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Abstract—Directional Changes (DC), a novel approach for
sampling market data, allows the extraction of trends in financial
time series by converting series from a time based format to
an event-driven format. This paradigm has been shown to give
some predictability in financial prediction, and has been used to
generate profitable trading strategies on the FOREX market. In
the past, a genetic algorithm was used to optimise the parameters
of DC-based trading strategy. The goal of this work is to explore
whereas different machine learning algorithms can be used to
improve the results on the aforementioned optimisation task.
For this purpose, we explore two algorithms, namely Particle
Swarm Optimization and Shuffled Frog Leaping Algorithm.
After comparing the performance of these two algorithms on
36 different datasets from 4 different currency pairs, we find
that they statistically improve the profitability of the DC-based
trading strategies.

Index Terms—Directional Changes, Genetic Algorithm, Parti-
cle Swarm Optimisation, Shuffled Frog Leaping Algorithm

I. INTRODUCTION

A new challenge has emerged from the increase in volume
and velocity of financial data in the field of computational
finance. Although this eruption of data was first a great source
of wealth and opportunity, it quickly became a problem due
to its magnitude, luring traders into hectic trading strategies,
making the market data noisy and chaotic and limiting its
predictability.

As a result, an approach named Directional Changes (DC),
has recently been gaining attention to extract trends in financial
data by converting time based data series into event-based
data series. This approach allows to only focus on ‘significant’
events, i.e., events of a certain magnitude which interests the
trader.

A particular implementation of a DC-based trading
paradigm, proposed by [1], has been shown to generate
profitable and risk-averse trading strategies on the foreign
exchange market. In fact, their work was shown to outperform
traditional technical analysis based trading strategies. The au-
thors achieved their results by optimising the recommendations
of multiple DC-based trading strategies through a Genetic
Algorithm (GA).

The goal of this work is to explore whether further improve-
ments in the trading strategy’s profitability can take place if
different algorithms are used in the place of the GA. In this
paper we will be exploring two different techniques, namely

Particle Swarm Optimisation and the Shuffled Frog Leaping
Algorithm.

The rest of this paper is organised as follows: we present
background information on DC in section II, and explain in
detail the strategy proposed by [1]. We will then present in
section III our proposed alternative optimisation algorithms.
We will lay out our experimental setup including our data,
how we tuned our algorithms, and their final configurations in
section IV, present and analyse our results in section IV, and
finish by concluding on our work in section VI.

II. BACKGROUND

In this section, we present the background knowledge
necessary to understand the setting of our experiments: we first
describe Directional Changes, and then how they have been
used in [1] to generate trading strategies. Lastly, we present a
review of the DC literature.

A. Directional Changes

The directional change (DC) approach is an alternative
approach for summarising market price movements. A DC
event is identified by a change in the price of a given financial
instrument. This change is defined by a threshold value, which
was in advance decided by the trader. Such an event can be
either an upturn or a downturn event. After the confirmation
of a DC event, an overshoot (OS) event follows. This OS
event finishes once an opposite DC event takes place. The
combination of a downturn event and a downward overshoot
event represents a downward trend and, the combination of
an upturn event and an upturn overshoot event represents an
upturn trend. In other words, a downward trend is a period
between a downturn event and the next upturn event and an
upturn trend is a period between an upturn event and the next
downturn event.

Figure 1 presents an example of how a physical-time price
curve is transformed to an event-based system and dissected
into DC and OS events. As we can observe in figure 1, two
different thresholds are used, and each threshold generates a
different event series. Thus, each threshold produces a unique
series of events. The idea behind the different thresholds is
that each trader might consider different thresholds (price per-
centage changes) as significant. A smaller threshold creates a



Algorithm 1 Pseudocode for generating directional changes
events (source: [2]).
Require: Initialise variables (event is Upturn event, ph = pl =

p(t0),∆xdc(Fixed) ≥ 0, tdc0 = tdc1 = tos0 = tos1 = t0)
1: if event is Upturn Event then
2: if p(t) ≤ ph × (1 −∆xdc) then
3: event←DownturnEvent
4: pl ← p(t)
5: tdc1 ← t // End time for a Downturn Event
6: tos0 ← t+1 // Start time for a Downward Overshoot

Event
7: else
8: if ph < p(t) then
9: ph ← p(t)

10: tdc0 ← t // Start time for Downturn Event
11: tos1 ← t−1 // End time for an Upward Overshoot

Event
12: else
13: if p(t) ≤ pl × (1 +∆xdc) then
14: event← UpturnEvent
15: ph ← p(t)
16: tdc1 ← t // End time for a Upturn Event
17: tos0 ← t + 1 // Start time for an Upward Overshoot

Event
18: else
19: if pl > p(t) then
20: pl ← p(t)
21: tdc0 ← t // Start time for Upturn Event
22: tos1 ← t − 1 // End time for an Downward

Overshoot Event

higher number of directional changes, while a higher threshold
produces fewer directional changes.

Looking at the events generated by a threshold of θ = 0.01%
(events connected via solid and dashed lines), we can observe
that any price change less than this threshold is not considered
a trend. On the other hand, when the price changes above that
threshold, then the market is divided accordingly, to uptrends
and downtrends. DC events are in solid lines, and OS events
are in dashed lines. For example, a downturn DC event starts at
Point A and lasts until Point B, when the downturn OS events
starts. The downturn OS lasts until Point C, when there is a
reverse in the trend, and an uptrend starts, which lasts until
Point D. From Point D to E we are in an upturn OS event,
and so on.

As we mentioned, different thresholds generate different
event series. Looking at θ = 0.018% (events connected via
dotted and dot-dashed lines), we can observe that the events
generated are different: a downward trend starts from A and
lasts until B′, and the downward OS is from Point B′ until C.
Then, from Point C until Point E there is an upward DC trend,
and from E to E′ there’s an upward OS trend. Algorithm 1
presents the high-level pseudocode for generating directional
changes events.

It is important to note here that the confirmation of a

change of a trend can only be confirmed retrospectively, i.e.
only after the price has changed by the pre-specified DC
threshold value θ. For example, under θ = 0.01% we can
only confirm that we are in a upward trend from Point D
onwards. Point D is thus called a confirmation point. Before
Point D, the directional change had not been confirmed (i.e. the
market price had not changed by the pre-specified threshold
value), thus a trader summarising the data by the DC paradigm
would continue believing we are in a downward trend, which
started from Point A. Similarly, a trader using θ = 0.01%
would continue considering being in a upward trend from
Point D until the price has reversed by θ = 0.01%, which
only takes place at the next confirmation point, i.e., Point F.
So what becomes important here is to be able to anticipate
the change of the trend as early as possible, i.e. before
Points C and E have been reached. In addition, since different
thresholds generate different event series, we hypothesise that
the combined information from these series would lead to
profitable trading strategies.

The advantage of this new way of summarising data is that
it provides traders with new perspectives to price movements,
and allows them to focus on key points where an important
event took place, blurring out other price details which could
be considered irrelevant or even noise. Furthermore, DC have
enabled researchers to discover new regularities in markets,
which cannot be captured by the interval-based summaries [3].
Therefore, these new regularities give rise to new opportunities
for traders, and also open a whole new area for research.

One of the most interesting regularities that was discovered
in [3] was the observation that a DC of threshold θ is on
average followed by an OS event of the same threshold θ. At
the same time, it was observed that if on average a DC takes
t amount of physical time to complete, the OS event will take
an amount of 2t. This observation is summarised in Figure 2,
and was only made under DC-based price summaries, and not
under phsycical-time summaries. Furthermore, this astonishing
observation was made on all of the 13 different currency
exchange rates that the authors of [3] experimented with.
This thus lead us to further hypothesise that such statistical
properties could lead to profitable strategies, if appropriately
exploited, mainly because such properties are not well-known
to traders yet. Therefore, the DC area is a rich research area
that could potentially lead to significant discoveries.

B. Evolving trading strategies with directional changes

The trading strategies focused on in our work and for which
we want to improve optimisation are proposed in [1]. They
propose a multiple DC threshold trading strategy, where each
threshold would advise one weighed trading action and a
decision would be suggested from a "voting" session between
each weighed trading action, with the argument that multiple
thresholds capture different event magnitudes and allow for
improved predictions.

The idea behind this trading strategy of using multiple
DC thresholds is that different thresholds provide different
perspective of the data under observation. Smaller threshold



Fig. 1. Directional changes for tick data for the GBP/JPY currency pair. The solid and dashed lines denote a set of events defined by a threshold θ = 0.01%,
while the dotted and dot-dashed lines refer to events defined by a threshold θ = 0.018%. The solid and the dotted lines indicate the DC events, and the
dashed and dot-dashed indicate the OS events. Under θ = 0.01%, the data is summarised as follows: Point A ↦ B (Downward directional change), Point B
↦ C (Downward overshoot event), Point C ↦ D (Upward directional change), Point D ↦ E (Upward overshoot event), Point E ↦ F (Downward directional
change). Under θ = 0.018%, the data is summarised as follows: Point A ↦ B’ (Downward directional change), Point B’ ↦ C (Downward overshoot event),
Point C ↦ E (Upward directional change), Point E ↦ E’ (Upward overshoot event).

Fig. 2. An example of a scaling law presented in [3], which shows that (1) a
DC event (solid line) of threshold θ is followed by an OS event (dotted line)
of also threshold θ, and (2) the OS event lasts about the double amount of
time that it took for the DC event to take place.

sizes are used in detecting more events, and this allows traders
to react more promptly to price movement. However, this
might not be an optimal strategy because of the transaction
costs associated with trading actions. On the other hand, with
a larger threshold, fewer events are detected, providing oppor-
tunities of taking action when price change is more sizeable.
Selecting a threshold that is too large can lead to inaction or
opportunity loss. Thus, this trading strategy combined the use
of different threshold values in an attempt to take advantage of
the different characteristics of smaller and larger thresholds.
At any point in time, each threshold could be recommending
an action: buy, hold, or sell. As there are multiple thresholds,
each threshold might recommend a different action. In order to
decide which action to take, a weight system was used, where

each DC threshold was assigned a weight. Then a majority
vote would take place, where the recommendation with the
highest sum of weights, wins. For example, if we have 5
DC thresholds, and the first three recommend buy and the
remaining two sell, we would then sum up the weight values
of the first three thresholds, and compare it to the sum of the
weights of the last two thresholds; depending on which sum
is higher, we would follow the respective action. The weights
are not fixed, but are evolved by the genetic algorithm. More
information about this trading strategy can be found in [1].

C. Review of DC literature

[4] carried out the first work that used a DC dataset as
an alternative to a physical time dataset. [5] extended the
work of [3] and introduced four additional scaling laws, these
new scaling laws were successfully applied to investigate the
impact of different strategies on trading activities in high-
frequency FOREX market. The catalogue of DC indicators
was further extended by [6], who introduced 5 additional laws
to the ones already discovered in [5], [3]. [7] reported the
Scale of Market Quakes (SMQ). SMQ is a way of sizing the
impact of economic or political development and other major
breaking news on price movement within the FOREX market.
Their goal was to set the foundation for creating a metric that
can be used to measure price change vis-a-vis major world
events.

[8] developed agents that model traders’ behaviour in
FOREX market. Their work focused on establishing stylised
facts regarding how traders react and adapt to changes in
FOREX market. Their agents used strategies known as ZI-DC0



developed by combining DC approach with trend following
and contrary trading technical indicators. [9] proposed a new
trading strategy called ZI-DC1 as an improvement to the
study in [8]. Comparison results between ZI-DC0 and ZI-DC1
showed that ZI-DC1 was more profitable. [10] introduced an
automated trading strategy (DCT2) that can perceive changes
in market conditions and adapt dynamically to remain prof-
itable.

[11] developed a neuro-fuzzy logic based trading strat-
egy that captures volatility using DCs within a pre-specified
threshold. The system predicted the future price of an asset
based on the current price and the immediate past three
consecutive observations in the market. Their model outclassed
the physical-time scale trading strategies they compared with,
in terms of profitable returns. [12] transformed a DC fore-
casting task into a classification problem. Their goal was to
establish the predictive power in directional changes approach.
To do this end, they created three new directional changes
indicators inspired from technical indicators which they used
for forecasting price value at OS extreme point. [13] was
the first work to use a genetic programming algorithm to
generate DC-based trading strategies. Results showed that the
new algorithm had the potential to outperform its competitors.

[1] (presented in Section II-B), and subsequently [14], [15]
used DC for trading purposes and optimised the multiple
DC thresholds’ recommendations using a genetic algorithm.
The GA allowed the authors to yield promising results when
experimenting on tick and 10-minute data from 5 currency
pairs in the FOREX market in a time period of 10 months
from August 2013 to May 2014. According to their exper-
iments, the multi-threshold strategy outperformed traditional
benchmarking techniques such as buy and hold and proposed
a genetic programming FOREX trading strategy.

These promising results motivated us to apply different
optimisation techniques to the multi-threshold strategy. As the
GA was never tested against other algorithms for the given
optimisation task, we are interested in investigating whether
other algorithms can improve the profitability of the DC-based
trading strategies. As mentioned earlier, we will be using
particle swarm optimization algorithm and continuous shuffled
frog leaping algorithm, which have been shown by [16] to
outperform genetic algorithms in some optimization problems.

III. METHODOLOGY

In this section, we will present the two algorithms we have
used to optimise the multiple DC threshold strategy developed
by [1], presented in the previous section. We first present our
approach to the particle swarm optimisation (PSO) algorithm,
in subsection III-A and then present the shuffled frog leaping
algorithm in subsection III-B. Finally, we present the fitness
function which allows us to evaluate the performance of a
candidate solution to the optimisation problem.

A. Particle swarm optimization

Particle swarm optimisation (PSO) is a nature inspired
metaheuristic search algorithm that was introduced by [17].

It shares some similarities with a GA as it optimises and
transforms a set of candidate solutions. However, instead of
mutating and evolving the individuals as in a GA, the PSO
algorithm optimises individuals based on a concept of velocity
which guides the search at each iteration in the search space.
The individuals move through the search space until their
convergence, i.e. when their change in velocity reaches a
certain change threshold.

An individual (candidate solution) in the PSO is called a
particle and is composed of a vector of n attributes, similar
to a GA individual, which represents the set of parameters
for our search problem. In our particular search problem, an
individual is represented as a set of possible trading parameters
for the trading strategy presented in subsection II-B. These
parameters are among other the amount to trade at each action,
the value for each DC threshold, and the weight accorded
to each threshold. To optimise these parameters, a particle
"searches" through the search space with a certain velocity,
which represents the search direction of each parameter to-
wards an optimal fitness value.

Each parameter in a particle has its own velocity vij ,
which is defined, for the j-th parameter of the i-th particle,
at an iteration t + 1, in equation 1. The computation of a
particle’s velocity is a weighted sum of three variables, its
inertia, its memory, and its neighbourhood. These variables
are represented in equation 1 with:

● The inertia influence vij(t) representing the parame-
ter’s previous position influence on the search direction,
weighed by the inertia weight ws.

● The memory influence hij − xij(t) representing the pa-
rameter’s previous best (historical) position hij relative
to the parameter’s previous position xij(t), weighed by
the historical weight wh

● The neighbourhood influence gij − xij(t) representing
the parameter’s neighbour’s best position gij relative to
the parameter’s previous position xij(t), weighed by the
neighbourhood weight wg . The particle’s neighbourhood
is a subdivision of the swarm which allows to focus
either on exploitation or exploration depending on the
neighbourhood’ size.

vij(t+1) = ws.vij(t)+wh.(hij−xij(t))+wg.(gij−xij(t)) (1)

We also propose some enhancements on top of the canonical
aspect of the PSO to maximise our algorithm’s performance.
First, we introduce an early stopping criterion to minimise
computation costs by minimising fitness evaluations. We also
submit our particles to a technique named clamping which
prevents particles from exponentially increasing in velocity
by defining a maximum velocity a particle can have. Our final
enhancement allows us to deal with outlying individuals with
excessively low fitness (which violate fitness constraints), by
"resetting" their velocity by setting their inertia and memory
weight to 0 for one iteration. This allows the particle to
ignore its low-fitness inducing memory weight and makes it



more prone to explore the parameter space in direction of its
neighbours.

At each iteration of the algorithm, until we reach conver-
gence, we "move" each particle by applying its velocity to its
coordinates (parameter values) in the search space, represented
by the equation 2.

xij(t + 1) = xij(t) + vij (2)

For the sake of clarity, we present the PSO algorithm in a
high-level pseudocode in algorithm 2.

Algorithm 2 Particle Swarm Optimization
With: fitness function: f()

1: Initialise population: P ← with N random particles
2: for each particle xi in P do calculate f(xi)
3: while convergence not reached do
4: for each particle xi in P do
5: for each attribute xij in xi do
6: xij = xij + vij
7: vij = ws.vij +wh.(hij − xij) +wg.(gij − xij)

8: for each particle xi in P do calculatef(xi)

B. Continuous shuffled frog leaping algorithm

The continuous shuffled frog algorithm (CSFLA) is based
on the shuffled frog leaping algorithm introduced by [18],
improved by [19], which adapted the original shuffled frog
leaping algorithm to be applied to continuous search spaces.

The individuals in the CSFLA, named frogs, are represented
as a vector of n attributes which are in our case the parameters
of the multi-threshold trading strategy. In our particular search
problem, an individual is represented as a set of possible trad-
ing parameters for the trading strategy presented in subsection
II-B. These parameters are among other the amount to trade at
each action, the value for each DC threshold, and the weight
accorded to each threshold.

In order to optimise each set of parameters contained in an
individual, the CSFLA starts by initialising a population of
N randomly generated frogs. Then, the algorithm iteratively
evolves the population by evolving niches of candidates to
minimise fitness evaluations (which is crucial in our case,
as our fitness evaluations are costly by nature, being trading
simulations over a large dataset). Thus, the algorithm repeats
the following process for a total of Gm iterations (generations):

First, we perform an initial fitness evaluation and order
the frogs in descending fitness value order. We then divide
our population into M memeplexes, which are sub groups
of individuals which allow the exploration of local optima
(niches). The division into memeplexes is done with the
following process: we assign the first individual in our list
of sorted frogs to the first memeplex, the second individual
to the second memeplex, the M -th individual to the M -th
memeplex, the M +1-th individual to the first memeplex, and
so on, until each frog is assigned to a memeplex.

To evolve our individuals into niches, we divide our meme-
plex into "submemplexes". The division is done according
to a probabilistic distribution which assures that individuals
with higher fitness have a higher chance of being selected.
We present the probability of selecting the i-th individual xi
into a submemeplex in equation 3:

p(xi) =
2(N + 1 − i)

N(N + 1)
(3)

This division into submemeplexes allows to focus on ex-
ploitation of niches and ignoring the lower scoring individ-
uals to minimise fitness function calculations and encourage
convergence towards an optimum in the memeplex. To reduce
computational costs, we evolve, in each submemplex, only the
individual with the lowest fitness xw. The lowest individual
evolves according to the position in the search space of best
performing frog xb in the submemeplex, with the following
3-step procedure:

● First, we attempt a learning procedure where xw "learns"
from xb with equation 4, with r a random number
between 0 and 1.

xw(t + 1) = xw(t) + r(xb(t) − xw(t)) (4)

Considering our fitness function f and if f(xw(t+ 1)) >
f(xw(t)) then we assume the worst frog has positively
learned and we assign xw(t) to its new value xw(t+ 1).

● If f(xw(t + 1)) < f(xw(t)) , the worst frog has not
improved in terms of fitness, and thus we try to learn from
the best individual xs in the entire swarm with equation
5:

xw(t + 1) = xw(t) + r(xs(t) − xw(t)) (5)

As in the previous step, considering the fitness function
f and if f(xw(t + 1)) > f(xw(t)) then we assume the
worst frog has positively learned and we assign xw(t) to
its new value xw(t + 1).

● Otherwise, we assign xw(t+ 1) to a randomly generated
position, with a and b some arbitrarily set maximum and
minimum boundaries, in equation 6.

xw(t + 1) = a + r(b − a) (6)

We repeat this evolution process in our sub-memeplex for
a certain number Gs of sub-generations, and then return our
individuals to our memeplex, and repeat our process for a
certain number of Gm generations. Once the generations have
past, the algorithm yields a list of candidates sorted by fitness.
In our case, we pick the highest performing individual as
our candidate solution for the optimisation problem. A high-
level pseudocode representation of the CSFLA is presented in
algorithm 3.

C. Fitness function

Several different metrics have been used in the literature
as fitness function in algorithmic trading. Some examples
are: wealth, profit, return, Sharpe ratio, information ratio. In
this paper, we set the fitness of an individual (proposed set



Algorithm 3 Continuous Shuffled Frog Leaping Algorithm
With: fitness function: f(), gm = 0, gs = 0

1: Initialise population: P ← with N random particles
2: for each frog xi in P do calculate f(xi)
3: Sort P by decreasing fitness value
4: while gm < Gm do
5: Generate M memeplexes
6: for each memeplex do
7: Generate n sub-memeplexes
8: for each attribute xij in xi do
9: while gs < Gs do

10: Move the worst frog of the memeplex
11: According to equations 4,5,6
12: gs = gs + 1

13: Insert all frogs back in P
14: for each particle xi in P do calculatef(xi)
15: gm = gm + 1

of strategy parameters)equal to the total return minus the
maximum drawdown of the outcome of trading using the
individual over a certain dataset. We use this fitness function
to evaluate our performance for consistency with the methods
used in [1]. Equation 7 present the function:

ff = Return − α ×MDD

MDD =
Ptrough − Ppeak

Ppeak

, (7)

where Return is the return of the investment, MDD is the
maximum drawdown, and α is a tuning parameter. Maximum
drawdown is defined as the maximum cumulative loss since
commencing trading with the system. It is used to penalise
volatile trading strategies in terms of return. Its value is given
as the percentage of Ptrough−Ppeak

Ppeak
, where Ptrough the trough

value of the price, and Ppeak is the peak value of the price.
Lastly, the tuning parameter α is used to define how much
risk-averse the strategy is. The more risk-averse in terms of
wishing to avoid a catastrophic loss, the higher the value of
α.

IV. EXPERIMENTAL SETUP

In this section, we present how we set up our experiment:
we describe the data we used, how we tuned our algorithms for
our optimisation problem, and lay out the different algorithm
configurations we used for testing.

A. Data

The data used in the experiment consists of 12 months of
10-minute interval data from the FOREX market, from June
2013 to May 2014, from 4 different currency pairs: Euro / US
Dollar , Euro / British pound, British pound / Swiss franc, and
British Pound / US dollar. The first 3 months of data were used
to tune the algorithms, and the remaining months were used
to evaluate the results of our algorithms on the optimisation
problem.

B. Algorithm tuning and parameters

We applied the same tuning methodology to both the PSO
and the CSFLA: we used a horse-race parameter tuning
process, by testing over 50 different PSO combinations and
over 40 CSFLA combinations on our 3 months of test data.
The candidate parameter sets that came out of the horse race
tuning with the highest returns were then selected as the
parameter sets we used on our test data. The selection took
place by using the non-parametric Friedman statistical test,
thus the selected configurations statistically outperformed the
alternatives.

The final PSO configuration is presented in table I, the
final CSFLA configuration in table II, and the GA parameters,
set as equal to the ones set by [1] in their experiments,
are presented in table III. In addition, we set the strategies’
thresholds to the same values as set by [1], with values of
0.01%, 0.013%, 0.015%, 0.018%, and 0.02%. The value of
the tuning parameter α presented in equation 7 was set to 0.2.
These parameters used in the strategy were selected by the
authors using the I/F-Race Package proposed by [20].

TABLE I
PSO CONFIGURATION

Parameter Value
Swarm size 50
Maximum velocity 150
Inertia weight 0.85
Memory weight 0.45
Neighbourhood weight 0.05
K 5
Minimum velocity threshold 0.00005
Maximum iterations 7

TABLE II
CSFLA CONFIGURATION

Parameter Value
Number of frogs 200
Frogs per memeplex 20
Number of memeplexes 40
Maximum generations 3
Maximum sub-memeplex generations 40

TABLE III
GA CONFIGURATION

Parameter Value
Population size 1000
Number of generations 35
Tournament size 4
X-over probability 0.90
Mutation probability 0.0025

In addition, we also benchmark our results against a genetic
programming financial forecasting algorithm [21], [22], [23],
[24], [25]. This algorithm combines different technical analysis
indicators together, in order to form predictions. The reason
to benchmark against technical analysis is because it is one
of the most common trading techniques, and this allows us
to measure our work’s performance not only on a specific



optimisation problem but also as a competitive trading strategy
alternative.

V. RESULTS AND ANALYSIS

In this section, we present the results of our experiments
running the algorithms presented in section III with the setup
presented in section IV.

Table IV presents the monthly mean results for each cur-
rency pair, over GA, CSFLA, PSO, and GP. We denote in bold
the best mean return per row. As we can observe, GA was best
8 times, CSFLA 9 times, PSO 7 times, and GP 12 times. In
terms of overall average performance, as we can see from
Table V, GP was the best algorithm for EUR/GBP, GA the
best for GBP/CHF, while PSO came first for both GBP/USD
and EUR/USD. More importantly, PSO had the highest mean
return of 0.010381.

TABLE IV
MEAN MONTHLY RESULTS FOR THE 4 CURRENCY PAIRS.

GA CSFLA PSO GP
EUR_GBP
September -0.0000148 -0.001801 0.00017145 0.00010843
October 0.0000762 -0.000637 0.00059506 0.00058537
November 0.0000173 -1.31E-04 -8.33E-05 -0.0000335
December 0.0000496 -0.000866 1.14E-04 0.0000068
January -6.89E-05 -0.000096 -0.00130394 -0.00033099
February -3.07E-05 9.10E-05 -0.0000485 0.00068661
March 0.0000594 -0.001033 0.0001673 0.00017825
April -0.0000023 -0.000118 0.00018897 0.00012726
May 2.01E-05 0.000001 -0.00177085 -0.00146786
GBP_CHF
September 0.0000399 0.000123 0.00063854 0.0006417
October -0.0004399 4.60E-03 0.0000861 0.00017781
November 0.0001084 0.000204 2.92E-04 0.0000923
December 0.0004526 0.000483 -0.0003138 -0.00045079
January 0.0001703 -8.15E-04 8.21E-05 0.0000191
February 1.51E-04 0.000091 -0.00030491 -0.00026982
March -0.000133 0.000273 -0.00010231 -0.00018848
April -0.0000516 0.001324 0.000432 0.00070451
May 0.0000117 -0.003114 0.00016799 0.00016947
GBP_USD
September 0.0000527 0.002506 0.00730391 0.00833202
October 0.000196 -0.001178 -0.00027488 -0.0001799
November -0.0001843 0.002049 4.76E-04 -0.0000774
December 5.91E-05 -0.000061 0.00013813 0.00015082
January 0.0000044 -0.005245 -0.00051436 -0.00070105
February -0.0000413 0.000117 -0.00177948 -0.00165598
March -0.0000485 0.002314 -0.00026263 0.00020933
April 0.0000046 0.000877 0.00204839 0.00226083
May 0.0001046 -0.001608 0.00014476 0.00035787
EUR_USD
September 0.0000081 0.000208 0.0001952 0.00064548
October 0.0006714 -0.023286 0.00039047 0.00128115
November 0.0000269 1.20E-04 -7.49E-05 -0.0000733
December 0.0000381 0.000628 -0.00036009 -0.00039472
January -0.000506 -0.000433 -0.00029313 -0.00045077
February -0.0000667 0.000332 0.00049563 0.0006901
March -0.000012 0.000103 0.00044259 0.00017442
April -0.0000877 0.000944 0.00053225 0.00223177
May -4.50E-06 -0.000044 -0.0023122 -0.00317595

These results were further supported by the non-parametric
Friedman test, presented in Table VI. As we can observe, the
PSO ranks first, followed by the CSFLA and GP that have
the same ranking, and the GA being ranked last. Subsequent
analysis on the Holm post-hoc test showed that the above

results were not significant at the 5% level. However, this
should not alarm us, because the fact remains that the PSO has
ranked first in the majority of the currency pairs tested. This
suggests that it is a more robust algorithm and is expected to
produce better results when new data is used.

TABLE V
MEAN RETURNS OF EACH ALGORITHM ACROSS THE FOUR CURRENCY

PAIRS ON 9 MONTHS OF DATA

GA CSFLA PSO GP
EUR/GBP -0.00459 -0.00197 -0.00014 0.00001
GBP/CHF 0.003170 0.000978 0.000896 0.00004
GBP/USD -0.000229 0.007279 0.008697 0.00001
EUR/USD -0.021428 -0.000984 0.000928 -0.00002
Mean -0.023077 0.005303 0.010381 0.00005

TABLE VI
FRIEDMAN RANKING FOR THE MEAN RETURNS OF THE PSO, CSFLA,

GA, AND GP

Algorithm Average Rank
PSO (c) 1.75
CSFLA 2.5
GP 2.5
GA 3.25

It is important to note that our original goal of improving
the GA’s performance as an optimiser for DC-based trading
strategies has been achieved, since both the PSO and CSFLA
have yielded higher average returns and also shown better
ranking through the Friedman test.

VI. CONCLUSION

In conclusion, we have applied two algorithms, the particle
swarm optimisation algorithm and the continuous shuffled
frog leaping algorithm, to optimise parameters of DC-based
trading strategies. We have shown that both algorithms offer
improvements over a genetic algorithm, which was previously
used as the optimiser for the given task. The PSO and CSFLA
also returned comparable results to a technical analysis trading
strategy, which was optimised by genetic programming.

These results are very encouraging because they demon-
strate the potential of directional changes, as they can yield
positive returns, and can outperform some technical analysis
based strategies. Moreover, the results demonstrate that the
performance of the DC-based trading strategies can be further
improved by looking into how the strategies’ parameters are
optimised. In addition to their capacity to yield positive returns
on historical data, we emphasise the potential of our strategies
being not well know to traders yet, and coupled with atypical
optimisation algorithms which increase the strategy’s returns.
This allows them to be innovative and potentially competitive
in real-world trading. It would be interesting to apply the
tested algorithms to other trading strategies to investigate their
performance in different environments, and see whether they
are best fitted for DC-based environments or other trading
strategies. We could also try to improve the optimisation prob-
lem results by combining our tested algorithms or test them



further by comparing their performance to other metaheuristic
algorithms on the same problem. Lastly, we could also test
our results on different datasets such as different currencies,
different markets, or different time-periods.
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