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Highlights

• repair is performed if a combination of degradation processes exceeds a given value

• considered the covariates and random effects in the degradation processes

• derived the probability distributions of the first hitting times

• developed maintenance policies for such a system under such settings
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Abstract

This paper develops maintenance policies for a system under condition monitoring. We assume that a

number of defects may develop and the degradation process of each defect follows a gamma process. The

system is said failed if a linear combination of the degradation processes exceeds a pre-specified threshold.

Preventive maintenance is performed. The system is renewed after several preventive maintenance activ-

ities have been performed. The main objective of this paper is to optimise the time between preventive

maintenance actions and the number of the preventive maintenance. Numerical examples are given to

illustrate the results.

Keywords: (T) maintenance; gamma process; geometric process; preventive maintenance; condition-based

maintenance

1 Introduction

Condition-based maintenance has been extensively studied in the reliability literature due to the

emergence of advanced condition monitoring and data collection techniques. Many papers have

been published either to model the degradation processes of assets (Si, Wang, Hu, Zhou, & Pecht,

2012; Ye & Chen, 2014; Deng, Barros, & Grall, 2016; Zhao, Liu, & Liu, 2018) or to optimise

maintenance policies (Caballé, Castro, Pérez, & Lanza-Gutiérrez, 2015; Liu, Wu, Xie, & Kuo,

2017; Zhao, Xu, & Liu, 2018). For a comprehensive view of the development in condition-based

maintenance, the reader is referred to review papers, see Si, Wang, Hu, and Zhou (2011); Alaswad

and Xiang (2017); Zhang, Si, Hu, and Lei (2018), for example.

1 Corresponding author. Email: s.m.wu@kent.ac.uk. Telephone: 0044 1227 827 940.
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A number of degradation processes have been considered in condition-based maintenance related

literature. Many authors investigate different maintenance policies when they consider only one

degradation process such as the gamma process (Caballé & Castro, 2017), the Wiener process

(Sun, Ye, & Chen, 2018), the inverse Gaussian process (Chen, Ye, Xiang, & Zhang, 2015), and

the Ornstein-Uhlenbeck process (Deng et al., 2016). Some consider condition-based maintenance

policies for assets suffering a number of degradation processes. For example, Caballé et al. (2015)

proposes a condition-based maintenance strategy for a system subject to two dependent causes

of failure, degradation and sudden shocks: The internal degradation is reflected by the presence

of multiple degradation processes in the system, and the degradation processes start at random

times following a non-homogeneous Poisson process and their growths are modelled by using a

gamma process. Huynh, Grall, and Bérenguer (2017) consider maintenance policies monitored by

a process of the average of several degradation processes.

In this paper, we consider a system on which many different types of defects develop over time.

If a linear combination of the degradation processes exceeds a pre-specified threshold, the system

is said failed. There are many examples behaving like that in the real world. For example, on

a pavement network, several different types of defects, such as fatigue cracking and pavement

deformation, may develop simultaneously. The mechanism of these defects are different: fatigue

cracking is caused by the failure of the surface layer or base due to repeated traffic loading,

and pavement deformation is the result of weakness in one or more layers of the pavement that

has experienced movement after construction (Adlinge & Gupta, 2013). As such, from a data

modelling perspective, the deteriorating processes of these defects are different in the sense that

the parameters in the degradation processes may differ. Furthermore, both the approaches to

repairing these defects and the cost of repairing them differ from defect to defect. In a civil

engineering related journal, Shah, Jain, Tiwari, and Jain (2013) propose a linear combination

of defects of pavement condition indexes and suggest that a pavement needs maintenance once

its combined condition index exceeds a pre-specified threshold. But they did not discuss how the

maintenance policy may be performed. It should also be noted that such deterioration might cause

a partial loss of system functionality. As such, there is no need to overhaul or renew the entire

system unless it has experienced a number of preventive maintenance.

Inspired by the above real world example, this paper develops maintenance policies for a system

with a number of degradation processes. Preventive maintenance (PM) is conducted on the system.

The effectiveness of th PM is modelled by the geometric process (Lam, 1988). Costs of repairing

different defects during a PM are different and, if the linear combination of the magnitudes of a

set of defects exceeds a pre-specified threshold, an additional cost (or cost of failure) is incurred.

A replacement is carried out once the number of PMs exceeds an optimum value.

The remainder of the paper is structured as follows. Section 2 introduces the notations and

assumptions that will be used in the paper. Section 3 derives the distribution of the first hitting

time and considers random effects on the degradation processes. Section 4 derives maintenance

policies and proposes methods of optimisation. Section 5 illustrates the maintenance policies with

numerical examples. Section 6 offers discussion on some of the assumptions used in this paper.
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Section 7 concludes the paper.

2 Assumptions

This paper makes the following assumptions.

A1). Defects of n types develop through n degradation processes on a system, respectively.

A2). The system is new at time t = 0.

A3). Two types of maintenance are taken: preventive maintenance and a complete replacement of

the system. The preventive maintenance restores the system to a state between a good-as-new

state (which is resulted from a replacement) and a bad-as-old state (which is resulted from

a minimal repair) and is modelled using a geometric process. The replacement completely

renews the system.

A4). Preventive maintenance is carried out every T time units (T > 0) and preventive replacement

is performed at the time of the N -th PM.

A5). On performing maintenance actions during a PM, a sequence of costs are incurred. Repairing

the k-th (k = 1, 2, . . . , n) defect incurs two types of cost: a fixed cost, and a variable cost

that depends on the degradation level of the k-th defect. Furthermore, if a linear combination

of the magnitudes of a set of defects exceeds a pre-specified threshold, an additional cost is

incurred.

A6). Maintenance time is so short that it can be neglected.

3 Model development

Van Noortwijk and Klatter (1999) optimise inspection decisions for scour holes, on the basis

of the uncertainties in the process of occurrence of scour holes and, given that a scour hole has

occurred, of the process of current-induced scour erosion. The stochastic processes of scour-hole

initiation and scour-hole development are regarded as a Poisson process and a gamma process,

respectively. Lawless and Crowder (2004) construct a tractable gamma-process model that incor-

porates a random effect and fit the model to some data on crack growth. In the following, we make

similar assumptions as those in Van Noortwijk and Klatter (1999): The stochastic processes of the

initiations of defects and the stochastic processes of the developments of the defects are regarded

as Poisson processes and gamma processes, respectively.

3.1 Modelling the occurrences of the defects

Denote T1, T2, ... as the times between successive occurrences of the defects, where T1, T2, ... are

an infinite sequence of non-negative real-valued random quantities. Assume the defect initiation

follows a homogeneous Poisson process. Similar to the assumptions made in Van Noortwijk and

Klatter (1999), we assume the defect inter-occurrence times are exchangeable and they exhibit

the memorylessness property. That is, the order in which the defects occur is irrelevant and the
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probability distribution of the remaining time until the occurrence of the first defect does not

depend on the fact that a defect has not yet occurred since the last maintenance. According to

Van Noortwijk and Klatter (1999), the joint probability density function of T1, T2, ...., Tn is given

by

pT1,T2,...,Tn(t1, ..., tn) =
∫ ∞

0

n∏

k=1

1

λ
exp

(
−tk
λ

)
p(λ) dλ, (1)

where (t1, t2, ...., tn) ∈ Rn
+, p(λ) = 1

Γ(ν)
µνλ−(ν+1)e−ν/λ1{λ>0}, µ and ν are parameters that can

be estimated from given observations, 1{λ>0} = 1 if λ > 0 and 1{λ>0} = 0 otherwise. With the

constraint T1, T2, ...., Tn < T , we assume that the n defects occur during the time interval (0, T ).

For those defects occurring within other time intervals (kT, (k + 1)T ) (for k=1,2,...,), a similar

joint probability density function can be derived.

3.2 Degradation processes

We consider the situation where n types of defects may develop and denote their degradation

processes by {Xk(t), t ≥ 0} (k = 1, 2, ..., n), respectively. That is, Xk(t) is the deterioration level

of the kth degradation process at time t and {Xk(t), k=1,...,n} are independent with resepct to

k.

Assume that Xk(t) has the following properties:

a) Xk(0) = 0,

b) the increments ∆Xk(t) = Xk(t+ ∆t)−Xk(t) are independent of t,

c) ∆Xk(t) follows a gamma distribution Gamma(αk(t+ ∆t)− αk(t), βk) with shape parameter

αk(t+∆t)−αk(t) and scale parameter βk, where αk(t) is a given monotone increasing function

in t and αk(0) = 0.

Xk(t) follows the gamma distribution Gamma(αk(t), βk) with mean βkαk(t) and variance β2
kαk(t),

and its probability density function is given by

f(x;αk(t), βk) =
β
−αk(t)
k

Γ(αk(t))
xαk(t)−1e−x/βk1{x>0}, (2)

where Γ(·) is the gamma function: Γ(z) =
∫∞
0 uz−1e−udu.

Suppose that the system is said failed as long as a linear combination of the magnitudes of the

n defects exceeds a pre-specified threshold. We consider that the overall degradation of the system

is represented by

Y (t) =
n∑

k=1

bkXk(t), t ≥ 0, bk ≥ 0, (3)

where bk (with bk > 0) is the weight of defect k. Denote Yk(t) = bkXk(t). Then Y (t) =
∑n
k=1 Yk(t)

and Yk(t) has pdf f(x;αk(t), bkβk).

Then the expected value and the variance of Y (t) are given by

E(Y (t)) =
n∑

k=1

bkβkαk(t), (4)

5
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and

var(Y (t)) =
n∑

k=1

b2
kβ

2
kαk(t), (5)

respectively.

Furthermore, the overall degradation process {Y (t), t ≥ 0}, given by Eq. (3), is a stochastic

process with the following properties.

a) Y (0) =
∑n
k=1 bkXk(0) = 0,

b) If the increment ∆Xk(t) = Xk(t+∆t)−Xk(t) is independent of t, then ∆Y (t) =
∑n
k=1 bk∆Xk(t)

is independent of t as well,

According to Moschopoulos (1985), the density function of Y (t) can be expressed by

gY (t)(y) = D(t)
∞∑

k=0

ζk(t)β
−ρ(t)−k
0

Γ(ρ(t) + k)
yρ(t)+k−1e−y/β0 , y > 0, (6)

where β0 = min1≤k≤n bkβk. D(t) and ρ(t) are given by

D(t) =
n∏

k=1

(
β0

bkβk

)αk(t)

, (7)

and

ρ(t) =
n∑

k=1

αk(t), t ≥ 0, (8)

respectively, and ζk+1(t) (for k = 0, 1, 2, . . .) is obtained in a recursive way as

ζk+1(t) =
1

k + 1

k∑

j=1

jηj(t)ζk+1−j(t),

with ζ0(t) = 1 and ηk(t) being given by

ηk(t) =
n∑

j=1

αj(t)(1−
β0

bkβk
)k/k.

In the special case that bkβk = bβ for all k, then Y (t) ∼ Gamma(
∑n
k=1 αk(t), bβ). That is, if

bkβk = bβ for all k, {Y (t), t ≥ 0} is a gamma process.

Example 1 We consider a system subject to three degradation processes {X1(t), t ≥ 0}, {X2(t), t ≥ 0}
and {X3(t), t ≥ 0}, respectively. These degradation processes start at random times according to a

homogeneous Poisson process with parameter λ = 1. The degradation processes develop according

to a non-homogeneous gamma process with parameters α1 = 1.1, β1 = 1.1, α2 = 1.2, β2 = 1.2 and

α3 = 1.3, β3 = 1.3. Figure 1 shows these degradation processes and the process Y (t) =
∑3
j=1 bjXj(t)

with b1 = 1, b2 = 0.8, and b3 = 0.9, respectively.
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Fig. 1. Realisation of three degradation processes and a linear combination of them.

3.2.1 First hitting time

To characterise the maintenance scheme of this system, the distribution of the first hitting time

of the process {Y (t), t ≥ 0} is obtained. Starting from Y (0) = 0 and for a fixed degradation level

L, the first hitting time σL is defined as the amount of time required for the process {Y (t), t ≥ 0}
to reach the degradation level L, that is,

σL = inf(t > 0 : Y (t) ≥ L).

The distribution of σL is obtained by

FσL(t) = P (Y (t) ≥ L)

=
∫ ∞

L
gY (t)(y)dy

=
∫ ∞

L
D(t)

∞∑

k=0

ζk(t)β
−ρ(t)−k
0

Γ(ρ(t) + k)
yρ(t)+k−1e−y/β0dy

= D(t)



∞∑

k=0

ζk(t)β
−ρ(t)−k
0

Γ(ρ(t) + k)

∫ ∞

L
yρ(t)+k−1e−y/β0dy




= D(t)
∞∑

k=0

ζk(t)

Γ(ρ(t) + k)
Γui(ρ(t) + k, L/β0), (9)

where Γui(ρ(t) + k, L/β0) denotes the upper incomplete gamma function and is given by

Γui(ρ(t) + k, L/β0) =
∫ ∞

L/β0
zρ(t)+k−1e−zdz.

We can link the probability distribution FσL(t) with the probability distributions of the first hitting

times of the processes Xk(t)(k = 1, 2, ..., n) that compose Y (t). That is, FσL(t) can be expressed

7
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by

FσL(t) = D(t)
∞∑

k=0

ζk(t)Fσ∗
L,k

(t), t ≥ 0,

where Fσ∗
L,k

(t) denotes the distribution of the first hitting time to exceed L for a gamma process

with parameters ρ(t) + k and β0, where ρ(t) is given by Eq. (8) and β0 = min1≤k≤n bkβk.

3.3 The process of repair cost

Cost of repairing different effects, such as fatigue cracking and pavement deformation in a

pavement network, may be different. Denote ck,y as the cost of repairing the kth defect with

deterioration level y. We assume that this cost is proportional to the deterioration level, that is,

ck,y = yck, where ck is the cost of repairing the kth defect per unit of deterioration. We define

U(t) =
∑n
k=1 ckXk(t) as the total repair cost at time t. Then {U(t), t ≥ 0} is the cost growth process

and ckXk(t) has pdf f(x;αk(t), ckβk). The expected value and the variance of U(t) can be obtained

by replacing bk with ck in Eq. (4) and Eq. (5), respectively. The pdf of U(t) =
∑n
k=1 ckXk(t) can

be obtained via replacing bk with ck in the pdf of Y in Eq. (6).

The covariance between Y (t) and U(t) is given by

Cov(Y (t), U(t)) =
n∑

k=1

n∑

j=1

bkcjcov(Xk(t), Xj(t)). (10)

Since Xk(t) for k = 1, 2, ... are independent, cov(Xk(t), Xj(t)) = 0 for k 6= j, then

Cov(Y (t), U(t)) =
n∑

k=1

bkckαk(t)β
2
k(t). (11)

In most existing research when the maintenance cost of one degradation process Y (t) is discussed,

once the magnitude of the degradation Y (t) is given, the associated cost of repair may be crY (t),

which is proportional to Y (t) (where cr denotes the cost of repairing a unit of Y (t)). However, in

our setting, U(t) forms a stochastic process, which is not proportional to Y (t). This is because

there are many different combinations of Yk(t) that can be summed up to obtain the same value of

Y (t). Correspondingly, the different Yk(t)’s incur different repair costs ck,y with k = 1, 2, ..., n. As

such, for a given Y (t) at a given time point t, its associated repair cost U(t) is a random variable

that may not have a linear correlationship with Y (t).

The following result gives the probability density function of the cost of repair, conditioning on

the assumption that the linear combination of the degradation processes exceeds the pre-specified

value L.

Lemma 1 The conditional probability fU(t)|Y (t)(y, z) is given by

fU(t)|Y (t)(y, u) =
1

4π2gY (t)(y)

∫ ∞

−∞

∫ ∞

−∞

(
n∏

k=1

(1− i(bkt1 + ckt2)βk)
−αk(t)

)
e−it1y−it2u dt1 dt2. (12)
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Proof. The characteristic function of the bivariate vector (Y (t), U(t)) is derived by

φY (t),U(t)(t1, t2) = E[exp(it1Y (t) + it2U(t))]

= E[exp(it1
n∑

k=1

bkXk(t) + it2
n∑

k=1

ckXk(t))]

= E[exp(i
n∑

k=1

(bkt1 + ckt2)Xk(t)]

=
n∏

k=1

E[exp(i(bkt1 + ckt2)Xk(t)]

=
n∏

k=1

φXk(t)(bkt1 + ckt2). (13)

Since φXk(t)(bkt1 + ckt2) = (1− i(bkt1 + ckt2)β−1
k )−αk(t), we can obtain

fY (t),U(t)(y, u) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
φY (t),U(t)(t1, t2)e−it1y−it2u dt1 dt2

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞

(
n∏

k=1

φXk(t)(bkt1 + ckt2)

)
e−it1y−it2u dt1 dt2

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞

(
n∏

k=1

(1− i(bkt1 + ckt2)β−1
k )−αk(t)

)
e−it1y−it2u dt1 dt2. (14)

Hence, the conditional probability fU(t)|Y (t)(y, u) is given by

fU(t)|Y (t)(y, u) =
fY (t),U(t)(y, u)

gY (t)(y)

=
1

4π2gY (t)(y)

∫ ∞

−∞

∫ ∞

−∞

(
n∏

k=1

(1− i(bkt1 + ckt2)βk)
−αk(t)

)
e−it1y−it2u dt1 dt2, (15)

where gY (t)(y) is given by Eq. (6). This establishes Lemma 1. �

3.4 Incorporating random effect

It is known that random environment may affect the degradation processes of a system. For

example, the deterioration processes of the defects on a pavement network may be affected by

covariates such as the weather condition (the amount of rainfall) and traffic loading. If it is

possible to collect weather condition data (eg., the amount of rainfall in a time period) and traffic

loading data, one may incorporate co-variates in the modelling. In addition, we may also consider

random effects to account for possible model misspecification and individual unit variability.

Bagdonavicius and Nikulin (2001) and Lawless and Crowder (2004) consider covariates in a

gamma process. When incorporating covariates, represented by vector z, for example, Bagdonavicius

and Nikulin (2001) incorporate αk(t) with αk(te
zτ δ) (where zτ is the transpose of z), Lawless and

Crowder (2004) replace βk with βk(z), in which z has the effect of rescaling X(t) without changing

9
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the shape parameter of its gamma distribution. βk(z) may have a regression function expression

such as βk(z) = exp(βτz), where βτ are regression coefficients. In the following, we adopt the

latter method and assume a degradation process {X ′k(t), t ≥ 0}, which takes both covariates and

random effects into consideration. Then, X ′k(t) has density function fγ(x
′;αk(t), w0βz,k), where w0

is a random effect and βz,k represents βk(z). One may assume that w = w−1
0 has gamma distribu-

tion Gamma(γ−1, δ) and density function gγ−1,δ(w) = γδ

Γ(δ)
wδ−1e−γw; w has mean δ

γ
and variance

σ2
z = δ

γ2
. If (X ′1, X

′
2, . . . , X

′
n, w0) has joint density h(x1, x2, . . . , xn, w), then the conditional density

of X ′1, X
′
2, . . . , X

′
n given w0 = w, is

h0(x1, x2, . . . , xn|w) =
h(x1, x2, . . . , xn, w)

gγ−1,δ(w)
. (16)

For given weather conditions and traffic loading, one can regard X ′1, X
′
2, ..., X

′
n as independent.

That is, X ′1, X
′
2, ..., X

′
n are conditionally independent given w0 = w. Then,

h(x1, x2, . . . , xn, w) =h0(x1, x2, . . . , xn|w)gγ−1,δ(w)

=gγ−1,δ(w)
n∏

k=1

hk(xk|w). (17)

Since hk(xk|w) =
(
βz,k
w

)−αk(t)

Γ(αk(t))
x
αk(t)−1
k e

−w xk
βz,k , if (X ′1, X

′
2, . . . , X

′
n) has joint density function f0(x1, x2, . . . , xn),

then

f0(x1, x2, . . . , xn) =
∫ +∞

0
gγ−1,δ(w)

n∏

k=1

hk(xk|w) dw

=
∫ +∞

0




n∏

k=1

(
βz,k
w

)−αk(t)

Γ(αk(t))
x
αk(t)−1
k


 e−w

∑n

k=1

xk
βz,k gγ−1,δ(w) dw

=




n∏

k=1

β
−αk(t)
z,k

Γ(αk(t))
x
αk(t)−1
k



∫ ∞

0

γδ

Γ(δ)
wδ+ρ(t)−1 exp

{
−w

(
γ +

n∑

k=1

xk
βz,k

)}
dw

=




n∏

k=1

β
−αk(t)
z,k

Γ(αk(t))
x
αk(t)−1
k



∫ ∞

0

γδ

Γ(δ)
wδ+ρ(t)−1 exp

{
−w

(
γ +

n∑

k=1

xk
βz,k

)}
dw

=
γδΓ(δ + ρ(t))

Γ(δ)

(
γ +

n∑

k=1

xk
βz,k

)δ+ρ(t)



n∏

k=1

β
−αk(t)
z,k

Γ(αk(t))
x
αk(t)−1
k


 , (18)

where ρ(t) =
∑n
k=1 αk(t).

3.4.1 First hitting time

Next, we compute the first hitting time of the process {Y (t), t ≥ 0} to exceed a degradation

level L. Let

σL = inf(t > 0 : Y (t) ≥ L).

10
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Then the probability distribution of σL is given by

FσL(t) =
∫
· · ·

∫

∑n

k=1
bkXk(t)≥L

∫ +∞

0
gγ−1,δ(w)

n∏

k=1

hk(xk|w) dw dx1... dxn

=
∫
· · ·

∫

∑n

k=1
bkXk(t)≥L

∫ +∞

0




n∏

k=1

(
βz,k
w

)−αk(t)

Γ(αk(t))
x
αk(t)−1
k


 e−w

∑n

k=1

xk
βz,k gγ−1,δ(w) dw dx1... dxn

=
∫ +∞

0




∫
· · ·

∫

∑n

k=1
bkXk(t)≥L




n∏

k=1

(
βz,k
w

)−αk(t)

Γ(αk(t))
x
αk(t)−1
k


 e−w

∑n

k=1

xk
βz,k dx1... dxn


 gγ−1,δ(w) dw.

(19)

According to Moschopoulos (1985), we have

∫
· · ·

∫

∑n

k=1
bkXk(t)≥L




n∏

k=1

(
βz,k
w

)−αk(t)

Γ(αk(t))
x
αk(t)−1
k


 e−w

∑n

k=1

xk
βz,k dx1... dxn =

∫ ∞

L
g′Y (t)(y) dy,

where g′Y (t)(y) is obtained following the same reasoning as that for Eq. (6), that is,

g′Y (t)(y) = Dz(t)
∞∑

k=0

ζz,k(t)(βz,0/w)−ρz(t)−k

Γ(ρz(t) + k)
yρz(t)+k−1e−wy/βz,0 ,

and Dz(t), ζz,k(t), ρz(t) and βz,0 are obtained by replacing βk with βz,k in the definitions of D(t),

ζk(t), ρ(t) and β0, respectively.

Finally, we obtain

P (Y (t) ≥ L) =
∫ ∞

0

∫ ∞

L
g′Y (t)(y)gγ−1,δ(w) dy dw

=Dz(t)γ
δ
∞∑

k=0

ζz,k(t)β
−ρz(t)−k
z,0

B(ρz(t) + k, δ)

∫ ∞

L
yρz(t)+k−1

(
γ +

y

βz,0

)ρz(t)+k+δ

dy

=Dz(t)(βz,0γ)δ
∞∑

k=0

ζz,k(t)

B(ρz(t) + k, δ)

∫ ∞

L
xρz(t)+k−1 (βz,0γ + y)ρz(t)+k+δ dy, (20)

where B(x, y) denotes the beta function and is given by

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

4 Maintenance Policies

In the reliability literature, there are many models describing the effectiveness of a maintenance

activity. Such models include modifications of intensity models (Doyen & Gaudoin, 2004; Wu,

2019), reduction of age models (Kijima, Morimura, & Suzuki, 1988; Doyen & Gaudoin, 2004;
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Wu, 2019), geometric processes (Lam, 1988; Wu & Wang, 2017; Wu, 2018), etc. For a system

like a section of pavement, maintenance may remove all of the defects. After maintenance, new

defects may develop in a faster manner than before. The effectiveness of such maintenance may

be modelled by the geometric process.

The geometric process describes a process in which the times between failures of a system

become shorter and shorter after maintenance. Its definition is given by Lam (1988), and it is

shown below.

Definition 1 (Lam, 1988) Given a sequence of non-negative random variables {Xj, j = 1, 2, . . . },
if they are independent and the cdf of Xj is given by F (aj−1x) for j = 1, 2, . . . , where a is a positive

constant, then {Xj, j = 1, 2, · · · } is called a geometric process (GP).

The parameter a in the GP plays an important role. The lifetime described by F (aj−1x) with

a larger a is shorter than that described by F (aj−1x) with a smaller a with j = 1, 2, . . ..

• If a > 1, then {Xj, j = 1, 2, · · · } is stochastically decreasing.

• If a < 1, then {Xj, j = 1, 2, · · · } is stochastically increasing.

• If a = 1, then {Xj, j = 1, 2, · · · } is a renewal process.

• If {Xj, j = 1, 2, . . . } is a GP andX1 follows the gamma distribution, then the shape parameter

of Xj for j = 2, 3, . . . remains the same as that of X1 but its scale parameter changes.

The GP has been used extensively in the reliability literature to implement the effect of imperfect

repairs on a repairable system (see Castro and Pérez-Ocón (2006); Wang and Zhang (2013); Wu

and Wang (2017); Wu (2018), among others).

In addition to the assumptions listed in Section 2, we make the following assumptions.

A7). Immediately after a PM, the system resets its age to 0, at which there are no defects in the

system.

A8). The initiation of the defects after the j-th PM follows a homogeneous Poisson process with

parameters λ/a1(T )j−1, where a1(T ) > 0 and a1(T ) is a non-decreasing function in T for

j = 1, 2, . . ..

A9). After the j-th PM and after the arrival of the k-th defect, the k-th defect grows according to a

gamma process with shape parameter αk(t) and scale parameter a2(T )j−1βk, where a2(T ) > 0

and a2(T ) is an increasing function in T for j = 1, 2, . . ..

A10). Assume that each PM incurs a cost of cP monetary units, the variable cost of repairing the

k-th defect with degradation level y is ck,y, and the fixed cost of repairing the k-th defect is

cf,k. Furthermore, if at a PM time the “overall degradation” of the system, as shown in Eq.

(21), exceeds the threshold L, an additional cost of cF monetary units is incurred. The cost

of the replacement at time NT is equal to cR.

We explain assumptions A9) and A10), respectively, in the following.

• Assumption A9) implies that the defect arrival rate relates to the time interval T between

two consecutive PMs, which reflects the case that a1(T ) becomes bigger and the system tends

to deteriorate faster for large T than for small T .

• Assumption A10) implies that the degradation rate increases with the number of imperfect

repairs performed on the system. We denote by
{
Y ∗j (t), t ≥ 0

}
the “overall degradation” of

12
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the maintained system after the j-th repair, and denote

Y ∗j (t) =
n∑

k=1

bkXk,j(t), 0 ≤ t ≤ T, (21)

where {Xk,j(t), t ≥ 0} stands for a gamma process with parameters αk and βka2(T )j−1. Similar

to the derivation process shown in the previous section, we can compute the first hitting time

to exceed the threshold L for the process shown in Eq. (21) by following the same reasoning

as in Eq. (6) and replacing βk with βka2(T )j−1. That is,

σ
(j)
L = inf

{
t ≥ 0 : Y ∗j (t) ≥ L

}
.

We denote F j
σL

as the distribution of σ
(j)
L .

We want to determine the time between two consecutive PMs and the number of PMs that

minimise an objective cost function, which is formulated in terms of the expected cost rate per

unit time.

By a replacement cycle, we mean the time between two successive replacements of the system.

In this paper, the length of a replacement cycle is equal to NT . Let Q0(N, T ) be the expected

rate of the total cost in a replacement cycle. Then we obtain

Q0(N, T ) =
1

NT

N∑

j=1

[
cP +

n∑

k=1

(a1(T ))j−1

λ

(
cf,k +

∫ ∞

0
ck,yf(y;αk(T ), βka2(T )j−1) dy

)

+cF
(a1(T ))j−1

λ
F j
σL

(T )

]
+

cR
NT

, (22)

where f(y;αk(T ), βka2(T )j−1) is given by Eq. (2), in which βk is replaced with βka2(T )j−1; and

F j
σL

(T ) is given by Eq. (9), in which βk is replaced with βka2(T )j−1. The expected variable cost

per unit time in a replacement cycle is given by

CV(N, T ) =
1

NT

N∑

j=1

n∑

k=1

a1(T )j−1

λ

∫ ∞

0
ck,yf(y;αk(T ), βka2(T )j−1) dy. (23)

The optimisation problem is formulated as

Q0(Nopt, Topt) = min
N=1,2,...
T>0

Q0(N, T ). (24)

4.1 Special cases

In this section, we discuss Q0(N, T ) and CV(N, T ) under special cases of ck,y, a1(T ), a2(T ), and

αk(T ), respectively.
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4.1.1 Special cases of ck,y

Different scenarios can be envisaged, depending on the variable cost function ck,y.

• If ck,y = ck, then the expected variable cost rate in Eq. (23) in a renewal cycle becomes

CV(N, T ) =
1

NT

N∑

j=1

n∑

k=1

a1(T )j−1

λ

∫ ∞

0
ckf(y;αk(T ), βka2(T )j−1) dy

=
1

NT

N∑

j=1

n∑

k=1

a1(T )j−1ck
λ

.

• If ck,y is directly proportional to the degradation level of the k-th defect at the time instant

of a PM, that is, ck,y = yck, then the expected variable cost given in Eq. (23) is given by

CV(N, T ) =
1

NT

N∑

j=1

n∑

k=1

a1(T )j−1

λ

∫ ∞

0
ckyf(y;αk(T ), βka2(T )j−1) dy

=
1

NT

N∑

j=1

n∑

k=1

a1(T )j−1

λ
ckαk(T )a2(T )j−1βk

=
1

NT

(
(a1(T )a2(T ))N − 1

a1(T )a2(T )− 1

)
n∑

k=1

ckαk(T )βk
λ

.

• Assume ck,y is directly proportional to the square of the degradation level of the k-th defect

at the time instant of a PM, that is, ck,y = y2ck, the repair cost may relate to the area of the

defect (see Van Noortwijk and Klatter (1999)). In this case, Eq. (23) is given by

CV(N, T ) =
1

NT

N∑

j=1

n∑

k=1

a1(T )j−1

λ

∫ ∞

0
cky

2f(y;αk(T ), βka2(T )j−1) dy

=
1

NT

N∑

j=1

n∑

k=1

a1(T )j−1

λ
ck
(
Var(Xk,j(T )) + (E(Xk,j(T )))2

)

=
1

NT

N∑

j=1

n∑

k=1

a1(T )j−1

λ
ck
(
β2
kαk(T )a2(T )2j−2 + β2

kαk(T )2a2(T )2j−2
)

=
1

NT

(
(a1(T )a2(T )2)N − 1

a1(T )a2(T )2 − 1

)
n∑

k=1

ckβ
2
k(αk(T ) + αk(T )2)

λ
.

4.1.2 Special cases of a1(T ), a2(T ), and αk(T )

The analysis of the monotonicity of Q0(N, T ) is quite tricky. To analyse it, some particular

conditions are imposed. We assume that a1(T ) = a1, a2(T ) = a2, αk(T ) = αkT , and ck,y = yck,

Q0(N, T ) given by Eq. (22) is then reduced to

Q0(N, T ) =
cP
T

+
cR
NT

+
(aN1 − 1)

(a1 − 1)λNT

n∑

k=1

cf,k (25)

+
(aN1 a

N
2 − 1)

λN(a1a2 − 1)

n∑

k=1

ckαkβk +
cF
λNT

N∑

j=1

aj−1
1 F (j)

σL
(T ).
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We suppose that N is constant and T is variable on (0,∞). A necessary condition that a finite

T ∗ minimises Q0(N, T ) given by Q0(N, T ) in Eq. (25) is that it satisfies

N∑

j=1

aj−1
1

(
f (j)
σL

(T )T − F (j)
σL

(T )
)

=
λ

cF

(
NcP +

aN1 − 1

λ(a1 − 1)

n∑

k=1

cf,k + cR

)
.

Next, we suppose that T is constant. Then a necessary condition when there exists a finite a

unique N∗ minimising Q0(N, T ) is that N∗ satisfies

Q0(N + 1, T ) ≥ Q0(N, T ),

and

Q0(N, T ) ≥ Q0(N − 1, T ).

We obtain

Q0(N + 1, T )−Q0(N, T ) =
1

λT (a1 − 1)

n∑

k=1

cf,k
N(aN+1

1 − aN1 )− aN1 + 1

N(N + 1)

+

∑n
k=1 ckαkβk

λ(a1a2 − 1)

N(aN+1
1 aN+1

2 − aN1 aN2 )− aN1 aN2 + 1

N(N + 1)

− cR
N(N + 1)T

+ cF

∑N
j=1 a

N
1 F

(N+1)
σL

(T )− aj−1
1 F (

σL
j)(T )

λN(N + 1)T
.

Hence, for fixed T , Q0((N + 1), T )−Q0(N, T ) ≥ 0 if and only if

cR < D(N, T ),

where

D(N, T ) =
1

λ

n∑

k=1

cf,k
N(aN+1

1 − aN1 )− aN1 + 1

(a1 − 1)

+ T
n∑

k=1

ckαkβk
N(aN+1

1 aN+1
2 − aN1 aN2 )− aN1 aN2 + 1

λ(a1a2 − 1)

+
cF
λ




N∑

j=1

aN1 F
(N+1)
σL

(T )− aj−1
1 F (j)

σL
(T )


 .

If a1 > 2, then D(N, T ) is non decreasing in N . Therefore, if

cR < D(1, T ),

then cR < D(N, T ) for all N . We obtain

D(1, T ) =
(a1 − 1)

λ

n∑

k=1

cf,k +
T (a1a2 − 1)

λ

n∑

k=1

ckαkβk +
cF
λ

(
a1F

(2)
σL

(T )− F (1)
σL

(T )
)
.
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Hence, if a1 > 2 and

cR <
(a1 − 1)

λ

n∑

k=1

cf,k,

then Q0(N, T ) is increasing in N .

An economic constraint is introduced in the optimisation problem formulated in Eq. (24) to

limit the variable cost in a replacement cycle. The introduction of constraints in the search of

the optimal maintenance strategy is not new in the literature. For example, Aven and Castro

(2008) and Aven and Castro (2009) introduced constraints relating to the system safety in an

optimisation problem. In this paper, the constraint imposed in the optimisation is economic and

is related to the expected variable cost imposing that this expected variable cost cannot exceed a

threshold K.

Let Ω be the set of pairs (N, T ) such that CV(N, T ) ≤ K, that is,

Ω = {(N, T ) : N = 1, 2, . . . , T > 0 subject to CV(N, T ) ≤ K} , (26)

and the optimisation problem is formulated in terms of the economic constraint as

Q∗0(Topt, Nopt) = inf {Q0(N, T ) : (N, T ) ∈ Ω} . (27)

To analyse the optimisation problem given by Eq. (27), the monotonicity of the function CV(N, T )

is studied.

4.2 Economic constraint analysis

We analyse the monotonicity of CV(N, T ) in two variables N and T and assume that ck,y =

yf(y;αk(T ), β) (i.e., variable cost proportional to the degradation level) and a2(T ) > 1 and

a1(T ) > 1 for all T .

Lemma 2 If αk(T ) is convex in T for all k with αk(0) = 0 and α′k(0) <∞, then

• CV(N, T ) is increasing in T for fixed N , and

• CV(N, T ) is increasing in N for fixed T .

Proof. The expected variable cost rate is given by

CV(N, T ) =
1

N

(
n∑

k=1

ckβkαk(T )/T

λ

)

N−1∑

j=0

(a1(T )a2(T ))j




=
1

N

(a1(T )a2(T ))N − 1

a1(T )a2(T )− 1

(
n∑

k=1

ckβkαk(T )/T

λ

)
. (28)

The function αk(T )/T is increasing in T as a consequence of the convexity of αk(T ) along with

αk(0) = 0 and α′k(0) <∞. On the one hand, since both a1(T ) and a2(T ) are increasing in T , then
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CV(N, T ) is increasing in T . On the other hand, the function

g(N) =
1

N

N−1∑

j=1

(a1(T )a2(T ))j,

is increasing in N since

g(N + 1)− g(N) =

∑N−1
j=0 ((a1(T )a2(T ))N − (a1(T )a2(T ))j)

N(N + 1)
,

and a1(T )a2(T ) > 1, hence CV(N, T ) is increasing in N . This establishes Lemma 2. �
An implication of Lemma 2 is that the condition

1

λ

n∑

k=1

ckβk lim
T→0

αk(T )

T
≤ K, (29)

has to be imposed. If inequality (29) is not fulfilled, then Ω = ∅. On the other hand, if

lim
T→∞

lim
N→∞

CV(N, T ) ≤ K, (30)

then Ω = {(N, T ) : T > 0, N = 1, 2, . . .} , and the optimisation problem in Eq. (27) is reduced

to the optimisation problem in Eq. (24). Hence, to deal with the optimisation problem with

constraints, we assume that the following inequality

1

λ

n∑

k=1

ckβk lim
T→0

αk(T )

T
≤ K < lim

T→∞
lim
N→∞

CV(N, T ), (31)

is fulfilled. If Eq. (31) is fulfilled, we denote

N1 = inf
{
N : lim

T→∞
CV(N, T ) > K

}
,

and

N2 = inf
{
N : lim

T→0
CV(N, T ) > K

}
.

We can obtain N1 ≤ N2.

If N∗ is fixed such that N1 ≤ N∗ ≤ N2, we denote T ∗N as the root of the equation

CV(N∗, T ∗N) = K,

and the set Ω given in Eq. (26) is therefore equal to

Ω = {(N, T ) : N = 1, 2, . . . , N1 − 1} ∪ {(N, T ) : N = N1, N1 + 1, . . . , N2 − 1, T ≤ T ∗N} . (32)
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Fig. 2. Expected cost Q0(N,T ) versus N and T .

5 Numerical examples

We consider a system subject to three different defects, all of which start at random times,

following a homogeneous Poisson process with rate λ = 1 defects per unit time. The degradation

process of the three defects is modelled using a nonhomogeneous gamma processes with shape

parameters αk(t) = αkt
ξk with ξk = 2, α1 = 1, α2 = 1, α3 = 1 and scale parameters β1 = 1,

β2 = 2 and β3 = 3, respectively. The random effect w0 is modelled with w = w−1
0 , where w follows

a gamma distribution Gamma(1, 2).

The overall degradation process of the system Y is a combination linear of the three processes

Y = 0.2X1 + 0.7X2 + 0.4X3,

and we assume that the system fails when the degradation level of Y exceeds the failure threshold

L = 20. Preventive maintenance is performed on the system every T time units and the effec-

tiveness of these PMs is modelled by a geometric process with parameters a1(T ) = 1.1(1.2 −
0.2 exp(−T )) for the time between the defect arrivals and a2(T ) = 1.15(1.2− 0.2 exp(−T )) for the

effectiveness of the imperfect repairs on the degradation rate of the defects. Each PM involves a

cost of cP = 0.05 monetary units. Each repair involves a fixed cost of cf,1 = 2 monetary units

for the first type of defect, cf,2 = 2 monetary units for the second defect and cf,3 = 2 monetary

units for the third defect. The variable cost is given by c1,y = 7y, c2,y = 7y and c3,y = 7y on the

three defects, respectively, where y denotes the degradation magnitude of the defect at the time

of repair. If the overall degradation of the system exceeds L = 20 at the repair time, an additional

cost of cF = 100 monetary units is incurred. A complete replacement of the system by a new one

is performed at the time of the N -th imperfect repair with a cost of cR = 1000 monetary units.

Figure 2 shows the expected cost per unit time Q0(N, T ) versus N and T . This graph is obtained

by simulation with 10 values for T from 1 to 7, N from 1 to 5 and 3000 repetitions in each point.

The minimal value of Q0(N, T ) is obtained for Topt = 1.9474 and Nopt = 3 with and optimal

expected cost rate of Q0(Nopt, Topt) = 332.6066 monetary units per unit time. The economic safety
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Fig. 3. Variable cost CV(N,T ) versus N and T .

constraint is introduced in this problem and it is dependent on the variable cost given by

CV(N, T ) =
1

λN

n∑

k=1

ckαkβkT
N−1∑

j=0

(a1(T )a2(T ))j. (33)

For a fixed N , the function given by Eq. (33) is non-decreasing in T . For a fixed T , we obtain that

CV(N + 1, T )− CV(N, T ) =
n∑

k=1

ckαkβkT

λ

N−1∑

j=0

(
(a1(T )a2(T ))N − a1(T )a2(T )j

)

N(N + 1)
,

is positive. Figure 3 shows the economic safety constraint versus T and N . As we can visually

check, the variable cost is non-decreasing in N for fixed T and non-decreasing in T for fixed N .

We assume that the variable cost cannot exceed the threshold K = 130 monetary units, that

is, the optimisation of Q0(N, T ) given by Eq. (22) is performed on the set Ω1, where

Ω1 = {(N, T ) such that CV(N, T ) ≤ 130} .

Inequality (31) holds since

lim
T→0

CV(1, T ) = lim
T→0

1

λ

n∑

k=1

ckβkαkT
ξk−1 = 0,

and, therefore, limT→0 CV(1, T ) ≤ K, and

lim
N→∞

lim
T→∞

CV(N, T ) =∞,

hence inequality (31) holds.

Figure 4 shows the value of CV(N, T ) for N ≤ 10. The set of the points Ω that fulfils the

economic constraint is given by

Ω1 = {(N, T ), N ≥ 1; T ≤ T ∗N} ,
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Fig. 4. Variable cost CV(N,T ) versus T .

where T ∗N is the root of CV(N, T ) = K.

The point in which the global minimum is obtained in the unconstrained problem (that is,

Topt = 1.9474 and Nopt = 3) presents a variable cost equals to CV(Nopt, Topt) = 147.8725 monetary

units per unit time, which implies that it is not an optimal solution for the constrained problem.

Figure 5 shows the expected cost rate Q0(N, T ) for T ≤ T ∗N , that is, the expected cost rate

Q0(N, T ) in the subset Ω. The minimum of this function is reached at point Nopt = 4 and Topt =

1.1137 with an expected cost rate equals to Q0(Topt, Nopt) = 344.4153 monetary units per unit

time.
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Fig. 5. Expected cost rate Q0(N,T ) versus T in Ω.

6 Discussion

This paper discussed maintenance policies for a scenario where a linear combination of degra-

dation processes was studied. Below we discuss the assumptions of the degradation processes, the

random environment, and the effectiveness of repair, respectively.
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6.1 Degradation process.

The preceding sections assume that Xk(t) follows the gamma process. Certainly, one may choose

the degradation process of Xk(t) based on the real applications: for example, in the case of the ex-

ample investigated in this paper, the propagation process of a fatigue crack evolves monotonically

only in one direction, the gamma process is a good choice. Methodologically, however, Xk(t) may

be assumed to follow any other process, such as the Wiener process (Sun et al., 2018), the inverse

Gaussian process (Chen et al., 2015) and the Ornstein-Uhlenbeck process (Deng et al., 2016). The

probability distribution of
∑n
k=1Xk(t) can be easily derived if Xk(t)(k = 1, 2, ..., n) follow Wiener

processes. In some case, a closed form of the distribution of
∑n
k=1Xk(t) may not be easily found

and therefore numerical methods may be sought.

One may also assume that Xk(t) may follow different degradation processes, for example, on

different k’s, some Xk(t)’s follow gamma processes and others follow Wiener processes.

6.2 Incorporation of dynamic environments.

The system considered in this paper is operated under a random environment. In addition to

the method that incorporates the random environment with the random effect method, one may

also use other methods, for example, one may consider the effect of the dynamic environment on

the system as external shocks by using Poisson processes (Yang, Zhao, Peng, & Ma, 2018), or as

other stochastic processes, including the continuous-time Markov chain process (Bian, Gebraeel,

& Kharoufeh, 2015), and the semi-Markov process (Kharoufeh, Solo, & Ulukus, 2010). The reader

is referred to Peng, Hong, and Ye (2017) for a discussion in detail.

6.3 Imperfect repair.

In this paper, we consider the effectiveness of repair as imperfect. The justification is as follows.

If we consider a pavement network, all defects, such as fatigue cracking and pavement deformation,

disappear after repair. This does not suggest the pavement network is repaired as good as new (i.e.,

perfect repair) or as bad as old (i.e., minimal repair). Instead, it is more reasonable to assume that

the repair is imperfect. In the literature, many methods that model the effectiveness of imperfect

maintenance have been developed (see the Introduction section in Wu (2019), for example). For

simplicity, this paper uses the geometric process introduced in Lam (1988). Of course, one may use

other models such as the age-modification models (Kijima et al., 1988; Doyen & Gaudoin, 2004)

or superimposed renewal processes (Kallen, 2011), under which the optimisation process becomes

much more complicated.

6.4 Maintenance policy based on the cost process.

Since U(t), i.e., the cost of repairing difference defects, forms a stochastic process, one may

develop a maintenance policy based on the cost process. That is, once the cost process reaches a
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threshold, maintenance on the combined degradation process Y (t) is carried out. Hence, intriguing

questions may include optimisation of maintenance intervals, for example.

6.5 Exchangeable and memoryless

The above sections assumes the defect inter-occurrence times to be exchangeable and to exhibit

the lack of memory property. Nevertheless, both properties may be violated in the real world.

If so, one may assume that the defect inter-occurrence times follow a non-homogeneous Poisson

process, for example.

6.6 A r-out-of-n case

In Section 3.2, we discussed the case when the sum of the deterioration levels is monitored.

In practice, another scenario may be to monitor r-out-of-n deterioration processes. That is, if

k-out-of-n deterioration levels are greater than their pre-specified thresholds, respectively, mainte-

nance needs performing. Denote Y(1)(t), Y(3)(t), ..., Y(n)(t) as by sorting the values (realisations)

of Y1(t), Y2(t), ..., Yn(t) in increasing order. For simplicity, we assume that Yk(t) are i.i.d for

k = 1, 2, ..., n with cdf F (x, α(t), b−1β). The cumulative distribution function of Y(r)(t) is given by

GY(r)(t)(y) = 1−
n∑

k=r

n!

(n− r)!r! (1− F (y, α(t), b−1β))k(F (y, α(t), b−1β))n−k. (34)

First hitting time TL2 . Let TL2 = inf(t > 0 : Y(r)(t) ≥ L2). Then the distribution of the first

passage time TL2 is given by

FTL2
(t) = P (TL2 < t)

= P (Y(r)(t) ≥ L2)

=
n∑

k=r

n!

(n− r)!r! (1− F (L2, α(t), b−1β))k(F (L2, α(t), b−1β))n−k,

where bk ≥ 0 for all k.

7 Conclusions

This paper investigated the scenario where a system incurs cost of failure when a linear com-

bination of the degradation processes exceeds a pre-specified threshold. It derived the probability

distribution of the first hitting time and the process of repair cost. The paper then considered the

degradation processes that are affected by random effect and covariates. Imperfect repair is con-

ducted when the combined process exceeds a pre-specified threshold, where the imperfect repair is

modelled with a geometric process. The system is replaced once the number of its repair reaches

a given number. Numerical examples were given to illustrate the maintenance policies derived in

the paper.
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As our future work, we may investigate the case that a system needs maintenance if k out of n

degradation processes exceeds a pre-specified threshold.
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