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Abstract 

The structural, electronic and magnetic properties of interfaces between epitaxial La0.7Sr0.3MnO3 and PbTiO3 

have been explored via atomic resolution transmission electron microscopy of a functional multiferroic tunnel 

junction. Measurements of the polar displacements and octahedral tilting show the competition between the 

two distortions at the interface, and demonstrate a strong dependence on the polarisation orientation. Density 

functional theory provides information on the electronic and magnetic properties, where the interface 

termination plays a crucial role in the screening mechanisms. 

 

Introduction 

Polarisation screening at metal-ferroelectric interfaces has been a puzzling issue since the dawn of 

ferroelectric thin films.  This screening from free charge in the metal is crucial in ferroelectric films for 

reducing the depolarising field created by the separation of the bound charges. This depolarising field acts to 

reduce the polarisation with the extreme case of completely annihilating it.1 Early studies suggested that the 

polarisation should decrease at the ferroelectric-metal interfaces vanishing either within the ferroelectric2,3 or 

by penetrating the electrodes for a finite range, usually related to the Thomas-Fermi screening length.4 In all 

scenarios the thin films suffered high depolarising fields that would, in the extreme case of ultra-thin films, 

totally suppress the ferroelectric polarisation. Improved growth techniques for ferroelectric thin films now 

allow these predictions to be tested by the experimental realisation of such ultrathin films. Interestingly, 

ferroelectricity has been found to exist in films only a few unit cells in thickness (e.g. in PbTiO3,5,6 BaTiO3,7 

and BiFeO3
8), suggesting sufficient screening can be achieved. This has allowed the development of structures 

with novel properties through the manipulation of their order parameters (e.g. polarisation, strain, 

magnetism).5,6,9,10 Within these structures, interface effects still play a crucial role. By altering the electronic 

and mechanical boundaries,5,11–13 new functional properties such as conduction and magnetism can emerge.14–

17 This has empowered the development of novel ferroelectric based nanoelectronic devices. Many parameters 

at the interface (such as strain, conductivity and composition) can influence the observed polarisation,5,18 

which are often competing and provide a complex array of options to engineer desired properties. As 



perovskite thin film devices are made ever smaller, interface effects, and their control, become ever more 

important. 

The ferroelectric tunnel junction (FTJ) is a promising ferroelectric device that uses a ferroelectric as a dielectric 

tunnel barrier in an asymmetric capacitor structure.18,19 The asymmetric electrodes provide different charge 

screening, which controls the barrier height due to the bound charges at the interfaces when the polarisation is 

switched. This in turn is used to modulate a tunnelling current across the ferroelectric, giving tunnelling 

electroresistance (TER). One reason this device has gained attention is its ability to be combined with 

ferromagnetic electrodes, combining the TER and tunnelling magnetoresistance (TMR) effects to form a 4-state 

multiferroic tunnel junction (MFTJ).18 A popular MFTJ construction is La0.7Sr0.3MnO3 (LSMO) and PbTiO3 

(PTO) layers epitaxially grown on a SrTiO3 (STO) substrate followed by a sputtered Co layer. PTO is a common 

ferroelectric used due to its ability to sustain large polarisation and ease of growth whilst LSMO is used as 

bottom electrode since its pseudocubic perovskite structure is a close lattice match to the STO and PTO. 

Additionally, LSMO is a highly ferromagnetic mixed-valence manganite with a Curie temperature around 370 

K and a large magnetoresistance.18,20,21 Combined with the ferromagnetic top Co electrode, a functional MFTJ 

is formed. 

First-principles studies have demonstrated that the screening effects at the PTO-Co interface consist of spin and 

polarisation dependent charge transfer between d-orbitals of the Co and Ti at the interface.22,23 On the other 

hand, the bottom PTO-LSMO interface is quite different, and the focus of most theoretical studies has been on 

what happens to the LSMO at the interfaces. It has been reported that the ionic displacement of the cations that 

produce the polarization in the ferroelectric might continue into the oxide electrode, i.e. the oxide electrode can 

share the ionic displacements of the ferroelectric layer. The ionic displacements in the electrode help decrease 

the local dipole at the interface which is created from the imperfect screening of the free charges.11 Furthermore, 

the underlying lattice of LSMO has a charged-plane structure, with an alternating net charge in each (001) layer 

of +0.7	𝑒# and -0.7	𝑒# per 2D formula unit. Therefore, the LSMO termination will have an effective net bound 

charge that either screens or reinforces the ferroelectric polarisation.24,25 However, additional effects can arise 

from structural deformations and distortions in the crystals. Note that whilst the LSMO/PTO lattice mismatch 

is low, LSMO and PTO have quite dissimilar crystal structures. PTO has a tetragonal 𝑃4𝑚𝑚 structure, with 

cooperative off centring of the Ti and O ions. Conversely, LSMO has a non-polar 𝑅3)𝑐 structure containing an 

𝑎#𝑎#𝑎# (𝑎#𝑎#𝑐# under biaxial strain) octahedral tilting pattern (using Glazer notation).26  

Interfaces between such contrasting structures have been known to give rise to novel electronic and magnetic 

properties, as well as structural changes.25,27–30 In general, it may be expected that polarisation will penetrate 

into the electrodes, preventing a large discontinuity in the bound charge that cannot otherwise be screened 

effectively by the imperfect metals. However, it is well known that polar displacements are often antithetical to 

“antiferrodistortive” octahedral tilting.31 At the LSMO-PTO interface, there is competition between charge 

screening, lattice strain and sub-unit cell structural conflicts that must be reconciled. The LSMO-PTO (or other 

ferroelectrics) system has attracted great interest, both theoretically and experimentally, since it constitutes an 



interfacial multiferroic. Initial theoretical studies by Burton et al (2009)32, and later Bristowe et al (2012)33, 

showed that the reversal of the polarization in a ferroelectric film, such as BaTiO3 (BTO), leads to a change in 

the magnetic properties in La-manganite materials, predicting a substantial interfacial magnetoelectric effect. 

More crucially, it is possible to use the polarisation to cause a magnetic phase transition (from ferromagnetic to 

antiferromagnetic) that is normally induced via composition changes. Hammouri et al. (2016)34 also reported 

that the properties of the LSMO in the LSMO-PbZr0.2Ti0.8O3 (PZT) system behaved differently depending on 

the PZT polarization. If PZT polarization pointed towards the LSMO/PZT interface a magnetization 

enhancement was observed, whereas if the polarization was away from the interface an opposite effect of the 

magnetization, i.e. reduction, occurred in the system. Additionally, it has been demonstrated experimentally by 

Preziosi et al. (2015)35 that the ferroelectric polarization of PZT is capable to modulate the interfacial magnetism 

of the L0.825Sr0.175MnO3. Yu et al. (2019)36 showed similar effects for PZT-LSMO but also noted the effects of 

strain in modifying the LSMO’s bond lengths and therefore magnetic properties. Nevertheless, although it was 

not mentioned directly, the theoretical results shown by Burton and Hammouri revealed that structural changes 

occur not only in a few LSMO monolayers but also in the first monolayer of the ferroelectric materials, (BTO 

and PZT). 

This article constitutes an extensive analysis of the LSMO/PTO interface, and the screening mechanisms, at 

atomic level. The extreme dimensions of the devices, and more so the interfaces, make aberration corrected 

scanning transmission electron microscopy (STEM) imaging an essential tool to examine the structure. Using 

STEM, a detailed characterization of displacements and distortions, including octahedral tilting, with picometre 

resolution has been performed. Thus, the competition between two structural parameters, the oxygen octahedral 

tilting in LSMO and the polar ionic displacement in PTO has been explored. These experimental measurements 

are combined with DFT calculations, shedding light onto the multiferroic interface in the STO/LSMO/PTO/Co 

functional MFTJ. This is linked back to the measured TER/TMR properties, and could provide a path to 

optimising or engineering future heterostructures. 

 

Methodology 

Samples where grown using reflection high energy electron diffraction assisted pulsed laser deposition using a 

248 nm wavelength KrF excimer laser. Atomically smooth vicinal surfaces were prepared on (100)-oriented 

STO substrates (nominal 0.1° miscut) by chemical etching in H2O:NH4F:HY solution (100:3:1 concentration) 

and thermal annealing at 950 °C for 2 h. For the bottom electrode, 60 unit cells of (La0.7Sr0.3)MnO3 (LSMO) 

was deposited at 600 C using 0.9 mJ cm2 laser fluence at 0.2 Hz repetition rate in 0.15 mbar O2 atmosphere. 

The PTO ferroelectric barrier was then deposited at 600 °C, 0.2 mbar O2 pressure, 0.45 mJ cm2 laser fluence 

and 4 Hz repetition rate. The top contact Co was finally deposited by RF sputtering at 2.5 × 102 mbar Ar 

pressure and 20 W applied power. Finally, 40 × 40 µm2 electrodes were patterned into the Co using 

photolithography and wet-etching of the Co film. 

Atomic resolution STEM images were acquired using a double aberration corrected JEOL ARM-200F operating 

at 200 kV. Annular dark field (ADF) images were formed using a collection angle of 45-180 mrad and annular 



bright field (ABF) images were formed using collection angles of 11-23 mrad.37 TEM specimens were prepared 

using a JEOL 4500-JIB using standard lift-out procedures. Atomic coordinates were measured by finding local 

pixel maxima which were then refined using least squares fitting, taking into account nearest neighbour peak 

contributions. 

Electrical characterisation was performed on 40 × 40 µm2 devices using a Keithley 2635 source-measure unit 

and an HTTP4 Lake-Shore cryogenic probing station. Total magnetic moment was measured on the total area 

(5 × 5 mm2) using an Oxford Instruments MagLab vibrating sample magnetometer. Measurements were 

performed in the as grown state after cooling to 10 K under a -0.8 T field. TMR is calculated as 3↑↓#3↑↑
3↑↑

 where 

𝑅↑↑ and 𝑅↑↓ are the resistances of the device with parallel and antiparallel magnetisations of the electrodes. 

Density-Functional-Theory (DFT) calculations were performed using the spin polarized Wu-Cohen (WC) 

exchange correlation functional,38 as implemented in the Siesta code.39,40 The La/Sr doping was treated using 

the virtual crystal approximation (VCA) and full details of the pseudopotentials and numerical atomic orbitals 

are given in Refs. 41,42. WC, in combination with these pseudopotentials and numerical atomic orbitals, was 

previously found appropriate to describe both ferromagnetic and ferroelectric properties of similar multiferroic 

interfaces.33 The DFT calculations focussed on the LSMO-PTO interface and consisted of a slab geometry of 

between 11.5-12 unit cells of LSMO, 6-6.5 unit cells of PTO, and a 2.1 nm thick vacuum layer. The thickness 

of each layer was found sufficient to observe bulk-like features in the centre of each. The in plane lattice 

parameter was constrained to match STO, with a √2x√2 periodicity to allow for octahedral tilting. A 3x3x1 

Monkhorst-Pack grid and a 700 Ry cut-off for real space integrations were found necessary to accurately capture 

the octahedral tilting and polar distortions.40 A dipole correction was employed to enforce zero macroscopic 

field in the vacuum layer. Finite-D calculations were run by adapting the PTO surface oxygen chemistry with 

either fluorine or nitrogen through the VCA.  This allowed us to simulate the effect of imperfect screening of 

these ultrathin films, and also allowed us to avoid entering the pathological regime whereby the metal fermi 

level enters the ferroelectric conduction band due to the DFT band gap error.33,43 While both La,SrO-TiO2 and 

MnO2-PbO interfaces were simulated, the La,SrO-TiO2 calculations with D ≥ 0 were found to enter the 

pathological regime and so were not studied any further. This is unfortunate as the experimental samples were 

found to consist of this termination, however comparison between the D < 0 La,SrO-TiO2 and MnO2-PbO 

interfaces can be made (see supporting information). 

 

Results & discussion 

To investigate the polarisation and octahedral tilting, standard ADF STEM imaging based on the collection of 

high-angle scattered electrons is insufficient. Whilst useful for its atomic number contrast, this is a double-edged 

sword that also means it is not able to resolve lighter elements such as oxygen. This absence of information 

from the oxygen atoms is obviously an issue for measuring octahedral tilt, but it also reduces the accuracy of 

any polarisation measurements. To mitigate these issues, ABF imaging is chosen as a suitable technique to be 

able to resolve all the atomic positions. ABF images are formed taking mainly electrons that have been scattered 



at low angles. It is similar to standard bright field imaging but excluding electrons scattered close to  the optic 

axis. This technique is less sensitive to atomic number and therefore allows the imaging of all atoms in the 

LSMO-PTO structure. An additional issue that must be taken into account in order to resolve all atomic positions 

arises from the fact that STEM images correspond to a projection of the structure. Figures 1(a) and 1(b) shows 

the projection of the PTO structure along 〈100〉 and 〈110〉 directions respectively. Only the latter projection has 

no overlap between titanium and oxygen, allowing the titanium displacement with respect to the centre of the 

oxygen octahedron, ΔB, to be measured. The polarization in the PTO is proportional to, and in the same direction 

as, ΔB. As mentioned above, octahedral tilts are present in the LSMO crystal structure. A consequence of the 

antiphase tilt system in LSMO is that the oxygen octahedral tilts are not visible along a pseudocubic 〈100〉 

direction as the tilt averages to zero (see Fig. 1(c)). To reveal the structure of the LSMO a 〈110〉 direction must 

be used, as shown in Fig. 1(d). However, only three of the six distinct pseudocubic 〈110〉	projections are suitable 

to reveal and measure the oxygen octahedral tilting. The measured tilt angle, 𝜃;;<, can be easily converted to 

the Glazer notation (i.e. the tilt about the 〈100〉 directions) using simple geometry and the measured in plane 

lattice parameter. Figures 2(a) and 2(b) show high magnification ADF and ABF images corresponding to a 

MFTJ formed by a nine unit-cell PTO layer. The atomic number contrast from the ADF image shows a sharp 

and defect free interface. Using the atomic number contrast of ADF images, intensity profiles taken along the 

interface suggests that the termination is TiO2 (From LSMO to PTO as shown in Fig. 2(c)). The ABF image 

shows the position of the oxygen columns (in addition to the cation positions), revealing the octahedral tilting 

in the LSMO, and the polar displacements in the PTO. Figure 2(d) shows a map of the out of plane displacements 

of the oxygen with respect to the A-sites, revealing both the polar displacements and tilting.  The oxygen tilting 

is clearly visible in the LSMO as a chequerboard pattern, and the ferroelectric displacements reveal two 180° 

domain walls within the PTO. However, the transition between the two crystal structures is not immediately 

obvious. 

To explore the polarisation and tilt at the interface, experimental profiles of both tilt and polar displacements 

going from LSMO into PTO are shown in Figure 3. The profiles have been split between the up, 𝑃↑, and down, 

𝑃↓, polarisation domains. Within the PTO layer, the polar displacements are 23.7 ± 0.3 pm and -28.9 ± 0.8 pm 

(Fig. 3(a), corresponding to polarisations of 65 ± 1 µC cm-2 and -80 ± 2 µC cm-2 respectively, which are reduced 

from the bulk value of 84 µC cm-2. This is possibly a result of asymmetric screening of the positive and negative 

charge (LSMO is a p-type conductor), but could also be related to structural distortions discussed later. The 

average octahedral tilt values in the LSMO (a few layers away from the interface with the PTO) are 5.45 ± 0.09° 

and 5.24 ± 0.07° for the up and down polarisation respectively. This values corresponds to a  reduction in the 

MnO6 octahedral tilt from the bulk value of 7.8°, as might be expected for a fully strained thin film.27,29 The 

tilting in the PTO, and polarity in the LSMO is zero, as expected for from the bulk structures.  

Interestingly, within one or two unit-cells of the LSMO-PTO interface, drastic differences in the polar 

displacements and tilt can be observed for the two domains. For the 𝑃↑ case, the polarisation at the interface is 

practically suppressed whilst there is some tilting (~3°). Conversely, the interface below a 𝑃↓ domain has bulk 



like polarisation at the interface with complete suppression of the oxygen octahedral tilt. This behaviour at the 

interface agrees with the expected incompatibility of polar displacements and octahedral tilting. Previous studies 

have shown that it is possible for tilted structures to induce tilt in non-tilted structures due to cage 

connectivity.44,45 However, the origin of the polarisation dependence in this system is not yet clear.  

Unexpectedly, the 𝑃↓ domain with larger polar displacement has a smaller tetragonality within the layer (c a⁄  

ratio of 1.035 ± 0.002) compared to the 𝑃↑ domain (c a⁄  ratio of 1.061 ± 0.004). This may be a result of strain 

caused by  opposing movements of both the Ti and Pb atoms, and therefore the [100] atomic planes, across the 

domain wall in the PTO.46,47 The asymmetry between the polarisation magnitude noted above may be a result 

of this strain effect. This is particularly evident at the interface, where the c lattice parameter is significantly 

larger for the polarisation down case. This may be an important component in allowing the tilting of the oxygen 

octahedra with polar displacement as the restrictions due to the atomic sizes are relaxed. 

DFT calculations carried out on the LSMO/PTO system suggest that the charged layer structure of the LSMO 

is the main source of the differences in interface polarisation. In a similar fashion to the arguments made for 

LaAlO3,48 LSMO can be thought of as consisting of (La, Sr)O and MnO2 (100) planes, each of non-zero charge 

(with (La, Sr)O +0.7 and MnO2 -0.7, as shown in Fig. 4(a). These charged planes create an effective polarisation, 

or surface bound charge, of +/-0.35 𝑒# per 2D formula unit in the underlying ionic lattice (which is screened by 

its own free charges, being a metal). Depending on the interface termination, the LSMO effective polarisation 

will act to screen or reinforced the bound charges arising from the PTO layer at the interface, as shown 

schematically in Fig. 4. For example, the system presented here has an interfacial termination type TiO2-(La, 

Sr)O, therefore the positive (La, Sr)O interface will screen/reinforce the negative/positive bound charge for the 

P/P¯ domains in the PTO. 

Since LSMO is a poor metal (and therefore has a large screening length), an interface charge layer composed 

of free and bound charges is created. The system responds to this effect through local cation off-centring within 

this region. The competition between the tilt structure and polarisation is then driven by this polarisation 

screening and the structure is allowed to become more bulk-like when the total bound charge (coming from 

both LSMO and PTO polarisations) is lower. This is also reflected in the structural results of the DFT 

calculations shown in the supporting information. 

This has implications for the design of some devices that are dependent on the magnetic properties of the 

interface. For example, ferroelectric field effect devices have been demonstrated that use ferroelectric layers to 

modulate the splitting of Mn orbitals in adjacent LSMO. This coupling is then used to modify and control the 

electronic and magnetic properties 35,49,50 For example, the DFT calculations for the structure shown here (but 

for the MnO2-PbO interface) show that the proportion of the Mn 3d eg orbitals consisting of 𝑧A is 54.6 % for 𝑃↓ 

vs 37.6 % for 𝑃↑ (occupation for in plane only polarisation is 45.4 %). This agrees with previous studies showing 

the structural distortions in LSMO provide such an effect. However, it is shown here that the structural changes 

depend on the interface termination, so therefore the preference of the 𝑧A and 𝑥A − 𝑦A orbitals also depends on 

the interface termination. This is a critical consideration when designing and fabricating any such device.  



Furthermore, as the magnetic properties of LSMO depend on the O-Mn-O bonding (and therefore the Mn 3d 

and O 2p orbital overlap),49 the reduction in octahedral tilting may be expected to increase the magnetisation of 

the interface.44,51 However, DFT calculations indicate that this effect is quite small (3.562 µB vs 3.572 µB for 

4.5° tilted and untilted structures) compared to the effect of the free charge accumulation (3.759 µB vs 3.076 µB 

for 𝑃↓ and 𝑃↑ at a MnO2 interface). As LSMO is a half metal, when free charge pools at the interface to screen 

the bound charges there is also an accumulation of spins that alters the magnetisation.52 This charge 

accumulation is shown for the (La, Sr)O termination in Fig. 4(a)-(c) and the MnO2 termination in Fig. 4(e)-(g). 

The DFT calculated magnetisation profiles, shown in Figs. 4(d) and 4(h), correlate well with these free screening 

charge accumulation/depletion schematics. It is then evident that whereas the relation between the tilting and 

polarisation is dependent on the interface termination, the determining factor in modulating the magnetisation 

at the interface is the polarisation direction. 

The difference between the TMR loops of the two polarisation directions, shown in Fig. 5, demonstrate this 

experimentally. It can be seen that the 𝑃↓ state, where the interface tilts are lower, has a higher TMR ratio (40 

% for 𝑃↓ vs 33 % for 𝑃↑). This correlates with the higher interface magnetisation as a result of the free charge 

accumulation (as a result of the polarisation bound charge) but inversely correlates with the LSMO interface 

tilt. This again shows that the dominant effect is charge (and therefore spin) accumulation at the interface, which 

is polarisation dependent but comparatively interface independent. 

 

Conclusions 

It has been shown here that the simple picture of uniform symmetric screening of ferroelectric polarisation at 

the ferroelectric metal interfaces is not valid. A combination of atomic resolution TEM and DFT has been used 

to show how octahedral rotations and polarisation interact at the PTO-LSMO interface. Here, there is a 

competition between the structures of the two materials that is strongly dependent on the polarisation direction 

and the interface termination. This results in two different screening regimes (where the interface charge acts 

with or against the free charge) of the polarisation in the ferroelectric film depending on the polarisation 

direction. Controlling the termination, or even providing a completely different interface composition, provides 

a path to controlling and optimising ferroelectric and magnetic properties, particularly for ultrathin films where 

the interface effects are more pronounced. This is particularly relevant for the design of devices such as FEFEDs 

and MFTJs, as well as in ferroelectric multilayers, with several interfaces and often more complex polarisation. 

 

Supporting Information 

DFT structural calculations of polar displacement and octahedral tilt for the PTO-LSMO system with MnO2 

interface termination (polarisation up and down) and La,SrO termination (polarisation up only). 
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Figure 1 Ferroelectric PTO structure as viewed along the 100, (a), and 110, (b). LSMO structure view 

along the 100, (c), and 110, (d). The measured ferroelectric displacements ΔB and the octahedral tilt angle, 

𝜃;;<, have been labelled. 

 

 



 
 

Figure 2 (a) ADF and (b) ABF images of the LSMO-PTO-Co FTJ. Contrast in the ADF image gives 

elemental information, with higher atomic number elements being brighter. (c) out of plane ADF intensity 

profile where the atomic columns have been identified. (d) map of the out of plane displacements of the O 

columns with respect to the A lattice. 

 



 
 

Figure 3 (a) Experimental out of plane displacement, (b) octahedral tilting and (c) c lattice 

parameters as a function of unit cell from LSMO to the PTO-Co interface. Profiles for both the up 

and down domains are shown. The displacement for the polarisation down case has been inverted 

for comparison with the polarisation up case. Values are in plane averaged within each domain, 

error bars are the standard errors of the means. 

 

 



 

 
Figure 4 (a) Schematic of the layered structure in the FTJ device with (La,Sr)O termination. 

Corresponding schematic of bound charge, 𝜌, and the screening charges, 𝜎, for polarisation 

directions down, (b), and up, (c). Negative charge shown in blue, positive in red. (d) Corresponding 

DFT calculations of the Mn magnetic moment as a function of unit cell from the interface for the 

two polarisation directions. The 0th unit cell is closest to PTO. (e)-(h) show the same as (a)-(d) but 

for the MnO2 terminated interface. Due to the DFT limitations (see Methods section for details), 

(d) shows an estimate for the 𝑃↓ magnetic moments (dashed line) as the inverted 𝑃↑ profile from 

(h). 

 

 

 

 



 
Figure 5 Experimental TMR loops for the two polarisation directions. Resistance changes are given 

as a percentage of the  as-grown ground state. 
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