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ABSTRACT: Mucoadhesive delivery systems have attracted
remarkable interest recently, especially for their potential to
prolong dosage form resident times at sites of application such
as the vagina or nasal cavity, thereby improving convenience
and compliance as a result of less frequent dosage.
Mucoadhesive capabilities need to be routinely quantified
during the development of these systems. This is however
logistically challenging due to difficulties in obtaining and
preparing viable mucosa tissues for experiments. Utilizing
artificial membranes as a suitable alternative for quicker and easier analyses of mucoadhesion of these systems is currently being
explored. In this study, the mucoadhesive interactions between progesterone-loaded fibers (with varying carboxymethyl cellulose
(CMC) content) and either artificial (cellulose acetate) or mucosa membranes are investigated by texture analysis and results
across models are compared. Mucoadhesion to artificial membrane was about 10 times that of mucosa, though statistically
significant (p = 0.027) association between the 2 data sets was observed. Furthermore, a hypothesis relating fiber−mucosa
interfacial roughness (and unfilled void spaces on mucosa) to mucoadhesion, deduced from some classical mucoadhesion
theories, was tested to determine its validity. Points of interaction between the fiber and mucosa membrane were examined using
atomic force microscopy (AFM) to determine the depths of interpenetration and unfilled voids/roughness, features crucial to
mucoadhesion according to the diffusion and mechanical theories of mucoadhesion. A Kendall’s tau and Goodman−Kruskal’s
gamma tests established a monotonic relationship between detaching forces and roughness, significant with p-values of 0.014 and
0.027, respectively. A similar relationship between CMC concentration and interfacial roughness was also confirmed. We
conclude that AFM analysis of surface geometry following mucoadhesion can be explored for quantifying mucoadhesion as data
from interfacial images correlates significantly with corresponding detaching forces, a well-established function of mucoadhesion.
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1. INTRODUCTION

Mucoadhesion is defined as an interactive state in which two
material surfaces, at least one being biological in nature and
typically a mucosa membrane, are held together by interfacial
forces for a prolonged period of time.1 Utilizing mucoadhesion
for more effective drug delivery has and continues to attract
more attention within the pharmaceutical sciences, as
substantial evidence exists to support claims of improved
dosage form residence time, therapeutic efficacy, improved drug
targeting in cancer therapy, and delivery of biologicals such us
peptides and antibodies through a variety of routes of
administration such as ocular, nasal, buccal, and vaginal.2,3

Nanofibers, described as slender, elongated thread-like
structures within the nanoscale range, are emerging strongly
as the material of choice for drug delivery. Due to their large
surface area, unique surface topology, porosity, and minimal
moisture content, nanofibers are known to significantly
improve the adhesiveness of the systems utilizing them.4,5

Furthermore, their ability to enhance drug solubility and high

adsorption efficiency potentially make them suitable carriers for
transmucosal drug delivery.4 Producing substantial quantities of
nanofibers with good mucoadhesive prospects will be a positive
addition to efforts in improving drug delivery across mucosa
membranes.
The exact mechanism underlying mucoadhesion remains

under discussion.6 Notwithstanding, classical observational
theories explain mucoadhesion in two main steps, regardless
of the underlying theory. These are the contact stage and the
consolidation stage.7,8 The first step involves the spreading and
swelling of the mucoadhesive material to facilitate extensive
contact with the mucosal membrane. At the consolidation
stage, the mucoadhesive materials interact with the membrane;
one suggestion being that moisture plasticizes the systems
allowing molecules from these materials to break free and form
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linkages with mucins in the mucosal layer by weak van der
Waals and hydrogen bonds.1 Both contact and consolidation
stages work together to bring about mucoadhesion.
In addition to the two-step principle of mucoadhesion,

several theories have been used to explain this complex
phenomenon. These include the electrostatic explanation,
where opposing electrical charges from the interacting surfaces
sustain mucoadhesion. Others are the adsorption theory, which
suggests that a mucoadhesive device is held to the mucosa
surface by secondary chemical interactions such as hydrogen
bonding and electrostatic attraction, whereas the wetting theory
describes the affinity between the surfaces facilitated by surface
energetics, predominantly in liquid bioadhesive systems.9,10 On
the other hand, the diffusion theory, which is used quite
extensively, explains how mucoadhesion is brought about by
interpenetration of polymer and mucin chains into each other.
The rate and extent of penetration, dependent on such factors
as diffusion coefficient and nature of mucoadhesive chains, their
mobility, and contact time, determine the strength of
mucoadhesion.11 The fracture theory, presently used widely
in studying mucoadhesion, explains mucoadhesion in terms of
the amount of force required to completely detach the
interacting surfaces.12,13 Last of all, there is the mechanical
theory that describes mucoadhesion in terms of surface
roughness and the filling up of irregular surface spaces,
interfacial surface behavior, and surface energy dissipation.14

Quantifying mucoadhesion remains challenging and is the
subject of several investigations.11,15 Several methods, including
measuring forces required to detach interacting surfaces,6

tracking the extent of polymer reaction with mucin, for instance
by measuring fluorescence intensities, ζ-potential, or levels of
turbidity,16,17 and more recently, by using atomic force
microscopy (AFM) to study footprints, such us dried out
surfaces prior to mucoadhesion,18−20 have been attempted for
quantifying mucoadhesion. Bond energies involved in poly-
mer−mucin interactions can cause macromolecular rearrange-
ments exhibited as changes in viscosity.6 Rheological methods,
based on analyzing these viscosity changes, are also commonly
used in quantifying mucoadhesion.
The pressurized gyration (PG) approach to producing fibers

of various sizes and shapes from a wide range of materials,
following reports of several studies,20−24 is proving to be a
suitable alternative to electrospinning. The simplicity, versa-
tility, and especially flexibility with choice of materials make this
an ideal method of making nano- and microfibers. Restrictions
with solvent choice limit the usefulness of electrospinning in
generating materials for pharmaceutical applications. PG has no
such requirement and therefore suitable for generating nano-
and microfibers from a wider range of materials. PG is
fundamentally driven by the principles of Rayleigh−Taylor
instability and Marangoni effect,22,25 where high rotational
forces on system of fluids with different densities (basically
polymer solution and air) creates the necessary fluid

acceleration and instability at the interface that eventually
cause a breakaway in the form of jets. These jets are further
stretched due to sustained stress from the forces, primarily
centrifugal and gravitational, acting on the system. Evaporation
of solvent during flight of jet from vessel through the nozzle
ensures thinning and completes the fiber formation process.
In this study, as well as producing and characterizing

progesterone-loaded fibers by PG, the relationship between
interfacial roughness (following interaction between progester-
one-loaded fiber and mucosa) and mucoadhesion is inves-
tigated using AFM. According to the mechanical and diffusion
theories, adequate filling up of cavities on mucosa surface and
more extensive interpenetration of polymer and mucin
functional groups should result in stronger mucoadhesion.
Extent of polymer−mucin interpenetration and filling up voids
on mucosa surface should leave a commensurate interfacial
roughness following mucoadhesion. It was therefore hypothe-
sized that a nanoscale analyses of these surfaces by a suitable
method like AFM could offer trends useful for quantifying
mucoadhesion. Testing this hypothesis is the basis for this
study. Fracture properties and interfacial roughness of the two
surfaces in mucoadhesive interaction were studied using texture
analyzer and AFM respectively. Data from these two sets of
experiments were statistically examined to determine significant
correlations. As the study sought to investigate the strength of
associations between data sets from either different mucoadhe-
sion models or methods of quantification, Kendall’s tau and/or
Goodman−Kruskal’s gamma analyses were used in testing the
hypotheses being determined.
This fiber mucoadhesion investigations are crucial part of a

project seeking to develop novel fiber-based vaginal dosage
forms, where mucoadhesive fibers from various polymer blends
have been developed20 and suitable candidates selected and
loaded with progesterone, performing as functional drug
delivery systems.26

2. EXPERIMENTAL DETAILS
2.1. Materials. Sodium carboxymethylcellulose (CMC) (Mw ∼

250 000 g/mol), poly(ethylene oxide) (PEO) (Mw ∼ 200 000 g/mol),
progesterone (Mw ∼ 314 g/mol, aqueous solubility: 8.81 mg/L (at 25
°C), log P: 3.87), and ethanol (analytical grade) were obtained from
Sigma-Aldrich, Gillingham, U.K. All were used without further
purification. Purified water and their mixtures with ethanol were
used as solvents throughout the study. Simulated vaginal fluid (SVF)
was prepared according to the formula developed by Owen and Katz
(1999)27 and contained sodium chloride (3.51 g/L), potassium
hydroxide (1.40 g/L), calcium hydroxide (0.222 g/L), and bovine
serum albumin (0.018 g/L). The remaining ingredients were acetic
acid (1.00 g/L), lactic acid (2.00 g/L), glucose (5.0 g/L), urea (0.4 g/
L), glycerol (0.16 g/L), and porcine mucin type II (1.5% w/v). All of
these were also obtained from Sigma-Aldrich. Cellulose acetate of pore
size 0.2 μm, used as artificial membrane in mucoadhesive studies, was
obtained from Sartorius, Gottingen, Germany. Fresh mucosa for

Table 1. Composition and Properties of Solutions Used in Generating Progesterone-Loaded Fibers

solution composition solution properties

sample progesterone (wt %) PEO (wt %) CMC (wt %) viscosity (mPa/s) ± SD surface tension (mN/m) ± SD

A 5 15.00 0 7593 ± 13 55.7 ± 0.4
B 5 14.25 0.75 7719 ± 21 56.1 ± 0.7
C 5 13.75 1.25 8220 ± 30 56.7 ± 0.4
D 5 13.25 1.75 8617 ± 27 57.5 ± 0.2
E 5 12.50 2.50 9033 ± 39 58.3 ± 0.7
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mucoadhesive study was from lamb esophageal tissue arranged and
delivered by Giggly Pigs, Romford, U.K.
2.2. Methods. 2.2.1. Solution Preparation and Characterization.

Uniform drug−polymer solutions of progesterone and PEO or PEO/
CMC were obtained by continuous magnetic stirring followed by
sonication for 10 min using a Branson Sonifier 250 (Danbury, CT).
The viscosity of each polymer solution or blend was measured using a
Brookfield DV-111 viscometer (Harlow, Essex, U.K.) at a shear stress
of 3.5 Pa. Water running through a jacket surrounding the column
containing solutions ensured a constant temperature of 22 °C
throughout the measurements. The surface tension was measured by
the Wilhelmy plate method using a Kruss K9 tensiometer (Hamburg,
Germany), also at an ambient temperature of 22 °C. For each solution,
five separate calibrated measurements for viscosity and surface tension
were taken and their means used for further analyses. Solution
constituents and their properties are shown in Table 1.
2.2.2. Fiber Formation. To make progesterone-loaded fibers, 3 mL

of solution was placed in the aluminum vessel and spun at a rotational
speed of 24 000 rpm and working pressure of 0.15 MPa. The
combined pressure and centrifugal force cause an ejection of fluid in
very fine streams through the orifices. The solvent is then evaporated
off the jet during flight, leaving a fibrous material on the surrounding
collecting shields. Each manufacturing cycle takes approximately 3 min
and fibers produced were collected and stored until required for
further analyses. Fibers were successfully spun from solutions with up
to 2.5 wt % of CMC, beyond which it was not possible to generate
well-structured fibers.
2.2.3. Scanning Electron Microscope (SEM) Imaging and Size

Distribution Analysis. Samples from each batch of fibers were
analyzed by scanning electron microscope (SEM), JEOL JSM 630 IF
(Tokyo, Japan) for the morphology, and in particular the size
distribution of fibers. Fibers were mounted on SEM stubs with the aid
of two-sided adhesive carbon disks obtained from Agar Scientific,
Stansted, U.K. Each mounted sample of fibers was gold coated for 90 s
using Quorum Q150R pumped sputter coaters (Quorum Technolo-
gies, Lewes, U.K.). Coated samples were analyzed at an operating
voltage of 5 kV. The record of images was produced with the aid of
SemAfore software, also provided by the SEM manufacturer. The
average fiber diameter and size distribution for each batch was
determined from measurements of least 100 fiber diameters using
ImageJ software (National Institute of Health, MD).
2.2.4. Mucoadhesion. The extent of interactions between nano-

fibers and mucosa membrane surface were studied using a Texture
analyzer, TA-XT2 (Stable Micro Systems Ltd., Surrey, U.K.) under the
experimental conditions shown in Table 2. The mucosa membrane
from lamb esophageal tissue, known to be non-keratinized and similar
to human esophageal mucosa28 in dimensions of 40 × 30 mm2 was
firmly attached onto the stage of the texture analyzer with the help of
adhesive tapes.
Samples of nanofibers (100 mg) whose mucoadhesive potential is

being assessed were securely attached to a cylindrical probe (Chen−
Hoseney dough stickiness rig) with a cross-sectional area of 0.785 cm2

using double-sided adhesive disks. This was mounted on the movable
part of the analyzer. The analyzer was set to measure the force
required to completely detach the nanofiber from the mucosa
membrane after bringing the two materials together for a contact
time of 5 second with a pretest force of 20 gF (0.2 N). This routine
was conducted in triplicates for all the samples and the means and
standard deviations (SD) calculated for further analyses. The same
procedure was repeated using 0.2 μm pore-sized cellulose acetate
membrane treated with SVF to confer some mucosa properties.
Cellulose acetate with this pore dimension was selected for
comparison with actual mucosa membrane, as they were confirmed
to correlate well with each other when utilized in some permeation
studies.29

2.2.5. AFM Analyses of Interfaces. Nanofiber (100 mg) was
mounted on lamb 12 cm2 esophageal mucosa and 0.1 g of SVF (based
on the average vaginal surface area of 87 cm2 having approximately
0.75 g of fluid at any one time27,30) added to facilitate adhesion. SVF
(pH = 4.2) was the body fluid selected for this study to maintain an
acidic environment, a condition known to potentiate mucoadhesion of
anionic polymers such as CMC.31 The parameter being varied in this
work is CMC content in progesterone-loaded fibers and hence crucial
to maintain an environment where its impact on mucoadhesion is
highlighted. The fiber/mucosa samples were kept at body temperature
(37 °C) for 30 min to allow sufficient mucoadhesion, followed by
storage at ambient temperature in a desiccator for 48 h to dry out
enough to allow sectioning. The transverse sections of the fiber/
mucosa specimen were prepared by cutting with razor blade such that
they were thin enough to lie flat with other side exposed for the AFM
probes to be brought close to their interface to determine the level of
roughness. The dimension icon AFM (Bruker, Coventry, U.K.) with
PointProbe Plus Nanosensor probes in tapping mode was employed in
measuring the roughness at the interface. The height and phase images
and roughness dimensions (Ra and Rmax) returned from scanning these
surfaces were used in further analysis.

3. RESULTS AND DISCUSSION

3.1. Nanofiber Generation, Morphology, and Size
Distribution. Nanofibers characterized in this study were
generated by PG (Figure 1a), as described in Section 2.2.2.
These progesterone-loaded fibrous materials (Figure 1b) are
the starting material for the development of vaginal inserts,
which will be used to deliver suitable amounts of progesterone
for the prevention of premature labor in women considered at
high risk. The kinetics of drug release from these progesterone-
loaded fibers has been investigated and reported.26 Mucoadhe-
sive properties of the progesterone-loaded fibers’ is also crucial
to their performance as drug delivery systems. Therefore as a
continuation of our previous work on investigating the release
of progesterone from these fiber systems, a range of
assessments of mucoadhesion from different perspectives
were developed for the purpose of a comprehensive character-
ization of mucoadhesive prospects of these fibers and reported
herein.
These bundle of nanofibers, as seen in Figure 1b, are usually

aligned along the vessel circumference during the production
because their malleability allows them to be easily molded into
any desired shape. Presently, two dosage form options are being
considered: a direct compression of nanofibers into tablets32 for
vaginal insertion or winding bundles of the fiber into a
miniature tampon.33

Crystalline materials including some drugs such as vitamin
B6, carbon nanotubes, and metals, when embedded in
nanofibers can cause extensive protrusion from within, resulting
in an uneven nanofiber surface. Several studies investigating
nanofibers containing crystallites have reported this observa-
tion.34−36 The effect of crystalline material content on the

Table 2. Experimental Condition Selected for Measuring
Forces Required to Detach Fibers from Mucosa

velocity
pretest 50 mm/s
test 50 mm/s
post-test 10 mm/s
tracking 5 mm/s

force
test force 20 gF
trigger force 10 gF

distance
return distance 4 mm

time
contact time 5 s
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nanofiber surface is particularly relevant in this work as several
of the mucoadhesion theories emphasize the relationships
between surface properties and their ability to adhere. The
necessary adjustments to manage fiber surface disruptions due
to crystalline content (both qualitative and quantitative) during
formation will be required in order to produce structures with
best possible surface properties that support mucoadhesion.
The effects of protrusion by crystalline material in fibers on

surface morphology is clearly seen in Figure 2a, drug-loaded
nanofiber (approx. 25 wt % of progesterone), especially when
compared to nanofibers without any drug (Figure 2b). In terms
of dimensions, progesterone loading increased the fiber
diameter considerably. This is expected as a 5% loading of
progesterone in solutions from which fibers were produced
increased viscosity substantially. Whereas a PEO (13.75 wt

%)/CMC (1.25 wt %) solution without progesterone had a
viscosity of 5167 mPa s, a 5 wt % loading of progesterone
yielded a solution with a viscosity of 8220 mPa s; a change that
resulted in more than doubling of the fiber diameter (Figure 2).
A similar trend was seen while varying the CMC content in

fibers. It is clear from the plot in Figure 3 that the average
diameter of nanofibers was significantly affected by variations in
the PEO/CMC ratios. Specifically, the solutions containing
higher proportions of CMC yielded fibers with a larger
diameter. For instance, increasing the CMC quantities from
1.25 to 2.50 wt % resulted in over 40% increase in the fiber
diameter. Whereas a positive correlation between viscosity and
fiber outcome in terms of size has been established, surface
tension principally correlates to the minimum force required for
the initiation of fiber formation, but not necessarily relating to

Figure 1. (a) Pressurized gyration apparatus and (b) a bundle of nanofibers generated using (a).

Figure 2. SEM images and size distribution (n = 100) of (a) progesterone-loaded PEO (13.75 wt %)/CMC (1.25 wt %) fiber, average diameter 404
nm with polydispersity index of 0.22 and (b) PEO (13.75 wt %)/CMC (1.25 wt %) fiber without any drug, average diameter 194 nm with
polydispersity index of 0.12. The effect of loaded crystalline progesterone in fibers is seen on the surface morphology.
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its size.22,37 CMC, primarily incorporated into fibers to
influence their mucoadhesion character significantly increased
the solution viscosity and subsequently fiber size. This was
anticipated to be a likely outcome as CMC is known for its high
viscosity in low concentrations,38 a property also largely
dependent on the degree of substitution occurring on the
cellulosic backbone and the intrinsic viscosity of plant pulp
from which the polymer is derived.39

3.2. Mucoadhesive Study. 3.2.1. Artificial versus Natural
Membrane. Two features usually assessed to determine the
performance of mucoadhesive delivery systems are (i) their
adhesion properties and (ii) the permeation through the
mucosa.40,41 Evaluating both features typically require the use
of excised mucosa membranes from animals. The use of animal
mucosa tissues, in addition to being costly and logistically
challenging, can give rise to inconsistent results due to the
widely varying approaches to tissue preparation. To overcome
these issues, artificial membranes such as cellulose acetate have
been utilized for both adhesive and permeation studies and
have been confirmed to correlate well with those obtained from
animal mucosa tissues.29,42

Mucoadhesive properties of various batches of progesterone-
loaded nanofibers were measured using a texture analyzer under
test conditions shown in Table 2. A typical trace from stages
A−C (Figure 4) encountered during testing is shown
graphically in Figure 5. The nanofiber sample attached to the
tip of a probe is brought in contact with the membrane surface
for 5 s with a test force of 40 gF (0.4 N). The force then
required to detach the fiber from the membrane surface is a
function of the extent of adhesion occurring between the two
surfaces, and is measured and recorded.

First, the effect of increasing amounts of CMC in fibers on
their mucoadhesive properties were studied using both artificial
and mucosa membranes. In both instances, a clear trend of
increasing mucoadhesive interactions with higher amounts of
CMC was established (Figure 6a,b). The stronger mucoadhe-
sion seen with increasing amounts of CMC may be explained
using some well-established principles governing the inter-
actions between weakly anionic carboxyl containing polymers
with oligosaccharides chains in mucins.31 The carboxylic groups
in these polymers are able to form strong hydrogen bonds with
mucin chains, thereby strengthening the interactions between
these two materials, leading to appreciable levels of
mucoadhesion. The formation of these bonds has been
confirmed with the displacement of infrared absorption bands
and nuclear magnetic resonance.43 Furthermore, these weakly
anionic polymers demonstrated strongest mucoadhesive
interactions in acidic conditions, with adhesive properties
diminishing drastically at pH > 4;44 hence, the experiments
were conducted under simulated vaginal conditions (pH = 4.2).
Second, results from fiber mucoadhesive interactions with

artificial membrane were compared to those obtained from
mucosa. Generally, stronger interactions were observed
between the fibers and the artificial membrane than those
seen with the lamb mucosa. This observation is expected due to
the adhesive behavior of cellulose-based materials mainly driven
by the formation of hydrogen bonds by hydroxyl groups
present and partially by free energy interactions driven by

Figure 3. Effect of CMC content on average fiber diameters generated
in this work.

Figure 4. Stages in measuring the strength of fiber adhesion to mucosa: (A) analyzer probe with fiber attached to the tip is brought in contact with
mucosa membrane, (B) fiber and mucosa are in contact for specified period and (C) fiber is separated from mucosa, whereas force required is
measured.

Figure 5. Typical trace recorded during attaching and detaching the
nanofiber samples from mucosa surfaces. Probe is pressed onto the
mucosa and force adjusted until test force of 40 g is attained. Fiber
remains in contact with mucosa for 5 s, after which the fiber on the
probe tip is separated and force involved measured (detaching force).
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apolar and electron donor components of cellulose.45 There-
fore, the higher magnitude of adhesion observed with the
cellulose acetate membrane is due to relatively stronger
interactions between the fiber and cellulosic components of
the membrane. In contrast, the mucoadhesion occurring
between the fibers and the lamb mucosa was due to weaker
interactions between reactive groups in the fiber and mucin in
the mucosa. In terms of trends, a similar correlation between
adhesion and CMC content in fibers was observed in both
artificial and natural membrane (R2 = 0.97 and 0.98 as seen in
Figure 6a,b). Furthermore, a Kendall’s tau test done to

determine the strength of correlation between fiber mucoadhe-
sion to artificial and mucosa membranes returned a p-value of
0.027, implying a significant relationship at p < 0.05 level. On
the basis of these observations, artificial membranes such as
cellulose acetate may be suitable for analyzing trends such as
those describing changes in mucoadhesion while varying
influential parameters. Considering the remarkable difference
in magnitude between the progesterone-loaded fiber’s adhesion
to the cellulose acetate and mucosa membranes, substituting
models may not offer reliable outcome, especially when scalar
quantification of adhesion is relevant to the study.

Figure 6. Effect of CMC content on nanofiber mucoadhesive properties assessed by measuring forces required to detach them from (a) cellulose
acetate membrane and (b) lamb esophagus mucosa.

Figure 7. Schematic illustration of interaction between polymer and mucin reactive groups. An extensive interpenetration of groups from two
surfaces, according to diffusion theory results in closer (smoother) and stronger adhesion.

Figure 8. AFM images showing depths (dark regions) and heights (light regions) of sections of interface derived from mucosa membrane
interactions with nanofibers (a) containing 2.5% CMC and (b) without CMC. Sections from fibers containing CMC, as seen from scale bar was
smoother, indicating closer interactions of surfaces when compared to those from samples without CMC.
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3.2.2. AFM Analyses of Fiber−Mucosa Interface. In this
section, the interface between various batches of progesterone-
loaded fibers (shown in Table 1) and mucosa membrane,
following mucoadhesive interaction, was visualized by AFM for
interfacial roughness. A schematic in Figure 7 illustrates our
hypothesis of how interfacial roughness is indicative of
interpenetration between surfaces and may correlate with
mucoadhesion. Extensive penetration ensures a stronger
binding of the surfaces and thus a cross section reveals a
smoother (lower height) surface. In the same way, limited
interpenetration leaves a rougher surface and that can be taken
as minimal mucoadhesion. Whereas the progesterone-loaded
fibers studied are intended for vaginal application, the
hypothesis set and ensuing investigations are generic for
polymer−mucin interactions and not necessarily specific to
vaginal mucoadhesion.
The mucosa used in this study, excised from a freshly

slaughtered lamb esophagus, was to permit polymer−mucin
interactions as would occur in a biological system to a
reasonable extent. Further ex vivo experiments with specific
mucosa tissues and controls would be required for quantifying
mucoadhesion in the particular area of interest.
In comparing the roughness at the interface of various

nanofiber samples interactions with mucosa, the parameter
routinely used to measure surface roughness was Ra (arithmetic
average of absolute height values). Rmax, which is the total
dimension from the lowest depth to the highest point, was also
considered, as this is indicative of all unfilled voids (depths) on
the mucosa during mucoadhesion.
Interfacial roughness data from fibers with varying CMC

concentrations were obtained and tested for possible relation-
ships with mucoadhesive results from texture analyses discussed
in Section 3.2.1. Generally, the samples containing higher
amount of CMC showed smoother interfacial images. Figure 8
compares the interfacial images following interactions between
mucosa and fibers with (a) PEO with 2.5% CMC and (b) PEO
only (0% CMC). In the tapping mode, with a phase lag
between excitation signal and cantilever response due to
difference in material surface interaction with probe tip, the
resulting phase imaging is found to go beyond simple
topographical mapping to detect variations in composition,
adhesion, viscoelasticity, among other properties.46,47 Phase
images from fiber−mucosa interfacial scans are shown in Figure
9A−E. These images reveal increasing level of uniformity as the
CMC content in the progesterone-loaded fiber increases from
0% (A) to 2.5% (E).
In addition, roughness data automatically generated from

height images by the AFM software and presented in Table 3
showed an inverse correlation with the amount of CMC in the
fibers. CMC was anticipated to influence the mucoadhesion of

the progesterone-loaded fibers and hence their inclusion into
these systems that are to be used in developing vaginal insert
whose performance is aided by mucoadhesion. Indeed, the
positive correlation between CMC content and mucoadhesion
has been confirmed by texture analyses in Section 3.2.1. The
apparent relationship between interfacial roughness data and
CMC content confirmed to be a function of mucoadhesion by
the well-established texture analysis method offers an
opportunity for a quantitative study of mucoadhesion by
AFM. A review of the diffusion and mechanical theories that
explain mucoadhesion by the degree of molecular inter-
penetration of groups and filling up of irregular spaces
(voids) on the interacting surfaces points to a possibility of
studying mucoadhesion by examining the residual surface after
adhesion has occurred. Based on these relationships and
theories, statistical analyses among detaching forces, roughness
(Ra and Rmax), and CMC concentrations to validate or rule out
the hypothesis postulated earlier. It can be concluded that
interfacial roughness relates to and can be used to quantify
mucoadhesion.
Considering the number of data points and more importantly

the need to establish the strength of ordinal associations
between the two data sets, Goodman−Kruskal gamma and
Kendall’s tau tests, two commonly used nonparametric
measures for assessing rank correlations, were used. Separate
tests were conducted to determine the strength of correlations
between detaching force and Ra, detaching force and Rmax, and
finally detaching force and CMC concentration. Goodman−
Kruskal gamma and Kendall’s tau tests returned p-values of
0.027 and 0.014, respectively (both with statistic of −1
implying an inverse monotonic relationship) for correlations
between detaching force and interfacial roughness. Interest-
ingly, the same p-values were obtained from tests between
detaching force and CMC concentration, except for a statistic
of 1, which indicated a direct monotonic relationship. Similar p-
values for all three tests implies similar magnitude of changes
occurring in same order when corresponding quantities are
varied, an indication of a strong interdependence among the
measurements tested. These statistically significant evidence (at
p < 0.05 level) for monotonic relationships between detaching

Figure 9. AFM phase images from fiber−mucosa interface following a period of mucoadhesion. Homogeneity (material uniformity) is seen to
increase with CMC content in fibers: (A) 0%, (B) 0.75%, (C) 1.25%, (D) 1.75%, (E) 2.5%. Images resized to represent an area of 900 μm2 with
angular units between −30 and 15°.

Table 3. Fiber Composition and Corresponding Interfacial
Roughness Measurements Generated from AFM Analysis

fiber
progesterone

(wt %)
PEO
(wt %)

CMC
(wt %)

detaching
force (gF)

roughness
(nm)

Rmax
(nm)

A 5 15.00 0 9.60 142 1716
B 5 14.25 0.75 11.26 69 610
C 5 13.75 1.25 15.95 37 480
D 5 13.25 1.75 21.39 31 462
E 5 12.5 2.5 26.69 26 439
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forces (determined using texture analyzer) and Ra, Rmax, and
CMC concentration validate the hypothesis of relating
interfacial roughness following polymer−mucin interactions
to the magnitude of mucoadhesion. The geometry of surfaces
(roughness in our case) and indeed many other features such as
energetics arising following mucoadhesive interactions, as
hinted by the various mucoadhesion theories, offers oppor-
tunities for an experimental study of mucoadhesion.

4. CONCLUSIONS
The possibility of generating progesterone-loaded mucoadhe-
sive fibers from a blend of polymers is reported. Loading
progesterone into fibers altered the morphology and increased
the average fiber diameter. Incorporating CMC into the fibers
also increased their mucoadhesion prospects, as well fiber size.
The adhesion of the drug-loaded fiber to cellulose acetate
membrane was compared to that of lamb esophageal mucosa
and found to be 10-fold higher in magnitude. However, changes
in the strength of adhesion due to varying CMC concentrations
resulted in trends that correlated well with each other, implying
the possibility of replacing mucosa with artificial membranes in
the studies emphasizing the trend variations rather than
absolute quantity of mucoadhesion. A hypothesis of a possible
relationship between mucoadhesion and interfacial geometry of
adhering surface, deduced from classical mucoadhesion
theories, was tested by comparing the AFM-derived roughness
dimensions to the detaching forces (determined using a texture
analyzer) in comparable fiber−mucosa models. A similar test
between CMC content in the fibers and interfacial roughness
was also conducted. Statistically significant (at p < 0.05 level)
monotonic relationships between detaching forces and Ra, Rmax,
and CMC concentration were established, thus confirming a
valid relationship between interfacial roughness following
polymer−mucin interactions and magnitude of mucoadhesion.
These relationships can therefore be explored further for
alternative methods of quantifying mucoadhesion in similar
models.
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D. Mucoadhesive Drug Delivery Systems. Braz. J. Pharm. Sci. 2010, 46,
1−17.
(7) Huang, Y.; Leobandung, W.; Foss, A.; Peppas, N. A. Molecular
Aspects of Muco-And Bioadhesion: Tethered Structures and Site-
Specific Surfaces. J. Controlled Release 2000, 65, 63−71.
(8) Hag̈erström, H.; Edsman, K. Limitations of the Rheological
Mucoadhesion Method: The Effect of the Choice of Conditions and
the Rheological Synergism Parameter. Eur. J. Pharm. Sci. 2003, 18,
349−357.
(9) Kaelble, D. H.; Moacanin, J. A Surface Energy Analysis of
Bioadhesion. Polymer 1977, 18, 475−482.
(10) Peppas, N. A.; Buri, P. A. Surface, Interfacial and Molecular
Aspects of Polymer Bioadhesion on Soft Tissues. J. Controlled Release
1985, 2, 257−275.
(11) Leung, S.-H. S.; Robinson, J. R. Polymer Structure Features
Contributing to Mucoadhesion. II. J. Controlled Release 1990, 12, 187−
194.
(12) Chickering, D.; Mathiowitz, E. Bioadhesive Microspheres: I. A
Novel Electrobalance-Based Method to Study Adhesive Interactions
between Individual Microspheres and Intestinal Mucosa. J. Controlled
Release 1995, 34, 251−262.
(13) Mathiowitz, E.; Chickering, D. E., III; Lehr, C.-M. Bioadhesive
Drug Delivery Systems: Fundamentals, Novel Approaches, and Develop-
ment; CRC Press: Boca Raton, 1999.
(14) Peppas, N. A.; Sahlin, J. J. Hydrogels as Mucoadhesive and
Bioadhesive Materials: A Review. Biomaterials 1996, 17, 1553−1561.
(15) Mortazavi, S. A.; Smart, J. D. An Investigation of Some Factors
Influencing the In Vitro Assessment of Mucoadhesion. Int. J. Pharm.
1995, 116, 223−230.
(16) Cook, M. T.; Khutoryanskiy, V. V. Mucoadhesion and Mucosa-
Mimetic MaterialsA Mini-Review. Int. J. Pharm. 2015, 495, 991−
998.
(17) Rencb̧er, S.; Karavana, S. Y.; Yılmaz, F. F.; Erac,̧ B.; Nenni, M.;
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