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We report a study of the atomic structure of the multiferroic material bismuth ferrite, BiFeO3,
using neutron total scattering measurements coupled with analysis using the Reverse Monte Carlo
method. We have examined average neighbouring interatomic distances and local coordination en-
vironments, together with their fluctuations, for temperatures between 16–800 K (the sample de-
composed at higher temperatures). There is little change in the average structure as a function
of temperature, but the results show unusually large thermal motion at higher temperatures. No
anomalous behaviour is seen within this range, suggesting that the anomalies reported to occur
below room temperature most likely arise due to effects associated with surfaces and interfaces.

I. INTRODUCTION

Bismuth ferrite, BiFeO3, is the most widely studied
multiferroic ceramic, primarily because it exhibits both
magnetic (TN ∼ 630 K) and ferroelectric (TC ∼ 1100 K)
ordering at room temperature1. BiFeO3 has the per-
ovskite structure, with the Fe3+ cation occupying the
octahedral site and the Bi3+ cation on the cuboctahe-
dral sites coordinated to 12 oxygen anions, as shown in
Figure 1.

At room temperature bismuth ferrite crystallises in the
α-phase with rhombohedral symmetry, polar space group
R3c, with the FeO6 octahedra rotated in an antiphase
arrangement about the rhombohedral 3-fold axis (Glazer
notation a−a−a−). Both cations are displaced from the
centre of symmetry along the [001]h axis of the hexagonal
unit cell (corresponding to the [111]c axis of the parent
cubic phase)1,2, with the Bi3+ displacement being largest
due to the stereo-active lone pair. Below TN the mag-
netic moments of Fe3+ order into a complex long-range
incommensurate spin cycloid propagating in the [110]h
direction with a periodicity of approximately 620 Å.3 It
is now generally accepted that at TC BiFeO3 undergoes a
first-order phase transition to an orthorhombic β-phase
with non-polar Pbnm symmetry4.

Above 1198 K BiFeO3 adopts the γ-phase, the sym-

metry of which continues to be debated. Initially it was
suggested that γ-BiFeO3 adopts the aristotype cubic per-
ovskite Pm3m symmetry5. However, neutron diffraction
experiments suggest that the γ-phase may retain or-
thorhombic symmetry6. High temperature studies are
usually compromised as a result of the thermal instability
of BiFeO3. It has been demonstrated that the expected
decomposition products are marginally more thermal dy-
namically stable in the temperature range 720–1040 K7,8

More recently differential scanning calorimetry measure-
ments have suggested that BiFeO3 is kinetically unsta-
ble above TC with the β–γ phase transition overlapping
the peritectic decomposition9. It was also suggested that
the structural phase transitions are interlinked and ki-
netically controlled, and thus dependent on the heating
rate. As a result the onset of decomposition of BiFeO3

can occur significantly below the peritectic decomposi-
tion temperature, and is somewhat dependent on exper-
imental conditions. This is consistent with the difficulty
to obtain a pure γ-phase in diffraction experiments4–6.

Inelastic neutron spectroscopy experiments conducted
between 200–750 K exhibited a broadening of the whole
excitation spectrum with increasing temperature, which
was interpreted in terms of large-amplitude anharmonic
motions of Bi and O ions11. An anomaly in the Bi-
dominated modes around TN was interpreted as strong
evidence for spin-phonon coupling. A more recent in-
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elastic study performed between 300–700 K revealed
no significant changes in the dynamic response with
temperature12, although broadening of the energy line
widths on heating towards TN was observed as in refer-
ence 11, leading to the suggestion that the low-energy
lattice dynamics and magnetic order are coupled11,12.

The low temperature behaviour of BiFeO3 remains
the subject of much debate within the literature. No
significant changes in the long-range nuclear (atomic)
or magnetic structures with varying temperature have
been reported in crystallographic studies of single crys-
tal and powder samples of the bulk phases4,13,14. On the
other hand, anomalous features have been reported in
the Raman spectra at multiple temperatures between
140–250 K1,15–17. Since crystallographic measurements
are sensitive to the average structure of the bulk mate-
rial, there are broadly two possible explanations for this
discrepancy. Firstly, many of these studies rely on point
analysis of Raman spectra. The position and intensity of
a particular mode can be critically dependent on the do-
main orientation such that features may not necessarily
arise as a result of temperature dependence but rather
experimental control2,18. Alternatively these anomalies
may not be due to the bulk structure at all, and instead
may arise from grain boundaries with polar character or
from the existence of surface phase transitions19. Indeed,
Domingo et al. have suggested the presence of a 5 nm
surface and a subsurface layer with a thickness of around
320 nm, both of which behave differently, electrically and
structurally, to the bulk20,21. Second, the local structure
may be more complex than the crystallographic average
structure suggests. A recent neutron diffraction and in-

FIG. 1. Structural representation of BiFeO3 in the polar α-
phase with space group R3c. The Fe ions and FeO6 octahedra
are represented by the brown spheres and polyhedra respec-
tively, and the oxygen and bismuth ions are shown as red and
purple spheres respectively. Structure diagrams in this paper
were generated with the CrystalMaker software10.

elastic scattering study on BiFeO3 nanomaterials22 sug-
gests that the FeO6 octahedra become more anisotropic
over a narrow range of temperatures around 205 K. Small
concomitant changes in the magnetic sublattice were at-
tributed to a spin rearrangement; the inelastic scattering
data show anomalies in the widths of the magnetic fea-
tures, indicative of slow spin dynamics below 205 K.

One way to approach this puzzle is to investigate the
local structure of BiFeO3 directly. To date local struc-
ture studies have primarily been limited to room tem-
perature X-ray absorption spectroscopy and X-ray pair
distribution function (PDF) performed as part of com-
parative doping studies23–29. PDF studies at room tem-
perature have been performed on BiFeO3–PbTiO3 solid
solutions30 and La/Tb-doped BiFeO3

25. However, up to
now no variable temperature PDF studies have been per-
formed on undoped BiFeO3.

In this paper we describe a variable-temperature neu-
tron PDF study of undoped BiFeO3 with analysis us-
ing the Reverse Monte Carlo (RMC) method. This ap-
proach, uniquely, is able to give simultaneous information
about average crystal structure and local fluctuations in
the atomic arrangement. The key objective of this work
is to examine fluctuations in the structure across the
temperature range from 16–800 K, particularly to see
if these show any signs of the various anomalies previ-
ously reported, and to explore any possible link between
magnetism and ferroelectricity. Unfortunately, whilst this
temperature range encompasses TN, it falls short of TC
due to problems of sample stability. Nevertheless, the re-
sults here show robustly the growth of large structural
fluctuations whilst the average structure remains surpris-
ingly constant and consistent across the whole tempera-
ture range. We will show that neither the average struc-
ture nor the local fluctuations show features that reflect
the previously-reported anomalies or changes in the mag-
netic order.

II. EXPERIMENTAL METHODS AND DATA
ANALYSIS

A. Experimental procedures: sample and neutron
scattering measurements

BiFeO3 was synthesised using the same methods we
have previously reported6,31. Briefly, stoichiometric ra-
tios of Bi2O3 (Sigma Aldrich, 99.9% purity) and Fe2O3

(Sigma Aldrich, purity above 99%) were ground together
thoroughly. A 6 mol% excess of Bi2O3 was added in or-
der to mitigate against the loss of bismuth during the
reaction. The material was heated to 800 ◦C with a
heating rate 10 ◦C/min, and held at this temperature
for 5 hours. The resulting powder was leached in 2.5
M HNO3 with continuous stirring before being washed
with double-distilled H2O and dried at 400 ◦C (1 hour).
Phase purity was confirmed by powder diffraction using a
Bruker D8 Advance diffractometer using Cu Kα1 radia-
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tion (40 kV and 40 mA, λ = 1.5406 Å, 2θ range 10–70◦).
Neutron total scattering measurements were per-

formed using the GEM instrument at the ISIS spallation
neutron scattering facility32. This provides high-quality
data to high values of Q, up to 50 Å−1, although oscil-
lations in i(Q) had already decayed by smaller values of
Q as seen in data shown later in this paper. High values
of Q permit better resolution for the structural models
in real space, with resolution given as ∆r = 2π/Qmax.
The range of Q available to the experiment corresponds
to a practical range of neutron wavelengths of 0.15–2 Å,
which enables energy transfers that correspond to a full
integration over all energy transfers implicit in the for-
mulation of the scattering function i(Q) from the full
dynamical scattering factor. Thus the configurations in
the RMC analysis will be sensitive to the full range of
phonon excitations in BiFeO3.

The powder sample was loaded into a cylindrical vana-
dium can of 8 mm diameter. Total scattering data were
obtained in two rounds of experiments performed at dif-
ferent times. The first round enabled data collection at
temperatures of 16 K, 96 K, 161 K, 236 K, 283 K with
the sample in a closed-cycle refrigerator (CCR), and, 294
K, 600 K and 700 K with the sample in a furnace33. The
second round enabled data collection at temperatures of
291 K, 373 K, 473 K, 572 K, 627 K, 662 K and 798 K in a
furnace34. Measurement times at each temperature were
around 6 hours, corresponding to a total proton flux of
around 900 µA hr.

We found that the nominal temperature of 800 K was
the highest temperature we could achieve in these exper-
iments. With the long run times required for these mea-
surements, together with holding the sample in a vacuum
rather than air, heating above 800 K led to the formation
of decomposition products (such as Bi2Fe4O9), as seen
in the diffraction data. This is not unusual in BiFeO3 as
has been discussed elsewhere7,8. The sample was replaced
by a fresh sample taken from the same synthesis batch
for subsequent measurements after the first signs of de-
composition; diffraction data showed no decontamination
products in any of the data sets analysed and presented
here.

Data were also collected in each round on an empty in-
strument, then with the sample environment equipment
without sample can, and finally with the sample environ-
mental equipment with an empty sample can, in order to
account for additional scattering processes and beam at-
tenuation. A long measurement of the scattering from a
vanadium rod was performed for data normalisation and
calibration of the instrument detectors.

B. Rietveld refinement

The raw diffraction data were processed to form a
set of data for Rietveld refinement using the MANTID
software35. Rietveld refinement on the data was per-
formed using the GSAS software36 with the EXPGUI

interface37.
The refinements were performed using GSAS lineshape

2 (see the manual36 for explanation). Instrumental pa-
rameters used in the refinement were taken from in-house
calibration runs. There is, however, a problem with using
three different datasets (one with the CCR, two with fur-
naces) in that in each case the sample position is slightly
displaced from the centre in a different way. This has a
small but noticeable effect on the refined lattice param-
eters. In fact GSAS has a parameter to account for this
(called “DIFC”). To bring the three datasets into consis-
tency we followed the strategy of refining profile parame-
ters associated with the sample at the lowest-temperature
data and then holding these fixed in the refinements of
all other data. We then compared the three data sets
around room temperature. The lattice parameters for the
two room-temperature measurements in the furnace were
taken from the refinements of the CCR data (using a sim-
ple polynomial fit to the data to enable extrapolation to
the actual temperatures to account for the small differ-
ences in temperature between three data sets at nomi-
nally room temperature). Keeping the lattice parameter
fixed, the sample displacement parameter was refined.
and this was then held fixed in the refinements of higher-
temperature data.

C. Total scattering and the Reverse Monte Carlo
method

The total scattering structure factor i(Q) was obtained
from the total scattering data after correcting for scat-
tering and attenuation by the sample can and sample
environment, and the the detectors normalised by the
measurement of incoherent scattering from the vanadium
rod. We used the GUDRUN code38 for this task. The
maximum value of Q in the data processing was set to
be 40 Å−1 for all the temperatures.

The structure factor is related to the partial atomic
pair distribution functions gmn(r) through the standard
relation:

i(Q) = 4πρ

∫ ∞
0

∑
m,n

cmcnbmbnr
2 (gmn(r) − 1)

sin(Qr)

Qr
dr

(1)
where gmn(r) is defined such that the number of atoms
of type n lying within a spherical shell of radius r and
thickness dr centred on an atom of type m is equal
to 4πcnρr

2gmn(r), with ρ denoting the total number of
atoms per unit volume, and cn denoting the fraction of all
atoms of type n. We define the overall pair distribution
function as

D(r) = 4πρr
∑
m,n

cmcnbmbn (gmn(r) − 1) (2)

The functions i(Q) and D(r) are linked through a pair
of Fourier sine transforms, which follow from the above
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definitions:

Qi(Q) =

∫ ∞
0

D(r) sin(Qr) dr (3)

and

D(r) =
2

π

∫ ∞
0

Qi(Q) sin(Qr) dr (4)

D(r) is our function of choice to represent the pair dis-
tribution function, in part because as the direct Fourier
transform from the analysis presented in the above equa-
tions the errors will propagate more-or-less uniformly
across the transform, and in part because D(r) empha-
sises the higher-r data more than the functions gmn(r)
as a result of the multiplicative factor of r. Although
GUDRUN can generate the D(r) function, in this work
we performed the Fourier transforms using the STOG
program from the ATLAS data analysis suite39, in part
because we chose to use a modification function in the
Fourier transform to reduce the effect of termination rip-
ples associated with a finite maximum value of Q, Qmax,
and to reduce the effects of noise in Qi(Q) at high Q.
Thus our transform is

D(r) =
2

π

∫ Qmax

0

M(Q)Qi(Q) sin(Qr) dr (5)

where, following the procedure proposed by Lorch40,41,
M(Q) = sin(πQ/Qmax)/(πQ/Qmax).

We should comment about the role of magnetic scatter-
ing. Because the magnetic part of the Fe atoms are in the
outer atomic shells, the value of the magnetic form factor
decreases quickly with Q. For the same reason, without
any special attention peaks in the PDF from magnetic
correlations will be extremely broad and essentially indis-
tinct. By not accounting for magnetic scattering within
the reduction of the total scattering data, corrections to
make the data consistent with the known density and
atomic composition (that is, to give the expected slopes
in the low-Q and low-r parts of the Qi(Q) and D(r) func-
tions respectively), the data reduction method will have
treated the magnetic diffuse scattering as noise and sub-
tracted it from the final form of the i(Q) function. The
only part of the final data sets therefore that will contain
magnetic scattering is the Bragg profile, where there is
one strong magnetic peak that could easily be excluded
from the RMC analysis and some much weaker weaks.

RMC modelling was performed using the RMCprofile
program42, which is optimised for applying the method
to crystalline materials. The method uses the traditional
Metropolis Monte Carlo algorithm to move atoms, us-
ing an ‘energy’ function that reflects the agreement be-
tween calculated and measured functions i(Q), D(r) and
the Bragg profile. Specifically, writing the measured (ob-
served) and calculated value of any function at data point
i in data-set j as yobsi,j and ycalci,j respectively, we define the
function

χ2 =
∑
j

∑
i

(
yobsi,j − ycalci,j

)2
/σj (6)
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FIG. 2. Example of the quality of the Rietveld refinement of
the crystal structure of BeFeO3 from data collected in this
study. Here we show a portion of the data from the 90◦ bank
at a temperature of 161 K. Positions of Bragg reflections are
shown as the short vertical magenta lines.

where σj provides a weighting for a specific data-set and
represents the statistical accuracy of the data set, albeit
not on a point-by-point basis. Atomic moves are proposed
at random (random atom, random movement subject to
a maximum value of the atomic displacement). A move
that lowers the value of χ2 is accepted, but a move that
raises the value of χ2 by an amount ∆χ2 is accepted
with probability exp(−∆χ2/2). In order to prevent atoms
moving too far away from their local topology within the
crystal structure, we employed distance windows, which
impose a minimum and maximum atomic separation be-
tween pairs of atoms defined by a prior neighbour list.43

The supercell configurations were set up with orthog-
onal edge sizes of around 48 Å, 50 Å and 56 Å, con-
taining 10800 atoms; this was a 5 × 9 × 4 supercell of
the C-centred orthorhombic cell obtained by transfor-
mation of the hexagonal unit cell, with lattice vectors
2ah + bh,bh, ch. The starting positions were generated
directly from the crystal structures generated by Rietveld
refinement. Each RMC analysis was run for long enough
to give more than 200 accepted moves per atom. Max-
imum atomic moves were of size 0.05 Å. Convergence
of the RMC simulations was checked by monitoring the
value of χ2 as defined above.

III. AVERAGE STRUCTURE FROM RIETVELD
REFINEMENT

Rietveld refinement of data collected over the whole
temperature range measured showed an excellent fit to
the R3c model consistent with previous studies4,14,44. A
sample fit to the data, namely for the data at 161 K, is
shown in Figure 2.
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FIG. 3. The refined lattice parameters of BiFeO3 as functions of temperature from Rietveld refinement of the data obtained in
this study. Different fill colours for the data points reflect the different data runs. The curves are guides to the eye obtained by
fitting third-order polynomials; the sigmoidal shape for c is consistent with more extensive data reported previously14. In each
graph the error bars are smaller than the size of the data symbols.

T (K) a (Å) c (Å) Fe z O x O y O z

16 (I) 5.57227(7) 13.8354(3) 0.22031(10) 0.44110(27) 0.01806(30) 0.95165(14)

96 (I) 5.57338(6) 13.8414(3) 0.22029(10) 0.44113(27) 0.01794(30) 0.95166(15)

161 (I) 5.57505(7) 13.8498(3) 0.22034(10) 0.44109(27) 0.01776(31) 0.95174(15)

236 (I) 5.57736(7) 13.8601(3) 0.22041(10) 0.44094(27) 0.01752(31) 0.95186(15)

283 (I) 5.57884(6) 13.8661(3) 0.22051(10) 0.44100(26) 0.01742(30) 0.95197(15)

291 (III) 5.57911(7) 13.8684(3) 0.22073(10) 0.44000(27) 0.01720(31) 0.95243(16)

294 (II) 5.57925(6) 13.8689(3) 0.22056(10) 0.44050(27) 0.01711(31) 0.95214(15)

373 (III) 5.58292(6) 13.8832(3) 0.22099(10) 0.44044(25) 0.01719(29) 0.95276(15)

473 (III) 5.58832(5) 13.9028(2) 0.22131(8) 0.44160(21) 0.01732(25) 0.95305(13)

572 (III) 5.59438(4) 13.9239(2) 0.22162(6) 0.44407(16) 0.01793(19) 0.95323(10)

600 (II) 5.59627(4) 13.9301(2) 0.22155(6) 0.44449(16) 0.01760(18) 0.95301(9)

627 (III) 5.59805(3) 13.9366(1) 0.22170(5) 0.44671(13) 0.01863(15) 0.95307(8)

662 (III) 5.60045(3) 13.9446(1) 0.22179(5) 0.44838(13) 0.01906(15) 0.95302(7)

700 (II) 5.60339(3) 13.9528(1) 0.22189(5) 0.44789(14) 0.01851(16) 0.95314(8)

798 (III) 5.60996(3) 13.9688(1) 0.22241(5) 0.44949(14) 0.01934(16) 0.95388(9)

TABLE I. Cell parameters and atomic fractional coordinates of BiFeO3 refined from Rietveld refinement in this study; Bi has
fractional coordinates 0, 0, 0 (the value z = 0 was not set by symmetry, since the space group R3c has no natural origin, but
chosen to place the Bi atom at the origin of the unit celll), and Fe has fractional coordinates 0, 0, z. Standard deviations are
given for the last significant figures in brackets. The Roman numerals beside the temperature values differentiate separate
sequences on data, with two separate runs in the furnace (II and III) and one in the close-cycle refridgerator (I).

Refined values for the structural parameters for all
temperatures are given in Tables I (unit cell and frac-
tional coordinates) and II (atomic displacement parame-
ters). The lattice parameters are plotted as functions of
temperature in Figure 3. Both a and c vary smoothly
with temperature, with no indications of anomalies or
strain associated with the magnetic phase transition.
The results for both a and c are consistent with pre-
vious results4,14. Both lattice parameters show the usual
change from linear variation with temperature at around
150 K. As discussed in the Section I, this region has previ-
ously been suggested to correspond to potential changes
in the magnetic and/or atomic structures, and anoma-
lous phonon behaviour. However, no apparent effects are
seen in the data presented in Figure 3.

IV. ANALYSIS FROM THE REVERSE MONTE
CARLO METHOD

A. RMC data refinement

The RMC fits to the three functions used in the RMC
analysis, namely the Bragg scattering profile, the scat-
tering function i(Q), and the PDF D(r), is shown for all
temperatures in Figure 4. It can be seen that in all cases
the quality of the fitting is good. It should be noted that
the ripples in the experimental i(Q) function were artifi-
cially created within the RMC method. Because the D(r)
function calculated from the RMC configuration has a
maximum value of r, as set by the size of the configu-
ration, the calculated i(Q) function obtained by Fourier
transform of D(r) will contain truncation ripples. There-
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T (K) Bi U11 Bi U12 Bi U33 Fe Uiso O U11 O U12 O U13 O U22 O U23 O U33

16 (I) 0.19(3) 0.092(1) 0.05(5) 0.13(2) -0.03(4) 0.06(4) 0.06(4) 0.30(5) 0.01(4) 0.34(4)

96 (I) 0.37(4) 0.184(1) 0.14(5) 0.21(3) 0.01(4) 0.07(4) 0.09(4) 0.34(5) 0.01(4) 0.42(4)

161 (I) 0.53(4) 0.267(2) 0.23(5) 0.29(3) 0.06(5) 0.08(5) 0.11(4) 0.37(5) 0.01(5) 0.52(5)

236 (I) 0.72(4) 0.361(2) 0.32(6) 0.38(3) 0.15(5) 0.09(5) 0.14(5) 0.41(5) 0.01(5) 0.68(5)

283 (I) 0.83(4) 0.416(2) 0.38(6) 0.43(3) 0.21(5) 0.10(5) 0.15(5) 0.44(5) 0.00(5) 0.76(5)

291 (III) 0.86(5) 0.431(2) 0.38(7) 0.41(3) 0.07(5) 0.00(5) 0.16(5) 0.29(6) -0.01(5) 0.81(6)

294 (II) 0.90(4) 0.449(2) 0.41(6) 0.46(3) 0.20(5) 0.08(5) 0.16(5) 0.42(6) 0.00(5) 0.83(5)

373 (III) 1.11(5) 0.555(2) 0.56(7) 0.52(3) 0.27(5) 0.02(5) 0.17(5) 0.34(6) -0.03(5) 1.02(6)

473 (III) 1.40(4) 0.700(2) 0.75(6) 0.62(3) 0.60(5) 0.06(5) 0.16(5) 0.43(5) -0.09(5) 1.26(5)

572 (III) 1.68(3) 0.842(1) 0.96(5) 0.71(2) 1.10(4) 0.15(4) 0.08(4) 0.55(4) -0.20(4) 1.45(4)

600 (II) 1.82(3) 0.912(1) 0.99(4) 0.77(2) 1.35(4) 0.29(4) 0.09(4) 0.73(4) -0.20(3) 1.51(4)

627 (III) 1.81(3) 0.898(1) 1.04(4) 0.73(2) 1.53(4) 0.26(4) 0.00(4) 0.67(3) -0.28(3) 1.44(4)

662 (III) 1.88(3) 0.939(1) 1.08(4) 0.75(2) 1.81(4) 0.32(4) -0.06(4) 0.75(3) -0.34(3) 1.41(4)

700 (II) 2.14(3) 1.070(1) 1.18(4) 0.86(2) 2.02(4) 0.44(4) -0.02(4) 0.94(4) -0.33(3) 1.60(4)

798 (III) 2.46(3) 1.228(1) 1.41(5) 0.93(2) 2.32(4) 0.38(4) -0.12(5) 0.96(4) -0.48(3) 1.81(4)

TABLE II. Atomic displacement parameters 100 × Uij (Å2) refined from Rietveld refinement. For Bi U11 = U22, and U13 =
U23 = 0. Uij units are in Å2. Standard deviations are given for the last significant figures in brackets. As in Table I the Roman
numerals indicate the sets of data in different experimental runs.

fore to facilitate an accurate comparison between the cal-
culated and experimental i(Q) functions, the experimen-
tal Qi(Q) functions were automatically convolved with
the Fourier transform of the box function of the same
maximum value of r. For each temperature we performed
ten independent RMC simulations, and all results are av-
eraged over all final configurations.
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FIG. 4. Suite of data used in the Reverse Monte Carlo mod-
elling, showing the Bragg diffraction data (top), total scat-
tering data (middle) and pair distribution function (bottom).
In each case the data are shown as black and the RMC cal-
culation as red. Temperatures of the data are indicated on
the right. In each graph data for different temperatures are
vertically displaced sequentially by an equal amount. The hor-
izontal lines in the temperature labels separate the tempera-
tures in the magnetically ordered (T > 630 K) and disordered
(T < 630 K) phases.
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FIG. 5. Average structure with ellipsoid-shape atoms reflect-
ing the amplitudes of anisotropic atomic vibrations at 473 K
(Fe in orange, O in red and Bi in purple).

B. Average structure from RMC

We projected the position of all atoms in the configu-
ration back into one unit cell, and from the distribution
of atomic positions we calculated the average atomic po-
sitions and mean square anisotropic displacements from
the associated distribution. An example of this projec-
tion, from the RMC analysis performed on the data col-
lected at a temperature of 473 K, is shown in Figure 5.
From the figure, and consistent with the results from Ri-
etveld analysis shown in Table II, we can see that the
atomic displacement parameters (which in this case rep-
resent thermal motions) of O and Bi atoms are larger
than for the Fe atoms.

C. Local structure from RMC: atomic structures
of the FeO6 and BiO12 polyhedra

Here we focus on the fluctuations in the FeO6 and
BiO12 polyhedra. As the crystallographic analysis shows
(above, and references 4 and 14), at all temperatures both
polyhedra are significantly distorted from their highly
symmetric form of the ideal cubic phase. The average
local coordination of the Fe and Bi atoms is shown in
Figure 6, where the distortions are clear. In particular,
both polyhedra have lost their centre of symmetry and
therefore have a local dielectric polarisation. In the case
of the BiO12 polyhedra, not only is there a distortion of
the shape but also a significant change in Bi–O distances,

FIG. 6. Schematic illustration of FeO6 and BiO12 polyhe-
dra viewed along two axes. The white circle encompasses the
shorter six Bi–O distances.

6 having shorter distances (2.2 and 2.5 Å) and 6 having
longer distances (3.2 and 3.5 Å). This is consistent with
asymmetric bonding expected for the BiO12 polyhedra
as a result of hybridisation between the Bi 6s2 lone pair
and the 6p orbitals45.

Our analysis here is focussed on the orientations and
lengths of the Fe–O and Bi–O bonds, how both their
mean values and associated fluctuations change with
temperature. The orientational distributions of the Fe–O
and Bi–O bonds are shown as orthographic projections
in Figures 7 and 8 respectively. These diagrams corre-
spond to the vertical axis being parallel to the crystal-
lographic [001], with separate diagrams showing views
from positive and negative directions. Data are shown for
four temperatures between 16–800 K. For both cases the
diagrams include the two sets of symmetrically related
bonds in different polyhedra. Thus we see pairs of peaks
in the distribution functions. The advantage of showing
both polyhedra in one diagram is that the angular sepa-
ration between related pairs reflects the extent to which
the symmetry of the parent cubic phase has been broken
through bond and polyhedral reorientation (noting that
both subtend the same angle with respect to the verti-
cal axis, so the angular separation is directly about the
vertical).

A striking point from Figures 7 and 8 is that the
angular separations of the median bond orientations in
the distribution functions for symmetrically-related pairs
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16 K 283K 473 K 798 K

FIG. 7. Orthographic projection of the orientational distribu-
tion function of all Fe–O bonds in BiFeO3 at four tempera-
tures. Dark blue corresponds to no bonds in that orientation,
and yellow shows the maximum value of the distribution func-
tion. The upper and lower plots show projections viewed down
the [001] and [001] directions. The plots show vectors from two
distinct but symmetrically-related orientations of the FeO6

octahedra, meaning that the plots show 12 rather than 6 vec-
tors. The peaks in the distribution function from one distinct
set of octahedra are indicated by the white triangles in the
plots for 16 K.

16 K 283K 473 K 798 K

FIG. 8. Orthographic projection of the orientational distribu-
tion function of all Bi–O bonds in BiFeO3 at four temper-
atures. The upper and lower plots show projections viewed
down the [001] and [001] directions. As noted in the cap-
tion to Figure 7 the plots show vectors from two distinct but
symmetrically-related orientations of the BiO12 cuboctahe-
dra. As in Figure 7 we identify the peaks in the distribution
function from one set of symmetrically identical cuboctahe-
dra, but note that for the zenith angles just less that 90◦ the
two distinct cuboctahedra have peaks with identical polar an-
gles. This point can be seen by inspection of Figure 6.

change very little with temperature. This means that
there are almost no changes in the mean orientations
of either Fe–O or Bi–O bonds, and hence no rotations
of the corresponding polyhedra, over the wide tempera-
ture range represented in the data. However, the extent
of thermal motion associated with the orientations of the
bonds grows considerably on heating, as seen in the wide
angular distribution of the bond vectors. Indeed, the fluc-
tuations become as large as the angular separation of the
pairs of symmetrically-related peaks. We will comment

FIG. 9. Colour maps of the distributions of Fe–O and Bi–O
distances. The difference in clarity between the low- and high-
temperature data reflects the relatively high background from
the furnace; see the discussion in the text.

more on this later in this section.

Second we consider the fluctuations in the bond dis-
tances. In Figure 9 we show a colour map of the distri-
bution of Fe–O and Bi–O distances as a function of tem-
perature. As an (important) aside, this figure shows one
factor that we were unable to eliminate from our analysis,
namely that the data obtained within the CCR and fur-
nace show some systematic differences that feed through
to slightly more disorder coming into the RMC config-
urations of the higher-temperature data. This probably
arises from effects due to the relatively large background
from the furnace.

In the case of the Fe–O bond, there are actually two
symmetrically distinct distances of around 2.0 and 2.1
Å at low temperature, but with larger fluctuations than
the difference in distances the overall distribution ap-
pears to be single-peaked in the colour map. On the other
hand, there is a much wider spread of symmetrically dis-
tinct Bi–O distances, at around 2.3, 2.5, 3.3 and 3.5 Å.
We plot the distribution functions for these four distinct
bond distances for three temperatures in Figure 10. A
similar broad distribution of Bi–O distances was seen
in the room-temperature PDF study of BiFeO3–PbTiO3

solid solutions30, and in La and La/Tb doped BiFeO3

materials24. Similar to the orientations of bond vectors,
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FIG. 10. Histograms of the four distinct Bi–O near-neighbour distances at three temperatures.

two points emerge from the histograms of instantaneous
distances. First is that there is little change in the mid-
points of the distribution of each bond distance over the
whole temperature range, just as there is no clear change
in the median values of the bond orientation distribu-
tions. Second is that there is a great deal of thermal mo-
tion. Indeed, the spread of distances at high temperature
significantly exceeds the differences in mean positions.

Thus we see from taking all the data together that the
average sizes, shapes and orientations of both types of
coordination polyhedra remain virtually unchanged on
heating from the lowest to highest temperature in this
study. On the other hand, the same data show significant
thermally-induced fluctuations, with the fluctuations be-
coming as large as the distortions of the average structure
from the ideal cubic parent structure. This is consistent
with the INS data, which show a considerable broadening
of the peaks in the phonon density of states with increas-
ing temperature, particularly for the modes associated
with motions of the bismuth atoms46,47, which might sug-
gest the existence of significant anharmonicity. Likewise,
resonant ultrasound spectroscopy has suggested increas-
ing disorder with increasing temperature19.

There is one surprising aspect about the lack of change
in the average structure across the temperature range of
our data. Normally, on heating towards a phase transition
to a higher-symmetry parent structure (in this case the
relevant structure, in terms of symmetry group-subgroup
relationships, is the γ phase of nominally cubic symme-
try) the structure will transform towards that of the high-
symmetry phase with the distortion becoming smaller
on heating. Although one might argue that the highest
temperature in our dataset falls short of the transition
temperature by a considerable amount (300 K), in the
sense of a second order Landau approximation (which
is relevant in the case of ferroelectric phase transitions)
where the ferroelectric distortions will vary with temper-
ature as (T − Tc)

1/2, we might expect to see a reduction
in the overall distortions by around 50%. This will not
just be true for the dipolar displacements of the cations
from the centres of their polyhedra, but also true of the
distortions and rotations of the polyhedra. We can cite,
for comparison, our previous RMC study of the phase

transition in SrTiO3, which showed clearly changes upon
heating towards the phase transition48. The constancy of
the structure across a wide range of temperatures is one
of the curious aspects of the phase transition behaviour
of BiFeO3.

D. Local structure from RMC: dipolar fluctuations
of the FeO6 and BiO12 polyhedra

In this final part we analyse the distortions of the FeO6

and BiO12 polyhedra in terms of local pseudo-dipole mo-
ments, calculated by summing over the bond vectors cen-
tred on the cation. What we call the “pseudo-dipole mo-
ment” is thus effectively the displacement of the central
cation from the centroid of the polyhedron formed by its
surrounding oxygen anions. This provides a convenient
measure of the local moment without relying on any spe-
cific model of the charge distribution. The existence of
these dipoles can be seen in the local structure diagrams
in Figure 6. We calculated the size distributions of the
pseudo-dipole moments in the [001] direction and in the
orthogonal directions as functions of temperature, and
present the results as colour maps in Figure 11.

The mean moment of the pseudo-dipole moments in
the directions normal to [001] is zero as expected, and we
see growing fluctuations of the pseudo-dipole moments on
heating. On the other hand, there is a non-zero average
moment for both polyhedra in the [001] direction, as is
clearly seen in Figure 11. What is striking is that the
mean pseudo-dipole moments of both types of polyhe-
dra do not change significantly with temperature even
though there is a significant effect of thermal motion. In-
deed, the fluctuations are almost as large as the average
moments at the highest temperature. The variances of
the values of the pseudo-dipole moments of both polyhe-
dra are shown in Figure 12, where we see a simple lin-
ear increase with temperature as normally expected for
harmonic-like thermally-induced motions.

Finally we consider the distribution of orientations of
the pseudo-dipole moments, which we show in ortho-
graphic projections in Figure 13. At lowest temperature
it can be seen that the distribution is very tight, and the
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FIG. 11. Colour contour maps of the distributions of pseudo-dipole moments associated with the FeO6 and BiO12 polyhedra.
The dipole moments have units of Å. As in Figure 9, the difference in clarity between the low- and high-temperature data
reflects the relatively high background from the furnace.

shape of the distribution reflects slightly the three-fold
symmetry of the crystal. However, on heating there is a
wide distribution in the orientational distribution, even
wider than the bond orientations, reflecting very large lo-
cal fluctuations. The could be consistent with subtle fluc-
tuations in structure as proposed in the inelastic neutron
scattering data of reference 46.

V. CONCLUSION

The key result of this study is that the average atomic
structure of BiFeO3 remains robustly stable across the
temperature range 16–800 K, in spite of the existence
of large thermal fluctuations at the higher temperatures.
This is represented in analysis of bond lengths, bond ori-
entations, local coordination and local dipole moments.
The RMC analysis in this study has shown that the lo-
cal bonds around the Bi cation can fluctuate by a very
large fraction, around 1 Å with bond lengths of 2.5–3
Å, yet the averages barely change. In the literature are
several reports of apparent phase transitions and other
thermal anomalies at various temperatures1,11,15–17,19,22,
but no structural anomalies are seen in this study in ei-
ther the average or local structure. In this sense our re-
sults are consistent with the the results of several diffrac-

tion studies4,13,14. In particular we see no effects from
the magnetic phase transition in any of the features of
the local structure. However, we note that no structural
phase transition is expected at TN with R3c symmetry
adopted both above and below TN. Furthermore, there
is no sign over the temperature range of this study of
the onset of the phase transition on heating towards the
paraelectric phase, such as a change in the local struc-
ture towards lower average distortion. Likewise, we see
no evidence below room temperature to support either a
structural phase transition or a significant change in the
magnetic behaviour. Thus we conclude that all anoma-
lies below room temperature reported in previous studies
using indirect probes are unlikely to be seeing changes in
the atomic structure of the bulk, or in local fluctuations,
and thus are more likely to arise from effects generated at
surfaces and interfaces (including domain walls and grain
boundaries). Such effects would not have noticeable im-
pacts on the scattering data and resultant PDF.
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FIG. 12. Variances of the pseudo-dipole moments associated with the FeO6 and BiO12 polyhedra. Black, red and green points
correspond to directions x, y, z, where we expect the data for the x and y directions to have the same values. The open
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the BiO12 (top) and FeO6 (bottom) polyhedral for four tem-
peratures.
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