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Abstract:  

Increasing epidemiology evidence amounts for social determinants of bone health underlying 

musculo-skeletal conditions such as osteoporosis. Amongst different facets influencing skeletal 

health, socio-economic status (SES) has been identified as a critical factor determining one’s 

access to resources, health care, education, nutrition, and physical activity. Recent conceptual 

and epigenetic studies assessing SES links with DNA methylation offer further support for the 

adverse effects of social disadvantage in early life on bone quantity and quality in adulthood. 

However, this evidence for socially patterned risks in bone fragility is not restricted to the 

contemporary society. Data exist for ancient human skeletal samples deriving from SES 

stratified cemeteries to also reflect bone changes consistent with lifestyles specific to social 

standing. Similarly to modern data, the conclusion drawn from the ancient times has been for 

a negative effect of low SES on bone growth and maintenance. Some contradictory results, 

mirroring previously reported inconsistencies in epidemiological studies, have also been 

reported showing that high SES can equally result in poor bone health. It becomes clear that 

ancient evidence can offer a further line of support into these ongoing epidemiological and 

epigenetic research efforts. Taken together, a holistic approach to clinical understanding and 

practice of bone health is recommended, building upon ancient and modern findings to target 

living groups who are most at risk of developing low bone mass and compromised bone micro-

architecture.  
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1. Introduction 

The biological and biochemical complexity of bone development, growth, and maintenance 

throughout human lifespan is now well understood to be affected by multiple factors that 

include disease, mechanical stimuli, nutrition, hormonal balance, biological sex, and genetic 

underpinning [e.g. 1-5]. In addition to these direct influences on the skeleton, increasing social 

epidemiological evidence amounts, identifying extrinsic determinants of bone health that may 

arise as a result of gender and ethnicity, and/or structural and economic opportunities at a 

society level; showing that social disadvantage, or low socio-economic status (SES), increase 

the risk of osteoporosis development [e.g. 6-14]. Given that conditions such as osteoporosis 

are of major social and economic global concern in the modern ageing populations [15-17], 

identifying groups who are most at risk of developing bone fragility and subsequent related 

fractures is of utmost importance for effective management of osteoporosis in clinical contexts 

[18]. Reports of osteoporosis under-treatment and diagnosis difficulties per gender and age 

continue to surface particularly when considering those with already fragile bone or 

experiencing fragility fractures [19-21]. The mechanisms explaining the social gradient of 

osteoporosis are yet to be elucidated though recent conceptual models and data propose an 

epigenetic foundation whereby in utero conditioning arising from maternal health and 

pregnancy, as well as environmentally induced persistent stress and inflammation, result in 

long term effects on skeletal health [22-24].  

The social patterning with potential epigenetic foundation to bone loss and maintenance 

observed in the contemporary society can be further supported by ancient human data [e.g. 25-

30]. Evidence exists for human skeletal samples that derive from historic and archaeological 

cemeteries stratified by stark layers of SES inequality, illustrating that human bones have long 

suffered the consequences of societal wealth and power inequality and inequity. The surviving 

skeletal physical evidence for medieval people who would have lived subject to the feudal 
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system offer an illuminating source of skeletal macro- and micro-architectural phenotypic 

characteristics reflecting SES stratum specific lifestyles [26]. This review aims to cast a light 

on these medieval bones analysed in the context of SES to a) support the ongoing modern 

research in epidemiology and epigenetics, and b) highlight how studies of well preserved 

human bone samples [Figure 1] from historical and archaeological contexts can help us 

understand current social gradient of osteoporosis models [31]. As a result, we hope that this 

review will encourage a holistic approach to further understanding bone fragility, and when 

identifying groups who are most at risk of developing osteoporosis. Epidemiological and 

epigenetic insights are briefly summarised first, with the ancient perspective presented second.  

2. Modern perspective through social epidemiology and epigenetics lenses 

A model summarising the social determinants of health (SDoH) was outlined in the 1990s with 

Dahlgren and Whitehead [32] presenting a policy framework addressing an interrelation of 

several environmental layers of the society that impact wellbeing. These included cultural 

practices, socio-economic positioning, occupation, income and education, community 

networks amongst other variables influencing our health at an individual and group level [32]. 

The SDoH model clearly demonstrated that a series of correlated factors that often arise beyond 

one’s control determine health outcomes. Support for SDoH has subsequently been shown, for 

example, using links between low SES uninsured individuals and type 2 diabetes [33], mental 

health and addiction and ethnic disparities [34], as well as social risk based upon factors such 

as education and income related to frailty that includes chronic illness, physical and emotional 

health [35]. To better understand the mechanisms behind these bio-social relationships, life 

course approaches to studying health, disease, and mortality from the foetal to adult stages 

resulted in the Developmental Origins of Health and Disease (DOHaD) paradigm, also known 

as the Barker hypothesis [36-40]. It encapsulated the associations between early life, in utero 

and post-natally, experiences of adversity and long term effects on health in later adulthood. 
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Several research lines have since used the DOHaD framework to explain, for example, 

maternal obesity and foetal development [41], maternal hypertension and mental health in the 

offspring [42], susceptibility to developing cancer [43], obesity and type 2 diabetes [44] in later 

life. These models explaining extrinsic factors influencing human health at the intrauterine and 

later life phases have extended to osteoporosis [45-50]. For instance, developmental origins of 

osteoporosis have been considered based on bone mineral density (BMD) changes with 

premature births [45], and birth size and low birth weight effect on bone size [46, 47]. It is now 

accepted that osteoporosis is a non-communicable disease [48-50], and should be studied using 

the life-course approach.  

Similarly to the classic report by Barker [39], where undernutrition during gestation and early 

in life led to a greater risk of diabetes in adulthood, variability in environmental and lifestyle 

factors during childhood and adolescence determine the attainment of peak bone mass accrued 

in our third life decade [51]. For instance, adult BMD measured as part of a prospective cohort 

study in Finland (Cardiovascular Risk in Young Finns Study), differed substantially with 

smoking, exercise, and calcium intake regimes recorded during childhood and adolescence in 

a group of 264 adults [51]. Femoral neck and lumbar spine BMD was increased in individuals 

who had exercised regularly, lower in men who were smokers, and higher in women who had 

consistently consumed higher levels of calcium. In this case, lifestyle factors, which are 

strongly associated with one’s socio-economic standing, of the youth had clear implications 

for their bone mass building later in life.  

Studies investigating SES disparities throughout the life-course have generally indicated that 

those from adverse backgrounds, measured including income, education, and residential 

address, experience increased bone fragility, fracture risk, and prevalence of osteoporosis [8-

14, 50-55]. For example, Brennan et al [9] investigated SES, controlling for age and sex, using 

2006 – 2007 data of fractures experienced by Australian adults aged > 50 years. In this study 
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[9], a total of 3943 radiology records of fractures held by the Australian Barwon Statistical 

Division were correlated with SES inferred from residential address. Men and women of low 

SES were estimated to have increased odds of six-fold and two-fold respectively for fracture 

incident when compared to high SES groups [9]. Intriguingly, in another Australian study [50], 

where BMD and SES were examined in 1494 adult women, both low and high SES was 

associated with reduced BMD. Bone mineral density data were measured from skeletal sites 

using dual-energy X-ray absorptiometry (DXA), and adjusted by lifestyle factors such as diet, 

smoking, alcohol consumption, and physical activity [50]. Earlier studies using Australian 

cohorts investigating SES via measures of income and occupation reported similar results. For 

example, Suen [52] examined the effect of early life occupation related physical activity on 

incidences of hip fractures in later life in Sydney based patients. A total of 416 patients were 

examined for sedentary occupations between 20 and 50 years old, and coded according to the 

Australian Classification of Standard Occupations [52]. Amongst several other findings, it was 

reported that hip fracture occurrence decreased with increased SES of occupation [52].  

Data from European populations mirror the results from Australian cohorts [52-55]. For 

example, the effect of disadvantaged social background on bone density and fractures evaluated 

in Spanish women showed low SES to be associated with reduced BMD [53]. Data obtained 

using radiographs and physical examination, in addition to measuring 25-hydroxy-vitamin D 

(25-OHD) and PTH from blood samples, were lower in those from disadvantaged backgrounds 

[53]. Additionally, the frequency of fracture occurrence was higher in the low SES cohorts as 

well [53]. Recent distal radius fracture data from the UK [54] were linked to social deprivation. 

Using a sample of 4463 patients assessed against the Index of Multiple Deprivation, higher 

fracture experiences were apparent, in addition to sex and ethnicity factors, in those from 

disadvantaged backgrounds [54]. Social support with an SES framework has also been 

considered as a factor contributing to hip fracture incidences in Swedish cohorts [55]. 
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Farahmand et al [55] evaluated SES and marital status against 1327 hip fracture cases from 

1993-1995 in Swedish females of post-menopausal age to find that higher income and single 

living women had an increased risk of developing hip fractures. On the contrary, women in 

cohabitant households and of higher income had a lower record of hip fractures. In a sample of 

6160 Italian females of post-menopausal age, highest level of education was also related to 

lower prevalence of osteoporosis [56]. Using multiple logistic regression analysis, Varenna et 

al [56] reported a predictive relationship based on education, calcium, exercise levels and other 

variables that include age, and age at menarche, whereby increasing educational background 

decreased the risk of developing osteoporosis.  

An additional facet for consideration are population history factors which can offset or add to 

skeletal health within the SES framework [57-60]. Both lifestyle and melanin levels contribute 

to sunlight exposure levels across populations, having implications for vitamin D 

photosynthesis and, ultimately, mineral metabolism in the skeleton [61]. Ongoing 

investigations into the prevalence of vitamin D deficiency and nutritional rickets include 

ethnicity-specific factors (such as skin melanin content) within latitude and type of dwelling 

contexts, highlighting the need for multidisciplinary efforts tackling vitamin D status within 

and beyond SES and ethnic minorities [62]. 

Taken together, a growing body of social epidemiology evidence exists confirming that links 

between SES and osteoporosis and related fractures are apparent [31, 50]. While these do not 

manifest consistently in all individuals and communities, ongoing research ought to focus on 

complementary univariate and multivariate analyses of biological and social markers of bone 

health, which clearly play a role in accelerating or slowing down bone fragility experiences.  

Further support for social determinants of bone health can be found in epigenetic research 

efforts. Indeed, the social gradient of osteoporosis, mechanisms of which are still not fully 
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understood, can be hypothesised to have foundation in the epigenome considering the already 

discussed DOHaD acting in utero and postnatally, and manifesting in the adult life [31, 63, 64]. 

Coined by Waddington in 1942, knowledge of which has been expanded over the past few 

decades [22], epigenetics refer to the influences acting on the link between genotype and 

phenotype that result in gene expression changes with no direct DNA sequence interference. 

Epigenetic modification of gene expression can be achieved in a stable and heritable manner 

through cell division, meaning that a whole genome may be transformed into multiple 

transcriptomes [23, 63, 64]. Epigenetic modifiers act on the genome in a way that changes the 

regulation of gene transcription, up- and down regulating their expression through the 

availability of gene sequences to transcriptional enzymes [65]. For example, while most 

cancers are caused by underlying occasional alterations to the DNA sequence [66], the 

predominant epigenetic mechanisms including DNA methylation (DNAm), histone and 

chromatin modifiers, and non-coding RNAs can also lead to the development of disease [67-

70]. As these occur at a molecular level, their association with skeletogenesis cannot be 

ignored, with epigenetic marks potentially mediating the biological processes impacting bone 

development and later health, through epigenetic modification of osteoblastogenesis and 

osteoclastogenesis, bridging the interactions between genetics and the environment [71, 72].  

When considering individuals of low SES who develop and grow within disadvantaged 

intrauterine and postnatal environments, indeed the array of SES related factors (such as 

nutrition, lifestyle, exogenous environmental variables such as pollution) may have epigenetic 

significance [73]. Indeed, associations between SES and DNAm, and micro RNAs (miRNAs) 

have been previously reported [74-76]. For example, a global DNAm analysis [68] of Glasgow, 

Scotland based “Psychological, social and biological determinants of ill health” (pSoBid) 

cohorts [75] that encompassed a disadvantage gradient, reported hypomethylation in those of 

the lowest SES [76]. Another study where miRNA was investigated in esophageal cancer 
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expression in the light of non-biological factors that included SES found a reduction of miR-

43 and miR-203 in individuals of low SES [77]. The Dutch famine of October 1944 to May 

1945 acutely demonstrates the effects of environment on individuals in utero. Those exposed 

to the peak famine conditions (<900 kcal per day) during the first 10 weeks of gestation had 

significant differences in DNAm of genes linked to development, growth, and metabolism, 

including hypomethylation of insulin-like growth factor II [78-80]. Alternatively, those that 

experienced the peak of the famine later in gestation did not show significant alterations, 

demonstrating a critical window of epigenetic modification in development [80]. While future 

research in this area requires methodological refinement [see 22, 23], insights into SES and 

bone cell function can be extrapolated to further explain social patterning of osteoporosis.  

Bone cell genesis and activity have been linked to epigenetic influences, particularly DNAm, 

affecting osteoblastic function that drives bone development in early life phases, and its 

involvement in bone deposition when remodelling bone throughout the lifespan [71, 72]. Bone 

metabolic activity balance is crucial for its healthy physiology, and so epigenetic alterations at 

cell level have the potential to ultimately elevate the risk of osteoporosis [22, 23]. Limited data 

still exist to support these associations, though hypomethylation using blood cells samples in 

osteoporotic women post-menopause [81], and bone cell methylation differences in 

osteoporotic and control femur samples [82] have been reported. These DNAm studies, 

however, did not include SES in their analyses. Brennan Olsen et al [22], and Riancho and 

Brennan-Olsen [23] indicate that an epigenetic link to SES can be made through an 

accumulation of stress responses affecting the skeleton. Their model [22, 23] outlines how 

long-term stress and inflammation can affect skeletal homeostasis resulting in ultimate bone 

mass reduction, likely as a result of the inhibition of osteoblast and acceleration of osteoclast 

function following stress. Hormones and proteins such as glucocorticoids and inflammation 

cytokines are possible candidates acting on the skeleton as a result of ongoing inflammation. 
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Both glucocorticoids and some cytokines affect skeletal cells by inhibiting bone deposition and 

enhancing bone resorption through PTH, RANKL, and Wnt signalling pathways [82]. 

Individuals from adverse backgrounds may experience prolonged stress, inflammation, poorer 

nutrition, and higher susceptibility to disease, all of which may be accompanied by 

psychological distress.  

Several studies have sought to test this association between DNAm and SES experimentally at 

a population level, targeting genes associated with stress-response and inflammation [83-85]. 

The conclusion has been that those of low SES show patterns in DNAm level change at targeted 

sites when compared to those of high SES [83-85]. Furthermore, genome wide association 

studies (GWAS) have assessed changes in DNAm across the entire genome, scoping for new 

possible regions associated with epigenetic adaptation of SES [86-88]. For instance, a recent 

study examined leukocyte DNAm at 2546 CpG sites (associated with 1537 genes) against SES 

inferred from educational, resource, and income background in 489 young adults from the 

Philippines [89]. Methylation data differed across SES, with the low SES group having higher 

DNAm at an increased number (1777) of CpG sites. These sites were found to be biased 

towards pathways linked to immune function, a factor associated with low SES which has been 

previously investigated [88], as well as nervous system and skeletal development, with 

population specific growth previously shown to be affected by SES [90]. However, overall, 

little research into epigenetic changes of skeletal development has been conducted to date. 

While the use of GWAS can assist in the identification of biological processes undergoing 

epigenetic adaptation, such as McDade et al.’s [89] over-representation of genes in skeletal 

development, the difficulty remains (and will be an ongoing issue) in comparing GWAS results 

between different studies. This is mainly due to different arrays being used per study whereby 

various sets of CpG loci, both in number and location, are included [83, 86, 88, 89]. 

Considering that genome methylation changes across the genome by cell type [91], this may 



11 
 

influence epigenetic interpretations pertaining to skeletal development when assaying blood or 

leukocytes. Further investigations into the epigenetics of skeletal development should focus on 

the skeletal tissue itself. While these mechanisms require further research, evidence is hinting 

on the interrelated epigenetic links supported by epidemiological data [22, 23, 31].  

3. Ancient perspective using medieval society structure and data from surviving 

human skeletal remains as a model for understanding social determinants of 

bone health   

In the clinical realm, bone fragility is understood using data that derive from living people and 

modern skeletal biology experimental perspectives. Investigations into osteoporosis can take 

many forms and methods, but all centre on elucidating the complexity of factors determining 

reduced bone mineral content, poor bone micro-architecture, overall bone fragility, and 

incidence of fracture [92]. However, we should not underestimate the contribution that ancient 

human skeletal remains can make to our current understanding of bone health in the living [30], 

and by extension the effect of SES on bone growth, development, loss and maintenance in 

adulthood [26, 31]. While there are many different research areas concerned with the analysis 

of ancient human skeletons (i.e. spanning palaeoanthropology, palaeopathology, 

bioarchaeology, broader biological anthropology) [93-95], their findings can be translated into 

today’s explanations of bone health [see e.g. 25, 28, 30]. Acknowledging the limitations of 

these disciplines is crucial to appreciating the difficulty in undertaking direct comparisons 

between human bones of the present and the past, but their educational and informative value 

in clinical contexts can be substantial. In this section, focal attention is paid to human skeletal 

remains curated as part of medieval anthropological collections. Insights are gleaned into the 

adverse effect that living as part of the European feudal system had on human bone health. Of 

course, there are multiple other time periods and archaeological sites found globally that were 

characterised by SES stratification (e.g. the Classic Maya of Mexico [96], 18th to 19th Century 

Edo, Japan [97], 300–750 BP Taumako, Solomon Islands [98] post‐medieval Aalst, Belgium 
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[99], or Industrial Revolution 18th - 19th centuries England [100]), but a large number of 

medieval cemeteries containing (in some cases) thousands of individuals offer large sample 

size for skeletal health examination [101].  

Unlike in clinical settings, the examination of archaeologically derived skeletal remains is 

limited by the absence of truly experimental study design, where living people can be 

interviewed, observed, or their detailed medical records accessed. Therefore, there is much 

reliance on interpreting ancient human skeletal data in broader contexts that are a combination 

of extracting information from surviving literature, description of material culture uncovered 

as part of excavations (such as grave goods), historical documentation, and in some cases 

ethnographic (ethno-archaeological) records [102, 103]. These are considered secondary 

evidence that can help explain observations made on the primary (skeletal) evidence [103]. 

While blood samples to measure PTH from a potentially osteoporotic patient cannot be 

collected, other bone phenotype examination techniques of clinical and bio-medical 

significance, ranging from gross anatomical examination to bone histomorphometric analysis 

[Figure 1], can be used to evaluate the degree to which bone fragility characterises a set of 

surviving medieval skeletons [26, 31, 104-107]. Additionally, the environmental differences, 

such as selective pressures, between the past and today cannot be overlooked. Thus, as much 

as we cannot make absolute comparisons between ancient and modern human bone, we can 

undertake medieval population (context) specific interpretations as models illustrating how 

medieval SES was reflected in bone health [31]. 

The European High and Late Middle Ages (approximately 10th – 16th centuries, though the 

Middle Ages began in 5th century) was a time when the society was under the feudal ruling of 

land, property, and work, resulting in stark inequality and inequity in the distribution of wealth 

and power [108-113]. In addition political and religious structure divisions, the population also 

experienced drastic demographic changes due to major plague pandemics such as the Black 
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Death [111]. The feudal system dictated the low SES classes to work for landlords. Therefore, 

the society was under a clear SES divide with those in the higher SES categories (e.g. royals, 

noblemen) leading more privileged lifestyles, and those of the lower SES experiencing 

disadvantage [108-113]. While the medieval SES structure was certainly more complex than a 

simple high and low SES dichotomy, with some evidence for the existence of middle-class 

(e.g. knighthood), historical evidence indicates that peasantry and noblemen engaged in vastly 

different lifestyles as reflected in their daily diets, occupations, and experiences of stress [108, 

109, 112]. Multiple medieval cemeteries survive until today and many of them have undergone 

excavation, yielding human remains representing these SES divisions. These collections are 

now curated at universities and museums offering valuable bone biology data. In some cases, 

the collections encompass thousands of individuals, spanning juveniles and adults, serving as 

a complementary sample to modern clinical trials [31]. As established earlier, factors (nutrition, 

biomechanical stimulus) impacting complexity of bone modelling and remodelling are in some 

degree tied to our social and economic opportunity [114] – medieval people’s bones mirror the 

experiences of contemporary societies.  

Multiple lines of evidence for social determinants of bone health can be drawn from medieval 

human skeletal remains. However, they are difficult to categorise into single factors as, for 

example, bone functional adaptation will in some way relate to one’s nutritional conditioning. 

Even then, the bone adaptation thresholds the minimum effective strain (MES) may be 

imposing on one’s skeleton cannot be ruled out [115]. Seeing as the factors are interwoven, we 

present cases of medieval SES effect on bone health in both directions, i.e. where both low and 

high SES has a negative bone health outcome, and where both high and low SES can also result 

in good bone health. The reader is invited to consider our review form the perspective of clear 

SES-bone associations that are context dependent, but have limited (at this stage anyway) 

directional predictive strength.  



14 
 

Several studies have reported medieval human skeletons of low SES to be characterised by 

poor bone health in adulthood [Table 1] [e.g. 26, 104, 105, 116-119]. Perhaps of the most 

relevance joining past and present in bone research is the aetiologically multi-factorial 

osteoporosis. Not only has potential experience of osteoporosis been reported in female 

skeletons dated to XIIth Dynasty Egypt [120] or Roman Britain [121], its social gradient 

extends to medieval SES groups as well. For example, age related bone loss in peasant females 

was demonstrated in a skeletal sample dated to 11th – 16th centuries Wharram Percy in North 

Yorkshire, England [116]. Cortical bone loss data obtained using radiogrammetry of 

metacarpals mirrored the results from modern menopausal women in Finland [116]. The 

medieval peasant female skeletons also showed evidence of multiple healed fractures in the 

trabecular bone of their vertebrae, correlating with increased bone loss [116]. In another study, 

BMD measured via DXA from proximal femoral samples dated to 11th – 16th centuries 

Trondheim, Norway, reported increased osteoporotic fracture prevalence in females who lived 

in colder and more built up areas [117]. Of further interest to the clinical realm is the achieved 

human adult skeletal size. Male and female long bone morphometric data representing high 

and low SES in 8th – 13th centuries Trino Vercellese, Italy indicated greater adult body mass in 

males of high SES [29]. A recent follow up study [118] of similar design replicated these results 

using a neighbouring Italian sample from San Lorenzo di Alba (7th - 15th centuries), where high 

and low SES differences in skeletal morphometry and stature were apparent between males, 

but not females. Skeletogenesis traits measured in Polish samples deriving from medieval high 

SES 12th – 14th centuries Cedynia and low SES 14th – 17th Słaboszewo, found the low SES 

group to be characterised by a reduced skull base height, vertebral canal, and bone quantity in 

metacarpals [119]. Bone remodelling in adulthood has also been investigated in medieval SES 

contexts. Several studies examining 11th – 16th centuries high and low SES individuals from 

medieval Canterbury, UK have demonstrated social disadvantage to be associated with poorer 
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adult bone health, as well as experiences of increased physiological disruption in childhood 

and potentially reduced longevity [26, 104, 105, 107]. Using femoral histomorphometry, 

increased bone density at midshaft femur was reported in high SES, though cortical bone 

microstructural geometric properties aligned with increased experiences of mechanical strain 

in the low SES [26]. Earlier investigations [107] in this sample used linear enamel hypoplasia 

(LEH, dental marker of physical development upsets in childhood) and age-at-death estimates 

to demonstrate higher and lower values respectively in the low SES groups. A recent related 

samples analysis further elucidated a relationship between these variables only in the high SES 

group [105], whereby ill health experienced in childhood may be accounted for by developing 

increased bone density in adulthood in privileged settings. The above studies offer support for 

the adverse relationship between medical social disadvantage and the skeleton, though only 

few of them [e.g. 26, 105] consider bone histology or DXA methods, and large enough sample 

sizes to infer medieval lifestyles. Those relying on gross anatomical morphometric [e.g. 29, 

118] examination of the skeleton may be un-accounting for adult bone remodelling. 

On the contrary, skeletal data from medieval individuals of high SES have also indicated that 

advantaged lifestyle does not always result in healthy bones [Table 1] [e.g. 122-125]. For 

example, even though medieval nuns in Italy may have held a privileged status, they spent most 

of their days inside monasteries limiting their sun exposure [122]. Indeed, a study [122] of an 

elderly female skeleton from 14th – 17th centuries Coimbra, Portugal described presence of an 

extracapsular fracture of the proximal femur to have been likely a result of osteoporosis. While 

the association between limited sun exposure and osteoporosis in this individual can be made 

loosely, the female elderly age would have played a key role in advancing her bone quality 

deterioration. Evidence of fracture healing allowed the authors of this study [122] to also infer 

extended care and support system surrounding this female who would have been disabled for 

a period of time otherwise. Cases of Forestier’s disease, or diffuse idiopathic skeletal 
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hyperostosis (DISH), a form of skeletal arthritis that is a metabolic disorder, have been reported 

in association with high SES [123]. There is substantial evidence for its occurrence in medieval 

times [126, 127], particularly afflicting older males originating from monastic backgrounds 

[123]. This is likely because the aetiology of DISH includes factors such as the male sex, 

limited physical movement, and elevated consumption of nutritionally poor diet [128]. Reports 

of medieval skeletons likely showing evidence of DISH have been published for different sites 

including the Merton Priory, Wells Cathedral (13th – 16th centuries) and the Royal Mint (14th 

century) in London, and S. Angelo Abbey in Montescaglioso in Italy (12th – 15th centuries) 

[123, 127]. While the association between monastic background and DISH prevalence appears 

reasonable in these cases, we must not forget the differential diagnosis of DISH as well as 

reliance on interpretations made using secondary SES evidence (e.g. in [127] the authors 

acknowledge limited written SES records). Another example from medieval Italy (8th – 13th, 

17th centuries) is a case of increased BMD in lumbar vertebrae and femoral samples analysed 

using computed tomography (CT) and DXA in individuals of low SES [124]. The elevated data 

agreed with evidence for an increase in calcium consumption and higher physical activity in 

the low SES group [124]. This study particularly highlights that the direction of SES effect on 

bone health cannot be easily predicted. Finally, a modified skeletal frailty index (SFI) that 

incorporates markers of sarcopenia and osteopenia into its assessment can also be applied to 

medieval skeletons [125]. Marklein and Crews [125] explain that the traditional inclusion of 

all SFI biomarkers cannot be used on all medieval human skeletal assemblages due to 

fragmentary material. However, their [125] modified SFI measured through a series of skeletal 

indicators that include LEH as a proxy for developmental disturbances, and abnormal skeletal 

lesions as an indication of bone infection, showed increased skeletal frailty in monastic 

individuals (when compared to non-monastic lay communities) across multiple sites in 
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medieval London. The authors [125], however, do not rule out the effect of age and sex 

preponderance in the monastic sample that may have contributed to their results.   

Whether the relationship between SES and measures of bone health is positive or negative, 

what clearly emerges from the medieval analyses is that social determinants of skeletal fragility 

should be considered within a population specific context. Nevertheless, the medieval evidence 

supports patterns reported in epidemiological and epigenetic accounts, whereby SES plays a 

role in determining our bone health in adulthood. Even if this means, such as in the study by 

Borrè et al [124], that medieval individuals of low SES may show an unexpected increase in 

BMD, it can be explained by their SES specific lifestyle (i.e. physically demanding 

occupations, dietary calcium, and increased sun exposure). A series of behaviours related to 

our occupation and habitual lifestyles, coupled with unequal access to resources, nutritious diet, 

health care, social support system, and even health literacy [129], may contribute to the 

expression of human skeletal phenotypes, both in the past and in the present [31].  

Finally, increasing interest in investigating DNAm in ancient DNA (aDNA) samples 

(palaeoepigenetics) has been emerging recently, with anthropologists recognising it as a 

powerful tool for researching stress in prehistoric populations [130-132]. The predominant 

application of aDNA has been to trace population migrations [133], or pathogen evolution 

(such us tuberculosis and leprosy [134]), seeing as aDNA is usually extracted from surviving 

skeletal elements. However, there have been successful attempts at determining surviving 

methylation in ancient skeletal tissue, including a case of Pleistocene bison remains [132]. 

Therefore, avenues for future applications in ancient human skeletal remains cannot be 

underestimated. These efforts can shed new light on experiences of osteoporosis with SES in 

the past. However, access to confirmed osteoporosis diagnosed and healthy control ancient 

individuals would be needed to undertake robust epigenetic comparisons. These will no doubt 

contribute further to modern epigenetic research. 
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4. Clinical relevance  

One of the biggest treatment and prevention challenges that clinical researchers and 

practitioners face when dealing with their patients’ bone health is the successful and effective 

identification of risk factors underlying the development of osteoporosis, and management and 

prevention of osteoporosis fractures [135-137]. Much data are available for the biomechanical, 

nutritional, smoking and alcohol drinking effects on bone, all considered within one’s context 

of genetic predisposing factors [138-143]. Ongoing life-course and DOHaD approaches, both 

applied in past and modern bone fragility contexts, are increasingly recognising the crucial role 

that SES plays in human opportunity inequality and inequity [e.g. 31, 50, 144, 145]. As 

presented in our review, those from less privileged backgrounds usually appear to experience 

fractures at an earlier age, sustain poor bone quality and quantity in adulthood. Interventions 

preventing from subsequent fracture occurrence in affected individuals from diverse 

community backgrounds (and age and gender groups) are available and efforts to improve 

strategies are ongoing [146-149]. Recently, increasing focus has been placed on ethnicity and 

country-level osteoporosis management strategies [e.g. 57, 58, 150-152].  

Targeting two key bone aspects that may shift with SES (and opportunity), in addition to other 

direct biological influences on bone, are peak bone mass attainment [114] and the experience 

of osteoporosis around menopause [150]. By considering patients’ SES, and that of their 

parents, it may become easier to identify those groups who are most at risk of developing 

osteoporosis, or at least likely to suffer from increased bone fragility. Resources can be directed 

towards increasing bone health education and health care efforts for those more disadvantaged 

groups. As demonstrated through our ancient perspective in this review, much evidence can be 

found in the medieval times for SES disparities affecting adult human skeletons. One way to 

incorporate this ancient perspective into clinical and educational communication is to include 

medieval examples as part of information sheets that can be distributed to patients (e.g. 
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referring to examples summarised in Table 1) [Figure 2]. Both young men and women (in 

their “bone bank” building age until around 30 years old), and older females (in their 

menopausal age) may benefit from 1) learning that bone health problems have affected us 

throughout the human history usually due to social reasons beyond our control, and 2) 

identifying their own occupation or generic habitual lifestyle tendencies as likely contributing 

to future bone health problems, both to themselves and to future generations. This may further 

encourage the consideration of lifestyle over the life course, focusing on any potential 

differences in lifestyle between the earlier and later life phases. The practical applications of 

medieval human bone research may be limited compared to the modern clinical observations 

and management practices, but its educational and informative value may prove helpful when 

communicating with patients and those at higher bone fragility risk.  

5. Conclusions  

The aim of this review was to provide an ancient perspective on social determinants of bone 

health. In addition to the increasing social epidemiology and epigenetic support for more than 

just direct biological influences on bone quality and quantity in adult life, we presented 

examples from medieval research undertaken on surviving human remains where social and 

economic factors may have played a role in adult skeletal health. While the consensus, in both 

from social epidemiology and ancient examples, has been that a more disadvantaged 

background has adverse effects on bone health, we also discuss cases where privileged 

lifestyles can equally result in reduced bone mineral. We emphasised a population specific 

contextual interpretation of each case or group, as it is clear that human skeletal phenotypic 

characteristics are underlined by a combination of biological and social factors. While the 

medieval evidence offers limited practical applications in clinical practice, it serves great 

educational value during communication with patients suffering from fragile bone. Ultimately, 

the ongoing research into social determinants of bone health, both using past and modern 
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samples, will help elucidate further the global social and economic patterning in bone fragility, 

helping with the identification of human groups who are most at risk of having accelerated 

bone loss. 
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Figure captions: 

Figure 1. Example of excellent microscopic preservation of cortical bone in a sample taken 

from a medieval English individual (ID NGB 89 SK 22). This transverse section is from the 
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posterior midshaft femur, and is approximately 100 microns thick. The preservation of cortical 

bone histology makes the sample suitable for histomorphometric analyses (see methods in [26: 

p. 48]) to assist in reconstructing bone remodeling despite the antiquity of this human skeleton. 

The top image was taken using transmitted light, whereas the bottom image shows linearly 

polarised bone histology. 

Figure 2. Simplified conceptual chart illustrating how ancient evidence can be incorporated 

into a more holistic understanding of bone health issues in clinical contexts. 

Table caption: 

Table 1. Examples of medieval skeletal evidence for social determinants of bone health, 

which may serve as a source of useful information when undertaking educational 

communication in clinical settings. 


