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Abstract—Many problems in science and engineering can be
reduced to the recovery of an unknown large matrix from a small
number of random linear measurements. Matrix factorization
arguably is the most popular approach for low-rank matrix
recovery. Many methods have been proposed using different loss
functions, for example the most widely used L2 loss, more robust
choices such as L1 and Huber loss, quantile and expectile loss for
skewed data. All of them can be unified into the framework of M-
estimation. In this paper, we present a general framework of low-
rank matrix factorization based on M-estimation in statistics. The
framework mainly involves two steps: firstly we apply Nesterov’s
smoothing technique to obtain an optimal smooth approximation
for non-smooth loss function, such as L1 and quantile loss;
secondly we exploit an alternative updating scheme along with
Nesterov’s momentum method at each step to minimize the
smoothed loss function. Strong theoretical convergence guarantee
has been developed for the general framework, and extensive
numerical experiments has been conducted to illustrate the
performance of proposed algorithm.

Index Terms—matrix recovery, M-estimation, matrix factor-
ization, robustness, statistical foundation

I. INTRODUCTION

Motivation. In matrix recovery from linear measurements,
we are interested in recovering an unknown matrix X ∈ Rm×n
from p < mn linear measurements bi = Tr(A>i X), where
each Ai ∈ Rm×n is a measurement matrix, i = 1, . . . p.
Usually it is expensive or even impossible to fully sample
the entire matrix X , and we are left with a highly incomplete
set of observations. In general it is not always possible to
recovery X under such settings, however, if we impose a low-
rank structure on X , it is possible to exploit this structure and
efficiently estimate X . The problem of matrix recovery arises
in a wide range of applications, such as collaborate filtering
[1], image recovery [2], structure from motion, photometric
stereo [3], system identification [4], and computer network
tomography [5].

Matrix factorization arguably is the most popular and in-
tuitive approach for low-rank matrix recovery. The basic idea
is to decompose the low-rank matrix X ∈ Rm×n into the
product of two matrices:

X = U>V, (1)

where U ∈ Rr×m and V ∈ Rr×n. In many practical problems,
the rank of a matrix is known in advance, or can be estimated
priori; see, for example, the rigid and nonrigid structures from
motion as well as image recovery. The matrix U and V can
also be interpreted as latent factors that drive the unknown
matrix X .

Matrix factorization is usually based on L2 loss, i.e. square
loss, which is optimal for Gaussian errors, however, its perfor-
mance may be severely deteriorated when the data is polluted
by outliers. For example, in a collaborate filtering system,
some popular items have many ratings regardless whether
they are useful, while others have few ones. There may even
exist shilling attacks, i.e. a user may consistent gives positive
feedback for their products or negative feedbacks to their
competitors regardless of the items themselves [6]. Recently
there are few attempts to address this problem; see, for
example, [2], [7]. However, to the best of our knowledge, they
focus on either L1 procedures or quantile related procedures,
and are only useful in limited scenarios. For low-rank matrix
recovery under M-estimation, He et al. [8] studied the use of
a few smooth loss function such as Huber and Welsch in this
setting. In this paper, we propose a more general framework
that is applicable to any M-estimation loss function, smooth
or non-smooth, and provide theoretical convergence guarantee
on the proposed state-of-the-art algorithm.

This paper introduces a general framework of M-estimations
[9]–[11] to matrix factorization. Specifically we consider the
loss function, related to an M-estimation, for matrix factor-
ization. The M-estimation is defined in a way similar to
the well known terminology “Maximum Likelihood Estimate
(MLE)” in statistics, and has many good properties that are
similar to those of MLE. In meanwhile it still retains intuitive
interpretation. The proposed loss function includes both well-
known L1 and L2 loss as special cases. In real applications,
we choose a suitable M-estimation procedure, according to our
knowledge of the data and specific priorities of the problem.
For example, the well known Huber M loss enjoys the property
of smoothness as L2 loss and robustness as L1 loss.

The loss functions of some M-estimation procedures are
smooth such as the L2 loss, while those of the others are
nonsmooth such as L1 and quantile loss. Note that the resulting
objective functions both have a bilinear structure due to the
decomposition at (1). For nonsmooth cases, we first consider
Nesterov’s smoothing method to obtain an optimal smooth
approximation [12], and the bilinear structure is preserved. The
alternating minimization method is hence used to search for
the solutions. At each step, we employ Nesterov’s momentum
method to accelerate the convergence, and it actually is easier
to find the global optima. Figure 1 gives the flowchart of
our complete algorithm. Theoretical convergence analysis is
conducted for both smooth and nonsmooth loss functions.

Contributions. We summarize our contributions below:
1. We propose to do matrix factorization based on the loss



function of an M-estimation. The proposed framework
is very general and applicable to any M-estimate loss
function, which gives us the flexibility in selecting a
suitable loss for the specific problem.

2. We propose to use Nesterov’s smoothing technique to
obtain an optimal smooth approximation when the loss
function is nonsmooth.

3. We consider the Nesterov’s momentum method, rather
than gradient decedent methods, to perform the optimiza-
tion at each step of the alternating minimization which
accelerate the convergence.

4. We provide theoretical convergence guarantees for the
propose algorithm.

5. We illustrate the usefulness of our method by conducting
extensive simulation experiments for both synthetic data
and real data.
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Figure 1: Flowchart of the whole algorithm

II. METHODOLOGY FRAMEWORK

Let X∗ ∈ Rm×n be the target low-rank matrix, and
Ai ∈ Rm×n with 1 ≤ i ≤ p be given measurement
matrices. Here Ai’s can be the same or distinct with each
other. We assume the observed signals b = (b1, ..., bp)

> have
the following structure:

bi = 〈Ai, X∗〉+ εi, i = 1, . . . , p, (2)

where 〈Ai, X〉 := Tr(A>i X), and εi is the error term. Suppose
that the rank of matrix X∗ is no more than r with r �
min(m,n, p). We then have the decomposition X∗ = U∗>V ∗,

and the matrix can be recovered by solving a non-convex
optimization problem,

min
U∈Rr×m,V ∈Rr×n

1

p

p∑
i=1

L(bi − 〈Ai, U>V 〉), (3)

where L(·) is the loss function related to an M-estimation; see,
for example, L(y) = y2 for the L2 loss, and |y| for the L1 loss.
Here L(·) usually is convex. Let A : Rm×n → Rp be an affine
transformation with the ith entry of A(X) being 〈Ai, X〉, and
M(x) = p−1

∑p
i=1 L(xi) for a vector x = (x1, ..., xp)

>. We
then rewrite (3) into a compact form

min
U∈Rr×m,V ∈Rr×n

M(b−A(U>V )). (4)

A. The case that M is not smooth
The loss function L(·), and hence M(·), may be non-

smooth for some M-estimation; see, for example, the L1 loss.
For this case, we first employ Nesterov’s smoothing method
to obtain an optimal smooth approximation; see [12] (pp. 129-
132).

Specifically, We first assume that the objective function M
has the following structure:

M(b−A(U>V )) = M̂(b−A(U>V )) (5)

+ max
u

{
〈B(b−A(U>V )), u〉2 − φ̂(u)

}
,

where M̂(·) is continuous and convex; see equation (2.2) in
[12].

Then the objective function M can be approximated by

Mπ(b−A(U>V )) = M̂(b−A(U>V )) (6)

+ max
u

{
〈B(b− (U>V )), u〉2 − φ̂(u)− πd2(u)

}
,

where π is the smoothness parameter, which is positive. Note
that Mπ(·) is smooth, and there are then many available
techniques for optimizing it.

B. Alternating Minimization
Due to the bilinear form with respect to U and V in the

objective functions (4) and (6), we consider an alternatively
minimization scheme. Specifically, in each iteration, we will
keep one of U and V fixed, optimize over the other, and then
switch in the next iteration until the algorithm converges. The
details

Moreover, the direct optimization at (4) may have unstable
solutions, and this paper solves this problem by adopting the
regularization method via Procrustes flow in [13]. Specifically,
rather than (4), we attempt to do the optimization below:

min
U∈Rr×m,V ∈Rr×n

M(b−A(U>V ))+λ‖UU>−V V >‖2F , (7)

where ‖ · ‖F stands for the Frobenius norm, and the ad hoc
choice of λ is 1/16. Denote by Mλ(U, V ) the regularized
version at (7), and all algorithms designed below are for this
objective function. For the case with nonsmooth M, we can
similarly define the regularized objective function, denoted by
Mλ

π(U, V ), and all algorithms for Mλ(U, V ) can then be
applied.



III. INITIALIZATION

When the starting values of U and V are orthogonal (or
almost orthogonal) to the true space, the designed algorithm
may never be able to converge to true values, and hence
an initialization procedure is needed to avoid this situation.
We here adopt the singular value projection (SVP), which
originates from [14] and was later used by [13], to provide
the initial values of U and V for the designed algorithm in
the next section. The main difference between our method and
the original one is summarized into Line 2 of Algorithm 1,
where we use the loss function related to an M-estimation,

∇XM(b−A(Xt)) = −1

p

p∑
i=1

L̇(b−A(Xt))Ai,

and L̇(·) is the derivative of L(·).

Algorithm 1: Initialization by SVP algorithm
Input: A, b, tolerance ε1, step size ξt with

t = 0, 1, · · · , and X0 = 0m×n
Output: Xt+1

1 Repeat
2 Y t+1 ← Xt − ξt∇XM(b−A(Xt))
3 Compute top r singular vectors of Y t+1:Ur,Σr, Vr
4 Xt+1 ← UrΣrVr
5 t← t+ 1
6 Until ‖Xt+1 −Xt‖F ≤ ε1

It is noteworthy to point out that Algorithm 1 can be
directly used to recover the matrix X∗ if it is iterated for
sufficient times. However, the singular value calculation here
is time-consuming when the dimension of matrix X∗ is large.
Furthermore, as an initialization, we do not need a very small
tolerance ε1, i.e., a rough output is sufficient. Our simulation
experiments show that, after several iterations of the SVP
algorithm, the resulting values will be close to the true ones,
while it is not the case for the random initialization.

Algorithm 1 actually can be rewritten into a compact form,

Xt+1 ← Pr
(
Xt − ξt∇XM(b−A(Xt))

)
,

where Pr denotes the projection onto the space of rank-r
matrices. Moreover, the original objective function M, rather
than the regularized one at (7), is used in Algorithm 1 and,
for the nonsmooth case, we will use Mπ at (6).

IV. ALGORITHM

There are two layers of iterations in our algorithm: the outer
layer is the alternating minimization; and the inner layer is
to employ Nesterov’s momentum algorithm to obtain updated
values of U t+1 and V t+1.

We first introduce the inner layer, and the Nesterov’s mo-
mentum method is used to update the values of U t and V t

to those of U t+1 and V t+1. Algorithm 2 gives the details
for updating the value of U t, and can be denoted by NAGU
for simplicity. Here the gradient ∇UMλ(U, V ) is defined as

Algorithm 2: Nesterov’s accelerate gradient (NAG)
method
Input: U t, V t, momentum parameter γ, learning rate

η, and tolerance ε2
Output: U t+1

1 Repeat
2 νt(i) = γνt(i−1) + η∇UMλ(U t(i−1) − γν

t
(i−1), V

t))

3 U t(i) = U t(i−1) + νt(i)
4 Until ‖U t(i) − U

t
(i−1)‖F ≤ ε2

the gradient with respect to U , and similarly we can define
∇VMλ(U, V ). Moreover, νt(i) stands for the momentum term,
γ is the momentum parameter, and η is the learning rate. The
value of γ is usually chosen to be around 0.9; see [15] and
[16]. Similarly we can give the detailed algorithm for updating
the value of V t, and it can be denoted by NAGV .

The alternating minimization method is employed for the
outer layer of iterations; see Algorithm 3 for details. The final
solutions can be denoted by Û and V̂ , and we then can use
Û>V̂ to approximate the low-rank matrix X∗.

Algorithm 3: Alternating Minimization

Input: U0, V 0

Output: Û , V̂
1 Repeat
2 1.1.Update U t with U t+1 = NAGU (U t, V t)
3 1.2.Update V t with V t+1 = NAGV (U t+1, V t)
4 Until converge

V. CONVERGENCE RESULTS

Suppose that U and V are a pair of solutions, i.e. X =
U>V . It then holds that, for an orthonormal matrix R sat-
isfying R>R = Ir, U† = RU and V † = RV are another
pair of solutions. To evaluate the performance of the proposed
algorithm, we first define a distance between two matrices,

dist(U,U†) = min
R∈Rr×r:R>R=Ir

‖U −RU†‖F ,

where U,U† ∈ Rr×m with m ≥ r; see [13].

Theorem 1. Let X ∈ Rm×n be a rank r matrix, with singular
values σ1(X) ≥ σ2(X) ≥ · · · ≥ σr(X) > 0 and condition
number κ = σ1(X)/σr(X). Denote by X = A>ΣB the
corresponding SVD decomposition. Let U = A>Σ1/2 ∈ Rm×r
and V = B>Σ1/2 ∈ Rn×r. Assume that A satisfies a rank-
6r RIP condition with RIP constant σ6r < 1

25 , ξt = 1
p . Then

using T0 ≥ 3 log(
√
rκ) + 5 iterations in Algorithm 1 yields a

solution U0, V0 obeying

dist

([
U0

V0

]
,

[
U
V

])
≤ 1

4
σr(U). (8)



Furthermore, starting from any initial solution obeying (8),
the t-th iterate of Algorithm 3 satisfies that

dist

([
Ut
Vt

]
,

[
U
V

])
≤ 1

4
(1− τ̃1)t

µ̃

ξ̃

1 + δr
1− δr

σr(U) (9)

Equation (8) in the above theorem guarantees that, under
the RIP assumption on linear measurements A, our algorithm
can achieve a good initialization. Equation (9) tells us that,
starting from a sufficiently accurate initialization, the algo-
rithm exhibits linear convergence rate. Moreover, the specific
convergence rates of both initialization at (8) and alternating
minimization at (9) also depend on the RIP constant δ6r.

Jain et al. [14] and Tu et al. [13] built the convergence
result for alternating minimization under least square matrix
factorization, however, their proving methods cannot be di-
rectly adopted to derive the results at (8). This paper extends
[14]’s SVP method to more general objective function based
on M-estimation, and a detailed proof for the convergence of
SVP initialization is also provided. For the linear convergence
at (9), Tu et al. [13] gave a similar result, while the gradient
descent method was used for the alternating minimization.
This paper adopts the proving technique in [17] to establish
the linear converge of the alternating minimization based on
Nesterov’s momentum method.

When M is not smooth, the regularized objective function
Mλ, defined as in (7), is also not smooth, while the function
Mλ

π is smooth. Denote {U‡, V ‡} = minU,V Mλ(U, V ) and
{Uπ‡, V π‡} = minU,V Mλ

π(U, V ).

Theorem 2. (Convergence of optimal solution of smoothed
objective function) As π → 0+, we have Uπ‡>V π‡ → U‡>V ‡.

The above theorem guarantees that the optimal solution
of the smoothed object function converges to that of the
nonsmooth one as the smoothness parameter π tends to zero.

Theorem 2 actually is one of our important contributions.
In the literature, most of state-of-art smoothing methods was
given without theoretical justifications; see, for example, [18].
Theorem 2 implies that the optimal solution for smooth
approximation will indeed converge to the solution for nons-
mooth objective function, i.e. the smooth and nonsmooth ob-
jective function will lead to same results under some regularity
conditions. Under matrix factorization settings, Yang et al. [19]
considered Nesterov’s smoothing method to obtain a smooth
approximation, while it handled the nonnegative matrix only,
which actually is a much simpler problem compared with the
one in this paper. Moreover, no strong theoretical convergence
guarantee was provided there.

VI. SIMULATION SETTINGS

As a robust alternative to L2 loss, L1 loss brings compu-
tation difficulties since it is not smooth. Using the Nesterov’s
smoothing method, we obtained the well-known Huber loss:

Lµ(a) =

{ 1
2µ |a|

2 for |a| ≤ µ
|a| − µ

2 otherwise
,

where µ is the smoothness parameter, and Lµ(a) will approach
the L1 loss as µ decreases. For the simulation section, we
compare the performance of Huber and L2 loss.

A. Synthetic data

We first generate a matrix X of size m × n by sampling
each entry from the Gaussian distribution N (0, 1), and the true
matrix X∗ is obtained via truncated singular value decomposi-
tion (SVD) by keeping the first r largest singular values. The
sampling matrices Ai, i = 1, . . . , p are independently pro-
duced by sampling each entry from the Gaussian distribution
N (0, 1). To evaluate the robustness of proposed method, we
consider eight distributions for the error term εi: (a) No error;
(b) N (0, 2); (c) N (0, 10); (d) logN (0, 1); (e) Cauchy; (f)
t(3); (g) Pareto(1, 1); (h) 0.9N (0, 1) + 0.1N (100, 1). Note
that (e) and (g) are heavy-tailed with the first order moment
being infinite. We consider two loss functions for the recovery:
Huber and L2 loss, and there are 100 replications for each error
distribution with m = n = 100, r = 10 and p = 5000.

We consider the following three metrics for evaluation: 1)
relative error (RE): ||X∗− Û>V̂ ||F /||X∗||F ; 2) recovery rate
(RR): fraction of element-wise relative error smaller than 5%,
where the element-wise relative error is defined as |(X∗ij −
(Û>V̂ )ij)/X

∗
ij |; 3) test error (MSE): a test set {A∗, b∗} with

p∗ = 100 was generated using the same pipeline, and the
test error is defined as p∗−1‖A∗(Û>V̂ )− b∗‖2. For both RE
and MSE, a smaller value is desired, while a value closer
to one indicates better performance for RR. Table I presents
the results based on the average of 100 replications, and we
highlight preferable figures by boldface.

When the data is very heavy-tailed (error (e) and (g)), the
algorithm will diverge for some cases. Table II shows the
percentages of convergence. For the other six distributions,
the algorithm converges for all replications. Moreover, we
observe that scaling down the learning rate can make the
algorithm converge, but this may severely slow down the
computation. Actually, when starting with a larger learning
rate, the algorithm with L2 loss tends to diverge, while that
with the Huber loss will converge faster.

When there is no error, Huber and L2 loss are comparable,
both reaching a recovery rate over 96%. In terms of the metrics
presented, L2 loss is better than Huber loss when the error
is normally distributed. However, Huber loss is more robust
when error introduces bias, skewness or outliers. Huber loss
has substantial advantage over L2 loss especially when the
error is skewed (error d) or heavy-tailed (error f ). When the
linear measurements are biased (error h) or contaminated by
heavy-tailed outliers (errors e & g), matrix recovery using L2

recovers only less than 7% of entries and has very large MSE,
while in contrast, employing Huber loss allows the procedure
to recover at least 40% of the entries and the recovery error
is less than 7% in general.

Figure 2 gives box plots of recovery rates for different
error distributions and loss functions. It can be seen that
recovery rates vary within a small scale, and the observations
are consistent with those in Table I. Overall, the algorithm



Error Loss RE RR MSE

(a)
Huber 0.003 0.960 0.030
L2 0.003 0.969 0.022

(b)
Huber 0.030 0.650 2.885
L2 0.028 0.671 2.487

(c)
Huber 0.163 0.185 84.628
L2 0.141 0.211 63.040

(d)
Huber 0.028 0.667 2.617
L2 0.038 0.580 4.571

(e)
Huber 0.039 0.570 4.832
L2 1.083 0.037 4742

(f)
Huber 0.020 0.757 1.238
L2 0.024 0.711 1.862

(g)
Huber 0.068 0.399 14.68
L2 1.825 0.021 12451

(h)
Huber 0.025 0.704 1.920
L2 0.494 0.063 791.1

Table I: Simulation results for synthetic data with eight er-
ror distributions: (a) No error; (b) N (0, 2); (c) N (0, 10);
(d) logN (0, 1); (e) Cauchy; (f) t(3); (g) Pareto(1, 1); (h)
0.9N (0, 1) + 0.1N (100, 1).

Error Huber L2

(e) 99.4% 80.0%
(g) 100.0% 62.8%

Table II: Percentage of the replications with the algorithm
converging and two error distributions: (e) Cauchy; (g)
Pareto(1, 1).

with Huber loss is comparable to that with L2 loss in special
cases (error a-c) and significantly better in general cases (error
d-h).

Figure 2: Box plots of recovery rates under Huber (left) and
L2 (right) loss functions with eight error distributions: (a) No
error; (b) N (0, 2); (c) N (0, 10); (d) logN (0, 1); (e) Cauchy;
(f) t(3); (g) Pareto(1, 1); (h) 0.9N (0, 1) + 0.1N (100, 1).

B. Real data

We further demonstrate the efficiency and robustness of our
low-rank matrix recovery algorithm by applying it to two real
examples.

The first is a chlorine concentration dataset, available in
[20]. The dataset contains a matrix of chlorine concentration
levels collected in a water distribution system. The observa-

Error Loss RE RR

(a)
Huber 0.095 0.130
L2 0.102 0.121

(c)
Huber 0.448 0.032
L2 0.432 0.032

(i)
Huber 0.097 0.132
L2 12.587 0.002

(j)
Huber 0.114 0.109
L2 N.A.

Table III: Performance of Chlorine concentration recovery
with four error distributions: (a) No error; (c) N (0, 10); (i)
1% outliers with outliers sampled from N (0, 10‖X∗‖F ); (j)
5% outliers with outliers sampled from N (0, 10‖X∗‖F ).

tions at each row are collected at a certain location, and the
columns correspond to observations at consecutive time points.

The second is compressed sensing of the MIT logo [14],
[21], which is a 38× 72 gray-scale image, see Figure 3.

Figure 3: MIT logo

1) Chlorine concentration recovery: We use a sub-matrix
of size 120×180 as our ground truth matrix X∗ and generated
p = 4200 sensing matrices and linear measurements according
to (2). We set r = 6 since the rank-6 truncated SVD of X∗

achieves a relative low error of 0.069. In this experiment, as
in [22], we use outliers to replace measurements bis, and the
outliers are sampled from N (0, 10‖X∗‖F ). The replacement
happens with probability 1% or 5%, which is denoted by error
distributions (i) and (j), respectively. As a comparison, we
also consider the cases with no error and the error distribution
of N (0, 10), which correspond to error distributions (a) and
(c) in synthetic data, respectively.

Table III gives the sensing performance under different lev-
els of outliers. The recovery rates are all low, and this possibly
is due to the fact that X∗ has many entries close to zero. As a
result, the relative error might be an more informative metric
here. The Huber and L2 loss have comparable performance
when there is no error (see also Figure 4) or normal error of a
moderate scale (see also Figure 5). Replacing 1% or 5% of the
measurements with N (0, 10‖X∗‖F ) outliers hardly affects the
recovery if Huber loss is used. However, for L2 loss, the result
is severely affected by outliers. When there is 5% outliers, the
algorithm is either too slow or diverges, thus the result is not
available (N.A.).

Figure 4-7 visualize the element-wise comparison between
the true matrix and recovery results by plotting the second
row of the matrices in a plot. Figure 4 shows that the
recovery is good when there is no error. Figure 5 shows that
both procedures are affected by the N (0, 10) noise, but the
reconstructed values still share the same pattern with the true
values. When there are 1% outliers, using the L2 loss results in
large fluctuations and could not recover the matrix (see Figure



6). In contrast, using Huber loss allows us to recover the true
X∗ even when 5% of the observations are outliers, see Figure
7.

Figure 4: Chlorine concentration recovery: no error

Figure 5: Chlorine concentration recovery: N (0, 10) error

Figure 6: Chlorine concentration recovery: 1% outlier

2) Compressed sensing of MIT logo: We use the gray-
scale logo as the ground truth matrix, which can be well-
approximated by a rank-4 matrix (RE = 0.0194 by truncated
SVD). We set m = 38, n = 72, r = 4, and take p = 1200
measurements using (2). Figure 8 visually compares the sens-
ing results under L2 loss and Huber loss.

If Huber loss is used, the MIT logo can be recovered in
all 4 scenarios examined. Recall that the N (0, 10) noise is
the most adverse case for Huber loss among the eight error
distributions tested using synthetic dataset. In this MIT logo
experiment, the reconstructed image is still recognizable when

Figure 7: Chlorine concentration recovery: 5% outlier

(a) Huber, no error (b) L2, no error

(c) Huber, N (0, 10) (d) L2, N (0, 10)

(e) Huber, Cauchy (f) L2, Cauchy

(g) Huber, Gaussian mixture (h) L2, Gaussian mixture

Figure 8: Compressed sensing of MIT logo. (a) No error; (b)
N (0, 2); (c) N (0, 10); (d) logN (0, 1); (e) Cauchy; (f) t(3);
(g) Pareto(1, 1); (h) 0.9N (0, 1) + 0.1N (100, 1).

error follows N (0, 10). For the other 3 types of errors, the
recovery error is hardly noticeable.

On the other hand, using L2 loss allows us to recover the
logo when there is no or Normal error. Under Normal error, L2

loss has a slight advantage over Huber loss, as the outcome
is a bit clearer. The reconstructed image is very blur when
Gaussian mixture error presents, and can not be recognized
under Cauchy error. Numerical metrics are supplied in Table
IV.

VII. CONCLUSION

This paper proposes to use the loss function of an M-
estimation in the matrix factorization for low-rank matrix re-
covery problem. The M-estimation is very general in statistics,
and it includes the famous L1, L2 and quantile loss functions
as special cases. Especially the Huber M-estimation enjoys the
robustness to outliers, while the loss function is smooth. The
alternating minimization method is hence applied and, at each
step, Nesterov’s momentum method is employed to accelerate



Error Loss RE RR

(a)
Huber 0.024 0.547
L2 0.026 0.538

(c)
Huber 0.275 0.105
L2 0.235 0.113

(e)
Huber 0.063 0.380
L2 9.795 0.002

(h)
Huber 0.043 0.487
L2 0.951 0.035

Table IV: Recovery of MIT logo with four error distributions:
(a) No error; (c) N (0, 10); (e) Cauchy; (h) 0.9N (0, 1) +
0.1N (100, 1).

the algorithm. The simulation experiments on both synthetic
data and real data demonstrate that the Huber M loss function
will result in a more robust method for skewed and/or heavy-
tailed data.

APPENDIX

Appendix A: Proof Sketch of Theorem 1

The proof idea for the convergence is the same nature as
the combined analysis of [13], [23] and [17], thus we only
provide the proof road map.

Below only provide theorems when M is smooth, for
nonsmooth M, will provide proof later. Assumptions for
function M(·):

1 This assumption is ξ-strongly convex assumption [24]:
M(A(Y )−b)−M(A(X)−b) ≥ 〈∇M(A(X)−b), Y −
X〉+ ξ‖A(X)−A(Y )‖22.

2 This assumption basically means that M(A(Y ) − b) −
M(A(X)−b) ≤ 〈∇M(A(X)−b), Y −X〉+η‖A(X)−
A(Y )‖22.

3 Without loss of generality, assume X∗ is the optimal
matrix, then M(A(X∗)− b) = 0, and M(X) ≥ 0.

4 Assume that M also defines a matrix norm when act on
a matrix X , and c1‖X‖22 ≤M(X) ≤ c2‖X‖22.

Remark: Assumption 1-2 defines the condition number of
function M(·), similar assumptions also appears in [25].
Usually κ = η/ξ is called the condition number of function f
[26].

Lemma A1. (Restricted Isometry Property (RIP)) A linear
map A satisfies the r-RIP with constant δr, if

(1− δr)‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δr)‖X‖2F
is satisfied for all matrices X ∈ Rm×n of rank at most r.

Lemma A2. [27] Let A satisfy 2r-RIP with constant δ2r.
Then for all matrices X ,Y of rank at most r, we have

|〈A(X),A(Y )〉 − 〈X,Y 〉| ≤ δ2r‖X‖F ‖Y ‖F .

The next lemma characterizes the convergence rate of
initialization procedure:

Lemma A3. [28] Let X ∈ Rm×n be an arbitrary matrix of
rank r. Also let b = A(X) ∈ Rp be p linear measurements.
Consider the iterative updates

Y t+1 ← Pr
(
Y t − ξt∇XM(A(Y t)− b)

)
.

where Y i are m× n matrices. Then

‖Y t −X‖F ≤ ψ(A)t‖Y 0 −X‖F .

holds. Here ψ(A) is defined as

ψ(A) = 2sup‖X‖F=‖Y ‖F=1,rank(X)≤2r,rank(Y )≤2r

|〈A(X),A(Y )〉 − 〈X,Y 〉|.

We can prove this lemma by using the results of Theorem
A1.

First we will prove that the initialization procedure is indeed
converge to the true value of X .

A. proof of equation (8) in Theorem 1

Lemma A4 (Lemma for initialization). Assume that ξ 1+δ2k
1−δ2k −

η > 0. Denote M̃(X) =M(A(X)−b). Let X∗ be an optimal
solution and let Xt be the iterate obtained by algorithm 1 at
t-th iteration. Then

M̃(Xt+1) ≤ M̃(Xt) +

(
ξ

1 + δ2k
1− δ2k

− η
)
‖A(X∗ −Xt)‖22.

Proof. From assumption, we have

M̃(Xt+1)− M̃(Xt)

≤ 〈∇M̃(Xt), Xt+1 −Xt〉+ ξ‖A(Xt+1)−A(Xt)‖22
≤ 〈∇M̃(Xt), Xt+1 −Xt〉+ ξ(1 + δ2k)‖Xt+1 −Xt‖2F

where the last inequality comes from RIP. Let Y t+1 = Xt −
1

2ξ(1+δ2k)
∇M̃(Xt), and

ft(X) = 〈∇M̃(Xt), X −Xt〉+ ξ(1 + δ2k)‖X −Xt‖2F .

Then

ft(X) = ξ(1 + δ2k)[
‖X − Y t+1‖2F −

1

4ξ2(1 + δ2k)2
‖∇M̃(Xt)‖2F

]
By definition, Pk(Y t+1) = Xt+1, then ft(X

t+1) ≤ ft(X
∗).

Thus

M̃(Xt+1)− M̃(Xt) ≤ ft(Xt+1) ≤ ft(X∗)
= 〈∇M̃(Xt), X∗ −Xt〉+ ξ(1 + δ2k)‖X∗ −Xt‖2F
≤ ∇M̃(Xt), X∗ −Xt〉+ ξ

1 + δ2k
1− δ2k

‖A(X∗)−A(Xt)‖2F

≤ ∇M̃(Xt), X∗ −Xt〉+ η‖A(X∗)−A(Xt)‖2F

+

(
ξ

1 + δ2k
1− δ2k

− η
)
‖A(X∗)−A(Xt)‖2F

≤ M̃(X∗)− M̃(Xt)

+

(
ξ

1 + δ2k
1− δ2k

− η
)
‖A(X∗)−A(Xt)‖2F

Theorem A1. Let b = A(X∗) + e for rank k ma-
trix X∗ and an error vector e ∈ Rp, D = 1

C2 +(
ξ 1+δ2k
1−δ2k − η

)(
2
C2 +

√
2
c1

1
C + 1

c1

)
. Then, under the assump-

tion that D < 1, algorithm 1 with step size ηt = 1
2ξ(1+δ2k)



outputs a matrix X of rank at most k such that M(A(X)−
b) ≤ (C2 + ε)‖e‖

2

2 , ε ≥ 0, in at most
⌈

1
logD log (C2+ε)‖e‖2

2c2‖b‖22

⌉
iterations.

Proof. Let the current solution Xt satisfy M(Xt) ≥ C2‖e‖2
2 ,

by lemma A4 and b−A(X∗) = e, we have

M(Xt+1) ≤ ‖e‖
2

2
+

(
ξ

1 + δ2k
1− δ2k

− η
)
‖b−A(Xt)− e‖2

≤ ‖e‖2

2
+

(
ξ

1 + δ2k
1− δ2k

− η
)(
‖b−A(Xt)‖2

−2e>(b−A(Xt)) + ‖e‖2
)

≤ M(Xt)

C2
+

(
ξ

1 + δ2k
1− δ2k

− η
)(

2M(Xt)

C2

+
M(Xt)

c1
+

√
2M(Xt)

C
√
c1

= DM(Xt).

Since D < 1, combine the fact that M(X0) ≤ c2‖b‖2, by
taking t =

⌈
1

logD log (C2+ε)‖e‖2
2c2‖b‖22

⌉
, we complete the proof.

The following lemma was adapted from [13]:

Lemma A5. Let X1, X2 ∈ Rm×n be two rank r matrices with
SVD decomposition X1 = U>1 Σ1V1, X2 = U>2 Σ2V2, for l =

1, 2, define Xl = U>l Σ
1/2
l ∈ Rm×r, Yl = V >l Σ

1/2
l ∈ Rn×r.

Assume X1, X2 obey ‖X2 −X1‖ ≤ 1
2σr(X1). Then:

dist2
([

X2

Y2

]
,

[
X1

Y1

])
≤ 2√

2− 1

‖X2 −X1‖2F
σr(X1)

.

Combine lemma A1, A2 and A5, follow the similar route
of [13], we can prove that using more than 3 log(

√
rκ) + 5

iterations of initialization algorithm 1, we can obtain

dist
([

U0

V0

]
,

[
U
V

])
≤ 1

4
σr(U).

Thus we finished the proof of convergence in the initializa-
tion procedure, next we will study the linear decay rate for
each iteration for penalized object function.

Before study the theoretical properties, we first rearrange
object function (7) by using the uplifting technique so that
it’s easy to simultaneously consider M and the regularization
term, to see this, consider rank r matrix X ∈ Rm×n with SVD
decomposition X = U>ΣV , define Sym : Rm×n → Rm×n
as

Sym(X) =

[
0m×m X
X> 0n×n

]
.

Given the block matrix A =

[
A11 A12

A21 A22

]
with

A11 ∈ Rm×m, A12 ∈ Rm×n, A21 ∈ Rn×m,

A22 ∈ Rn×n. Define Pdiag(A) =

[
A11 0m×n

0n×m A22

]
,

Poff(A) =

[
0m×m A12

A21 0n×n

]
, define B : R(m+n)×(m+n) →

R(m+n)×(m+n) as the uplift version of A operator:

B(X)k = 〈Bk, X〉, where Bk = Sym(X).

Define W = [U>;V >], Then as a result, we can rewrite object
function (7) as:

g(W ) := g(U, V )

=M(b−A(U>V )) + λ‖UU> − V V >‖2F
=

1

2
M
(
B(Sym(U>V ))− Sym(X)

)
(10)

+
1

2
λ‖Sym(U>V )− Sym(X)‖2F .

From equation (10) we can see that actually the non-penalize
part and penalize part have similar structure.

As a result, although we made the assumption 1,2,4 on
function M, we can see from equation (10) that after adding
the penalization term, the penalized object function still retains
similar property, as for assumption 3, we can also use some
location transform techniques to make the penalized object
function satisfies this assumption, as a result, it does not make
so much difference whether we deal with penalized object
function or un-penalized object function.

Then similar to [13], the alternating minimization incorpo-
rate with Nesterov’s momentum algorithm with respect to U
and V (sub vector of W ), respectively, are actually can be
written as the NAG algorithm applied to g(W ) with respect
to W .

For the convergence analysis of Nesterov’s momentum
algorithm, we employ follow lemma, which is a theorem in
[17]:

Lemma A6. For minimization problem minx∈X f(x), where
x is a vector, using the Lyapunov function

Ṽk = f(yk) + ξ‖zk − x∗‖2

it can be shown

Ṽk+1 − Ṽk = −τkṼk + εk+1 (11)

where the error is expressed as

εk+1 =

(
τ2k
4ξ

)
‖∇f(xk)‖2 +

(
τkη −

ξ

τk

)
‖xk − yk‖2,

τk is the step size in Nesterov’s momentum algorithm, usually
equals 1/

√
κ, yk+1 = xk − 1

2η∇f(xk), xk+1 = 1
1+τk

yk +
τk

1+τk
zk, zk+1 = zk + τk

(
xk+1 − zk − 1

2ξ∇f(x+ k + 1)
)
.

Assume that τ0 = 0, τ1 = τ2 = · · · = τ̃ , and ε1, · · · , εk+1

has a common upper bound ε̃, then (11) implies:

|Ṽk+1| = |(1− τ̃)k+1Ṽ0 +

k+1∑
i=1

(1− τ̃)i−1εk+2−i|

≤ (1− τ̃)k+1|Ṽ0|+
ε̃− ε̃(1− τ̃)k

τ̃

Substitute xk with Wk+1 = [Uk+1, V k+1]>, f with g, if we
want to deal with the convergence analysis with respect to
Wt −W ∗ and W0 −W ∗, we need to handle two parts, the
first part is the error part with respect to ε̃, this can be solved
by choosing initial estimate close to true value, as a result
‖∇f(x1)‖ can be arbitrary close to 0. For the sake of notation



simplicity, assume that ε̃−ε̃(1−τ̃)
k

τ̃ ≤ ε†. Since Ṽk still satisfies
assumption 1 and 2, without loss of generality, assume the
corresponding parameter are ξ̃ and η̃.

In the next, we want to seek the relation of Wt −W ∗ with
Ṽt. This will involve the assumption 1 and 2 as well as lemma
A1. With a rough handle of the gradient part in assumption 1
and 2, we can obtain

ξ̃‖A(Wt)−A(W ∗)‖22 ≤ (1− τ̃)tµ̃‖A(W0)−A(W ∗)‖22 + ε̃

Notice that ε̃ can be made arbitrary small so that

ξ̃‖A(Wt)−A(W ∗)‖22 ≤ (1− τ̃1)tµ̃‖A(W0)−A(W ∗)‖22
and 1 − τ̃1 still larger than 0 smaller than 1. Employ the
Restricted Isometry Property,

ξ̃(1− δr)‖Wt −W ∗‖22 ≤ (1− τ̃1)tµ̃(1 + δr)‖W0 −W ∗‖22
Thus

dist
([

Ut
Vt

]
,

[
U
V

])
≤ (1− τ̃1)t

µ̃

ξ̃

1 + δr
1− δr

dist
([

U0

V0

]
,

[
U
V

])
≤ 1

4
(1− τ̃1)t

µ̃

ξ̃

1 + δr
1− δr

σr(U)

Theorem 1 is proved.
Remark on equation (10): From (10), we provide a guideline

with respect to the selection of λ compared with [13], by
combine (10) and assumption 4.

Appendix B: Proof Sketch of Theorem 2

Proof. Employ Theorem 1 in [29] and Lemma 3 in [30] we
know that

Mλ
π(b−A(Uπ∗>V π∗))→Mλ(b−A(U∗>V ∗))

Giving the fact that Mλ
π and Mλ are convex, as well as the

restricted isometry property, we finish the proof of Theorem
2.
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