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Abstract: A number of studies have been developed recently in order to explore associations between craniofacial differences
and genetics. Most of these works have been based on spatial face image models, adjusted for the counter effects of age. This
approach provides a limited understanding of normal and abnormal craniofacial development owing to the lack of age
progression information. Here, the authors propose and implement an imaging framework that combines facial landmark
positioning, non-rigid registration, novel age-dependent face modelling and common distance metrics to disclose the most facial
differences that vary across the time due to the subjects' age. All the experiments carried out and corresponding results
presented here are based on a database comprising ordinary two-dimensional (2D) frontal face images of Down Syndrome (DS)
and control sample groups. A number of craniofacial metrics have been successfully identified that highlight statistically
significant and clinically relevant differences between the controls and the faces associated with DS within the age range from 1
to 18 years old, producing realistic unbiased face models with similar level of detail at all age-intervals, despite the small sample
size available.

1 Introduction
Recently, a number of studies have been developed in order to
explore associations between craniofacial differences and genetics,
with notable findings in clinical face phenotype and forensic facial
reconstruction [1–6]. For instance, recent works on facial metrics
and imaging have improved the scientific knowledge about the
genetic factors that might influence variation in facial features,
providing insights into the causes of craniofacial abnormalities in
genetic disorders [2–4, 7–15], as well as the feasibility of
predicting human visible characteristics like facial traits from DNA
[5, 6].

However, owing to the lack of age progression information, the
computational analysis of such facial morphology strategies has
provided a limited understanding of craniofacial development. In
other words, most of these works have been based on spatial
models of the face adjusted for the counter effects of age [5, 6, 15]
or described as temporal exclusive population groups [2, 4, 7, 9–
11, 13, 14], either consisting of only young children, adolescents,
or adults’ samples.

The main contribution of this work is to describe craniofacial
differences based on age-related face models. More specifically, we
have proposed and implemented a computational framework that
combines facial landmarks positioning, non-rigid registration,
novel spatio-temporal face modelling, and common distance
metrics applied in clinical assessment to disclose the most
significant facial differences between sample groups that vary
continuously across the time due to the subjects' age. The proposed
framework builds on previous multidisciplinary works applied to
facial composites [16–18], medical image registration [19], brain
atlas construction [20], and facial morphology [5], producing
distinct face templates for distinct ages; all featured at the same
spatial coordinate system and called here as face image atlases.

In order to contribute, particularly, to the growing body of
recent imaging literature conveying craniofacial abnormalities in
genetic disorders [11–15], we have focused our attention here on
the Down Syndrome (DS) genetic disorder. DS is the most well-

known and common chromosomal disorder in humans, caused by
an extra copy of chromosome 21. It is characterised by generalised
growth and mental deficiency, including a distinctive and
recognisable craniofacial appearance [7–10, 12, 15].

Using a database comprising ordinary two-dimensional (2D)
frontal face images of DS and control sample groups from toddlers
to adolescents, the computational framework proposed has been
able to successfully identify a number of craniofacial metrics
statistically different and clinically relevant between the controls
and the faces associated with this genetic disorder.

To the best of our knowledge, our results are the first based on
imaging technology that disclose continuously, at 1-year age
intervals, DS morphological and developmental craniofacial
changes from 1 to 18 years old, overcoming the practical
limitations of small sample sizes and image acquisition artefacts
when using such technology to assess the facial features in subjects
with intellectual disability [11–13, 15].

The remaining sections of this paper can be summarised as
follows. We provide in Section 2 a brief description of the 2D face
image database used here, composed of DS and control sample
groups of children aged 0–18 years. In Section 3, we explain the
framework proposed to build the spatio-temporal face image
atlases and extract the facial metrics used to calculate the
craniofacial differences. All the experiments carried out and
corresponding results are presented in Section 4 and discussed in
detail in Section 5. Conclusions highlighting the main contribution
of this paper and directions for further work can be found in
Section 6.

2 Face database
Our face database contains 2D frontal images from 148 children
within the age range from 0 to 18 years old. Permission for face
imaging was granted by Diretoria Clinica do Hospital das Clinicas
and Faculdade de Medicina da Universidade de Sao Paulo Ethics
Committee (1046/09) and written parental consent was obtained
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prior to imaging, on a research initiative to analyse the risk of
missing children [21] with disabilities in Brazil [22].

Images from two distinct and multiracial groups were analysed.
The first sample group contains faces of 35 males and 27 females
with DS. The second group is composed of 42 males and 44
females with no genetic disorder (controls). Fig. 1 shows the age
histograms of both sample groups, where each bin represents a 1-
year period of age (or, simply, age-interval). 

All frontal images are greyscale, registered previously using
affine transformation based on the positions of the eyes as a
measure of reference, and cropped to a resolution of 280 pixels
wide and 435 pixels high. Fig. 2 shows eight samples of the DS
and control groups analysed in this work. 

3 Methods

The framework proposed consists of the following four parts: facial
landmarks positioning, non-rigid registration, atlas construction,
and craniofacial metrics location. It extends and generalises our
previous and preliminary works [17, 18] of generating photo-
realistic facial changes and age-dependent face atlas. All these
parts are described in detail in the following sub-sections.

3.1 Facial landmarks positioning

The shape of each face needs first to be characterised by a set of
landmarks (or fiducial points) placed on the 2D frontal face
images. These determine a feature correspondence that enables the
subsequent non-rigid alignment of all face images.

The landmark placement of each face image has been achieved
by using the following friendly user interface [16]. Initially, a face
is localised within an image by placing manually a point at the
centre of the left eye, centre of the right eye, and the lowest point
on the chin. A geometric transformation, based on the positions of
these three anatomical points, is then applied to a standard point
model [16]. The transformed model is placed automatically on the
image as an initial configuration mask, thereby approximately
delineating the salient internal features and the perimeter of the
face (Fig. 3, left image). Polynomial curves are placed on the
corresponding feature boundaries by manually adjusting up to 61
points of this mask as required (Fig. 3, centre image). Joins
between polynomial curve segments are identified by points with
magenta borders. To increase smoothness, additional fiducial
points are automatically generated by sampling at equidistant
positions along the polynomial curves that interpolate the
landmarks. For each face image, a preset total of 284 resulting
landmarks are obtained as illustrated in the right most image of
Fig. 3. 

In this work, however, the 24 points associated with the hairline
were not used, because they are not related to the craniofacial
metrics applied here. Therefore, the shape of each face has been
represented by the total number of 260 landmarks.

3.2 Non-rigid registration

We have adapted the free-form deformation (FFD) [24, 25]
algorithm proposed by Rueckert et al. [19] successfully in the
context of 3D medical images [26] to non-rigidly register all the
face images [17, 27, 28].

In this 2D version of the non-rigid registration algorithm, the
input (or source) image is represented through a set of points, as
follows:

Ωsource = {(x, y) 0 ≤ x < hx, 0 ≤ y < hy}, (1)

Fig. 1  Original age (in years) histograms of the 62 DS (left) and 86 control (right) sample groups. It is important to note that the number of images are not
uniformly distributed within the age range considered. For instance, at 2, 3, 12, 13, 15 and 16 years for the DS group (left histogram) and at 1, 2, 13 and 18
years for the control group (right histogram) there is either zero or only one face image originally available

 

Fig. 2  Eight samples of the DS (top) and control (bottom) 2D frontal face
images. To avoid the identification of the children we have masked the face
images shown here with black strips

 

Fig. 3  Illustration of the main steps in generating, by a friendly user
interface [16], the facial landmarks on a frontal face image example [17]
from the publicly available FEI Face Database [23]. For each face image,
a preset total of 284 resulting landmarks are automatically obtained as
shown in the right most image by sampling at equidistant positions the
manually adjusted landmarks (centre image) from an initial configuration
mask (left image)
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where hx and hy denote the width and height in pixels of the image,
respectively. It also requires a mesh Φsource of nx × ny control points
(or resolution), where 1 ≤ nx ≤ hx and 1 ≤ ny ≤ hy, with the control
points ϕxy belonging to the domain Ωsource.

The goal is to register a source image with a target one by
minimising the misalignment of the landmarks from the former to
the landmarks of the latter. At the beginning, the algorithm
performs a global alignment between the landmarks of the source
image and the corresponding ones of the target image, using affine
transformation [19, 29]. Next, an iterative coarse-to-fine processing
is applied, where the initial control point mesh Φsource is
subsequently refined with increasing resolution until its control
points achieve the spatial positions that satisfy the alignment
criterion. The computational complexity of this registration method
is linearly related to the resolution of the control point mesh used.

The alignment criterion adopted here is the squared distance
between the two sets of landmarks. More specifically, the new
position of a point at the location (x, y) can be calculated by the
function f (x, y) below using 4 × 4 neighbouring control points [30]
and tensor product of B-splines [25], as follows:

f (x, y) = ∑
k = 0

3
∑
l = 0

3
Bk(sx)Bl(sy)ϕ(i + k)( j + l), (2)

where i = ⌊x/nx⌋ − 1, j = ⌊y/ny⌋ − 1, sx = x − ⌊x/nx⌋, and
sy = y − ⌊y/ny⌋. Bk(sx) and Bl(sy) correspond to cubic B-spline
functions evaluated, respectively, at sx and sy and defined as [25]:

B0(u) = ( − u3 + 3u2 − 3u + 1)/6,

B1(u) = (3u3 − 6u2 + 4)/6,

B2(u) = ( − u3 + 3u2 + 3u + 1)/6,

B3(u) = u3/6,

where 0 ≤ u < 1 [25]. This allows more flexible non-uniform
control point spacing and smoother deformations.

The multi-resolution computational strategy has been applied
because a range of facial deformations might be necessary, varying

from holistic ones, which are large, more global, and consequently
can only be achieved by using coarse control point spacing (or low
mesh resolution), to featural ones, which are more detailed,
localised, requiring then finer spacing (or high mesh resolution).
The final deformation fields of each source image are generated
when achieving the finest level of the FFD resolution.

3.3 Atlas construction

The novel spatio-temporal face models have been built using a
pairwise normalisation process proposed in [20] for human brain
neuroimage analysis. Fig. 4 illustrates schematically the main idea
of this process, extended and generalised here for face image
analysis. 

For each age-interval t with Nt total number of images, we
select one image i as source and the remaining images as targets,
running a number of Nt × (Nt − 1) pairwise registrations. The
(Nt − 1) transformations of all Nt source images are averaged out

Ti = 1
(Nt − 1) ∑

j = 1
j ≠ i

Nt

Ti, j (3)

and applied to the corresponding source images

Ī i = Ii ∘ Ti
−1 (4)

to generate their non-rigidly registered mean images, as shown in
Fig. 4, for i = 1, …, Nt. The standard spatio-temporal face image
atlas at age-interval t, A(t), is calculated by averaging all the Nt
mean images

A(t) = 1
Nt

∑
i = 1

Nt

Ī i . (5)

It is clear from (5) that each mean image Ī i has the same
importance in the composition of the spatio-temporal face image
atlas. In other words, the Nt mean images are equally weighted,
because all of them belong to the same age-interval t. However, as
illustrated in the previous Fig. 1 of the original age histograms, the
number of images are not uniformly distributed over the age-
interval range considered and, in fact, there are some age-intervals
with zero or only one sample available.

Hence, it would be valid to attempt to equalise the total number
of images among all age-intervals, using some weighted support
from temporal neighbours [20] to allow the calculation of spatio-
temporal face image atlases properly at any age-interval t.

Let w(ti, t) be the weight assigned to the image i at the age-
interval t given by a Gaussian kernel [20]:

w(ti, t) = 1
σt 2π

exp−(ti − t)2

2σt
2 , (6)

where ti denotes the age in years of the subject at image i, t is the
age-interval in years within the range considered, and σt
corresponds to the kernel width at t. The parameter σt would allow
neighbouring images to contribute with different weights at
different age-intervals.

Algorithm 1 (Fig. 5) has been proposed and implemented to
increase, using the nearest t ± 1 neighbours, whenever necessary
and possible, the number of original images Nt to Nt

∗, where
Nt

∗ ≥ Nt, and estimate the kernel width parameter, where σt ≥ 1. It
is analogous to the algorithm proposed in [20] with the rationale
here that at age-intervals with relatively fewer number of images,
relatively larger kernel width might be chosen [20]. The tolerance
value k and kernel width change Δσ might be chosen
experimentally. 

Thus, the weighted version of the spatio-temporal face image
atlas at age-interval t, A∗(t), can then be calculated as

Fig. 4  Illustration of the pairwise non-rigid registration process for
construction of the spatio-temporal face image atlas at age-interval t.
Analogously to Fig. 2, in order to avoid the identification of the subjects we
have masked with black strips all the original images shown here
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A∗(t) = 1
∑i = 1

Nt
∗

w(ti, t)
∑
i = 1

Nt
∗

w(ti, t)Ī i, (7)

where w(ti, t) is given by (6).

3.4 Craniofacial metrics

We have used a set of craniofacial metrics commonly applied in
clinical assessment to describe the most significant spatio-temporal
changes of the non-rigidly registered 2D face images [4–6, 31, 32].

Fig. 6 illustrates the 12 craniofacial measurements used in this
work, grouped together to describe the following anthropometric
regions particularly concerned with DS [15]: face (top row: A, B,
C, D); nose (middle row: E, F, G, H); mouth and lips (bottom
row: I, J, K, L). 

All these metrics have been calculated using the 2D locations of
the corresponding landmarks saved after the pairwise non-rigid
registration of each face image.

4 Experimental results
We have applied the algorithm previously described in Section 3.3
to increase the total number of face images for both DS and control

sample groups within each age-interval and generate the weighted
version of the spatio-temporal face image atlases. The median N̄ of
the original number of images at each age-interval of the DS and
control samples are, respectively, 2 and 4. We have set here k = 4
for the DS sample group and k = 3 for the control one to have a
feasible number of face images for every age-interval, and
determined the kernel width change experimentally, equals to
Δσ = 0.3 for both sample groups.

Fig. 7 shows the equalised age histograms of the DS (left) and
control (right) augmented sample groups. All the age-varying
Gaussian kernels are also illustrated, shown centralised on the
corresponding 1-year spans. We can see that, unlike the original
age histograms previously described in Fig. 1, the number of
samples per age-interval is now more uniformly distributed over
the age range in both sample groups. For example, at age-interval
t = 5, there were originally (left histogram of Fig. 1) only two face
images available for the DS sample group. After the equalisation
algorithm, it is now possible to consider at t = 5 a set of eight face
images in total (left histogram of Fig. 7), composed of the two
originals with maximum weight (w = 1) and the other six using the
nearest t = 4 and t = 6 neighbours, but with non-maximum
weights (w < 1). Analogously, at age-interval t = 13, there was
originally only one face image available for the control sample

Fig. 5  Algorithm 1: Estimation of Nt
∗ and σt
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group (right histogram of Fig. 1). After the equalisation algorithm,
it is now possible to consider nine face images in total at this age-
interval (right histogram of Fig. 7), taking into account distinct
weights given by the corresponding age-varying Gaussian kernel.
These comparable numbers of face images for each age-interval
provide atlases of both sample groups with similar level of detail at
all age-intervals. 

Fig. 8 shows the resulting spatio-temporal face image atlases
from t = 1 (left) to t = 18 (right) years. The first two rows, from
top to bottom, illustrate the standard A(t) and weighted A∗(t)
atlases of the DS subjects using, respectively, the original and
augmented samples. Likewise, in the last two rows, from top to
bottom, the A(t) spatio-temporal face image atlases of the control
subjects using the original samples are visually compared with the
A∗(t) ones composed of augmented samples with age-varying
weights. Since at 2, 3, 12, 13, 15, and 16 years for the DS group
(first row) and at 1, 2, 13, and 18 years for the control group (third
row) there is either zero or only one face image originally
available, the corresponding A(t) cannot be calculated, leaving the
standard atlas construction with inconsistencies across time and
more sensitive to the choice of face images at age-intervals with
small sample sizes. In contrast, the weighted version of the spatio-
temporal atlases A∗(t) based on the augmented sample groups
allow the construction of atlases of both sample groups (second

and forth rows) at all age-intervals continuously, with consistent
level of detail at every 1-year period of age. 

We have performed unpaired two-sample t-tests with pooled
variance estimate to compare statistically the facial metrics
between the sample groups for each age-interval. Fig. 9 highlights,
from top to bottom and left to right, the statistically different
(p < 0.05) facial metrics across time between the DS and control
corresponding augmented sample groups. Based on such statistical
analysis, the most discriminant facial metrics are: nasal height (G:
14 occurrences out of 18), nasal bridge length (H: 11/18), upper
facial height (C: 10/18), lower facial height (D: 10/18), and cranial
base width (A: 10/18). The least discriminant ones are:
morphological facial height (B: 4/18), subnasal width (F: 5/18),
labial fissure length (I: 5/18), philtrum length (J: 5/18), upper lip
height (K: 5/18), and lower lip height (L: 5/18). 

5 Discussion
Our 2D imaging results are related with the DS craniofacial
differences in the following frontal anthropometric regions: face,
nose, and mouth and lips. A number of recent studies [10, 11, 13–
15] have addressed DS morphological craniofacial changes in such
regions using digital imaging technology as well. However, our
work is the first to propose and implement a computational
framework that discloses the developmental changes of these

Fig. 6  Set of 12 frontal craniofacial metrics used in this work and grouped together according to their corresponding regions: face (top row)
(A) Cranial base width, (B) Morphological facial height, (C) Upper facial height, (D) Lower facial height; nose (middle row), (E) Nasal width, (F) Subnasal width, (G) Nasal height,
(H) Nasal bridge length; mouth and lips (bottom row), (I) Labial fissure length, (J) Philtrum length, (K) Upper lip height; and (L) Lower lip height. All these 12 metrics are facial
anthropometric measurements concerned with DS
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differences, at 1-year age intervals, continuously across the age
range from 1 to 18 years old, providing insights about these
underlying craniofacial features in DS owing to age progression.

Overall, our experimental results have indicated that the most
discriminant region within the entire age range considered is the
face region. This region captures essentially the global shape of the
faces, showing distinctive facial length (C: upper facial height; D:
lower facial height) and width (A: cranial base width) between the
DS and control sample groups analysed. These are actually
common craniofacial aspects found in the clinically related
literature [9, 10, 12, 15, 33], because faces of subjects with DS are
expected to be narrower and shorter than the faces of control
subjects.

Hence, not surprisingly, our findings have also showed that the
second most discriminant region is the nose region, with particular
highlight to the nasal length (G: nasal height; H: nasal bridge
length), but not its width (E: nasal width; F: subnasal width),
indicating that a shorter face implies here shorter facial as well as
nasal heights in subjects with DS.

Additionally, our experimental results have showed that the
mouth and lips is the least statistically different region considered
here, because each one of its four metrics has been discriminant
only in 5 out of 18 occurrences possible given the 1-year period of
interval. According to the related literature [10, 12, 15, 33], DS
faces might exhibit some degree of dysmorphology in this region,
essentially a general decreased mouth width with prominent lips
[12]. We have found statistical differences on the labial fissure
length (I), which is an equivalent metric to mouth width, at
t(I) = {1, 9, 10, 13, 15}, and differences on the philtrum length (J),
upper lip height (K) and lower lip height (L) at, respectively,
t(J) = {5, 6, 7, 8, 11}, t(K) = {2, 3, 4, 7, 12}, and
t(L) = {2, 3, 4, 5, 12}. However, these changes have not been
consistently present all over the age range considered, suggesting
an age-specific behaviour. Interestingly, though, such few

craniofacial differences are predominantly present at the youngest
ages (from 1 to 4 years), become irregular with increasing age
(from 5 to 15 years), and disappear at the oldest ages considered
(from 16 to 18 years), indicating that these features might grow in
the same proportion in both DS and controls during the final period
of adolescence.

Although our findings have described differences at all age-
intervals, the maximum number of craniofacial changes happened
at t = 5 and t = 13, with eight statistical differences present out of
12 metrics considered. These age-intervals, especially around 3–5
years and 13–15 years, are peculiar to the well-known observed
acceleration periods of facial development [31, 34], configuring the
transition periods from toddlers to children and from children to
adolescents.

Our study addresses two practical limitations in the current
imaging-related literature to studying craniofacial changes across a
wide range of ages [11–13, 15]. Despite the fact that our
experimental results encompass a relatively large total number of
images, equals to 148 samples (62 DS and 86 controls), these
images have not been uniformly distributed over the age range
considered (from 1 to 18 years old). In fact, we have shown that
there were some age-intervals originally with zero or only one
sample available. Our imaging framework has overcome this
limitation, addressing the small sample size issue with the novel
atlas construction method described, which allows the calculation
of spatio-temporal face image atlases properly at all age-intervals
using weighting information from temporal neighbours. Moreover,
since the atlas construction has been based on a pairwise non-rigid
normalisation process, it also minimises typical acquisition and
motion image artefacts. These artefacts are quite common
limitations to applying imaging technology, because it would rely
on the subjects to staying still and maintaining a neutral facial
expression while being photographed. In situations that involve
subjects with intellectual disability, such motionless and

Fig. 7  Equalised age (in years) histograms of the augmented DS (left) and control (right) sample groups. All age-varying Gaussian kernels are also shown on
the corresponding 1-year period spans. Compared to the previous Fig. 1, it is possible to see that the number of samples per age-interval is now more
uniformly distributed within the age range considered in both sample groups

 

Fig. 8  Resulting standard A(t) and weighted A∗(t) spatio-temporal atlases from t = 1 (left) to t = 18 (right) years. From top to bottom: A(t) atlases of DS
subjects using the original samples; A∗(t) atlases of DS subjects using the augmented samples; A(t) atlases of control subjects using the original samples; and
A∗(t) atlases of control subjects using the augmented samples
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expressionless behaviour might be very difficult to achieve in
practice.

6 Conclusion
This work proposes and implements a computational framework to
describe craniofacial differences based on spatio-temporal face
image atlases. The framework produces realistic unbiased face
models with similar level of detail at all age-intervals, despite the
small sample size available for each age-interval considered. All
the experiments have been based on ordinary 2D frontal face
images, irrespective of the subject's gender or ethnicity. Using a
face database composed of DS and control sample groups within
the age range from toddlers to adolescents, a number of
craniofacial differences clinically relevant have been statistically
highlighted across the time due to such genetic disorder.

Further work on larger data sets would definitely increase the
statistical power of the inferring spatio-temporal face image
atlases, allowing the integration of the craniofacial metrics with
genetic data for possible use in clinical settings and genome-wide
association studies. Given the most significant facial metrics
extracted spatially and across the age, future work might also
investigate how specific genetic variants relate to the phenotypic
behaviour of these traits in DS facial ageing. Nevertheless, the
applicability of the framework proposed is generic, not restricted to
DS, and might be helpful to broaden the understanding of
dysmorphic craniofacial development of other genetic disorders,
like Apert, Progeria, and Williams-Beuren syndromes.
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