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Abstract. Assessing critical infrastructure vulnerabilities is paramount
to arrange efficient plans for their protection. Critical infrastructures are
network-based systems hence, they are composed of nodes and edges. The
literature shows that node criticality, which is the focus of this paper,
can be addressed from different metric-based perspectives (e.g., degree,
maximal flow, shortest path). However, each metric provides a specific
insight while neglecting others. This paper attempts to overcome this pit-
fall through a methodology based on ranking aggregation. Specifically, we
consider several numerical topological descriptors of the nodes’ impor-
tance (e.g., degree, betweenness, closeness, etc.) and we convert such
descriptors into ratio matrices; then, we extend the Analytic Hierarchy
Process problem to the case of multiple ratio matrices and we resort to a
Logarithmic Least Squares formulation to identify an aggregated metric
that represents a good tradeoff among the different topological descrip-
tors. The procedure is validated considering the Central London Tube
network as a case study.

Keywords: Critical infrastructures · Criticality analysis · Ranking
aggregation · Analytic Hierarchy Process · Least squares optimization

1 Introduction

Critical infrastructures are prone to disasters, both man-made and natural (e.g.,
see [1–3] in the case of railway infrastructures). Given the potential consequences
of such disasters, it is mandatory to quantify and identify subsystems that are
particularly critical, in that their disruption may cause severe consequences on
the remaining subsystems. In this view, identifying such vulnerabilities is essen-
tial for deciding how to invest resources in order for instance to protect vulnerable
subsystems. This is particularly relevant for critical infrastructure networks (e.g.,
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power networks, railway networks, etc.), where the importance/criticality of a
subsystem may not depend just on the physical characteristics of such subsys-
tems, but also on the complex web of connections and relations that intertwine
such composing elements [4,5]. Assessing critical infrastructure vulnerabilities
is paramount to arrange efficient plans for their protection. Critical infrastruc-
tures are network-based systems hence, they are composed of nodes and edges.
The literature shows that node criticality, which is the focus of this paper,
can be addressed from different metric-based perspectives (e.g., degree, max-
imal flow, shortest path) [6–10]. However, each metric provides a specific insight
while neglecting others. This paper attempts to overcome this pitfall through a
methodology based on ranking aggregation. Specifically, in this paper we develop
a methodology to aggregate topological descriptors based on the Analytic Hier-
archy Process (AHP) [11]: first, we convert the numerical topological descriptors
into ratio matrices and then we extend the Logarithmic Least Squares (LLS)
AHP methodology [12–16] in order to find a least-squares optimal ranking that
is a compromise among the considered ones. It should be noted that the prob-
lem of aggregating rankings has raised some interest in previous research: in [17]
Kendall and Hausdorff distances are used to compare rankings and a median-
based approach is used to identify an overall ranking; in [18] interval ordinal
rankings are considered; in [19] (and references therein) the bucket order prob-
lem is considered, i.e., finding an agreement based on several ranking matrices
with ordinal information. Notice that, in [6], the authors quantify the correlation
of centrality measures with risk levels in Dependency Risk Graphs and provide
an heuristic algorithm to recursively select a subset of nodes based on the cen-
trality measure with the highest correlation. In this paper we approach such a
problem from a different perspective starting from the topological structure of
the infrastructure and looking for those nodes that “optimize” a set of metrics
which are not limited to the centrality ones. In this way, the aggregated ranking
hereby proposed has a number of benefits: (i) being the result of a least-squares
minimization problem, it represents the optimal tradeoff among the considered
metrics; (ii) it provides a numerical characterization of the criticality of each
node; (iii) it is not computationally expensive, as it consists in solving a system
of n linear equations with n unknowns, where n is the number of nodes in the
network. The remainder of this paper is organized as follows: after some nota-
tion, which concludes this section, we present our aggregation methodology in
Sect. 2; then, in Sect. 3 we validate the methodology with respect to a case study,
namely, the Central London Tube network; finally, we provide some conclusive
remarks and future work directions in Sect. 4.

1.1 Notation

We denote vectors via boldface letters, while matrices are shown with uppercase
letters. We use Aij to address the (i, j)-th entry of a matrix A and xi for the
i-th entry of a vector x. Moreover, we write 1n and 0n to denote a vector with
n components, all equal to one and zero, respectively; similarly, we use 1n×m

and 0n×m to denote n × m matrices all equal to one and zero, respectively. We
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denote by In the n × n identity matrix. We express by exp(·) and ln(·) the
component-wise exponentiation or logarithm of a vector or matrix.

2 Aggregating Heterogeneous Rankings

In this section, we describe the methodology adopted to calculate an aggregated
ranking that is representative of several rankings over the same set of alterna-
tives.

2.1 The Approach in a Nutshell

Generally, different ranking criteria capture peculiar elements in terms of node
criticality. Hence, any one of them provides a useful point of view to better
understand the role and the relevance of each node. Consequently, selecting one
ranking criterion while discarding another, may lead to misleading prioritizations
in the protection strategies. To overcome such a limit we propose to aggregate
the different ranking criteria into a single “super-ranking”, i.e., an aggregated
ranking that potentially collects all the different aspects of traditional metrics.
In this view, our main idea is to convert the numerical rankings into square
matrices containing the ratios of the importance of pairs of alternatives, and
then combine them in a least square sense via the Logarithmic Least Squares
Analytic Hierarchy Process (LLS-AHP) methodology [12–16], in order to obtain
an aggregated ranking that is a good trade-off among the available ones. This
approach has the advantage to allow a fair comparison among the criteria, in
that the rankings are compared in terms of ratios of utilities and not in terms
of actual utilities, which may have very different scales. Moreover, the least
squares approach provides clear information on the degree of conflict among the
rankings, in that the smaller the value of the objective function of the least
squares problem is, the more data are in accordance, and vice versa.

2.2 Formal Definition of the Method

Let us consider a situation where we are given m cardinal (i.e., numerical) rank-
ings r(1), . . . , r(m) over the set of n nodes in a given graph. In particular, each
ranking r(i) is an n × 1 vector having positive entries, and r

(i)
j represents the

numerical value or utility associated to the j-th node according to the i-th rank-
ing. In order to obtain an aggregated ranking that is representative for the given
m rankings, our approach is composed of two logical steps: (1) converting the
rankings into ratio matrices and (2) calculating the overall ranking. During the
first step, we convert each ranking r(i) into an n × n matrix W (i) such that the
(u, v)-th entry W

(i)
uv is in the form W

(i)
uv = r

(i)
u /r

(i)
v . In other words, W (i)

uv mod-
els the relative utility or importance of the u-th alternative over the j-th one
according to the i-th ranking. As a second step, we aim at finding the ranking
vector w∗ that solves the following problem.
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Problem 1. Find w∗ ∈ R
n that solves

arg min
w∈Rn

f(w) =
m∑

i=1

n∑

u=1

n∑

v=1

(
ln(W (i)

uv ) − log(wu) + log(wv)
)2

subject to
{
wu > 0, ∀u ∈ {1, . . . , n}.

(1)

The above problem aims at finding the vector w∗ such that the logarithm of the
ratio of its components is the least squares compromise among the logarithms
of the corresponding ratios W

(i)
uv . In other words, Problem 1 aims at finding the

weight wu, to be assigned to each node, such that the ratios wu/wv minimize the
deviation from respect to the ratios W

(i)
uv for the m considered criteria. In order

to solve this problem, which is in general non-convex and may have non-unique
solution, we aim at finding a vector y∗ such that w∗ = exp(y∗), where exp(·) is
the component-wise exponential; in other words, we aim at solving the following
unconstrained problem.

Problem 2. Find y∗ ∈ R
n that solves

arg min
y∈Rn

g(y) =
m∑

i=1

n∑

u=1

n∑

v=1

(
ln(W (i)

uv ) − yu + yv

)2

. (2)

The above problem is easily solved in a closed form. Specifically, being an
unconstrained convex problem, the minimum is attained at y∗ such that, for
all u ∈ {1, . . . , n}, it holds ∂g(y)

∂yu
|y=y∗ = 0. By some algebra, it can be shown

that the optimal y∗ satisfies

m(n In − 1n1T
n )y∗ =

m∑

i=1

log(W (i))1n,

where log(W (i)) is the n×n matrix collecting the logarithm of the corresponding
entries of W (i) (note that we assumed the rankings have positive entries hence
the logarithm is always finite). Note further that matrix n In − 1n1T

n is the
Laplacian matrix of a complete graph and is singular [20]; hence, in order to find
y∗, one may need to resort to a pseudoinverse, i.e., by setting

y∗ =
1
m

(
n In − 1n1T

n

)† m∑

i=1

log(W (i))1n,

where
(
n In − 1n1T

n

)† denotes the left pseudoinverse of n In − 1n1T
n . An alter-

native approach is to solve in an approximated way via the differential equation

ẏ(t) = m(1n1T
n − n In)y(t) +

m∑

i=1

log(W (i))1n

which is known to asymptotically converges to a vector that satisfies the above
singular system of equations [21].
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3 Case Study

Fig. 1. Central London tube map.

In this section, we consider as an example the Central London Tube network
(Fig. 1). Specifically, we represent each station by a node (we consider 50 sta-
tions) and we model by directed edges (178 in total) the connections among
neighboring stations; in particular, we associate to each edge a weight that cor-
responds to the average travel time (in seconds) between its endpoints. In other
words, we consider a graph that is bidirectional (i.e., there is an edge from i
to j whenever there is an edge from j to i) and asymmetric (i.e., the weight
associated to the edge from i to j is different from the weight of the edge from
j to i.) Fig. 2 reports the resulting asymmetric graph, where edges’ color cor-
responds to the average travel time, according to the provided heatmap; notice
that the association between the numerical identifier for each station and the
corresponding name can be found in Table 1. With respect to the aforemen-
tioned graph, we consider some of the most popular centrality measures in the
literature. Specifically, we consider (see [22] and references therein for details):

– In-degree: sum of the weights of the edges incoming at each node;
– Out-degree: sum of the weights of the edges outgoing at each node;
– Betweenness: measures how often a node belongs to the shortest paths

between any pair of nodes. If the graph is weighted then path lengths
depend on the weights. Specifically the betweenness is defined as bu =∑

s,t�=u N
(u)
st /Nst, where N (u)

st is the amount of minimum paths between nodes
s and t passing via node u and Nst is the total number of minimum paths
between nodes s and t.
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Fig. 2. Central London tube map as a bidirectional asymmetric weighted graph,
where weights corresponds to the average travel time (in seconds) between neighboring
stations.

– Pagerank: it is a measure of importance of the nodes that results from a
random walk on the network. Specifically, the random walk is performed with
probabilities that depend on the edges’ weights. If at some point a node has
no outgoing edges, a new random node is chosen. The pagerank measure is
the average time spent at each node during the walk.

– Hubs & Authorities: such metrics are defined together in a recursive way.
The ’hubs-score’ of a node is the sum of the ’authorities-score’ of its neigh-
bors, and vice-versa. Such values can be regarded as the left (hubs) and right
(authorities) singular vectors that correspond to the largest singular value of
the adjacency matrix of the graph.

– Closeness: this metric is based on the inverse sum of the distances from a
node to all other nodes in the graph. Specifically, the closeness is defined as
cu = Au/(Cu(n − 1)), where Au is the number of reachable nodes from node
u (not counting u), n is the number of nodes in the graph, and Cu is the sum
of the distances from node u to all reachable nodes (if the node is isolated
then cu = 0).
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– Eigenvector Centrality: this metric uses the eigenvector corresponding to
the largest eigenvalue of the graph adjacency matrix. The scores are normal-
ized such that the sum of all values is equal to 1.

Overall, we obtain m = 8 (numerical) ranking vectors r(i). In Table 1, we report
the numerical data for each topological descriptor and for the proposed aggre-
gated metric, while in Table 2 we report the ranking of the stations based, again,
on the topological descriptors and on the proposed aggregated metric. In order
to provide an immediate understanding of the above data, we show in Fig. 3
the criticality of each node in the network based on the different metrics via a
red-blue heat-map, i.e., the more the color of the nodes is red the more the value
of the corresponding metric is closer to the maximum value. According to the
figure, the different topological indicators identify very different nodes as the
most important, and that the proposed aggregated metric represents, indeed, a
compromise among the original metrics.

Fig. 3. Visual representation of the nodes’ criticality according to the different topo-
logical descriptors and to the proposed aggregated measure. (Color figure online)
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Fig. 4. Kendall’s correlation between the ranking obtained based on the proposed
aggregated metric and the rankings obtained according to the considered topological
descriptors, considering all stations (Fig. 4a) and considering only the 20 most impor-
tant stations according to the aggregated metric (Fig. 4b).
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Table 1. Nodes featured in the case study with the numerical values of the considered
topological descriptors and of the proposed aggregated centrality.

Id Name In-degree Out-degree Betweeness Pagerank Hubs Authorities Closeness Eigenvector Aggregated

1 Angel 461 502 73.33 0.021 0.018 0.004 0.004 0.003 0.013
2 Baker Street 880 872 455.6 0.037 0.023 0.026 0.005 0.037 0.042
3 BankMonument 1089 1003 468.3 0.046 0.035 0.225 0.005 0.010 0.052
4 Barbican 260 252 54 0.013 0.003 0.020 0.004 0.002 0.009
5 Bayswater 342 310 66.16 0.018 0.001 0.001 0.003 0.001 0.006
6 Blackfriars 262 289 39.5 0.016 0.003 0.004 0.004 0.003 0.008
7 Bond Street 595 618 566.21 0.025 0.033 0.040 0.006 0.064 0.044
8 Cannon Street 186 190 79.16 0.012 0.033 0.006 0.004 0.003 0.011
9 Chancery Lane 239 237 87.86 0.013 0.003 0.016 0.005 0.007 0.012
10 Charing Cross 342 357 88.73 0.016 0.017 0.014 0.005 0.042 0.021
11 Covent Garden 230 217 22.73 0.012 0.003 0.003 0.005 0.019 0.009
12 Edgware Road 529 467 196.83 0.025 0.008 0.011 0.005 0.015 0.020
13 Embankment 500 501 236.90 0.022 0.030 0.063 0.005 0.032 0.035
14 Euston 264 267 120.56 0.013 0.006 0.005 0.005 0.011 0.013
15 Euston Square 290 305 140.90 0.014 0.007 0.004 0.005 0.005 0.018
16 Farringdon 418 434 73.33 0.019 0.013 0.003 0.004 0.003 0.012
17 Gloucester Road 317 351 90.66 0.016 0.001 0.001 0.003 0.002 0.007
18 Goodge Street 235 239 7.13 0.012 0.004 0.006 0.005 0.023 0.009
19 Great Portland Street 328 348 162.00 0.015 0.009 0.010 0.005 0.011 0.017
20 Green Park 1024 1037 819.89 0.039 0.071 0.052 0.007 0.090 0.069
21 High Street Kensington 381 348 51.33 0.019 0.000 0.001 0.003 0.001 0.004
22 Holborn 525 533 244.52 0.025 0.006 0.006 0.005 0.023 0.021
23 Hyde Park Corner 283 285 158.83 0.013 0.014 0.023 0.005 0.026 0.021
24 St Pancras 1027 980 322.40 0.042 0.005 0.020 0.005 0.008 0.027
25 Knightsbridge 360 333 89.50 0.016 0.006 0.005 0.004 0.009 0.013
26 Lancaster Gate 297 357 141.16 0.017 0.002 0.002 0.004 0.005 0.010
27 Leicester Square 409 407 101.64 0.019 0.010 0.013 0.005 0.050 0.021
28 London Bridge 155 153 0.00 0.009 0.051 0.010 0.004 0.003 0.000
29 Mansion House 245 220 26.66 0.015 0.002 0.006 0.004 0.002 0.007
30 Marble Arch 294 262 213.16 0.014 0.006 0.007 0.005 0.019 0.016
31 Marylebone 220 225 0.00 0.012 0.006 0.006 0.004 0.014 0.000
32 Moorgate 446 473 178.33 0.022 0.073 0.013 0.004 0.004 0.022
33 Notting Hill Gate 433 452 87.00 0.024 0.001 0.000 0.003 0.001 0.006
34 Old Street 432 380 54.00 0.019 0.004 0.028 0.004 0.002 0.012
35 Oxford Circus 968 899 529.20 0.037 0.039 0.056 0.006 0.093 0.058
36 Paddington 371 398 127.50 0.021 0.004 0.003 0.004 0.004 0.011
37 Piccadilly Circus 572 572 128.55 0.024 0.031 0.034 0.006 0.074 0.035
38 Queensway 282 253 76.16 0.015 0.000 0.001 0.004 0.002 0.005
39 Regents Park 340 350 58.72 0.015 0.022 0.019 0.005 0.035 0.021
40 Russell Square 322 327 80.00 0.015 0.007 0.003 0.005 0.008 0.012
41 Sloane Square 373 380 124.50 0.016 0.011 0.008 0.004 0.010 0.016
42 South Kensington 551 583 158.66 0.024 0.004 0.006 0.004 0.005 0.015
43 St James Park 294 283 51.66 0.013 0.025 0.015 0.005 0.021 0.018
44 St Pauls 315 314 75.00 0.017 0.057 0.011 0.004 0.005 0.017
45 Temple 274 283 104.83 0.015 0.014 0.008 0.004 0.009 0.015
46 Tottenham Court Road 471 491 245.21 0.022 0.013 0.011 0.006 0.052 0.026
47 Victoria 501 512 219.16 0.022 0.020 0.033 0.005 0.032 0.030
48 Warren Street 392 411 186.70 0.018 0.016 0.013 0.005 0.034 0.024
49 Waterloo 695 770 359.63 0.029 0.192 0.043 0.005 0.023 0.049
50 Westminster 620 609 508.06 0.025 0.039 0.086 0.006 0.044 0.047
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In order to validate the above intuition, we calculate the Kendall’s correla-
tion coefficient1 between the ranking obtained based on the proposed aggregated
metric and the rankings obtained according to the considered topological descrip-
tors, as shown in Fig. 4; specifically, we show in Fig. 4a the correlation over the
entire set of nodes, while Figs. 4b displays the correlations obtained considering
the 20 most important nodes according to the aggregated metric. As shown by
the figures, it can be noted that the correlations obtained over the whole set of
nodes are all less than 0.1 in magnitude, while limiting to a subset of the 20
most important nodes the correlations with most metrics further reduce, except
for the eigenvector centrality, which reaches a correlation of 0.2. Overall, the
above results suggest that the proposed index, by aggregating different metrics,
assigns a criticality to the nodes that can not be exhaustively explained by any
of the original metrics. In fact, by looking at Fig. 3, it can be noted that the
most influential nodes according to the proposed aggregated metric are indeed
represented by the union of the most influent nodes according to all the different
topological descriptors (although we observe that the high importance assigned
to some peripheral nodes based on the closeness, in-degree and out-degree crite-
ria is reduced in the aggregated metric.

4 Conclusions and Future Work

In this paper we provide a novel methodology to aggregate heterogeneous crit-
icality indices for critical infrastructure networks in order to obtain an overall
aggregated ranking that represents a good trade-off among the different metrics.
Such an index can be the basis for implementing protection strategies that are
not driven by a single factor but consider at the same time multiple facets of node
criticality. The main idea is to convert the metrics in ratio matrices and then
compute an aggregated metric by means of a generalization of the Logarithmic
Least Squares Analytic Hierarchy Process technique to the case of multiple ratio
matrices. The experimental results show that the proposed approach assigns

1 Given two pairs of values (ai, bi) and (aj , bj), we say they are concordant if both
ai > aj and bi > bj or if both ai < aj and bi < bj ; similarly the pairs are discordant
if ai > aj and bi < bj or if ai < aj and bi > bj . If ai = aj or bi = bj the pairs
are neither concordant nor discordant. Given two vectors a ∈ R

n and b ∈ R
n, the

Kendall’s correlation index [23] τ is defined as

τ =
C − P

n(n − 1)/2
,

where C and P are the set of concordant and discordant pairs (ai, bi) and (aj , bj),
respectively. When b is a permutation of the components of a, the Kendall’s tau can
be interpreted as a measure of the degree of shuffling of b with respect to a, between
minus one and one. In this sense τ = 1 implies a = b, while τ = −1 represents the
fact b is in reverse order with respect to a. The closer is τ to (minus) one, therefore,
the more the two rankings are (anti-) correlated, while the closer is τ to zero the
more the two rankings are independent.
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large relevance to the most influential nodes according to the single indices; yet,
the resulting criticality cannot be exhaustively explained by any of the origi-
nal metrics thus requiring further investigation. Future work will follow three
main directions: (i) we will consider different graphs over the same set of nodes
(e.g., structural graph, flow graph,. etc.) in order to take into account, at the
same time, both structural and dynamical characteristics of the network; (ii) we
will extend the framework by implementing a multi-criteria decision procedure
to weight differently the different topological descriptors, in order to obtain a
synthetic metric that reflects the preferences of stakeholders or decision-makers;
(iii) we will inspect the possibility to prioritize ordinal information over cardi-
nal information, extending the framework in [24] to the case of multiple ratio
matrices.

Acknowledgements. This work was supported by INAIL via the European Safera
project “Integrated Management of Safety and Security Synergies in Seveso Plants”
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16. Bozóki, S., Tsyganok, V.: The (logarithmic) least squares optimality of the arith-
metic (geometric) mean of weight vectors calculated from all spanning trees for
incomplete additive (multiplicative) pairwise comparison matrices. Int. J. Gen.
Syst. (2019, to appear)

17. Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D., Vee, E.: Comparing and aggre-
gating rankings with ties. In: Proceedings of the Twenty-Third ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, pp. 47–58. ACM
(2004)
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