
Endostructural morphology in hominoid mandibular third premolars: Discrete traits at the 

enamel-dentine junction

Thomas W. Daviesa,b,*, Lucas K. Delezenec, Philipp Gunzb, Jean-Jacques Hublinb, Matthew 

M. Skinnera,b

a School of Anthropology and Conservation, University of Kent, Canterbury, CT2 7NZ, UK

b Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 

Deutscher Platz 6, 04103 Leipzig, Germany

cDepartment of Anthropology, University of Arkansas, Fayetteville, Arkansas, 72701 USA

*Corresponding author.

E-mail address: thomas_davies@eva.mpg.de (T.W. Davies)

Keywords: Premolars; Enamel-dentine junction; Discrete traits; Dental development; 

Taxonomy; Dental morphology

mailto:thomas_davies@eva.mpg.de


Acknowledgements

For access to specimens, we would like to thank Bernhard Zipfel, Lee Berger, Sifelani Jira 

(Evolutionary Studies Intitute, University of the Witwatersrand), Miriam Tawane (Ditsong 

Museum), Job Kibii (National Museums of Kenya), Metasebia Endalemaw, Yared Assefa 

(Ethiopian Authority for Research and Conservation of Cultural heritage), Yoel Rak, Alon 

Barash, Israel Hershkovitz (Sackler School of Medicine), Michel Toussaint (ASBL 

Archéologie Andennaise, Jean-Jacques Cleyet-Merle (Musée National de Préhistoire des 

Eyzies-de-Tayac), Ullrich Glasmacher (Institut für Geowissenschaften, Universität 

Heidelberg), Robert Asher, Hendrik Turni, Irene Mann (Museum für Naturkunde, Berlin), 

Jakov Radovčić (Croatian Natural History Museum), Christophe Boesch and Uta Schwarz 

(Max Planck Institute for Evolutionary Anthropology) and the Leipzig University Anatomical 

Collection (ULAC). For project support we thank Zeresenay Alemseged and Bill Kimbel. We 

would also like to thank the reviewers, the associate editor and the editor for their helpful 

comments and guidance, as well as Ottmar Kullmer for comments on an earlier version of this 

manuscript. This work was funded by the Max Planck Society, and financial support for 

L.K.D. was provided by a Connor Family Faculty Fellowship and the Office of Research and 

Development at the University of Arkansas.



1

1 Endostructural morphology in hominoid mandibular third premolars: Discrete traits at the 

2 enamel-dentine junction

3

4 Abstract

5 The mandibular third premolar (P3) exhibits substantial differences in size and shape among 

6 hominoid taxa, and displays a number of discrete traits that have proven to be useful in studies 

7 of hominin taxonomy and phylogeny. Discrete traits at the enamel-dentine junction (EDJ) can 

8 be accurately assessed on moderately worn specimens, and often appear sharper than at the 

9 outer-enamel surface (OES). Here we use microtomography to image the P3 EDJ of a broad 

10 sample of extant apes, extinct hominins and modern humans (n = 100). We present typologies 

11 for three important premolar discrete traits at the EDJ (transverse crest, marginal ridge and 

12 buccal grooves), and score trait frequencies within our sample. We find that the transverse 

13 crest is variable in extant apes, while the majority of hominins display a transverse crest 

14 which runs directly between the two major premolar cusps. Some Neanderthals display a 

15 unique form in which the transverse crest fails to reach the protoconid. We find that mesial 

16 marginal ridge discontinuity is common in Australopithecus anamensis and Australopithecus 

17 afarensis while continuous marginal ridges largely characterize Australopithecus africanus 

18 and Paranthropus. Interrupted mesial and distal marginal ridges are again seen in Homo 

19 sapiens and Neanderthals. Premolar buccal grooves, previously identified at the OES as 

20 important for hominin systematics, are again found to show a number of taxon-specific 

21 patterns at the EDJ, including a clear difference between Australopithecus and Paranthropus 

22 specimens. However, their appearance may be dependent on the morphology of other parts of 

23 the crown such as the protoconid crest, and the presence of accessory dentine horns. Finally, 

24 we discuss rare variations in the form of dentine horns that underlie premolar cusps, and their 

25 potential homology to similar morphologies in other tooth positions.
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26

27 1. Introduction

28 Teeth are an important component of the fossil record; as highly mineralized and compact 

29 tissues, they are well preserved and, therefore, common in fossil deposits. They are also a rich 

30 source of information regarding taxonomy, diet, and environment, among other factors 

31 (Walker et al., 1978; Sponheimer and Lee-Thorp, 1999; Richards et al., 2001; Lee-Thorp et 

32 al., 2003; Grine et al., 2012). Unlike bones, the external morphology of the tooth crown is not 

33 remodeled throughout life; once fully developed, it is only modified by external factors such 

34 as breakage or wear. Further, aspects of tooth morphology show high levels of heritability 

35 (Townsend and Martin, 1992; Dempsey and Townsend, 2001; Hlusko and Mahaney, 2003) 

36 and dental traits are considered particularly useful in studies of taxonomy and phylogeny 

37 (Wood and Abbott, 1983, Wood et al., 1983; Suwa et al., 1996; Irish and Guatelli-Steinberg, 

38 2003). 

39 Many previous studies of the hominin dentition have focussed on molars, since they are the 

40 most morphologically complex teeth, while premolars are considered transitional teeth 

41 between the simple, single-cusped canines and the more complex, multi-cusped molars. 

42 Premolars are extremely variable, however, and can show a variety of morphologies even 

43 among hominoids (e.g., Davies et al., 2019). This is especially true of the mandibular third 

44 premolar (P3), which forms part of the catarrhine canine honing complex (e.g., Walker, 1984; 

45 Greenfield and Washburn, 1992; Delezene, 2015). As a result of substantial reduction in 

46 maxillary canine height, hominins are the only catarrhine clade in which the function of 

47 canine honing has been lost (e.g., Greenfield, 1990; Brunet et al., 2002; Haile-Selassie et al., 

48 2004; Suwa et al., 2009). The loss of canine honing may have removed a functional constraint 

49 on P3 morphology that permitted the evolution of novel P3 forms among hominins.
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50 Intraspecific P3 variability was noted by Kraus and Furr (1953), who outlined 17 traits in 

51 modern humans that relate to the development and position of the major cusps, the form of 

52 major occlusal ridges, and the presence of features such as buccal grooves. Wood and 

53 Uytterschaut (1987) built upon these definitions to study mandibular premolar variation 

54 among Plio-Pleistocene hominins, noting for example that cusp number is effective in 

55 distinguishing between Paranthropus and other hominins, while the position of the lingual 

56 cusp can be used to distinguish eastern African Homo. Further, Suwa (1988) identified a 

57 number of P3 features that distinguish Paranthropus from other hominins and Suwa et al. 

58 (1996) outlined derived P3 features of early Homo and Australopithecus africanus, relative to 

59 Australopithecus afarensis, as well as those unique to early Homo. P3 traits have also been 

60 utilized in studies of Ardipithecus (Haile-Selassie et al., 2004; Suwa et al., 2009), 

61 Australopithecus anamensis, A. afarensis (Leonard and Hegmon, 1987; Ward et al., 2001; 

62 Kimbel et al., 2006; Delezene and Kimbel, 2011) and Homo naledi (Irish et al., 2018).

63 Nonmetric features are typically assessed at the outer-enamel surface (OES); however, 

64 advances in microtomography allow the assessment of internal tooth structures. Of particular 

65 interest in studying discrete dental traits is the enamel-dentine junction (EDJ). The EDJ 

66 preserves the form of the basement layer of the inner-enamel epithelium, the morphology of 

67 which is determined during odontogenesis. Subsequently, enamel and dentine are deposited 

68 on either side of this epithelial layer, meaning that important OES dental features such as 

69 cusps and crests typically originate at the EDJ (Skinner et al., 2008 and references therein). 

70 The advantages of studying the morphology of the EDJ are twofold. Firstly, tooth wear can 

71 prevent assessment of discrete dental traits (Burnett et al., 2013); however, the EDJ is 

72 preserved in specimens with moderate wear, allowing assessment of specimens that would 

73 otherwise be excluded from analyses. Secondly, hominin teeth often have thick enamel 

74 (Beynon and Wood, 1986; Macho and Thackeray, 1992; Smith et al., 2012; Skinner et al., 
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75 2015), which may make the exact form and layout of crown features difficult to assess. In 

76 contrast, features at the EDJ appear much sharper, allowing for more accurate and precise trait 

77 assessment. As a result, although the OES and EDJ have a high level of correspondence 

78 (Nager, 1960; Skinner et al., 2010; Ortiz et al., 2012; Morita et al., 2014; Guy et al., 2015), 

79 trait-scoring systems developed for the OES may not always be applicable when studying the 

80 EDJ. 

81 Various studies have investigated the expression of discrete molar traits at the EDJ (e.g., 

82 Korenhof, 1960; Corruccini, 1987; Skinner et al., 2008; Anemone et al., 2012; Zanolli and 

83 Mazurier, 2013; Martinón-Torres et al., 2014; Martínez de Pinillos et al., 2014; Zanolli, 2015; 

84 Martin et al., 2017; Liao et al., 2019), which help to understand the range of variation in the 

85 form of these traits. Studying the EDJ also allows us to better understand the development of 

86 dental traits so that we can accurately identify traits and their covariation with one another, or 

87 with other aspects of crown morphology, both of which can be important when using traits to 

88 make taxonomic arguments. Fewer studies have explored discrete premolar traits at the EDJ, 

89 although a number of studies have done so alongside molars (e.g., Braga et al., 2010; Liu et 

90 al., 2013; Zanolli et al., 2018). Sakai (1967) studied the modern human P3 using destructive 

91 techniques to view the EDJ and explore the expression of discrete traits such as buccal 

92 grooves and an indentation on the mesial marginal ridge termed a ‘trigonid notch’. The form 

93 of these traits was compared to the morphology of the OES, and discussed with reference to 

94 what was known about the expression of these traits at the OES of fossil hominins. Further, 

95 Krenn et al. (2019) studied modern human mandibular premolars at the EDJ and OES, scoring 

96 the variation in seven different qualitative traits including the form of the marginal ridges, the 

97 extension of the transverse crest, and the number of accessory crests present on the crown, 

98 finding inter-population differences in a number of traits. Despite advances in 

99 microtomography allowing the non-destructive imaging of internal tooth structures in fossils, 
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100 no study has yet explored the EDJ expression of P3 discrete traits across the hominin clade. 

101 Here we examine the P3 EDJ of a broad sample of extant apes, modern humans and extinct 

102 hominins, focussing on three important discrete traits that are variable within this sample. We 

103 present scoring systems for these traits, and discuss the concordance (or lack thereof) with 

104 traits previously scored at the OES. We score trait frequencies within our sample to identify 

105 features that may have taxonomic significance, and discuss the developmental basis of a 

106 number of these traits. 

107 A second companion paper will use geometric morphometrics to quantitatively analyze 

108 hominoid P3 EDJ morphology (Davies et al. 2019).

109

110 2. Methods

111 2.1 Study sample

112 The sample is summarized in Table 1 (a full list of specimens can be found in 

113 Supplementary Online Material [SOM] Table S1) and consists of 100 specimens, of which 93 

114 are assigned to species rank. Two specimens are assigned to Homo sp., and five are 

115 considered indeterminate. The recent H. sapiens sample is curated at the University of Leipzig 

116 Anatomical Collection (ULAC). Relatively little information is available on the provenance 

117 of this sample, but the available information is presented in SOM Table S2. The study sample 

118 is limited by the availability of microtomographic scans and the ability to extract the EDJ 

119 surface from those scans. The EDJ surface is more difficult to extract in some cases due to a 

120 lack of radiographic tissue contrast between enamel and dentine; this problem is more 

121 prevalent at eastern African sites (although the taphonomic processes that are likely causing 

122 this are not clear), and the sample sizes for taxa known mostly from these sites (e.g., 

123 Paranthropus boisei, A. anamensis, A. afarensis, and early Homo) are more limited. Further, 

124 the physical preservation of the fossils is important, and specimens that are heavily cracked, 
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125 eroded or otherwise broken often have to be excluded from analyses when digital 

126 reconstruction is not possible. Scan resolution is also important to consider: larger traits such 

127 as main cusps and crests remain visible at the entire range of scan resolutions used; however, 

128 smaller features such as accessory cusps can be difficult to identify at lower resolutions, 

129 particularly in poorer quality scans. Scan resolution is limited by a number of factors 

130 including the shape and size of the specimen, as this limits how closely the specimen can be 

131 placed to the X-ray source, as well as the time available for scanning. Nonetheless, the sample 

132 does capture a broad swath of the hominin clade, including modern humans, and includes 

133 representatives of all extant apes as comparative outgroups. Given sample size constraints, it 

134 is very likely that this study does not capture the full extent of P3 variation in each taxon; 

135 however, the trait scoring systems outlined can be expanded as necessary. 

136

137 2.2 Microtomography and segmentation

138 Microtomographic scans of P3 sample were obtained using either a SkyScan 1173 at 100–

139 130 kV and 90–130 µA, a BIR ACTIS 225/300 scanner at 130 kV and 100–120 µA, or a 

140 Diondo d3 at 100–140kV and 100–140 µA, and reconstructed as 8-bit TIFF stacks (isometric 

141 voxel resolutions ranging from 13–45 µm). TIFF stacks were filtered using 3D median filter, 

142 followed by a mean of least variance filter (each with a kernel size of either one or three), 

143 implemented using MIA open source software (Wollny et al., 2013). Filtered image stacks 

144 were segmented using Avizo 6.3 (Visualization Sciences Group, 2010) to produce PLY 

145 format surface models of the EDJ. The EDJ of specimens with substantial cracks were 

146 realigned using Geomagic Studio 2014 (3D systems, Rock Hill) when possible.

147



7

148 2.3 Scoring procedures

149 The presence and form of four EDJ discrete traits were scored; the transverse crest, 

150 marginal ridge continuity, mesial buccal groove and distal buccal groove. While each of these 

151 traits has been previously described at the OES for hominoids, the extent of variation in these 

152 traits at the EDJ has not been previously described. These traits were chosen because initial 

153 investigations showed that they are variable within our sample, and are able to be scored in a 

154 way that is both precise and reproducible. Since traits were only scored at the EDJ, and not at 

155 the OES, discussion of the form of these traits refers to the EDJ, unless otherwise specified. 

156 In addition to these four traits, unusual dentine horn morphologies were recorded when 

157 present and, although not formally scored, the presence of accessory cusps is noted. 

158 Intraobserver error was assessed through the rescoring of the entire sample by the primary 

159 observer (T.W.D.) more than one month after the initial scoring. Interobserver error was 

160 assessed through a second observer (M.M.S.) scoring a subset of 25 specimens for each trait. 

161 Inter- and intraobserver agreement was high, and errors appear to be random as they are not 

162 limited to specific taxa or trait types; results of the observer error tests can be found in SOM 

163 Table S3.

164 Transverse crest A number of authors have considered aspects of premolar transverse crest 

165 form at the OES (Suwa, 1990; Leonard and Hegmon, 1987; Bailey, 2002; Delezene and 

166 Kimbel, 2011, Irish et al., 2018). Some focussed on the prominence of the transverse crest 

167 (Suwa, 1990; Bailey, 2002; Irish et al., 2018), while others preferred to score the orientation 

168 of the transverse crest (Delezene and Kimbel, 2011). Leonard and Hegmon (1987) previously 

169 scored a number of A. afarensis P3 specimens for ‘transverse ridge development’, using a 

170 five-point typology, which attempted to score both the form and prominence of the P3 

171 transverse crest. In a modern humans, Krenn et al. (2019) scored whether or not the transverse 
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172 crest is bifurcated, as well as whether it runs continuously between the two cusps or is 

173 interrupted.

174 When studying the hominoid transverse crest at the EDJ, it is apparent that the relationship 

175 between this crest and other crown structures, particularly the main premolar cusps, is highly 

176 variable. Therefore the typology used here focuses on the position of the transverse crest 

177 relative to other crown structures, and is based on the range of variation observed within the 

178 present sample. Unlike previous studies, the scoring system does not aim to characterize how 

179 strongly developed the transverse crest is (beyond presence/absence) because this is difficult 

180 to score objectively.

181 The scoring procedure consists of five discrete categories (although Types 1 and 1a are 

182 related) as follows (Fig. 1): Type 0 = transverse crest is absent, or only small incipient crests 

183 are present; Type 1 = transverse crest is present, and connects the protoconid to the metaconid 

184 (or equivalent point on the marginal ridge, when a clear metaconid is not present); Type 1a = 

185 transverse crest connects to the lingual margin of the tooth, but flattens to the level of the 

186 surrounding occlusal basin before connecting to the protoconid; Type 2 = transverse crest 

187 connects to the protoconid, but is either deflected distally or flattens to the level of the 

188 occlusal basin before connecting to the marginal ridge on the lingual side of the tooth; Type 3 

189 = transverse crest connects to the protoconid crest distal to the dentine horn tip and, as in 

190 Type 2, is either deflected distally or flattens to the level of the surrounding occlusal basin 

191 before connecting to the marginal ridge on the lingual side of the tooth.

192 In some specimens, particularly those with tall well-developed dentine horns, the 

193 transverse crest may appear not to reach the dentine horn tip or adjacent crest, being flattened 

194 to the level of the surrounding dentine such that the ridge is no longer visible. Here, the 

195 transverse crest was considered associated to the dentine horn provided that the crest is visible 

196 for at least two-thirds of the dentine horn height. Therefore, Type 1a is reserved for specimens 
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197 in which the transverse crest is flattened for more than one-third the height of the protoconid, 

198 as measured from the tip of the protoconid to the bottom of the occlusal basin. This distinction 

199 is illustrated in Figure 1 when comparing Neanderthal specimens KRP 51 (Type 1) with KRP 

200 D33 and KRP D114 (Type 1a). The distinction between Types 2 and 3, in the case of a partly 

201 flattened transverse crest, was made by judging whether the remaining portion of the crest is 

202 angled such that, were it to be present for the full length of the crown, it would make contact 

203 with the tip of the protoconid or with the adjacent crests. Specimens that have been digitally 

204 reconstructed due to tooth wear have been included in this analysis provided we could be 

205 confident of the form of the transverse crest, and provided the reconstructed portion makes up 

206 no more than 1/3 of the height of the dentine horn. The expression of any additional crests 

207 present in the occlusal basin of the tooth will also be discussed. It should be noted that 

208 although Type 1a is classed as a subtype of Type 1 (an explanation for this can be found in the 

209 discussion), we refer to these types separately, unless otherwise stated.

210 Marginal ridge continuity One difference between the P3 of hominins and apes is that 

211 hominins typically have more strongly developed distal and mesial marginal ridges (Suwa, 

212 1990). However, even among hominins the prominence and form of the marginal ridge varies; 

213 this variation has been considered by a number of authors (Suwa, 1990; Ward et al., 2001). In 

214 particular, it has been noted that the mesial marginal ridge is often poorly developed in early 

215 hominins; such specimens are described as having an ‘open mesial fovea’ (Kimbel et al., 

216 2006; Delezene and Kimbel, 2011).

217 Further, Sakai (1967) noted the presence of a ‘trigonid notch’ in the P3 EDJ of modern 

218 humans, defined as a clear indentation in the mesial marginal ridge, and Krenn et al. (2019) 

219 scored modern human premolars for missing or reduced marginal ridges at the EDJ and OES. 

220 In our sample, specimens may exhibit a morphology resembling the trigonid notch described 

221 by Sakai (1967), or they may show poorly developed, or absent, marginal ridges on the mesial 
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222 or distal side of the crown. Since the difference between a ‘notched’ marginal ridge and one 

223 that is poorly developed may be very slight, the grading system used here instead scores 

224 marginal ridge continuity (or discontinuity), where a discontinuous marginal ridge is one 

225 which is flattened to the level of the occlusal basin for some portion of its length. This system 

226 therefore does not distinguish between absent, poorly developed and notched marginal ridges. 

227 Marginal ridge continuity was scored on the mesial and distal marginal ridges, according to 

228 the following system (Fig. 2): C = continuous marginal ridges; the distal marginal ridge runs 

229 from the distal protoconid crest to the metaconid (or equivalent point on the crown), and the 

230 mesial marginal ridge runs from this point, to the mesial protoconid crest; M = the mesial 

231 marginal ridge is discontinuous; D = the distal marginal ridge is discontinuous; MD = the 

232 mesial and distal marginal ridges are both discontinuous.

233 Marginal ridges may appear to flatten to the level of the occlusal basin at the base of the 

234 metaconid dentine horn, but this was only counted as discontinuous if the flattened section 

235 clearly extended further into the mesial or distal fovea than the base of the metaconid. This 

236 analysis was only completed on hominin specimens, excluding the extant apes, since the 

237 mesial and distal marginal ridges are generally poorly developed in extant apes. 

238 Buccal grooves Kraus and Furr (1953:562), in their description of the morphology of the 

239 modern human P3, described the occasional presence of “a ridge and accompanying shallow 

240 vertical groove” on both the mesial and distal margins of the buccal face, but specified that 

241 these features are more often absent than present. Typically termed ‘buccal grooves’, this 

242 feature is argued to be particularly common in A. africanus (Robinson, 1956; Wood and 

243 Uytterschaut, 1987; Suwa, 1990). Suwa (1990) scored the degree of expression of buccal 

244 grooves in the modern human P3 at the OES; distal buccal grooves were scored as ‘strong’, 

245 ‘moderate’ or ‘trace/lacking’, while a fourth category of ‘ill-defined but with a significant 

246 triangular depression’ was included for mesial buccal grooves. Similarly, Sakai (1967) scored 
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247 the presence of ‘buccal ridges’ at the EDJ in a sample of modern human P3 using three 

248 categories: ‘pronounced’, ‘weak’ or ‘no ridge’. Here specimens were scored using a similar 

249 system to these two studies, although the fourth category used by Suwa (1990) for mesial 

250 buccal grooves was not included such that specimens were scored using the same procedure 

251 for both mesial and distal EDJ buccal grooves (Fig. 3): 0 = absent; the EDJ buccal face shows 

252 no distinct grooves; there may be a slight vertical ridge on the mesial or distal margin of the 

253 buccal face, but it is not associated with a clear concavity; 1 = minor; a vertical ridge is 

254 present on the EDJ surface, and is associated with a small but distinct concavity; 2 = marked; 

255 the EDJ buccal surface shows a clear extended vertical ridge associated with a marked 

256 concavity.

257 It should be noted that buccal grooves are usually directly associated with either the 

258 protoconid crest or marginal ridges (often the intersection between the two); although, in 

259 some cases they are located closer to the cervix and may show little or no development higher 

260 up on the crown. We made no distinction between these types, and instead scored only how 

261 strongly developed the grooves are.

262 Cusp form and frequency The protoconid is universally present in the hominoid P3 and, in the 

263 majority of cases, consists of a single raised, conic dentine horn. However, there are a limited 

264 number of cases in which the protoconid departs from this form, and these examples will be 

265 discussed. The presence of accessory cusps will be discussed briefly; however, premolar 

266 accessory cusps can often be very small at the EDJ, and for some specimens with a lower scan 

267 resolution and/or poor contrast between tissue types in the scan, the presence of accessory 

268 cusps at the EDJ is not always clear. The frequency of these cusps will therefore not be 

269 formally scored.

270
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271 3. Results

272 3.1 Transverse crest 

273 The form of the transverse crest was assessed for 71 specimens using the typology outlined 

274 in Figure 2; the results are shown in Table 2 (full results can be found in SOM Table S1). The 

275 majority of these display a Type 1 transverse crest (65%; 46/71), however this type is rare 

276 among extant apes, where it is only seen in Pongo. Hylobates specimens uniformly have 

277 deflected transverse crests, with some connecting to the protoconid (Type 2) and others 

278 connecting to the distal protoconid crest (Type 3). The Gorilla P3 also shows a deflected 

279 transverse crest, but connects to the protoconid (Type 2). All five Pan specimens display a 

280 deflected transverse crest (or one which otherwise fails to reach the lingual margin of the 

281 tooth); 4/5 of these are not angled towards the tip of the protoconid (Type 3). Type 3 is only 

282 present among the extant apes, and only one hominin specimen displays a Type 2 transverse 

283 crest. 78% (40/51) of hominin specimens display a transverse crest that runs from the 

284 protoconid to the metaconid (or the equivalent point on the marginal ridge; Type 1), and all 

285 hominin species represented here show a Type 1 transverse crest in at least one specimen. 

286 Type 1a, in which the transverse crest connects to the marginal ridge but does not reach the 

287 protoconid, is seen exclusively in Neanderthal specimens; 4/9 specimens display this type, 

288 while the remainder are Type 1.

289 A special case is the modern human specimen ULAC 790. This individual has poorly 

290 developed mesial and distal marginal ridges and no metaconid, making attribution to our 

291 typology difficult. In this specimen, the transverse crest extends lingually from the protoconid 

292 to meet a small ridge, which may or may not be a section of distal marginal ridge, but is very 

293 poorly developed (the main portion of the distal marginal ridge is situated on the distal edge 

294 of the crown, and does not connect to the transverse crest at any point). 
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295 A number of specimens display crests in addition to the main transverse crest (Fig. 4). For 

296 example, A. africanus and P. robustus frequently display small crests running distolingually 

297 towards the center of the distal fovea. These crests typically meet the transverse crest at the 

298 protoconid apex, although they may meet partway across the transverse crest and lingual to 

299 the protoconid (e.g., SK 100). Accessory crests are sometimes present on the lingual side of 

300 the tooth as well. For example, for DNH 46 a crest originates at the metaconid and runs 

301 towards the center of the distal fovea, while SK 62 displays a similar crest on the lingual side 

302 of the tooth that appears to originate at the distal marginal ridge. Moreover, Neanderthal 

303 specimens frequently display accessory crests, either mesial or distal to the main transverse 

304 crest, on the face of the tall protoconid crest (Fig. 4). These are variable in number, size and 

305 position, and are also seen, albeit less frequently, in modern humans.

306

307 3.2 Marginal ridge continuity

308 There were 69 hominin specimens for which the continuity of the marginal ridge was 

309 scored (Table 3; see full results in SOM Table S1). Of these, 70% (48/69) displayed a 

310 continuous marginal ridge (Fig. 2). With one exception, A. anamensis, all hominin species 

311 represented by three or more individuals have at least one specimen displaying a continuous 

312 marginal ridge. Australopithecus anamensis is unique among the hominin sample; all three 

313 specimens display a poorly developed mesial marginal ridge, scored as mesially 

314 discontinuous. Three A. afarensis specimens were scored, of which two (A.L. 266-1 and A.L. 

315 333w-1c) displayed a discontinuous mesial marginal ridge, and one (A.L. 333-10) displayed 

316 an entirely continuous marginal ridge. KNM-WT 8556 and W8-978 also display continuous 

317 marginal ridges. 

318 Australopithecus africanus displays a range of marginal ridge forms, although the majority 

319 are continuous (nine continuous, two mesially discontinuous and one distally discontinuous). 
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320 STW 401 is the only example of an Australopithecus P3 within this sample of a discontinuous 

321 distal marginal ridge. This specimen is also noteworthy because the form of this trait differs 

322 from that seen in later hominin specimens, and is different from that often seen on the mesial 

323 marginal ridge in Australopithecus. In the majority of cases discontinuities in the marginal 

324 ridge appear on either side of the metaconid; the marginal ridge lowers and flattens before 

325 reaching the dentine horn. In this case, however, there are two portions of the distal marginal 

326 ridge present that overlap one another, but do not meet. Continuous mesial and distal marginal 

327 ridges are seen in all specimens of Paranthropus, H. naledi, as well as the probable early 

328 Homo specimen SKX 21204 and are the most common form in A. africanus. In contrast, for 

329 H. sapiens (fossil and recent), half of the specimens in the sample display a discontinuous 

330 mesial and/or distal marginal ridge. None of the Neanderthal specimens in our sample show 

331 distal marginal ridge discontinuity, but 31% (4/13) show discontinuity in the mesial marginal 

332 ridge. The P3 of the Mauer mandible also shows both mesial and distal discontinuity, while 

333 the Cave of Hearths P3 shows mesial marginal ridge discontinuity. In some cases (e.g., ULAC 

334 171; Fig. 1b), the marginal ridge is mostly absent, with only small lingual deflections from the 

335 mesial and distal protoconid crests. Finally, this trait is not always consistent between 

336 antimeres—ULAC 58 displays a discontinuous mesial marginal ridge on the left P3, but not 

337 the right. 

338

339 3.3 Buccal grooves

340  Buccal grooves were scored for 95 specimens (Table 4; see full results in SOM Table S1). 

341 Of these, 66% (63/95) show some level of buccal groove expression (mesial and/or distal). 

342 Buccal grooves are less common in the extant apes. In our sample, no extant ape specimen 

343 showed marked buccal grooves, mesial or distal; although all Gorilla and Pan specimens 

344 show minor distal buccal grooves (minor mesial buccal grooves are also present in half of 
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345 these specimens). Conversely, all 19 scorable Australopithecus specimens, as well as KNM-

346 WT 8556 and W8-978, showed either minor or marked buccal grooves on both the distal and 

347 mesial sides. Further, in all Australopithecus specimens in which the mesial and distal buccal 

348 grooves are unequal, it is always the mesial buccal groove which is more strongly expressed. 

349 The opposite pattern is evident in Paranthropus, where the distal buccal grooves are generally 

350 better developed, and, in fact, mesial buccal grooves are absent in 86% (12/14) of 

351 Paranthropus specimens. In this respect, Omo specimen L427-7 is unusual for Paranthropus, 

352 as previously noted by Suwa (1990), as the P3 displays marked mesial and distal buccal 

353 grooves. SXK 21204, a specimen attributed to early Homo (Grine, 1989), shows marked 

354 mesial and minor distal buccal grooves. Homo naledi specimens show minor or absent buccal 

355 grooves on both mesial and distal sides. Among modern humans and Neanderthals, buccal 

356 grooves are less common; no specimen showed marked mesial or distal buccal grooves. 

357 Neither the Mauer P3 nor the Cave of Hearths P3 show any buccal grooves, while 43% (6/14) 

358 Neanderthal and 86% (12/14) H. sapiens specimens exhibit no buccal grooves at all. 

359 Neanderthal specimens more often show minor buccal grooves on the mesial side (57%; 8/14) 

360 than on the distal side (21%; 3/14).

361

362 3.4 Protoconid form 

363 The variation observed in the form of the protoconid is shown in Figure 5. The majority of 

364 specimens display a single, conic protoconid dentine horn tip, and as such, only the 

365 exceptions will be listed here (Fig. 5A). In Neanderthals and modern humans, the protoconid 

366 dentine horn tip may be less pronounced due to the presence of tall mesial and distal 

367 protoconid crests, and in one specimen, ULAC 790, there is no clearly differentiated 

368 protoconid tip, only a well-developed ridge (Fig. 5B). A small number of specimens display a 

369 protoconid with a longitudinally expanded tip (Fig. 5C). This feature is seen in two H. naledi 
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370 specimens, UW 101-144 and UW 101-889, and their probable antimeres (UW 101-506 and 

371 UW 101-377, respectively), as well as one Pan specimen, MPITC 11800. In some cases, such 

372 as UW 101-377, it is clear that the expanded dentine horn actually consists of two 

373 semidistinct tips. In other cases, the tip simply appears as a flattened ridge; however, since 

374 this structure is very small, it is possible that the resolution of the scans may be insufficient to 

375 discern two individual peaks. In one modern human, ULAC 58, the tip of the protoconid is 

376 transversely expanded (Fig. 5D). The protoconid crest meets the protoconid on the buccal side 

377 of the tip, while the transverse crest meets it on the lingual side of the tip, but these two points 

378 are not coincident, and are connected by a short ridge. This feature is present in both 

379 antimeres, but is not present in any other P3 within our sample. 

380

381 3.5 Accessory cusps 

382 Poor tissue contrast in a number of specimens inhibits proper characterization of the 

383 frequency and detailed morphology of small accessory cusps. However, a number of general 

384 observations can be made. Many hominin specimens display small accessory cusps at 

385 multiple locations along the distal and mesial marginal ridges. There is commonly a small 

386 dentine horn at the distobuccal corner of the tooth, at the intersection between the distal 

387 marginal ridge and the distal protoconid crest. This cuspulid can be seen in most hominin 

388 species, although it appears to be less common in modern humans and Neanderthals (issues of 

389 scan tissue contrast are less problematic in these specimens). It may be related to the presence 

390 of distal buccal grooves since the tip of the dentine horn is often contiguous with a raised 

391 ridge of dentine on the buccal face, while the concavity seen on the buccal face, immediately 

392 mesial to this ridge, is somewhat contiguous with the base of the dentine horn on the 

393 protoconid crest. A particularly pronounced example of this can be seen in STW 213 (Fig. 3). 

394 Accessory cusps are also found along the distal and mesial marginal ridges, and in some 
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395 cases, they can be nearly as large as the metaconid, as seen in L427-7. Other specimens, such 

396 as STW 151, display multiple accessory cusps, in this case along the distal marginal ridge. 

397

398 4. Discussion

399 4.1 Transverse crest form

400 In the majority of hominins (78%; 40/51), the P3 transverse crest extends lingually from 

401 the protoconid to meet the metaconid or equivalent point on the marginal ridge (Type 1; Fig. 

402 1). This is rare in extant apes. In Hylobates and Gorilla, the transverse crest does not typically 

403 reach the weakly developed marginal ridge, either ending mesial to the ridge, or deflecting 

404 distally. All Pan specimens studied here fit within Type 2 or 3, although the form of the 

405 transverse crest is quite variable in shape; some specimens have small associated accessory 

406 crests, while others are raised high above the crown basin or may have raised sections. Given 

407 the level of variability in even our small sample, further investigation is required. Such studies 

408 should also include other subspecies of Pan troglodytes, as well as Pan paniscus, as it is 

409 possible that the patterns observed here are specific to Pan troglodytes verus. Pongo is the 

410 exception among the apes; all specimens studied here display a Type 1 transverse crest, 

411 similar to the majority of hominins.

412 The earliest hominin in our sample, A. anamensis, displays a Type 1 transverse crest. 

413 Haile-Selassie et al. (2004:1505) suggested that this is also the case in an Ardipithecus 

414 kadabba P3 from 5.6–5.8 Ma: “The transverse crest descends from the tip of the protoconid to 

415 the metaconid, which is hardly expressed as a distinct entity”. This would seem to indicate 

416 that that a Type 1 transverse crest is plesiomorphic for the hominin clade, and evolved 

417 independently in Pongo. However it is also possible that this state is plesiomorphic for 

418 hominids, but was lost in Pan and Gorilla. An analysis of the P3 EDJ morphology in Miocene 

419 apes may help to shed further light on the evolutionary history of this trait. There is more 
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420 variation in the transverse crest in modern humans, where transverse crest absence is common 

421 (Type 0; 44%), and among our Neanderthal sample, in which Type 1a is relatively common 

422 (44%). In this form, the transverse crest flattens before reaching the protoconid tip. Here, it is 

423 possible that the relatively low transverse crest seen in Neanderthals is obscured due to the 

424 shape of the crown—in particular the tall, wide lingual face of the protoconid. If this were the 

425 case, then there would be no fundamental developmental difference between Types 1 and 1a; 

426 instead, the difference between the two would be due to a number of factors including the 

427 shape of the crown and the prominence of the transverse crest, which is why Type 1a may be 

428 best viewed as a subtype of Type 1. This would require further investigation, particularly 

429 concerning the developmental basis of the premolar transverse crest. Nonetheless, it appears 

430 that Type 1a, while not ubiquitous in Neanderthals, is an autapomorphy of this species.

431 Previous studies assessed the degree of transverse crest development at the OES (Suwa, 

432 1990; Bailey, 2002; Irish et al., 2018). While we do not score the degree of development of 

433 the crest, presence/absence frequencies can be generated using our scoring system, allowing 

434 direct comparisons. For example, Irish et al. (2018) find all A. africanus and H. naledi 

435 specimens, as well as a third of P. robustus specimens, have no transverse crest. Using 

436 overlapping fossil samples, we instead find that transverse crests are ubiquitous in all three 

437 species (Table 2), suggesting that the appearance of this trait differs fundamentally between 

438 the OES and EDJ. At the OES, the premolar transverse crest is often incised by the 

439 longitudinal fissure, which runs between the two cusps along the mesiodistal axis of the tooth. 

440 A deep longitudinal fissure therefore relates to a weak transverse crest at the OES. However, a 

441 number of crown features such as the development and placement of the metaconid, and the 

442 thickness of the enamel, are likely to play a part in the development of the longitudinal 

443 fissure, and therefore influence the form of the transverse crest observed. The longitudinal 

444 fissure is an enamel feature, however, and as such has no EDJ equivalent. This means that at 
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445 the EDJ, the transverse crest form is less dependent on the appearance of other crown 

446 features, which is advantageous when scoring multiple crown traits.

447 While hominins display relatively little variation in the form of the transverse crest, there is 

448 more variation in the expression of accessory crests (Fig. 4). These crests form in the occlusal 

449 basin either mesial or distal to the main transverse crest, and may connect to the protoconid 

450 crest, marginal ridge, either of the main cusps, or to other accessory crests. In hominin lower 

451 molars, multiple crests may form between the protoconid and metaconid; a variable feature 

452 called trigonid crest patterning (Wu and Turner, 1993; Skinner et al., 2008; Bailey et al., 

453 2011; Martínez de Pinillos et al., 2014). Given the location of these crests, it is possible that 

454 these features have similar developmental origins to the transverse crest (and accessory crests) 

455 discussed here for hominin P3. Trigonid crests are particularly common in Neanderthal lower 

456 molars (Bailey, 2002, 2006), which is interesting given the high frequency of accessory crests 

457 found here (and previously noted by Bailey, 2006) for the Neanderthal P3. Martínez de 

458 Pinillos et al. (2014) found substantial molar trigonid crest variation in the Sima de los 

459 Huesos population at the EDJ, broadly equivalent to that of Neanderthals. Interestingly, 

460 Martinón-Torres et al. (2012) reported that a high proportion of Sima de los Huesos P3 

461 specimens show distal accessory crests at the OES, as well as pronounced transverse crests, 

462 when compared with modern humans. This could suggest that the same pattern may exist in 

463 the Sima de los Huesos population as we have found here for Neanderthals, although this 

464 would require comparing the EDJ morphologies of the two samples. 

465 In the P3, accessory crests are frequently found in large, otherwise empty, areas of the EDJ 

466 occlusal basin, suggesting that the formation of accessory crests could be dependent on the 

467 space available on the crown. The P3 in Neanderthals usually display a tall protoconid crest, 

468 which creates a steep, almost vertical, lingual-facing surface running from the protoconid 

469 crest to the bottom of the occlusal basin of the tooth. Accessory crests are frequently present 
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470 on this face in Neanderthals. Australopithecus africanus and P. robustus far more often show 

471 accessory crests that connect to the main dentine horns, which are often particularly large, or 

472 to the transverse crest itself, which is also well developed. Moreover, Kraus and Furr (1953) 

473 suggested that accessory crests are also found in the P3 of modern humans. Given the level of 

474 variation seen in premolar accessory crests, as well as molar trigonid crests, it seems likely 

475 that these traits are not individually determined, but are instead the result of upstream 

476 developmental processes. There are a number of ways in which this could operate. Firstly, the 

477 formation of these crests could be genetically determined, but could be only able to form 

478 where there is sufficient space for them within the occlusal basin. In this case, accessory 

479 crests could develop through some of the same developmental processes as other crests and 

480 ridges on the tooth crown (such as the protoconid crest, transverse crest, and marginal ridges 

481 in premolars), but would presumably form later in development than the main crests, which 

482 would explain their variability as they would be dependent on a number of earlier forming 

483 features. This process would be analogous to the patterning cascade model of cusp 

484 development in which cusps form where there is space for them on the crown, and are 

485 prevented from forming too closely to each other by the presence of inhibitor proteins (Polly, 

486 1998; Jernvall, 2000; Kassai et al., 2005), with later forming cusps generally smaller and 

487 more variable than earlier forming cusps (Kondo and Townsend, 2006; Skinner and Gunz, 

488 2010). Crests are different from cusps in that they are often found in association with other 

489 crests. In fact, the accessory cusps identified here were invariably found to be associated with 

490 other crests or cusps on the tooth crown. However, these features appear to be common in the 

491 relatively large distal fovea of A. africanus and P. robustus, as well as along the tall 

492 protoconid crest of H. neanderthalensis, suggesting that the available space on the crown is 

493 important. 
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494 Alternatively, these crests could arise as the result of biomechanical forces during the 

495 development of the tooth crown. The EDJ preserves the form of the basement membrane of 

496 the inner enamel epithelium, the morphology of which is determined by folding driven by 

497 differential cell division in structures called enamel knots (Jernvall et al., 1994). Since the 

498 accessory crests are most common on relatively tall crown structures (dentine horns of P. 

499 robustus, and the protoconid crest of Neanderthals), it is possible that during the formation of 

500 these structures, the process of differential cell division creates small buckles and folds in the 

501 inner enamel epithelium as enamel knots do not proliferate themselves, but direct the cell 

502 proliferation of adjacent regions of the developing tooth. These small buckles and folds 

503 created could then go on to become the accessory ridges we see (see discussion of similar 

504 features in molars in Skinner et al, 2010). It is important to note that we did not find any 

505 accessory crests running parallel to the protoconid crest or the dentine horn tip; all run broadly 

506 towards the crest/ridge. In this case accessory crests may be developmentally distinct from the 

507 main crests and ridges of the tooth crown, which are far less variable within species.

508

509 4.2 Marginal ridge continuity

510 In line with other studies that have considered the mesial marginal ridge at the OES 

511 (Leonard and Hegmon, 1987; Suwa et al., 1996; Ward et al., 2001; Kimbel et al., 2006; 

512 Delezene and Kimbel, 2011), the morphology of the EDJ supports a transformation series 

513 where a weak mesial marginal ridge, as in extant African apes and A. anamensis, is the 

514 primitive state for hominins and a strong mesial marginal ridge, as in A. africanus and 

515 Paranthropus, is derived. In A. afarensis Kimbel et al. (2004) highlighted ‘phylogenetic 

516 polymorphisms’, which refers to the observation that some character states are variable in A. 

517 afarensis but are fixed in the plesiomorphic condition in older hominins, like A. anamensis 

518 and Ardipithecus ramidus, and fixed in the apomorphic condition in younger hominins. The 
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519 form of the mesial marginal ridge observed at the EDJ in this study, and at the OES in other 

520 studies (Delezene and Kimbel, 2011), is congruent with such phylogenetic polymorphism. 

521 Differences between our results and those from previous studies of the OES in early 

522 hominins are relatively minor. For example, while Suwa (1990) found that all A. africanus 

523 specimens show development of the lingual segment of the mesial marginal ridge, we found 

524 that two A. africanus specimens (STW 213 and Taung) have discontinuous P3 mesial 

525 marginal ridges. However, this may be due to differences in scoring procedures, or in the 

526 fossil samples used, in the two studies (the Taung P3, for example, is unerupted and therefore 

527 would not have been included in previous studies), rather than fundamental differences 

528 between the EDJ and OES. The benefit of studying the EDJ is clearer in specimens that 

529 display marginal ridges that are mostly well developed but interrupted; they are flattened at 

530 some point along their length. This is most common in modern human and Neanderthal 

531 specimens where it is likely associated with the secondary reduction of the metaconid, and 

532 may reflect changing masticatory demands of the P3 in these taxa. 

533 Sakai (1967) recorded the presence of a ‘trigonid notch’ when looking at the EDJ of 

534 modern human P3, a feature which is equivalent to the mesial marginal ridge interruption 

535 noted here. They found the feature in roughly a quarter of specimens in their sample, but did 

536 not discuss any presence of a similar feature on the distal marginal ridge (although this feature 

537 is less common in our sample). This trait is much clearer at the EDJ than at the OES as the 

538 interruptions can be small, and are often located immediately next to the metaconid where the 

539 enamel of the cusp may obscure visibility of the interruption at the OES. In fact, Sakai (1967) 

540 only found the trigonid notch at the EDJ, and stated that the feature was entirely absent at the 

541 OES in all specimens. In some cases, the marginal ridge interruptions are often large enough 

542 that they are difficult to distinguish from the marginal ridge being entirely absent. Ultimately, 

543 we need a better understanding of the developmental processes that contribute to marginal 
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544 ridge formation in order to test whether these categories represent distinct traits, or the same 

545 trait with differing levels of expression. It does appear, however, that the interruption and 

546 absence of marginal ridges seen in modern humans and Neanderthals appears to represent a 

547 secondary loss and is not homologous with the minimal expression of the mesial marginal 

548 ridge in early Australopithecus and extant apes. Further, the frequent presence of interruptions 

549 in the distal, as well as mesial, marginal ridges suggests that this may be distinct from the 

550 character state we find in earlier taxa. 

551 Australopithecus africanus specimen STW 401 is the only example within this sample of 

552 an interrupted distal marginal ridge in an Australopithecus P3, and is particularly interesting 

553 because the form of this trait appears to be different to that seen in later hominin specimens, 

554 and different to that often seen in the mesial marginal ridge in Australopithecus. In most 

555 cases, interruptions to the marginal ridge appear either side of the metaconid; the marginal 

556 ridge lowers and flattens before reaching the dentine horn. In this case, however, two portions 

557 of the distal marginal ridge overlap one another and do not meet. This appears to be a 

558 defective form of the marginal ridge in which extensions from the metaconid and protoconid 

559 crest have failed to meet and become continuous, possibly providing insights into the 

560 underlying developmental processes responsible for this structure around the occlusal basin.

561

562 4.3 Buccal grooves 

563 The grading system used here for buccal grooves (absent, minor, marked) is comparable to 

564 those used by previous authors at the OES (Suwa, 1990) and the EDJ (Sakai, 1967), and can 

565 also be compared to studies using presence/absence scores (Wood and Uytterschaut, 1987). 

566 Our results are largely consistent with those of the OES; while there are some differences, 

567 these may be due to the samples utilized in each case, which overlap but are not identical. 
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568 However, it is also possible that enamel deposition affects the OES expression of buccal 

569 grooves in some cases. 

570 Suwa (1990) suggested that strong distal buccal grooves at the OES are a derived condition 

571 for hominins; this is supported by our finding that extant apes show absent or minor EDJ 

572 distal buccal grooves, while marked grooves are found in a number of Australopithecus 

573 specimens, including one specimen of A. anamensis, the earliest hominin in our sample. 

574 Further, ASK-VP-3/403, a P3 of Ar. kadabba from 5.6–5.8 Ma, is also described as showing a 

575 distinct distal buccal groove at the OES (Haile-Selassie et al., 2004, 2009). On the mesial 

576 side, Suwa (1990) found that A. afarensis was variable, but suggested an increase in well-

577 developed OES buccal grooves in the earliest hominins compared to apes. Our results are 

578 consistent with this suggestion, finding marked mesial buccal grooves in 5/6 A. anamensis 

579 and A. afarensis specimens, but not in any of our extant ape specimens. The variability in A. 

580 afarensis cannot be assessed here however due to the small available sample. In order to 

581 further test these suggestions, the EDJ morphology of fossil apes should also be investigated.

582 Paranthropus is derived among hominins in showing a high level of mesial buccal groove 

583 absence as noted previously (Wood and Uytterschaut, 1987; Suwa, 1990). However, we find 

584 more variability in the distal buccal groove expression than Suwa (1990). In modern humans, 

585 absence of mesial and distal buccal grooves is the most common form, while in Neanderthals, 

586 no specimens show marked buccal grooves, and 79% (11/14) show absent distal buccal 

587 grooves. However, Sakai (1967) found a higher proportion of modern human specimens with 

588 buccal grooves at the EDJ, particularly on the mesial side. This could be due to a difference in 

589 scoring procedure; however, it is also possible that buccal grooves are more common in the 

590 Japanese sample used by Sakai (1967) than in the sample used here. This would suggest that 

591 there is more variation in buccal groove expression in modern humans than is captured here, 

592 and should be explored further. The majority of H. naledi specimens show minor buccal 
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593 grooves on the mesial and distal sides, and only one specimen (U.W. 101-144) shows an 

594 absent distal buccal groove as suggested to be typical of early Homo at the OES (Wood and 

595 Uytterschaut, 1987; Suwa, 1990). The H. naledi expression of minor EDJ mesial buccal 

596 grooves could be interpreted as derived relative to the Australopithecus/early Homo state of 

597 strongly expressed mesial buccal grooves, particularly considering the weaker expression 

598 observed in modern humans and Neanderthals.

599 Although there are a number of species-specific patterns in buccal groove expression as 

600 outlined above, there is also a large amount of variation. Within our sample, it appears that 

601 buccal grooves are more common in specimens showing straight protoconid crests (in 

602 occlusal view). In such a configuration, there is a more angled intersection between the 

603 protoconid crests and the mesial/distal marginal ridge, often marked by a small accessory 

604 cusp. The buccal ridge is visible as a vertical crest on the buccal surface, as well as a slight 

605 concavity next to the ridge (towards the center of the crown), which could be considered an 

606 extension of the marginal ridge on the buccal surface. In this case, the expression of buccal 

607 grooves would depend on a number of aspects of crown morphology such as the overall shape 

608 of the crown, and the configuration of major occlusal crests, which may explain the variability 

609 in this trait. This should be explored further as it would affect our understanding of the 

610 independence of buccal grooves from other crown traits.

611 It is also important to consider potential serial homologies (de Beer, 1971; Roth, 1994) 

612 with similar traits on other tooth positions. Based on their analysis of the EDJ of mandibular 

613 molars, Skinner et al. (2009) suggested that crest features along the entire buccal face should 

614 be considered part of the expression of the protostylid; it is possible that these crests on the 

615 molar buccal face are developmentally linked to P3 buccal grooves (note that the name buccal 

616 ‘groove’ may be misleading; in most cases at the EDJ the buccal groove consists of a 

617 ridge/crest with an associated concavity). The pattern noted here in which A. africanus 
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618 specimens show stronger mesial buccal grooves than P. robustus is somewhat mirrored in 

619 Skinner et al.’s (2009) study of molar protostylid patterning. They found that A. africanus 

620 molars expressed a protostylid crest that extends mesially, whereas the crests in P. robustus 

621 specimens were mostly restricted to the area between the protoconid and hypoconid. Further, 

622 we find that STW 213 (Fig. 3, bottom image) exhibits strong buccal grooves in addition to 

623 protostylid-like crests running diagonally across the buccal face. In this case, the buccal 

624 groove and possible protostylid appear to be distinct features; however, it is interesting to note 

625 that STW 213 has the most well defined buccal grooves of any specimen within the sample. 

626 Ultimately, further investigation is required to assess the developmental basis of both of these 

627 traits. 

628

629 4.4 Protoconid form 

630 The transversely expanded dentine horn seen in ULAC 58 (Fig. 5D) may be related to the 

631 ‘internally placed cusps’ identified at the OES of Neanderthal molars (Tattersall and 

632 Schwartz, 1999; Bailey, 2004). Further, Martin et al. (2017) discussed the presence of 

633 ‘centrally placed dentine horn tips’ at the EDJ of Neanderthal and modern human molars, and 

634 the protoconid dentine horn form in the P3 of ULAC 58 appears to fit within their typology. In 

635 fact, the molars of the ULAC 58 mandible were also included in the sample for Martin et al. 

636 (2017), where they found that the M1 and M3 displayed a centrally placed entoconid dentine 

637 horn. Martin et al. (2017) suggested that centrally located dentine horns were particularly 

638 common in Neanderthals. Although we did not find any Neanderthal specimens for which the 

639 protoconid was similar in form to that found in ULAC 58, we did find that the apex of the 

640 protoconid crest and the tip of the protoconid are frequently angled lingually, resulting in a 

641 more centrally located protoconid. Gómez-Robles et al. (2008) suggested that this feature is 

642 distinctive of the P3 in Neanderthals and H. heidelbergensis. Unfortunately, the Mauer P3 
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643 included here (and its antimere) is too worn to assess if this specimen displays the same 

644 morphology. 

645 Another trait discussed here, the longitudinally expanded dentine horn (Fig. 5C), also 

646 relates to a feature discussed by Martin et al. (2017): twinned dentine horns. We did not find 

647 this trait in any modern human or Neanderthal specimens, but it was found in several H. 

648 naledi specimens, as well as a single Pan specimen. In some cases, the H. naledi P3 

649 protoconid appears simply to be expanded, rather than twinned, although it is possible that the 

650 separate apices of the twinned dentine horns are too small to be visible in the scans. Martin et 

651 al. (2017) also found specimens that showed ‘unusually wide’ dentine horns, and suggested 

652 this may be a diminutive form of the twinned dentine horn trait. These traits are particularly 

653 interesting since they are difficult to reconcile with the currently well-accepted patterning 

654 cascade model of cuspal development (Polly, 1998; Jernvall, 2000; Kondo and Townsend, 

655 2006; Skinner and Gunz, 2010), in which cusps develop iteratively across the crown, and that 

656 a zone of inhibition during crown development prevents the formation of cusps in close 

657 proximity to one another. Neither of the protoconid traits described here were seen on P3 

658 metaconids, although this may be due a combination of the rarity of the features, and the 

659 reduced number of specimens displaying a well-developed metaconid. Although more 

660 investigation is warranted before strong conclusions can be made, the twinned protoconid 

661 dentine horns of H. naledi represent a potential autapomorphy of this species.

662

663 5. Taxonomic implications

664 These traits can have a bearing on the taxonomic affiliation of important specimens. For 

665 example, two specimens included here, KNM-WT 8556 and W8-978, have not been 

666 definitively assigned to species rank, but have been suggested to belong to A. afarensis 

667 (Leonard and Hegmon, 1987; Suwa, 1990; Brown et al., 2001). Our results are consistent with 
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668 this suggestion; both specimens show fully continuous marginal ridges, a morphology that 

669 first appears in A. afarensis, and the buccal groove forms are typical of Australopithecus in 

670 general. However, these specimens are also roughly coeval with Kenyanthropus platyops and 

671 Australopithecus deyiremeda, neither of which are included here. In fact, KNM-WT 8556 is 

672 found in the same Lomekwi locality as K. platyops, and the P4 and M3 are suggested to show 

673 a derived morphology, relative to A. afarensis (Leakey et al., 2001). Ultimately however, 

674 additional fossil material of K. platyops is required in order to make direct comparisons to 

675 mandibular specimens. 

676 KNM-ER 5431 has been previously assigned to A. afarensis (Leonard and Hegmon, 1987), 

677 while other authors have suggested the presence of Homo-like traits (Suwa, 1990; Wood, 

678 1991). The P3 included here, KNM-ER 5431E (Fig 1i), is found to display continuous 

679 marginal ridges, which are common in a number of hominin taxa, while the buccal groove 

680 form was not able to be assessed here due to poor tissue contrast in the cervical region of the 

681 crown (although clear buccal grooves are evident at the OES). The transverse crest form of 

682 this specimen (Type 2) is not seen in any other hominin P3 in our sample; the crest is 

683 deflected before reaching the metaconid. It is unclear whether this is an apomorphic character 

684 state for a species not included in this sample, or whether this type is simply an uncommon 

685 developmental variant. Since the transverse crest in this specimen is weakly expressed, this 

686 may be difficult to assess from the OES, underlining the importance of trait assessment at the 

687 EDJ as well as the OES. 

688 STW 151 has been suggested to display a number of derived features relative to 

689 Sterkfontein A. africanus by Moggi-Cecchi et al. (1998). However, the P3 was not suggested 

690 to show any derived Homo discrete traits at the OES, which is supported in our EDJ results. In 

691 general, we did not find clear differences between A. africanus and our small sample of early 

692 Homo specimens, except for the absence of a distal buccal groove in KNM-ER 806E, which 
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693 was not seen in any Australopithecus specimen. SKX 21204 is assigned to Homo, but has no 

694 specific attribution (Grine, 1989). Unfortunately, the small early Homo sample here prevents a 

695 detailed assessment of the P3 of this specimen.

696 The Cave of Hearths mandible has not been assigned to a species, but the original 

697 description and later analyses drew comparisons with the morphology seen in Neanderthals, 

698 and recently Berger et al. (2017) suggested the need for comparisons with H. naledi. Although 

699 the Cave of Hearths mandible is poorly dated, it is suggested to antedate the H. naledi sample 

700 included here (McNabb et al., 2009; Dirks et al., 2017). We find that the discontinuous mesial 

701 marginal ridge and absence of buccal grooves distinguishes the Cave of Hearths P3 from H. 

702 naledi. However, the absent buccal grooves and marginal ridge discontinuity of the P3 are 

703 common in modern humans and Neanderthals, and are also found in the Mauer P3. This, 

704 combined with the overall EDJ shape of the P3 (Davies et al., 2019), suggests that the Cave of 

705 Hearths specimen is more closely associated with modern humans, Neanderthals and 

706 specimens attributed to H. heidelbergensis, while H. naledi, despite its Middle Pleistocene 

707 age, displays a morphology which is more primitive. This is also supported by differences 

708 between H. naledi and the Cave of Hearths mandible in occlusal topography of the M2 

709 (Berthaume et al., 2018) and M1 root morphology (Kupczik et al., 2019). 

710

711 6. Conclusions

712 We have identified several discrete P3 traits evident at the EDJ that are variable in 

713 hominoids. In some cases, the form of these traits is largely similar to that of the OES, such as 

714 in buccal grooves, but in other cases, such as the transverse crest, additional morphological 

715 information is evident at the EDJ that may be obscured at the OES by adjacent crown features 

716 and thick enamel. A number of trends are evident in the expression of these traits. For 

717 example, the transverse crest is variable in extant apes, but the majority of hominins show a 
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718 single crest connecting the protoconid to the metaconid. Absence of this crest is seen in some 

719 specimens of P. boisei and H. sapiens, while some Neanderthals show a derived form in 

720 which the crest flattens before reaching the protoconid cusp tip. The mesial marginal ridge 

721 undergoes a transformation series early in hominin evolution, from the poorly developed 

722 ancestral state seen in A. anamensis, through the polymorphic condition in A. afarensis 

723 (Kimbel et al., 2004; Delezene and Kimbel, 2011), to the well-developed marginal ridges seen 

724 in A. africanus and P. robustus. A number of modern humans and Neanderthal specimens 

725 show a secondary reduction in marginal ridge development, although this is confined to the 

726 mesial marginal ridge in Neanderthals. Buccal grooves are variable throughout hominoids, 

727 with some taxon-specific patterns, but which may be dependent on other aspects of crown 

728 morphology. 

729 Our understanding of the development of discrete dental traits is very limited. This is 

730 important when using these traits in phylogenetic studies since the traits used should ideally 

731 be genetically independent, and care must be taken to avoid suggesting that traits that are 

732 superficially similar, but developmentally distinct, can be considered as identical (i.e., 

733 versions of the same trait) for cladistics analysis. Further, patterning cascade models to 

734 explain variation in dental form have mostly focused on the morphology of the molars. 

735 Similar homologous mechanisms presumably underlie the differences in premolar form; 

736 however, certain traits (i.e., twinned dentine horns) observed in this study are hard to explain 

737 with such a model and highlight the need for investigation of premolar form within an 

738 evolutionary-developmental framework. As shown here, studying the EDJ provides valuable 

739 insights into the development of these traits, and this will be further improved through 

740 inclusion of broader primate samples, and the study of other tooth positions at the EDJ.  

741
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980 Figure captions

981

982 Figure 1. Transverse crest variation. Illustration of the 5 main transverse crest forms seen in 

983 hominoid P3, as well as examples of each type. Schematic diagrams represent a left sided 

984 tooth in occlusal view. Filled black circle indicates the protoconid, dashed circle indicates the 

985 metaconid (or equivalent point on the crown, when a metaconid is not present). Example 

986 EDJs are chosen to illustrate the range of variation encompassed within each type (some are 

987 reversed such that all specimens appear left-sided): a) ULAC 797 (H. sapiens, reversed); b) 

988 ULAC 171 (H. sapiens); c) SK 100 (P. robustus, reversed); d) ZMB 38607 (Pongo, reversed); 

989 e) KRP 51 (H. neanderthalensis, reversed); f) KRP D33 (H. neanderthalensis); g) KRP D114 

990 (H. neanderthalensis); h) ZMB 7826 (Hylobates); i) KNM-ER 5431E (Hominidae gen. et sp. 

991 indet.); j) ZMB 31435 (Gorilla, reversed); k) MPITC 11776 (Pan); l) ZMB 7814 (Hylobates). 

992 Abbreviations: B = buccal; L = lingual; M = mesial; D = distal.

993

994 Figure 2. Marginal ridge continuity. Specimens are presented in lingual view at the OES 

995 (left) and EDJ (right), illustrating continuous and three types of discontinuous marginal ridges 

996 (indicated by white arrows). Specimens used, top to bottom: DNH 107 (P. robustus), KRP 54 

997 (H. neanderthalensis), ULAC 801 (H. sapiens), and ULAC 806 (H. sapiens). Abbreviations: 

998 M = mesial; D = distal.

999 Figure 3. Buccal groove variation. Three specimens in buccal view at the OES (left) and EDJ 

1000 (right), illustrating the range in buccal groove expression, and the scoring system used. Buccal 
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1001 grooves are indicated by white arrows. Examples used are those which display the same 

1002 buccal groove score mesially and distally. Top: KRP 54 (H. neanderthalensis). Middle: 

1003 UW101 889 (H. naledi). Bottom: STW 213 (A. africanus, reversed). Abbreviations: M = 

1004 mesial; D = distal.

1005 Figure 4. Accessory crest examples. A selection of P3 specimens displaying accessory crests, 

1006 marked with white arrows. Top row in oblique view, bottom row in lingual view. The images 

1007 of SK 100, DNH 46 and Combe-Grenal I have been flipped such that all specimens appear 

1008 left sided. Abbreviations: B = buccal; L = lingual; M = mesial; D = distal.

1009 Figure 5. Protoconid variation. Four specimens showing variation in protoconid form are 

1010 displayed. A) ‘Standard’ simple conic dentine horn in SK 100 (P. robustus). B) Flat ridge in 

1011 ULAC 790 (H. sapiens, image flipped). C) ‘Double’ dentine in UW101 377 (H. naledi). D) 

1012 Transversely expanded dentine horn in ULAC 58 (H. sapiens). A–C presented as right sided 

1013 in lingual view, D left sided in distal view. Abbreviations: B = buccal; L = lingual; M = 

1014 mesial; D = distal.

1015
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Table 1

P3 study sample summary. The extant and fossil taxa included in the sample are listed, along 

with their locality, and the sample size for each of the discrete traits scored. Full specimen list 

can be found in SOM Table S1.a

Taxon Locality

Transverse 

crest

Marginal 

ridge

Buccal 

grooves

Hylobates South East Asia (Hy. muelleri and Hy. agilis) 4 — 4

Pongo Borneo; Sumatra (Po. pygmaeus and Po. abelii) 6 — 6

Gorilla Cameroon; Congo (G. gorilla) 5 — 5

Pan Côte d'Ivoire (Pa. troglodytes verus) 5 — 5

A. anamensis Kanapoi, Kenya 2 3 3

A. afarensis Hadar and Omo, Ethiopia 4 3 3

A. africanus Sterkfontein and Taung, South Africa 7 12 13

P. robustus Drimolen and Swartkrans, South Africa 7 9 11

P. boisei Koobi Fora and West Turkana, Kenya; Omo, 

Ethiopia

4 3 3

Homo sp. Koobi Fora, Kenya; Swartkrans, South Africa 1 1 2

H. naledi Rising Star cave system, South Africa 4 5 7

H. heidelbergensis Mauer, Germany 0 1 1

H. neanderthalensis Combe Grenal, France; Krapina, Croatia; 

Scladina, Belgium

9 13 14

H. sapiens Qafzeh, Israel; Anatomical collection, various 

localities

9 14 14

a Specimens not included in these taxon groups are Cave of Hearths, KNM-ER 5431E, KNM-WT 8556, 

Mauer, STW 151 and W8-978.





Table 2

Transverse crest (TC) variation by taxon. The percentage of specimens displaying each 

transverse crest type is shown for each taxon (sample sizes in parentheses). See main text and 

Figure 2 for full details of the typology. For results by specimen, see SOM Table S1.a

TC type (%)
Taxon (n)

0 1 1a 2 3

Hylobates (4) 0 0 0 50 50

Pongo (6) 0 100 0 0 0

Gorilla (5) 0 0 0 100 0

Pan (5) 0 0 0 20 80

A. anamensis (2) 0 100 0 0 0

A. afarensis (4) 0 100 0 0 0

A. africanus (7) 0 100 0 0 0

P. robustus (7) 0 100 0 0 0

P. boisei (4) 50 50 0 0 0

Homo sp. (1) 0 100 0 0 0

H. naledi (4) 0 100 0 0 0

H. neanderthalensis (9) 0 56 44 0 0

H. sapiens (9) 44 56 0 0 0

Extant ape total (20) 0 30 0 40 30

Hominin total (51) 12 78 8 2 0

a Specimens which could not be assigned to taxon 

groups (transverse crest type in parentheses): Cave of 

Hearths (1), KNM-ER 5431E (2), KNM-WT 8556 (1), 

STW 151 (1).



Table 3

Marginal ridge (MR) variation. The percentage of specimens displaying each marginal ridge 

type is shown for each taxon (sample sizes in parentheses). See main text and Figure 3 for full 

details of the typology. For results by specimen, see SOM Table S1.

MR type (%)
Taxon (n)

C M D MD

A. anamensis (3) 0 100 0 0

A. afarensis (3) 33 67 0 0

A. africanus (12) 75 17 8 0

P. robustus (9) 100 0 0 0

P. boisei (3) 100 0 0 0

Homo sp. (1) 100 0 0 0

H. naledi (5) 100 0 0 0

H. heidelbergensis (1) 0 0 0 100

H. neanderthalensis (13) 69 31 0 0

H. sapiens (14) 50 14 7 29

Hominin total (69) 70 20 3 7

Abbreviations: C = continuous; M = mesially 

discontinuous; D = distally discontinuous; MD = 

mesially and distally discontinuous 

a Specimens which could not be assigned to taxon 

groups (marginal ridge type in parentheses): Cave of 

Hearths (M), KNM-ER 5431E (C), KNM-WT 8556 (C), 

STW 151 (C), W8-978 (C). 



Table 4

Buccal groove variation. The percentage of specimens displaying each mesial and distal 

buccal groove type is shown for each taxon (sample sizes in parentheses). See main text and 

Figure 4 for full details of the typology. For results by specimen, see SOM Table S1.a

MBG type (%)b DBG type (%)b

Taxon (n)
0 1 2 0 1 2

Hylobates (4) 75 25 0 100 0 0

Pongo (6) 100 0 0 100 0 0

Gorilla (5) 60 40 0 0 100 0

Pan (5) 40 60 0 0 100 0

A. anamensis (3) 0 0 100 0 67 33

A. afarensis (3) 0 33 67 0 33 67

A. africanus (13) 0 15 85 0 69 31

P. robustus (11) 91 9 0 18 64 18

P. boisei (3) 67 0 33 33 33 33

Homo sp. (2) 0 0 100 50 50 0

H. naledi (7) 14 86 0 14 86 0

H. heidelbergensis (1) 100 0 0 100 0 0

H. neanderthalensis (14) 43 57 0 79 21 0

H. sapiens (14) 93 7 0 86 14 0

Extant ape total (20) 70 30 0 50 50 0

Hominin total (75) 45 25 29 40 45 15

Abbreviations: MBG = mesial buccal groove; DBG = distal buccal 

groove.



a Specimens which could not be assigned to taxon groups (buccal 

groove types in parentheses in the form MBG:DBG): Cave of Hearths 

(0:0), KNM-WT 8556 (2:1), STW 151 (2:2), W8-978 (2:1).

b MBG and DBG states: 0 = absent; 1 = minor; 2 = marked.



Supplementary Online Material (SOM) 

 

Endostructural morphology in hominoid mandibular third premolars: Discrete traits at the enamel-

dentine junction 

 

Thomas W. Daviesa,b,*, Lucas K. Delezenec, Philipp Gunzb, Jean-Jacques Hublinb, Matthew M. 

Skinnera,b 

 

a School of Anthropology and Conservation, University of Kent, Canterbury, CT2 7NZ, UK 

b Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher 

Platz 6, 04103 Leipzig, Germany 

cDepartment of Anthropology, University of Arkansas, Fayetteville, Arkansas, 72701 USA 

 

*Corresponding author. 

E-mail address: thomas_davies@eva.mpg.de (T.W. Davies) 

 

  

mailto:thomas_davies@eva.mpg.de


 

SOM Figure S1. EDJ surface for selected specimens discussed in the main text. A) ULAC 790 (reversed) in lingual 

view, arrow indicates transverse crest. B) STW 401 in occlusal view, arrow indicates discontinuous distal marginal 

ridge. C) STW 151 in distal view, arrows indicate possible accessory cusps. D) L427-7 in distal view, arrow indicates 

accessory cusp.  



SOM Table S1. Detailed study sample, including which analyses each specimen is included in.  

Specimen Side Site/Origin Taxonomy Source 
Position 

basisa Position source TC MR MBG DBG 

Recon 
? 

ZMB 7814 L Borneo Hylobates muelleri ZMB records 1 ZMB records 3 — 0 0 — 

ZMB 7826 L Borneo Hylobates muelleri ZMB records 1 ZMB records 2 — 1 0 — 

ZMB 7828 L Borneo Hylobates muelleri ZMB records 1 ZMB records 3 — 0 0 — 

ZMB 85368 L Sumatra, Indonesia Hylobates agilis ZMB records 1 ZMB records 2 — 0 0 Prd 

ZMB 6948 R Borneo Pongo pygmaeus ZMB records 1 ZMB records 1 — 0 0 Prd 

ZMB 6957 L Borneo Pongo pygmaeus ZMB records 1 ZMB records 1 — 0 0 — 

ZMB 12209 R Sumatra, Indonesia Pongo abelii ZMB records 1 ZMB records 1 — 0 0 Prd 

ZMB 38607 R Sumatra, Indonesia Pongo abelii ZMB records 1 ZMB records 1 — 0 0 — 

ZMB 83509 R Sumatra, Indonesia Pongo abelii ZMB records 1 ZMB records 1 — 0 0 — 

ZMB 83511 L Sumatra, Indonesia Pongo abelii ZMB records 1 ZMB records 1 — 0 0 Prd 

ZMB 17963 L Cameroon Gorilla gorilla ZMB records 1 ZMB records 2 — 1 1 Prd 

ZMB 30940 R Cameroon Gorilla gorilla ZMB records 1 ZMB records 2 — 0 1 — 

ZMB 30941 L Congo Gorilla gorilla ZMB records 1 ZMB records 2 — 0 1 Prd 

ZMB 31435 R Cameroon Gorilla gorilla ZMB records 1 ZMB records 2 — 1 1 — 

ZMB 83561 R Cameroon Gorilla gorilla ZMB records 1 ZMB records 2 — 0 1 Prd 

MPITC 11776 L Taï, Côte d'Ivoire Pan troglodytes verus MPI records 1 ZMB records 3 — 1 1 — 

MPITC 11800 R Taï, Côte d'Ivoire Pan troglodytes verus MPI records 1 ZMB records 3 — 1 1 — 

MPITC 11903 R Taï, Côte d'Ivoire Pan troglodytes verus MPI records 1 ZMB records 3 — 1 1 Prd 

MPITC 13430 R Taï, Côte d'Ivoire Pan troglodytes verus MPI records 1 ZMB records 2 — 0 1 — 

MPITC 13437 R Taï, Côte d'Ivoire Pan troglodytes verus MPI records 1 ZMB records 3 — 0 1 — 

KNM-KP 29281 R Kanapoi, Kenya Australopithecus anamensis Leakey et al. 1995 1 Ward et al., 2001 — M 2 1 — 

KNM-KP 29286 R Kanapoi, Kenya Australopithecus anamensis Leakey et al. 1995 1 Ward et al., 2001 1 M 2 2 — 

KNM-KP 53160 L Kanapoi, Kenya Australopithecus anamensis Ward et al. 2017 1 Ward et al. 2017 1 M 2 1 — 

AL266-1 R Hadar, Ethiopia Australopithecus afarensis Johanson et al., 1982 1 Johanson et al., 1982 1 M 1 1 Prd 

AL333-10 L Hadar, Ethiopia Australopithecus afarensis Johanson et al., 1982 3 Johanson et al., 1982 1 C 2 2 Prd 

AL333w-1c R Hadar, Ethiopia Australopithecus afarensis Johanson et al., 1982 2 Johanson et al., 1982 1 M 2 2 — 

AL655-1 L Hadar, Ethiopia Australopithecus afarensis Kimbel and Delezene, 2009 3 Kimbel and Delezene, 2009 1 — — — — 

W8-978 R Omo, Ethiopia Indet. Suwa, 1990 3 Suwa, 1990 — C 2 1 — 

KNM-WT 8556 L West Turkana, Kenya Indet. Brown et al., 2001 1 Brown et al., 2001 1 C 2 1 — 

STW 7 L Sterkfontein, S. Africa Australopithecus africanus Moggi-Cecchi et al., 2006 3 Moggi-Cecchi et al., 2006 1 C 1 1 Prd 

STW 104 L Sterkfontein, S. Africa Australopithecus africanus Moggi-Cecchi et al., 2006 1 Moggi-Cecchi et al., 2006 1 C 2 1 — 



STW 142 R Sterkfontein, S. Africa Australopithecus africanus Moggi-Cecchi et al., 2006 1 Moggi-Cecchi et al., 2006 — C 2 1 Med 

STW 193 R Sterkfontein, S. Africa Australopithecus africanus Moggi-Cecchi et al., 2006 2 Moggi-Cecchi et al., 2006 — — 2 1 — 

STW 213 R Sterkfontein, S. Africa Australopithecus africanus Moggi-Cecchi et al., 2006 2 Moggi-Cecchi et al., 2006 1 M 2 2 Prd 

STW 401 R Sterkfontein, S. Africa Australopithecus africanus Moggi-Cecchi et al., 2006 3 Moggi-Cecchi et al., 2006 — D 2 2 Med 

STW 404 R Sterkfontein, S. Africa Australopithecus africanus Moggi-Cecchi et al., 2006 1 Moggi-Cecchi et al., 2006 — C 2 1 Prd 

STW 420B L Sterkfontein, S. Africa Australopithecus africanus Moggi-Cecchi et al., 2006 2 Moggi-Cecchi et al., 2006 1 C 2 2 — 

STW 498c L Sterkfontein, S. Africa Australopithecus africanus Moggi-Cecchi et al., 2006 1 Moggi-Cecchi et al., 2006 — C 2 1 — 

STS 24 L Sterkfontein, S. Africa Australopithecus africanus Brain, 1981 1 Brain, 1981 1 C 1 1 — 

STS 51 R Sterkfontein, S. Africa Australopithecus africanus Brain, 1981 2 Brain, 1981 1 C 2 1 — 

STS 52b R Sterkfontein, S. Africa Australopithecus africanus Dart, 1954 1 Dart, 1954 — C 2 2 Prd 

Taung1 R Taung, S. Africa Australopithecus africanus Dart, 1925 1 Dart, 1925 1 M 2 1 — 

DNH8 L Drimolen, S. Africa Paranthropus robustus Moggi-Cecchi et al., 2010 1 Moggi-Cecchi et al., 2010 1 C 0 1 — 

DNH46 R Drimolen, S. Africa Paranthropus robustus Moggi-Cecchi et al., 2010 1 Moggi-Cecchi et al., 2010 1 — — — — 

DNH51 R Drimolen, South Africa Paranthropus robustus Moggi-Cecchi et al., 2010 1 Moggi-Cecchi et al., 2010 — C 0 1 — 

DNH107 L Drimolen, S. Africa Paranthropus robustus Museum records 2 Museum records 1 C 0 2 — 

SK23 L Swartkrans, S. Africa Paranthropus robustus Robinson, 1956 1 Robinson, 1956 — C 0 0 — 

SK30 L Swartkrans, S. Africa Paranthropus robustus Robinson, 1956 3 Robinson, 1956 — — 0 1 — 

SK61 R Swartkrans, S. Africa Paranthropus robustus Robinson, 1956 1 Robinson, 1956 1 C 0 1 — 

SK62 L Swartkrans, S. Africa Paranthropus robustus Robinson, 1956 1 Robinson, 1956 1 C 1 2 — 

SK63 L Swartkrans, S. Africa Paranthropus robustus Robinson, 1956 1 Robinson, 1956 — — 0 1 — 

SK100 R Swartkrans, S. Africa Paranthropus robustus Robinson, 1956 3 Oakley, 1977 1 C 0 1 — 

SK857 R Swartkrans, S. Africa Paranthropus robustus Robinson, 1956 3 Oakley, 1977 1 C 0 0 — 

SKW5 R Swartkrans, S. Africa Paranthropus robustus Grine and Daegling, 1993 1 Grine and Daegling, 1993 — C 0 1 Prd 

KNM-ER 1820 L Koobi Fora, Kenya Paranthropus boisei Wood, 1991 1 Wood, 1991 1 C — — — 

KNM-ER 6082 L Koobi Fora, Kenya Paranthropus boisei Wood, 1991 3 Wood, 1991 0 C — — — 

KNM-ER 15951H L Koobi Fora, Kenya Paranthropus boisei Wood and Leakey, 2011 2 Wood and Leakey, 2011 — — 0 0 — 

KNM-WT 16005 L West Turkana, Kenya Paranthropus boisei Leakey and Walker, 1988 1 Leakey and Walker, 1988 1 C 0 1 Prd 

L427-7 R Omo, Ethiopia Paranthropus boisei Suwa et al., 1996 1 Suwa et al., 1996 0 — 2 2 — 

KNM-ER 806E L Koobi Fora, Kenya Homo sp. (Homo ergaster) Wood, 1991 2 Wood, 1991 — — 2 0 — 

KNM-ER 5431E L Koobi Fora, Kenya Indet. Wood, 1991 2 Wood, 1991 2 C — — — 

SKX 21204 R Swartkrans, S. Africa Homo sp. Grine, 1989 1 Grine, 1989 1 C 2 1 — 

STW 151 R Sterkfontein, S. Africa Indet. Moggi-Cecchi et al., 1998 1 Moggi-Cecchi et al., 1998 1 C 2 2 — 

U.W. 101-0010 R Rising Star, S. Africa Homo naledi Berger et al. 2015 1 Berger et al. 2015 — C 1 1 — 

U.W. 101-144 L Rising Star, S. Africa Homo naledi Berger et al. 2015 3 Berger et al. 2015 1 C 1 0 — 



U.W. 101-377b R Rising Star, S. Africa Homo naledi Berger et al. 2015 1 Berger et al. 2015 — — — — — 

U.W. 101-506b R Rising Star, S. Africa Homo naledi Berger et al. 2015 3 Berger et al. 2015 — — — — — 

U.W. 101-850 R Rising Star, S. Africa Homo naledi Berger et al. 2015 3 Berger et al. 2015 — — 1 1 — 

U.W. 101-889 L Rising Star, S. Africa Homo naledi Berger et al. 2015 3 Berger et al. 2015 1 C 1 1 — 

U.W. 101-1261 R Rising Star, S. Africa Homo naledi Berger et al. 2015 1 Berger et al. 2015 1 C 1 1 Prd 

U.W. 101-1565 L Rising Star, S. Africa Homo naledi Berger et al. 2015 1 Berger et al. 2015 1 C 0 1 — 

U.W. 102-0023 R Rising Star, S. Africa Homo naledi Hawks et al. 2017 3 Hawks et al. 2017 — — 1 1 — 

Cave of hearths R Cave of hearths, S. Africa Indet. Tobias, 1971 1 Tobias, 1971 1 M 0 0 — 

Mauer 1 R Mauer, Germany Homo heidelbergensis Schoetensack, 1908 1 Schoetensack, 1908 — MD 0 0 — 

Combe-Grenal I R Combe Grenal, France Homo neanderthalensis 
Garralda and Vandermeersch, 

2000 
1 

Garralda and 
Vandermeersch, 2000 

1 C 1 0 — 

KRP 51 R Krapina, Croatia Homo neanderthalensis Radovčić, 1988 1 Radovčić, 1988 1 C 1 1 — 

KRP 52 L Krapina, Croatia Homo neanderthalensis Radovčić, 1988 1 Radovčić, 1988 1a C 1 0 — 

KRP 54 L Krapina, Croatia Homo neanderthalensis Radovčić, 1988 1 Radovčić, 1988 1a M 0 0 — 

KRP 55 L Krapina, Croatia Homo neanderthalensis Radovčić, 1988 1 Radovčić, 1988 1 C 0 0 — 

KRP 58 R Krapina, Croatia Homo neanderthalensis Radovčić, 1988 1 Radovčić, 1988 — C 1 0 — 

KRP D27 L Krapina, Croatia Homo neanderthalensis Radovčić, 1988 2 Radovčić, 1988 — C 1 0 — 

KRP D28 R Krapina, Croatia Homo neanderthalensis Radovčić, 1988 2 Radovčić, 1988 — M 0 0 — 

KRP D29 R Krapina, Croatia Homo neanderthalensis Radovčić, 1988 2 Radovčić, 1988 — M 0 0 — 

KRP D33 L Krapina, Croatia Homo neanderthalensis Radovčić, 1988 2 Radovčić, 1988 1a C 0 0 — 

KRP D34 R Krapina, Croatia Homo neanderthalensis Radovčić, 1988 3 Radovčić, 1988 — — 1 1 Prd 

KRP D111 L Krapina, Croatia Homo neanderthalensis Radovčić, 1988 3 Radovčić, 1988 1 M 1 1 — 

KRP D114 L Krapina, Croatia Homo neanderthalensis Radovčić, 1988 2 Radovčić, 1988 1a C 1 0 — 

SCLA 4A 6 R Scladina, Belgium Homo neanderthalensis Toussaint et al., 1998 2 Toussaint et al., 1998 1 C 0 0 — 

Qafzeh 10 R Qafzeh, Israel Fossil Homo sapiens Vandermeersch, 1981 1 Vandermeersch, 1981 1 C 0 0 — 

Qafzeh 11 R Qafzeh, Israel Fossil Homo sapiens Vandermeersch, 1981 1 Vandermeersch, 1981 1 M 0 0 — 

ULAC 1 R Anatomical collection Homo sapiens ULAC records 1 ULAC records — C 0 0 — 

ULAC 58 L Anatomical collection Homo sapiens ULAC records 1 ULAC records 1 M 0 0 — 

ULAC 58b R Anatomical collection Homo sapiens ULAC records 1 ULAC records — — — —  

ULAC 66 L Anatomical collection Homo sapiens ULAC records 1 ULAC records 0 MD 0 0 Prd 

ULAC 74 L Anatomical collection Homo sapiens ULAC records 1 ULAC records — C 0 1 — 

ULAC 171 L Anatomical collection Homo sapiens ULAC records 1 ULAC records 0 MD 0 0 — 

ULAC 522 L Anatomical collection Homo sapiens ULAC records 1 ULAC records — C 0 0 — 

ULAC 536 R Anatomical collection Homo sapiens ULAC records 1 ULAC records 1 C 0 0 Prd 

ULAC 607 R Anatomical collection Homo sapiens ULAC records 1 ULAC records — C 0 0 — 



ULAC 790 L Anatomical collection Homo sapiens ULAC records 1 ULAC records * MD 0 0 — 

ULAC 797 R Anatomical collection Homo sapiens ULAC records 1 ULAC records 0 C 0 0 — 

ULAC 801 L Anatomical collection Homo sapiens ULAC records 1 ULAC records 1 D 1 1 — 

ULAC 806 L Anatomical collection Homo sapiens ULAC records 1 ULAC records 0 MD 0 0 — 

Abbreviations: TC = transverse crest form; see main text for typology (* = EDJ preserved but transverse crest form could not be determined—see main text for details); MR = marginal ridge (C = continuous; M = mesially discontinuous; D = 
distally discontinuous; MD = mesially and distally discontinuous); MBG = mesial buccal groove (0 = absent; 1 = minor; 2 = marked; for description of these character states, see main text); DBG = distal buccal groove (character states as for 
MBG); Recon? = specimens with reconstructed dentine horns (Prd = protoconid reconstructed; Med = metaconid reconstructed). 

a Position basis: 1 = In jaw; 2 = associated dentition; 3 = based on morphology. 
b Antimere specimens that are not included in analyses, but are discussed in the main text. 

 

  



 

 

  

SOM Table S2 
Additional information on the modern human sample, as listed in the 
records of the Anatomical Collection of the University of Leipzig 

Specimen 
number Region Age Sex 

ULAC_1 Germany/Rheinland Adult Male 

ULAC_58 Norway Adult Male 

ULAC_66 Norway/Sweden Adult Female 

ULAC_74 Italy (Etruscan, Tarquinii) Adult Male 

ULAC_171 Italy (Etruscan, Tarquinii) Adult Male 

ULAC_522 Egypt (Thebes) Adult Male 

ULAC_536 Egypt (Thebes) Adult Male 

ULAC_607 Egypt (Thebes) Adult Male 

ULAC_790 Africa (Americans/New Orleans) Adult Male 

ULAC_797 Africa (Americans/New Orleans) Adult Male 

ULAC_801 Africa (Americans/New Orleans) Adult Female 

ULAC_806 Africa (Americans/New Orleans) Adult Male 



SOM Table S3 
Results of the inter- and intra-observer error tests for the 
four P3 discrete traits scored. 

Trait 
Inter-observer 
agreement (%) 

Intra-observer 
agreement (%) 

Transverse crest 100 98 

Marginal ridge 92 99 

Mesial buccal groove 96 89 

Distal buccal groove 88 93 
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