
knowledge. Fakoor et al. (2017) considered an extension of SMLD that limits the resonance phenomenon
due to interferences while packing the objects into the module. Their approach relies on particle swarm
optimisation and gradient-based sequential quadratic programming. Zhong et al. (2019) also extended
SMLD by forbidding a circular region at the origin of the plates which represents a standing column.

2

Their heuristic is based on two main parts, namely, the assignment/reassignment of components to var-
ious bearing plates, and the layout optimisation which places the components on the surfaces using a
differential evolution algorithm.

An interesting application of packing rectangles into a circle without rotation is found in the timber
industry where the cutting of boards from logs takes place. Hinostroza et al. (2013) considered this
problem and formulated it as a mixed-integer non-linear program (MINLP). The exact resolution of that
formulation using a commercial solver turned out to be limited to instances involving 9 rectangles at most.
The authors proposed an ordering heuristic and a simulating annealing (SA) to tackle larger instances.
This SA algorithmwill be revisited in this paper as this forms a suitable basis for benchmarking purposes.

When it comes to the packing of objects into containers having an arbitrary convex shape, the reso-
lution is usually based on non-linear programming and the use of a generic solver. Birgin et al. (2006a)
proposed a general approach based on so-called "sentinel sets" and non-linear programming for pack-
ing objects into an Euclidean n-dimensional space. The authors restricted their approach to address the
two-dimensional packing of rectangles and rectangle-likes objects into arbitrary convex regions. Using
a solver, they could pack up to only 40 objects. Birgin et al. (2006b) tackled a less general problem for-
mulated as a non-linear program using a solver in a multi-start fashion where they were able to pack up
to 64 rectangles in over 2 hours on an AMDOpteron 244/1.8 GHz. Birgin and Lobato (2010) considered
the problem of packing a maximum number of equal rectangles into an arbitrary convex region while al-
lowing a common rotation angle for all objects and a 90◦ rotation for some of them. They formulated the
problem as a MINLP using a branch & bound technique coupled with active set strategies. Similarly to
Birgin et al. (2006b), Cassioli and Locatelli (2011) formulated the orthogonal packing of identical rect-
angle into a convex region as an unconstrained mixed integer global optimisation problem and solved it
using an iterated local search combined with the L-BFGS algorithm of Liu and Nocedal (1989).

López and Beasley (2018b) considered the orthogonal packing of unequal rectangles into a circular
container of fixed size. They formulated the problem as a mixed integer non-linear program and solved
it using a third party solver, called SCIP, which is limited to solving small instances only. As we address
the same problem, we will revisit their formulation in the next section. The authors then proposed an
interesting implementation of formulation search space algorithm (FSS) to solve the problemwhich relies
heavily on the use of SCIP. Instances involving up to 30 rectangles were generated with interesting results
though requiring a relatively large amount of CPU. FSS is an interesting concept designed byMladenović
et al. (2005) where the change in neighbourhoods is replaced by the formulation space neighbourhood
instead. For more informations on non-linear programming and packing problems, the recent review by
Birgin (2016) makes an interesting and informative read.

3

Ta
bl
e
1

Th
ep

ack
ing

of
rec

tan
gle

sin
to

cir
cul

ar
or

arb
itra

ry
con

vex
reg

ion
sin

lite
rat

ure
Re

fer
enc

e
Co

nta
ine

r’s
Co

nta
ine

r’s
Ro

tat
ion

Ob
jec

tiv
e

Ob
jec

ts’
Ad

dit
ion

al
Me

tho
d

sha
pe

1
rad

ius
2

ang
le3

fun
cti

on
4

sha
pes

5
con

str
ain

ts
use

d6
Fe
ng

eta
l.(

19
99

)
○

F
� i

I
▭

-
Gr

aph
the

ory
,g

rou
pt

heo
ry,

glo
bal

op
tim

isa
tio

n
Te

ng
eta

l.(
20

01
)

○
F

� i
I

◦,
▭

Eq
uil

ibr
ium

Co
nst

ruc
tiv

eh
eur

isti
c

Su
na

nd
Te

ng
(20

03
)

○
F

� 2
I

◦,
▭

Eq
uil

ibr
ium

,m
ini

ma
lcl

ear
anc

e
GA

and
AC

O
Bir

gin
eta

l.(
20

06
a)

⊗
-

� i
#

un
it
▭

,∪
un
it
▭

Fo
rbi

dd
en

reg
ion

No
n-l

ine
ar

pro
gra

mm
ing

,se
nti

nel
set

s
Bir

gin
eta

l.(
20

06
b)

⊗
-

� 2
#

un
it
▭

-
No

n-l
ine

ar
pro

gra
m

sol
ved

by
mu

lti-
sta

rtl
oca

lso
lve

r
Xu

eta
l.(

20
07

)
○

V
� i

R
,I

▭
-

PS
O

Liu
and

Te
ng

(20
08

)
○

V
� i

R
,I

◦,
▭

Eq
uil

ibr
ium

,li
mi

ted
con

tai
ner

’sr
adi

us
EA

wi
th

exp
ert

kn
ow

led
ge

Zh
ang

eta
l.(

20
08

)
○

F
� 2

I
◦,
▭

Eq
uil

ibr
ium

NN
,G

A,
PS

O,
Qu

asi
-pr

inc
ipa

lco
mp

on
ent

ana
lys

is
Wa

ng
and

Te
ng

(20
09

)
○

F
� 2

I,C
,A

C
◦,
▭

Eq
uil

ibr
ium

,m
ini

ma
lcl

ear
anc

e
EA

wi
th

exp
ert

kn
ow

led
ge

Bir
gin

and
Lo

bat
o(

20
10

)
⊗

-
�,

� 2
#

un
it
▭

-
MI

NL
Pt

ack
led

by
B&

Ba
nd

act
ive

set
str
ate

gie
s

Xu
eta

l.(
20

10
)

○
V

� 2
R
,I

▭
-

Co
nst

ruc
tiv

eh
eur

isti
ce

mb
edd

ed
int

oa
GA

Ca
ssi

oli
and

Lo
cat

ell
i(2

01
1)

⊗
-

� 2
#

un
it
▭

-
MI

NL
Pt

ack
led

by
ILS

and
L-B

FG
S

Hi
no

stro
za

eta
l.(

20
13

)
○

F
0

A
▭

-
Or

der
ing

heu
ris

tic
em

bed
ded

int
oa

SA
Li

eta
l.(

20
14

)
○

V
� 2

#
▭

Eq
uil

ibr
ium

,li
mi

ted
con

tai
ner

’sr
adi

us
Qu

asi
phy

sic
ala

nd
Dy

nam
icA

dju
stm

ent
Ap

pro
ach

Zh
ao

eta
l.(

20
14

)
○

F
� i

#
◦,
▭

Eq
uil

ibr
ium

PS
Oa

nd
Im

mu
ne

Al
go

rith
ms

wi
th

exp
ert

knw
ole

dge
Li

eta
l.(

20
16

)
○

F
� i

I
◦,
▭

Eq
uil

ibr
ium

AC
Oa

nd
PS

Ow
ith

exp
ert

kn
ow

led
ge

Fa
koo

re
tal

.(2
01

7)
○

F
� 2

I
◦,
▭

Eq
uil

ibr
ium

,re
son

anc
e

PS
Oa

nd
gra

die
nt-

bas
ed

me
tho

d
Ló

pez
and

Be
asl

ey
(20

18
b)

○
F

� 2
A,#

▭
-

FS
S

Zh
on

ge
tal

.(2
01

9)
○

F
� 2

I
◦,
▭

Eq
uil

ibr
ium

,fo
rbi

dd
en

reg
ion

2-p
has

es
heu

ris
tic

wi
th

EA
Th

isp
ape

r
○

F
� 2

A,#
▭

-
Co

nst
ruc

tiv
eh

eur
isti

ce
mb

edd
ed

int
oV

NS
and

SA
1
○
:C

irc
ula

r,⊗
:A

rbi
tra

ry
con

vex
reg

ion
;

2
F:

Fix
ed,

V:
Va

ria
ble

;
3
0:

No
rot

ati
on

all
ow

ed,
� 2
:R

ota
tio

nb
ya

na
ng
leo

f� 2
all

ow
ed,

�:
Co

mm
on

rot
ati

on
ang

lef
or

all
ob

jec
ts,
� i
:A

rbi
tra

ry
rot

ati
on

ang
lef

or
all

ob
jec

ts;
4
#:

Ma
xim

ise
the

nu
mb

er
of

ob
jec

tsp
ack

ed,
A:

Op
tim

ise
ove

rth
ea

rea
pac

ked
or

wa
ste

d;
R:

Mi
nim

ise
the

rad
ius

of
the

con
tai

ner
(ap

pli
cab

le
on

ly
for

cir
cul

ar
con

tai
ner

s),
I:O

pti
mi

se
the

ine
rtia

per
for

ma
nce

of
the

pac
kin

g,
C:

Op
tim

ise
the

clu
ste

rin
go

fth
eo

bje
cts

,A
C:

Op
tim

ise
the

acc
ess

ibi
lity

to
the

ob
jec

ts;
5
▭

:R
ect

ang
ula

ro
bje

cts
wi

th
arb

itra
ry

dim
ens

ion
s,◦

:C
irc

ula
ro

bje
cts

,un
it
▭

:E
qu
alr

ect
ang

les
,∪

un
it
▭

:U
nio

no
fe

qu
alr

ect
ang

les
(po

lyg
on

s);
6
GA

:G
ene

tic
alg

ori
thm

,A
CO

:A
nt

col
ony

op
tim

isa
tio

n,
PS

O:
Pa
rtic

les
wa

rm
op
tim

isa
tio

n,
EA

:E
vol

uti
on

ary
alg

ori
thm

,N
N:

Ne
ura

ln
etw

ork
,B

&B
:B

ran
ch

and
bo

un
d,
ILS

:It
era

ted
loc

als
ear

ch,
L-B

FG
S:

Lim
ite

dm
em

ory
Br
oyd

en-
Fle

tch
er-

Go
ldf

arb
-Sh

ann
oa

lgo
rith

m,
SA

:S
im

ula
ted

ann
eal

ing
,F

SS
:F

orm
ula

tio
ns

ear
ch

spa
ce,

VN
S:

Va
ria

ble
nei

gh
bo

urh
oo

ds
ear

ch.

4

The above literature review suggests that, even though non-linear programming-based approaches
developed for packing problems allow many features (arbitrary convex container, rectangular-like ob-
jects, arbitrary or uniform rotation, forbidden regions, etc), they still suffer from limitations due to the
prohibiting computing time they require. Moreover, it is worth mentioning that in the presented litera-
ture, heuristic approaches which take benefit of the underlying combinatorial aspects of the considered
packing problems have been seldom explored.

As mentioned in Table 1, this study addresses the orthogonal packing of unequal rectangles into
a circular container of fixed size with the objective of maximising either the number of objects or the
total area packed. To the best of our knowledge, the only reference that tackled this specific problem
is due to López and Beasley (2018b). Given the two-folds complexity of a solution structure which is
to determine the subset of rectangles to pack and their locations, we introduce a decoding procedure
called pack which receives initially an ordered list of rectangles then returns a feasible packing. This
combinatorial heuristic permits to move from the permutations search space to the packings search space.
It is based on the concept of "border" that we introduce, a number of initial configurations which indicate
how to pack the first objects in the list, and several moves which allow the packing of new objects. As the
use of the constructive mechanism of pack on a single list is unlikely to provide a global optimum, we
propose to integrate this procedure into two powerful metaheuristics, namely, a variable neighbourhood
search and a simulated annealing. Moreover, exploiting the past placements of some items in the search
permit us to propose two accelerated variants of those metaheuristics. To assess the performance of the
proposed methodology, experiments are conducted on two datasets, one being a literature benchmark
and the other which we newly generated and made publicly available for further benchmarking.

The contributions of this study are:
• to address the orthogonal packing of unequal rectangles into a circular fixed size container;

• to propose and determine the complexity of a flexible and efficient constructive heuristic ’pack’;

• to provide and justify an algorithm ’buildBorder’ which determines the surrounding border of
an already known packing;

• to efficiently integrate pack into a variable neighbourhood search and a simulated annealing and
to provide two accelerated version by means of buildBorder;

• to show the superiority of our methodology against the state-of-the-art method using benchmark
instances and to assess the performance of the proposed metaheuristics on a new dataset that we
generate and made publicly available.

The remainder of the paper is organised as follows: the next section is devoted to the detailed presentation
of the procedure pack. In Section 3, the integration of pack into VNS and SA schemes is described.

5

Section 4 is dedicated to computational experiments including the generation of the newly constructed
datasets. Finally, conclusions and some suggestions are given in Section 5.

2 The procedure pack

In this section, we first define formally the packing problem and we recall the formulation proposed by
López and Beasley (2018b). We then introduce a decoding procedure which we refer to as ’pack’. The
time complexity of the procedure ’pack’ is also determined here. Finally, we present an algorithm to
construct the border surrounding an already known packing.

2.1 Problem definition and formulation

Let [n] = {1, ..., n} be a set of rectangular objects of dimensions (Li,Wi)i∈[n] whereLi andWi denote the
horizontal and vertical lengths of the rectangles respectively. Let vi be a value associated with rectangle i
and assume a container having a circular shape of fixed radiusR. We define a packing p as the placement
of a subset of rectangles into the container such that no two rectangles overlap and no rectangle passes
through the container’s perimeter. Formally, p is a 4-tuple (�i, xi, yi, �i)i∈[n] such that �i equals 1 if the
rectangle i is packed and 0 otherwise, (xi, yi) are the coordinates of the centre of rectangle i and �i
its rotational angle which value is considered in this study to be either 0 or �

2 . In case rectangle i is
not packed, (xi, yi) and �i are null. Let V 1

i = (xi + Li∕2, yi + Wi∕2), V 2
i = (xi − Li∕2, yi + Wi∕2),

V 3
i = (xi − Li∕2, yi −Wi∕2) and V 4

i = (xi + Li∕2, yi −Wi∕2) be the coordinates of the upper-right,
upper-left, lower-left and lower-right vertices of rectangle i respectively.
Some definitions related to the connectedness of a packing:

• Two different rectangles i and j overlap if |xi−xj|−(Li+Lj)∕2 < 0 and |yi−yj|−(Wi+Wj)∕2 < 0.

• The sides AB and CD of two rectangles are contiguous if AB and CD are colinear and C ∈ AB,
D ∈ AB or A ∈ CD.

• A partial packing p is a 4-tuple p = (�i, xi, yi, �i)i∈E such that E ⊊ [n] and |E| > 0.

• A partial packing p is empty if �i = 0 for all i in E.

• Two partial packings p1 = (�i, xi, yi, �i)i∈E1
and p2 = (�i, xi, yi, �i)i∈E2

are disjoints ifE1∩E2 = ∅.

• Two disjoints partial packings p1 and p2 overlap if there exists a rectangle packed in p1 and another
one packed in p2 such that the two rectangles overlap.

• Two partial packings are compatible if they are disjoints and do not overlap.

• The union of two compatible partial packings p1 and p2 is defined by p1∪p2 = (�i, xi, yi, �i)i∈E1∪E2
.

6

• Two compatible partial packings p1 and p2 are contiguous if a rectangle packed in p1 and a rectangle
packed in p2 have contiguous sides.

• A packing p is said to be connected if there exists no two non-empty compatible partial packings
which are not contiguous and which union equals p.

The quality of a packing p can be measured by f (p) = ∑

i∈[n] vi �i as follows:

(i) if vi = LiWi then f (p) corresponds to the total area packed and,

(ii) if vi = 1 then f (p) becomes the total number of rectangles packed.

The packing problem considered in this study is to find a packing p∗ having a maximum value f (p∗).
López andBeasley (2018b) formulated the problem of packing n rectangles of dimensions (Li,Wi)i∈[n]

into a circular container of fixed radius R without rotation as follows:

(P) max
n
∑

i=1
vi �i (1)

s.t.
− �i(

√

R2 −W 2
i ∕4 − Li∕2) ≤ xi ≤ �i(

√

R2 −W 2
i ∕4 − Li∕2), i = 1,… , n (2)

− �i(
√

R2 − L2
i ∕4 −Wi∕2) ≤ yi ≤ �i(

√

R2 − L2
i ∕4 −Wi∕2), i = 1,… , n (3)

||V k
i ||

2 ≤ �iR
2 + (1 − �i)R2

i , i = 1,… , n; k = 1,… , 4 (4)
�i�j[max{|xi − xj| − (Li + Lj)∕2, |yi − yj| − (Wi +Wj)∕2}] ≥ 0,

i = 1,… , n; j = 1,… , n; j > i (5)
�i ∈ {0, 1}, i = 1,… , n (6)

where ||V k
i || is the euclidean norm of V k

i andRi is the radius of the smallest circle encompassing the i-th
rectangle in case it is positioned at the origin. In the formulation (P), depending on the value of vi, (1)
maximises either the total area or the total number of rectangles packed. Constraints (2)-(3) make sure
that in case a rectangle is packed, its coordinates lie in the appropriate range, otherwise its coordinates are
forced to be zero. Constraints (4) ensure that, in case rectangle i is packed, all its vertices lie within the
perimeter of the container. Constraints (5) prevent the overlapping between rectangles that are packed.
The binary nature of the variables �i is guaranteed by the constraints (6). Even though this formulation
does not consider rotations, the authors proposed an elegant extension to allow orthogonal rotations of
the rectangles. Suppose that a rectangle i can be rotated by a right angle, it is sufficient to add a new
rectangle j that represents rectangle i if it is rotated, so that Lj = Wi,Wj = Li, vj = vi then, to add to
the formulation:

7

�i + �j ≤ 1 (7)

Constraint (7) ensures that not both the original rectangle and its rotated equivalent are used. The authors
used the solver SCIP to tackle (P) but could not solve any proposed instance to proven global optimality
within the time limit imposed.

The number of solutions in the considered problem is dramatically large as any solution requires to
identify which subset of rectangles to pack and also where to pack them. The first decision involves
∑n
i=1

(n
i

)

= O(2n) possibilities while the second offers an infinite number of choices given the decision
is made over a subset of ℝ2. The main idea of our approach is to consider a much smaller search space
which consists of all the ordered lists of the n rectangles that we will simply call lists. This is possible
with a "decoding" procedure which permits to move from the lists search space to the packings search
space.

2.2 Overview of the procedure pack

The procedure pack makes an intensive use of the notion of "border". The border associated with a
packing p is a data structure, preferably implemented as a circular chained list, which contains the corner
points of the rectangles that fall on the external side of p. This array is updated during the procedure
by adding and removing corner points whenever a new rectangle is packed. To avoid redundancy, the
handling of a border follows two rules:

(i) the border must not contain any sequence of three aligned points and,

(ii) any two successive points in the border must be different (see for instance Figure 1).

Fig. 1. Example of a packing delimited by its border

The procedure pack (see Algorithm 1) requires as input a list l and returns a packing pbest. Initially, no
rectangle is packed in pbest (see line 1). The quality of the packing obtained after applying the procedure

8

pack on a list depends highly on the way the first one or two objects are placed into the container.
Therefore, we apply several initial configurations to maximise the chances of obtaining a good packing.
For each possible initial configuration, an initial packing is built and its border is initialised (see line
4). Next, for every remaining rectangle in the list, a promising feasible placement is sought around the
border among all possible placements (see line 6). The determination of a promising feasible placement
is presented in Section 2.4. If such a placement exists, the incumbent rectangle is packed at that position
and the border is updated (see line 8). Then, the procedure continues with the next rectangle in the list
(see line 10). When the end of the list is reached, if the incumbent packing is better than the best one,
the best packing is updated (see line 12). The procedure terminates when all initial configurations have
been considered and the best packing is returned.
Algorithm 1: pack
Input : list l
Output: packing pbest

1 set pbest ∶= ∅;
2 Construct the set of initial configurations E;
3 foreach possible initial configuration in E do
4 Build a packing p based on the incumbent configuration and initialise its border;
5 while end of the list l not reached do
6 Find on the border a promising feasible placement for the incumbent rectangle (see

Subsection 2.4);
7 if feasible placement exists then
8 Pack the rectangle and update the border;
9 end if
10 Move to the next rectangle in the list l;
11 end while
12 if p is better than pbest then pbest ∶= p ;
13 end foreach
14 return pbest

2.3 Initial configurations (step 2 of Algorithm 1)

We apply five initial configurations denoted by C (centre), R (right), T (top), RS (right-shifted), RA
(right-aligned). We describe the initial configurations, the way to calculate the coordinates of the objects
they pack and the composition of the initial border. For the sake of clarity, assume without loss of
generality that the first two rectangles in the list are indexed 1 and 2.

In the C configuration, the centre of Rectangle 1 is simply placed at the origin. In the R configuration,
Rectangle 1 is placed in such a way that its lower right and upper right corners lie on the circle. In this
case, the centre (x, y) of Rectangle 1 must satisfy the following system (S1):

9

(S1)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(x + L
2
)2 + (y − W

2
)2 = R2 … (lower-right corner on the circle)

(x + L
2)

2 + (y + W
2)

2 = R2 … (upper-right corner on the circle)
x ≥ 0 … (rectangle must fit into the circle)

The solution of (S1) is (x, y) = (
√

R2 − W 2

4 − L
2 , 0). This configuration is applicable only ifR2−W 2

4 ≥ 0.
In the T configuration, Rectangle 1 is placed in such a way that its upper right and upper left corners

are on the circle. Applying similar calculations to the ones applied for R configuration results in the
coordinates (0,

√

R2 − L2

4
− W

2
).

In the three configurations C, R and T, the initial border is given by (V 1
1 , V

2
1 , V

3
1 , V

4
1).

In the RS configuration, Rectangle 1 is first placed as in the R one. Rectangle 2 is put on the left of
the first one then shifted upward in a way that the upper-left corner of the second rectangle lies on the
circle (see Figure 2). Let (x1, y1) and (x, y) be the coordinates of Rectangles 1 and 2 respectively. The
location of Rectangle 1 is known a priori by the R configuration. Thus, (x, y) must satisfy the following
system:

⎧

⎪

⎨

⎪

⎩

(x1 −
L1
2 − L2)2 + (y + W2

2)2 = R2 … (upper-left corner of Rectangle 2 on the circle)
y ≥ 0 … (Rectangle 2 must fit into the circle)

leading to (x, y) = (x1 −
L1
2 − L2

2 ,
√

R2 − (x1 −
L1
2 − L2)2 −

W2
2). This placement is feasible only if

R2 − (x1 −
L1
2 − L2)2 ≥ 0. To ensure that the packing remains connected, the condition y ≤ W1+W2

2

is added. The border is defined by (V 1
1 , V

2
1 , V

1
2 , V

2
2 , V

3
2 , V

4
2 , V

3
1 , V

4
1) on condition that V 2

1 ≠ V 1
2 and

V 4
2 ≠ V 3

1 , in which case, the redundant nodes are omitted.
In the RA configuration, Rectangle 1 is placed on Rectangle 2 in such a way that their left sides are

1

2

Fig. 2. Illustration of the RS initial configuration and its border

10

aligned and, the upper-right corner of Rectangle 1 and the lower-right corner of Rectangle 2 lie on the
circle (see Figure 3). The coordinates (x, y) of the centre of Rectangle 1 must satisfy the following set of
conditions (S2).

(S2)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(x + L1
2)

2 + (y + W1
2)2 = R2 … (upper-right corner of Rectangle 1 on the circle)

(x − L1
2 + L2)2 + (y − W1

2 −W2)2 = R2 … (lower-right corner of Rectangle 2 on the circle)
x ≥ 0, y ≥ 0 … (Rectangle 1 must fit into the circle)

1

2

Fig. 3. Illustration of the RA initial configuration and its border

The system (S2) consists of two bivariate polynomials of second degree. The problem of solving a
system of multivariate quadratic equations over finite fields is NP-complete (Garey and Johnson, 1979).
However, the resolution of (S2) is possible given its small dimensions using the Buchberger’s algorithm
(Buchberger, 1976). Building over the initial set of polynomials, this algorithm constructs an equivalent
system of polynomials in the form of a Gröbner basis which is usually easier to solve than the original
system. Making use of the SageMath system for symbolic calculus (SageMath, Inc., 2018), the whole
process results in the following solution

x = − 1
2
L2 +

1
2

(

W1 +W2
)

√

4R2

(L1−L2)2+(W1+W2)2
− 1

y = 1
2 W2 −

1
2

(

L1 − L2
)

√

4R2

(L1−L2)2+(W1+W2)2
− 1

The coordinates of rectangle 2 are then (x − L1
2 + L2

2 , y −
W1
2 − W2

2).
Obviously, the RA configuration is applicable only if (L1

2 − L2
2)

2+(W1
2 + W2

2)2 ≤ R2. If the two rectangles
have different widths then the border is (V 1

1 , V
2
1 , V

3
2 , V

4
2 , V

1
2 , V

4
1). It is worth mentioning that if Rect-

angles 1 and 2 have the same widths and their stacking is considered as one rectangle then the formula
reduces to the one obtained for the R configuration. Also, as Rectangles 1 and 2 are contiguous in this
configuration, the resulting packing is connected.

11

2.4 Determining a promising feasible placement (step 6 of Algorithm 1)

A placement of the incumbent rectangle is feasible if no overlapping occurs between this rectangle and
a rectangle already packed and no over-crossing happens with the container’s perimeter. We determine
a promising feasible placement for the incumbent rectangle around the border as follows. Let A, B and
C be three consecutive corner points on the border. As no redundancy is allowed, the three points are
disjoints and not aligned. We consider five cases when placing the incumbent rectangle on the border.
The dashed area in Figure 4 represents the inner side of the border. The case (a) is when the point C
lies on the right side of the line (AB) in which case the incumbent rectangle is stuck to the corner point
B. When C is on the left side of (AB), we consider two possible placements of the rectangle: either it
sticks to the edge segment AB (denoted case (b)), or, it sticks to the edge segment BC (denoted case
(c)). If the rectangle overlaps with the container in cases (b) or (c), the rectangle is translated according
to B⃗A until its upper right corner lies on the circle (denoted case (d)), or, it is translated according to
B⃗C until its upper right corner lies on the circle (denoted case (e)) respectively. All these placements
are considered for every corner point on the border. Among all these placements, the feasible placement
having a minimum distance to the centre of the container is returned. The rectangle is packed if and only
if such a feasible placement exists.

(a)
B A

C

L

W

(b) A

BC

(c) A

B
C

(d) A

BC �

(e) A

B
C

�

Fig. 4. Five ways of placing a rectangle on the border.

In order to determine whether the point C lies on the right or left side of (AB), we test the sign of
the dot product N(AB) ⋅ B⃗C where N(AB) is the normal vector to the line (AB). N(AB) is given by the
gradient of the equation of (AB) that isN(AB) = (yA − yB, xB − xA). It is easy to see that:

N(AB) =
⎡

⎢

⎢

⎣

0 −1

1 0

⎤

⎥

⎥

⎦

⋅ A⃗B

Therefore,N(AB) points always to the left side of (AB), precisely the inner side of the border. As a result,

12

if the dot product N(AB) ⋅ B⃗C is negative then N(AB) and B⃗C are pointing in opposite directions which
corresponds to case (a). If this product is positive then it corresponds to the remaining cases.

Let (xi, yi)i=a,…,e be the coordinates of the centre of the incumbent rectangle for cases (a)-(e) respec-
tively. Using basic mathematical manipulations, we get the following:

(xa, ya) = B + L
2 ||B⃗A||

B⃗A + W
2 ||B⃗C||

B⃗C (8)
(xb, yb) = B + W

2 ||B⃗A||
B⃗A + L

2 ||C⃗B||
C⃗B (9)

(xc , yc) = B + L
2 ||B⃗C||

B⃗C + W
2 ||A⃗B||

A⃗B (10)

Regarding the cases (d) and (e), the problem is to find a step size � which satisfies:
(

|

|

|

|

|

|

|

|

|

|

B + � B⃗A
||B⃗A||

+ L C⃗B
||C⃗B||

|

|

|

|

|

|

|

|

|

|

)2

= R2 (case (d)) (11)
(

|

|

|

|

|

|

|

|

|

|

B + � B⃗C
||B⃗C||

+W A⃗B
||A⃗B||

|

|

|

|

|

|

|

|

|

|

)2

= R2 (case (e)) (12)

In case (d), in addition to (11), � must satisfy the following two conditions in order to maintain the
connectedness of the packing:

� > 0 ⇒ � ≤ ||B⃗A|| (13)
� < 0 ⇒ |�| ≤ W (14)

Whatever the sense in which the rectangle is shifted, the conditions (13) and (14) ensure that it remains
contiguous to the edge BA. Similarly, in case (e), in addition to (12), the following two conditions must
hold:

� > 0 ⇒ � ≤ ||B⃗C|| (15)
� < 0 ⇒ |�| ≤ L (16)

where the conditions (15) and (16) ensure the rectangle remains contiguous to the edge BC .
The expressions (11) and (12) are second degree equations in �. If no overlap occurs, the smallest root
in absolute value, when the discriminant is non negative, is chosen in order to keep the rectangle inside
the container.

In all cases (a)-(e), if the line (AB) is horizontal in spite of being vertical or vice-versa, it is sufficient
to swap the two values L andW in all the expressions (8)-(12), (14) and (16).

As described above, all the initial configurations and the moves used for the placements of the rect-
angles in the procedure pack() are designed in such a way that the resulting packing is connected as it is

13

stated in the following proposition.

Proposition 1. pack returns a connected packing.

2.5 Updating the border (step 8 of Algorithm 1)

When a rectangle is packed on a border, the latter needs to be updated. Assume thatA, B and C are in the
first quadrant of the plane and that i is the index of the incumbent rectangle. The border update for the
other possibilities can be deduced from the following descriptions. In case (a), the sequence (V 4

i , V
1
i , V

2
i)

is inserted in place of the corner point B in the border. In case (b) (resp. (e)), the sequence (V 3
i , V

4
i , V

1
i)

(resp. (V 3
i , V

4
i , V

1
i , V

2
i)) replaces (resp. precedes) B in the border, otherwise, in case (c) (resp. (d)),

the sequence (V 1
i , V

2
i , V

3
i) (resp. (V 4

i , V
1
i , V

2
i , V

3
i)) replaces (resp. succeeds) B in the border. Once the

rectangle is packed, a post-processing is operated on the border to keep the corner points only.

2.6 Flexibility of the procedure pack

Applying small changes can broaden the applicability of pack considerably and, consequently the appli-
cability of our methodology. As an example, the following two possible extensions to pack can be easily
implemented.

(a) Enable the rotation of rectangles by 90° - In case the considered instance allows the rotation of
rectangles by 90°, any rectangle for which no feasible placement could be found is rotated by 90°
and a feasible placement is sought. If the latter exists, the rotated rectangle is packed. Otherwise,
the procedure pack moves to the next rectangle.

(b) Forbid a region - It is possible to forbid a connected region during the packing process. To do
so, the undesired region is simply considered as an initial configuration defined by a border in our
procedure. Then, the procedure packs the rectangles around the border using the moves described
above.

2.7 Complexity of pack

The following result gives the complexity of pack.
Theorem 1. pack runs in O(kn2) where k is the number of initial configurations and n the number of

rectangles.

Proof. The complexity of pack reduces to the one of line 6 in Algorithm 1 times the number of initial
configurations as all the other lines are constant in time. Each time a rectangle is packed, the number of
new corners points in the border is 4 in the worst case (see cases (d) and (e) in Fig. 4). Assuming the
container’s area is sufficient to pack all the rectangles, the number of placements considered in the worst

14

case for the second rectangle is 4, 8 for the third one, 12 for the fourth one, ... and 4 (n − 1) for the last
rectangle. This sums up to 4 (1 + 2 +…+ (n− 1)) = 4. n(n−1)2 which is O(n2). Therefore, the complexity
of pack is O(kn2).

2.8 An illustrative example

We illustrate the procedure pack on the instance rect1 proposed by López and Beasley (2018b) which
consists in packing 10 rectangles into a circular container of radius 3.62 without rotation. Details of the
instance together with three lists of rectangles l1, l2 and l3 which are given as inputs are presented in
the upper-left part of Figure 5. The list l1 (resp. l2) is sorted in the decreasing (resp. increasing) order
of the rectangles’ areas. The list l3 is obtained by means of a more sophisticated search described in
Section 3. In Figure 5, the parts (i), (ii) and (iii) illustrate the packings returned by the pack procedure
when applied on the lists l1, l2 and l3 respectively. The last part presents the results for the various
packings. For a given list, the procedure pack builds a packing for every possible initial configuration
then returns the best packing obtained (see Section 2.3). The best initial configuration for l1 turns to be
R implying that rectangle 10 is initially packed so that V 1

10 and V 4
10 lie on the circle. The initial border

is (V 1
10, V

2
10, V

3
10, V

4
10). The next five rectangles in the list which are 9, 8, 7, 6 and 5 can not be packed

by any predefined move. The best placement for rectangle 4 with regard to the border is to place this
rectangle on the left of rectangle 10 according to the move (e) (see Section 2.4). Then, rectangle 3 is
placed under rectangle 4 by the move (a). No more rectangle can be packed in this case. The resulting
border is (V 1

10, V
2
10, V

1
4 , V

2
4 , V

3
4 , V

2
3 , V

3
3 , V

4
3 , V

3
10, V

4
10). The best initial configuration for l2 is C showing

that rectangle 1 is packed at the centre. Rectangle 2 which is the next in the list is packed on rectangle 1
by the move (c). Then, rectangle 3 is packed under rectangle 2 by the move (a). The closest placement to
the centre for rectangle 4 lies on the right of rectangle 1 by means of the move (c). No feasible placement
is found for rectangle 5 but rectangle 6 can be packed under rectangle 1 by a little shift as allowed by the
move (e). No more rectangles in l2 can be packed. As for the list l1, the best initial configuration for l3
is R implying that rectangle 7 is packed on the right of the circle. The next rectangles 6, 4, 2, 3 and 1 are
packed according to the moves (c), (a), (e), (a) and (a) respectively. No more rectangle can be packed
by the predefined moves. In part (iv), when comparing the lists l1 and l2, the packing produced with l1
covers a larger area than the one of l2, whereas the packing generated with l2 contains a larger number of
items than the one of l1. However, the list l3 which is neither sorted in the decreasing nor the increasing
order of rectangles’ areas produces the packing with both the largest area and number of items packed.

As presented in this example, the quality of the packing obtained depends highly on the list of rect-
angles given as input to pack, a fortiori, on the first two rectangles in the list.

15

Instance and lists
n=10, R=3.62,
l1 = (10, 9, 8, 7, 6, 5, 4, 3, 2, 1),
l2 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10),
l3 = (7, 6, 4, 2, 3, 1, 5, 8, 9, 10).
i Li Wi

1 1.10 1.61
2 2.20 1.08
3 1.68 1.46
4 1.82 2.61
5 2.70 2.57
6 3.21 2.21
7 2.99 3.51
8 3.68 3.42
9 4.62 3.36
10 3.79 4.79

(i)

3

4
10

(ii)

1

2

3 4

6

(iii)

1

23

4

6
7

(iv)
li Order Packed area Number of items
l1 ↘ 25.3571 3
l2 ↗ 18.4441 5
l3 - 28.9390 6

Fig. 5. Illustration of pack on the instance rect1 of López and Beasley (2018b) without rotation.

2.9 Building the border of an already known packing

In this section, we present algorithm 2 which builds and returns the border surrounding a connected
packing p given as input. During the process, the algorithm maintains a set S of rectangles which are
packed in p but not surrounded by the border b(p) yet. Initially, b(p) receives the corners of a rectangle
u1 which is then removed from S. Then, while S is not empty, the algorithm examines every edge [A,B]
forming b(p) in order to find if there is a rectangle ū = (C,D,E, F) with a side [C,D] contiguous to
[A,B]. If the rectangle ū exists, its corners are integrated into b(p)without forming duplicated nodes and
ū is removed from S (see Figure 6). The algorithm terminates when S is empty.

16

Algorithm 2: buildBorder
Input : connected packing p.
Output: border b(p).
// Let q be the number of objects packed in p and S = {u1,… , uq} be the set

of rectangles which are packed and not integrated into the border yet.
1 b(p) ∶= (V 1

u1
, V 2

u1
, V 3

u1
, V 4

u1
);

2 S ∶= S ⧵ {u1};
3 while S ≠ ∅ do
4 Find an edge [A,B] in b(p) and a rectangle ū = (C,D,E, F) in S such that the side [C,D] is

contiguous to [A,B];
5 Insert the relevant corners of ū into b(p);
6 S ∶= S ⧵ {ū};
7 end while
8 return b

(a)

AB C D

EF

ū

(b)

AB C D

EF

Fig. 6. Inserting the corners of rectangle ū into the border.

Theorem 2. Let p be a connected packing containing q rectangles then Algorithm 2 finds the border b(p)

surrounding p in O(q3).

Proof. Given the connectedness of the packing p, every rectangle which is packed but not integrated
yet into the border b(p) will be reached and surrounded by the latter in the algorithm by means of the
operations at lines 4 and 5. As all rectangles are integrated into b(p) and every integrated rectangle is
removed from S (see line 6), the set S becomes empty and the algorithm converges.

The time complexity of the algorithm equals the complexity of the while loop. The worst case occurs
when the last edge in b(p) is contiguous to the last rectangle examined in S and when four new corners
are inserted at every iteration. Depending on the positions of A and B, we can determine in constant
time whether the edge [A,B] is a right, top, left or bottom edge of b(p). Furthermore, depending on
the orientation of [A,B], we can limit the search for a contiguous rectangle’s side [C,D] to those which
are confronting [A,B]. For instance, if [A,B] is a right edge, we are looking for a left rectangle’s side
[C,D] contiguous to [A,B] and so on. As testing whether two segments are contiguous is constant in
time, the number of operations performed at line 4 is 4k(q − k) where k is the number of rectangles
already integrated into b(p). The insertion and the removal at lines 5-6 are constant in time if b(p) and
S are implemented as chained lists. As a consequence, the complexity of the algorithm which equals
the while loop’s complexity corresponds to the number of pairs (edge [A,B], rectangle’s side [C,D])

17

examined during the whole process which is given in the worst case by:

4(q − 1) + 8(q − 2) +… + 4(q − 1) =
q−1
∑

k=1
4k(q − k) = 2

3
q(q2 − 1) = O(q3)

It is worth mentioning that Algorithm 2 can be easily adapted to determine the decomposition of a
packing into connected components. Indeed, starting from a rectangle u given as an input, the algorithm
determines the connected partial packing to which u belongs. If all the rectangles have been inserted into
b(p) then the packing is connected. Otherwise, the algorithm restarts from another rectangle which does
not belong to the connected component of u to determine its connected component and so on.

3 Integration of pack into two metaheuristics

The application of pack on one single list is a simple constructive heuristic which may obviously lead to
poor local optima. One way forward to increase the chances in providing a globally optimal packing is
then to incorporate pack into a metaheuristic. As an illustration only, Hifi and Yousef (2019) provides a
successful integration of a constructive heuristic into an effective metaheuristic scheme for the packing
of spheres into a cuboid. In this section, we first review briefly some applications of two powerful
metaheuristics, namely, variable neighbourhood search (VNS) and simulated annealing (SA), to packing
problems. We then present two integrations of the procedure pack to these twometaheuristics. Moreover,
based on Algorithm 2, we propose two accelerated variants of these methods. The purpose of these
integrations is to visit a broad set of lists in order to maximise the chances to reach a global optimum.
For completeness, we terminate this section by a discussion on the nature of our methodology and how
it is situated in the field of metaheuristics.

3.1 Applications of VNS and SA to packing problems in the literature

VNS is a metaheuristic developed by Mladenović and Hansen (1997) which consists in applying sys-
tematic change of neighbourhood within a local search algorithm. VNS (and its variants) have been
applied successfully to several packing problems. For instance, Mladenović et al. (2005; 2007) applied
reformulation descent and FSS to the packing of equal circles into a unit circle respectively, enabling a
significant speed-up over existing methods and packing up to 100 circles. López and Beasley (2011) pro-
posed a competitive FSS approach for the packing of equal circles into a variety of containers and packing
up to 500 circles. M’Hallah and Alkandari (2012) adopted a VNS for the packing of unit spheres into the
smallest cube where the local search is performed by a non-linear programming solver. Later, M’Hallah
et al. (2013) applied a similar approach to the packing of unit spheres into the smallest sphere and pro-

18

duced 29 new upper bounds out of 48 benchmark instances. López and Beasley (2013) extended their
earlier work by tackling the problem of packing unequal circles having a variable size into a container
of fixed size having various shapes. They proposed a FSS method coupled with a perturbation phase.
Instances involving up to 35 objects where considered. In a subsequent study, López and Beasley (2016)
addressed the problem of packing a subset of unequal circles into a circular container of fixed size where
the choice of the subset of circles to pack is also a decision variable. They proposed a FSS approach that
they test on instances they generated and which involve up to 40 circles. Zeng et al. (2016) combined
tabu search and variable neighbourhood descent to tackle the packing of unequal circles into a circular
container with the aim to minimise the radius. In their following study, Zeng et al. (2018) proposed a
similar metaheuristic for the packing of unequal circles into a square of minimum side length.

Simulated annealing (SA) is a metaheuristic introduced by Kirkpatrick et al. (1983). It results from
an analogy between optimisation and the annealing process found in the steel industry. SA has been
applied successfully by several authors to the packing of rectangles into a larger containing rectangle
(Dowsland, 1993; Leung et al., 2003; Soke and Bingul, 2006; Leung et al., 2011). Gomes and Oliveira
(2006) considered the more general problem of packing irregular shapes into a rectangular container
which they successfully addressed by hybridising SA and linear programming. Martins and Tsuzuki
(2010) efficiently applied SA to another general problem which consists in packing irregular polygons
into a container while allowing arbitrary rotations. Hinostroza et al. (2013) developed a SA for a packing
problem similar to the one we consider though no rotation is allowed in their algorithm. This latter
relies heavily on an ordering heuristic which packs rectangles in a specified order. The dataset on which
they assessed the performance of their method has not been made public. In this section, we present an
alternative simulated annealing which integrates the procedure pack.

For further reading, Salhi (2017) provides an informative description of metaheuristics in general
including VNS and SA. Very recently, Hansen et al. (2019) produces an updated chapter that presents
the basic schemes and extensions as well as recent developments of VNS.

3.2 Integration of pack into a VNS scheme

Algorithm 3 is a variable neighbourhood search. It requires initially three parameters kmax, itmax and
l0 which represent the maximum number of neighbourhood structures, the maximum number of non-
improving iterations allowed and an initial ordered list of the n rectangles respectively. It returns the best
packing pbest found so far. As described above, our VNS explores the lists search space. The neighbour-
hood structure used is defined byNk(l) which constitutes the set of lists obtained by swapping k pairs of
rectangles indices in the list l with 1 ≤ k ≤ kmax. These neighbourhoods are explored by the procedure
shake(lbest, k) which returns a list obtained by swapping randomly k pairs of indices in the list lbest (see

19

line 7). In order to convert a list l into a packing, the algorithm relies on the decoder pack(l) which con-
stitutes a key component of our methodology (see line 8). Overall, our algorithm consists of two nested
loops. The inner one explores the lists and packings search spaces by means of the two procedures shake
and pack (see lines 5-18). At this step, the list lbest which permitted to find the best packing pbest so far
is shaken to generate a new list l using the shake procedure. A new packing p is built from l using
the procedure pack. If the value associated with p is better than the best value found so far, the search
is recentred on l by reinitialising k and the outer loop iterator (see lines 9-13), otherwise, the search is
enlarged around lbest (see line 15). The outer loop (lines 3-19) controls the overall process by limiting
the number of non-improving iterations to itmax.
Algorithm 3: Variable Neighbourhood Search (VNS)
Input : integers kmax, itmax, list l0
Output: packing pbest.

1 lbest := l0;
2 pbest := pack(lbest);
3 it := 1;
4 repeat
5 k := 1;
6 repeat
7 l := shake(lbest, k);
8 p := pack(l);
9 if f (p) > f (pbest) then
10 lbest := l ;
11 pbest := p;
12 k := 1;
13 it := 1;
14 else
15 k := k + 1;
16 it := it + 1;
17 end if
18 until k > kmax;
19 until it > itmax;
20 return pbest

3.3 Integration of pack into a SA scheme

Algorithm 4 is a simulated annealing metaheuristic that incorporates the procedure pack. It receives as
input T0, Tf , �,Nt, k, itmax and l0 which are the initial and the final temperatures, the cooling factor, the
number of iterations spent at every temperature, the number of rectangles to swap in the shake procedure,
the maximum number of non-improving iterations allowed and the initial list respectively. It returns the

20

best packing found by the algorithm. Initially, the temperature T is set to T0 and the incumbent packing
p, which is considered as the best packing at this step, is generated from l0 using pack. At every iteration
of the main loop, a neighbouring list l′ is generated by swapping randomly k rectangles in the incumbent
list l. The resulting list is transformed into a candidate packing p′ by using pack and the temperature is
updated by calcTemp(i, T). This function performs the classical geometric reduction T := � T every
Nt iterations. If the value of the candidate packing is better than the incumbent one (see line 9), the
latter is replaced by the former and a new test is made to check if the candidate packing improves the best
packing found so far in which case the best list and packing are updated. In case the value of the candidate
packing is not better than the incumbent one, it is accepted only if it satisfies the well known Boltzmann
acceptance rule (see line 14). The main loop is performed until a stopping criterion is reached. In our
case, this refers to the maximum number of iterations which isNt ⌈

ln Tf−ln T0
ln � ⌉ or itmax iterations without

any improvement made to the objective function whichever comes first.
Algorithm 4: Simulated Annealing (SA)
Input : reals T0, Tf , �,Nt; integers k, itmax, list l0
Output: packing pbest.

1 T :=T0;
2 lbest := l := l0;
3 pbest := p := pack(l);
4 i := 0;
5 repeat
6 l′ := shake(l, k);
7 p′ := pack(l′);
8 T := calcTemp(i, T);
9 if f (p′) > f (p) then
10 l := l′, p := p′;
11 if f (p′) > f (pbest) then
12 lbest := l′, pbest := p′;
13 end if

14 else if e
f (p′)−f (p)

T >random[0,1] then
15 l := l′, p := p′;
16 end if
17 i:=i + 1;
18 until stopping criterion;
19 return pbest

3.4 Speed-up mechanisms

In heuristic search design, the number of iterations is usually very large and the solution configurations
from one iteration to the next have a lot of in common. It is therefore crucial to avoid recomputing
already processed parts of earlier configurations. Exploiting this aspect can reduce the computational

21

time considerably turning the search into a much faster one. Some of these powerful techniques are
discussed in Salhi (2017, Chapter 6).

Let i be the lowest index such that li is relocated by the shake procedure at line 7 in VNS and line 6
in SA. When the pack procedure is called at line 8 in VNS, if the initial configuration of the packing pbest
is preserved then the placement of the rectangles l1 to li−1 in p is the same as the one in pbest. Exploiting
this idea for VNS and SA can considerably speed-up the search though the final solution quality may be
deteriorated as a variation of the initial configuration is less likely to occur.

a) Case of VNS - We propose a variant of VNS called xVNS where the lines 7-8 are replaced by the
two following lines:

< l, i > := xShake(lbest, k);
p := xPack(l, i, pbest);

The procedure xShake(lbest, k) returns a copy l of lbest where k pairs of elements have been swapped
randomly, i being the smallest index of an element relocated in l. This function returns both l and i.
The prcedure xPack is an extension of the procedure pack which copies from pbest into p the place-
ments of the packed rectangles in the list l1… li−1, builds the border surrounding these rectangles by
means of Algorithm 2 then pack the remaining rectangles in li… ln as performed in the while-loop
(lines 5 to 11) of the procedure pack.

b) Case of SA - Similarly to case (a), we propose a variant of SA called xSA where the lines 6-7 are
replaced by the two following lines:

< l′, i > := xShake(l, k);
p′ := xPack(l′, i, p);

3.5 Some observations

Among the existing variants of VNS (see Hansen et al. (2010)), Algorithm 3 is closest to the Reduced
VNS (RVNS) as it consists of a shaking procedure but no local search. From this point of view, the
search space explored in Algorithm 3 is the one of permutations whereas the pack procedure plays the
role of an evaluation procedure used to assess the ability of a given permutation in producing a good
packing. The composite function f (pack(l)) used at line 9 of Algorithm 3 is then a non-constant time
cost function (see Theorem 1) used during the neighbourhood change step of RVNS.

The idea of exploring an alternative search space instead of exploring directly the solution search
space is present in the literature. By definition, evolutionary algorithms make intensive use of encoding
procedure to convert solutions (phenotypes) into representations (genotypes) (Talbi, 2009, Section 1.4.1).

22

In the context of vehicle routing, Prins et al. (2014) reviews more than 70 references related to the class
of so-called "order-first split-second" methods. These methods oscillate between two search spaces by
means of a decoding and encoding procedures called Split and Split−1 respectively. The encoding
procedure permits to convert a routing into a permutation whereas the decoding procedure determines a
routing by optimally partitioning a permutation.

Our methodology follows a simpler architecture as it uses only a perturbation procedure, namely
shake, to explore the permutation search space, and a decoding procedure, namely pack, used to convert
a permutation into a packing. The resulting algorithms (VNS and SA) are still trajectorial metaheuristics
with the nuance that the path they describe is inscribed in the alternative search space; not in the solution
search space. The search is thus focused on permutations and, in some sense, the packings visited during
the search are only "evaluations" of the permutations encountered in the alternative search space. Based
on the quality of the packings resulting from the visited permutations, the search is guided towards the
"best" permutation; the one that results in a packing of best known quality when it is given as input to
pack.

We demonstrate in the next section that our simplistic approach reveals highly effective and efficient
when tested on benchmark instances.

4 Computational experiments

The experiments are conducted on an Intel Core i3-2330M @ 2.20 GHz with 3.9 Gbytes RAM running
Linux and the algorithms are coded in Java. They consist of three main parts. First, we assess the
performance of both the SA and the VNS algorithms with the algorithm of López and Beasley (2018b)
(denoted FSS) on the dataset they proposed and which is available from López and Beasley (2018a). To
the best of our knowledge, this is the only publicly available dataset for this packing problem. Second, we
assess the statistical significance of the results obtained in the first part using the Friedman test. Finally,
we generate larger instances to be used for a comparative study between SA, VNS and their respective
accelerated variants xSA and xVNS.

4.1 Datasets and parameter calibration

4.1.1 Existing dataset

The dataset proposed by López and Beasley (2018b) consists of instances involving n = 10, 20, 30 rect-
angles or squares with randomly generated dimensions. For each instance, three different container radii
are considered. They are calculated based on a formula involving a fraction � of the total area of the
objects to pack. For all instances, both the maximisation of the total area packed and the maximisation

23

of the number of objects packed are considered. For instances involving rectangles, two supplementary
cases are considered which are the possibility to rotate or not the rectangles. In total, this dataset consists
of 54 instances.

4.1.2 Newly constructed large dataset

In addition and following the generating scheme proposed López and Beasley (2018b), we generated
a new set of larger instances involving n = 100, 150, 200 rectangles/squares. Their dimensions were
pseudo-randomly generated (to two decimal places) in the interval [1, 5]. For each instance, three con-
tainer radii R are set so that the container’s area represents 1

3 , 1
2 and 2

3 of the total area of the n objects
to pack. This new dataset alongside all the new best known solutions obtained in this paper are made
publicly available at the CLHO (2019) website. These informations can be useful for benchmarking
purposes.

4.1.3 Parameter calibration for VNS & SA

To calibrate our metaheuristics, we carried out experiments on a pseudo-randomly generated instance
which consists of 100 rectangles. For VNS, the three parameters kmax, itmax and l0 need to be set, while,
for SA there are seven parameters, namely, T0, Tf , �, Nt, k, itmax and l0. Preliminary results showed
clearly that when the objective is to maximise the area (resp. maximise the number of objects) packed,
l0 should be sorted in decreasing (resp. increasing) order of the object areas.

In the case of VNS, three values were tested for k (3,5 and 7) and two for itmax (5 × 102 and 103).
Five runs were performed for every combination. The best compromise in terms of solution quality and
computation time turned out to be k = 3 and itmax = 5 × 102.

In the case of SA, the number of possibilities was much larger so we limited the number of values
to two for all parameters except the number of runs to three per combination. The tested values were
as follows: T0 (10,20), Tf (0,01, 0.1), � (0.95, 0.98), Nt (5, 10), k (3, 7) and itmax (103 and 104). The
selected combination uses T0 = 10, Tf = 0.1, � = 0.98,Nt = 5, k = 3 and itmax = 104.

Complementary data relevant to this preliminary experimentation are presented in Appendix A.

4.2 Results on the López and Beasley’s dataset (2018a)

We first present the overall results and then analyse their statistical significance.

4.2.1 Overall results

Tables 2-4 and Tables 5-7 present the results for the cases where the objective is the maximisation of the
number of objects packed and the maximisation of the area packed respectively. All Tables 2-7 follow

24

the same structure. The first two columns identify the instance. The next two columns report the results
(solution and computation time) presented by López and Beasley (2018b) for FSS. The columns labelled
Val(linc) and Val(ldec) indicate the results obtained by applying pack on a list of the rectangles sorted
in increasing and decreasing order of their areas respectively. Columns labelled SA and VNS present
the results obtained by applying five runs of SA and VNS algorithms respectively. Both SA and VNS
algorithms make an extensive use of the shake procedure which requires a pseudo-random generator
when implemented. For every algorithm and for every instance, different runs are conducted in order to
vary the initial random seed used in the search. This is performed to assess the robustness of SA and
VNS. Columns labelled Best and Avg indicate the best solution value found and the average solution
value over all the runs performed. Columns labelled T(s) correspond to the total time (in seconds) spent
by the algorithms over all the runs performed. The computation time for a single run of the procedure
pack is negligible. The last column (BKS) corresponds to the best known solution value including the
ones found in this paper. Bold and underlined-bold values indicate a best solution value and a new best
solution value respectively. The last rows provide average measures over the instances and the number
of best values obtained. Average measures include the average difference calculated when the problem
is to maximise the number of objects packed where the difference of a value Val is Diff = Best − Val,
the average deviation calculated when the problem is to maximise the area packed where the deviation
of a value Val is Dev(%) = 100 × Best−Val

Best , and the average computation time in seconds.
Table 2
Results in the case of maximising the number of rectangles packed without rotation

n � FSS pack SA VNS
Best T(s) Val(linc) Val(ldec) Best Avg T(s) Best Avg T(s) BKS

10 1
3

5 3058 4 2 5 5.00 1 5 4.40 1 5
1
2

6 2862 5 4 6 6.00 2 6 6.00 1 6
2
3

7 2966 6 6 7 7.00 2 7 7.00 1 7
20 1

3
7 6278 6 5 7 7.00 5 7 7.00 2 7

1
2

10 4530 8 7 10 10.00 5 10 10.00 2 10
2
3

11 7311 11 9 13 13.00 6 12 12.00 2 13
30 1

3
13 11514 13 7 14 14.00 10 14 13.80 7 14

1
2

16 10029 15 10 18 18.00 11 17 17.00 5 18
2
3

19 6966 17 15 21 21.00 13 21 20.20 8 21

Avg. diff. or T(s) 0.78 6168 1.78 4.00 0.00 0.00 6 0.22 0.40 3
Best 5 0 0 9 9 7 4

In terms of solution quality, when the objective is to maximise the number of objects (area resp.)
packed, the procedure pack provides the best results when the list is sorted in increasing (decreasing
resp.) order of the rectangles’ areas. It is clear that one single run of pack is outperformed by SA and
VNS. When the objective is to maximise the number of objects packed, SA dominates both VNS and
FSS while remaining very stable (the average difference is less or equal to 0.09). VNS is superior to FSS

25

Table 3
Results in the case of maximising the number of rectangles packed with rotation

n � FSS pack SA VNS
Best T(s) Val(linc) Val(ldec) Best Avg T(s) Best Avg T(s) BKS

10 1
3

5 9836 4 2 5 5.00 2 5 4.80 2 5
1
2

6 10332 5 4 6 6.00 3 6 6.00 1 6
2
3

7 12409 6 6 7 7.00 3 7 7.00 1 7
20 1

3
8 22759 6 5 8 7.60 9 8 7.80 4 8

1
2

10 30682 8 7 10 10.00 10 10 10.00 4 10
2
3

12 30823 11 9 13 13.00 11 12 12.00 4 13
30 1

3
14 49724 13 6 14 14.00 17 14 14.00 10 14

1
2

17 45857 15 10 18 18.00 19 18 17.20 11 18
2
3

20 57427 18 15 21 21.00 20 20 20.00 10 21

Avg. diff. or T(s) 0.33 29983 1.78 4.22 0.00 0.04 10 0.22 0.36 5
Best 6 0 0 9 8 7 4

Table 4
Results in the case of maximising the number of squares packed

n � FSS pack SA VNS
Best T(s) Val(linc) Val(ldec) Best Avg T(s) Best Avg T(s) BKS

10 1
3

4 1123 3 1 4 4.00 1 4 4.00 1 4
1
2

5 2761 4 4 5 5.00 1 5 5.00 1 5
2
3

6 2275 5 4 6 6.00 2 6 6.00 1 6
20 1

3
11 5450 9 10 11 11.00 5 10 10.00 2 11

1
2

12 6465 11 11 13 12.20 5 12 11.80 3 13
2
3

14 6995 12 13 14 14.00 6 14 13.20 3 14
30 1

3
16 13552 14 13 16 16.00 10 15 15.00 6 16

1
2

20 13457 18 13 20 20.00 12 20 19.60 8 20
2
3

23 10427 21 17 23 23.00 13 22 22.00 7 23

Avg. diff. or T(s) 0.11 6945 1.67 2.89 0.00 0.09 6 0.44 0.60 3
Best 8 0 0 9 8 5 3

when dealing with rectangle packing but FSS is able to provide better solutions when the problem is to
pack squares. When the objective is to maximise the area packed, both SA and VNS dominate FSS but
SA and VNS are not dominating each other. In total, 32 new best solutions out of 54 are found.

In terms of computational effort, SA and VNS are clearly faster than FSS though the computer used
with FSS, the Intel Core i5-2400S @ 2.50 GHz, is ranked better than our computer in terms of CPU
performance (PassMark, 2020). However, it is important to mention that FSS is a formulation search
space approach which relies heavily on a third-party solver which slows the whole process.

We can conclude that, for this implementation of FSS and on this particular dataset, both VNS and
SA are able, in the majority of cases, to find better solutions than FSS while being relatively much faster.
There is however no obvious conclusion that can be made between SA and VNS.

26

Table 5
Results in the case of maximising the area of rectangles packed without rotation

n � FSS pack SA VNS
Best T(s) Val(linc) Val(ldec) Best Avg T(s) Best Avg T(s) BKS

10 1
3

18.4441 3292 11.35 17.8992 18.4441 18.4441 5 18.4441 18.3351 1 18.4441
1
2

28.9390 2992 18.4441 25.3571 28.9390 28.9390 2 28.9390 28.9390 1 28.9390
2
3

37.6878 4754 25.3831 36.5982 39.4588 38.9214 2 38.7870 38.7870 1 39.4588
20 1

3
43.3885 7227 31.5072 41.7542 45.1727 45.0616 5 45.1567 44.7210 2 45.1727

1
2

63.1643 9791 42.7353 64.5214 69.9263 68.5124 6 68.8314 67.4388 3 69.9263
2
3

84.4446 10601 70.1397 87.5713 93.0556 91.3516 6 91.6368 90.6159 3 93.0556
30 1

3
60.3570 14011 48.1206 59.8421 65.2856 64.5676 10 64.4689 63.7051 5 65.2856

1
2

85.2113 19786 63.6659 95.3117 100.1839 98.4151 12 102.1196 99.3385 8 102.1196
2
3

103.4802 19470 80.064 131.1013 135.9217 134.3052 13 137.4149 135.2876 7 137.4149

Avg. dev (%) 8.46 10214 34.43 7.04 0.33 1.38 7 0.68 1.80 3
or T(s)
Best 2 0 0 7 2 4 1

Table 6
Results in the case of maximising the area of rectangles packed with rotation

n � FSS pack SA VNS
Best T(s) Val(linc) Val(ldec) Best Avg T(s) Best Avg T(s) BKS

10 1
3

19.6702 8771 11.35 17.8992 19.6702 19.6702 3 19.6702 19.2633 1 19.6702
1
2

29.5041 16093 18.4441 27.1281 30.8746 29.7782 3 30.8746 29.7208 1 30.8746
2
3

37.9687 15526 25.3831 39.999 41.1612 40.8778 3 40.9063 40.3619 1 41.1612
20 1

3
43.6850 50558 31.2769 44.7796 45.4200 45.3034 9 45.4200 45.3303 5 45.4200

1
2

63.5279 50013 42.7353 65.647 71.2331 69.7546 10 70.8221 68.7228 7 71.2331
2
3

84.7008 63350 66.9917 87.7261 95.1127 94.0614 10 95.2162 93.4912 5 95.2162
30 1

3
57.9328 69565 48.1206 59.7641 66.6947 66.1056 18 66.6329 65.1248 14 66.6947

1
2

84.3715 82101 63.4074 95.4395 100.4537 99.1734 20 100.3020 99.2145 11 100.4537
2
3

110.3253 39564 88.8787 131.2393 135.2908 133.4534 20 137.5277 136.1031 12 137.5277

Avg. dev (%) 9.64 43949 35.75 6.78 0.19 1.43 11 0.16 1.99 6
or T(s)
Best 1 0 0 7 1 5

4.2.2 Statistical significance

The Friedman test is a non-parametric statistical procedure for comparing more than two samples that are
related. When it leads to significant results, it rejects the hypothesis that there is no difference between
the samples studied. Corder and Foreman (2009) provides a comprehensive introduction to this topic.

In our case, the hypotheses are the following:

H0 (null hypothesis) : "There is no difference between the results returned by FSS, SA and VNS"
Ha (alternative hypothesis): "There is a difference between the results returned by FSS, SA and VNS"

For every case, the number of rows is 9 (instances) and the number of columns is 3 (algorithms). The
Friedman test starts by ranking the results returned by the various algorithms from 1 (for the smallest
value) to 3 (for the highest one). In case of ties, equal values receive the average of their values had they

27

Table 7
Results in the case of maximising the area of squares packed

n � FSS pack SA VNS
Best T(s) Val(linc) Val(ldec) Best Avg T(s) Best Avg T(s) BKS

10 1
3

22.9485 2762 11.6589 22.4676 23.9878 23.9878 1 23.9878 23.3642 0 23.9878
1
2

36.7126 3402 19.3318 34.1265 37.7471 37.3333 2 37.7471 37.3333 1 37.7471
2
3

51.7583 4593 30.2879 42.9585 52.7555 52.7555 2 52.7555 51.9923 1 52.7555
20 1

3
54.1054 9412 31.0113 56.9714 63.7430 62.9581 5 63.7523 62.7630 4 63.7523

1
2

85.2107 11304 57.5113 87.1782 94.7706 94.5368 6 94.7706 94.0801 3 94.7706
2
3

109.8363 7636 70.9802 117.5935 126.7480 126.0535 6 132.4100 125.8077 5 132.4100
30 1

3
54.4941 16629 43.2045 62.4524 63.1167 62.8116 11 63.9965 63.4017 4 63.9965

1
2

77.5814 14808 65.9387 95.1851 97.2366 95.8948 12 98.1142 97.1655 12 98.1142
2
3

103.0963 15145 87.758 127.511 129.6979 128.3066 14 131.5472 129.5725 6 131.5472

Avg. dev (%) 12.07 9521 42.05 8.09 0.89 1.55 7 0.00 1.76 4
or T(s)
Best 0 0 0 4 1 9

been different. The Friedman test statistic, denoted by Fr, is then calculated according to the following
formula:

Fr =
n(k − 1)

[

∑k
i=1

R2
i
n
− Cf

]

∑

r2ij − Cf

where n is the number of rows, k is the number of columns, Ri is the sum of the ranks from column i,
Cf is a ties correction factor equal to (1∕4)nk(k+ 1)2; and rij is the rank corresponding to the row i and
column j.

In Table 8, the first three columns describe the case considered, the fourth column corresponds to
the table taken from this paper as a basis for the calculation of Fr and the last column is the calculated
value of Fr in the corresponding case. We consider an � value of 0.05. The critical value associated with
k = 3, n = 9 and � = 0.05 is 6.222. If Fr is greater than 6.222, the null hypothesis is rejected in favour
of the alternative hypothesis. Otherwise, there is no enough evidence to reject the null hypothesis.

In Table 8, bold values correspond to values of Fr greater than 6.222. The values of Fr are greater
than the critical value in five cases among six which is sufficient to reject the null hypothesis in those
cases.

At this level, we conclude that in the majority of cases, we have enough statistical evidence to state
that there is a difference between the results returned by the three algorithms. Together with the conclu-
sion drawn at the previous section, we can say that the improvement made by SA and VNS over FSS is
statistically significant in the majority of cases considered in the López and Beasley’s dataset (2018a).

28

Table 8
Friedman test statistic values for the different cases

Objective function1 Objects’ shapes2 Rotation angle 3 Base Table Fr
▭ 0 2 7.43
▭ �

2
3 4.67

□ 0 4 6.50
A ▭ 0 5 11.14
A ▭ �

2 6 13.07
A □ 0 7 16.75

1 #: Maximise the number of objects packed, A: Maximise the area packed.
2
▭: Rectangular objects,□: Square objects.

3 0: No rotation allowed, �
2
: Rotation by an angle of �

2
allowed.

4.3 Results on the newly constructed dataset

The four metaheuristics SA, xSA, VNS and xVNS are tested on the newly generated dataset (see Section
4.1.2). Detailed results are presented in Appendix B. Table 9 describes a summary of the results. The
first three columns identify the type of instance addressed. For every metaheuristic, the columns "Dev.
(%) or Diff." and "T(s)" correspond to the average deviation or difference obtained in the considered type
of instance and the average computation time (in seconds) respectively.

In terms of solution quality, the variable neighbourhood search methodologies produce the best av-
erage deviations in all cases except when maximising the number of squares packed where SA performs
better. Moreover, VNS and xVNS are able together to generate 44 best solutions including ties among
54 possible ones (more than 80%) against only 18 best solutions including ties for SA and xSA (almost
33%). Regarding the computation time, all algorithms are able to tackle these large instances using a
reasonable amount of time. The accelerated versions xSA and xVNS are in average 2.71 and 2.91 times
faster than their counterparts SA and VNS though their average effectiveness is slightly affected as one
may have expected (see Section 3.4). xVNS is the best performer in obtaining the best trade-off between
solution quality and computation time.

Two illustrative examples

As an illustration, we present in Figure 7 the new best solution found byVNS on the instance rect3where
the objective is to maximise the area packed without rotation. In that case, FSS produced a solution with
value 103.4802 in 19470 seconds whereas VNS provides a solution with value 137.4149 in 7 seconds
only. Also, we present in Figure 8 the best solution found by SA in R200 where the objective is to
maximise the number of rectangles packed with rotation. In that case, SA is able to pack 148 rectangles
in 1519 seconds.

29

Table 9
Summary results of the four metaheuristics on the newly generated dataset

Instance type SA xSA VNS xVNS
Objects’ Objective Rotation Dev.(%) or T(s) Dev.(%) or T(s) Dev.(%) or T(s) Dev.(%) or T(s)
shape function angle Diff. Diff. Diff. Diff.
▭ A 0 1.53 403 1.63 149 0.12 324 0.16 97
▭ A �

2 1.40 659 1.40 242 0.09 740 0.07 186
□ A - 1.03 446 0.95 153 0.04 391 0.12 102
▭ # 0 1.00 441 1.00 172 0.33 322 0.22 144
▭ # �

2 0.89 692 1.89 254 0.33 601 0.89 221
□ # - 0.33 464 0.56 176 2.00 399 1.89 204

Average time (s) 517 191 463 159
Average deviation (%) 1.32 1.32 0.08 0.12
Average difference 0.74 1.15 0.89 1.00
Number of best solutions 18 44

5 Conclusion & Suggestions

In this paper, we tackled the problem of packing unequal rectangles into a circular container of fixed size
with the objective of maximising the area or the number of objects packed. Given the complexity of the
solution structure of the problem, we reduced our search to the space of lists of rectangles. This was
possible due to a decoding procedure called pack that we introduced and which permits to convert an
ordered list of rectangles into a feasible packing for the problem. This procedure which receives initially
an ordered list of the objects to pack, returns a powerful packing by means of a new data structure we
introduced called "border", a number of initial configurations for the packing of the first objects in the list
and several powerful moves that enable an efficient packing of new objects, the whole taking advantage
from the power of geometry to provide simple analytical forms. The extensions to the pack procedure
we introduced widened the applications of our methodology by enabling the rotation of rectangles and
forbidding connected regions in the container. As the call of pack on one single list is a constructive
heuristic, we integrate pack into two metaheuristic schemes, namely, variable neighbourhood search
(VNS) and simulated annealing (SA). Also, exploiting previous placements of some items in the search
enabled us to provide two accelerated variants of SA and VNS denoted xSA and xVNS respectively.
Experiments conducted on benchmark instances showed that our methodology is superior to the state-
of-the-art method and that is able to provide 32 new best solutions out of 54 (almost 60% of the total
number of instances) while requiring less computational effort. Additional experiments carried on larger
instances whichwe constructed and alsomade publicly available showed that, in terms of solution quality,
the VNS methodologies proposed perform better than the SA ones in most of the cases except when
maximising the number of squares packed where SA does better. In terms of computation time, the

30

1

2

3
4

5

6

7

8

9
10

21
22

23

24

25

27

28 30

Fig. 7. Maximising the area of rectangles packed without rotation, n = 30, � = 2
3 .

four metaheuristics proposed are able to tackle large instances in a reasonable amount of time. The best
trade-off between solution quality and computation time is achieved by xVNS.

Among the many interesting perspectives offered by this study, we mention the possibility to extend
our methodology to tackle other packing problems involving more sophisticated forms of containers and
forbidden regions. The metaheuristics proposed in this paper could be easily extended by hybridising
them with large neighbourhood search making them even more powerful. The exciting area of adaptive
or deep learning could be explored within these metaheuristics to efficiently address these classes of
packing problems and other complex global optimisation problems.

31

Fig. 8. Maximising the number of rectangles packed with rotation, n = 200, � = 2
3

Acknowledgement

The authors would like to thank the referees for their constructive comments that improved the presen-
tation as well as the content of the paper.

References

Birgin, E. G. (2016). Applications of nonlinear programming to packing problems. In Applications+
Practical Conceptualization+ Mathematics= fruitful Innovation, pages 31–39. Springer.

Birgin, E. G. and Lobato, R. D. (2010). Orthogonal packing of identical rectangles within isotropic
convex regions. Computers & Industrial Engineering, 59:595–602.

Birgin, E. G., Martínez, J. M., Mascarenhas, W. F., and Ronconi, D. P. (2006a). Method of sentinels for
packing items within arbitrary convex regions. Journal of the Operational Research Society, 57:735–
746.

Birgin, E. G., Martínez, J. M., Nishihara, F. H., and Ronconi, D. P. (2006b). Orthogonal packing of

32

rectangular items within arbitrary convex regions by nonlinear optimization. Computers &Operations
Research, 33:3535–3548.

Buchberger, B. (1976). A theoretical basis for the reduction of polynomials to canonical forms. ACM
SIGSAM Bulletin, 10:19–29.

Cassioli, A. and Locatelli, M. (2011). A heuristic approach for packing identical rectangles in convex
regions. Computers & Operations Research, 38:1342–1350.

CLHO (2019). Centre for Logistics & Heuristic Optimisation, University of Kent, Canterbury, UK.
https://research.kent.ac.uk/clho/.

Corder, G. W. and Foreman, D. I. (2009). Nonparametric Statistics for Non-Statisticians: A Step-by-Step
Approach. John Wiley & Sons.

Demaine, E. D., Fekete, S. P., and Lang, R. J. (2010). Circle packing for origami design is hard.
arXiv:1008.1224.

Dowsland, K. A. (1993). Some experiments with simulated annealing techniques for packing problems.
European Journal of Operational Research, 68:389–399.

Fakoor, M., Zadeh, P. M., and Eskandari, H. M. (2017). Developing an optimal layout design of a
satellite system by considering natural frequency and attitude control constraints. Aerospace Science
and Technology, 71:172–188.

Feng, E., Wang, X., Wang, X., and Teng, H.-F. (1999). An algorithm of global optimization for solving
layout problems. European Journal of Operational Research, 114:430–436.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York, NY, USA.

Gomes, A. M. and Oliveira, J. F. (2006). Solving irregular strip packing problems by hybridising simu-
lated annealing and linear programming. European Journal of Operational Research, 171(3):811–829.

Hansen, P., Mladenović, N., Brimberg, J., andMoreno Pérez, J. A. (2019). Variable neighborhood search.
In Gendreau, M. and Potvin, J., editors, Handbook of metaheuristics, pages 57–97. Springer.

Hansen, P., Mladenović, N., and Moreno Pérez, J. A. (2010). Variable neighbourhood search: methods
and applications. Annals of Operations Research, 175:367–407.

Hifi, M. and Yousef, L. (2019). A local search-based method for sphere packing problems. European
Journal of Operational Research, 274:482 – 500.

Hinostroza, I., Pradenas, L., and Parada, V. (2013). Board cutting from logs: Optimal and heuristic
approaches for the problem of packing rectangles in a circle. International Journal of Production
Economics, 145:541–546.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing. Science,
220:671–680.

33

Leung, J. Y.-T., Tam, T. W., Wong, C. S., Young, G. H., and Chin, F. Y. L. (1990). Packing squares into
a square. Journal of Parallel and Distributed Computing, 10:271–275.

Leung, S. C. H., Zhang, D., and Sim, K. M. (2011). A two-stage intelligent search algorithm for the
two-dimensional strip packing problem. European Journal of Operational Research, 215:57–69.

Leung, T. W., Chan, C. K., and Troutt, M. D. (2003). Application of a mixed simulated annealing-
genetic algorithm heuristic for the two-dimensional orthogonal packing problem. European Journal
of Operational Research, 145:530–542.

Li, K. and Cheng, K. H. (1994). Interconnection Networks for High-performance Parallel Computers,
chapter Complexity of Resource Allocation and Job Scheduling Problems in Partitionable Mesh Con-
nected Systems, pages 644–651. IEEE Computer Society Press, Los Alamitos, CA, USA.

Li, Z., Wang, X., Tan, J., and Wang, Y. (2014). A quasiphysical and dynamic adjustment approach for
packing the orthogonal unequal rectangles in a circle with a mass balance: satellite payload packing.
Mathematical Problems in Engineering, 2014.

Li, Z., Zeng, Y., Wang, Y., Wang, L., and Song, B. (2016). A hybrid multi-mechanism optimization
approach for the payload packing design of a satellite module. Applied Soft Computing, 45:11–26.

Liu, D. C. and Nocedal, J. (1989). On the limited memory BFGS method for large scale optimization.
Mathematical programming, 45:503–528.

Liu, Z. and Teng, H.-F. (2008). Human–computer cooperative layout design method and its application.
Computers & Industrial Engineering, 55:735–757.

López, C. O. and Beasley, J. E. (2011). A heuristic for the circle packing problem with a variety of
containers. European Journal of Operational Research, 214:512–525.

López, C. O. and Beasley, J. E. (2013). Packing unequal circles using formulation space search. Com-
puters & Operations Research, 40:1276–1288.

López, C. O. and Beasley, J. E. (2016). A formulation space search heuristic for packing unequal circles
in a fixed size circular container. European Journal of Operational Research, 251:64–73.

López, C. O. and Beasley, J. E. (2018a). Dataset for the packing of unequal rectangles into a circular
container. http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/files/ Accessed 15 July 2018.

López, C. O. and Beasley, J. E. (2018b). Packing unequal rectangles and squares in a fixed size circular
container using formulation space search. Computers & Operations Research, 94:106 – 117.

Martins, T. C. and Tsuzuki, M. S. G. (2010). Simulated annealing applied to the irregular rotational place-
ment of shapes over containers with fixed dimensions. Expert Systems with Applications, 37:1955–
1972.

M’Hallah, R. and Alkandari, A. (2012). Packing unit spheres into a cube using VNS. Electronic Notes
in Discrete Mathematics, 39:201–208.

34

M’Hallah, R., Alkandari, A., and Mladenović, N. (2013). Packing unit spheres into the smallest sphere
using VNS and NLP. Computers & Operations Research, 40:603–615.

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers & Operations Re-
search, 24:1097 – 1100.

Mladenović, N., Plastria, F., and Urošević, D. (2005). Reformulation descent applied to circle packing
problems. Computers & Operations Research, 32:2419–2434.

Mladenović, N., Plastria, F., and Urošević, D. (2007). Formulation space search for circle packing prob-
lems. In Stützle, T., Birattari, M., and Hoos, H., editors, Engineering Stochastic Local Search Algo-
rithms. Designing, Implementing and Analyzing Effective Heuristics, pages 212–216, Berlin, Heidel-
berg. Springer Berlin Heidelberg.

PassMark (2020). CPU Comparison Intel i3-2330M vs Intel i5-2400S.
https://www.cpubenchmark.net/compare/Intel-i3-2330M-vs-Intel-i5-2400S/757vs794
Accessed 7 January 2020.

Prins, C., Lacomme, P., and Prodhon, C. (2014). Order-first split-second methods for vehicle routing
problems: A review. Transportation Research Part C, 40:179–200.

SageMath, Inc. (2018). Cocalc collaborative computation online. https://cocalc.com/ Accessed 27
November 2018.

Salhi, S. (2017). Heuristic Search: The Emerging Science of Problem Solving. Springer.
Soke, A. and Bingul, Z. (2006). Hybrid genetic algorithm and simulated annealing for two-dimensional
non-guillotine rectangular packing problems. Engineering Applications of Artificial Intelligence,
19:557 – 567.

Sun, Z.-G. and Teng, H.-F. (2003). Optimal layout design of a satellite module. Engineering Optimiza-
tion, 35:513–529.

Talbi, E.-G. (2009). Metaheuristics: from design to implementation. John Wiley & Sons.
Teng, H.-F., Sun, S., Liu, D., and Li, Y. (2001). Layout optimization for the objects located within
a rotating vessel - a three-dimensional packing problem with behavioral constraints. Computers &
Operations Research, 28:521–535.

Wang, Y. and Teng, H.-F. (2009). Knowledge fusion design method: satellite module layout. Chinese
Journal of Aeronautics, 22:32–42.

Wäscher, G., Haußner, H., and Schumann, H. (2007). An improved typology of cutting and packing
problems. European Journal of Operational Research, 183:1109 – 1130.

Xu, Y., Xiao, R., and Amos, M. (2007). Particle swarm algorithm for weighted rectangle placement. In
Third International Conference on Natural Computation, 2007 (ICNC 2007), pages 728–732. IEEE.

Xu, Y.-C., Dong, F.-M., Liu, Y., and Xiao, R.-B. (2010). Genetic algorithm for rectangle layout opti-
mization with equilibrium constraints. Pattern Recognition and Artificial Intelligence, 23:794–801.

35

Zeng, Z., Yu, X., He, K., and Fu, Z. (2018). Adaptive tabu search and variable neighborhood descent for
packing unequal circles into a square. Applied Soft Computing, 65:196–213.

Zeng, Z., Yu, X., He, K., Huang, W., and Fu, Z. (2016). Iterated tabu search and variable neighbor-
hood descent for packing unequal circles into a circular container. European Journal of Operational
Research, 250:615–627.

Zhang, B., Teng, H.-F., and Shi, Y.-J. (2008). Layout optimization of satellite module using soft com-
puting techniques. Applied Soft Computing, 8:507–521.

Zhao, F., Li, G., Yang, C., Abraham, A., and Liu, H. (2014). A human–computer cooperative particle
swarm optimization based immune algorithm for layout design. Neurocomputing, 132:68–78.

Zhong, C.-Q., Xu, Z.-Z., and Teng, H.-F. (2019). Multi-module satellite component assignment and
layout optimization. Applied Soft Computing, 75:148–161.

36

A Complementary data for the calibration of VNS and SA

Prior to the experiments conducted in Sections 4.2 and 4.3, we carried out a parameter calibration of
our algorithms. This was conducted on the instance R100 that we generated and which is available at the
CLHO (2019) website. The problem considered consists in maximising the area packed by 100 candidate
rectangles into a circular container of radius 14.14 with rotation. Tables 10 and 11 present the results
obtained during the calibration of VNS and SA respectively. In Table 10, the first two columns correspond
to the combinations of parameter values tested while the two last columns are the average solution values
and the average computing times in seconds over 5 runs respectively. The results presented in Table
11 correspond to the 15 combinations of parameters values which brought the best average solution
values among 64 combinations tested. The first six columns correspond to the combinations tested while
the last two columns are the average solution values and average computing times in seconds over 3
runs respectively. In both tables, results are sorted in the decreasing order of the average solution value
obtained. Bold rows correspond to the selected combinations of parameters values.
Table 10
Results obtained during the calibration of VNS

kmax itmax Avg. Value Avg. Time (s)
3 5 × 102 568.9470 51
3 103 568.8626 112
5 103 568.3557 86
5 5 × 102 567.1563 58
7 103 566.9445 91
7 5 × 102 564.6677 42

Table 11
Results obtained during the calibration of SA (15 best)

T0 Tf � Nt k itmax Avg. Value Time (s)
10 0.1 0.98 5 3 104 562.1693 71
10 0.1 0.98 10 3 104 561.2068 158
20 0.1 0.98 10 3 103 560.7677 50
20 0.1 0.95 5 3 103 560.0849 26
20 0.01 0.98 10 3 103 559.8920 62
20 0.1 0.95 10 3 103 559.3519 47
10 0.1 0.95 10 3 104 559.3456 62
10 0.01 0.95 5 3 104 559.0968 40
10 0.1 0.95 5 3 104 558.8763 30
10 0.01 0.98 5 3 104 558.8584 106
10 0.01 0.98 5 3 103 558.7867 57
10 0.01 0.95 10 3 104 558.7666 89
10 0.01 0.95 10 3 103 558.6839 55
10 0.1 0.95 5 7 103 558.6774 31
10 0.1 0.95 5 3 103 558.4810 27

37

B Detailed results on the newly generated dataset

Tables 12-17 present the results obtained by SA, xSA, VNS and xVNS on the dataset we have generated
(see Section 4.1.2). The tables follow the same structure, that is, the first two columns identify the
instance and the next columns present the results obtained by applying five runs of SA, xSA, VNS and
xVNS respectively. The times presented in those columns correspond to the total time in seconds spent
by each algorithm over the five runs for every instance. Bold values correspond to the best solution value
found. The last rows provide average measures over the instances and the number of best values obtained.
Table 12
Results in the case of maximising the number of rectangles packed without rotation

n � SA xSA VNS xVNS
Best Avg. T(s) Best Avg. T(s) Best Avg. T(s) Best Avg. T(s) BKS

100 1
3

45 44.20 101 45 43.80 33 45 44.00 66 44 43.20 29 45
1
2

59 57.60 141 58 57.60 49 58 57.60 85 59 58.00 43 59
2
3

70 69.80 181 70 69.80 64 69 69.00 95 70 69.60 51 70
150 1

3
70 68.80 272 69 68.20 96 72 71.20 217 72 71.20 84 72

1
2

91 90.40 380 91 90.40 156 92 91.80 258 91 90.60 118 92
2
3

110 108.80 501 110 108.60 208 110 108.40 286 110 108.40 175 110
200 1

3
95 94.00 534 96 94.40 212 99 97.00 468 99 97.40 221 99

1
2

123 121.80 818 124 121.80 317 124 123.20 737 124 122.80 244 124
2
3

146 144.80 1038 146 144.40 411 146 145.20 683 147 145.20 334 147

Avg. diff. or T(s) 1.00 1.98 441 1.00 2.11 172 0.33 1.18 322 0.22 1.29 144
Best 4 4 6 7

Table 13
Results in the case of maximising the number of rectangles packed with rotation

n � SA xSA VNS xVNS
Best Avg. T(s) Best Avg. T(s) Best Avg. T(s) Best Avg. T(s) BKS

100 1
3

46 45.2 185 45 43.8 56 45 44.4 110 44 43.8 44 46
1
2

59 58.0 239 59 58.2 79 59 57.8 164 59 58.2 69 59
2
3

71 70.4 275 71 69.8 97 70 69.4 149 70 69.0 65 71
150 1

3
70 69.4 458 69 68.8 167 73 71.6 463 72 71.2 120 73

1
2

92 90.6 611 90 90.0 229 93 91.8 379 92 91.4 175 93
2
3

110 109.0 745 109 108.0 287 110 108.8 570 109 108.4 209 110
200 1

3
95 94.6 927 95 94.4 321 98 97.4 805 98 97.0 267 98

1
2

125 122.6 1267 122 121.2 469 126 124.4 1190 125 123.8 593 126
2
3

148 146.0 1519 147 146.4 582 147 146.4 1579 147 145.8 451 148

Avg. diff. or T(s) 0.89 2.02 692 1.89 2.60 254 0.33 1.33 601 0.89 1.71 221
Best 5 2 6 2

38

Ta
bl
e
14

Re
sul

tsi
nt

he
cas

eo
fm

axi
mi

sin
gt

he
nu
mb

er
of

squ
are

sp
ack

ed

n
�

SA
xS

A
VN

S
xV

NS
Be

st
Av

g.
T(s

)
Be

st
Av

g.
T(s

)
Be

st
Av

g.
T(s

)
Be

st
Av

g.
T(s

)
BK

S
10

0
1 3

53
52

.20
11

8
52

51
.60

36
52

51
.40

12
6

52
51

.80
42

53
1 2

67
65

.60
15

3
66

64
.80

52
64

63
.40

14
5

64
63

.60
55

67
2 3

76
75

.20
17

6
76

75
.20

66
73

72
.80

14
3

73
72

.40
53

76
15

0
1 3

84
82

.80
28

9
86

84
.20

11
0

84
83

.80
30

8
84

82
.80

11
4

86
1 2

10
3

10
1.8

0
42

9
10

3
10

2.0
0

15
6

10
0

99
.80

31
9

10
1

10
0.4

0
15

6
10

3
2 3

11
7

11
5.4

0
51

1
11

6
11

5.4
0

19
1

11
3

11
2.6

0
39

3
11

3
11

2.6
0

14
0

11
7

20
0

1 3
10

7
10

4.6
0

58
5

10
7

10
4.6

0
21

8
10

8
10

5.6
0

56
9

10
8

10
5.8

0
32

4
10

8
1 2

13
2

13
0.6

0
83

2
13

1
12

8.6
0

32
3

13
0

12
9.2

0
68

7
13

0
12

9.2
0

37
1

13
2

2 3
15

2
15

1.0
0

10
82

15
2

15
1.6

0
43

0
15

2
14

9.8
0

89
5

15
2

14
9.6

0
57

5
15

2

Av
g.

diff
.o

rT
(s)

0.3
3

1.6
4

46
4

0.5
6

1.7
8

17
6

2.0
0

2.8
4

39
9

1.8
9

2.8
7

20
4

#B
est

7
4

2
2

39

Ta
bl
e
15

Re
sul

tsi
nt

he
cas

eo
fm

axi
mi

sin
gt

he
are

ao
fre

cta
ng
les

pac
ked

wi
tho

ut
rot

ati
on

n
�

SA
xS

A
VN

S
xV

NS
Be

st
Av

g.
T(s

)
Be

st
Av

g.
T(s

)
Be

st
Av

g.
T(s

)
Be

st
Av

g.
T(s

)
BK

S
10

0
1 3

27
6.2

50
3

27
4.7

73
6

96
27

6.2
81

4
27

4.9
90

3
36

28
1.
58

51
27

9.3
19

6
61

27
9.3

87
8

27
8.0

03
1

15
28

1.
58

51
1 2

41
8.9

82
0

41
8.9

82
0

14
3

41
9.3

92
4

41
9.0

64
1

48
42

4.7
80

6
42

4.3
10

1
95

42
6.
36

33
42

4.4
91

3
32

42
6.
36

33
2 3

55
6.3

57
8

55
5.6

12
5

19
2

55
5.9

00
7

55
5.4

87
8

64
56

7.
07

07
56

3.8
86

5
15

6
56

6.9
14

2
56

4.9
20

0
38

56
7.
07

07
15

0
1 3

38
2.7

67
1

38
2.6

84
1

25
0

38
2.6

63
3

38
2.6

63
3

75
38

7.9
16

2
38

6.4
72

8
14

4
38

8.
29

88
38

6.9
97

1
30

38
8.
29

88
1 2

57
6.9

80
4

57
6.0

19
9

32
4

57
5.7

56
9

57
5.7

56
9

12
7

58
3.5

55
6

58
1.0

67
8

25
8

58
6.
56

27
58

2.6
33

6
76

58
6.
56

27
2 3

76
9.4

40
7

76
5.6

10
1

43
6

76
5.4

98
7

76
3.1

94
1

17
8

78
0.
17

88
77

7.1
62

8
51

0
77

8.7
91

3
77

4.7
56

3
11

1
78

0.
17

88
20

0
1 3

49
7.3

10
0

49
7.3

10
0

46
1

49
7.7

66
9

49
7.5

24
0

15
9

50
3.
11

95
50

2.1
40

0
22

1
50

2.6
46

7
50

1.5
60

3
75

50
3.
11

95
1 2

74
5.3

24
3

74
5.0

53
7

73
4

74
5.4

89
4

74
5.0

86
7

26
4

75
8.
44

39
75

4.7
13

7
58

9
75

5.8
38

0
75

3.8
64

9
17

7
75

8.
44

39
2 3

99
4.7

47
4

99
0.0

43
1

98
9

99
2.5

02
5

98
7.2

14
2

38
9

10
03

.50
17

10
01

.28
16

88
7

10
04

.4
62

6
10

02
.15

43
31

5
10

04
.4
62

6

Av
g.

diff
.o

rT
(s)

1.5
3

1.7
4

40
3

1.6
3

1.8
0

14
9

0.1
2

0.5
2

32
4

0.1
6

0.5
5

99
7

#B
est

0
0

5
4

Ta
bl
e
16

Re
sul

tsi
nt

he
cas

eo
fm

axi
mi

sin
gt

he
are

ao
fre

cta
ng
les

pac
ked

wi
th

rot
ati
on

n
�

SA
xS

A
VN

S
xV

NS
Be

st
Av

g.
T(s

)
Be

st
Av

g.
T(s

)
Be

st
Av

g.
T(s

)
Be

st
Av

g.
T(s

)
BK

S
10

0
1 3

27
5.9

86
2

27
5.9

86
2

16
7

27
7.5

97
0

27
6.3

65
9

57
28

2.
34

65
28

0.7
83

0
12

9
28

1.9
97

4
28

1.3
74

9
34

28
2.
34

65
1 2

42
2.5

90
4

42
2.5

90
4

22
1

42
2.5

90
4

42
2.5

90
4

73
42

6.5
57

3
42

5.9
24

1
14

5
42

7.
78

79
42

6.5
26

7
37

42
7.
78

79
2 3

56
4.5

29
3

56
1.1

40
5

28
1

56
2.1

46
3

55
7.6

32
1

96
57

1.6
36

9
56

9.1
37

6
33

6
57

2.
00

70
56

8.7
47

8
84

57
2.
00

70
15

0
1 3

38
6.3

59
9

38
6.0

96
9

46
3

38
6.0

31
2

38
6.0

31
2

13
3

38
9.6

02
0

38
8.5

25
7

22
2

39
0.
36

42
38

8.9
52

7
87

39
0.
36

42
1 2

57
6.2

67
0

57
4.8

73
5

57
7

57
7.8

81
2

57
5.4

81
8

20
7

58
5.
59

47
58

3.7
21

0
53

9
58

5.3
37

1
58

3.9
77

2
13

0
58

5.
59

47
2 3

77
1.9

01
6

76
9.5

40
4

75
2

76
9.8

56
3

76
8.8

43
6

28
7

78
0.
70

81
77

8.2
18

6
10

73
77

8.4
88

1
77

7.7
28

3
28

4
78

0.
70

81
20

0
1 3

50
0.0

27
1

49
8.8

45
1

80
3

49
8.7

33
0

49
8.3

39
3

27
4

50
5.
41

26
50

3.2
49

0
50

3
50

4.4
35

6
50

3.6
25

2
12

2
50

5.
41

26
1 2

74
8.1

29
6

74
8.1

29
6

12
15

75
2.3

38
3

74
9.1

07
9

42
9

75
7.9

59
2

75
5.5

61
4

14
64

75
9.
60

69
75

7.6
32

6
27

1
75

9.
60

69
2 3

99
4.3

34
1

99
2.4

80
0

14
48

99
0.3

53
6

98
9.3

66
7

62
4

10
08

.30
91

10
06

.34
42

22
47

10
09

.0
78

2
10

04
.55

93
62

3
10

09
.0
78

2

Av
g.

diff
.o

rT
(s)

1.4
0

1.5
8

65
9

1.4
0

1.6
6

24
2

0.0
9

0.4
3

74
0

0.0
7

0.3
7

18
6

#B
est

0
0

4
5

40

Ta
bl
e
17

Re
sul

tsi
nt

he
cas

eo
fm

axi
mi

sin
gt

he
are

ao
fsq

uar
es

pac
ked

n
�

SA
xS

A
VN

S
xV

NS
Be

st
Av

g.
T(s

)
Be

st
Av

g.
T(s

)
Be

st
Av

g.
T(s

)
Be

st
Av

g.
T(s

)
BK

S
10

0
1 3

29
3.5

57
8

29
3.4

94
9

10
6

29
4.0

06
0

29
3.5

84
6

33
29

7.
84

81
29

6.3
68

5
72

29
7.5

02
4

29
6.5

67
1

20
29

7.
84

81
1 2

44
6.0

63
2

44
3.2

70
3

14
5

44
7.1

60
4

44
3.3

07
4

48
44

9.
08

98
44

7.3
72

8
13

8
44

8.5
02

3
44

6.7
42

9
33

44
9.
08

98
2 3

58
7.8

82
4

58
6.7

83
1

19
4

58
8.6

18
2

58
7.0

08
6

62
60

0.
25

14
59

6.5
11

1
20

8
59

7.5
73

1
59

4.7
55

9
58

60
0.
25

14
15

0
1 3

46
9.7

62
1

46
8.9

56
7

28
6

46
9.4

24
1

46
8.7

43
0

88
47

2.4
78

5
47

0.7
99

7
17

1
47

2.
70

61
47

1.3
67

0
44

47
2.
70

61
1 2

70
7.3

69
4

70
5.7

66
1

36
9

70
6.7

17
4

70
5.8

50
0

13
0

71
4.
33

85
71

2.3
81

5
31

2
71

2.6
76

3
71

1.3
25

0
10

4
71

4.
33

85
2 3

93
5.9

34
6

93
5.0

46
6

53
2

94
3.7

22
9

93
9.3

35
3

17
7

94
8.
34

43
94

6.8
23

9
59

9
94

8.0
18

0
94

4.3
80

7
14

1
94

8.
34

43
20

0
1 3

59
3.9

04
5

59
0.6

65
1

57
2

59
1.9

19
7

59
0.9

76
5

17
6

59
6.
42

52
59

5.3
75

4
23

7
59

5.6
43

5
59

5.0
20

9
59

59
6.
42

52
1 2

88
2.0

00
2

87
9.1

13
7

74
8

88
2.5

37
3

87
9.6

88
8

27
2

88
9.4

87
4

88
7.5

52
5

45
7

89
0.
10

31
88

8.5
54

6
15

0
89

0.
10

31
2 3

11
78

.86
31

11
76

.33
17

10
64

11
75

.91
92

11
74

.58
48

39
1

11
85

.90
45

11
82

.50
38

13
30

11
88

.5
52

8
11

84
.66

62
30

8
11

88
.5
52

8

Av
g.

diff
.o

rT
(s)

1.0
3

1.2
9

44
6

0.9
5

1.2
4

15
3

0.0
4

0.5
0

39
1

0.1
2

0.4
1

10
2

#B
est

0
0

6
3

41

	Introduction and literature review
	The procedure pack
	Problem definition and formulation
	Overview of the procedure pack
	Initial configurations (step 2 of Algorithm 1)
	Determining a promising feasible placement (step 6 of Algorithm 1)
	Updating the border (step 8 of Algorithm 1)
	Flexibility of the procedure pack
	Complexity of pack
	An illustrative example
	Building the border of an already known packing

	Integration of pack into two metaheuristics
	Applications of VNS and SA to packing problems in the literature
	Integration of pack into a VNS scheme
	Integration of pack into a SA scheme
	Speed-up mechanisms
	Some observations

	Computational experiments
	Datasets and parameter calibration
	Existing dataset
	Newly constructed large dataset
	Parameter calibration for VNS & SA

	Results on the López and Beasley's dataset (PACK:Data)
	Overall results
	Statistical significance

	Results on the newly constructed dataset

	Conclusion & Suggestions
	Complementary data for the calibration of VNS and SA
	Detailed results on the newly generated dataset

