Identification and characterization of a novel vitamin B12 (cobalamin) biosynthetic enzyme (CobZ) from Rhodobacter capsulatus, containing flavin, heme, and Fe-S cofactors.

McGoldrick, Helen M. and Roessners, Charles A. and Raux-Deery, Evelyne and Lawrence, Andrew D. and McLean, Kirsty J. and Munro, Andrew W. and Santabarbara, Stefano and Rigby, Stephen E. J. and Heathcote, Peter and Scott, A. Ian and Warren, Martin J. (2005) Identification and characterization of a novel vitamin B12 (cobalamin) biosynthetic enzyme (CobZ) from Rhodobacter capsulatus, containing flavin, heme, and Fe-S cofactors. Journal of Biological Chemistry, 280 . pp. 1086-1094. (Access to this publication is restricted)

PDF
Restricted to Registered users only
Contact us about this Publication Download (527kB)
[img]
Official URL
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=...

Abstract

One of the most intriguing steps during cobalamin (vitamin B12) biosynthesis is the ring contraction process that leads to the extrusion of one of the integral macrocyclic carbon atoms from the tetrapyrrole-derived framework. The aerobic cobalamin pathway requires the action of a monooxygenase called CobG (precorrin-3B synthase), which generates a hydroxylactone intermediate that is subsequently ring-contracted by CobJ. However, in the photosynthetic bacterium Rhodobacter capsulatus, which harbors an aerobic-like pathway, there is no cobG in the main cobalamin biosynthetic operon although it does contain an additional uncharacterized gene called orf663. To demonstrate the involvement of Orf663 in cobalamin synthesis, the first dedicated 10 genes of the B12 pathway (including orf663), encoding enzymes for the transformation of uroporphyrinogen III into hydrogenobyrinic acid (HBA), were sequentially cloned into a plasmid to generate an artificial operon, which, when transformed into Escherichia coli, endowed the host with the ability to make HBA. Deletion of orf663 from this operon prevented HBA synthesis, demonstrating that it was essential for corrin construction. HBA synthesis was restored to this recombinant strain either by returning orf663 or by substituting it with cobG. Recombinant overproduction of Orf663, now renamed CobZ, allowed the characterization of a novel cofactor-rich protein, housing two Fe-S centers, a flavin, and a heme group, which like B12 itself is a modified tetrapyrrole. A mechanism for Orf663 (CobZ) in cobalamin biosynthesis is proposed.

Item Type: Article
Subjects: Q Science
Divisions: Faculties > Science Technology and Medical Studies > School of Biosciences > Protein Science Group
Depositing User: Sue Davies
Date Deposited: 19 Dec 2007 17:54
Last Modified: 28 May 2014 13:26
Resource URI: http://kar.kent.ac.uk/id/eprint/74 (The current URI for this page, for reference purposes)
  • Depositors only (login required):

Downloads

Downloads per month over past year