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Abstract—Rainfall measurement is subject to various 

uncertainties owing to the complexity of measurement techniques 

and atmosphere characteristics associated with weather type. 

Thus, this study presents a video-based disdrometer to analyze 

raindrop images by introducing artificial intelligence technology 

for the rainfall rate. First, a high-speed CMOS camera is 

integrated into a planar LED as a backlight source for 

appropriately acquiring falling raindrops in different positions. 

The falling raindrops can be illuminated and used for further 

image analysis. Algorithms developed for raindrop detection and 

trajectory identification are employed. In a field test, a rainfall 

event of 42 continuous hours has been measured by the proposed 

disdrometer that is validated against a commercial PARSIVEL2 

disdrometer and a tipping-bucket rain gauge at the same area. In 

the evaluation for 5-min rainfall images, the results of the 

trajectory identification are within the precision of 87.8%, recall 

of 98.4%, and F1 score of 92.8%, respectively. Furthermore, the 

performance exhibits that the rainfall rate and raindrop size 

distribution obtained by the proposed disdrometer is remarkably 

consistent with those of PARSIVEL2 disdrometer. The 

performance suggests that the proposed disdrometer based on the 

continuous movements of the falling raindrops can achieve 

accurate measurements and eliminate the potential errors 

effectively in the real-time monitoring of rainfall.     

 
Index Terms—Rainfall rate, Raindrop size distribution, 

Disdrometer, In situ atmospheric observations, Particle tracking 

velocimetry (PTV) 

 

I. INTRODUCTION 

wing to the effect of climate change, precipitation 

monitoring is applied to provide useful applications, such 

as meteorology, hydrology and agriculture [1]. Rainfall 

measurement nowadays attracts wide attention and has a critical 

role in socioeconomic activities. Because the observation of 

rainfall rate is extremely heuristic and complex, many 

precipitation measurement technologies have been developed. 

In the past, precipitation over a large area was typically 

measured by weather radar and satellite, i.e. the assessment of 

the Z-R relationship between radar reflectivity (Z) and rainfall 

rate (R) with the assumption of time- and space- invariance [2-
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5]. To eliminate the deviations of remote sensing data, 

characteristics of raindrop spectra are critical in the calibration 

procedure.  

Direct observation of cloud droplets is the best method to 

study precipitation behaviors; however, the entire process is 

either time-consuming or costly. [6, 7]. From another viewpoint, 

raindrop observation on the ground is relatively simple owing 

to many advanced disdrometers [8]. The measurement of the 

raindrop size distribution (RSD) by such instruments can 

provide essential information for tracing precipitation 

processes, accounting for rainfall, and understanding 

microphysics in numerical weather models [9]. Hitherto, an 

optical type of disdrometer is becoming the most popular 

instrument for rainfall observations. Löffler-Mang et al. 

reported the particle size velocity (PARSIVEL) disdrometer, 

which is a commercial disdrometer for monitoring precipitation, 

hail, and snow [10]. Additionally, the same concept is extended 

to a two-dimensional video disdrometer (2DVD) to observe 

more complete three-dimensional information about a raindrop 

[11]. Unfortunately, they suffer from different degrees of 

raindrop mismatches during sensing [12,13]. In the recent 

decade, Saylor et al. adopted different edge detection 

algorithms for various depths to acquire more accurate raindrop 

images [14]. However, measurements by this approach 

performed outdoors remains uncertainty. Later, Testik et al. has 

reported a high-speed optical disdrometer for measuring rainfall 

microphysical quantities [13]. The issue is that only raindrops 

around the focal plane of a camera can be counted for further 

analysis, and little work has been considered regarding its 

practical efficacy. With recent developments in technology and 

image processing tools, object detection and particle image 

velocimetry/particle tracking velocimetry (PIV/PTV) have 

been extensively applied in many fields. PIV/PTV technologies 

are based on the visualization analysis of flow with high spatial 

and temporal resolutions to overcome the difficulties of direct 

tracking [15]. To the best of our knowledge, few attempts have 

been reported regarding raindrop characterization and the 

rainfall rate estimation based on this method [16, 17]. This 

could be owing to the wide range sizes and corresponding 

velocity distributions of falling raindrops that render the tasks 
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challenging. In some cases, wind-caused turbulences can 

impose a bias on the two parameters and affect the 

measurement. Likewise, the detection and tracking of many 

nonrigid bodies cannot sufficiently provide features to facilitate 

computations using PIV/PTV technologies [17-19]. Finally, the 

direct use of backlight illumination restricts the observation 

because of the out-of-focus images, e.g., only the raindrops in 

the narrow depth of the field can be recognized correctly in the 

study.  

Recently, many reports have indicated the significant 

progress of artificial neural network (ANN) methodologies in 

PIV/PTV technologies; thus, it can be explored to solve some 

of the limitations of the current approaches [20-23]. The 

architecture of an ANN can be regarded as a nonlinear process. 

Among them, the back-propagation network (BPN) is the most 

typical model that relates the inputs and outputs of a complex 

function. Furthermore, their interconnections are formed by 

turning the weights and biases iteratively to minimize the 

squared error sum between the actual output of the BPN and the 

desired output through a supervised learning algorithm. The 

minimization process is typically performed by adopting the 

gradient- or steepest- descent methods [24]. Consequently, 

ANNs can extract key features to classify or predict tasks and 

provide an efficient computation with adaptability and 

robustness. 

Despite the numerous reports regarding the ANN’s capability 

in performing computations in the current PIV/PTV 

technologies, some existing limitations must be addressed 

[23,25-27]. To investigate into the measurement of raindrops, 

efficient and reliable PIV/PTV technologies are necessary. The 

trajectory and shape of a raindrop may be useful features, and a 

tailored ANN model is expected to incorporate them to yield a 

better performance than the tasks using the current algorithms 

[28, 29]. One can therefore expect that a well-designed ANN 

technology is conducted to improve analytical models. This 

new technique is applicable to raindrop measurement, thus 

avoiding ambiguous particle pairings and trajectory deviations. 

The purpose of this study is to achieve ground rainfall 

measurement. A video-based disdrometer is proposed by 

integrating a low-cost CMOS camera for a high-speed image 

acquisition, a planar LED as a backlight source, and a specific 

lens for increasing the depth. Falling raindrops can be 

illuminated and the raindrop images are captured for the 

analysis. In particular, we have applied ANN classification for 

six extracted features from the detected raindrops to perform 

the trajectory identification algorithm. Thus, the rainfall rate, 

accumulated rainfall rate, and RSD can be estimated. 

Subsequent sections contain descriptions that are more 

complete about the proposed disdrometer and its performance 

in an outdoor field experiment. The final section presents our 

conclusions about the primary contributions and some 

empirical findings for the characterization of raindrops. 

II. RAINFALL MEASUREMENT SYSTEM 

The proposed video-based disdrometer attempts to analyze 

falling raindrops and the corresponding raindrop properties. 

The system design and workflow are described as follows:   

A. System design and primary components 

The optomechanic system of the video-based disdrometer 

includes three primary components: a light source, camera, and 

system controller. The layout is illustrated in Fig. 1. The left 

component is a planar LED light source with a diffuser to 

generate a flat and uniform illumination. The center wavelength 

of the LED light is within 460 nm instead of longer wavelengths 

or broad band light sources; thus, the edges of the raindrops can 

be highlighted to facilitate detection. 

According to the available evidence in previous studies, the 

sizes of the primary raindrops range substantially  from 0.5 mm 

to 5 mm, thus indicating that the falling speed of a raindrop 

ranges from 2 to almost 10 m/s [30, 31]. This implies that spatial 

resolution is required to resolve the minimum small-scale of 0.5 

mm. Moreover, the fast shutter speed (i.e. short exposure time) 

of the camera should enable the raindrop images to be captured 

instantaneously. Unfortunately, the cost of a high-speed camera 

and the vast amount of raindrop imaging data hamper the 

development of such technique. Owing to the availability of a 

high-speed CMOS camera and limit budget, the functionality of 

fast image acquisition can be implemented. The CMOS camera 

was setting at 500-Hz frame rate, 69-μs exposure time, and 82-

μm resolution. To prevent optical distortions of the raindrop 

images within different depths, an optical lens is mounted to 

provide a depth of 120 mm to ensure almost unchanged shapes 

of the raindrops. Therefore, the imaging system is can produce 

a field of view of 52.5 mm × 39.0 mm. The configurations of 

the system are listed in Table I. 

Finally, a laptop is employed as a control unit to manage the 

camera with the frame capturing and perform image processing 

procedures. The computation module synchronizes the 

operation of the camera and light source according to the trigger 

signals received from the computer.  

B. Proposed flowchart 

To explain the developed algorithm of our proposed 

disdrometer, a workflow diagram is illustrated in Fig. 2. The 

workflow can be divided into two parts: rainfall monitoring and 

   

Fig. 1.  Schematic layout of the video-based disdrometer for 

measuring rainfall rate.  

TABLE I 

SYSTEM CONFIGURATIONS  

Item Value Description 

FOV 52.5 mm ×39.0 mm Physical imaging area of the system 

CMOS size 3.1 mm × 2.3 mm Practical camera chip size  

Depth of field 120 mm Focusing depth of the lens 

Resolution 82.0 µm  Pixel size of the physical area  

Frame rate 500 Hz Acquisition frames per second 

Exposure time 69 μs Time of the open shutter duration 

 

 

http://www.youdao.com/w/eng/instantaneous/?spc=instantaneous#keyfrom=dict.typo
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rainfall estimation. The first procedure is to monitor whether it 

is raining. The second procedure can be further subdivided into 

two parts consisting of raindrop detection and trajectory 

identification with feature extraction, and ANN classification 

and verification.  

1) Rainfall monitoring: The proposed system sets a timer to 

trigger the light and a camera and process 1-sec monitoring 

every minute. If the suspicious raindrops are appealing in the 

sampling region, the rainy condition can be determined by 

performing raindrop evaluation between the previous and 

subsequent frames. Meanwhile, if the raindrops are detected 

continually, the rainfall monitoring status will proceed to the 

next stage of the rainfall estimation. This predetermined 

operation can reduce power consumption, computation 

resources and storage space requirements. 

2) Rainfall estimation: Following the above, the rainfall 

estimation including raindrops detection and trajectory 

identification will be launched once every 30-sec periodically. 

Consequently, the rainfall parameters can be obtained to present 

the rainfall rate and RSD. For automation, the proposed system 

will continue operation until no precipitation raindrops are 

detected for a period by the time set. 

III. RAINDROP DETECTION AND TRAJECTORY IDENTIFICATION 

In the experiment, because of the short exposure and 

susceptibility to interferences of the CMOS sensor, the acquired 

images are easily affected by random noises. Additionally, dust 

and dirt on the lens may cause unexpected consequences. The 

preprocessing procedures are key tasks assisting raindrop 

detection and the deletion of empty images that contain no 

raindrops. As the duration of 30-sec for each operation is 

sufficient, the rainfall estimation has adequate time to process 

the raindrop images. In the following, the framework of the 

raindrop detection and the trajectory identification are 

introduced.  

A. Raindrop detection algorithm 

The raindrops are identified according to the blocked light 

intensity in a number of consecutive frames. Thus, the image 

preprocessing procedures are used to correct the 

nonhomogeneity of the light source and eliminate artifacts. The 

collocation procedures are presented below: 

1) Introduce a median filter with a 3×3 window for image 

smoothing; 

2) Average the acquired 500 images for each time period to    

construct a background; 

3) Perform a background correction for the 500 images; 

4) Employ a segmentation method, i.e., the Renyi entropy 

[32], to separate the raindrops from the images; 

5) Apply a minimum bounding box to replace a raindrop 

image with the horizontal and vertical displacements, canting 

angle, and major and minor axes. 

B. Trajectory identification by ANN 

To observe the frame-by-frame falling motion of the 

raindrops, several characteristics from the precipitation are 

extracted for achieving particle tracking. The detailed execution 

procedures are explained in Appendix A. Our algorithm that is 

used to link raindrops from only two frames is based on an 

iterative estimation. Subsequently, by analyzing the similarities 

of the shape, orientation, and movement as expected for each 

raindrop in consecutive frames, the trajectory can be identified 

accurately. The operative procedures are shown as follows: 

 

Fig. 2.  Workflow diagram of the raindrop detection and trajectory identification procedures. 
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1) Apply pixel correction for each detected raindrop, whose 

framework is shown in Appendix B;  

2) Input the six extracted features, such as the horizontal and 

vertical displacements, area, canting angle, and major and 

minor axes, into the designed ANN classification; 

3) Estimate all cost values of the trajectories for each raindrop 

in the previous frame associated with all the raindrops in the 

subsequent frame; 

4) Employ an intersection layer to determine the best suitable 

trajectory frame by frame; 

5) Derive the rainfall rate, accumulated rainfall rate, and RSD. 

IV. RESULTS AND DISCUSSIONS 

Field tests in an outdoor environment were performed during 

a rainfall event in Hsinchu, Taiwan, which occurred from 00:00 

on June 16th to 18:00 on June 17th, 2017 (UTC). After applying 

the filtering process for those frames without raindrops, 246280 

frames underwent analysis.  

A. ANN classification for rainfall evaluation 

The model processes were used for evaluating the performance 

of the trajectory identification. The ANN classification was 

used for the 5-min testing data of rainfall images. The results 

are displayed in Fig. 3. The learning curve approaches 2×104 

epochs. The results yield an accuracy rate of 0.962 and 0.960 

for the testing data and validation data, respectively, when the 

learning curve achieves 1×104 epochs. In the evaluation, the 

results are derived with a precision of 87.8%, recall of 98.4% 

and F1 score of 92.8%, which are expressed as Eqs. (1), (2), and 

(3), respectively. All images of the testing data were manually 

labeled with the raindrop linking status.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(%) =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙(%) =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (2) 

𝐹1 𝑠𝑐𝑜𝑟𝑒(%) =
2

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁄ + 1

𝑅𝑒𝑐𝑎𝑙𝑙⁄
 (3) 

 
  Subsequently, three different types of rainfall rates of 

14:41(high rainfall), 15:36(medium rainfall) and 17:12(low 

rainfall) were selected for further observation. Table II lists the 

classification performance; only a few cases were misidentified 

as either a heavy rainfall or the medium rainfall. The result 

proves that the proposed algorithm of trajectory identification 

performs well.  

B. Rainfall rate measurement 

To understand the differences among different measuring 

technologies, the proposed disdrometer and the collocated 

PARSIVEL2 disdrometer are both operated for the 42-hr 

continuous rainfall event in the same space. In addition, a 

tipping-bucket rain gauge with a resolution of 1 mm and an 

hourly update was used as a reference standard in the 

measurement. Subsequently, the rainfall rate and accumulated 

rainfall rate were obtained. The performance is shown in Fig. 4. 

Our finding indicates that the annual hour-by-hour rainfall rate 

of the proposed system is highly correlated with the 

PARSIVEL2 measurement, and only a relatively small variation 

is observed regardless of whether the rainfall rate is large or 

small. The measurement reaches average rainfall rate values at 

2.50 mm/h for the proposed disdrometer, 2.62 mm/h for the 

TABLE II 

ANN classification for rainfall evaluation at 14:41(heavy), 15:36(medium) and 

17:12(low) in June 16th, 2017 by manual verification. 

 Validity Spurious Non-matched 

Heavy rainfall 186 (97.0%) 5 (3.0%) 3 

Medium rainfall 87 (95.6%) 4 (4.4%) 2 

Small rainfall 47 (100.0%) 0 (0.0%) 1 

 

 

Fig. 3.  Results of ANN classification for the rainfall images by (a) the learning curve and (b) the confusion matrix.  
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PARSIVEL2 disdrometer and 2.45 mm/h for the rain gauge. For  

the observation of accumulated rainfall rate, the three 

approaches exhibit an increasing trend, and the accumulated 

rainfall rates are 109.51 mm for the proposed disdrometer, 

112.71 mm for the PARSIVEL2 and 106.9 mm for the rain 

gauge. The experimental results are in the reasonable scope.  

C. RSD measurement 

In the RSD measurement, the performances for the proposed 

disdrometer and PARSIVEL2 are presented in Fig. 5(a) and (b) 

respectively. To fairly compare the measurement of these two 

instruments, the data from the proposed disdrometer were 

sorted into the same format. Concerning the RSD shapes, the 

proposed disdrometer exhibited almost identical results with 

those obtained from PARSIVEL2 for the overall rainfall 

measurements. An empirical relationship between terminal fall 

velocity and raindrop diameter presented by Atlas et al. in 1973 

is shown with a red curve [33]. Compared to the PARSIVEL2, 

the proposed disdrometer measured more small raindrops (D < 

0.3 mm) and large raindrops (D > 2.5 mm), but fewer moderate-

size raindrops (0.3 mm < D < 2.5 mm). This observation may 

be owing to the higher resolution and frame rate that are 

beneficial to the measurement. Distinct differences are shown 

in the RSD of small raindrops that might be caused by the 

collision, coalescence, and breakup of a raindrop. The 

concentrated RSD shape by the PARSIVEL2 is referred to as a 

sophisticated calibration procedure [30]. By contrast, the 

measurements by the proposed disdrometer provide 

information that is more complete. Nevertheless, a significant 

observation that slower falling velocities for raindrop sizes 

larger than 1.5 mm of the equivalent diameter [31]. The specific 

objective of the comparison experiment is to highlight the 

capability of the proposed disdrometer to facilitate the 

monitoring of falling raindrop dynamics through the acquisition 

of sequential raindrop images. 

D. Evaluation of rainfall distribution of the raindrop size 

To analyze the rainfall effect on raindrop sizes, the rainfall 

ratio to raindrop size is calculated [28]. The rainfall data are 

classified into three groups: high rainfall, medium rainfall and 

low rainfall. As shown in Table III, we selected the 12th, 13th, 

16th hour as high rainfall, the 2nd, 5th, 6th hours as medium 

rainfall, and the 1st, 4th, 7th hour as low rainfall. The 

corresponding average rainfall rates are 9.37 mm/h, 4.79 mm/h, 

and 1.73 mm/h. In Fig. 6, the rainfall ratio based on raindrop 

size for each group is shown. The results indicate that the 

primary contribution of the rainfall is medium rainfall and high 

rainfall with the raindrop size of 1 mm to 3 mm; this implies 

that small raindrops contribute little to rainfall. This finding 

considerably differs from the low rainfall case that concentrates 

on the raindrop size from 0.7 mm to 2 mm. Evidence also 

suggests that the rainfall rate depends primarily on both the 

     
Fig. 4.  Rainfall rate and accumulated rainfall rate of the proposed 

video-based disdrometer (blue color), PARSIVEL2 disdrometer 

(red color) and rain gauge (green color) measured within 42 

continuous hours from 00:00 on June 16th, 2017.  

TABLE III 
Three categories of rainfall rate versus the time interval of rainfall observations 

 Rainfall Observations (Hour) Average Rainfall Rate 

High rainfall 12th, 13th, 16th 9.73 mm/h 

Medium rainfall 2th, 5th, 6th 4.97 mm/h 

Low rainfall 1st, 4th, 7th 1.73 mm/h 

 

  
Fig. 5.  Comparison of RSD measurements by (a) the proposed 

disdrometer, and (b) PARSIVEL2 disdrometer.  
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raindrop sizes and the associated raindrop numbers [29].  

V. CONCLUSIONS 

In this study, we reported a video-based disdrometer system 

with improved ANN technology that provided a promising and 

automatic approach to measure precipitation. The designed 

optomechanic system was used to acquire high-speed images 

for falling raindrops. A long depth lens was employed to 

address the narrow depth of focus. To adjust for the effects from 

a long exposure, we presented a pixel correction factor to 

modify the shape distortion of each raindrop. Therefore, the 

measurement of the raindrop size was ensured. The proposed 

scheme of the raindrop detection was used to segment all 

raindrops, and the trajectory identification algorithm was 

employed to determine the trajectory for each raindrop 

sequentially. Benefiting from the ANN classification, the 

proposed video-based disdrometer could achieve particle 

tracking with high accuracy for most raindrops. Thus, the 

characteristics of rainfall rate and the RSD could be computed 

simultaneously.  

A comparison of various instruments was presented to 

address the differences in measurement uncertainty and 

facilitate in understanding the application limits. Within 42-h 

continuous rainfall observation, a collocated PARSIVEL2 and 

a tipping-bucket rain gauge were employed in the comparison 

with the developed system. For the observation of the 

accumulated rainfall rate, the proposed system, the 

PARSIVEL2 disdrometer, and a rain gauge exhibited a closer 

trend with only a slight variation. According to the estimates by 

Raupach et al., the result indicated that PARSIVEL2 was prone 

to underestimating the moderate-size raindrops [30,34], which 

was also confirmed in our experiment. The RSD distribution 

measured from the proposed system agreed well with the 

PARSIVEL2 disdrometer. In the analysis of the rainfall effect 

on different raindrop sizes, we found that the rainfall rate was 

dominated by both the number and size of raindrops. 

Theoretically, the basic mechanism of PARSIVEL2 is 

utilizing a light sheet to sense a passing raindrop; additionally, 

it may be susceptible to wind or heavy rain rate. Consequently, 

it can cause the erroneous sensing of raindrop shape and ignore 

the wind interference while multiple raindrops pass through the 

light sheets simultaneously. As for the 2DVD, it utilized two 

parallel light sheets in different heights that could yield errors 

in raindrop shapes and velocities [12]. Instead, our proposed 

disdrometer system was based on the acquisition of sequential 

frames; therefore, the rainfall information including the rainfall 

rate, RSD, and the associated characteristics could be obtained 

more precisely by evaluating the continuous movements of the 

raindrops. Some potential errors were eliminated effectively. 

Additionally, a side benefit of this approach was that the 

continuous process of the falling raindrops was observed in the 

study, which provided a comprehensive analysis of raindrop 

behavior.  

Furthermore, the performance proved that the proposed 

disdrometer with low cost and low power consumption could 

achieve the precipitation measurement of commercial products, 

despite the good agreement among these three instruments that 

could not to fully guarantee the efficacy of the proposed 

disdrometer for different rain intensities and precipitation types. 

It is noteworthy that the purpose of this study is to construct a 

disdrometer of affordability, easy installation and maintenance, 

and hardware robustness, such that it can be applied in many 

applications of earth sciences, atmospheric sciences, and 

beyond. Therefore, more observations with long-term 

experiments are expected to evaluate the performances of the 

proposed disdrometer.  

APPENDIX A 

In this appendix, we provide an overview processes of the 

raindrop detection and trajectory identification to explain the 

details. 

A. Raindrop detection 

Owing to the noises and nonuniform illumination that arises 

from a surface light source, the raw images require 

preprocessing before they are employed. Therefore, a 

background image can be estimated by accumulating and 

averaging 500 frames to obtain the background reference that 

provides the modification of unreasonable data. A median filter 

with a 3×3 mask is utilized to depress speckle noises. 

Subsequently, Renyi entropy thresholding is used to segment 

the raindrops. The concept of Renyi entropy thresholding is to 

 
Fig. 6.  Rainfall rate contribution from different raindrop size. 

  

   
Fig. 7.  Modification of the major axis of a raindrop by the pixel 

correction factor.  



> TGRS-2018-01658 < 

 

7 

maximize two gray-level distributions of the desired raindrops.  

The segmented raindrops deform distinctly while the 

raindrops are falling on the ground. Because of the image 

acquired with an exposure time, the recorded images exhibit the 

raindrops with distortion patterns [30]. Thus, a distortion that is 

corrected prior to any further processing should be applied. The 

detected raindrops with the corresponding velocities are used to 

generate the distribution of the pixel correction factor. In Fig. 

7, a raindrop is shown as an example; the original and corrected 

shapes are superimposed, which distinctly displays a reasonable 

raindrop shape. Fig. 8 shows the two-dimensional distribution 

of the pixel correction factors according to the raindrop size, i.e. 

𝐷𝑒𝑞 . The black curve is the theoretical curve of the terminal 

velocity of a raindrop, where the vertical axis represents the 

raindrop velocity, the horizontal axis represents the 

corresponding raindrop size, and the colors represent the 

various extents of the calibrating factors. The small size of a 

raindrop with a relatively high velocity should be modified, i.e. 

its major axis should be multiplied by a relatively low factor.  

To ensure the accuracy of the proposed raindrop detection 

algorithm, the well-known sizes of the glass balls are utilized 

for the validation. All tests, including the raindrop size, consist 

of glass balls ranging from 1 mm to 5 mm, thus indicating that 

the errors are less than 5%. 

B. Trajectory identification 

Object tracking is important in many computer applications, 

such as object-based video compression, surveillance, and 

augmented reality. The following task is to obtain the probable 

trajectory of the same particle in any two successive frames. To 

avoid the situation where some trajectories may be linked to 

error raindrops in the previous and subsequent frames, a 

trajectory identification algorithm based on an ANN 

classification is employed. Thus, the possible trajectories of 

each raindrop in any two consecutive frames are through the 

linking estimation and subsequently searching for the most 

likely trajectory through the probability measures in our 

analysis.  

The detailed procedures are summarized as follows. Let  𝑝𝑖  

and 𝑝𝑗 denote the locations of a raindrop appearing in the 1st 

frame (𝑓1) and 2nd frame (𝑓2), respectively. According to the 

principle of terminal velocity, a raindrop and its possible 

candidate must be apart within a displacement, 𝐷𝑖𝑗 . The distant 

relation, 𝑑𝑖𝑗 , for a raindrop in any two sequences is subjected to 

the following condition [35,36]: 

|𝑑𝑖𝑗| = |𝑝𝑗 − 𝑝𝑖| < |𝐷𝑖𝑗| + |𝑅𝑗|                  (4) 

𝐷𝑖𝑗 = 𝑣𝑇𝑖𝑗
𝛥𝑡                                                (5) 

where 𝑣𝑇𝑖𝑗
 is the estimated raindrop velocity according to the 

average size of the selected raindrop in 𝑓1  and its possible 

candidate in 𝑓2, and 𝛥𝑡 is the duration time.  𝑅𝑗   is the radius of 

the modified relaxation area in frame 𝑓2, and centered on the 

position of raindrop 𝑝𝑗 . The relaxation area implies the 

searching tolerance of the expected location and can be 

determined using differential raindrop sizes. In our case, 𝑅𝑗 is 

typically affected by the wind effect and measurement errors. 

In the following, some features are extracted for the similarity 

calculation for all candidates.  

1) Feature extraction 

Considering the raindrops that falls to the ground surface, the 

motion process is dominated by the gravitational force and drag 

force. The majority of raindrops will be in equilibrium 

conditions at the terminal velocities. Based on our observation 

of the falling raindrops, the pattern, moving speed, and even 

direction of the raindrops remain unchanged within a short 

duration. Therefore, some valuable features of the falling 

raindrops can be extracted for the identification. To simplify the 

calculation, a minimum bounding box, e.g., an enclosing 

ellipse, was used to match the detected raindrop. The ellipse that 

was fitted to the raindrop was represented by deriving their 

coordinates, area, canting angle, and major and minor axes. All 

six features were selected as input features to feed into the 

trajectory identification algorithm.   

2) ANN classification 

The primary objective of this idea is to apply the potential of 

the ANN classification for the same raindrop to identify the 

trajectory in any successive frames. The architecture of the 

ANN classification with back-propagation, consisting of an 

input layer, four hidden layers, and an output layer, is applied. 

Each of the 4 hidden layers has 32, 64, 64 and 32 neurons with 

a rectified linear unit (ReLU) activation function and a batch 

normalization layer [37]. The last layer is responsible for 

producing the output prediction of the network. Here, we used 

a batch size of 32 in all our computations. The whole network 

was trained using the Adam optimizer [38]. To prevent 

overfitting, a dropout and L2 regularizer were added to each 

hidden layer.  

Each processing element can be independently operated in 

parallel to add all weighted inputs and import the activation 

function. A general processing element can be formulated as 

follows: 

 
Fig. 8.  Two-dimensional distribution of the pixel correction 

factor.  
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𝑦(𝑥) = 𝑓 (∑ 𝑤𝑖𝑥𝑖

𝑛

𝑘=1

) (6) 

 

where 𝑥 is a neuron with 𝑛 inputs(𝑥1, … , 𝑥𝑛), out 𝑦(𝑥) and 𝑛 

link weights (𝑤1, … , 𝑤𝑛) that determines the amount of gain or 

attenuation to be imposed to a particular input. In the output 

layer, 𝑓 is the only selected sgmoid function,which is defined 

as follows:  

 

𝑓(𝑥) =
1

1 + 𝑒−𝑠(𝑥+𝑎)
 (7) 

 

where 𝑠 is the steepness factor of the curve and 𝑎 is a value that 

causes a shift away from 0. This type of sigmoid function allows 

the output of the neuron to change continuously. For this 

application, the activation is chosen to present the linking 

reliability of the raindrop trajectory from 0 to 1.  

When performing an ANN classification, a cost value will be 

associated with the execution. Subsequently, each raindrop is 

linked to more than one trajectory, and the trajectory 

identification algorithm is introduced to determine the best 

suitable pair of raindrops from two successive frames. 

3) Intersection layer  

The probability of the trajectory for each raindrop is determined 

by performing the ANN classification. However, unexpected 

errors for trajectory identification may occur and therefore the 

iterative evaluation is beneficial for verifing the trajectory of 

the raindrop between any two successive frames. The 

intersection layer (IL) is an intuitive computation to allow all 

possible trajectories into the conversation. Assume four and 

five raindrops in the previous and subsequent frames, 

respectively, which indicate 20 possible probabilities. We can 

introduce an IL to constitute all probabilities with a vertical axis 

of four raindrops and a horizontal axis of five raindrops as 

shown in Fig. 9. Forward and backward probability measures 

were expressed in Figs. 9(a) and 9(b), respectively. In Fig.9 (b), 

another situation of the backward probability measure might be 

that the 4th raindrop in the previous frame is assigned to two 

possible raindrops, which is unlikely to occur in the real case. 

Therefore, the unlinked raindrops in the subsequent frame are 

considered to select the highest probability as the paired 

raindrop, i.e., the raindrop that has the largest probability. Each 

element in the matrix has an output probability that is labeled 

by using different colors, and only the highest value is chosen 

as a matching trajectory. Applying the computation process, 

each raindrop can be identified as the correct trajectory. 

 

APPENDIX B 

As the acquired raindrops can be distored, a raindrop 

modification procedure is suggested to solve the effect of time 

exposure. The following is the calculation procedure that lists 

each executive step.   

 

 

 

Raindrop Modification Algorithm 

input: Velocity 𝑣; Minor axis 𝑠; Major axis 𝑙 
local parameter: Calibrated major axis 𝑙′;  

Equivalent diameter 𝐷𝑒𝑞  

fix parameter: Exposure time 𝑡 

 

function Calibrate rainfall (𝑣, 𝑠, 𝑙): 
    𝑙′ ⟵  𝑙 − 𝑣 × 𝑡 

    𝐷𝑒𝑞  ⟵  (𝑠 × 𝑙′2
)

1

3 

    𝑉 ⟵ 𝜋/6 × (𝑠 × 𝑙′2
) 

return Equivalent diameter 𝐷𝑒𝑞 ;  

Calibrated raindrop volume 𝑉 
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