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Abstract  

The sense of body-ownership relies on the representation of both interoceptive and 

exteroceptive signals coming from one’s body. However, it remains unknown how the 

integration of bodily signals coming from outside and inside the body is instantiated in the 

brain. Here we used a modified version of the Enfacement Illusion to investigate whether the 

integration of visual and cardiac information can alter self-face recognition (Experiment 1) 

and neural responses to heartbeats (Experiment 2). We projected a pulsing shade, that was 

synchronous or asynchronous with the participant’s heartbeat, onto a picture depicting the 

participant’s face morphed with the face of an unfamiliar other. Results revealed that 

synchronous (vs. asynchronous) cardio-visual stimulation led to increased self-identification 

with the other’s face (Experiment 1), while during stimulation, synchronicity modulated the 

amplitude of the Heartbeat Evoked Potential, an electrophysiological index of cortical 

interoceptive processing (Experiment 2). Importantly, the magnitude of the illusion-related 

effects was dependent of, and increased linearly, with the participants’ Interoceptive 

Accuracy. These results provide the first direct neural evidence for the integration of 

interoceptive and exteroceptive signals in bodily self-awareness. 

 

 

 

 

 

Keywords: Body Ownership, Heartbeat Evoked Potential, Interoception, Predictive Coding, 

Self recognition.
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Introduction 2	  

The sense of body-ownership, that is, the sense of owning and identifying with a particular 3	  

body, is a fundamental aspect of self-awareness (Blanke and Metzinger 2009). Body-4	  

ownership has been typically studied through the use of bodily illusions that rely upon the 5	  

multisensory integration of exteroceptive signals, such as vision and touch, focusing therefore 6	  

on how the body is perceived from the outside. More recently, it has been suggested that 7	  

interoceptive signals, that is the perception of internal physiological states of the body as 8	  

perceived from within, may also play an important role for body-ownership (Craig 2009; 9	  

Tsakiris et al. 2011). While the effects of exteroceptive signals on producing or altering the 10	  

sense of body-ownership have been well documented (for a review see Tsakiris 2010), the 11	  

process of integrating interoceptive and exteroceptive signals and the effects that their 12	  

integration has on self-awareness are less well understood.  13	  

A large body of empirical evidence has shown that the integration of exteroceptive 14	  

information such as vision and touch can alter the sense of body-ownership for body-parts 15	  

and full bodies (see Blanke 2012 and Tsakiris 2010 for reviews). For example, in the now 16	  

classic Rubber Hand Illusion (RHI), observing an artificial hand being stroked in synchrony 17	  

with strokes applied to one’s own hand leads to the subjective incorporation of the rubber 18	  

hand as part of one’s own body, to “feel like it’s my hand” (Botvinick and Cohen 1998). 19	  

Beyond ownership over body-parts, other studies have used the same method of multisensory 20	  

integration1 (i.e. visuo-tactile stimulation) to ask whether similar changes would occur in the 21	  

representation of one’s own face. In the Enfacement Illusion (Tsakiris, 2008; Sforza et al. 22	  

2010; Apps et al. 2015), watching another person’s face being touched synchronously with 23	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1The use of the term “integration” follows the past literature of bodily illusions that typically rely on the 
presentation of synchronous or asynchronous multisensory stimuli to alter body-representations (Tsakiris 2010; 
Blanke 2012). In this literature the term integration is taken to reflect the cause that gives rise to a change in 
body representations. It should be noted that, in this context, temporal synchrony is a necessary but not 
sufficient condition for integration to take place. Integration does not occur, for example, when synchronous 
multisensory stimulation is applied over body parts in anatomically incongruent positions or over on-corporeal 
objects (Tsakiris, 2010). 
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one’s own face evokes changes in self-face recognition, so that we perceive the other 24	  

person’s face as more similar to one’s own. This extension from bodies to faces, which are 25	  

arguably the most distinctive features of one’s body, suggests that multisensory integration is 26	  

a shared critical mechanism for the construction of body-ownership and self-face recognition.  27	  

Beyond the known role of exteroceptive information, the role that interoceptive information 28	  

may play in body-awareness has remained largely unexplored. The first study to link the 29	  

perception of the body from the outside with the perception of the body from the inside 30	  

showed that the illusory sense of ownership of an artificial hand, (i.e. RHI, elicited by 31	  

exteroceptive information) is negatively correlated with the individual’s interoceptive 32	  

accuracy (IAcc), which refers to the ability to detect interoceptive signals, such as one’s 33	  

heartbeats (Tsakiris et al. 2011). This study provided the first empirical evidence for the 34	  

influence of interoception on the integration of body-related sensory signals arising from 35	  

different exteroceptive domains. Interestingly, in a way analogous to the effects of IAcc on 36	  

the RHI, individual traits of IAcc were shown to predict changes in self-other boundaries 37	  

during the Enfacement Illusion (Tajadura-Jimenez et al. 2012a; 2012b). More recently, direct 38	  

evidence for the integration of exteroceptive and interoceptive information in body-39	  

ownership comes from two virtual reality studies (Suzuki et al. 2013; Aspell et al. 2013). 40	  

Suzuki and colleagues (2013) demonstrated that watching a virtual depiction of the 41	  

participant’s hand pulsing in synchrony with their own heartbeats induced the subjective 42	  

experience of ownership over the virtually projected hand. This effect was not observed when 43	  

the cardiac signals were presented out-of-synchrony with the participant’s heartbeats. 44	  

Interestingly, participants with higher IAcc experienced a stronger illusory sense of 45	  

ownership over the virtual hand than participants with lower IAcc. Similarly, Aspell and 46	  

colleagues (2013) showed that watching a projection of the participants’ body (virtual body) 47	  

surrounded by an illuminating silhouette flashing synchronously, as opposed to 48	  
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asynchronously, with their own heartbeat led to enhanced self-identification and greater shift 49	  

in self-location towards the virtual body. These studies indicate that the integration of sensory 50	  

information across the interoceptive and exteroceptive domains via cardio-visual synchrony 51	  

can alter body-ownership.  52	  

We here capitalise on these recent findings to investigate for the first time the neural 53	  

dynamics underpinning this integration of multisensory bodily signals coming from outside 54	  

and from within the body. To explore this question, we first provide a proof of concept 55	  

behavioural study that tests the effect of cardio-visual stimulation on self-recognition using a 56	  

modified version of the Enfacement Illusion. Next, we used electroencephalography (EEG) to 57	  

investigate if the neural responses to own heartbeats are modulated by the integration of 58	  

interoceptive and exteroceptive signals. 59	  

In Experiment 1, we projected a pulsing shade, that was synchronous or asynchronous with 60	  

the participant’s heartbeats, onto a picture that depicted the face of an unfamiliar other 61	  

morphed with the participant’s own face. Before and after this cardio-visual stimulation, 62	  

participants carried out a self-other face recognition task to assess the changes that cardio-63	  

visual stimulation caused in the mental representation of their own face. In experiment 2 we 64	  

used a similar procedure and, in addition, during the cardio-visual stimulation we measured 65	  

participants’ heartbeat evoked potential (HEP) – an electrophysiological index of cortical 66	  

processing of cardiac signals (Pollatos and Schandry 2004). This allowed us to investigate 67	  

changes in the brain mechanisms associated with cardiac processing during the cardio-visual 68	  

stimulation. Based on past results (Tsakiris et al. 2011; Suzuki et al. 2013) that highlight the 69	  

critical role of interoceptive accuracy in the integration of exteroceptive and interoceptive 70	  

information we measured the participants levels of IAcc using the mental tracking task 71	  

(Schandry 1981), an established measure of the ability to monitor heartbeats.  72	  
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We hypothesised that synchronous (as opposed to asynchronous) cardio-visual stimulation 73	  

would lead to changes in the mental representation of one’s face (Aspell et al. 2013; Suzuki 74	  

et al. 2013; Tajadura-Jimenez et al. 2012a). Behaviourally this would be reflected in changes 75	  

in the self-face recognition task after synchronous stimulation, as well as by explicit reports 76	  

in the subjective questionnaire. Moreover, the effects of synchronous cardio-visual 77	  

stimulation would be greater in those individuals with higher levels of IAcc (Suzuki et al. 78	  

2013; Azevedo et al. 2016), as measured by the mental tracking task. We also hypothesised 79	  

that shifts in self-face representation due to cardio-visual stimulation would lead to changes 80	  

in the cortical response to cardiac signals, i.e. the HEP component. Moreover, HEP amplitude 81	  

changes would rely on the individuals’ trait IAcc, such that HEP modulation was expected to 82	  

be greater in individuals with higher as opposed to lower IAcc.  83	  

Experiment 1: 84	  

Material and Methods 85	  

Participants 86	  

A total of 36 (24 females; mean age=21, s.d.=3.1) healthy volunteers took part in this 87	  

experiment. Data from 4 participants was excluded from analyses due to incorrect 88	  

interpretation of the visual analogue scale (VAS) used to collect ratings in the self-face 89	  

recognition task. Additionally, analyses looking at changes in the Point of Subjective 90	  

Equality (see below) for each condition revealed the presence of 3 outliers (+/- 2.5 s.d. from 91	  

the mean). Thus, the final sample comprised 29 (18 females; mean age=21.2, s.d.=3.3) 92	  

participants.  93	  

Stimuli 94	  

Stimuli used during the cardio-visual stimulation period consisted of photos of the 95	  

participant’s face with a neutral expression morphed with the face of a same gender 96	  
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unfamiliar other. The stimulus set comprised 8 different unfamiliar models (4 females; 4 97	  

males), selected from our in-house database, that had never been seen by the participants 98	  

prior to the experiment. To avoid carry over effects from one condition to the other, each 99	  

participant was presented with two unfamiliar gender-matched models, one presented in the 100	  

synchronous condition, one presented in the asynchronous condition (see below). Models 101	  

associated with the synchronous and asynchronous condition were randomly used across 102	  

participants. That is, each participant was presented only with 2 of these faces, and each face 103	  

was randomly presented to some participants in the synchronous conditions and to other 104	  

participants in the asynchronous conditions. The photographs of the participant’s face were 105	  

taken in a separate session, prior to the experimental session. These non-mirror-reversed 106	  

photos were morphed with Fantamorph (v4.0.8 Abrosoft, http://www.fantamorph.com) and 107	  

edited with Photoshop software (Adobe Systems, San Jose, CA). Pictures presented during 108	  

the stimulation period included hair, ears and upper torso. The presentation of coloured 109	  

pictures aimed to present participants with highly realistic images to maximise the effect of 110	  

the enfacement illusion (Tsakiris, 2008; Sforza et al. 2010; Paladino et al. 2010; Tajadura-111	  

Jimenez et al. 2012a, 2013). Conversely, pictures shown in the self-recognition task were 112	  

desaturated (i.e. black and white) and cropped to hide hair, ears, and neck (Figure 1). This 113	  

was done to prevent features unrelated to face morphology from interfering with judgments 114	  

of self-recognition. It is worth noting that this is the common procedure in enfacement 115	  

illusion studies (e.g. Tajadura-Jimenez et al. 2013). Two degrees of morphing were used 116	  

during the stimulation period: 40%-self/60%-other (hereafter referred to as 40/60) and 60%-117	  

self/40%-other (hereafter referred to as 60/40). The 40/60 morphed stimulus served as the 118	  

experimental condition because this stimulus contained a greater percentage of the other’s 119	  

face, and we were principally interested in testing whether synchronous cardio-visual 120	  

stimulation with that stimulus would alter self-recognition performance. The 60/40 morphed 121	  
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stimulus served as the control condition as it contained a larger percentage of the self, and we 122	  

did not expect self-face recognition performance to be affected in this case. 123	  

Experimental procedure 124	  

Participants were comfortability sited in an armchair with a standard 3-lead 125	  

electrocardiogram (ECG) attached to their chest to monitor their heart activity throughout the 126	  

session (Powerlab, ADInstrumens, www.adinstruments.com). A hardware-based function 127	  

detected each R-wave to synchronise stimuli presentation with the participants’ heartbeats.  128	  

The main experimental procedure was organised in four blocks, each comprising the 129	  

following sequence of tasks: Pre-Stimulation Face Recognition Task – Cardio-Visual 130	  

Stimulation – Post-Stimulation Face Recognition Task – Questionnaire (Figure 1A). Each 131	  

block began with the presentation of the participant’s photo (100% self) for 5 seconds, 132	  

followed by the photo of a same gender unfamiliar other (100% other) for 5 seconds. 133	  

Participants were instructed that a set of morphing images of these two photos would be 134	  

presented in that block.   135	  

Stimulation consisted of periodic pulses of decreased luminosity over the upper torso and 136	  

face leaving constant the luminosity of the background (see Figure 1C). Each of these pulses 137	  

had a duration of 100ms and they could be presented either synchronously or asynchronously 138	  

with the participant’s own heartbeats. During the synchronous stimulation, pulses were 139	  

presented 200ms after each ECG’s R-wave. This time window was selected to coincide with 140	  

the period of maximum subjective perception of heartbeats (Brener et al. 1993; Suzuki et al. 141	  

2013). In the asynchronous conditions, pulses mimicked the rhythm of another person’s 142	  

previously recorded heart at rest with a heart rate 10% faster or slower than the participant’s 143	  

heart rate (estimated from the 20 heartbeats immediately preceding the onset of the cardio-144	  

visual stimulation period of each block). Faster or slower asynchronous rhythms were 145	  
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counterbalanced across participants. Thus, each of the four blocks was characterised by the 146	  

synchronicity of the stimulation and degree of morphing: synchronous 40/60; synchronous 147	  

60/40; asynchronous 40/60; asynchronous 60/40. Information regarding the cardio-visual 148	  

synchrony stimulation was never mentioned to participants. Instead, they were told that the 149	  

ECG recordings had the purpose of measuring cardiac responses to the perception of faces 150	  

with different degrees of self-other morphing.  151	  

Before and after the cardio-visual stimulation, participants carried out the face recognition 152	  

task. They were presented with a randomised series of black and white photos reflecting 153	  

different degrees of morphing - from 20% self/ to 80% self in steps of 2%. A black template 154	  

was imposed to these photos to remove non-facial attributes (e.g., background, hair, ears) 155	  

(Figure 1). Participants were asked to rate each photo on a VAS (ranging from 0-100) “how 156	  

similar is this face to your own?” Extremes of the scale were anchored with “mostly similar 157	  

to me” (100) and “least similar to me” (0). This task allowed to estimate the degree of 158	  

morphing for which participants judged to equally represent “other” and “self” traits, 159	  

hereafter referred to as point of subjective equality (PSE). PSE was estimated by fitting the 160	  

participants’ ratings for each picture into a logistic function, and corresponds to the central 161	  

point, 50%, of this fitted psychometric curve. The comparison of the PSEs assessed 162	  

previously and subsequently to cardio-visual stimulation allows estimating changes in self-163	  

other mental representation due to the stimulation (Sforza et al. 2010; Tajadura-Jimenez et al. 164	  

2012b). It should be noted that by combining pre and post stimulation PSE measurements 165	  

with between-participants randomised counterbalancing of faces used in synchronous and 166	  

asynchronous conditions we were able to control, or at least greatly minimise, any general 167	  

non-specific effects of similarity differences between self and other face at baseline. 168	  

The questionnaire consisted in 5 questions (see Table 1), 3 of which related to changes in 169	  

self-other face representation due to visual stimulation (Q1, Q2, Q3) (Tajadura-Jimenez et al. 170	  
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2012a) and two related to the pulsing rhythm (Q4, Q5) (cf. Aspell et al. 2013). Participants 171	  

answered on a VAS (ranging from 0-100) with the labels “I disagree” and “I agree” 172	  

presented at the two extremes of the scales.  173	  

After the completion of the 4 experimental blocks, participants carried out the mental 174	  

tracking task (Schandry 1981), a standard measure of the IAcc that reflects the ability to 175	  

accurately identify and perceive heartbeats. Participants were asked to silently count their 176	  

heartbeats, without feeling their pulse, during four trials of 25, 35, 45 and 100 seconds. 177	  

Reported and measured heartbeats were compared to estimate an index of IAcc using the 178	  

following equation (Schandry 1981): 179	  

(1÷ 4)×   [1− 𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑  𝑖𝑡𝑒𝑚𝑠 − 𝑐𝑜𝑢𝑛𝑡𝑒𝑑  𝑖𝑡𝑒𝑚𝑠 ÷ 𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑  𝑖𝑡𝑒𝑚𝑠 ]
!

!!!

 

Debriefing 180	  

To understand if participants detected or had any suspicion about the synchrony between the 181	  

pulses and their own heartbeats, at the end of the experimental session, we asked them the 182	  

following questions: “What do you think the purpose of this experiment was?” and “Did 183	  

anything about the experiment seem strange to you, or was there anything you were 184	  

wondering about?” Only one participant mentioned a possible contingency between 185	  

heartbeats and pulses, confirming that the processes mediating cardio-visual integration are 186	  

largely implicit (Azevedo et al. 2016). We did not disclosure the relationship between 187	  

heartbeats and pulses so that participants remained naïve for the EEG session.  188	  

Results 189	  

Point of Subjective Equality (PSE) 190	  
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Our main analyses was focused on changes in the representation of self-other faces due to 191	  

cardio-visual stimulation as measured by the change in the PSE at each condition. Data was 192	  

submitted to a repeated measures ANOVA with 2 Time (Pre-stimulation; Post-stimulation) x 193	  

2 Synchrony (Synchronous; Asynchronous) x 2 Morphing (40/60; 60/40) as within-subject 194	  

factors. The analysis revealed a main effect of Time (F(1,28)=12.21, p=0.002), and a main 195	  

effect of Synchrony (F(1,28)=5.84, p=0.022), as well as an interaction Time x Morphing 196	  

(F(1,28)=5.44, p=0.027), and an interaction Synchrony x Morphing (F(1,28)=5.0, p=0.034). 197	  

However, the critical 3-way interaction Time x Synchrony x Morphing (F(1,28)=0.17, 198	  

p=0.68) and the interaction Time x Synchrony (F(1,28)=0.85, p=0.36) were not significant. 199	  

Because trait ability to monitor heartbeats may moderate participants’ susceptibility to 200	  

cardio-visual synchronicity effects (Suzuki et al. 2013) analyses were re-run with individual 201	  

IAcc scores as covariates in the ANOVA. Indeed, the analysis showed that IAcc moderated 202	  

the 3-way interaction - Time x Synchrony x Morphing x IAcc (F(1,27)=7.96, p=0.009), that 203	  

was now significant (F(1,27)=7.14, p=0.013). The Time x Synchrony x IAcc (F(1,27)=4.80, 204	  

p=0.038) was also significant. These results show that the ability to monitor own heartbeats 205	  

modulates changes in one’s own representation of self-other faces due to cardio-visual 206	  

stimulation. To follow up on this effect, we subtracted pre-stimulation values from post-207	  

stimulation (ΔPSE) ratings and performed planned comparisons in separate ANCOVAs for 208	  

the 40/60 and 60/40 conditions, with Synchrony (Synchronous; Asynchronous) as single 209	  

within-subject factor and IAcc as covariate. Results revealed an effect of Synchrony in the 210	  

40/60 condition (F(1,27)=14.1, p=0.001; effect of IAcc: F(1,27)=16.6, p<0.001) but not in the 211	  

60/40 (F(1,27)=0.04, p=0.84; effect of IAcc: F(1,27)=0.08, p=0.9). This effect is illustrated 212	  

by the correlation between IAcc and the ΔPSE for the synchronous minus the asynchronous 213	  

40/60 condition (r=0.617, p<0.001; Figure 2C). 214	  

Questionnaires 215	  
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Separate analyses were carried out for the questions referring to enfacement effects 216	  

(Questions 1-3) and questions referring to the subjective experience of the flashing 217	  

(Questions 4-5). In the former case, an ANOVA with 3 Questions (Q1; Q2; Q3) x 2 218	  

Synchrony (Synchronous; Asynchronous) x 2 Morphing (40/60; 60/40) was carried out. The 219	  

analysis showed a main effect of the factor Questions (F(1,28)=6.45, p=0.003) and an 220	  

interaction Questions x Synchrony (F(1,28)=4.6, p=0.014). There were no other main effects 221	  

or interactions (all ps>0.05). Thus, responses to the two Morphing conditions were averaged 222	  

for each question. Planned comparisons between responses to the synchronous and 223	  

asynchronous conditions for each question were performed. Synchrony had an effect on 224	  

responses to Q2 (t(1,28)=2.69, p=0.012), but not responses to Q1 (t(1,28)=-0.27, p=0.79) 225	  

neither to Q3 (t(1,28)=-1.6, p=0.12). To further explore the relation between the subjective 226	  

responses and participants’ IAcc, we included IAcc as covariate in the ANOVA. However, 227	  

we did not observe any interaction of IAcc with Synchrony effects (all ps>0.05). Analyses on 228	  

Questions 4-5 did not reveal a significant effect or interaction with Synchrony (all ps>0.05). 229	  

Discussion – Experiment 1  230	  

We observed that synchronous (vs. asynchronous) cardio-visual stimulation induced changes 231	  

in the participant’s recognition of their own face. In particular, the comparison between PSE 232	  

values obtained before and after the cardio-visual stimulation in the synchronous, as opposed 233	  

the asynchronous condition, reveals that the cardio-visual stimulation increased the perceived 234	  

similarity between self and other faces. This pattern of results is comparable to the effects of 235	  

visuo-tactile induction of the Enfacement illusion (Tsakiris 2008; Tajadura-Jimenez et al. 236	  

2012a; Sforza et al. 2010). These studies demonstrated unidirectional changes in the self-237	  

other distinction, showing changes in self-face recognition, but not in the recognition of the 238	  

other’s face. Self-recognition judgements depend on a comparison between the visual percept 239	  

and a stored mnemonic representation of how a particular person (or the self) looks like 240	  
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(Apps et al. 2012; Legrain et al. 2011). As with previous studies, the observed changes in 241	  

self-recognition performance seem to reflect an updating in the mental representation of one’s 242	  

own facial appearance. Moreover, these results are in line with previous studies that reported 243	  

feelings of body ownership of a virtual reality avatar and a virtual hand (Aspell et al. 2013; 244	  

Suzuki et al. 2013) under conditions of cardio-visual stimulation. Overall, the results support 245	  

the view that the integration of interoceptive and exteroceptive information is a critical 246	  

mechanism for self-other distinction and for the construction or updating of self-face mental 247	  

representations.   248	  

Interestingly, the effect of synchronous cardio-visual stimulation on self-recognition was 249	  

dependent on individual trait levels of IAcc. Specifically, these stimulation-induced changes 250	  

in self-other distinction increased linearly with IAcc. Thus, cardio-visual stimulation was 251	  

particularly effective among those individuals who are, as a trait, better able to accurately 252	  

perceive their own heartbeats. Even if participants were not aware of the contingency 253	  

between their heartbeats and the pulses (as confirmed during debriefing), the presumably 254	  

great sensitivity that individuals with higher IAcc have to interoceptive bodily signals 255	  

facilitated the implicit integration of their cardiac activity with the visual stimulus depicting 256	  

the other’s face.  257	  

While both the behavioural task and the questionnaire data revealed that cardio-visual 258	  

synchrony induces changes in self-face representation similar to those experienced with the 259	  

classical enfacement illusion, we observed that trait levels of IAcc only correlated with 260	  

behavioural changes, but not with subjective reports. This can be explained by the fact that 261	  

while the face-recognition task (used to estimate ΔPSE) measures fine-grained shifts in self-262	  

face perception, the questionnaires rely on introspective evaluations to quantify the subjective 263	  

experience of the illusion and thus constitute a coarser measure. 264	  
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Having established a behavioural effect, we next investigated, for the first time, if this change 265	  

in the mental representation of self- faces caused by the integration of interoceptive with 266	  

exteroceptive (i.e. visual) signals is reflected at the level of cortical interoceptive processing, 267	  

by focusing on changes in the neural responses to heartbeats, i.e. HEP, during the cardio-268	  

visual stimulation. 269	  

Experiment 2: 270	  

Material and Methods 271	  

Participants 272	  

Participants from Experiment 1 were contacted and invited to take part in Experiment 2. A 273	  

total of 24 participants agreed to participate. Participants were neurologically unimpaired and 274	  

received reimbursement for their participation. One participant was excluded from the sample 275	  

due to excess of artifacts in the EEG signal (see EEG analysis) resulting in a total of 23 276	  

participants (9 males; mean age=21.9; s.d=3.71). Participants gave their informed consent, 277	  

with approval by the Ethics Committee, Department of Psychology, Royal Holloway 278	  

University of London. Experiment 2 was performed 1.5-5 months after Experiment 1.  279	  

Experimental procedure 280	  

Participants were seated in a dimly lit, sound-attenuated and electrically shielded chamber in 281	  

front of a monitor at a distance of 80 cm. Participants’ ECG was recorded following the same 282	  

procedure as in Experiment 1. The ECG was recorded throughout all the experimental phases 283	  

where there was cardio-visual stimulation. 284	  

Stimuli consisted of morphed pictures of the participants’ upper torso and a face containing 285	  

40% of the participants’ facial features and 60 % of the features of a gender-matched 286	  

unfamiliar other (i.e., 40/60 degree of morphing). The 40/60 pictures were selected from 287	  

Experiment 1 because, as expected, the effect of synchronous cardio-visual stimulation on the 288	  
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PSE ratings was observed in the 40/60 synchronous (experimental) condition but not in the 289	  

60/40 synchronous (control) condition. There were 8 unfamiliar models (4 male, 4 female). 290	  

Participants’ face was morphed with faces of two randomly assigned models, one used in the 291	  

synchronous condition and the other in the asynchronous condition. Besides, the stimulus set 292	  

included pictures of the upper body and face of two owls. Pictures were approximately 1200 293	  

x 960 size and they were presented in a white background. As in Experiment 1, stimulation 294	  

consisted of periodic pulses of decreasing luminosity of the upper torso and face leaving 295	  

constant the luminosity of the background. The pulse length was 100ms and was presented 296	  

either synchronously or asynchronously with the participant’s own heartbeats.  297	  

The experiment contained 48 blocks of 90 seconds length, presented randomly. There were 4 298	  

block types, each presented 12 times. The experiment consisted of 2 experimental conditions, 299	  

where participants were presented with the 40/60 morphed faces either in synchrony 300	  

(synchronous experimental block) or asynchrony with their own heartbeats (asynchronous 301	  

experimental block). In addition, there were 2 control conditions, where participants were 302	  

presented with pictures of owls presented in synchrony (synchronous control block) or 303	  

asynchrony (asynchronous control block) with their heartbeats. After each block, participants 304	  

were presented with one question of a 6 item questionnaire, including the 3 questions related 305	  

to changes in self-other face representation due to the visual stimulation (Tajadura-Jimenez et 306	  

al. 2012a), and the 2 questions related to the pulsing rhythm used in Experiment 1. The 307	  

additional question “How distracted were you during this block?” anchored by the 308	  

expressions “not at all” and “very much” was also included to control for attention to the 309	  

stimuli. Participants answered to each question twice for each condition, in a fully 310	  

randomised way.   311	  

EEG and ECG recording  312	  
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EEG was recorded with Ag-AgCl electrodes from 64 active scalp electrodes mounted on an 313	  

elastic electrode cap, according to the International 10/20 system, using ActiveTwo system 314	  

(AD-box) and Actiview software (BioSemi, Amsterdam, Netherlands; 512 Hz sampling rate; 315	  

band-pass filter 0.16-100Hz (down 3 dB); 24 bit resolution). Electrodes were referenced to 316	  

the Common Mode Sense and Driven Right Leg electrodes and rereferenced to the average 317	  

reference off-line. As in the behavioural study, the ECG signal was recorded with a standard 318	  

3-lead ECG attached to participants’ chest (Powerlab, ADInstrumens, 319	  

www.adinstruments.com). The R-peaks of the EGC were identified using a hardware-based 320	  

detection algorism. The onset of the R-waves were marked in the EEG recording. The 321	  

average number of trials (heartbeats) contributing to the HEP were 1039 in the experimental 322	  

synchronous condition; 1044.74 in the experimental asynchronous condition; 1050.91 in the 323	  

control synchronous condition; and 1053.7 in the control asynchronous condition. 324	  

Importantly, there were no significant differences in number of heartbeats between conditions 325	  

(F(3,66)=0.597, p>0.05).  326	  

EEG data analysis 327	  

Off-line EEG analysis was performed using Vision Analyzer software (BrainProducts). The 328	  

data was digitally low-pass-filtered at 30 Hz. The data was then submitted to ICA as 329	  

implemented in Vision Analyzer to correct for ocular and cardiac-field artifacts (CFAs) 330	  

(Terhaar et al. 2014). The CFAs were corrected by removing the independent components 331	  

(most often one, or two) whose timing and topography resembled the characteristics of the 332	  

CFAs. The CFA represents a challenge to the analysis of the HEP because the averaging of 333	  

the data around the R-peak amplifies the CFA becoming time-locked to the heartbeat (Luft 334	  

and Bhattacharya, 2015). However, the ICA method has been shown to be of high efficiency 335	  

in the removal of the independent components representing cardiac-field artifacts from the 336	  

EEG signal, specifically within the time window where the HEP typically occurs, i.e. 200-337	  



Heartfelt	  Self	  
	  

17	  
	  

400ms (e.g. Terhaar et al. 2014; Park et al. 2014; Luft and Bhattacharya 2015) (see also 338	  

figure 3D). To compute the HEP the EEG signal was epoched into 750ms segments, starting 339	  

150ms before the R-wave onset. Segments were baseline corrected using an interval from -340	  

150 to -50ms before the R-wave onset. The period ranging from -50ms to 0ms was not 341	  

considered to avoid the inclusion of artifacts related to the QRS complex of the ECG signal 342	  

when computing the baseline correction of the signal (e.g. Canales-Johnson et al. 2015). 343	  

Moreover, in the present experimental design, longer baseline periods should be avoided as, 344	  

for participants with faster heart rates, this period may partially overlap with late components 345	  

of visual evoked responses to the pulsing stimulus of the immediately preceding trial. 346	  

Automatic artifact rejection was combined with visual inspection for all participants (±100 347	  

µV threshold; 0.05% mean percentage of the data was rejected due to excessive amplitude). 348	  

The minimum percentage of trials per condition included in the analysis was 82% 349	  

(percentage of trials did not significantly differ between conditions; p>0.05). The signal was 350	  

re-referenced to the arithmetic average of all electrodes. Single-subject ERP for each 351	  

Condition (Experimental; Control) and Synchrony (Synchronous; Asynchronous) were 352	  

calculated and used to compute ERP grand averages across subjects. 353	  

The HEP has a frontal-to-parietal distribution with higher amplitudes over the right, as 354	  

opposed to the left, hemisphere (Dirlich et al. 1997; Pollatos and Schandry 2004; Kern et al. 355	  

2013; Schulz et al. 2015). Previous studies have defined the HEP as a positive deflection in 356	  

fronto-central sites. However, the polarity of the HEP seems to vary across studies according 357	  

to factors such as the task, sites, and time window analysed (Gray et al. 2007; Couto et al. 358	  

2014; Canales-Johnson et al. 2015). In the current study, analyses were restricted to 6 regions 359	  

of interests (ROIs) (Figure 3A), defined according to the widespread distribution of the HEP 360	  

topography and on the basis of the aforementioned studies. To estimate the effects of the 361	  

cardio-visual stimulation on neural responses to heartbeats, mean voltages of the HEPs time-362	  
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locked to R-wave onset were computed at the group level using a non-parametric 363	  

randomisation test controlling for multiple-comparisons (Maris and Oostenveld 2007). 364	  

Subject-wise activation time courses were extracted at the selected ROIs and were passed to 365	  

analysis procedure of FieldTrip, the details of which are described by Maris and Oostenveld 366	  

(2007). Subject-wise activation time courses were compared to identify statistically 367	  

significant temporal clusters using a FieldTrip-based analysis (Oostenveld et al. 2011) of one 368	  

ROI at a time (Canales-Johnson et al. 2015; Couto et al. 2014).  369	  

To test for the interaction effects between the Synchrony effect and the group (experimental 370	  

vs. control) on HEP amplitudes, and the possibility that this effect is mediated by the 371	  

participants’ IAcc (as shown in experiment 1), we first computed the Synchrony effect 372	  

(calculated by subtraction of amplitudes at each time point on the asynchronous trials from 373	  

the synchronous trials) in both the experimental and control group. Then we calculated the 374	  

difference linked to the Synchrony effect in the experimental vs. the control group at each 375	  

time point, and we called it “difference Synchrony effect”. We then passed the subject-wise 376	  

activation time courses to the analysis procedure of Fieldtrip. In brief, this procedure 377	  

regresses the “difference Synchrony effect” (computed as described above) on the predictor, 378	  

i.e. participants’ IAcc, at each corresponding temporal point in the subject-wise activation 379	  

time courses using the independent sample regression coefficient T-statistics. FieldTrip uses a 380	  

nonparametric method (Bullmore et al. 1999) to address the multiple comparison problem. t-381	  

values of adjacent temporal points whose p-values were less than 0.05 were clustered by 382	  

adding their t-values, and this cumulative statistic is used for inferential statistics at the 383	  

cluster level. This procedure, that is, the calculation of t-values at each temporal point 384	  

followed by clustering of adjacent t-values was repeated 5000 times, with randomised 385	  

swapping and resampling of the subject-wise averages before each repetition. This Monte 386	  
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Carlo method results in a nonparametric estimate of the P-value representing the statistical 387	  

significance of the identified cluster.   388	  

Results 389	  

Modulation of HEP amplitudes 390	  

The results of the cluster-based permutation test revealed significant modulations of the HEP 391	  

amplitude as indicated by a significant negative cluster  between 195 and 289ms after the R-392	  

wave onset (p=0.005) in the right centro-parietal ROI (Figure 3A). This time window is in 393	  

accordance with the latencies reported in previous HEP studies, i.e. 200-400ms, where the 394	  

cortical processing of cardiac signals takes place (Schandry, et al. 1986; Pollatos and 395	  

Schandry 2004; Yuan et al. 2007; Fukushima et al. 2011; Kern et al. 2013; Canales-Johnson 396	  

et al. 2015). Moreover, it minimises overlapping between the HEP and the VEP associated to 397	  

the visual pulse staring at 120ms after the onset of the pulse (i.e., 200ms after the R wave). 398	  

Based on the results of the cluster-based permutation analysis, we performed a correlation 399	  

analysis (2-tailed) between IAcc and the HEP difference linked to the Synchrony effect (i.e. 400	  

Synchronous vs Asynchronous) in the experimental vs. the control condition in the right 401	  

centroparietal ROI between 195 and 289ms. This analysis revealed that the higher the IAcc 402	  

the greater the HEP difference of the Synchrony effect in the experimental synchronous 403	  

condition (r= -0.632, p=0.001; Figure 3E).  404	  

In addition, to ensure that the differences observed between conditions in the HEP cannot be 405	  

explained by differences in the ECG signal, we analysed the ECG trace mimicking the 406	  

analysing procedure followed in the HEP analysis. The results of the cluster-based 407	  

permutation test on the ECG did not reveal any significant cluster of significant interactions 408	  

at p<0.05, corrected for multiple comparisons.   409	  

Overall, these results show that the presentation of a 40/60 morphed face (i.e., containing 410	  

40% of the participants’ features) whose luminosity changed in rhythmic pulses 411	  
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synchronously to the participants’ heartbeats led to amplitude changes of the HEP component 412	  

in the 195-289ms time window at centro-parietal sites in the right hemisphere. The 413	  

interaction shown in Figure 3A,D illustrates the changes in HEP amplitude during the 414	  

synchronous compared to asynchronous experimental cardio-visual stimulation, and to the 415	  

control conditions, in which visual stimulation was perceived over the face of an owl. In 416	  

other words, it demonstrates the distinct effect that synchronous cardio-visual stimulation has 417	  

on HEP amplitudes when perceiving someone else’s face vs an owl face. Importantly, such 418	  

modulation of HEP amplitude was dependent on the individuals’ trait levels of IAcc. 419	  

Furthermore, the correlation analysis showed that the stimulation-induced changes on the 420	  

HEP amplitude increased linearly with IAcc (see Figure 3E).  421	  

Questionnaires 422	  

In line with Experiment1, we carried out separate analyses for the questions referring to the 423	  

enfacement effects (Questions 1-3), the subjective experience of the pulsing (Questions 4-5) 424	  

and attention to the task (Question 6). Regarding the enfacement questions, the interaction 425	  

between 3 Questions (Q1; Q2; Q3) x 2 Synchrony (Synchronous; Asynchronous) x 2 426	  

Condition (Experimental; Control) was not significant (F(1,44)=0.01, p=0.99). However, the 427	  

critical interaction Synchrony x Condition was significant (F(1,22)=4.46,p=0.046), as well as 428	  

the main effects of Synchrony (F(1,22)=10.13, p=0.004) and Condition (F(1,22)=102.83, 429	  

p<0.001). Given that the analysis did not show a main effect of Question, nor in interaction 430	  

(ps>0.05), we collapsed responses to Q1, Q2 and Q3 and performed planned comparisons 431	  

between the synchronous and asynchronous cardio-visual stimulation in both the 432	  

experimental and the control condition. Results showed significant differences between 433	  

synchronous and asynchronous trials in the experimental condition (t(1,22)=2.88, p=0.009) 434	  

but not in the control condition (t(1,22)=0.78, p=0.44). Regarding the questions about the 435	  

subjective experience of pulsing (Q4-Q5), there were not significant main effects of the 436	  



Heartfelt	  Self	  
	  

21	  
	  

factors Condition (F(1,22)=0.37,p=0.55), nor Synchrony (F(1,22)=3.48,p=0.076), neither 437	  

significant interactions (all ps>0.05). Likewise, there was no significant main effect, nor in 438	  

interaction, for the question referring to attention to the task (all ps>0.05). 439	  

We also explored a possible relationship between subjective reports of enfacement and i) the 440	  

magnitude of HEP changes and ii) individual levels of IAcc. For that, HEP changes and IAcc 441	  

scores were included, in separate analyses, as covariates in the Condition x Synchrony 442	  

ANOVA on the subject reports of enfacement (average responses to Questions 1-3). Neither 443	  

IAcc (ps>0.05) nor HEP changes (ps>0.05) were found to have an effect over any main effect 444	  

or interaction.  445	  

Discussion - Experiment 2 446	  

Experiment 2 shows that synchronous cardio-visual stimulation resulted in significant 447	  

changes in the participants’ subjective reports, as well as changes in the electrophysiological 448	  

processing of cardiac signals. We observed reduced HEP amplitude during the synchronous, 449	  

as opposed to the asynchronous, stimulation in the experimental condition, while no effects 450	  

were observed in the control condition. In accordance with earlier findings (Gray et al. 2007; 451	  

Couto et al. 2014; Canales-Johnson et al. 2015), the pattern of interaction in Figure 3A shows 452	  

an HEP component represented by a deflection across parietal sites in the right hemisphere. 453	  

This might reflect the importance of the right hemisphere in the integration of interoceptive 454	  

and exteroceptive bodily related signals (Craig, 2009) and in self-recognition extending 455	  

previous evidence on the key role of the right hemisphere to process information relative to 456	  

the self (Keenan et al. 2000). 457	  

Furthermore, the effects of cardio-visual synchrony on HEP amplitude were dependent on 458	  

individual trait levels of IAcc. In particular, the amplitude reduction of the HEP increased 459	  

linearly with IAcc. Past studies have shown a link between individual differences in IAcc and 460	  
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HEP amplitudes, such that individuals with higher IAcc show greater HEP amplitude than 461	  

those with lower IAcc when they focus on their heartbeat (Pollatos and Schandry 2004; Yuan 462	  

et al 2007). We here show IAcc-dependent modulations of HEP amplitudes when the brain 463	  

integrates interoceptive and exteroceptive signals.   464	  

General discussion 465	  

Across two experiments, we focused on the mechanisms underpinning the integration of 466	  

information originating from outside and from within our bodies, through cardio-visual 467	  

stimulation. We investigated how this integration relates to changes in the mental 468	  

representation of one’s self, as assessed by changes in self-recognition. We report three key 469	  

findings. First, we show that cardio-visual stimulation, i.e. perceiving a pulsing stimulus in 470	  

synchrony with one’s own heart over someone else’s face, leads to changes in self-471	  

recognition and increases self-other perceived similarity. Second, we reveal that synchronous 472	  

cardio-visual stimulation over another person’s face was associated with the modulation of 473	  

the HEP amplitude, an index of cortical representation of cardiac processing. Third, these 474	  

changes in HEP were dependent on individual trait levels of IAcc, so that participants with 475	  

higher IAcc exhibit greater changes on HEP amplitude, in comparison to participants with 476	  

lower IAcc.  477	  

How does the change of neural activation locked to heartbeats reflects the experimentally 478	  

induced changes of bodily self-consciousness? In the classic exteroceptive ways of inducing 479	  

illusions of ownership, there is an initial inter-sensory conflict (e.g. between felt and seen 480	  

touch). To solve this conflict, the brain attenuates the importance of incoming proprioceptive 481	  

and somatosensory inputs and assigns greater salience to visual information (Tsakiris 2010; 482	  

Apps and Tsakiris 2014; Zeller et al. 2015). This results in a recalibration of visual-tactile 483	  

coordinates (i.e. touch referral) that leads to an updated sense of body-ownership. In support 484	  
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of this idea, neuroimaging data shows that ownership of an artificial hand in the RHI, or with 485	  

a virtual body in the full body illusion, is linked to changes in neural activity in the 486	  

somatosensory cortex (Tsakiris et al. 2007; Zeller et al. 2015; Evans and Blanke 2013; Aspell 487	  

et al. 2012; Lenggenhager et al. 2011). In particular, Tsakiris and colleagues (2007) found 488	  

that the degree of proprioceptive drift, an objective index of strength of the illusion, was 489	  

linearly correlated with decreased activity in the somatosensory cortex. Moreover, Zeller and 490	  

colleagues (2015) demonstrated an amplitude reduction of the somatosensory evoked 491	  

potentials (SEPs) to brushstrokes delivered to the participants’ hand synchronously to 492	  

brushstrokes delivered to the artificial hand placed in an anatomically congruent, vs. 493	  

incongruent, position. This reduction in SEP was interpreted as decreased processing of own 494	  

somatosensory signals allowing to solve the multisensory conflict experienced by the RHI.  495	  

In our study, we observed changes in HEP amplitude when one’s heartbeat sensations were 496	  

congruent with the visual cues originating from someone else’s face, creating the subjective 497	  

experience of self-other merging. These results suggest that during cardio-visual stimulation, 498	  

i.e. one’s heartbeat projected onto someone else’s face, the external representation of what 499	  

seems to be inherently private information to the self creates a conflict (i.e. heartbeats being 500	  

simulated by an external agent). Consistently with previous research, this conflict may be 501	  

solved by attenuating the salience of interoceptive sensations leading to reduced HEP 502	  

amplitudes relative to the control conditions. Overall, these findings complement and 503	  

advance previous evidence on cortical attenuation during classical bodily illusions, 504	  

demonstrating that the cortical processing of interoceptive signals may be subject to the same 505	  

principles as somatosensory signals (Zeller et al. 2015).  506	  

Our findings add to the growing body of literature suggesting the HEP as an important index 507	  

of cortical processing of afferent cardiovascular activity (Leopold and Schandry 2001). The 508	  

magnitude of HEPs has been consistently associated to the representation of the bodily 509	  
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aspects of emotional processing (Müller et al. 2015; Fukushima et al. 2011; Couto et al. 2014; 510	  

Luft and Bhattacharya 2015) and self-processing (Schulz et al. 2015; Pollatos and Schandry 511	  

2004; Canales-Johnson et al. 2015). Of particular relevance for the present study is the recent 512	  

finding of reduced HEP amplitudes among individuals suffering from depersonalisation/ 513	  

derealisation disorder (Schulz et al. 2015). In this study, the authors established a close link 514	  

between altered experiences of bodily self and the cortical processing of heartbeats. Our 515	  

results expand these findings by showing that dynamic and on-line modulations of heartbeat 516	  

processing are related to shifts in the mental representation of one’s self in healthy 517	  

individuals. In specific, HEP modulation is likely to reflect a mechanism by which the brain 518	  

attempts to reduce the multisensory conflict by attenuating the cortical representation of own 519	  

heartbeat signals to allow the updating of self-representations. Overall, our results support the 520	  

idea of plasticity of self-representations under circumstances of simultaneous integration of 521	  

exteroceptive and interoceptive signals related to the body. They provide a direct link 522	  

between the brain mechanisms processing on-line interoceptive bodily signals and the 523	  

process of identifying with a face, a crucial aspect of self-awareness.  524	  

Could there be alternative explanations to our results? Recent studies have shown 525	  

bidirectional links between the amplitude of neural responses to heartbeats and visual 526	  

processing (Park et al. 2014, Salomon et al., 2016; Fukushima et al. 2011; Couto et al. 2014; 527	  

Luft and Bhattacharya 2015). Interestingly, recent research showed reduced cortical 528	  

processing (van Elk et al., 2014) and reduced insula activity (Salomon et al., 2016), a key 529	  

region in the processing of interoceptive signals, to stimuli presented synchronously with the 530	  

participant’s heartbeats. Could therefore the modulation of the HEP observed in our study 531	  

reflect a purely visual effect driven by synchrony? Crucially, we did not find any significant 532	  

changes in the HEP amplitude in the synchronous control condition, i.e. synchronous 533	  

stimulation over the owl’s face. This therefore suggests that the HEP amplitude reduction 534	  
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observed in the synchronous experimental condition cannot be explained by pure visual 535	  

effects. It is also worth noting that previous physiological and electrophysiological data has 536	  

shown a partial overlap between the HEP and the electrocardiac field up to 450ms after the 537	  

R-wave (Dirlich et al. 1997) suggesting that the observed HEP amplitude changes could be 538	  

partially explained by the differences in the temporal occurrence of the CFA between 539	  

synchronous vs. asynchronous stimulation. Although we cannot entirely rule out this 540	  

possibility, there are three reasons why this is unlikely. Firstly, the temporal dynamics of the 541	  

CFA were identical in both the experimental and the control synchronous condition. 542	  

However, the modulation of HEP was only observed in the former. Secondly, we submitted 543	  

the EEG data to ICA, which has been shown to be highly efficient to remove CFA from 544	  

HEPs (Terhaar et al. 2014; Park et al. 2014; Luft and Bhattacharya 2015). Moreover, analyses 545	  

of the ECG did not reveal significant differences between the conditions. Thus, we are 546	  

confident that the observed HEP reduction is a consequence of the illusory experience of self-547	  

other merging due to cardio-visual integration.  548	  

Previous research by our group has shown that individuals with lower IAcc are particularly 549	  

susceptible to bodily illusions relying on exteroceptive cues, such as the RHI (Tsakiris et al. 550	  

2011) and the enfacement illusion (Tajadura-Jimenez et al. 2013). Then, we suggested that 551	  

individuals with lower IAcc displayed a more malleable self- representation in response to 552	  

exteroceptive cues. Interestingly, here, and in line with the findings of Suzuki and colleagues 553	  

(2013; see also Azevedo et al. 2016), we observed the opposite pattern. Specifically, 554	  

individuals with higher IAcc revealed greater incorporation of other’s features related to the 555	  

integration between one exteroceptive signal and one interoceptive signal. These results may 556	  

initially seem at odds with the former. However, the role played by IAcc in the classic 557	  

methods of induction of the illusion (Tsakiris et al. 2011; Tajadura-Jimenez et al. 2013) and 558	  

in the cardio-visual adaptations (see present experiments, and Suzuki et al. 2013; Aspell et al. 559	  
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2014) is likely to be very different. While cardiac information is not directly involved in the 560	  

induction of visual-tactile illusions, in cardio-visual stimulation paradigms interoceptive cues 561	  

are part of the induction mechanism. Moreover, because heart sensations are considerably 562	  

faint and people differ greatly in their ability to attend, monitor and process cardiac signals at 563	  

a higher cortical level (e.g. HEPs), IAcc crucially determines the extent to which the illusion 564	  

is experienced. Individuals with higher IAcc, presumably, have greater access to their cardiac 565	  

signals. This would facilitate the integration of their cardiac signals with the other’s face 566	  

leading to a greater incorporation of the other’s facial features in the mental representation of 567	  

their own face in comparison to lower IAcc. Furthermore, the greater HEP amplitude 568	  

reduction observed in individuals with higher IAcc seems to indicate high flexibility in the 569	  

process of interoceptive signals at the cortical level (Barrett and Simons 2015).   570	  

Recent theoretical proposals have suggested that self-processing can be characterised by the 571	  

principles of Predictive Coding (PC) (Fotopoulou 2012; Apps and Tsakiris 2014; Seth 2014; 572	  

Sel 2014; Barrett and Simons 2015). According to this view, the sensory input is compared 573	  

with internal models, which are constantly updated by compiling the statistical regularities of 574	  

past inputs (Friston and Kiebel 2009). Within predictive coding models of self-awareness 575	  

(Apps and Tsakiris 2014; Seth 2014) one’s body is processed in a Bayesian manner as the 576	  

most likely to be “me”. That is, one’s own body is the one which has the highest probability 577	  

of being “mine” as other objects are probabilistically less likely to evoke the same sensory 578	  

inputs. This information can be considered as highly abstract with respect to the low-level 579	  

properties of the stimuli and it can only be represented as “self” when different streams of 580	  

multisensory information are integrated. That is, the self-face will only be recognised as 581	  

“self” when a visual stimulus has been processed hierarchically for its low level visual 582	  

properties, its configural features and then its identity. The self-face will therefore be 583	  

represented as an abstract, supramodal representation of visual input e.g. this is a face, that I 584	  
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have seen before, that I am familiar with, and that is associated with congruent corollary 585	  

discharge, vestibular, somatosensory and interoceptive information. Such probabilistic 586	  

representation arises through the integration of information from hierarchically organised 587	  

unimodal systems in higher-level multimodal areas. This process entails that probabilistic 588	  

representations are created through the integration of top-down “predictions” about the body 589	  

and of bottom-up “prediction errors” (PEs) from unimodal sensory systems that are then 590	  

explained away. Importantly, within predictive coding, priors, predictions and associated 591	  

predictions errors are all represented in terms of precision. “Precision” refers to the inverse 592	  

variance associated with each probability distribution and is thus a measure of their relative 593	  

salience and reliability (Friston 2009). Precision operates both within and between 594	  

modalities. Within any modality, at each level of the hierarchy and taking account of the 595	  

given context, the brain weighs the relative precision of PEs that informs or revises 596	  

expectations at higher level of the hierarchy (Hohwy 2012; Brown et al. 2013). 597	  

The use of cardio-visual stimulation employed in the present experiments allowed us to test 598	  

empirically whether the brain will attenuate the visual or the interoceptive information. The 599	  

neural evidence presented in Experiment 2 that is indicative of a reduction of the HEP in the 600	  

critical test condition suggests that interoceptive information is attenuated. In a way these 601	  

results are comparable to the attenuation of somatosensory signals in the classic visuo-tactile 602	  

stimulation during the Rubber Hand Illusion (Zeller et al. 2015; Limanowski and 603	  

Blankenburg 2015). Importantly, predictive coding models allow us to test how contextual 604	  

factors influence information processing as the precision of predictions and predictions errors 605	  

may vary considerably across different contexts (see also Apps and Tsakiris 2014). For 606	  

example, visual information may be more precise in the context of self-recognition, while in 607	  

the absence of visual input or at night, when vision becomes imprecise, the relative precision 608	  

of interoceptive signals necessarily increases (Pezzulo 2014). Therefore, the relative precision 609	  
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of PEs and priors across sensory modalities is constantly being updated. Thus, as shown here, 610	  

in contexts that rely heavily on visual information, i.e. self-recognition, interoceptive signals 611	  

are attenuated, possibly at higher order cortical areas, under conditions of cardio-visual 612	  

synchrony. In accordance, the HEP amplitude reduction provides evidence of a 613	  

neurophysiological mechanism throughout which the sensory input is attenuated to update the 614	  

mental representations of one’s self according to the external evidence.  615	  

In conclusion, this study provides new insights on the integration of multisensory bodily 616	  

signals coming from outside and from within the body and its influence in self-face 617	  

representation. We designed two experiments that investigated whether synchronous cardio-618	  

visual stimulation can enhance self-identification with the face of another and the cortical 619	  

processing of such an altered experienced. Our data showed that multisensory integration of 620	  

heartbeat sensations with the visual exteroceptive information of the face of another leads to 621	  

an illusory sense of identification with the other’s face, and to an amplitude reduction of the 622	  

HEP component. No such effects were found when the interoceptive and exteroceptive 623	  

signals were presented in an asynchronous manner. We therefore provide direct neural 624	  

evidence for the integration of interoceptive and exteroceptive signals in bodily self-625	  

awareness.   626	  
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Figure 2 770	  
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Figure 3 772	  
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Table 1 774	  

Questions 

 

Study 1 Study 2 

Synchronous Asynchronous Synchronous Asynchronous 

40/60 60/40 40/60 60/40 Face Owl Face Owl 

Q1- It felt like the other`s 

face was my face  

54.2 

(32.0) 

47.2 

(34.2) 

48.5 

(31.4) 

58 

(30.4) 

59.5 

(30.2) 

8.5 

(17.3) 

44.3 

(33.8) 

7.8 

(17.6) 

Q2 - It seemed like the 

other`s face began to 

resemble my own face  

66.4 

(27.8) 

69.5 

(27.9) 

58 

(28.6) 

61.5 

(31.8) 

59.3 

(30.3) 

8.3 

(16.5) 

46.3 

(32.9) 

 

6.3 

(14.0) 

Q3 - It seemed like my 

own face began to 

resemble the other 

person`s face  

61.6 

(25.9) 

63.6 

(28.4) 

67.0 

(26.6) 

68 

(29.7) 

56.3 

(30.9) 

6.8 

(15.5) 

44.1 

(30.2) 

8.2 

(16.3) 

Q4 - It seemed as if the 

flashing was inside or 

going through my body 

40.4 

(32.6) 

35.4 

(32.0) 

30.4 

(26.9) 

34.6 

(31.4) 

54.7 

(26.7) 

43.3 

(29.8) 

37.9 

(27.0) 

 

37.4 

(30.1) 

Q5 - It seemed as if I was 

tuned with the rhythm of 

the flashing 

62.5 

(29.8) 

52.4 

(29.9) 

61.2 

(29.1) 

48.5 

(29.0) 

55.5 

(28.2) 

58.3 

(27.9) 

52.8 

(29.4) 

 

54.9 

(29.2) 

Q6 - How distracted were 

you during this trial 

- 

 

- 

 

- 

 

- 

 

45.8 

(27.6) 

47.8 

(24.6) 

44.8 

(26.5) 

53.1 

(24.0) 

775	  
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Caption to figures: 776	  

Figure 1. Schematic representation of the experimental protocol. A) Timeline of each block; 777	  

B) Self and other faces presented at the beginning of the block; C) Self-recognition test 778	  

carried out before and after the D) cardio-visual stimulation procedure; E) Questionnaire on 779	  

the subjective experience associated with the stimulation administered at the end of each 780	  

block. 781	  

Figure 2. A) Cardio-visual stimulation induced changes in the mental representation of 782	  

self/other faces as reflected by a shift in the Point of Subjective Equality (PSE) after 783	  

synchronous (vs. asynchronous) in the 40/60 condition but B) not in the 60/40 condition. In 784	  

the former condition, participants accepted more facial features of the “other” in the morphed 785	  

pictures judged to equally represent “self” and “other”. Interestingly, this effect was linearly 786	  

dependent on individual levels of IAcc, such that cardio-visual interaction effects were 787	  

stronger in higher interoceptors. This relationship is represented by the C) positive correlation 788	  

between IAcc scores and the difference between PSE changes in the synchronous and 789	  

asynchronous conditions. For illustration purposes PSEs pre- and post-stimulation for each 790	  

40/60 condition are represented separately for D) Higher and E) Lower interoceptors.  791	  

Figure 3. A) R-locked HEP in the experimental synchronous (black) and asynchronous (red) 792	  

conditions, and in the control synchronous (blue) and asynchronous (green) conditions, over 793	  

frontal, central, and parietal sites in the right hemisphere. Although the enhanced reduction of 794	  

the HEP amplitude seems to be greater in frontal sites, the statistical analysis including IAcc 795	  

as a covariate shows that the HEP changes occur across all sites in the right hemisphere. B) 796	  

ECG channel of a selected participant before (black) and after (red) applying ICA. This 797	  

shows the effectiveness of ICA to remove CFA. C) Topographical maps showing differential 798	  

HEP activity (synchronous trials – asynchronous trials) in the experimental and control 799	  

conditions. D) HEP amplitude in the selected frontal ROI. E) Negative correlation between 800	  
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IAcc scores and the synchrony effect (computed as the difference between synchronous and 801	  

asynchronous trials) in the experimental vs. the control condition.   802	  

Caption to tables: 803	  

Table 1. Questionnaire scores in Experiment 1 and Experiment 2. Average (and SD) ratings 804	  

for each question. 805	  


