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ABSTRACT The increasing use of social media networks on handheld devices, especially smartphones
with powerful built-in cameras, and the widespread availability of fast and high bandwidth broadband
connections, added to the popularity of cloud storage, is enabling the generation and distribution of massive
volumes of digital media, including images and videos. Such media is full of visual information and holds
immense value in today’s world. The volume of data involved calls for automated visual content analysis
systems able to meet the demands of practice in terms of efficiency and effectiveness. Deep learning (DL) has
recently emerged as a prominent technique for visual content analysis. It is data-driven in nature and provides
automatic end-to-end learning solutions without the need to rely explicitly on predefined handcrafted feature
extractors. Another appealing characteristic of DL solutions is the performance they can achieve, once the
network is trained, under practical constraints. This paper identifies eight problem domains which require
analysis of visual artifacts in multimedia. It surveys the recent, authoritative, and the best performing DL
solutions and lists the datasets used in the development of these deep methods for the identified types of
visual analysis problems. This paper also discusses the challenges that the DL solutions face which can

compromise their reliability, robustness, and accuracy for visual content analysis.

INDEX TERMS Visual content analysis, deep learning, machine learning, dataset.

I. INTRODUCTION
In recent years, the availability of handheld devices with
high storage capacity (complemented by the cloud) and with
integrated cameras has caused a boom in the generation
of digital media (images and videos) by individuals. Such
content is vastly shared through high bandwidth and fast
broadband connections, helped by the reaching power of
social media. It has been estimated that there were about
4 trillion images worldwide stored on devices, storage media,
and in the cloud by 2016 and that, in 2020 alone, 1.4 trillion
new digital photographs will be captured worldwide [1].
Following a similar trend, it has been reported (in July 2015)
that more than 400 hours of video were uploaded to YouTube
every minute [2]. Adding to the phenomena is the increasing
deployment of CCTV cameras, capturing high volumes of
media in public and private spaces, to enhance security and
prevent crimes [3].

Deep Learning (DL) has been proven to be effective
at processing and analysing visual media. It has the abil-
ity to extract and learn abstract information compared to
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shallow methods [4]. DL methods eliminate the need
for handcrafted feature extraction and representation [5].
This enables it to take advantage of increasing computa-
tional power and data without the involvement of domain
experts [6]. In DL, feature extraction and classification are
combined together during training in an end-to-end man-
ner [7]. Usually, training a deep network is not easy and
is time demanding. However, once trained, deep meth-
ods can then process data in seconds. These advantages
of DL make it an attractive option for visual content
analysis.

There are many high-quality in-depth surveys for specific
problems in visual content analysis (e.g., [8]-[10]). They
present deep architectures and solutions focusing on a partic-
ular visual task. However, no survey provides an overview of
DL applied across different problem domains related to visual
content analysis, although it often happens that solutions from
one such problem domain can be re-applied or adapted to
another (e.g., [11]-[14]). Therefore, this survey aims to fill
this gap, and develop an understanding of the critical aspects
of DL methods that enhance content analysis through visual
artefacts.
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In summary, the main contributions of this paper are the
following.

1) Survey of DL based solutions for eight classes of visual

content analysis problems.

2) Compilation of datasets that have been used to develop

deep methods for each identified class of problems.

3) Review of limitations of DL solutions that could have

a negative impact on the deep methods.

The remaining of this paper is organised as follows.
Section II provides an overview of the background on the
most prominent types of DL methods. Section III identifies
eight classes of problems related to visual content analysis,
and surveys DL-based solutions for them. Section IV presents
a compiled list of authoritative and recent datasets relevant
to the surveyed solutions. Section V focuses on the short-
comings of DL methods and elaborates on future research
directions. Finally, Section VI concludes the paper.

Il. BACKGROUND

DL is the most attractive branch of Machine Learning (ML)
techniques, which is being actively utilised to extract
high-level features to model abstract concepts. Most DL
methods are based on the supervised learning strategy. How-
ever, the hectic process of labelling and developing large scale
dataset is costly and requires ample amount of manpower
and effort. DL methods are moving towards other forms of
learning, which include semi and unsupervised approaches.
Reinforcement learning is another interesting strategy to train
DL methods through interaction with the environment.

Traditionally, ML approaches used carefully designed fea-
ture extractors which required domain knowledge [4], [6].
These handcrafted features, limited in capacity, often failed
in unforeseen real-life scenarios. DL, inspired by the human
nervous system, is a subset of ML. It is data-driven and able to
learn abstract and complex features automatically. However,
training deep networks is hard and the two prerequisites for
training are high computational power and a huge volume of
data. The re-emergence of DL surfaced when AlexNet [15]
won the 2012 ImageNet competition. This network contained
5 convolutional and 3 fully connected layers. The convolution
layers were followed by ReLU non-linearity and max pool-
ing. Containing a total of 650,000 neurons and 60 million
parameters took 2 days to train. In the majority of the DL
methods convolution layer is the main workhorse used as a
discriminator and feature extractor. This layer is responsible
for learning low or high-level features. Due to this reason,
Convolutional Neural Networks (CNN) are the most popular
and commonly used DL networks.

After AlexNet [15], many new CNN architectures
were designed for image classification. These included
ZFNet [16], VGGNet [17], GoogLeNet [18] and ResNet [19],
which have overcome human performance for the same
benchmark. Rather than just stacking layers to make the
networks deep, different designs were introduced. ZFNet [16]
used deconvolution techniques to visualise the learned fea-
tures at different levels of depth. Inception module [18] was
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designed to make the network wider, deeper and computa-
tionally less expensive. However, their network suffered from
the vanishing gradient problem. Gradients are very essential
for learning and are at the core of backpropagation. Where
gradients are passed backwards during training to update
the learned features, however in deeper networks the gra-
dients became so small that they eventually became zero.
This problem was solved in ResNet [19], by the addition of
skip connections. This enabled training far deeper networks
possible.

Deep networks are often comprised of individual compo-
nents and layers, each serves a different purpose. Deep net-
works not only suffer from vanishing gradients, but they are
also prone to over-fitting. This kills the ability of the network
to generalise. Different approaches are used to avoid over-
fitting, they include: applying regularisation on the loss func-
tion, adding weight decay, dropout layer [20], normalisation
(batch or instance) layers, or simply early stopping strategy.
These factors make designing and training a deep network
difficult because of too many hyper-parameters and design
choices that vary for distinct problems. The most prominent
DL methods are based on CNN, other then them Multi-Layer
Perceptron (MLP), Recurrent Neural Network (RNN), Long
Short Term Memory (LSTM) networks, Auto-Encoders and
Generative Adversarial Networks (GAN) are also heavily
used [21].

Figure 1 shows the most popular types of DNN, we have
categorised these networks as Feedforward, Recurrent and
Generative Adversarial. MLP is the traditional feedforward
networks, however, now they are heavily overshadowed
by CNN. These networks do not have cyclic connections
between them, information is passed forward and gradi-
ents are passed backwards. The most recent addition to the
feedforward network is the Capsule Networks (CapsNets),
designed specifically to remove the inherent limitations of
CNN’s as a discriminator. Capsules are trained using a
dynamic routing algorithm and are the focus of the current
research in DL. Still, in its infancy, CapsNets are an active
area of research in DL, are shown to have the potential to
change DL landscape. Finally, auto-encoders consist of an
encoder and a decoder network. The encoder converts the
input data to an intermediary representation also known as
latent variables. The decoder reconstructs the input sam-
ples from these latent variables. A unique characteristic of
auto-encoders is the presence of a bottleneck. The simplest
way to create a bottleneck is by restricting the number of
hidden neurons. The input is then passed through this bot-
tleneck and a compressed structural representation of data
is learned. However, one must be careful that the network
does not memorise the data. Yet should learn features that
accurately describe it. Types of auto-encoders include sparse,
contractive, denoising and variational.

Feedforward network treat data samples independently
thus no cyclic connections are present. In contrast to this,
recurrent networks have cyclic connections as the data sam-
ples are not independent. The recurrent network takes into
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FIGURE 1. The most prominent types of DL techniques.

consideration the learned experience during the training pro-
cess. Due to which, they are used to handle temporal and
sequential data e.g. Natural Language Processing (NLP) and
Video Analytics. Recurrent networks consist of RNN, LSTM,
and Gated Recurrent Unit (GRU). RNN is the most basic
form of a recurrent network. In addition to the current input,
the previous output is also passed back to neurons. This acts
as memory however, RNN suffers from the vanishing gradient
problem and cannot retains long term memory. LSTM net-
work was designed to solve this problem. A typical LSTM
cell takes three distinct inputs, the hidden state ( also called
short memory), cell state ( also called long memory) and the
current input at the time. These inputs are passed through
three gates in the LSTM, the input, output and forget gate.
The three inputs are updated individually and passed forward
to the next LSTM cell. Gradients are passed through these
gates which keeps the gradients from dying. Similar, gating
technique is used by GRU to stop gradients from vanishing.
However, in contrast to LSTM, GRU only has two gates
called reset and update gates.

Relatively recent, GANs have been developed as a com-
bination of a discriminator and generator networks. The
two networks are put together in a competitive environment
against each other. Through this adversarial relationship, both
networks improve each other’s performance. The generator
network produces e.g. fake images, while the discriminator
network tries to distinguish between the real and fake images.
Over several iterations a generator network, starts to produce
very realistic images which the discriminator find hard to
distinguish, is obtained. GAN have the capability to produce
photo realistic images from random noise, which makes them
very interesting and a promising DNN. The most prominent
types of GANs are the Conditional GAN (CGAN), Deep
Convolution GAN (DCGAN), Least Square GAN (LSGAN)
and InfoGAN. Amongst these categories, the most popular
one is the DCGAN.

However, it must be emphasised that training and designing
these deep networks is not an easy task as they involve
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hyper-parameter tuning, selection of the right evaluation cri-
terion, activation and loss functions.

lil. DL SOLUTIONS FOR VISUAL CONTENT

ANALYSIS PROBLEMS

This section identifies eight classes of problems which
require visual content analysis. Sections III-A to III-H survey
DL solutions to address each of those classes.

A. ACTION RECOGNITION

Humans have a natural ability to recognise and interpret
actions they are exposed to on a daily basis or rarely.
However, to develop the same capability for machines is
challenging. As most actions span over a certain time-frame,
an understanding of temporal and motion components is
required. Therefore, action recognition methods tilt towards
videos datasets. A very recent survey on action recognition
by Herath et al. [8] provides more specific information on
challenges, proposed methods, and related datasets. Poten-
tial areas of application include smart video surveillance,
video indexing and retrieval, autonomous driving, the gaming
industry, and smart rehabilitation [22]. The most notable
methods that have been proposed for action recognition are
listed in Table 1.

One of the first attempts at using DL-based ConvNet for
action recognition was by Simonyan and Zisserman [23].
They proposed a Two-Stream CNN architecture; one
stream processes the spatial component while the other
stream processes the temporal component of videos.
Feichtenhofer et al. [30] proposed a new model where they
combined the spatial and temporal streams at different fusion
levels, while improving the state of the art performance.
They presented two novel convolutional and temporal fusion
layers which are used to fuse the temporal and spatial com-
ponents. Sun et al. [25] proposed another CNN architecture
that factorises the learning of spatiotemporal components.
Their method sequentially learnes 2D spatial kernels and
1D temporal kernel which result in significant gains in
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TABLE 1. DL solutions for action recognition.

[ Method [ Model [ Media| Year [ Dataset Used
Two-Stream ConvNet [23] CNN Video | 2014 | UCF-101 & HMDBS51
Spatiotemporal ConvNet [24] CNN Video | 2014 | UCF-101 & Sport-1M"
Factorized ConvNet [25] CNN Video | 2015 | UCF-101 & HMDBS51
Yue et al. [26] LSTM-CNN Video | 2015 | UCF-101 & Sport—lMl
C3D [27] 3D-CNN Video | 2015 | UCF-101, Sport—lMl & ASLAN
Composite LSTM Model [28] LSTM Video | 2015 | UCF-101, HMBD-51 & Sport-1M"
LRCN [29] LSTM Image | 2015 | UCF-101
Two-Stream Fusion ConvNet [30] | CNN Video | 2016 | UCF-101 & HMDBS51
Dynamic Image Networks [31] CNN Image | 2016 | UCF-101 & HMDBS51
ST-ResNet [13] CNN Video | 2016 | UCF-101 & HMDB51
LTC-CNN [32] CNN Video | 2018 | UCF-101 & HMDB51

computational cost. Yue-Hei Ng eral. [26] investigate the
incorporation of action information over a longer period of
time by feeding the CNN learned features to an LSTM for
ordered sequence modelling. Tran et al. [27] proposed a 3D
CNN, named C3D. The authors claimed that C3D is better
at video analysis tasks then 2D CNN’s. A slightly different
approach has been proposed by Bilen et al. [31]; they create
dynamic images for video analysis from video samples by
applying a “weighted average over time” approach. Such
dynamic images capture the temporal and motion information
inside the image. Varol et al. [32] have proposed a Long-term
Temporal Convolutions (LTC) that takes advantage of long
temporal structure.

Even though CNN’s are very good at learning generic
representations, the same level of performance has not been
observed for action recognition tasks. The main reason is
been that CNN cant process temporal information which
needs to be considered while learning video representation
features. This information, in many action categories, spans
over many seconds of a video sequence, therefore, tempo-
ral information has to be considered and preserved over a
longer context. As a consequence, many proposed methods
see a boost in their recognition performance after they are
combined with handcrafted features [13]. The literature also
shows that, in many cases, combining the proposed methods
with Improved Dense Trajectory (IDT) [33] boosts the per-
formance. However, in our view, action recognition is a well
researched area.

B. VIOLENCE DETECTION

Violence is a subjective matter, thus not easy to define [34].
Primarily, violence detection methods make use of visual
information. In many cases adding audio information also
helps to improve detection performance [35], as certain
sounds can be attributed to certain acts of violence, e.g., gun
shots, screams, knocking, and yelling. Violence detection can
be used in different public places like pubs, prisons, train and
bus stations as well as public events such as concerts, sporting
events, and protests [36].

1 https://cs.stanford.edu/people/karpathy/deepvideo/classes.html
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Typically, violence has been considered as a sub-category
of action related tasks [37], [38], and remained rela-
tively underexplored [39]. Due to this reason, most of the
action-based methods have been applied to violence tasks,
with special interest towards violence detection among indi-
viduals and crowds [12]. However, there are certain aspects
of violence tasks which make them different from action
tasks [39].

Recently, the MediaEval Violent Scene Detection chal-
lenge (VSD 2014,2015), revived the interest in violence
detection. The participating teams proposed many methods
comprising traditional ML with handcrafted features, DL,
and hybrid combining both approaches to yield the highest
performance in order to win the challenge. Dai et al. [40]
proposed a Deep Neural Network based method that fuses
together multiple features to perform classification. They
extracted audio-visual features of three types which include
IDT, Space-Time Interest Points (STIP) and Mel-Frequency
Cepstral Coefficient (MFCC). They later introduced another
DL based method [41], in where they use a Two-Stream
CNN, consisting of a spatial and temporal CNN. Followed
by an LSTM on top of them to incorporate the features.
In addition to these DL features, traditional audio-visual
features were also added for violence detection. Accord-
ing to Daietal [41], DL features benefit by combin-
ing them with traditional features. Lam eral. [42] and
Marin Vlastelica et al. [43] came to the same conclusion that
combining traditional and deep learned features improves
performance.

Recently violence detection in a crowded scene has gained
interest. Marsden et al. [12] proposed a residual DL-based
crowd analysis system called ResnetCrowd. They use a
dataset which was annotated for crowd counting, density level
estimation, and violent behaviour recognition. A violence
classification strategy based on DL solution was proposed
by Peixoto et al. [35]. Their solution consists of a multi-task
CNN network where each branch of the network is dedicated
to a single violence category, therefore, each branch only
learns features for that specific category. All the branches
are combined and passed through an SVM to predict the
final class. They use the Temporal Robust Features (TRoF)
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TABLE 2. DL solutions for violence detection.

[ Method [ Model [ Media[ Year | Dataset Used
FUDAN-NJUST [40] DNN-SVM Video | 2014 | VSD 2014
FUDAN-HUAWEI [41] LSTM-CNN Video | 2015 | VSD 2015
NII-UIT [42] HOG-MBH-SIFT-MFCC-VDFULL-CNN | Video | 2015 | VSD 2015
KIT [43] GIST-IDT-CNN Video | 2015 | VSD 2015
MIC-TIU [44] IDT-SIFT-MFCC-HSH-CNN Video | 2015 | VSD 2015
ResnetCrowd [12] Residual-CNN Image | 2017 | Multi Task Crowd [12]
Peixoto et al. [35] CNN Image | 2018 | VSD 2013

TABLE 3. DL solutions for pornography detection.

[ Method [ Model [ Media| Year [ Dataset Used
AGNet. [5] CNN Image | 2015 | Pornography-800 and Pornography-2K
SD-MIL [48] CNN Image | 2016 | Pornography-800, Pornography-2K & Unnamed [48]
Nian et al. [49] CNN Image | 2016 | Unnamed [49]
Perez et al. [47] Two-Stream CNN Video | 2017 | Pornography-800 & Pornography-2K
ACORDE. [50] LSTM-CNN Video | 2018 | Pornography-800 & Pornography-2K
Da Silva et al. [51] Spatio-Temporal CNN Video | 2018 | Pornography-800

detector to produce three types of combination for motion
images which are fed to the networks in addition to the still
images. A list of methods for violence detection is shown
in Table 2.

Violence detection is slightly less researched as compared
to action recognition. However, in our view, certain aspects in
a violent scenario make it distinct to normal action categories.
Often a typical violent scene requires the participation of
at least two individuals. The presence of blood, wounds,
weapons, screams or shouts and possible loss of life or per-
manent disability requires that violence detection should be
given special attention. There is a lack of comprehensive
datasets for violence detection, due to ethical and moral
considerations such data is also not publicly available.

C. PORNOGRAPHY DETECTION

The degree of acceptable sensuality differs amongst commu-
nities and cultures. However, pornography is unanimously
regarded as unethical and immoral. Pornographic content can
be captured by images, videos, animations, drawings and,
more recently, by virtual reality [45]. Adult content filtering
has huge application potential [46].

The first step in detecting pornographic content is the
detection of nudity [47]. The major challenge in nudity detec-
tion is its subjective nature. There are different activities in
which individuals show a lot of skin and perform certain
actions that are not necessarily pornographic, e.g. swimming,
wrestling, and sunbathing. However, pornography is a step
further from nudity, where a single person or multiple individ-
uals indulge in sexual activity, and this adds more complexity
to automatic detection. Pornography involves the presence
of sexual paraphernalia, and manifests in different categories
and forms.

Due to these challenges, DL is a promising solution direc-
tion, and many methods have been proposed. Table 3 lists the
most notable ones for pornography detection.
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Moustafa [5] experimented with the existing DL based
architectures that were making headlines in object detec-
tion in 2015. Specifically, he uses AlexNet and GoogLeNet
and created a combined method, named AGNet. The study
shows that AGNet had the best performance on the NPDI
pornographic dataset, compared to existing methods at the
time. They used keyframe images as input to the proposed
network, however, the difference between the performance of
the combined method and of the separate networks was not
much significant.

Perez et al. [47] proposed a Two-Stream deep network,
where they add motion information to a CNN. The techniques
use for capturing motion information were optical flow and
MPEG motion vectors. In their approach, they also evaluate
the effects of early, mid-level and late fusion of static and
dynamic information. Pornography-800 and Pornography-
2K dataset are used to train the deep networks. They com-
pared their model with third-party tools, traditional Bag-Of-
Word (BOW) methods, and spatiotemporal networks, and
show that DL outperformed the others. Late fusion of features
performs consistently well on both datasets. However, they
also made note that just using static images in CNN produced
competitive results but the addition of motion information
helps boost the performance of the DL method.

ACORDE is another method proposed by
Wehrmann et al. [50] that combined CNN and LSTM to
classify pornographic content into hard non-adult, easy non-
adult or adult categories. ACORDE’s CNN part extracts
features, whereas its LSTM part focuses on sequence learn-
ing; the authors concluded that LSTM helped in video
classification.

da Silva and Marana [51] experimented with spatiotem-
poral CNN networks using VGG-C3D CNN and ResNet
R(2 + 1)D CNN. They compared performance to other CNN
based methods for pornography detection, without combining
them with other motion features such as optic flow or IDT.
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Specialised image-based methods for pornographic
detection using DL include the following. Wang et al. [48]
proposed a Strongly-supervised Deep Multiple Instance
Learning (SD-MIL) which they claimed to be a generic
pornographic content detector. Their purposed method con-
sists of three part. The first part is “instance generation”
where multiple instances of an image are created using a
sliding window technique, then resized and divided into
multiple segments. The second part is “instance selection”
where, using a semi-automated process, they search for pri-
vate parts of humans. Finally, the third part is the “DCNN-
based feature learning”” which takes the selected images as
input. Similarly, Nian ef al. [49] proposed a pornographic
image content CNN detector. They retrained the pre-trained
ImageNet and fine-tuned it to detect pornographic images of
any scale in a single forward pass.

Consumption of pornographic content is socially accept-
able amongst adults. However, this becomes a problem when
children are exposed to such content. The porn industry has
introduced numerous categories and types of sexual activities,
no method which further classifies them was encountered.
Pornography detection methods have also been utilised for
Indecent Images of Children (IIOC), however, the reliability
of these methods is questionable as the performance of these
methods cannot be publicly tested.

D. TAMPERING DETECTION

Historically, media tampering was computationally expen-
sive and was only under the reach of big graphic studios [52].
This has changed, and now even a novice user can perform
tampering on their personal machine with, widely available,
specialized software.

Conventional methods of tampering have been replaced
with more advanced methods that cannot only tamper but
can also generate fake media from scratch using DL (aka,
deepfake). Such material is useful to promote disinformation,
propaganda, and influence. Social media became a prime
vehicle for distribution of such fabricated or tampered con-
tent [53], [54]. Table 4 summarises the surveyed DL methods
for tampering (and deepfake) detection.

Tampering detection methods can either be blind or non-
blind. Birajdar and Mankar [66] provide a taxonomy of
blind techniques for digital image forgery. Some of the
tampering operation for images include cloning, retouching,
re-sampling, and copy-move. Previously, videos were diffi-
cult to tamper successfully. However, newer deep methods
have made it possible to tamper and even generate fake
videos [67], [68] that are more resistant to detection [69]. Due
to these factors, a renewed interest in tampering detection has
also risen, and many DL methods have been proposed.

Rao and Ni [55] proposed a 10-layer CNN network, where
the first layer is actually a high pass filter. This was carried
out in order to generate SRM (Spatial Rich Models) residual
maps. The network is strictly designed to detect copy-move
and image splicing manipulation. This is an example of
a constrained CNN, where the network is forced to learn
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specific features since SRM features help in detection of
image manipulation.

Cozzolino et al. [57] stated that it is not necessary to con-
strain the CNN, rather a residual-based descriptors can learn
specific manipulation operations. They proposed a CNN net-
work that detects image tampering by combining the SRM
features with a CNN network. They also generated a syn-
thetic dataset of manipulated images, taken from 4 smart-
phones and 5 cameras. Cozzolino et al. [61] later proposed
an Auto-Encoder Network for image forgery detection. This
method was designed in a way that it could quickly adapt
to other types of tampering. They also experimented with
different variants of their network, where they performed high
pass filter on residual images.

Zhang et al. [56] proposed a deep Stacked Auto-Encoder
(SAE) network for image manipulation detection. They
claimed that their DL model can detect tampering for dif-
ferent image formats. Their network is trained in a two-step
manner. The first step learned complex features using the
SAE model, while the second step identified the tampered
regions by context learning.

The method proposed by Bappy et al. [58] used a combi-
nation of LSTM and CNN. This DL method is able to detect
multiple manipulation techniques which include: copy-move,
image splicing, and removal. Their network first classifies
between manipulated vs. non-manipulated images, and then
the manipulated parts of the images are highlighted.

Zhou et al. [60] proposed a DL solution to detect tam-
pered images. Their proposed model is composed of a
Two-Stream faster R-CNN inspired network, Where the first
part is the RGB stream which focuses on the visual cues
of the image. The second part is the noise stream which
focuses on local noise distributions of the image in order to
locate the areas where possible tampering might have taken
place.

Nguyen et al. [62] developed a DL method which employs
capsules for forgery detection in images and videos. Their
network is a combination of VGG-19 with capsules. They
detect faces and then resize them to images of dimension
128 x 128. Afterward, these inputs are passed to three primary
capsules, which are connected to two capsules which distin-
guish between real and fake. The attacks on which they focus
include Replay Attack, Face Swapping, Facial Re-enactment,
and Fully Computer-Generated Image Detection.

Newer DL-based methods are now emerging to gener-
ate fake multimedia. Antipov et al. [70] used GAN to pro-
duce images for human aging. The goal was to predict how
an individual would age over a period of time. Another
GAN-based DL method proposed by Huang et al. [71] could
generate the image of a frontal face from a given image
which has a side view of an individual’s face. This method

2https ://dl.gi.de/bitstream/handle/20.500.12116/18295/183.pdf?
sequence=1

3 https://hal-upec-upem.archives-ouvertes.fr/hal-01664590/document

4http://pa.rne:c.nuaa.edu.cn/xtan/ data/ClosedEyeDatabases.html
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TABLE 4. DL solutions for tampering detection.

[ Method [ Model [ Media| Year [ Dataset Used
Rao et al. [55] CNN Image | 2016 | CASIA & Columbia
Zhang et al. [56] Auto-encoder Image | 2016 | CASIA
Cozzolino et al. [57] CNN Image | 2017 | Unnamed [57]
Bappy et al. [58] LSTM-CNN Image | 2017 | NIST [59], IEEE Forensics Dataset & Coverage
Zhou et al. [60] Two-Stream Faster R-CNN | Image | 2018 | NIST [59], CASIA, Coverage & Columbia
ForensicTransfer [61] CNN Auto-encoder Image | 2018 | Face Forensics
Nguyen et al. [62] Capsule-CNN Image | 2018 | DeepFake [63], Reply Attack?, Face Forensics & Unnamed®
Guera et al. [64] LSTM-CNN Video | 2018 | Unnamed [64]
Li et al. [65] LSTM-CNN Video | 2018 | CEW* & EBV [65]
MesoNet. [63] CNN Video | 2018 | DeepFake [63] & Face2Face [63]
is called Two-Pathway Generative Adversarial Network convolutional layers, followed by max-pooling layers, and

(TP-GAN).

Many DL methods have been developed to tackle such
deep methods that can generate fake media.
Giiera and Delp [64] proposed a convolutional-LSTM net-
work that is specifically designed for detecting deepfake
videos. They used a total of 600 videos to train their net-
work which achieved an accuracy of 97.1%. Li et al. [65]
also trained a network based on CNN and LSTM. This
network took into consideration eye blinking, which is a
physiological and behavioural trait of humans, to detect
deepfake videos. Two distinct DL networks were proposed
by Afchar et al. [63] to detect face tampering in fabricated
videos produced using DeepFake and Face2Face softwares
individually. According to them no single network could
detect tampered video generated by these two softwares. The
two networks were named as Meso-4 and Mesolnception-4.

DL methods have now been actively utilising as tampering
detection techniques. Datasets for deepfakes have recently
been produced to tackle this emerging threat that can com-
promise trust on digital media been shared on the Internet.
DL enabled manipulation and fake content generation will be
an interesting area of research in the near future.

E. AGE ANALYSIS

Aging is a complex biological phenomenon that manifests
differently in every individual and can be affected by exter-
nal and internal factors such as genetic makeup, disease,
drug abuse, habitat, and environment. Automatic age retrieval
methods can be categorised into “‘age classification” and
“regression tasks”. In the former, individuals are assigned to
an age group. In the latter, a numeric value is predicted and
this can be further sub-categorised into ‘“Apparent age” and
“Biological age estimation”. Angulu et al. [10] surveyed age
estimation using facial images of people.

Many DL-based methods have been developed for age
analysis. Dong et al. [72] proposed a DL solution where they
detect the face through five facial key points. This facial
image is then passed through a network which outputs an
age range based on these facial features. To cope with the
lack of a comprehensive and large-scale dataset, they used
transfer learning to train the model. Further, they proposed
a new loss function. Networks configuration included four
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one fully connected layer.

During the Chalearn LAP competition, Antipov et al. [73]
proposed a DL network for apparent age estimation securing
the first position. Their network is inspired by the VGG-16 for
facial recognition. During the span of this competition, they
generated the IMDB-Wiki dataset on which they trained their
network. They also fine-tuned the network for the precise age
estimation of children between 0 and 12 years old.

Xing et al. [7] performed a detailed analysis of DL mod-
els and strategies for the problem of age estimation. They
studied model formulation, architectures, and selection of
loss functions. In doing so, they proposed a multi-task
CNN for age, race and gender incorporating all the learned
insights. Network variants included a very deep multi-task
and hybrid multi-task and hybrid multi-task learning
architectures.

A major challenge in age estimation is the variety of races
and genders which exhibit different aging patterns. Keeping
this in mind, Li efr al. [74] proposed a DL solution called
Deep Cross-Population (DCP) age estimation model. They
presented two novel loss functions: (1) the Cost-Sensitive
multitask loss function, and (2) the order-preserving pair-wise
loss function.

Rothe et al. [75] proposed a VGG-16 [17] inspired
architecture for apparent and real age estimation, called
DEX. They trained a network with their IMDB-WIKI
dataset and secured the first position in the Chal.earn LaP
2015 challenge on apparent age estimation. Inspired by this,
Agustsson et al. [14] proposed a new dataset and DL solution
for age estimation. Their method is basically a residual DEX.
Their residual regression network is designed after studying
the relationship between real and apparent age which further
improved their performance.

Aging is an uncontrolled and irreversible process of the
human body. The most visible effects of aging are exhibited
on facial features. These changes are very personal for each
individual, however, the age estimation methods perform well
at distinguishing between the extremes in the age distribution.
The performance is degraded when age groups closer to each
other need to be classified.

Table 5 summarises the discussed DL solutions for age
analysis.
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TABLE 5. DL solutions for age analysis.

[ Method [ Model [ Media | Year [ Dataset Used ]
DEX [75] CNN Image | 2015 | ChaLearn LAP 2015 & IMDB-Wiki
Dong et al. [72] CNN Image | 2016 | The Images of Groups®
Antipov et al. [73] | Multi-CNN Image | 2016 | IMDB-Wiki, Chalearn LAP 2016 & Children [73]
Xing et al. [7] Multi-Task CNN Image | 2017 | Morph-II & WebFaces
Residual DEX [14] | CNN Image |2017 | APPA-REAL
DCP [74] CNN Image | 2018 | Morph-II & WebFace

F. SCENE RECOGNITION

Scene recognition involves the semantic understanding of
visual entities that share a common context (objects and
background), and this is a difficult task to automate [76].

It is used in many types of application such as
content-based indexing and retrieval systems, robotics, crime
scene analysis [77], and 3D scene construction [78]. Scenes
are broadly classified as indoor and outdoor with high
intra-class and inter-class variation.

Zhou et al. [79] proposed a novel measure to gauge
density and diversity bias; they applied it to different
datasets. Through the visualisation of object-centric and
scene-centric CNN, they realised that objects and scenes
have different internal representations, and concluded that the
ImageNet-trained CNN performs worse than the Place-CNN.
Based on this knowledge, they proposed a Hybrid-CNN
trained on both objects and places, and this approach achieved
a performance boost. Herranz et al. [80] improved upon the
work of Zhou et al. by removing the scale-induced bias,
and combining the object and scene features. According to
them, both Places-CNN and ImageNet-CNN were trained
on images with different scale ranges which caused perfor-
mance degradation. To remove this bias, they presented a
Multi-Scale architecture with scale-specific networks, which
improves recognition accuracy.

Wang et al. [81] combined the traditional and CNN based
features extractors. They proposed an end-to-end architec-
ture, called PatchNet, trained in a weakly supervised manner.
The features learned by PatchNet were then complemented by
a new image representation scheme, called Vector of Seman-
tically Aggregated Descriptors (VSAD). Together, PatchNet
and VSAD show superior performance. This is another exam-
ple where traditional features combined with DL features
have improved performance. Another hybrid approach was
proposed by Guo et al. [82], called Locally-Supervised Deep
Hybrid Model (LS-DHM). They use Local Convolutional
Supervision (LCS) layer and Fisher Convolutional Vector
(FCV), integrated with the learned feature representation of
LS-DHM.

To tackle inter-class similarity and intra-class variation,
Kim and Frahm [83] proposed a hierarchical network, which
consists of alternating specialist networks based on a binary
tree structure. The specialist and generalist models output the
same number of predictions while using both global ordered

5 http://chenlab.ece.cornell.edu/people/Andy/ImagesOfGroups.html
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and orderless pooling architectures delivering better perfor-
mance than other tree structured networks.

Another method for scene recognition, Adi-Red was pro-
posed by Zhao and Larson [84]. This method uses a discrim-
inative discovery network (DisNet) to generate Dis-Maps
which provides discriminative regions for the given images.
These Dis-Maps are then aggregated within a multi-scale
framework. It was claimed that Adi-Red was the first method
to use discriminative regions in an adaptive fashion for scene
recognition.

Liu et al. [85] proposed a Dictionary Learning Layer
(DLL) which is composed of recurrent units. They replaced
the fully connected layer and ReLu with the newly designed
DLL layer. According to them, DLL layers learn optimal
dictionaries enabling the extraction of high discriminative
and sparse features. Furthermore, they proposed to deploy
some constraints to avoid over-fitting based on the advantages
of Mahalanobis and Euclidean distance. They also proposed
a new label discriminative regressor. They call their network
CNN-DL.

Scene recognition has received much attention in computer
vision. Many large scale datasets for scene recognition are
available. The biggest challenge that causes performance
loss in scene recognition is the inter and intraclass variation.
DL methods for scene recognition have produced a state-
of-the-art performance on these benchmarks. Table 6 sum-
marises the reviewed DL models for Scene Recognition.

G. PERSON RE-IDENTIFICATION

This class of problem is concerned with the re-identification
of a particular individual (previously observed in an image
or video) at different non-overlapping views across a period
of time, from multiple cameras viewpoints under different
poses. Person Re-Identification (Re-ID) is very challeng-
ing even for humans [86]. Real-world applications include
multi-camera tracking of criminals or individuals of interest,
robotics human-machine interactions, crowd traffic analysis,
and management [87]. A typical Re-ID system consists of
three main components: person detection, person tracking,
and person retrieval [88].

Single-shot and multi-shot recognition strategies are used
for Re-ID task [89]. A survey by Bedagkar-Gala and Shah [9]
elaborated on trends, methods, datasets, and taxonomy of
Re-ID approaches. Advancements in video surveillance have
motivated the development of recent DL solutions for Re-ID.
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TABLE 6. DL solutions for scene recognition.

[ Method [ Model [ Media| Year [ Dataset Used ]
Zhou et al. [79] CNN Image | 2014 [ Places, ImageNet , MIT Indoor67°, Scenel5’, Sun-205, Sun397, Sun
Attribute, Caltect101%, Caltect256°, Action40'® & Event8
Herranz et al. [80] | Multi-Scale CNN Image | 2016 Scenes15’, MIT Indoor67° & SUN397
PatchNet [81] VASD-CNN Image | 2017 | Sun397 & MIT Indoor67°
LS-DHM [82] FCS-LCS-CNN Image | 2017 | Sun397 & MIT Indoor67°
Kim et al. [83] Hierarchical-CNN | Image | 2018 | Sun397, Places205 & CIFAR100™
Adi-Red [84] Multi-Scale CNN Image | 2018 | Sun397 & Places365
CNN-DL [85] CNN Image | 2018 | Sun397, MIT Indoor67° & Scenes15’

Liet al. [90] proposed a six-layer Filter Pairing Neural
Network (FPNN), which jointly optimized the Re-ID pipeline
including feature extraction, photometric and geometric
transforms, misalignment, occlusions, and classification.
They use verification loss function to train their network.

Ahmad et al. [91] presented a deep network which in addi-
tion to feature representation also learns the similarity metric
through a novel layer that calculates the cross-input neigh-
bourhood differences. This layer compares the features of the
neighbouring location to capture the local relationship of the
images; this approach was followed after two convolution
layers in their model. They provided a detailed comparison
of their model with other deep architectures which included
FPNN [90].

Xiao et al. [20] proposed a DL solution for Re-ID task
where they employed a domain guided dropout layer. Their
network learns generic features from six domains (i.e., cam-
era views captured by different datasets) to solve the problem
at hand. They first pre-trained their network on the com-
bined dataset and claimed that this strategy provides a strong
baseline model that can be retrained for individual domains.
Afterward, they replaced the standard dropout layer with their
own domain guided dropout layer.

Most of the methods benefit from overlapping regions in
the images to solve the Re-ID task. However, the DL model
by Cheng et al. [92] did not rely on them. Their “Multi-
Channel Part Based CNN”’ model was trained using a triplet
loss function that learns global full-body and local body-parts
of the person under observation.

Wang et al. [93] proposed a Joint Attribute-Identity DL
(TJ-AIDL) that is capable of transferring learned features in
an unsupervised manner reducing the need for large scale
datasets. Their network consists of two parallel CNN net-
works followed by an auto-encoder were they use a learning
strategy of attributes and identity discrimination. Li ez al. [94]
also proposed an unsupervised DL algorithm, called Track-
let Association Unsupervised DL (TAUDL) framework.

6http://web.mit.edu/torr'cllbalwww/indoor.html

7https://fi gshare.com/articles/15-Scene_Image_Dataset/7007177
8 http://www.vision.caltech.edu/Image_Datasets/Caltech101/
9http://www.vision.caltech‘edu/ImagefDatasets/CaltechZS 6/
10http://vision.stanford.edu/Datasets/40actions.html

1 lhttps://Www.cs.toronto.edu/ kriz/cifar.html
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Their method does not require labelled camera pairwise
images.

Chen er al. [95] devised a DL solution that works by
learning features for scale-specific and multi-scale person
appearance, as opposed to most single-scale methods. They
proposed a novel deep Pyramid Feature Learning (DPFL)
CNN model.

Zheng et al. [96] combined a CNN-based verification
and identification model for the Re-ID task. Their siamese
network computes and combines the verification and iden-
tification loss in order to generate a highly discriminative
pedestrian embedding and similarity measure at the same
time.

Wu et al. [97] presented a video-based DL solution that
uses a stepwise learning method (EUG: Exploit the Unknown
Gradually) to enhance the discriminative capability of their
model and predict pseudo labels. They use only one labelled
tracklet to re-identify the other unlabelled tracklets by
employing a progressive sampling strategy for single-shot
Re-ID.

Re-ID has emerged as a relatively newer task in computer
vision as many new methods and datasets have been pro-
posed. However, Re-ID in open world is still a challenging
problem due to multi camera angle and view, lack of universal
feature representation. Further, there is a lack of standard-
ised evaluation criteria for Re-ID task. Table 7 compiles the
approaches discussed in this section for Re-ID.

H. GAIT RECOGNITION

Gait is a trait or signature, that can be used as biometric
or behavioural identifier therefore it can be used to dis-
tinguish one individual from others [98]. Such signature
may be composed of many factors which include: pattern
of the human walk (i.e., length and movement of torso
and limbs), weight, arm swing, and musculoskeletal struc-
ture of the body. Gait is affected by many external factors
which can include footwear, clothing, walk speed, injury, and
mood [99], [100]. A gait-based biometric system has certain
advantages over others. Firstly, it can be used to identify
a person from far distances. Secondly, it does not require
the approval of the individual under observation [101].
Third, no physical interaction is required with the biomet-
ric systems. UK and Denmark are using gait recognition
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TABLE 7. DL solutions for person re-identification.

[ Method [ Model [ Media | Year [ Dataset Used
FPNN [90] CNN Image | 2014 | CUHKO03 & CUHKOI
Ahmad et al. [91] | Two-Stream CNN Image | 2015 | CUHKO3, CUHKO1 & VIPeR
Xiao etal. [20] | CNN Image | 2016 | CUHKO03, CUHKOI, PRID, VIPeR, 3DPeS & iLIDs
MCP-CNN [92] | Multi-Channel CNN | Image | 2016 | iLIDs, VIPeR, PRID2011"> & CUHKOI
Zheng et al. [96] | CNN Image |2018 | CUHKO3, Market1501™ & Oxford5K™
TJ-AIDL [93] Multi-branch CNN | Image | 2018 | VIPeR, PRID20112, Market1501' & DukeMTMC-ReID™
DPFL [95] Multi-Channel CNN | Image | 2018 | Market1501'*, CUHKO3 & DukeMTMC-ReID™
Wau et al. [97] CNN Video |2018 | MARS & DukeMTMC-ReID"
TAUDL [94] CNN Image | 2018 | CUHKO3, Market-1501", DukeMTMC-ReID™, iLIDs, PRID
& MARS

TABLE 8. DL solutions for gait recognition.

[ Method [ Model [ Media

| Year [ Dataset Used

GEINet [105] CNN | GEI-Image

2016 | OU-ISIR™

Castro et al. [107] | CNN | OF-Image

2017 | TUM-GAID"

Wu et al. [106] CNN | GEl-Image

2017 | CASIA-B, OU-ISIR™®, USF™®

Gaitset [109] CNN | Silhouette-Image

2018 | CASIA-B and OU-ISIR (MVLP)"

MGAN [108] GAN | PEI-Image

2019 | OU-ISIR™, CASIA-B & USF™®

to convict criminals through evidence collection and foren-
sic identification [102], [103]. Gait recognition algorithms
are generally divided into two categories: Model-based and
Appearance-based methods [101], [104]. This paper only
focuses on model-free gait recognition methods, as they
require visual content analysis.

Gait methods rely on Gait Energy Image (GEI), generated
by aggregating the silhouette sequences of the person under
observation at the expense of losing temporal information.
The motivation for silhouette extraction is that it removes
color, clothing and other textures from the image.

Using GEI, Shiraga et al. [105] proposed a rather simple
CNN, called GEINet. This is a 4 layer network consisting
of 2 convolution layer followed by 2 fully connected layers
and a softmax layer at the end. Each convolution layer is
followed by a pooling and normalisation layer. They use the
cross-entropy loss to train their network.

Wu et al. [106] presented another deep CNN method using
GEI for cross-view gait recognition. They performed an
extensive empirical evaluation for larger cross-view angles.
Their method is robust to changing viewpoints and walking
conditions, showing greater generalisation ability across mul-
tiple larger datasets.

Castro et al. [107] proposed a CNN method inspired by
the Two-Stream Network [23]. Their network takes Optical
Flow Maps as input images, rather than GEI, and generates
gait probabilities for every individual. Another method which
did not use GEI images was proposed by He et al. [108].

12https J/Iwww.tugraz.at/institute/icg/research/team-
bischof/Irs/downloads/prid11/

13 http://www.robots.ox.ac.uk/ vgg/data/oxbuildings/
14http://www.liangzheng.com.cn/Datasets.html
15 https://megapixels.cc/datasets/duke_mtmc/
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They presented a Multi-Task Generative Adversarial Net-
work (MGAN) that learns view specific feature representa-
tions. Their network is composed of 5 components: Encoder,
View-angle classifier, View transfer layer, Generator, and
Discriminator. They also utilised Period Energy Image (PEI),
which is a multi-channel gait template.

Chao et al. [109] proposed Gaitset — an end-to-end DL
model that uses “Set Pooling” operations to aggregate
silhouette frame-level features. These features are then
mapped to a higher discriminative space using Horizontal
Pyramid Mapping.

Gait methods heavily rely on GEI images, all methods use
them to discard unwanted visual artefacts for gait recognition.
Developing robust gait systems is still a challenging task as
there are many factors that can affect the performance of
these systems such as camera view, clothing, shoe type or
carrying objects. Further, if the observed individual is aware
of gait systems they can intentionally change their gait. This
new research suffers from lack of new gait datasets which
are suitable for DL based methods. Table 8 summarises the
reviewed DL models for Gait Recognition.

IV. DATASETS USEFUL FOR DL SOLUTIONS TO ADDRESS
VISUAL CONTENT ANALYSIS PROBLEMS

DL is data-hungry in nature [110], thus, the availability of
large scale, high quality, publicly available datasets play a
significant role in attracting the research community. This
section provides a list of benchmark datasets for the prob-
lems discussed in Section III. Table 9 lists the dataset name,
the target domain area, number of training examples, media
type, and publication year. This table was compiled based on
most authoritative, recently published and tested benchmarks;
it is not meant to be comprehensive.
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TABLE 9. List of datasets for content analysis of multimedia problems.

[ No [ Dataset Name | Category | Instances [ Media [ Year |
1 Hollywood 2 [112] Action Recognition 1,694 Video | 2009
2 UFC-101 [113] Action Recognition 13,320 Video | 2012
3 ASLAN [141] Action Recognition 3,697 Video | 2012
4 HMDB51 [142] Action Recognition 6,766 Video | 2011
5 ActivityNet-200 [111] Action Recognition 28,108 Video | 2015
6 DALY [143] Action Recognition 8,133 Video | 2016
7 Kinetics [144] Action Recognition 306,245 Video | 2017
8 20BN-something-something [145] Action Recognition 108,499 Video | 2017
9 SLAC [114] Action Recognition 1,750,000 Video | 2017
10 VLOG [146] Action Recognition 114,000 Video | 2017
11 Moments In Time [147] Action Recognition 1,000,000 Video | 2018
12 Epic kitchen [148] Action Recognition 39,596 Video | 2018
13 BEHAVE [115] Violence Detection 83,545 Video | 2010
14 Crowd Violence: Non-violence Database and benchmark [38] Violence Detection 246 Video | 2012
15 National Hockey league and Movies [149] Violence Detection 1,000 Video | 2011
16 Violent Scene Dataset [34] Violence Detection 32,678 Video | 2015
17 Pornography-800 [116] Pornography Detection 800 Video | 2013
18 Pornography-2k [117] Pornography Detection 2,000 Video | 2016
19 Columbia dataset [118] Tampering Detection 2,208 Image | 2004
20 IEEE Image Forensics Challenge Dataset [150] Tampering Detection 2200 Image | 2,013
21 CASIA [119] Tampering Detection 14,044 Image | 2013
22 Media Forensics Challenge 2018 (MFC2018) [59] Tampering Detection 5,000,000 Image | 2016
23 Coverage [120] Tampering Detection 200 Image | 2016
24 Face Forensics [121] Tampering Detection 1,004 Video | 2018
25 FG-net [123] Age Analysis 1,002 Image | 2002
26 MORPH [122] Age Analysis 55,134 Image | 2006
27 Gallagher [127] Age Analysis 28,231 Image | 2009
28 VADANA [128] Age Analysis 2,298 Image | 2011
29 Cross Age celebrity dataset [124] Age Analysis 163,446 Image | 2014
30 AdienceFaces [125] Age Analysis 26,580 Image | 2014
31 Chalearn dataset for apparent age estimation [151] Age Analysis 4,691 Image | 2015
32 IMDB-WIKI dataset [75] Age Analysis 524,230 Image | 2015
33 AgeDB [126] Age Analysis 16,488 Image | 2017
34 APPA-REAL [14] Age Analysis 7,591 Image | 2017
35 TinyImage [132] Scene Recognition 79,302,017 | Image | 2008
36 SUN database [129] Scene Recognition 899 Image | 2010
37 MS-COCO [130] Scene Recognition 2,500,000 Image | 2014
38 Places [131] Scene Recognition 10,000,000 | Image | 2018
39 VIPeR [137] Person Re-Identification 1,264 Image | 2007
40 3DPES [152] Person Re-Identification 1,000 Video | 2011
41 CUHKOL1 [153] Person Re-Identification 1,942 Image | 2012
42 CUHKO2 [154] Person Re-Identification 7,264 Image | 2013
43 CUHKO3 [90] Person Re-Identification 13,164 Image | 2014
44 iLIDS-VID [155] Person Re-Identification 600 Video | 2014
45 Market-150 [136] Person Re-Identification 32,668 Image | 2015
46 MARS [135] Person Re-Identification 20,715 Video | 2016
47 MSMT17 [134] Person Re-Identification 126,441 Video | 2018
48 RPIfield [133] Person Re-Identification 601,581 Video | 2018
49 CASIA-A [138] Gait Recognition 19,139 Image | 2002
50 CMU Mobo [139] Gait Recognition 204,000 Image | 2004
51 CASIA-B [140] Gait Recognition 13,640 Video | 2006
52 CASIA-C [156] Gait Recognition 1,530 Video | 2006
53 Southampton Dataset [157] Gait Recognition 600 Image | 2006
54 TokyoTech [158] Gait Recognition 1,902 Video | 2010
55 Soton multimodal [159] Gait Recognition 1,986 Video | 2011
56 AVA [160] Gait Recognition 1,200 Video | 2014
57 KY4D [161] Gait Recognition 672 Video | 2014

Action recognition, violence and pornography detection
datasets predominantly target videos. AcitivtyNet [111],
Hollywood2 [112] and UCF-101 [113] are the most cited
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benchmarks for action recognition, but SLAC [114] has the
highest number of examples. In contrast to action recognition,
fewer datasets are available for violence detection. VSD [34]
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is a freely available dataset for content based violence detec-
tion. However, the largest violence dataset is BEHAVE [115].

Pornography detection datasets are bound by ethical con-
cerns and, therefore, are scarce. The biggest datasets avail-
able are Pornography-800 [116] and Pornography-2000 [117]
containing 800 and 2000 videos, respectively.

A renewed interest has developed in tampering detec-
tion due to the recent proliferation of fake media, and
deepfakes. NIST has been hosting a series of Media
Forensics Challenges since 2016, specifically designed to
facilitate the development of tampering detection meth-
ods. MFC-2018 [59] was the last dataset released at time
of writing through this competition. Traditional datasets
include the Columbia dataset [118] and CASIA [119]. Cov-
erage [120] is another dataset which only contains around
100 authentic-tampered image pairs which were generated
after performing 6 tampering operations. Rossler et al. [121]
have produced a large scale dataset, Face Forensics, which
consists of 1004 videos applying two types of manipulation:
source-to-target and self-re-enactment.

All age analysis datasets consist of facial images.
MORPH [122] and FG-net [123] are the oldest and most
highly cited datasets. IMDB-WIKI [75] and CACD [124] are
larger dataset and they have been published more recently.
FG-NET [123], MORPH [122], AdienceFaces [125],
CACD [124], IMDB-WIKI [75] and AgeDB [126] con-
tain exact ages as labels, whereas in Gallagher [127],
VADANA [128] and AdienceFaces [125] the images are
assigned to age groups.

Specific datasets for scene recognition include: SUN [129]
(the most cited), MS-COCO [130] and Places [131] (the most
recent), and TinyImage [132] (the largest, containing around
80 million images).

Most of the Person Re-Identification datasets are captured
as videos, then bounding boxes are drawn to allow them to
be used for training Re-ID methods. They are compiled under
different circumstances such as number of cameras, number
of identities/individuals, single-shot or multi-shot. The most
recent datasets are RPIfield [133], MSMT17 [134] and the
Motion Analysis and Re-identification Set (MARS) [135].
MSMT17 has 126,441 bounding boxes. MARS contains
around 20,000 video sequences producing a real-world
large scale dataset; it is an extension of the Market-
150 [136], which is an image based benchmark for person
re-identification. The mostly cited image-based benchmark
is VIPeR [137]; it contains 1,264 images with 632 identities.
Traditional gait recognition datasets only had single view
images; CASIA-A [138] and CMU Mobo [139] are amongst
the oldest gait benchmarks for images. In terms of video gait
datasets, CASIA-B [140] is the largest.

16’http://www.am.sanken.osaka-u.ac.jp/BiometricDB/GaitLP.html

1 7https J//www.mmk.ei.tum.de/en/misc/tum-gaid-database/
18http://www.engAusf. edu/cvprg/Gait_Data.html
191'1ttp://WWW.am.sanken.osaka-u.ac.jp/BiometricDB/GaitMVLP.html
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V. SHORTCOMINGS OF DEEP LEARNING

In Sections I to III, we have praised DL’s advantages which
turn it into a promising, and increasingly explored solutions
for visual content analysis tasks. One strong advantage is
its ability to learn features without the need for pre-defined
expert knowledge informed, feature extractors.

However, deep methods have some major limitations. For
example, in order to extract features, the very first precondi-
tion that needs to be fulfilled is the presence of high quality
and high volume data [131], [162]. As DL is data-hungry for
training in nature [110], it totally depends on the dataset used
for learning feature representation. This can negatively affect
the ability to generalise results. Therefore, the presence of any
type of bias in the dataset [163] — in terms of capture, selec-
tion, negative set, and example variety — will compromise the
quality of data and, consequentially, the output quality of the
DL model. Very authoritative, large and reliable benchmarks
are prerequisites for training robust deep networks.

DL methods are ‘“‘black boxes’ in nature [164], [165].
Efforts have been made to better understand the learning
process of a given network through output visualisation of
layers, e.g., by Zeiler and Fergus [16]. DL networks are
self-contained, therefore, debugging them is not yet possi-
ble [166]. Unaware of the internal working if DL methods are
employed in safety-critical systems, they can be a possible
avenue for sabotage or simply malfunction. This can turn
them into a security concern. When applied to the different
domains discussed in Section III.

Concerns have been previously raised in relation to con-
volution operation, which is the highly used operation in
deep methods for visual tasks. This operation does not pay
attention to pose, texture and deformations [167]. In addition,
just applying convolution operation is not enough for perfor-
mance gains in many content analysis problems. Traditional
handcrafted features for motion or sounds (such as STIP,
IDT and MFCC) have increasingly been combined with deep
networks, which compromises the end-to-end nature of the
model [43], [44].

A. RESEARCH DIRECTIONS

DL is now been deployed in time and safety-critical systems.
The black box nature of these methods raise privacy and
security concerns, creating a trust deficit, and causing reluc-
tance to fully rely on them. The development of debugging
technologies would greatly help in the understanding of the
learning mechanism of Deep Networks [21]. This would fur-
ther contribute towards the development of new architectures,
methods and provide opportunities for the optimisation of
existing methods.

For visual content analysis on videos, the survey uncov-
ered that methods just based on CNN are ineffective and
are often combined with other motion-based feature extrac-
tors. This is derived from the fact that temporal and motion
information is of vital importance in video content anal-
ysis. To tackle this, a 3D convolution layer may be used
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to process the extra dimension when training end-to-end
models [27].

Another research development is the use of capsule
network-based methods, as proposed by Nguyen et al. [62].
Capsule networks are designed to remove the limitation of
convolution networks inability to utilise spatial hierarchical
information and its relationship with orientation during fea-
ture extraction. Capsules incorporate the viewpoint changes
through voting for pose matrix, trained using ‘‘routing-by-
agreement” algorithm. which only passes features to the
higher level capsules if an agreement is reached. Due to this,
they require far fewer data to train compared to CNN. These
advantages make them a very attractive option for the future
development of DL methods.

Development of sophisticated techniques such as Deep-
Fake and Face2Face has made it very easy to tamper and
develop digital media. DL techniques are now able to trans-
late human emotions from a source person to a target video.
Due to these alarming developments, in near future DL tech-
niques would also be utilised for deepfake detection. As these
DL methods are able to generate fake media in real time.
There is a possibility that traditional tampering detection
techniques would fail against these deepfake methods open-
ing up new research gaps.

Even though action recognition methods have received
great attention from the research community, violence detec-
tion in comparison is overlooked. The fact that there is a lack
of comprehensive dataset for violence detection seriously
hinders the development of robust DL methods. Incidents of
real-life violence are very different from the ones presented
in movies. Violence being a subjective matter makes the
development for an extensive dataset difficult. However. we
believe that violence detection methods have huge applica-
tion potential especially in the world where smart cities are
becoming a reality.

VI. CONCLUSION

This paper identified eight problems related to visual content
analysis. For each class of problem, we reviewed the state-of-
the-art and acknowledged the best performing DL methods
proposed in the literature. We also provided a compilation
of authoritative datasets useful for training deep methods to
address those problem domains. Finally, we discussed the
potential limitations of DL methods that can negatively affect
their reliability, robustness, and accuracy for visual content
analysis.

The survey adopted a breadth-first strategy rather than a
deep-first strategy. This means that we aimed at covering
DL solutions for all eight problems in detriment of provid-
ing a very detailed account of individual problem classes.
When applicable, we pointed to other surveys dedicated to
specific problems. The rationale for this approach was the
cross-fertilisation of DL methods which can potentially be
re-applied from one visual problem analysis to another.

We found that violence detection was the most overlooked
content analysis problem among the eight classes surveyed.

VOLUME 7, 2019

The root cause seems to be the fact that it is considered
as a subcategory of action recognition, hindering its devel-
opment. In contrast, the Person Re-Identification problem
gained momentum recently with many newly developed deep
methods proposed in the literature. Detection of deepfakes is
also becoming an alarming challenge, as DL-based tampering
methods are becoming more sophisticated. Capsule networks
are emerging as the new feature extractors that have the
potential to replace convolution layer in the DL methods of
future.
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