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1.1 Fatigue 

Fatigue is a very common, multifaceted phenomenon that everybody encounters in their everyday life. In our 

modern societies it has been reported that 20–30% of the general population in Europe and the United States 

experience substantial (i.e. requiring a longer time than normal to recover from work-load or resulting in an 

increase of risk for health-problems) fatigue [1, 2]. We all associate fatigue with the urge to sleep at the end of a 

busy day, the need for coffee in the morning, the burning sensation in our legs and lungs at the end of an intensive 

physical workout, the feeling of a much-needed break in the afternoon during a work-day, the problems with 

staying attentive during a prolonged drive, … . Fatigue can cause substantial limitations in mental, physical and/or 

social functioning, resulting in considerable social and economic impacts (e.g. increased medical consumption, 

absenteeism from work). The ubiquitous presence of fatigue in our everyday life has caused the topic of fatigue to 

sprout in specific research fields such as exercise physiology, cognitive psychology, medicine and engineering. 

Fatigue being a topic in so many research fields has led to a vast amount of definitions, with a different focus in 

each area of expertise. It has been defined as an experimental concept, a symptom, a risk, a cause (e.g. of 

performance decrement) and a consequence (e.g. of sleep deprivation). To a certain extent, this fragmentation of 

fatigue-definitions can be explained logically, because it is self-evident that from a research point of view there is 

a necessity to clearly define what one wants to investigate/research. The disadvantage is however that different 

research lines of fatigue emerge and co-exist without any interaction. Subsequently the possible breakthroughs 

that this interaction could trigger are missed. 

Within sports science, lines of research on fatigue in exercise physiology and psychology could benefit from 

increased interaction with one another. In exercise physiology research, the main focus has long been on 

determining the critical threshold that could clarify why people physically fatigue at a certain point and terminate 

exercise. This resulted in multiple important insights and definitions of fatigue such as peripheral and central 

fatigue. Peripheral fatigue is usually described as an impairment located in the muscle and characterized by a 

metabolic end point, while central fatigue is defined as a failure of the central nervous system to adequately drive 

the muscle [3]. In other words, peripheral fatigue occurs distal to the point of nerve stimulation and central fatigue 

emerges centrally, from the point of nerve stimulation up to and including the brain. This quest for a critical 

threshold did however never succeed in pinpointing that one critical threshold. For peripheral fatigue, proposed 

mechanisms to play an important role are for example impaired calcium release from the sarcoplasmic reticulum 

[4] and disturbed muscle ionic homeostasis (i.e. intracellular-interstitial perturbations in K+ and Na+ 

concentrations) [5]. Within this concept of peripheral fatigue, it is hypothesized that during exercise, afferent 

feedback related to this fatigue is provided to various spinal and supraspinal centres by group III and IV fibres [6] 

and this subsequently limits exercise performance. Given the existence of such sensory system it seems logical 

that these afferent stimuli play a role in the occurrence of exercise limitation. Nevertheless, the exact extent of the 

afferent stimuli’s role and whether it translates to the concept of a critical threshold is however still open for debate 

[7-11]. Central fatigue, however, refers to the central nervous system-factors that are thought to play a role in the 

development of fatigue, spinal and/or supraspinal (i.e. the brain). Similar to the muscle, also in the brain multiple 

disturbances in homeostasis have been proposed to lead to fatigue [12]. Mechanisms that have been put forward 

to play a role in central fatigue are for example challenged oxygenation of the brain during exercise [13], 

biochemical [3], and thermodynamic changes of the cerebral homeostasis [12]. Thomas et al. [14] correctly 

summarized and argued that adjustments in skeletal muscle (i.e. peripheral), as a consequence of exhaustive 
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exercise, are intensity- and mode-dependent, and not regulated to a critical threshold. In the brain, the exhaustive 

exercise-induced changes in oxygenation, neurotransmitter concentrations, glycogen availability, … are probably 

also intensity- and mode-dependent, and not regulated to a critical threshold. Understanding the significance of 

this web of modulating physiological factors that contribute to fatigue, how they vary with the exercise task, and 

how the tolerance of fatigue can be modulated by specific interventions remain key questions for our understanding 

of human performance [14]. Further complicating this search on the mechanisms of fatigue is the fact that human 

performance is, besides by physiological factors, also determined by psychological factors. McCormick et al. [15] 

listed several psychological determinants of endurance performance, e.g. self-talk, goal setting, imagery, … and 

underlined that there is more to human performance than solely physiology. In psychology fatigue is often 

proposed to result from the aversiveness towards exerting effort to perform work (cognitive and/or physical) [16, 

17]. From this perspective, fatigue functions to maintain the motivational balance between maintaining effort to 

perform on the task at hand versus switching to another task that is more inherently rewarding [16]. In the search 

to explain fatigue in sports science, an approach combining exercise physiology and psychology might thus prove 

to be particularly fruitful.  

Recently a line of research on mental fatigue emerged that contains aspects of both exercise physiology and 

psychology and as such might prove to be a valuable asset in the ongoing refocus on fatigue being a continuum 

rather than a dichotomy (i.e. fatigue is present or not). In sports science, this line of mental fatigue attempts to 

provide some further insights in the mechanisms behind the underperformance on physical tasks following the 

execution of a prolonged demanding cognitive task. In attempting to do so, the role of physiological and 

psychological factors in physical performance is assessed. 

1.2 Mental fatigue 

1.2.1 Definition and terminology 

Mental fatigue is a psychobiological state caused by prolonged periods of demanding cognitive activity [18, 19] 

and can be manifested subjectively, behaviourally and physiologically. Subjectively, increased feelings of 

tiredness, lack of energy [20] and a decrease in motivation [21] and alertness have been reported [22]. 

Behaviourally, mental fatigue is recognized as a decline in performance (accuracy and/or reaction time (RT)) on 

a cognitive task [23-25]. Finally, alterations in brain activity [23, 26-28] have been shown to be a physiological 

manifestation of mental fatigue. Changes in all three of these areas (subjective, behavioural, and physiological) do 

not have to be present for mental fatigue to be present. For instance, cognitive performance does not necessarily 

decline when one is mentally fatigued, since compensatory effort (e.g. indicated by alterations in brain activity or 

as a result of increased motivation) may alleviate this decrease in cognitive performance [24, 28]. Hopstaken et al. 

[28] increased motivation near the end of a prolonged cognitively demanding task by providing a monetary 

incentive and found that cognitive performance declines were reversed, despite previous signs of mental fatigue.  

Some haziness exists in regard to the terminology used to indicate the fatigue induced by demanding cognitive 

activity. Some authors, like Ackerman & Kanfer [29] and MacMahon et al. [30], argued that the typical task used 

to induce fatigue by a prolonged demanding cognitive task is more appropriately termed cognitive. Therefore, 

instead of ‘mental fatigue’ these authors used the term ‘cognitive fatigue’. It is our opinion that ‘mental fatigue’ is 

however more appropriate as it includes emotion and motivation rather than just cognition. The term mental fatigue 
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better encompasses constructs like cognition, sensation and perception and the complex interactions between these 

constructs. Bray et al. [31-33] and Pageaux et al. [34] labelled the fatigue inducing-cognitive task intervention as 

a ‘self-regulatory depletion manipulation’. Self-regulation refers to the mental abilities that allow people to exert 

control over their behaviours, thoughts, and emotions to pursue their goals [33, 35]. This description also applies 

to tasks often used to induce mental fatigue and certain commonalities can be observed between both constructs. 

However, studies on self-regulatory depletion tasks (often referred as “ego depletion”) are more often encountered 

within the (exercise) psychology literature and usually use shorter tasks (≤30min), while within exercise 

physiology the term mental fatigue is more common and the fatiguing cognitive tasks are of longer duration 

(≥30min). Consequently, one should be careful and cautious in comparing the results in both lines of research. 

1.2.2 Implications for daily life 

Mental fatigue can have negative implications in daily life. It can ensue after only 60 min of driving and is 

associated with a difficulty in maintaining skilled driving behaviour [36]. In the workplace, mental fatigue has 

been found to be a major contributor to workplace accidents, morbidity, and mortality [37-39]. It has been found 

to predict an increased risk of error of surgeons [40], industrial workers [41], while during military operations it 

has been found to impair physical and cognitive ability [42]. Among the employees of the Flemish Government, 

‘general mental dysfunction’, which includes mental fatigue, is the main cause of absenteeism at work in 2014 

[43]. According to the Flemish Workability Monitor, 29.3% of the Flemish employees and 38% of the Flemish 

self-employed experience ‘mental fatigue’ in a problematic way. Problematic as in requiring a longer time than 

normal to recover from work-load or eventually resulting in an increase of risk for health-problems (e.g. burn-out). 

According to the Sociaal-Economische Raad van Vlaanderen (SERV)-report, people with acute mental fatigue 

problems can be assumed to have a higher risk for developing burn-out and hence, have a higher risk of being 

absent. Work-related circumstances associated with a higher risk for mental fatigue-related problems are for 

instance: higher work-load (odd-ratio (OR) = 6.34), lack of autonomy and variety in the work-task (OR = 1.89 and 

OR = 1.45, respectively), lack of support (OR = 2.73) and physically and emotional intensive work-circumstances 

(OR = 1.84 and OR = 2.68, respectively). 

Consequently, insights in the mechanisms of mental fatigue via the line of research on the interaction between 

mental fatigue and physical performance might prove to be extremely valuable to gain further insight in the 

implications of mental fatigue in other aspects of daily life. These insights will in turn form the basis for 

translational research and for future studies exploring how to improve strategies to avoid/overcome mental fatigue. 

1.3 PhD aims and format 

In order to provide a clear oversight on physical performance in a mentally fatigued state a first aim in this PhD 

was to conduct a systematic review of the available literature on the topic (see Chapter 2). Although replication 

studies are still needed to confirm the observed tendencies in this systematic review, it was concluded that 

endurance and cognitive load appear to be two important components of physical performance that determine 

whether mental fatigue negatively impacts on performance or not. Thus, the shorter and more maximal the task, 

the lower the impact of mental fatigue on performance. This statement seems to be supported by the null findings 

in the studies on the effect of mental fatigue on maximal strength, power, and anaerobic work. In our search to 

further explore and substantiate these statements we subsequently aimed to assess in further detail the effect of 
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ambient temperature on the mental fatigue-induced endurance impairment, the impact of mental fatigue on sport-

specific psychomotor skills and possible countermeasures of mental fatigue.  

These aims eventually resulted in the present PhD dissertation, consisting of one systematic review of the literature 

and four randomized controlled trials. All five manuscripts are written as stand-alone papers of which four have 

been accepted and one is submitted in relevant international exercise physiology, psychology and behavioural 

neuroscience journals. In this dissertation each manuscript is included as a separate chapter, except for chapter 3, 

in which two manuscripts will be handled together due to their shared main topic. Throughout this PhD the cited 

references were included as a separate list at the end of each chapter. To facilitate reading, abbreviations were 

defined at their first appearance within each chapter and the numbering of figures and tables was restarted in each 

chapter. As all the manuscripts included in this PhD are independent but linked, at times there is a necessary 

overlap between chapters.  

• Mental fatigue and physical performance; literature review (Chapter 2) 

o Research Question 1: Does mental fatigue affect physical performance, and if yes, what are the 

underlying factors? 

• Mental fatigue and the heat-induced decrease in endurance performance (Chapter 3) 

o Research Question 2: Does mental fatigue affect endurance performance in the heat? 

o Research Question 3: Does a heat pad, locally applied to the upper back, impair endurance 

performance?  

• Mental fatigue and sport-specific psychomotor performance (Chapter 4) 

o Research Question 4: Does mental fatigue impair sport-specific psychomotor performance? 

o Research Question 5: Does level of training affect the impact of mental fatigue on sport-specific 

psychomotor performance? 

• Counteracting mental fatigue (Chapter 5) 

o Research Question 6: Does serial caffeine-maltodextrin mouth rinsing counteract mental fatigue? 

1.4 Mental fatigue and physical performance; Outline of the thesis 

1.4.1 Mental fatigue and physical performance; literature review 

The line of research on mental fatigue and physical performance originates from Angelo Mosso. In 1891, Angelo 

Mosso reported in his seminal book on fatigue that muscle endurance was reduced in two fellow professors of 

physiology after long lectures and verbal examinations [44]. More than a century later, Marcora et al. [25] 

investigated for the first time in an experimentally controlled way the effect of mental fatigue on physical 

performance and brought the existence of this effect of mental fatigue on physical performance, back to attention. 

The results of Marcora et al. [25] demonstrate that 90 min of a cognitively demanding task elicited mental fatigue 

and impaired subsequent cycling time to exhaustion (TTE). Furthermore, this study indicated that mental fatigue 

limits exercise tolerance in humans through higher perception of effort rather than cardiorespiratory and 

musculoenergetic mechanisms. A couple of years thereafter the negative effect of mental fatigue on endurance 

performance was confirmed by Pageaux et al. [45]. In this study it was shown that a submaximal isometric knee 

extensor exercise until exhaustion was impaired when mentally fatigued [45]. Again, the negative effect of mental 

fatigue on endurance performance seemed to be mediated by the higher perception of effort rather than impaired 
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neuromuscular function [45]. Following up on these two studies the line of research on mental fatigue and physical 

performance was created and multiple other studies were conducted and published. In order to provide a clear 

oversight on physical performance in a mentally fatigued state a first aim in this PhD was to conduct a systematic 

review of the available literature on the topic.  

Research Question 1: Does mental fatigue affect physical performance, and if yes, what are the underlying 

factors? 

1.4.2 Mental fatigue and the heat-induced decrease in endurance performance 

1.4.2.1 Mental fatigue and cycling performance in the heat 

Mental fatigue deteriorates cycling endurance performance [25, 27] in a normal ambient temperature (̴ 20°C). 

Athletes have to be able to perform in a wide range of environmental conditions and one important factor within 

these conditions is ambient temperature. Heat stress, like mental fatigue, is also known to impair endurance 

performance [46]. As such from an applied point of view it is of importance to assess whether the mental fatigue- 

and the heat-induced performance decrements could work synergistically and deteriorate performance even 

further. Besides additional information from an applied point of view, assessing the effect of mental fatigue on 

endurance performance in the heat could also provide further mechanistic insights. The heat-associated impairment 

in performance has frequently been linked with a rise in cardiovascular strain [47] during endurance exercise, a 

decrease in maximal aerobic capacity, a higher internal body temperature (Tcore), a higher skin temperature 

(Tskin) [48], hypohydration [48], neuromuscular changes within the central nervous system [49], and an altered 

metabolic profile in the activity-dependent muscle groups [50]. Apart from all these physiological alterations 

during exercise in the heat, perceptual responses (thermal sensation, thermal discomfort, and perception of effort; 

i.e. subjective thermal strain) are also affected. Traditionally, the effects of heat on these perceptual responses have 

been explained as a consequence of the increased physiological strain [50]. However, we still do not know why 

perception of effort is higher during exercise in the heat. This could be due to the increased physiological strain, 

but direct effects of heat on the brain could also be the cause [51]. Similarly, we do not know why perception of 

effort during exercise is higher in mentally fatigued individuals [25]. However, we can exclude physiological strain 

[25] and neuromuscular fatigue [34] as there have been no differences observed in these parameters due to mental 

fatigue. Heat stress might augment the effect of mental fatigue on endurance performance by aggravating the 

mental fatigue induced by a given prolonged demanding cognitive task and/or by affecting perception of effort 

through a different and additive mechanism. Therefore, a second aim in this PhD was to assess the effects of mental 

fatigue on endurance performance in the heat (see Chapter 3). 

Research Question 2: Does mental fatigue affect endurance performance in the heat? 

1.4.2.2 The role of perceptual responses in the heat-induced decrease in endurance performance  

In this study we progress in our search for the role of perceptual responses in the heat-induced decrease in 

endurance performance. Because, as mentioned before, in addition to physiological strain, performing endurance 

exercise in the heat is associated with significant subjective thermal strain [52]. This strain is indicated by ratings 

of heat sensation, thermal discomfort and higher perceived exertion. It is generally accepted that subjective thermal 

strain plays a role in the deterioration of endurance performance observed in the heat [52-54]. Nonetheless, the 

exact extent to which it causes this deterioration is unknown as it is difficult to dissociate subjective thermal strain 
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from the general physiological strain normally associated with impaired endurance performance in the heat (e.g. 

increased core temperature and decreased cardiac output).  

Gaining further insight in the role of perceptual responses in endurance performance is of importance in this PhD 

as the impairment in endurance performance due to mental fatigue seems to be related to an increase in the 

perceived exertion, independently of the general physiological strain that is normally associated with exhaustion 

(e.g. increased core temperature, decreased cardiac output). To emphasize the important role of perceptual 

responses in endurance performance, Marcora introduced the psychobiological model of endurance performance 

based on the motivational intensity theory (see Fig. 1) [55-57]. This effort-based decision-making model postulates 

that an endurance performance is a motivated behaviour ultimately determined by two cognitive and motivational 

factors: perceived exertion and potential motivation, i.e., the maximum effort an individual is willing to exert to 

satisfy a motive [58]. Since mental fatigue was found not to affect potential motivation in the experiment of 

Marcora et al. [25] and others [30, 45, 59], the key to understand its negative effect on endurance performance is 

the higher perception of effort. Therefore, a third aim in this PhD was to gain understanding in the role of perceptual 

responses, independently from physiological strain, in endurance performance (see Chapter 3). In an attempt to do 

so, a heat pad was locally applied to the upper back during an endurance performance. This locally applied heat 

pad was expected to induce subjective thermal strain without affecting performance-determining physiology (e.g. 

core temperature, cardiac output), to subsequently be able to evaluate the independent role of subjective thermal 

strain in endurance performance. 

 

Fig 1. The motivational intensity theory [57]  

Research Question 3: Does a heat pad, locally applied to the upper back, impair endurance performance? 

1.4.3 Mental fatigue and sport-specific psychomotor performance 

It is clear that mental fatigue impairs physical performance and particularly endurance capacity [25, 27, 30]. 

Contrarily mental fatigue appears to have limited influence on maximal voluntary activation and strength, 

explosive power, and anaerobic work capacity [45, 60, 61]. Less or almost nothing is however known on the effect 

of mental fatigue on sport-specific psychomotor performance (e.g. visuomotor response time, tactical decisions, 
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…). Besides endurance capacity, this specific aspect of physical performance is a candidate proxy to be impaired 

by mental fatigue as a cognitive component has been put forward to be an important factor in observing an effect 

of mental fatigue on physical performance [60] and psychomotor skills rely heavily on optimal information 

processing/cognition [62]. Psychomotor skills require integrated control by the central and peripheral nervous 

systems. The decision to act is made by the higher centres of the brain, particularly the prefrontal cortex, and action 

is initiated by the premotor cortex and/or supplementary motor area, with the former being primarily concerned 

with movement in response to external events while the latter mainly controls voluntary movement, although both 

are active during any type of movement [62]. Sport-specific psychomotor skills encompasses anticipation on an 

opponents’ behaviour, pattern recognition, strategic decision making, visual search behaviour, … , and is of crucial 

importance in every sport. Despite it is crucial in every sport it particularly defines performance in open-skill 

sports, i.e. sports in which players are required to react in a dynamically changing, unpredictable and externally-

paced environment (e.g. basketball, fencing and badminton) [63]. Therefore, to enlarge our knowledge on the 

different aspects of physical performance that are impaired by mental fatigue, the goal in Chapter 4 was to assess 

whether sport-specific psychomotor performance related to open-skill sports (measured as visuomotor response 

time) are also impaired by mental fatigue.  

Research Question 4: Does mental fatigue impair sport-specific psychomotor performance? 

In addition, the aspect of training could provide important insights in the trainability of resistance to mental fatigue, 

as such research question 5 was assessed in athletes as well as controls.   

Research Question 5: Does level of training affect the impact of mental fatigue on sport-specific psychomotor 

performance? 

1.4.4 Counteracting mental fatigue 

The finding that mental fatigue negatively affects physical performance triggers the urge to develop 

countermeasures that allow to avoid/overcome this kind of fatigue in an athletic setting. Mouth rinsing is a 

nutritional strategy that involves rinsing of substrates within the mouth for several seconds (5–20 s) without 

ingesting the solution, and thus avoids the possible negative side effects of intake of the substance. The rinsing of 

a solution containing carbohydrates, caffeine or both, has been shown to reduce fatigue and performance during 

exercise [64-66]. However, to the best of our knowledge, the use of mouth rinsing with both carbohydrates and 

caffeine as a mental fatigue countermeasure had never been tested before this PhD. Therefore, we sought to assess 

the effects of frequent mouth rinsing with a caffeine-maltodextrin (CAF-MALT) solution during a prolonged and 

demanding cognitive task (serial mouth rinsing) on various markers of mental fatigue. 

Research Question 6: Does serial CAF-MALT mouth rinsing counteract mental fatigue? 

Neurophysiological measures played an important role in order to check whether mental fatigue was successfully 

counteracted by the CAF-MALT mouth rinse in this chapter. Multiple (neuro)physiological measures have been 

proposed to mirror the level of mental fatigue to some degree (e.g. electroencephalography (EEG), functional near 

infrared spectroscopy (fNIRS), heart rate (HR) variability, … ) [23, 67, 68], one of the most promising is EEG.  

When cortical neurons process information (cerebrocortical processing), the flow of the electrical currents across 

their membranes changes. These changing currents generate electrical fields that can be recorded with EEG, in 
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this way providing a window on the dynamics of human brain functioning. Cortical oscillations can be divided 

into distinct bands [delta (δ), theta (θ), alpha (α), beta (β), and gamma (γ)], and the analysis of the cortical 

oscillations (frequency analysis) deals with transforming the time domain components to frequency domains (to 

obtain a power spectrum). The power in each frequency band reflects the number of neurons that discharge 

synchronously. An increase in power therefore means a mounting synchronization of neurons within that specific 

frequency band. On the contrary, a decrease in power reflects a desynchronization of neurons. Desynchronization 

seems to imply that different oscillators within a specific band are no longer coupled and start to oscillate with 

different frequencies. These different oscillators most likely reflect the synchronous activity of cortical or 

thalomocortical networks in a more local manner [69] and are, for example in the case of α-activity, termed local 

or functional alphas and facilitate cognitive processing [70]. a shift towards low-frequency bands (δ, θ, α) is 

frequently reported in mentally fatigued subjects [23, 67, 71-74], while higher frequencies (β, γ) typically decrease 

in amplitude [36]. This shift in spectral distribution is suggested to be related to a decrease in the level of arousal 

[75]. A study of Wascher et al. [23] reported mental fatigue is specifically associated with an increase in frontal θ 

and frontal and occipital α activity, which are associated with a reduced level of arousal and subsequent attention 

deficits [70, 76]. Besides the frequency domain of EEG, event-related potentials (ERP) have also been associated 

with the onset of mental fatigue. The event-related potentials’ peak amplitude and –latency are, amongst other 

things, related to stimulus evaluation and recall of task rules [77] and subsequently also provide an important 

window to look into the brains functioning. The P300 is a component of an ERP that appears around 300 ms after 

the onset of a stimulus and its amplitude is suggested to serve as an electrophysiological marker of attentional 

resource allocation while its latency reflects the speed of stimulus evaluation [78, 79]. Käthner et al. [80] studied 

the influence of mental fatigue on P300 and observed a reduced P300 amplitude at the end of a mentally fatiguing 

task compared to at the beginning. Likewise Hopstaken et al. [28] also found a decrease in P300 amplitude with 

increasing subjective mental fatigue and time-on-task. 

  



Chapter 1: General introduction 

 

20 

 

1.5 References 

1. van't Leven, M., et al., Fatigue and chronic fatigue syndrome-like complaints in the general population. 

Eur J Public Health, 2010. 20(3): p. 251-7. 

2. Ishii, A., M. Tanaka, and Y. Watanabe, Neural mechanisms to predict subjective level of fatigue in the 

future: a magnetoencephalography study. Sci Rep, 2016. 6: p. 25097. 

3. Meeusen, R. and B. Roelands, Fatigue: Is it all neurochemistry? Eur J Sport Sci, 2018. 18(1): p. 37-46. 

4. Allen, D.G., G.D. Lamb, and H. Westerblad, Impaired calcium release during fatigue. J Appl Physiol 

(1985), 2008. 104(1): p. 296-305. 

5. McKenna, M.J. and M. Hargreaves, Resolving fatigue mechanisms determining exercise performance: 

integrative physiology at its finest! J Appl Physiol (1985), 2008. 104(1): p. 286-7. 

6. Craig, A.D., How do you feel? Interoception: the sense of the physiological condition of the body. Nat 

Rev Neurosci, 2002. 3(8): p. 655-66. 

7. Amann, M. and N.H. Secher, Point: Afferent feedback from fatigued locomotor muscles is an important 

determinant of endurance exercise performance. J Appl Physiol (1985), 2010. 108(2): p. 452-4; 

discussion 457; author reply 470. 

8. Marcora, S., Counterpoint: Afferent feedback from fatigued locomotor muscles is not an important 

determinant of endurance exercise performance. J Appl Physiol (1985), 2010. 108(2): p. 454-6; 

discussion 456-7. 

9. Perrey, S., et al., Comments on Point:Counterpoint: Afferent feedback from fatigued locomotor  muscles 

is/is not an important determinant of endurance exercise performance. Journal of Applied Physiology, 

2010(108): p. 458-468. 

10. Marcora, S., Last Word on Point:Counterpoint: Afferent feedback from fatigued locomotor muscles is not 

an important determinant of endurance exercise performance. Journal of Applied Physiology, 2010. 

108(2): p. 470-470. 

11. Amann, M. and N. Secher, Last Word on Point:Counterpoint: Afferent feedback from fatigued 

locomotor  muscles is an important determinant of endurance exercise performance. Journal of Applied 

Physiology, 2010(108): p. 469. 

12. Nybo, L. and N.H. Secher, Cerebral perturbations provoked by prolonged exercise. Prog Neurobiol, 

2004. 72(4): p. 223-61. 

13. Secher, N.H., T. Seifert, and J.J. Van Lieshout, Cerebral blood flow and metabolism during exercise: 

implications for fatigue. J Appl Physiol (1985), 2008. 104(1): p. 306-14. 

14. Thomas, K., S. Goodall, and G. Howatson, Performance Fatigability Is Not Regulated to A Peripheral 

Critical Threshold. Exerc Sport Sci Rev, 2018. 46(4): p. 240-246. 

15. McCormick, A., C. Meijen, and S. Marcora, Psychological Determinants of Whole-Body Endurance 

Performance. Sports Med, 2015. 45(7): p. 997-1015. 

16. Inzlicht, M., B.J. Schmeichel, and C.N. Macrae, Why self-control seems (but may not be) limited. Trends 

Cogn Sci, 2014. 18(3): p. 127-33. 

17. Kurzban, R., et al., An opportunity cost model of subjective effort and task performance. Behav Brain Sci, 

2013. 36(6): p. 661-79. 

18. Desmond, P.A. and P.A. Hancock, Active and passive fatigue states, in Stress, workload and fatigue, P.A. 

Desmond and P.A. Hancock, Editors. 2001, Lawrence Erlbaum Associates: Mahwah, New Jersey. p. 

455–465. 

19. Job, R.F.S. and J. Dalziel, Defining fatigue as a condition of the organism and distinguishing it from 

habituation, adaptation and boredom, in Stress, workload and fatigue, P.A. Hancock and P.A. Desmond, 

Editors. 2001, Lawrence Erlbaum Associates: Mahwah, New Jersey. p. 466-475. 

20. Boksem, M.A. and M. Tops, Mental fatigue: costs and benefits. Brain Res Rev, 2008. 59(1): p. 125-39. 

21. Boksem, M.A., T.F. Meijman, and M.M. Lorist, Mental fatigue, motivation and action monitoring. Biol 

Psychol, 2006. 72(2): p. 123-32. 

22. van der Linden, D., et al., Disrupted sensorimotor gating due to mental fatigue: preliminary evidence. Int 

J Psychophysiol, 2006. 62(1): p. 168-74. 

23. Wascher, E., et al., Frontal theta activity reflects distinct aspects of mental fatigue. Biol Psychol, 2014. 

96: p. 57-65. 

24. Mockel, T., C. Beste, and E. Wascher, The Effects of Time on Task in Response Selection--An ERP Study 

of Mental Fatigue. Sci Rep, 2015. 5: p. 10113. 

25. Marcora, S.M., W. Staiano, and V. Manning, Mental fatigue impairs physical performance in humans. J 

Appl Physiol (1985), 2009. 106(3): p. 857-64. 

26. Cook, D.B., et al., Functional neuroimaging correlates of mental fatigue induced by cognition among 

chronic fatigue syndrome patients and controls. Neuroimage, 2007. 36(1): p. 108-22. 



Chapter 1: General introduction 

 

21 

 

27. Brownsberger, J., et al., Impact of mental fatigue on self-paced exercise. Int J Sports Med, 2013. 34(12): 

p. 1029-36. 

28. Hopstaken, J.F., et al., A multifaceted investigation of the link between mental fatigue and task 

disengagement. Psychophysiology, 2015. 52(3): p. 305-15. 

29. Ackerman, P.L. and R. Kanfer, Test length and cognitive fatigue: an empirical examination of effects on 

performance and test-taker reactions. J Exp Psychol Appl, 2009. 15(2): p. 163-81. 

30. MacMahon, C., et al., Cognitive fatigue effects on physical performance during running. J Sport Exerc 

Psychol, 2014. 36(4): p. 375-81. 

31. Bray, S.R., et al., Effects of self-regulatory strength depletion on muscular performance and EMG 

activation. Psychophysiology, 2008. 45(2): p. 337-43. 

32. Bray, S.R., et al., Cognitive task performance causes impaired maximum force production in human hand 

flexor muscles. Biol Psychol, 2012. 89(1): p. 195-200. 

33. Bray, S.R., J.D. Graham, and P.D. Saville, Self-control training leads to enhanced cardiovascular 

exercise performance. J Sports Sci, 2015. 33(5): p. 534-43. 

34. Pageaux, B., et al., Mental fatigue induced by prolonged self-regulation does not exacerbate central 

fatigue during subsequent whole-body endurance exercise. Front Hum Neurosci, 2015. 9: p. 67. 

35. Baumeister, R.F., K.D. Vohs, and D.M. Tice, The strength model of self-control. Current Directions in 

Psychological Science, 2007. 16(6): p. 351-355. 

36. Lal, S.K. and A. Craig, Driver fatigue: electroencephalography and psychological assessment. 

Psychophysiology, 2002. 39(3): p. 313-21. 

37. Swaen, G.M., et al., Fatigue as a risk factor for being injured in an occupational accident: results from 

the Maastricht Cohort Study. Occup Environ Med, 2003. 60 Suppl 1: p. i88-92. 

38. Noy, Y.I., et al., Future directions in fatigue and safety research. Accid Anal Prev, 2011. 43(2): p. 495-

7. 

39. Dembe, A.E., et al., The impact of overtime and long work hours on occupational injuries and illnesses: 

new evidence from the United States. Occup Environ Med, 2005. 62(9): p. 588-97. 

40. McCormick, F., et al., Surgeon fatigue: a prospective analysis of the incidence, risk, and intervals of 

predicted fatigue-related impairment in residents. Arch Surg, 2012. 147(5): p. 430-5. 

41. Rosa, R.R. and M.H. Bonnet, Performance and alertness on 8 h and 12 h rotating shifts at a natural gas 

utility. Ergonomics, 1993. 36(10): p. 1177-93. 

42. Weeks, S.R., et al., Physiological and psychological fatigue in extreme conditions: the military example. 

PM R, 2010. 2(5): p. 438-41. 

43. Bourdeaud’hui, Ria, and S. Vanderhaeghe, Knipperlicht voor burn-out: Acute psychische 

vermoeidheidsproblemen bij werknemers en zelfstandige ondernemers onder de loep., Stichting and I. 

Arbeid, Editors. 2014: Brussels. 

44. Mosso, A., Fatigue. 1915, Allen & Unwin Ltd.: London. 

45. Pageaux, B., S.M. Marcora, and R. Lepers, Prolonged mental exertion does not alter neuromuscular 

function of the knee extensors. Med Sci Sports Exerc, 2013. 45(12): p. 2254-64. 

46. Galloway, S.D. and R.J. Maughan, Effects of ambient temperature on the capacity to perform prolonged 

cycle exercise in man. Med Sci Sports Exerc, 1997. 29(9): p. 1240-9. 

47. Periard, J.D., et al., Cardiovascular strain impairs prolonged self-paced exercise in the heat. Exp Physiol, 

2011. 96(2): p. 134-44. 

48. Sawka, M.N., S.N. Cheuvront, and R.W. Kenefick, High skin temperature and hypohydration impair 

aerobic performance. Exp Physiol, 2012. 97(3): p. 327-32. 

49. Nybo, L. and B. Nielsen, Hyperthermia and central fatigue during prolonged exercise in humans. J Appl 

Physiol (1985), 2001. 91(3): p. 1055-60. 

50. Parkin, J.M., et al., Effect of ambient temperature on human skeletal muscle metabolism during fatiguing 

submaximal exercise. J Appl Physiol (1985), 1999. 86(3): p. 902-8. 

51. Nybo, L. and B. Nielsen, Perceived exertion is associated with an altered brain activity during exercise 

with progressive hyperthermia. J Appl Physiol (1985), 2001. 91(5): p. 2017-23. 

52. Nybo, L., P. Rasmussen, and M.N. Sawka, Performance in the heat-physiological factors of importance 

for hyperthermia-induced fatigue. Compr Physiol, 2014. 4(2): p. 657-89. 

53. Schlader, Z.J., et al., Characteristics of the control of human thermoregulatory behavior. Physiol Behav, 

2009. 98(5): p. 557-62. 

54. Schlader, Z.J., et al., The independent roles of temperature and thermal perception in the control of 

human thermoregulatory behavior. Physiol Behav, 2011. 103(2): p. 217-24. 

55. Marcora, S.M., Do we really need a central governor to explain brain regulation of exercise 

performance? Eur J Appl Physiol, 2008. 104(5): p. 929-31; author reply 933-5. 

56. Marcora, S.M., A. Bosio, and H.M. de Morree, Locomotor muscle fatigue increases cardiorespiratory 

responses and reduces performance during intense cycling exercise independently from metabolic stress. 



Chapter 1: General introduction 

 

22 

 

American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 2008. 294(3): p. 

R874-R883. 

57. Richter, M., G.H.E. Gendolla, and R.A. Wright, Three decades of research on motivational intensity 

theory: What we have learned about effort and what we still don't know, in Advances in motivation 

science, A.J. Elliot, Editor. 2016, Elsevier. p. 149-186. 

58. Wright, R., Refining the prediction of effort: Brehm’s distinction between  potential motivation and 

motivation intensity. Social and Personality Psychology Compass, 2008(2): p. 6 82–701. 

59. Pageaux, B., et al., Response inhibition impairs subsequent self-paced endurance performance. Eur J 

Appl Physiol, 2014. 114(5): p. 1095-105. 

60. Martin, K., et al., Mental fatigue does not affect maximal anaerobic exercise performance. Eur J Appl 

Physiol, 2015. 115(4): p. 715-25. 

61. Rozand, V., et al., Does mental exertion alter maximal muscle activation? Front Hum Neurosci, 2014. 8: 

p. 755. 

62. McMorris, T., et al., Does acute exercise affect the performance of whole-body, psychomotor skills in an 

inverted-U fashion? A meta-analytic investigation. Physiol Behav, 2015. 141: p. 180-9. 

63. Wang, C.H., et al., Open vs. closed skill sports and the modulation of inhibitory control. PLoS One, 2013. 

8(2): p. e55773. 

64. Beaven, C.M., et al., Effects of caffeine and carbohydrate mouth rinses on repeated sprint performance. 

Appl Physiol Nutr Metab, 2013. 38(6): p. 633-7. 

65. de Ataide e Silva, T., et al., Can carbohydrate mouth rinse improve performance during exercise? A 

systematic review. Nutrients, 2013. 6(1): p. 1-10. 

66. Rollo, I. and C. Williams, Effect of mouth-rinsing carbohydrate solutions on endurance performance. 

Sports Med, 2011. 41(6): p. 449-61. 

67. Zhao, C., et al., Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving 

simulator. Accid Anal Prev, 2012. 45: p. 83-90. 

68. Hopstaken, J.F., et al., The window of my eyes: Task disengagement and mental fatigue covary with pupil 

dynamics. Biol Psychol, 2015. 110: p. 100-6. 

69. da Silva, F.H., et al., Organization of thalamic and cortical alpha rhythms: spectra and coherences. 

Electroencephalogr Clin Neurophysiol, 1973. 35(6): p. 627-39. 

70. Klimesch, W., EEG alpha and theta oscillations reflect cognitive and memory performance: a review 

and analysis. Brain Res Brain Res Rev, 1999. 29(2-3): p. 169-95. 

71. Aeschbach, D., et al., Dynamics of the human EEG during prolonged wakefulness: evidence for 

frequency-specific circadian and homeostatic influences. Neurosci Lett, 1997. 239(2-3): p. 121-4. 

72. Cajochen, C., et al., Power density in theta/alpha frequencies of the waking EEG progressively increases 

during sustained wakefulness. Sleep, 1995. 18(10): p. 890-4. 

73. Phipps-Nelson, J., J.R. Redman, and S.M. Rajaratnam, Temporal profile of prolonged, night-time driving 

performance: breaks from driving temporarily reduce time-on-task fatigue but not sleepiness. J Sleep 

Res, 2011. 20(3): p. 404-15. 

74. Trejo, L.J., et al., EEG-Based Estimation and Classification of Mental Fatigue. Psychology, 2015. 6: p. 

572-589. 

75. Tops, M. and M.A. Boksem, Absorbed in the task: Personality measures predict engagement during task 

performance as tracked by error negativity and asymmetrical frontal activity. Cogn Affect Behav 

Neurosci, 2010. 10(4): p. 441-53. 

76. Boksem, M.A., T.F. Meijman, and M.M. Lorist, Effects of mental fatigue on attention: an ERP study. 

Brain Res Cogn Brain Res, 2005. 25(1): p. 107-16. 

77. Gajewski, P.D., P. Stoerig, and M. Falkenstein, ERP--correlates of response selection in a response 

conflict paradigm. Brain Res, 2008. 1189: p. 127-34. 

78. McCarthy, G. and E. Donchin, A metric for thought: a comparison of P300 latency and reaction time. 

Science, 1981. 211(4477): p. 77-80. 

79. Weng, T.B., et al., Differential Effects of Acute Exercise on Distinct Aspects of Executive Function. Med 

Sci Sports Exerc, 2015. 47(7): p. 1460-9. 

80. Kathner, I., et al., Effects of mental workload and fatigue on the P300, alpha and theta band power during 

operation of an ERP (P300) brain-computer interface. Biol Psychol, 2014. 102: p. 118-29. 

 



 
 

23 

 

 

 

 

 

 

 

 

 

 

Chapter 2: Mental fatigue and physical performance; literature 

review 

 

 

The effects of mental fatigue on physical performance: a systematic review. 

 

Jeroen Van Cutsem1,2, Samuele Marcora2, Kevin De Pauw1, Stephen Bailey3, Romain Meeusen1,4, Bart 

Roelands1,5. 

 

1 Department of Human Physiology, Vrije Universiteit Brussel, Brussels, Belgium 

2 Endurance research group, School of Sport and Exercise Sciences, University of Kent at Medway, Chatham 

Maritime, Kent ME4 4Ag, UK 

3  Department of Physical Therapy Education, Elon University, Elon, NC 27244, USA 

4 School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Queensland, 

Australia  

5 Fund for Scientific Research Flanders (FWO), Brussels, Belgium 

 

Sports Medicine, 2017, 47(8):1569-1588 

SCI(2017) = 7.074 – Q1 in Sport Sciences (3/81)



Chapter 2: Mental fatigue and physical performance; literature review 

 

24 

 

2.1 Abstract  

Background: Mental fatigue is a psychobiological state caused by prolonged periods of demanding cognitive 

activity. Mental fatigue has recently been suggested to affect physical performance. 

Objective: To evaluate the literature on the impairment in physical performance due to mental fatigue and to create 

an overview of the potential factors underlying this effect.  

Data Sources: Two electronic databases, PubMed and Web of Science (until 28 April 2016) were searched.  

Eligibility criteria for selecting studies: Studies had to be designed to test whether mental fatigue influenced 

performance on a physical task or influenced physiological and/or perceptual responses during the physical task. 

Studies using short (<30 min) self-regulatory depletion tasks were excluded from the review. 

Results: Eleven articles were included, of which six were of strong and five of moderate quality. The general 

finding was a decline in endurance performance (decreased time-to-exhaustion and self-selected power 

output/velocity or increased completion-time) due to mental fatigue, associated with a higher than normal 

perceived exertion. Physiological variables traditionally associated with endurance performance (heart rate, blood 

lactate, oxygen uptake, cardiac output, VO2) were unaffected by mental fatigue. Maximal strength, power and 

anaerobic work were observed not to be affected by mental fatigue. 

Conclusion: Duration and intensity of the physical task appear to be important factors in the decrease in physical 

performance due to mental fatigue. The most important factor responsible for the negative impact of mental fatigue 

on endurance performance is a higher perceived exertion.  
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2.2 Keypoints 

 

• Mental fatigue impairs endurance performance, while maximal strength, power and anaerobic work are not 

affected 

• The impairment in endurance performance due to mental fatigue is mediated by a higher-than-normal 

perception of effort 

• Future studies should use appropriate paradigms to induce mental fatigue and explore the role of the cognitive 

component and the intensity/duration of the endurance task in the effect of mental fatigue on endurance 

performance 
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2.3 Introduction 

Mental fatigue represents a psychobiological state caused by prolonged periods of demanding cognitive activity 

[1, 2] and has implications on many aspects of daily life. In the workplace, mental fatigue has been found to predict 

an increased risk of error [3] and in addition it is one of the most common symptoms experienced by individuals 

with neurological disorders [4]. Mental fatigue can be manifested subjectively, behaviourally and physiologically. 

Subjectively, increased feelings of tiredness, lack of energy [5] and a decrease in motivation [6] and alertness have 

been reported [7]. Behaviourally, mental fatigue is recognized as a decline in performance (accuracy and/or 

reaction time (RT)) on a cognitive task [8-10]. Finally, alterations in brain activity [8, 11-13] have been shown to 

be a physiologic manifestation of mental fatigue. Changes in all three of these areas (subjective, behavioural, and 

physiological) do not have to be present for mental fatigue to be present. For instance, cognitive performance does 

not necessarily decline when one is mentally fatigued, since compensatory effort (e.g. indicated by alterations in 

brain activity or as a result of increased motivation) may alleviate this [9, 13]. Hopstaken et al. [13] increased 

motivation near the end of a prolonged cognitively demanding task by providing a monetary incentive and found 

that cognitive performance declines were reversed, despite previous signs of mental fatigue. This suggests, as 

previously stated, that the effects of mental fatigue can be counteracted by increased motivation and that one can 

be mentally fatigued without any cognitive impairment. 

In 1891 Angelo Mosso reported in his seminal book on fatigue that muscle endurance was reduced in two fellow 

professors of physiology after long lectures and oral examinations [14]. More than a century later Marcora et al. 

[10] investigated for the first time in an experimentally controlled way the effect of mental fatigue on physical 

performance (whole-body endurance task). Muscular endurance tasks (e.g. sit-ups, weight holding, hand-grip tasks 

and leg-raise tasks) mostly involve a single muscle or muscle group [15]. In contrast, whole-body endurance 

performance refers to the entire body’s ability to sustain prolonged (>75 s), dynamic exercise using large muscle 

groups (>2 legs; e.g. running, cycling and rowing) [16]. The results of Marcora et al. [10] demonstrate that 90 min 

of  a cognitively demanding task elicited mental fatigue and negatively affected subsequent whole-body endurance 

performance. In addition the negative effect of mental fatigue on muscle endurance reported by Mosso [14] was 

recently confirmed in a study by Pageaux et al. [17]. In this study it was shown that a submaximal isometric knee 

extensor exercise until exhaustion was impaired when mentally fatigued.  

Besides endurance, another important element of physical performance is high-intensity, anaerobically-based 

exercise (e.g. maximal strength, power and anaerobic capacity). This kind of performance is more likely to result 

in peripheral fatigue (i.e. fatigue produced by changes at or distal to the neuromuscular junction [18]) and therefore 

distinguishes itself from endurance performance. High-intensity, anaerobically-based exercise is often 

characterized by an all-out strategy (i.e. the athlete working maximally from the start of the event and rapidly 

fatiguing as a result [19]) and can be defined as any short-duration (<75 s) local muscle (e.g. maximal voluntary 

contraction (MVC)) or whole-body exercise (e.g. Wingate) that is powered primarily by metabolic pathways that 

do not use oxygen. This indicates that high-intensity, anaerobically-based performance will mostly require fewer 

decision-making processes (e.g. pacing) compared to endurance performance, due to the all-out strategy (i.e. less 

pace regulating) and due to the inherent shorter duration of these kind of performances.  

The aim of the present paper is to review the literature on the effects of mental fatigue on physical performance 

and, if there are any, to create an overview of the potential underlying factors. In accordance with most of the 
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included articles in the current review, the term ‘mental fatigue’ will be used [10, 12, 20, 21]. However some 

haziness exists in regard to its terminology. Some authors, like Ackerman & Kanfer [22] and MacMahon et al. 

[23], argued that the typical task used to induce mental fatigue is more appropriately termed cognitive. Therefore 

instead of ‘mental fatigue’ these authors used the term ‘cognitive fatigue’. It is our opinion that ‘mental fatigue’ is 

more appropriate as it includes emotion and motivation rather than just cognition. The term mental fatigue better 

encompasses constructs like cognition, sensation and perception and the complex interactions between these 

constructs. Bray et al. [24-26] and Pageaux et al. [20] labelled the mental fatigue inducing intervention as a ‘self-

regulatory depletion manipulation’. Self-regulation refers to the mental abilities that allow people to exert control 

over their behaviours, thoughts, and emotions to pursue their goals [26, 27]. This description also applies to tasks 

often used to induce mental fatigue and certain commonalities can be observed between both constructs. As a 

consequence studies using self-regulatory depletion tasks that meet the eligibility criteria (duration 30 min or more) 

will also be included in the present review. However, studies using shorter self-regulatory depletion tasks (often 

referred as “ego depletion”) will not be included. It should also be stressed that this review will not include dual-

task performance studies. The focus of the current review will be the influence of a preceding mentally fatiguing 

task on subsequent physical performance in order to adequately assess if and how performance is affected by 

mental fatigue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2: Mental fatigue and physical performance; literature review 

 

28 

 

2.4 Methods 

2.4.1 Eligibility criteria 

We used Population, Intervention, Comparison, Outcome and Study design (PICOS) criteria for papers in order to 

be included in this review (see Table 1; [28]). Randomized controlled trials (RCTs), non-randomized controlled 

trials (nRCTs) and non-randomized non-controlled trials (nRnCTs) were included. These studies had to be 

designed to test (observe in case of nRnCTs) whether a mentally fatiguing task (= intervention) influenced 

performance on a physical task or influenced physiological and/or perceptual responses during the physical task. 

To be able to test this, the control intervention (which will potentially also induce some degree of mental fatigue) 

in RCTs and nRCTs logically had to induce less or no mental fatigue compared to the mentally fatiguing task. 

Studies using short (<30 min) cognitive "self-regulation depletion" tasks were excluded from the review. This cut-

off is an important feature of this review. A recent multi-laboratory replication study of the self-regulation 

depletion effect did not succeed in replicating the self-regulation depletion effect [29]. The authors state that 

although the self-regulation depleting task used may be sufficiently arduous, as indicated by difficulty, effort, and 

frustration ratings, it may not have been of sufficient duration or intensity to result in fatigue, a candidate proxy 

measure of depletion [29]. This emphasizes the importance of the length of the task used to elicit mental fatigue. 

The cut-off point was set at 30 min based on the vigilance decrement that typically occurs after 20–30 min of 

continuous work on the tasks used to induce mental fatigue [30]. In addition subjective increases in mental fatigue 

have been observed to occur in a similar time range (30 min; [31]). Only original studies written in English were 

considered.  

 

Table 1 PICOS (Participants, Interventions, Comparisons, Outcomes, 

Study design) 
PICOS 

component 
Detail 

Participants (P) 
  
Interventions (I) 
  
Comparisons (C)  
  
Outcomes (O) 
  
  
Study designs (S) 

Humans, healthy  
  
Inducing mental fatigue with a cognitive task of 

30min or longer  
Non or less mentally fatigued individuals 
  
Physical performance, physiological and perceptual 

strain 
  
RCTs, nRCTs and nRnCTs 

Randomized Controlled Trial (RCT), non-Randomized Controlled Trial 

(nRCT), non-Randomized non-Controlled Trial (nRnCT) 
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2.4.2 Information Sources and Search Strategy  

Two electronic databases, PubMed and Web of Science (until 28 April 2016) were searched. Medical Subject 

heading (MeSH) terms, if available in PubMed, were used to have a qualitative literature search. The following 

key-words were applied individually and combined: ‘mental fatigue (MeSH)’, ‘mental fatigue’, ‘mental exertion’, 

‘cognitive fatigue’, ‘self-control strength depletion’, ‘ego depletion’ in combination with ‘athletic performance 

(MeSH)’, ‘physical performance’, ‘performance’, ‘muscle fatigue (MeSH)’, ‘central fatigue’, ‘peripheral fatigue’, 

‘physical exercise’ (see Table 2). In addition, the reference lists of included articles were screened to make sure 

that important works were not omitted. 

Table 2 Number of hits on keywords and combined key words in both search engines (PubMed & Web of Science) 

  PubMed Web of Science 

Key words Hits  
(28/04/16) 

Selected 

articles 
Hits 

(28/04/16)  
Selected 

articles 

(1) Mental fatigue (MeSH) OR mental fatigue 

OR mental exertion OR cognitive fatigue OR 

self-control strength depletion OR ego depletion 

10 409 / 29 013 / 

(2) Athletic performance (MeSH) OR physical 

performance OR performance 
741 110 / 4 132 391 / 

(3) Muscle fatigue (MeSH) OR central fatigue 

OR peripheral fatigue  
13 036 / 68 089 / 

(4) Physical exercise 317 864 / 401 479 / 

Combined key words Hits 
(28/04/16) 

Selected 

articles 
Hits 

(28/04/16) 
Selected 

articles 

(1) AND (2) 2 159 / 6 095 / 

(1) AND (3) 978 / 5 235 / 

(1) AND (4) 1 378 / 1 781 / 

* (1) AND (2) AND (3) AND (4) 91 3 190 2 

* Combined keywords were included in the screening process. 

 

2.4.3 Study Selection and Data Collection Process 

In- or exclusion of articles was performed by applying the PICOS-criteria (see Table 1) on the title, abstract and/or 

full text of articles. First, titles and abstracts of the articles were screened. Next, full-text articles were retrieved if 

the citation was considered potentially eligible and relevant. The data collection process is presented in Fig. 1 [32]. 
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Additional records 

identified through 

screening of the reference 

lists of included articles 

(n=6) 

Records after duplicates removed (n=225) 

Records screened for eligibility 

by means of titles and abstracts 

(n=225) 

Records excluded:  

• Mental fatigue 

was not the 

intervention 

(n=125) 

• Neurological or 

any other disease 

(n=37) 

• Not RCT, nRCT 

or nRnCT (n=44) 

• Not humans (n=3) 

  

Full-text articles assessed for 

eligibility (n=16) 

Studies included in systematic 

review (n=11) 

Records identified through database searching 

(n=281):  

PubMed (n=91), Web of Science (n=190) 

Fig. 1 PRISMA flowchart describing the process of obtaining the research articles (n=11) included in this 

systematic review [32] 
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2.4.4 Quality Assessment 

The methodological quality was assessed using the quantitative assessment tool ‘QualSyst’ of Kmet et al. [33]. 

QualSyst contains 14 items (see Table 3) that were scored depending on the degree to which the specific criteria 

were met (“yes” = 2, “partial” = 1, “no” = 0). Items not applicable to a particular study design were marked “n/a” 

and were excluded from the calculation of the summary score. A summary score was calculated for each article 

by summing the total score obtained across relevant items and dividing it by the total possible score. Two reviewers 

(J.V.C. and B.R.) independently performed quality assessments, and disagreements were solved by consensus or 

by a third reviewer (K.D.P.). An article that scored ≥75% was considered strong, a score between 55% and 75% 

was considered moderate and a score ≤55% was considered weak.  

2.5 Results 

2.5.1 Study Selection 

Our search resulted in 281 hits, of which 16 remained after excluding duplicates and screening of the titles and 

abstracts (Fig. 1). Eventually five articles were included, but screening of the reference lists of these five included 

articles resulted in the inclusion of six additional articles, making a total of 11 selected articles. Quality assessment 

of these 11 selected articles determined six articles were of strong quality and five articles were of moderate quality 

(see Table 3).   
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2.5.2 Mental fatigue inducing interventions 

All but one included article could be classified as a crossover RCT, Budini et al. [34] was classified as a nRnCT. 

Mental fatigue was induced by a prolonged demanding cognitive task, but this task varied between studies. 

Pageaux et al. [20, 35] and Smith et al. [31] used a 30-min modified version of the Stroop colour-word task, in the 

study of Duncan et al. [36] participants had to complete concentration grids for 40 min, Budini et al. [34] employed 

a 100-min switch task paradigm, while the other six studies [10, 12, 17, 21, 23, 37] used a 90-min version of the 

AX-continuous performance test (AX-CPT). In the RCTs, the control task was always time matched with the 

intervention task and was chosen to differ from the intervention task in such a way that mental fatigue was only or 

at least significantly more induced by the intervention task. The majority, eight studies [10, 12, 17, 21, 23, 31, 36, 

37], used a time-matched emotionally neutral documentary or reading magazine as a control task. Pageaux et al. 

[20, 35] used a less mentally fatiguing (congruent, non-response inhibition) Stroop task, as evidenced by the faster 

reaction time and the lower rated mental demand and effort. In order to motivate participants and increase 

engagement during the cognitive tasks, seven out of the eleven studies gave some sort of monetary reward for the 

best performance in terms of RT and accuracy. In the most recent studies however [20, 31, 36] no incentives were 

provided. Six [10, 12, 17, 21, 23, 31, 34] studies reported a greater subjective mental fatigue after the intervention 

compared to after the control task. In the studies of Marcora et al. [10], Pageaux et al. [17] and Smith et al. [21] 

this was assessed with the Brunel Mood Scale (BRUMS). Brownsberger et al. [12] and Smith et al. [31] used a 

visual analogue scale ranging from ‘not at all’ to ‘completely exhausted’ to assess perceived fatigue and 

MacMahon et al. [23] used the Current Mood State Scale (a short version of the profile of mood states (POMS)) 

to assess subjective fatigue. From the five studies that observed no difference in perceived fatigue due to the 

cognitive task, two did not assess subjective fatigue [34, 36], two [20, 35] assessed fatigue similarly to Marcora et 

al. [10] with the BRUMS, and one [37] assessed fatigue similarly to MacMahon et al. [23] with the POMS. Four 

out of the six studies [10, 12, 17, 21, 23, 31] that observed a greater subjective fatigue after the intervention 

compared to the control task also observed a higher mean heart rate (HR) during the intervention [10, 17, 21, 23]. 

In two studies [10, 21] the greater subjective fatigue was also associated with a decline of accuracy. An increase 

in reaction time over time was observed by Budini et al. [34]. In the study of Brownsberger et al. [12] the increase 

in mental fatigue was associated with an increase in β-band activity of the prefrontal lobe. Eventually all 11 studies 

observed some additional measure of increased mental effort, demand or frustration in the intervention task 

compared to the control task. An overview of the mental fatigue inducing interventions can be found in Table 4.  
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2.5.3 Endurance 

2.5.3.1 Whole-body endurance 

Behavioural  

Homogenous subject groups were recruited in each study, allowing for comparisons between studies. The 

participants were healthy, young (21 – 26 y) and moderately trained (maximal aerobic capacity (VO2): 48 – 56 

ml.kg-1.min-1; performance level 2 according to De Pauw et al. [38]; see Table 5). However, the experimental 

protocols differed, and consequently also the outcome measures of performance (see Table 5). Marcora et al. [10] 

used a fixed resistance (80% of the peak power output) time-to-exhaustion cycling protocol and observed a mean 

decrease of 15% in time-to-exhaustion due to mental fatigue with no change in revolutions per minute (RPM). 

Pageaux et al. [35] and MacMahon et al. [23] on the other hand selected a distance-clamped, self-paced running 

protocol and both reported an increased completion time when participants were mentally fatigued. An average 

5% and 2% increase due to mental fatigue was reported respectively on a 5-km [35] and a 3-km running distance 

[23]. Moreover, while Pageaux et al. [35] completed their study in a laboratory setting, MacMahon et al. [23] 

showed this negative effect of mental fatigue is also present in a more applied setting (indoor track). Smith et al. 

[21] used a time-clamped (45 min), self-paced running protocol to observe the effect of mental fatigue on distance 

covered. The protocol was designed with low- and high-intensity activities. They observed that mental fatigue 

decreased the overall (2%) distance and the distance covered at low-intensity (3%), but not at high intensity. 

Logically, running velocity was lower overall and at low-intensity. In a second study Smith et al. [31] studied the 

effect of mental fatigue on a Yo-Yo intermittent recovery test, level 1. This test required participants to complete 

2x20m runs (up and back) at progressively increasing velocities until one failed twice to complete the 2x20 m 

within the time limit. Smith et al. [31] observed a decrease in the covered distance in this test (16.3%) when 

mentally fatigued. Martin et al. [37] used a time-clamped cycling protocol, a 3-min all-out test. Their protocol 

aimed to observe the effect of mental fatigue on peak and mean power output and critical power. They found no 

difference in any of these measures due to mental fatigue. Brownsberger et al. [12] studied the effect of mental 

fatigue on power output with a time- (10 min) and ratings of perceived exertion- (RPE) clamped protocol, meaning 

that participants had to complete two 10-min cycling bouts at self-selected intensities representative of fairly light 

effort (RPE 11) and hard effort (RPE 15). Both in the RPE 11- and RPE 15-trial participants chose lower self-

selected power outputs in the mental fatigue condition (respectively 16% and 8% lower). In the study of Pageaux 

et al. [20] the only behavioural measure was RPM, as their cycling protocol was time (6 min) and resistance-

clamped (80%), there was however no difference in RPM due to mental fatigue.  

Physiological  

HR and blood lactate ([Bla]) were measured in all whole-body endurance studies except the studies of 

Brownsberger et al. [12], Pageaux et al. [20] and Smith et al. [31] who did not measure [Bla] (see Table 5). Only 

the studies of Marcora et al. [10] and Brownsberger et al. [12] observed differences during exercise due to the 

intervention. Marcora et al. [10] reported a higher HR and [Bla] at exhaustion in the control condition. 

Brownsberger et al. [12] reported a higher mean HR (4.3%) in the control condition during the RPE 11-bout. 

Besides HR and [Bla] other physiological measures were taken that could possibly explain the decrease in 

endurance performance when mentally fatigued. Marcora et al. [10] showed that mental fatigue did not influence 



Chapter 2: Mental fatigue and physical performance; literature review 

 

37 

 

oxygen uptake, stroke volume, cardiac output and blood pressure during a subsequent whole-body endurance 

performance. Also brain activity (α and β-activity in the prefrontal and the parietal lobe [12]) was not differently 

altered during a whole-body endurance performance after a mentally fatiguing task. The time course (pre – post 

whole-body endurance performance) of blood glucose [21] and neuromuscular function [central (maximal 

voluntary activation level) and peripheral (twitch and doublet parameters and electromyography measures) 

parameters] of the knee extensors also did not differ due to mental fatigue [20]. Regarding electromyography 

(EMG) root mean square during the whole-body endurance task, also no effect of mental fatigue on the rectus 

femoris was found [20]. Conversely, mental fatigue was associated with increased EMG root mean square of the 

vastus lateralis during the whole-body endurance task [20]. In addition Smith et al. [21] reported a lower VO2 (6%) 

during the exercise-protocol in the mental fatigue condition.  

Psychological  

The most frequently measured psychological outcomes during the whole-body endurance task were perception of 

effort, motivation and subjective workload related to the exercise protocol (see Table 5). Perception of effort or 

perceived exertion (i.e. how hard, heavy, and strenuous a physical task is [39, 40]) was always assessed through 

Borg’s 15-point RPE scale [41], except for the study of Smith et al. [21] in which they used the CR100 RPE scale, 

and was found to be higher during exercise in a mentally fatigued state in the studies of Marcora et al. [10], Pageaux 

et al. [20, 35] and Smith et al. [21, 31]. Marcora et al. [10] used a scale developed and validated by Matthews et 

al. [42]. They did not find any difference in success or intrinsic motivation related to the upcoming physical tasks 

between conditions. The same conclusion was drawn in the studies of Pageaux et al. [20, 35] and Smith et al. [21], 

who used the same scale to assess motivation. In the study of Martin et al. [37] a different scale (Situational 

Motivation Scale [43]) was used to assess motivation, but again no difference was detected in identified regulation, 

external regulation and amotivation. There was however a trend for a decrease in intrinsic motivation when 

mentally fatigued. Brownsberger et al. [12], MacMahon et al. [23] and Smith et al. [31] did not differentiate 

between different types of motivation. Brownsberger et al. [12] and Smith et al. [31] used a 10-cm visual analogue 

scale to assess motivation for the upcoming physical task, while MacMahon et al. [23] used a 7-point Likert scale. 

No effects of mental fatigue on motivation could be distinguished. The subjective workload of the exercise protocol 

was only assessed in the studies of Pageaux et al. [20, 35]. In Pageaux et al’s 2014 article [35], the National 

Aeronautics and Space Administration Task Load Index found that the exercise protocol was perceived as more 

mentally demanding and participants also rated their performance on the time trial lower in the intervention trial. 

Additional psychological constructs like attentional focus [23] and mood after the exercise protocol [12] were also 

assessed, but no differences were observed due to mental fatigue. 
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2.5.3.2 Muscle endurance 

Behavioural 

Only one study evaluating the effect of mental fatigue on muscle endurance could be included in the present review 

[17] (see Table 5). In this study participants had to produce a target value of 20%-MVC (a prolonged submaximal 

isometric contraction of the knee extensor muscles) until exhaustion. Time-to-exhaustion was observed to be 13% 

shorter in the mental fatigue condition [17].  

Physiological 

HR was continuously monitored during this prolonged submaximal contraction and was not observed to be 

affected by mental fatigue at iso-time (time elapsed from the beginning of the endurance task to the last 

measurement before exhaustion of the shortest performance) nor at exhaustion. Likewise EMG root mean square 

did not differ between conditions [17]. 

Psychological 

Leg-RPE (i.e. subjects were specifically asked to rate how hard they were driving their leg during the endurance 

task) was measured every 20 s and was significantly higher when mentally fatigued. At exhaustion leg-RPE did 

not differ [17]. No difference in intrinsic and success motivation towards the endurance task was observed during 

this investigation [17]. 

2.5.4 Maximal strength, Power and Anaerobic Work 

Behavioural 

Five studies examined the effect of mental fatigue on high-intensity, anaerobically-based exercise [17, 20, 34, 36, 

37] (see Table 6). Four studies assessed whether an impairment in MVC of the knee extensor muscles occurred 

after completing a mentally fatiguing task [17, 20, 34, 37]. Both studies of Pageaux et al. [17, 20] revealed that the 

mentally fatiguing as well as the control task did not affect MVC torque. Martin et al. [37] confirmed these results 

and found no condition or time effect in any of the measures taken during the MVC (i.e. peak torque, mean torque, 

time to half peak torque, time to peak torque and peak torque slope). Budini et al. [34] on the contrary reported a 

decreased leg extension MVC (796 ± 150 N to 741 ± 137 N) after a 100-min mentally fatiguing task. Martin et al. 

[37] and Duncan et al. [36] examined the influence of mental fatigue on more sport specific anaerobic performance. 

Regarding a countermovement jump Martin et al. [37] found no difference in jump height, mean power, peak 

force, concentric peak velocity or eccentric displacement due to mental fatigue. Duncan et al. [36] reported that 

mental fatigue had no effect on mean cycling power during four consecutive 30-s Wingate anaerobic tests.    

Physiological 

Martin et al. [37] did not record any specific physiological measures related to the countermovement jumps. On 

the other hand Duncan et al. [36] assessed HR and [Bla] and found no difference due to mental fatigue. In the 

studies of Pageaux et al. [17, 20] and Budini et al. [34] measures of peripheral and central fatigue were examined 

during a MVC. Pageaux et al. [17, 20] included single electrical stimulation in order to evaluate peak twitch, time 

to peak twitch and half-relaxation time. Double electrical stimulation was used to evaluate the peak torque of the 

doublet (potentiated doublet, 5 s after the MVC). In both studies [17, 20] no effects of mental fatigue on peripheral 
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parameters of neuromuscular function (peak twitch, time to peak twitch and half-relaxation time) or on central 

parameters (voluntary activation level) were observed [17, 20]. Budini et al. [34] made use of two springs with a 

different stiffness to induce two specific tremors during a 20-s 30%-MVC. One spring induced a 9-Hz frequency 

oscillation (associated with the peripheral component of the stretch reflex) and another a 5-Hz (associated with the 

central component of the stretch reflex). The instability/tremor at 9 Hz, generated by the stretch reflex peripheral 

component, was decreased after the mental fatigue task [34]. 

Psychological 

Budini et al. [34] did not take any psychological measures and the measures (i.e. perception of effort, motivation 

and subjective workload) taken in the studies of Pageaux et al. [17, 20] were not related to the anaerobic maximal 

work. Duncan et al. [36] also employed few psychological measures, with only RPE being measured on completion 

of each Wingate-test, but no effect of mental fatigue was reported.  Martin et al. [37] assessed RPE and motivation 

and did not observe any difference in RPE, identified regulation, external regulation and amotivation towards the 

countermovement jump or MVCs.  
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2.6 Discussion  

With the present review we sought to outline the current knowledge on the effect of mental fatigue on physical 

performance. Secondly, we aimed to propose possible factors mediating this effect. All investigations included in 

this review were of moderate to strong quality (assessed with the quantitative assessment tool ‘QualSyst’ of Kmet 

et al. [33]). Within the quality criteria check all studies lost points for not blinding investigators and subjects. This 

highlights a specific difficulty in this field of research, being the impossibility to blind a participant from which 

task is being done, the experimental task (the cognitive task) or the control task (a less demanding cognitive task 

or watching a television documentary). This could lead to different expectations regarding the performance on a 

subsequent physical exercise task. This is predominantly counteracted by selecting so-called ‘naïve participants’, 

meaning they were naïve to the real aims and hypotheses of the study. Instead participants were told the study 

examined the effects of two different cognitive activities (a computerized task and watching television) on the 

physiological responses to exhaustive exercise [10] or were led to believe the study was examining whether 

watching television or completing a mentally engaging task is a good preparation for maximal anaerobic exercise 

performance [37]. Despite participants being deceived, the difference in task demand between the experimental 

and the control task could still have created different expectations concerning the subsequent physical 

performance. A solution might be to measure how participants expect to perform on the physical task, however 

this carries the risk of emphasizing a potential difference in performance-expectations between conditions. 

2.6.1 Mental fatigue inducing interventions 

One of the most important questions in studying the effect of mental fatigue on physical performance is whether 

mental fatigue was successfully induced. To answer this question a definition of mental fatigue and its markers is 

needed. As already stated in section 1, mental fatigue has subjective, behavioural and physiological manifestations. 

Most of the included studies assessed only the subjective and behavioural manifestations and therefore the 

quantification of mental fatigue is often restricted. Marcora et al. [10] postulated that higher subjective fatigue 

and/or a decline in cognitive performance indicate the presence of mental fatigue. However, whether the presence 

of these two markers is sufficient to determine that mental fatigue has been successfully induced is debatable. This 

is shown by the fact that only six of the 11 included studies observed higher subjective fatigue [10, 12, 17, 21, 23, 

31] and only two studies reported a decrease in accuracy with longer time-on-task [10, 21]. Moreover, observing 

an increase in subjective fatigue or not, also greatly depends on the subjective scale that is used. A visual analogue 

scale assessing how mentally fatigued an individual feels might be sensitive but promote response bias, while the 

BRUMS or POMS may be less capable of detecting small but relevant short-term changes in mental fatigue. This 

raises the need for well-thought paradigms that account for the relative contribution of other parameters, like 

motivation and/or boredom, when time-on-task effects are investigated [9, 44]. In an attempt to account for these 

effects (e.g. loss of motivation with subsequent task disengagement), incentives were provided for the best 

performances in seven of the eleven included studies. Gergelyfi et al. [44] demonstrated that alterations of the 

motivational state through monetary incentives failed to compensate the effects of mental fatigue and therefore 

this seems a legitimate way to account for task disengagement (i.e. decrease in cognitive performance) through 

loss of motivation. Nonetheless, the interpretation of subjective and behavioural measures of mental fatigue 

remains challenging without (neuro)physiological measures. 
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Brownsberger et al. [12] is the only included study that used electroencephalography (EEG) to examine neural 

indices (α and β waves) of electrocortical activity in the prefrontal cortex, a brain region that is important in 

decision-making [5]. They reported an increased β-band activity of the prefrontal lobe in the middle of and after 

the mentally demanding task compared to the control task. β-waves are fast (13–30 Hz) EEG potentials associated 

with increased alertness, arousal and excitement [45]. Brownsberger et al. [12] subsequently interpreted this 

finding as an indication of successfully eliciting greater attention, information processing and cognitive 

engagement. This greater attention could of course indicate that compensatory mechanisms were in place to 

maintain performance in the presence of mental fatigue [46], however it does not automatically indicate that mental 

fatigue was present. The greater elicited attention and cognitive engagement rather suggests that the experimental 

task was more mentally demanding. EEG measures that have repeatedly been associated with the occurrence of 

mental fatigue are increases in frontal θ and in frontal, central and parietal α-power [8, 47-49]. Moreover, if one 

considers the continuous change of a measure as a criterion in order to assign it to the development of mental 

fatigue, the increase in frontal θ power seems to be the most valid measure of mental fatigue according to the data 

reported by Wascher et al. [8] and Trejo et al. [49]. Elevated θ activity shows that more effort is required to 

maintain the performance level, certainly when tasks have to be repeated [50-52]. Unfortunately θ activity was not 

measured in the study of Brownsberger et al. [12]. 

In order to state whether mental fatigue was induced requires subjective, behavioural and physiological measures, 

and the interactions between all three manifestation areas of mental fatigue should be interpreted. Moreover, 

adaptation, motivation and inter-individual differences in threshold to mental fatigue are important variables to 

account for. Participants have to be in a well-familiarized setting [9] in which subjective, behavioural and 

physiological effects can be most certainly attributed to mental fatigue. This could be attained by adding a different 

cognitive task before and after the mentally fatiguing task (i.e. the indirect method [53]), allowing researchers to 

evaluate the effect of fatigue on cognitive performance independently from time-on-task [44]. In addition it is 

likely that the occurrence of mental fatigue differs from one individual to another, and depends on the duration 

and/or difficulty of the mentally exerting task. Therefore, it cannot be expected that the same physiological, 

psychological and behavioural changes will be observed in all individuals. The importance of the duration of the 

task to induce mental fatigue is underlined by the recent replication study of Hagger et al. [29] and is shown again 

by a recent study published by Schücker et al. [54]. In this study [54] no effect of a 10-min cognitive task on 

subsequent whole-body endurance performance was found. The authors admit one possible explanation for these 

results is the ineffectiveness of the manipulation task (10-min Stroop) to induce mental fatigue. They however 

argue that even shorter tasks have been observed to reduce whole-body endurance performance [55] and therefore 

feel confident that the induced state of mental fatigue was comparable with previous studies in this line of research. 

However there seem to be some crucial differences between the lines of research on mental fatigue and self-

regulation depletion [56]. More specifically, in the short tasks used in the self-regulation depletion research mental 

exertion is not sufficiently prolonged to induce subjective feelings of mental fatigue. Therefore one should be 

cautious about attributing the results in both lines of research to the same mechanism. In the end, all included 

studies in the present review but the studies of Pageaux et al. [20, 35], Martin et al. [37] and Duncan et al. [36] 

have arguments to state mental fatigue was induced in the experimental condition and not or to a lesser extent in 

the control condition. Despite not being able to substantiate mental fatigue was induced in their study, the studies 

of Pageaux et al. [20, 35], Martin et al. [37] and Duncan et al. [36] were included. To begin with, these studies 
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[20, 35-37] used tasks of a similar nature and length as the tasks used in the other included studies that were 

successful in inducing mental fatigue. Secondly, Duncan et al. [36] did not include any subjective, behavioural or 

physiological measures to monitor mental fatigue, whereas Pageaux et al. [20, 35] and Martin et al. [37] used the, 

perhaps too insensitive, BRUMS or POMS to assess the participants’ state of mental fatigue. Therefore, and 

because in the studies of Pageaux et al. [20, 35] and Martin et al. [37] it was reported that participants perceived 

the intervention task as more mentally demanding and effortful compared to the control task, these studies were 

also included. 

2.6.2 Mental fatigue and physical performance 

For the purpose of discussing the subsequent physical performance in a mentally fatigued state a distinction was 

made between behavioural, physiological and psychological outcomes during exercise.  

2.6.2.1 Behavioural  

Out of the nine studies that examined the effect of mental fatigue on behavioural measures, eight included an 

endurance performance-measure. Seven of those eight reported that endurance performance was negatively 

affected by mental fatigue. This was evidenced by a decrease in time-to-exhaustion [10, 17], an increase in 

completion time [23, 35], a decrease in self-paced velocity [21], a decrease in self-selected power outputs [12] and 

a decrease in distance covered [31]. Only in the 3-min all-out protocol of Martin et al. [37] no impact of mental 

fatigue was observed. Martin et al. [37] argued that the lack of effect of mental fatigue on performance was caused 

by the reduced to non-existent cognitive component of the exercise task. Indeed, an all-out strategy is characterized 

by the athlete working maximally from the start of the event and rapidly fatiguing as a result of that [19]. This 

statement seems to be supported by the null findings in the studies on the effect of mental fatigue on maximal 

strength, power and anaerobic work [17, 20, 36, 37]. The employed physical tasks in these studies all require a 

maximal all-out effort. From these results it can be pointed out that it appears to be important to differentiate 

between endurance and maximal power tasks to observe a negative effect of mental fatigue on behavioural 

measures. This leads to the assumption that, the shorter and more maximal the task, the lower the impact of the 

mental fatigue. The distinction between whole-body and local muscle endurance tasks does not seem to be of great 

importance to find an effect of mental fatigue. In a study of Pageaux et al. [17] it was shown that besides whole-

body endurance, muscle endurance was also impaired when mentally fatigued. This is however the only study 

examining the effect of mental fatigue on muscle endurance performance and needs to be confirmed by other 

studies in the future. The importance of both the cognitive component and the submaximal, endurance intensity in 

the physical task also points towards the need for future research to be conducted in a more applied way (e.g. in 

prolonged endurance tasks/events). The demands of such real life prolonged endurance events are physically but 

also cognitively high, as is shown by the metacognitive framework of Brick et al. [57]. Therefore such real life 

endurance events are possibly able to accentuate even more the decrease in endurance performance due to mental 

fatigue. A recent investigation by Brick et al. [58] demonstrated this by comparing an RPE-clamped time trial and 

an externally-controlled pace time trial. Preceding the randomized completion of these two time trials participants 

completed two self-controlled pace time trials. Pacing strategy for the externally-controlled and RPE-clamped time 

trials was the same as for the subjects' fastest self-controlled pace time trial. It was concluded that external control 

over pacing (e.g. drafting in a race) may facilitate performance [58], possibly mediated through reducing the 

cognitive load and promoting appropriate attentional strategies that optimize performance. An applied study was 
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recently performed in soccer. Badin et al. [59] assessed the effect of mental fatigue on physical and technical 

performance in small-sided soccer games. Physical performance (total distance covered tracked with a global 

positioning system) in this setting was however not a main objective, because a player could perform better (e.g. 

more successful passes) without covering more distance. Therefore, because covering as much distance as possible 

did not translate unequivocally to a better performance in a small-sided soccer game and because the researchers 

also did not instruct the participants to cover as much distance as possible during the game, there was no real 

physical performance measure included in this study and consequently the study was not included in the review. 

Nonetheless studies of this kind are extremely useful and necessary in order to expand our knowledge on the effect 

of mental fatigue on physical performance. 

2.6.2.2 Physiological 

Regarding the studies on endurance performance, Marcora et al. [10], Brownsberger et al. [12] and Smith et al. 

[21] observed respectively a higher HR and [Bla] at exhaustion, a higher mean HR in the RPE 11 exercise-bout 

and a higher VO2 in the control trial compared to the mental fatigue trial. However all these findings can be 

explained by behavioural changes. In the study of Marcora et al. [10] the longer time-to-exhaustion explained the 

physiological differences between conditions. Brownsberger et al. [12] identified the higher self-selected power-

outputs as an explanation for the higher mean HR and Smith et al. [21] emphasized the higher self-selected running 

velocities to account for the higher VO2 in the control trial. Brownsberger et al. [12] also observed elevated β 

activity in the prefrontal brain lobe during a 3-min warm-up due to mental fatigue. This significant difference 

disappeared during the subsequent exercise bout. Pageaux et al. [20] demonstrated that mental fatigue was 

associated with a higher EMG root mean square of the vastus lateralis during cycling. This suggests an alteration 

in muscle fibre recruitment for the same power output and was previously reported by a self-regulation study [24]. 

In contrast to the above mentioned physiological differences between conditions, it was also observed that many 

physiological measures did not differ. Marcora et al. [10] did not observe any effect of mental fatigue on 

cardiovascular measures during exercise. Pageaux et al. [20] used a time- and intensity fixed protocol in order to 

observe the effect of mental fatigue on exercise induced  peripheral (twitch and doublet parameters and EMG 

measures) and central (voluntary activation level) fatigue. It could be concluded that mental fatigue did not 

accentuate peripheral fatigue as well as it did not increase exercise-induced central fatigue [20]. Overall, all 

included studies were rather unequivocal, mental fatigue does not reduce endurance performance by altering 

physiological, cardiorespiratory and neuromuscular responses to the subsequent exercise. These findings are 

confirmed by the line of research on the effect of mental fatigue on maximal strength, power and anaerobic work. 

Studies by Pageaux et al. [17], Martin et al. [37] and Rozand et al. [60] did not observe any effect of mental fatigue 

on central fatigue. In contrast, Budini et al. [34] reported a decreased MVC and a decreased tremor amplitude 

during a 100% MVC after a mentally fatiguing task (100 min). Weakened cortico-muscular coupling (i.e. 

synchronized activity of the motor cortex and the spinal motoneuron pool) induced by mental fatigue is one 

possible explanation for this finding [34]. Yet they did not include a control group and as a consequence muscle 

relaxation cannot be excluded as another potential explanation for their findings. These results demonstrate that 

mental fatigue is able to alter endurance performance without altering any exercise-induced physiological 

parameter in the periphery and without any change in the cortico-muscular coupling. A side note to this conclusion 
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has to be that, due to the findings of Pageaux et al. [20] and Budini et al. [34], further investigations on the effect 

of mental fatigue on muscle fibre recruitment are warranted.  

2.6.2.3 Psychological  

Martin et al. [37] reported a trend for a decrease in intrinsic motivation towards the upcoming physical task when 

mentally fatigued. Moreover, Pageaux et al. [35] found that a 5-km time trial was perceived as more mentally 

demanding and participants also rated their performance on the time trial lower when mentally fatigued. The most 

consistent finding was however the higher RPE during exercise. Marcora et al. [10], Pageaux et al. [17, 20, 35] 

and Smith et al. [21, 31] all observed a higher RPE during exercise, Martin et al. [37] observed a trend towards a 

higher RPE and Brownsberger et al. [12] and MacMahon et al. [23] both showed a lower self-selected power 

output or running velocity for the same RPE. Therefore the current general opinion is that endurance performance 

is impaired by mental fatigue and this is predominantly related to the higher-than-normal perceived exertion during 

exercise. Mental fatigue appears not to alter motivation towards the upcoming endurance task. In the study of 

Marcora et al. [10] this could have been due to a ceiling effect, created by the artificially increased motivation by 

offering monetary reward for best cycling performance, that masked the possible influence of mental fatigue on 

motivation. However, no other studies provided monetary incentives to increase engagement in the physical task 

and a ceiling effect was therefore less plausible in those studies. Encouragements and visual feedback during the 

physical task itself are other important factors that impact on motivation. These specific aspects differed between 

studies, with some [20, 21] giving no feedback nor encouragement, some giving feedback but no encouragements 

[12, 31, 34, 35] and others giving both feedback and standardized encouragements [10, 17, 37]. However, 

independently from giving feedback or encouragements, all studies reported no effect of mental fatigue on 

motivation towards the upcoming physical task. Mental fatigue not having an effect on motivation is possibly 

explained by the differing natures of both tasks following upon each other. Inzlicht et al. [61] proposed a 

motivational shift model to explain that engaging in self-regulation at time 1 leads to declines in performance at 

time 2. However, while this model accounts for many relevant findings in the field, crossing over the nature of the 

task (e.g. a cognitive task followed by a physical task) might counteract the motivational shift (away from ‘have-

to’ goals and towards ‘want-to’ goals) often observed when tasks of a similar nature follow each other (e.g. 

cognitive task after cognitive task) [62]. Higher perception of effort as the mediator of the negative effect of mental 

fatigue on physical performance also explains why mental fatigue does not impair maximal anaerobic tasks. The 

role of perception of effort in maximal anaerobic tasks is limited because of the all-out strategy that is employed. 

All-out strategies typically require no pacing and induce a faster build-up of peripheral fatigue (e.g. accumulation 

of metabolites).  

2.6.3 How does mental fatigue increase perceived exertion during endurance performance?  

Perceived exertion, also referred to as perception of effort, can be defined as the conscious sensation of how hard, 

heavy, and strenuous a physical task is. So far, three different theories have been suggested on which neural 

signal(s) are processed by the brain to generate the perception of effort [40]: (i) the afferent feedback from the 

working muscles and other peripheral physiological systems (i.e. the afferent feedback model [63]); (ii) the 

corollary discharges (neural signals from premotor/motor areas to sensory areas of the brain) associated with the 

central motor command (i.e. the corollary discharge model) [64-67]; (iii) a combination of afferent feedback and 

corollary discharges (i.e. the combined model [68]). It should be noted that recent evidence provides support in 
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favour of the corollary discharge model (for more details please see [66, 69-71]). Yet without wishing to extend 

this discussion much further, it can be stated that perception of effort could possibly be increased by 1) increasing 

the intensity of afferent feedback from peripheral physiological systems, 2) increasing the intensity of central 

motor command (i.e. motor-related cortical activity) and thus its corollary discharges and 3) altering the processing 

of these neural signals in the brain (independently whether they originate from the periphery or from corollary 

discharges of the central motor command). The first option has been shown multiple times not to be influenced by 

mental fatigue, i.e. mental fatigue does not alter the physiological responses to exercise thought to provide afferent 

feedback to the brain (see section 4.2 Physiological). Regarding the second possibility, Pageaux et al. [20] 

demonstrated that mental fatigue was associated with a higher EMG root mean square of the vastus lateralis during 

cycling. This suggests that alterations in motor control may force mentally fatigued subjects to increase their 

central motor command and muscle recruitment (as shown by the increase in EMG amplitude) in order to produce 

the same power output even when central and peripheral fatigue are not exacerbated. This altered EMG amplitude 

due to mental fatigue has however to be confirmed by other studies. Furthermore, EEG should be used to directly 

test this hypothesis because central motor command can change even in the absence of changes in EMG amplitude 

[69]. The third option, an altered brain processing of the neural signals underlying perception of effort 

(independently whether they originate from peripheral receptors or premotor/motor areas of the cortex appears to 

be a reasonable explanation. However, we are not aware of any study who has tested this hypothesis. 

2.6.4 A potential role for brain neurotransmitters 

The importance of brain neurotransmitters in endurance performance has already been underlined by Roelands et 

al. [72]. They showed that reboxetine (a noradrenaline re-uptake inhibitor) decreased whole-body endurance 

performance in normal and high ambient temperature. Interestingly, despite a decreased power output during the 

time trial in this study there was no change in absolute RPE values, consequently increasing the RPE to power 

output ratio (meaning less power output is generated for a same RPE value). The intake of methylphenidate [73] 

[a dopamine (DA) reuptake inhibitor] in contrast allowed subjects to maintain a higher power output and improve 

time trial performance in the heat, again without influencing absolute RPE values. This demonstrates that altered 

brain neurotransmission is able to affect whole-body endurance performance and that this effect is associated with 

an altered RPE to power output ratio (in the case of DA, a decreased ratio). Klass et al. [74] showed that muscle 

endurance performance is affected in a similar way. A noradrenaline reuptake inhibitor reduced endurance time 

by 15.6 %. This was associated with a greater rate of supraspinal impairment and increase in RPE. Participants 

experienced the same intensity of intermittent contractions as harder to perform after administration of a 

noradrenaline reuptake inhibitor, without affecting the fatigue-related intramuscular impairments [74]. Pageaux et 

al. [17, 20, 35] stated that neural activity increases the extracellular concentration of adenosine (an inhibitory 

neurotransmitter; [75]) and that brain adenosine accumulation reduces endurance performance [76]. Subsequently 

they speculated that adenosine accumulation in the pre-supplementary motor area and anterior cingulate cortex 

(due to a mentally fatiguing task) could also explain in part the higher than normal perceived exertion during an 

endurance exercise in a mentally fatigued state. However, there is to date no study that demonstrates that mentally 

fatigued individuals have increased adenosine in specific areas. Moreover, other possible neurotransmitters that 

could mediate the effect of mental fatigue must not be overlooked. Hopstaken et al. [13] monitored certain 

psychophysiological markers of locus coeruleus activity during a mentally fatiguing task and reported that these 

markers (P3 and pupil diameter) were affected by the time-on-task manipulation. Consequently this indicates that 
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the locus coeruleus (i.e. a nucleus in the brainstem responsible for the release of cortical noradrenaline) is also a 

possible mediator of the effects of mental fatigue [13]. Moeller et al. [77] investigated the role of DA in mental 

fatigue and concluded that also the dopaminergic midbrain is involved in sustaining motivation during fatigue. 

Research on neurological disorders and the often associated feelings of fatigue, also points towards an important 

role for the midbrain and other subcortical regions [78]. The above points out that most probably it will not be one 

particular neurotransmitter that mediates the negative effect of mental fatigue on endurance performance. Rather 

mental fatigue will affect neurotransmitter systems in multiple brain regions and the summation of these alterations 

might explain (in part) the impairment in endurance performance. 

2.6.5 Future directions 

Evidence from fields other than physical performance has already demonstrated that manipulation of 

neurotransmitter systems could reduce the negative effects of mental fatigue [77, 79]. Moeller et al. [77] used 

methylphenidate (i.e. a DA reuptake inhibitor) in order to manipulate the concentration of DA in the brain and 

assess what effect this had on the development of mental fatigue during a cognitive performance task. Similar 

interventions could be employed to assess the role of the above mentioned neurotransmitters in the mental 

fatigue/physical performance interaction. Almost 20 years ago, Caldwell et al. [79] reported that administration of 

dextroamphetamine (i.e. an indirect dopamine agonist) improved flight performance during the final 23 hours of 

a 40-hour period of continuous wakefulness. Similar studies investigating the effect of mental fatigue on physical 

performance could enlarge our knowledge of the role of different neurotransmitters in this interaction. 

Simultaneously more applied areas need further investigation as well. The cognitive tasks used to induce mental 

fatigue in the reviewed studies do not entirely resemble tasks (e.g. interviews, emotion control, and tactical 

meetings) that would regularly occur prior to competition. The mental fatigue induced by the cognitive demands 

of the competition itself should also be investigated. Finally, the impact of mental fatigue should be assessed on 

endurance performance of longer duration (e.g. marathon) and in high-level athletes, as it is likely that they may 

have superior ability to maintain performance [80].  
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2.7 Conclusion 

Mental fatigue is a psychobiological state caused by prolonged periods of demanding cognitive activity and is 

characterized by a combination of specific subjective, behavioural and physiological manifestations. Recent 

research has observed the effect of mental fatigue on physical performance. The current systematic review aimed 

at unravelling whether mental fatigue impairs physical performance and sought to create an overview of the 

potential factors underlying this effect. 

Eleven articles on the topic were selected and the main outcome was a decline in endurance performance 

(decreased time-to-exhaustion and self-selected power output/velocity or increased completion time) due to mental 

fatigue, associated with a higher than normal perceived exertion. Physiological variables traditionally associated 

with endurance performance (heart rate, blood lactate, oxygen uptake, cardiac output, VO2) were not directly 

affected by mental fatigue during and after endurance performance. Maximal strength, power and anaerobic work 

were not affected by mental fatigue. This led to the conclusion that duration and intensity of the physical task 

appear to be important factors in the decrease in physical performance due to mental fatigue.  

Practically these findings suggest that a higher-than-normal perception of effort and reduced endurance 

performance are respectively a psychological and behavioural marker of mental fatigue. In addition, engagement 

in mentally demanding tasks before competitions requiring endurance should be avoided in order to optimize 

performance. Moreover, the high cognitive demands of sport are most probably mentally fatiguing when prolonged 

over time. This opens new opportunities to improve endurance performance by minimizing as much as possible 

the cognitive load during competitions and/or by increasing resistance to the negative effects of mental fatigue on 

perception of effort and endurance performance. 
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3.1.1 Abstract  

Purpose: Mental fatigue is a psychobiological state caused by prolonged periods of demanding cognitive activity 

and has been observed to decrease time-trial (TT) endurance performance by ~3,5% in normal ambient 

temperatures. Recently it has been suggested that heat may augment the negative effect of mental fatigue on 

cognitive performance, raising the question whether it may also amplify the effect of mental fatigue on TT-

performance. Methods: In 30 °C and 30% relative humidity, ten endurance-trained male athletes (Age: 22 ± 3 y; 

Wmax: 332 ± 41 W) completed two experimental conditions: intervention (I; 45-min Stroop task) and control (C; 

45-min documentary). Pre and post intervention/control, cognitive performance was followed up with a 5-min 

Flanker task.  Thereafter subjects cycled for 45 min at a fixed pace equal to 60%-Wmax, immediately followed by 

a self-paced TT in which they had to produce a fixed amount of work (equal to cycling 15 min at 80%-Wmax) as 

fast as possible. Results: Self-reported mental fatigue was significantly higher after I compared to C (P<0.05). 

Moreover electroencephalographic measures also indicated the occurrence of mental fatigue during the Stroop 

(P<0.05). TT-time did not differ between conditions (I: 906 ± 30 s, C: 916 ± 29 s). Throughout exercise, 

physiological (heart rate, blood lactate, core and skin temperature) and perceptual measures (perception of effort 

and thermal sensation) were not affected by mental fatigue. Conclusion: No negative effects of mild mental fatigue 

were observed on performance and the physiological and perceptual responses to endurance exercise in the heat. 

Most plausibly mild mental fatigue does not reduce endurance performance when the brain is already stressed by 

a hot environment. 

 

 

Key words: exercise, whole-body endurance performance, heat, effort 
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3.1.2 Introduction 

Physical performance and more specifically endurance performance is negatively affected by mental fatigue (see 

Van Cutsem et al. [1] for a systematic review on the topic). Mental fatigue is a psychobiological state caused by 

prolonged periods of demanding cognitive activity and is characterized by various subjective, physiological and 

behavioural alterations. It is manifested as an acute increase in subjective ratings of fatigue [2-5], specific 

electroencephalography (EEG) alterations [3, 6, 7] and/or an acute decline in cognitive performance [2, 5]. Often 

it is induced by a response inhibition task (e.g. incongruent Stroop task) that requires self-control to inhibit 

automatic responses to certain stimuli. Prolonged performance on such a task prior to endurance exercise leads to 

higher perception of effort and impaired endurance performance [1]. A higher perception of effort manifests itself 

as a higher rating of perceived exertion (RPE) during fixed workload tests, whilst during time trials the workload 

is lower relative to RPE. Physiological parameters like respiratory, cardiovascular, metabolic or neuromuscular 

function during and after endurance exercise [2, 5, 8] do not seem to be influenced by mental fatigue.  

Heat stress is also known to impair endurance performance [9, 10]. The impairment in performance has frequently 

been associated with a rise in cardiovascular strain [9] during endurance exercise, a decrease in maximal aerobic 

capacity, a higher internal body temperature (Tcore) , higher skin temperature (Tskin) [11], hypohydration [11], 

neuromuscular changes within the central nervous system [12] and an altered metabolic profile in the activity-

dependent muscle groups [13]. Apart from all these physiological alterations during exercise in the heat, perceptual 

responses [thermal sensation (Tsens), thermal comfort and perception of effort] are also affected. Traditionally the 

effects of heat on these perceptual responses have been explained as a consequence of the increased physiological 

strain [11]. However, we still do not know why perception of effort is higher during exercise in the heat. This 

could be due to the increased physiological strain, but direct effects of heat on the brain could also be the cause 

[14].  Similarly, we do not know why perception of effort during exercise is higher in mentally fatigued individuals 

[1]. However, we can exclude physiological strain [2] and neuromuscular fatigue [15] as there have been no 

differences observed in these parameters due to mental fatigue. This underlines that the mechanisms causing the 

higher perception of effort during exercise in conditions of mental fatigue and heat are currently largely unknown. 

If the mechanisms between the two stressors differ, then one mechanism could add to the other and cause 

perception of effort to raise further and consequently deteriorate endurance performance even more.  

Qian et al. [16] were one of the first to combine both mental fatigue and heat. After thermal exposure 

[normothermic (25 °C, 1 h) and hyperthermic condition (50 °C, 1 h)], twenty participants performed a twenty-

minute psychomotor vigilance test while task-related cerebral blood flow was being registered in a scanner. This 

revealed that prior heat stress has a potential fatigue-aggravating effect while performing a task demanding 

continuous attention. They observed a decreased resting-state cerebral blood flow in the fronto-parietal cortex after 

the heat exposure compared to a thermoneutral situation. This was associated with subsequent slower reaction 

times, consequently indicating heat may accelerate the occurrence of mental fatigue. The fronto-parietal cortex is 

an area in the brain that encompasses multiple regions (e.g. dorsolateral prefrontal cortex (DLPFC), anterior 

prefrontal cortex (APFC) and somatosensory association cortex (SAC)). Specific changes in brain-activity in this 

part of the cortex have frequently been associated with an impaired cognitive performance and mental fatigue [6, 

7, 17, 18].  
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From the above it is clear that mental fatigue impairs endurance performance and that heat stress may accelerate 

the occurrence of mental fatigue. Heat stress might augment the effect of mental fatigue on endurance performance 

by aggravating the mental fatigue induced by a given prolonged demanding cognitive task and/or by affecting 

perception of effort through a different and additive mechanism. Therefore the main aim of this study was to 

examine whether mental fatigue decreases subsequent endurance performance in the heat as measured by a time 

trial (TT). Such TT protocols have been shown to have a high reproducibility [19]. Before the self-paced TT we 

included a fixed-workload period to accentuate fatigue in the heat and better quantify the effects of mental fatigue 

on physiological and perceptual responses to endurance exercise. From a more applied point of view, this 

endurance task simulates many cycling races in which a peloton covers the first three quarters of a race at a slower 

pace than the last quarter. Additionally it would be useful to know whether mental fatigue exerts the same negative 

influence on endurance performance in warm conditions as has been observed in normal ambient temperatures 

(5% [20] and 2% [4] decrements). Therefore this study provides useful insights for athletes competing in major 

sport events like the 2022 (in Qatar) FIFA World Cup and the 2020 Olympic Games in Japan that take place in 

such a warm climate.  

We hypothesized mental fatigue would be induced in the heat, characterized by subjective (higher ratings of mental 

fatigue [2, 3, 5]), neurophysiological (lower P3b-amplitude [7, 17] and higher fronto-parietal theta (θ)- and alpha 

(α)-activity [6, 18] due to mental fatigue) and behavioural measures (decreased accuracy and increased reaction 

time (RT) in time due to mental fatigue [2, 5]). Mental fatigue would subsequently negatively affect performance 

on the endurance task in the heat. More specifically we expect a higher perception of effort during the 45-min 

fixed workload part, whilst the time trial (TT) would take longer to complete due to mental fatigue [2-4]. We also 

expected a bigger decrease in TT-performance due to mental fatigue in heat than the impairments observed in 

normal ambient temperatures (~3.5%) [4, 20]. 

3.1.3 Methods 

3.1.3.1 Subjects and ethical approval 

Ten trained male cyclist or triathletes (mean ± SD; age: 22 ± 3 y, height: 184 ± 4 cm, weight: 74 ± 7 kg, Wmax: 332 

± 42 W) volunteered to participate in this study. None of the subjects had any known mental or somatic disorder. 

Our subjects can be included in the performance level 3 in the classification of subject groups in sports science 

research [21]. Each subject gave written informed consent prior to the study. Experimental protocol and procedures 

were approved by the Research Council of the Vrije Universiteit Brussel, Belgium. All subjects were given written 

instructions describing all procedures related to the study but were naive of its aims and hypotheses. 

3.1.3.2 Experimental protocol 

On the first visit to the lab subjects underwent a medical examination by a physician. Subjects were excluded if 

they presented with any medical history, family history or medication or drug use that would prevent them from 

safely completing the experiment. Subjects then completed a maximal cycle ergometer test to determine the 

maximal wattage (Wmax). This maximal exercise test was conducted progressively on a cycle ergometer (Lode 

Excalibur Sport, Groningen, the Netherlands) in order to determine Wmax as accurately as possible: the test started 

at 80 W for 3 min, thereafter the resistance was increased by 40 W each 3 min until exhaustion. The Wmax was 

calculated with the formula: Wmax = Wout + (t/180) x 40 [Wout: workload of the last completed stage; t: time 
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(seconds) in the final stage]. Before the incremental test the position on the cycle ergometer was adjusted for each 

subject, and settings were recorded and reproduced at each subsequent visit. Subjects were also given standard 

instructions for overall RPE using the 15-point scale (6-20) developed by Borg [22]. During the incremental 

exercise test, the scale low and high anchor points were established. In order to acquaint participants with the 

feelings of exertion that should be rated 7, they were asked to cycle unloaded at 50 rpm for 3 min before the start 

of the incremental exercise test. To establish the high anchor point participants were asked to assign a rating of 19 

to the conscious sensations of how hard, heavy, and strenuous exercise felt at the end of the incremental exercise 

test. 

The subjects were asked to return to the lab for 3 consecutive trials, which were all conducted in the morning and 

were separated by at least 5 days to ensure full recovery. The first trial was a familiarization trial (to get to know 

the routine, the equipment and to avoid learning effects), followed by an intervention trial and a control trial in a 

randomized and counterbalanced order (www.randomization.com). All trials were conducted in 30 °C and in a 

relative air humidity of 30 %. In both the intervention and the control trial subjects performed a 45-min cognitive 

task, either involving response inhibition (Stroop task) or a control task (see Cognitive tasks section). In the 

familiarization trial subjects completed only 15 min of the 45-min Stroop task. Preceding the beginning of the 45-

min cognitive task, a urine sample was taken, the subjects’ body mass was measured and all physiological 

measuring instruments were applied (see Physiological and psychological measurements section). After the 45-

min cognitive task, subjects performed 45 min of moderate intensity cycling exercise at a fixed workload 

immediately followed by a self-paced time trial (TT; see Endurance task section). Heart rate (HR) and 

thermoregulatory measures were followed up at 5-min intervals throughout the entire protocol and RPE at 5-min 

intervals during the endurance task (see Physiological and psychological measurements section). Cognitive 

performance was tested before and after the 45-min cognitive task using a Flanker task (see Cognitive tasks 

section). Brain activity was measured during the 45-min cognitive task (see EEG recordings section). Self-reported 

mental fatigue was assessed with a visual analogue scale (M-VAS) before and after the Flanker tasks, during the 

45-min cognitive task and during the endurance task (see Physiological and psychological measurements section). 

Subjective workload was assessed after the 45-min cognitive task and after the endurance task (see Physiological 

and psychological measurements section). Blood glucose levels and salivary concentration of cortisol were 

assessed before and after the Flanker tasks and salivary cortisol concentrations were measured again after the 

endurance task (see Physiological and psychological measurements section). An overview of the experimental 

protocol performed during the intervention and the control trial is presented in Fig. 1. 
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Fig. 1 Overview of the protocol depicted on a timeline (min). 

 

The subjects were given instructions to sleep for at least 7 hours, refrain from the consumption of caffeine alcohol 

and not to practice vigorous physical activity 24 hours before each visit. In addition subjects were asked to have 

the same meal the night before and the morning of each trial and the use of any kind of medicinal products during 

and between the trials was prohibited. If subjects could not meet these standards they were excluded from the 

study. To facilitate the contact between the EEG-electrodes and the subjects’ head, they were also asked to wash 

their hair (with neutral soap) the evening before the experiment.  

To ensure high motivation during the Stroop task and the TTs, a reward was given to the best mean performance 

in the Stroop task (€50) and in the TTs (€50).  

3.1.3.3 Cognitive tasks  

The 45-min tasks used as experimental manipulation in the present study are similar to those used by Smith et al. 

[23]. A 50%-incongruent Stroop task and a documentary were used respectively for the mentally fatiguing task 

and the control task [23]. A brief description of these cognitive tasks can be found below. 

Stroop task 

The Stroop task requires response inhibition which is a form of inhibitory control. In this task, coloured words 

(“red”, “blue”, “green” and “yellow”) were presented one at a time on a computer screen and participants were 

required to indicate the colour of the word, ignoring the meaning of the word itself. The trials were arranged in 

pseudo-random sequence with 50% of trials being congruent (matched word and colour), while 50% were 

incongruent, with all incongruent word-colour combinations being equally common. Participants were required to 

press the button on the keyboard that corresponded to the colour of the word displayed on screen. Each word was 

presented on screen in font size 34 for 1000 ms followed by a blank screen for 1500 ms before the next word was 

displayed. Therefore a new word was presented every 2500 ms providing a total of 1080 stimuli over the 45-min 
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task. Each 15 min there was a 30-s break in the task to assess M-VAS and Tsens. Subjects were instructed to respond 

as quickly and accurately as possible and were aware that points would be awarded on both performance measures 

for the €50-prize. 

Control task 

The control task involved watching a 45-min documentary on the same computer screen as the one used for the 

Stroop task. The documentary used in this study was “When We Left Earth: The NASA Missions – Episode 6: A 

Home in Space” (Discovery Channel, USA). The content of this documentary has shown in a previous study [23] 

to be engaging, yet capable of maintaining a neutral mood and not to induce mental fatigue. In order to prevent 

sound-artefacts occurring in the EEG recordings (see EEG recordings), subjects watched the documentary without 

sound. Every 15 min, subjects refrained 30 s from watching the documentary while M-VAS and Tsens were 

assessed. 

Flanker task 

To assess the influence of the 45-min tasks on cognitive performance independently from time-on-task a modified 

Flanker task, identical to the one used by Weng et al. [24], was used. This task was chosen because, similar to the 

Stroop task, it requires inhibitory control [24]. The congruency of the flanking items to the target arrows was 

manipulated in the modified Flanker task, resulting in three conditions: congruent (e.g. > > > > >), incongruent 

(e.g. < < > < <) and neutral (e.g. - - > - - ). Each array of arrows was focally presented in white text (font size 34) 

for 200ms on a black background with a variable inter-stimulus interval of 1000, 1200, 1400, or 1600 ms. For each 

of the task conditions, 40 trials were presented randomly with right and left target arrows occurring with equal 

probability, yielding a total of 120 trials. Total Flanker task duration was approximately 5 min. To assess 

performance on the Flanker task accuracy and RT were collected and participants were instructed to respond as 

quickly and accurately as possible to the direction of a target arrow while ignoring two flankers on each side. 

3.1.3.4 Endurance task 

Subjects had to perform 45-min cycling at 60% Wmax, immediately followed by a TT that requires the subjects to 

complete a predetermined amount of work equal to 15 min at 80% Wmax as quickly as possible. Throughout the 

endurance task subjects were not verbally encouraged by the experimenter to ensure no bias occurred in motivating 

subjects. Subjects performed the task on an electromagnetically braked cycle ergometer (Excalibur Sport, Lode, 

Groningen, The Netherlands) and had ad libitum access to plain non pre-cooled water. 

45-min fixed workload part 

During the 45-min fixed workload part, the cycle ergometer was set in the hyperbolic mode so that the workload 

(60% Wmax) was independent of pedalling rate (RPM). Cadence was freely chosen between 60 and 120 RPM. 

Feedback on elapsed time, RPM, power output and HR was not available to the subject.  

Self-paced time trial part 

One to two min (to program the TT-protocol) after the 45-min fixed workload part of the endurance task, the self-

paced TT began. Similar to the initial part, the cycle ergometer was set in hyperbolic mode. As stated above, the 

TT required the subjects to complete a predetermined amount of work equal to 15 min at 80% Wmax as quickly as 
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possible. Subjects began the TT at a workload corresponding to 80% Wmax, but were free to in- or decrease their 

power output as desired from the outset. If subjects indicated (orally) they wanted to in- or decrease their power 

output, the experimenter respectively increased or decreased the workload by a standardized amount of 5 W. Again 

cadence was freely chosen between 60 and 120 RPM and subjects only received feedback regarding RPM if they 

dropped below or above the given interval. Furthermore no feedback was provided regarding power output or HR. 

However they did get feedback regarding the amount of work produced in relation to their goal (equal work to 15 

min at 80% Wmax). Therefore a graph was displayed where the amount of work was depicted on the y-axis and on 

the x-axis the amount of time elapsed. Subjects were instructed to produce the predetermined amount of work as 

quickly as possible and were aware that mean performance on the TT was scored for the €50-prize.  

3.1.3.5 Physiological and psychological measurements 

Heart rate 

Heart rate was recorded continuously (followed up at 5-min intervals) throughout the entire protocol using a HR 

monitor (Polar RS400, Polar Electro Oy, Kempele, Finland). 

Hydration status and body mass  

A urine sample was taken and analysed for specific gravity (pocket refractometer; Atago, Japan) preceding the 

start of the protocol and at the end of the protocol. If a hydration status higher than 1.020 was observed, subjects 

were instructed to drink ~20cl of water to prevent them from starting the protocol in a too dehydrated state. Body 

mass was also measured before and after the protocol to observe weight loss or gain. As the subjects had ad libitum 

access to plain water during the protocol the amount of water drunk was also measured to take this into account. 

Thermoregulatory measures 

During the entire protocol, thermoregulatory measurements were recorded every 5 min. To measure Tcore, subjects 

inserted a rectal thermistor 10 cm beyond the anal sphincter (Gram Corporation LT-8A, Saitama, Japan). Skin 

temperature probes (Gram Corporation LT-8A, Saitama, Japan) were attached to four sites (chest, upper arm, thigh 

and calf). Subsequently mean weighted skin temperature (Tskin) was measured according to the method described 

by Ramanathan [25]. Tsens, the subjective feeling of heat, was assessed using a 21-point scale ranging from 

unbearable cold to unbearable heat. 

Blood lactate and glucose 

Capillary blood was collected at the ear lobe for the determination of blood lactate ([Bla]) (determined 

enzymatically; EKF; BIOSEN 5030, Magdeburg, Germany). [Bla] levels were measured before and after the 45-

min task, during the endurance task (at 5-min intervals) and after the endurance task.  

Salivary cortisol 

Saliva was used to test for cortisol responses due to its ease of compliance, low invasiveness, and ability to track 

the biologically active “free” hormone. Saliva (2ml) was collected by passive drool into sterile containers, and 

these were stored at −80 °C until assay. A saliva sample was taken before the 45-min task, after the 45-min task 



Chapter 3: Mental fatigue and the heat-induced decrease in endurance performance                                      Part 1 

65 

 

and after the endurance task. After visual inspection for blood contamination, the saliva samples were analysed in 

duplicate using the “Cortisol II” test of Roche on the Cobas e601 analyser.  

Self-reported mental fatigue 

Self-reported mental fatigue was measured using M VAS before, during (every 15 min) and after the 45-min task, 

during (every 15 min) and after the endurance task. Participants were asked to indicate their perceived level of 

mental fatigue (from not at all to completely exhausted) by placing a mark on a 10-cm line. 

Perception of effort 

During the endurance task, perception of effort was measured at the beginning and each five minutes thereafter 

using the 15-points RPE scale [22] anchored during the incremental exercise test. 

Subjective workload  

The National Aeronautics and Space Administration Task Load Index (NASA-TLX [26]) was used to assess 

subjective workload. Participants completed the NASA-TLX after the 45-min task and after the endurance task in 

accordance with a study of Pageaux et al. [15]. 

3.1.3.6 Electroencephalographic recordings and analysis  

During the 45-min task preceding the endurance task, brain activity was continuously measured. 32 active 

Ag/AgCl electrodes were attached on the subjects’ head (Acticap, Brain Products, Munich, Germany), according 

to the “10–20 International System” . The sampling rate was set at 500 Hz (Brain Vision Recorder, Brain Products, 

Munich, Germany). Electrode impedance was kept <10 kΩ throughout the recording. Baseline measurements were 

taken 2 min with eyes open, 2 min with eyes closed and subjects were seated in a dim lit room. During EEG 

recordings, subjects were seated, inserted earplugs and had been instructed to minimize movement of the head and 

eye blinking, to avoid frowning, to maintain the same posture and not to touch their head with their hands in order 

to minimize movement, sound and muscle artefacts. 

ERP analysis The program Brain Vision Analyzer (version 2.1) was used to pre-process and process the data sets. 

Raw data were down-sampled to 256 Hz, filtered (high pass 1 Hz, low pass 45 Hz and Notch, Slope 48 dB/oct) 

with a Butterworth filter design and re-referenced to an average reference. For each data set of interest (i.e. ERP 

during the first, middle and last 15 min of the Stroop task) artefacts were semi-automatically removed. Then the 

different stimuli (congruent=S3; incongruent S5) were extracted from the EEG data sets. For stimulus locked ERP 

analysis, a data window was set at -200 to 800 ms relative to stimulus onset. Trials in which performance errors 

occurred were excluded. For each ERP epoch, independent component analysis (ICA) and inverse ICA further 

reduced artefacts. Furthermore, a baseline correction was applied (period -200 to 0 ms). Epochs were then averaged 

and the visually evoked potentials, P2, N2, P3b were assessed. Peak amplitudes and onset latencies were measured 

for the P2, N2 [inferior/orbitofrontal cortex (F7), broca’s area (mean of electrodes FC6 and F8), dorsolateral 

prefrontal cortex (mean of electrodes F3, Fz and F4), anterior prefrontal cortex (mean of electrodes FP1 and FP2), 

premotor cortex (mean of electrodes FC1 and FC2)] and P3b [somatosensory association cortex (SAC; Pz), angular 

gyrus (AG; mean of electrodes P3 and P4), fusiform gyrus (FFG; mean of electrodes P7, P8, PO9 and PO10)] 

components in their specific region of interest (ROI). The P2 is known to be frontally distributed [27] and was 
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therefore analysed in the frontal ROI, it has been related to attentive stimulus evaluation or the recall of task rules 

[28]. The P2 was defined as the largest positive-going peak occurring within the time window between 150 and 

250 ms. The N2 is usually interpreted as an index of conflict monitoring [29] and emerges fronto-centrally after 

the P2 [27], thus also for the N2 the frontal ROI were analysed. The N2 was defined as the largest negative-going 

peak occurring within the time window between 250 and 400 ms. The P3b is linked to salience processing and 

appears to occur when subsequent attentional resource activations promote memory operations in temporal-parietal 

areas [30], therefore the FFG, the AG and the SAC were analysed to observe any effects on the P3b. The P3b was 

defined as the largest positive-going peak occurring within the time window between 200 and 450 ms. Thereafter, 

the data from Brain Vision Analyzer was exported to SPSS (version 22.0; SPSS, Chicago, IL) for further analysis. 

Spectral/power analysis Similar to the ERP analysis, the program Brain Vision Analyzer (version 2.1) was used 

to pre-process and process the data sets for the analysis of the total power. Raw data were down-sampled to 256 

Hz, filtered (high pass 1 Hz, low pass 45 Hz and Notch, Slope 48 dB/oct) with a Butterworth filter design and re-

referenced to an average reference. For each data set of interest [i.e. Continuous EEG measurements during both 

45-min tasks (first, middle and last 5 min)] artefacts were semi-automatically removed. For each continuous EEG 

data set of interest segments with a length of 4 s and with an overlap of 2 s were extracted [6]. Subsequently ICA 

and inverse ICA further reduced artefacts. The resulting data segments were tapered with a Hanning window with 

10% of the total segment length. FFT power spectra with a spectral resolution of 0.25 Hz were calculated for both 

sides of the spectrum, resulting in FFT segments containing the full spectral information. The resulting FFT 

segments were averaged to stabilize the spectral content. The power in the FFT was extracted for theta (θ, 3.5–7.5 

Hz), alpha (α1, 7.5–10 Hz; α2, 10–12.5 Hz) and beta (β1, 12.5–18 Hz; β2, 18–35 Hz) in each ROI mentioned in 

the ERP analysis with the addition of the primary motor cortex (mean of electrodes C3, Cz and C4). 

3.1.3.7 Statistical analysis 

All data are presented as means ± standard deviation (SD) unless stated otherwise. The one-sample Kolmogorov-

Smirnov test was used to test the normality of the data, sphericity was verified by the Mauchly's test. When the 

assumption of sphericity was not met, the significance of F-ratios were adjusted with the Greenhouse-Geisser 

procedure. Paired t-tests were used to assess the effect of condition (intervention vs. control) on mean HR during 

both 45-min tasks, and on NASA-TLX scores after the 45-min task, and after the endurance task. The effects of 

condition and time on salivary cortisol were analysed with two-way repeated measure (2 x 3) ANOVAs. Two-way 

repeated measure (3 x 2) ANOVAs were used to test the effect of time (first, middle and last 15 min) and stimuli 

(congruent and incongruent) on response accuracy and RT during the Stroop task. Two-way repeated measure (2 

x 4) ANOVAs were used to test the effects of condition and time on M-VAS during the 45-min task and during 

the fixed workload part of the endurance task, during the self-paced part a paired t-test was employed to test the 

effect of condition. For the EEG-data (θ, α1, α2, β1, β2) three-way repeated measure (2 x 3 x 9) ANOVAs were 

employed with condition, time and ROI as factors. The different ERP-components (P2, N2 and P3b) were also 

analysed with a three-way repeated measure ANOVA with factors time, stimulus-type and ROI. Three-way 

repeated measure (2 x 2 x 3) ANOVAs were used to test the effects of condition, time and stimuli on mean accuracy 

and RT during each Flanker task. Two-way repeated measure ANOVAs were used to test the effects of condition 

and time on HR, Tcore, Tskin, RPE, Tsens and [Bla] during the fixed workload (2 x 10) and the self-paced part (2 x 3; 

time: 5 min, 10 min and end-point) of the endurance task. If significant interaction effects in the three-way or two-
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way repeated measure ANOVAs were observed, respectively two-way repeated measure ANOVAs or paired t-

tests were performed in order to interpret the effect of condition (intervention vs. control) in each time interval. If 

no significant interaction effects were observed in the three-way or two-way repeated measure ANOVAs, main 

effects were immediately observed and further interpreted through pairwise comparisons with Bonferroni 

correction. Significance was set at 0.05 for all analyses, which were conducted using the Statistical Package for 

the Social Sciences, version 22 (SPSS Inc., Chicago, IL, USA). 

3.1.4 Results 

3.1.4.1 Markers of mental fatigue  

Various physiological, subjective and behavioural markers 

Mean HR did not differ during the Stroop task (69 ± 8 beats/min) compared to the control task (67 ± 6 beats/min). 

The data of the NASA-TLX were not normally distributed and therefore Wilcoxon Signed Ranks Tests were 

employed. This revealed that 5 out of 6 subscales were perceived as higher/more demanding after the Stroop task 

compared to the control task. Mental demand (p=0.005), temporal demand (p=0.007), performance (p=0.05), effort 

(p=0.005) and frustration (p=0.008) were perceived as higher, or worse in the case of performance, in the Stroop 

task. This subjective higher perceived demand of the Stroop task is confirmed by the cortisol data. Cortisol values 

were normalized to the value of the saliva sample taken at the beginning of each trial (=100%). An interaction 

between the condition- and the time-effect was displayed for the normalized cortisol data (F(2, 14)=7.5; p=0.006). 

Significantly higher cortisol levels were found after the Stroop task compared to after the control task (p=0.033; 

Fig. 2). Subjectively a higher self-reported mental fatigue was observed after 30 (p=0.006) and 45 min (p=0.002) 

in the Stroop task compared to in the control task. The accuracy and RT during the Stroop were normalized to the 

performance in the first 15 min of the task (=100%), however no decrements were observed (for absolute values, 

see Table 1). 

 

Table 1. RT and accuracy during pre Flanker, first, middle and last 15 min of Stroop and post Flanker, independent of stimulus-type 

 INT CON INT CON 

Block RT ± SD (ms) RT ± SD (ms) Accuracy ± SD Accuracy ± SD 

Pre Flanker 

Stroop: First 15 min 

Stroop: Middle 15 min 

Stroop: Last 15 min 

Post Flanker 

413 ± 13 

633 ± 20 

632 ± 21 

625 ± 20 

399 ± 9 

398 ± 10 

////////// 

////////// 

////////// 

379 ± 8 

0.97 ± 0.1 

0.85 ± 0.3 

0.85 ± 0.4 

0.82 ± 0.4 

0.96 ± 0.1 

0.97 ± 0.1 

////////// 

////////// 

////////// 

0.96 ± 0.1 
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Fig. 2 Saliva cortisol levels before (pre-CT; pre 45-min task), after the cognitive task (post-CT; post 45-min task) 

and after the physical task (post-PT; post endurance task) in the intervention (INT) and control (CON). ^ denotes 

a significant difference compared to the previous time-point (p<0.05), * denotes a significant difference between 

conditions (p<0.05). Data are presented as means ± SE. 

 

Spectral power analysis 

The spectral power data of the first, middle and last 15 min of the Stroop task were normalized to the eyes open-

condition before the beginning of the Stroop task (=0%) for each specific frequency band (θ, α1, α2, β1, β2). θ. 

No interactions were observed for θ-activity, it increased significantly in time (F(3, 27)=10.3; p<0.001) and was 

significantly higher (F(1, 9)=5.2; p=0.048) in the Stroop task (28 ± 5%) compared to in the control task (14 ± 5%). 

α1. The lower alpha band showed a significant main effect of time (F(3, 27)=4.1; p=0.017) and an interaction 

effect of condition with ROI (F(8, 72)=2.3; p=0.030). In the APFC a subsequent interaction of condition with time 

was observed (F(3, 27)=5.2; p=0.006). The follow-up paired t-tests showed that only in the middle and last 5 min 

α1-activity was higher in the Stroop task compared to the control task (p≤0.006; Fig. 3). In the other eight ROI no 

interaction of condition with time or main effect of condition was observed. α2. For the upper alpha band a 

significant interaction effect of condition with time was observed (F(3, 27)=4.6; p=0.010). A subsequent two-way 

repeated measure ANOVA (Cond x ROI) in each time interval revealed that in the middle and last 5 min of the 

cognitive task α2-activity was significantly higher in the Stroop task compared to the control task (F(1, 9)≥5.9; 

p≤0.037) independently from ROI. β1. The lower beta band-activity showed a significant increase in time (F(3, 

27)=8.0; p=0.001), however no effect of condition or ROI was observed. β2. Similar for the upper beta band-

activity only a significant increase in time was observed (F(3, 27)=5.7; p=0.004), condition or ROI again had no 

effect.  
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Fig. 3 α1 power spectral density during EO, first, middle, and last 5 min of the 45-min task in intervention (INT) 

and control (CON). *Significant difference between conditions (p<0.05). Data are presented as means ± SE. 

 

ERP analysis 

P2. No interaction effects for P2-amplitude or –latency and also no main effect of time or stimulus-type was 

observed. N2. No interaction or main effects were found for the N2-amplitude or -latency. P3b. The three-way 

ANOVA showed that the ROI- and time-effect on P3b-amplitude interacted with each other (F(1.9, 17.3)=3.9; 

p=0.041). To further unravel the time-effect, a two-way ANOVA (time x stimulus-type) was employed in each 

ROI. This revealed that amplitude only decreased over time in FFG (F(2, 18)=4.4; p=0.027; Fig. 4) from 3.9 ± 0.7 

µV in the first 15 min to 3.2 ± 0.6 µV in the middle 15 min and 2.9 ± 0.5 µV in the last 15 min. In case of the P3b-

latency no interactions between the different factors were found, a main effect of time was however present (F(2, 

18)=8.1; p=0.003). There was an increase (p=0.002) in latency from the first (311.2 ± 10.9 ms) to the middle 15 

min (327.8 ± 11.1 ms), where after it plateaued and even slightly decreased from the middle to the last 15 min 

(321.2 ± 12.8 ms).   
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Fig. 4 Grand average ERP at P8 elicited by all (congruent and incongruent) stimuli in the first 15 min, middle 15 

min, and last 15 min during the Stroop task in intervention. ◊Significant main effect of time (P<0.05). 

 

 

Flanker task 

An interaction of condition with time was observed for M-VAS before and after each flanker task (F(1.8, 

16.3)=13.4; p<0.001). In the intervention M-VAS was higher during the post-Flanker task (pre-Flanker: p=0.002; 

post-Flanker: p=0.001). This higher self-reported mental fatigue was however not associated with a deteriorated 

cognitive performance. The data for RT and accuracy were normalized to the baseline (i.e. the performance on the 

first Flanker task (=100%)) to account for day to day variability (for absolute values, see Table 1). In terms of RT, 

a main effect of time was observed (F(1, 9)=13.4; p=0.005). Subjects performed faster in the second (96 ± 1%) 

compared to the first Flanker task (100%) independent of stimulus-type or condition. For the accuracy-data to be 

normally distributed, the factor ‘stimuli-type’ was not accounted for and the mean of the three stimuli-types was 

used, subsequently the effect of condition and time was observed in a two-way ANOVA. Accuracy was found to 

decline in time (F(1, 9)=24.5; p=0.001) independently from condition. It dropped from the first (100%) to the 

second Flanker task (98.9 ± 0.2%; p=0.001). No interaction or main effect of condition was observed. 
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3.1.4.2 Physiological and psychological responses during the fixed workload part of the endurance task 

Physiological responses 

HR was not significantly altered in both conditions during the fixed workload part, in the intervention trial mean 

HR was 152 ± 2 bpm and in the control trial this was 152 ± 3 bpm. Non-parametric tests showed that there were 

no differences in [Bla] between conditions in any time interval throughout the fixed workload part. In both 

conditions [Bla] increased in the first 5 min (Z≥-2.5, p≤0.013) and reached a plateau afterwards (intervention: 2.0 

± 1.0 mmol/L, control: 2.1 ± 0.8 mmol/L). Tcore (F(1.8, 14.6)=430.6; p<0.001) and Tskin (F(2.4, 21.4)=86.6; 

p<0.001) rose throughout the fixed workload cycling part until 38.6 ± 0.3 °C and 36.3 ± 0.4 °C respectively. There 

was however no difference in Tcore and Tskin between both conditions. Tcore data of only 9 subjects were used in 

this analysis. 

Perceptual responses 

An interaction between condition and time was observed for M-VAS during the fixed part of the cycling task (F(3, 

27)=12.3; p<0.001; Fig. 5). Self-reported mental fatigue was higher at the start and after 15 min in the fixed 

workload part of the cycling task in the intervention compared to control (p≤0.012; Fig. 5). RPE and T sens data 

were not normally distributed, Wilcoxon tests pointed out that RPE (Fig. 6) and Tsens did not differ significantly in 

any time interval between both conditions.  

 

Fig. 5 Self-reported mental fatigue during the fixed workload part of the endurance task, at the begin (P0), after 

15 min (P15), after 30 min (P30), and at the end (P45). ^Significant difference compared with the previous time 

point (P<0.05). *Significant difference between conditions (P<0.05). Data are presented as means ± SE. 
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Fig. 6 Rating of perceived exertion during the endurance task in both conditions. At the begin (P0) of the fixed 

workload part, and at 5-min intervals throughout the fixed workload part and the time trial (TT) part. Data are 

presented as means ± SE. 

 

3.1.4.3 Performance, and physiological and psychological responses during the self-paced time trial part of the 

endurance task 

Endurance performance 

The TT was completed in 906 ± 30 s in intervention and in 916 ± 29 s in control. These performances did not differ 

significantly from each other. The selected power output was, as the TT-time already indicated, similar in both 

conditions and decreased in time (F(2.0, 17.6)=4.3; p=0.030) independently from condition. 

Physiological responses 

HR (F(1.2, 10.8)=46.8; p<0.001), [Bla] (F(2, 18)=24.1; p<0.001) and Tcore (F(1.1, 8.9)=239.4; p<0.001) increased 

significantly during the TT. At the end of the TT participants reached a mean HR of 186 ± 3 bpm, mean [Bla] of 

7.1 ± 0.9 mmol/L and a mean Tcore of 39.1 ± 0.1 °C. No interaction or main effect of condition was observed. 

Similarly, also for cortisol no effect of condition was observed before and after the endurance task.  

Perceptual responses 

M-VAS increased both in intervention (p=0.045) and in control (p=0.011) and neither at the start or at the end of 

the TT a significant difference in M-VAS between conditions was observed. The data of the NASA-TLX was not 

normally distributed, none of the subscales in relation to the endurance task were perceived differently between 

conditions. The RPE data had also to be tested non-parametrically, RPE increased significantly in both conditions 

during the TT (Chi²≥14.1; p≤0.001) and eventually reached a mean value of 19 ± 1 over all trials. No effect of 
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condition was observed. Tsens increased significantly during the TT (F(2, 18)=23.1; p<0.001) up to 8.4 ± 0.4, no 

interaction or condition effect was however observed. 

3.1.5 Discussion 

This is the first study that looked at the effect of mental fatigue on endurance performance and cognitive 

performance in the heat (30°C) in performance level 3 [21] trained athletes.  

Markers of mental fatigue 

The importance of monitoring subjective, behavioural, and physiological markers of mental fatigue and the 

interactions between all three manifestation areas to conclude whether mental fatigue was induced or not has been 

highlighted in the review of Van Cutsem et al. [1]. In the present study we strived towards such a quantification 

of mental fatigue. Subjectively participants rated the Stroop task as more mentally demanding on the NASA-TLX. 

Physiologically, salivary cortisol levels were higher post-Stroop compared to post-control task, indicating that the 

Stroop task was more stressful than the documentary. The higher mental demand and stress during the Stroop task 

eventually resulted in the occurrence of mild mental fatigue. This was indicated subjectively by the higher M-VAS 

score and was further substantiated physiologically by the neurophysiological indices. Higher θ- and α2-activity 

was observed in the intervention compared to control throughout all the ROI in the middle and the last 5 min. α1-

activity was specifically higher in the APFC during the middle and the last 5 min in intervention compared to 

control. A recent study of Wascher et al. [6], in which participants had to perform a spatial stimulus-response-

compatibility task for an overall duration of 4 h, reported mental fatigue is specifically associated with an increase 

in frontal theta- (θ) and frontal and occipital alpha- (α) activity. These specific changes in brain-activity indicate a 

reduced level of arousal and subsequent attention deficits [18]. Also the ERP measures indicated mental fatigue 

was successfully induced. The P300 is a component of an ERP that appears around 300 ms after the onset of a 

stimulus and its amplitude is suggested to serve as an electrophysiological marker of attentional resource 

allocation, while its latency reflects the speed of stimulus evaluation [24]. Within the P300 a distinction can be 

made between the P3a that is linked to novelty detection and appears when non-target distractor stimuli are 

processed and the P3b that appears to occur when subsequent attentional resource activations promote memory 

operations in temporal-parietal areas [30]. In the FFG, a brain area known for object recognition and reading [31], 

the P3b-amplitude decreased in time, while the P3b-latency increased in time during the Stroop task in the present 

study. Käthner et al. [17] and Hopstaken et al. [7] both studied the P3b on the Pz-electrode (=an electrode in the 

parietal region ) during a mentally fatiguing task and also found a decrease in P3b amplitude with increasing self-

reported mental fatigue and time-on-task. Polich suggested [30] that the P3b is related to temporal–parietal activity, 

an area where dense norepinephrine inputs are found [30]. In addition he also associated P3b-amplitude with 

dopaminergic activity [32]. The associations Polich [30, 32] makes indicate that the altered P3b-amplitude and -

latency observed in the present study suggest that altered neurotransmission (i.e. decreased norepinephrine- and 

dopamine-activity) has a role in the state of mental fatigue. Only behavioural measures did not substantiate that a 

state of mental fatigue was successfully induced. Contrary to other studies in the field [2, 5], no effect of time was 

observed in terms of accuracy or RT during the Stroop task. Despite not observing the typical decrease in accuracy 

and RT associated with mental fatigue, there are arguments to state mild mental fatigue was successfully induced 

and to expect a decrease in subsequent endurance performance similar to previous studies [2, 4, 5, 20]. Studies of 

Macmahon et al. [4] and Pageaux et al. [20] also did not observe a decrease in accuracy nor an increase in RT with 



Chapter 3: Mental fatigue and the heat-induced decrease in endurance performance                                      Part 1 

74 

 

prolonged performance on the mentally fatiguing task and still detected significant reductions in a subsequent 

endurance task due to mental fatigue.  

The Flanker task was included in the study, as proposed in the review of Van Cutsem et al. [1], to be able to 

quantify cognitive performance independently from time-on-task effects during the Stroop task. In terms of 

performance on the Flanker task our data only partly confirmed this hypotheses. Accuracy during the Flanker task 

indeed decreased pre to post the Stroop task, but this was also the case pre to post the control task. The RT-data 

even contrasted our hypotheses. Instead of increasing, RT during the Flanker task decreased pre to post both 45-

min tasks. A trade-off effect between RT and accuracy could possibly explain these results. Meaning that 

participants adapted their strategy within a trial and performed faster in the post-Flanker task while sacrificing 

accuracy. Besides a trade-off effect, switching between tasks could also have had a motivational effect that 

possibly masked a negative effect of mental fatigue on the Flanker task [33]. Another explanation could be that 

participants, despite a 30-min adaptation period to the environmental conditions, did not reach a steady baseline 

level when performing the pre-Flanker task. Subsequently the faster RT in the post-Flanker task can be explained 

as an adaptation-effect to the heat stress. This adaptation could also clarify why no higher RT during the Flanker 

task was observed with after the 45-min Stroop task. However this is rather speculative and because of the fact no 

effect of condition was found in RT or accuracy during the Flanker task, it was concluded to define the mental 

fatigue induced in this study as ‘mild’. 

Effects of mild mental fatigue on endurance performance in the heat 

The endurance task consisted of two parts, a fixed workload part and a subsequent TT. During the fixed workload 

part, the effects of mild mental fatigue on physiological and perceptual measures could be more accurately 

assessed, while during the subsequent TT the effect of mild mental fatigue on endurance performance was 

evaluated. In order to monitor the state of mental fatigue during the fixed workload part of the endurance task, M-

VAS was taken each 15 min. According to this measure, mental fatigue was higher during the intervention trial 

compared to control only in the first 15 min of the endurance task, and decreased thereafter. Contrary to our 

hypotheses the perceptual measures (i.e. perception of effort and Tsens) were not affected by this state of mild 

mental fatigue. The physiological data did confirm our hypotheses. HR and [Bla] were unaffected by the mild 

mental fatigue, confirming the findings of previous studies [2, 4, 5]. Moreover thermoregulatory measures, Tcore 

and Tskin, during exercise in the heat were also unaffected by mild mental fatigue. This adds to the mounting 

evidence that mild mental fatigue indeed does not influence the traditional physiological responses thought to limit 

endurance performance. In the subsequent TT, pacing and performance time were the main variables of interest. 

Contrarily to our hypotheses, both performance time and pacing during the TT were unaffected by mild mental 

fatigue. Likewise the physiological and perceptual responses during the TT were unaffected. Multiple explanations 

for these diverging results compared to previous research [2-5, 20] are possible. First, performing the Stroop task 

for 45 min might have been insufficient to induce mental fatigue in an already stressful environment (i.e. in the 

heat). However multiple findings are presented (see markers of mental fatigue) in this study to support that mild 

mental fatigue was present, and to a similar extent, compared to previous studies [2, 4, 20]. A mentally demanding 

cognitive task as short as 30 min has been shown to negatively affect subsequent endurance performance [20]. The 

mentally fatiguing task in the present study was longer compared to the study of Pageaux et al. [20]. Second, the 

fixed workload part of 45 min could have counteracted the negative effect of mild mental fatigue on performance 
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(i.e. exercise has a restorative effect). Potentially the mild mental fatigue induced in the present study could affect 

endurance performance in longer duration or open-loop tests. Another possibility could be that, as suggested by 

the study of Martin et al. [34], endurance trained athletes are more resistant to the negative effects of mild mental 

fatigue on subsequent endurance performance. The population tested in the present study was slightly better trained 

[i.e. performance level 3 according to De Pauw et al. [21]] compared to the populations (i.e. performance level 2) 

used in other studies that did find a negative effect of mental fatigue on endurance performance [2, 20]. Therefore 

the better training status of our participants may explain, in part, the lack of an effect of mild mental fatigue on 

endurance performance [34]. A last and possibly the most reasonable explanation is that mild mental fatigue does 

not further reduce endurance performance when the brain is already stressed by a hot environment. Consequently 

we speculate that a floor effect was observed in the present study. Meaning that if one stresses the brain (e.g. heat 

stress, mental fatigue, …) endurance performance will decrease, at some point however further stressing the brain 

(e.g. combining heat stress and mental fatigue) will not result in a further reduction of performance and a floor 

effect is observed. This emphasizes the importance of the brain in endurance performance and might indicate that 

it is irrelevant which stressor (heat and the increased physiological strain or mental fatigue) leads towards a higher 

perception of effort; relevant is whether or not the stressor increases perception of effort (see the psychobiological 

model [35, 36]). The higher perception of effort experienced during endurance exercise in a hot environment or 

when mentally fatigued may share a common psychobiological mechanisms: negative valence. Exercising in the 

heat is associated with thermal discomfort whilst mental fatigue is known to induce a more negative mood. The 

valence of emotional stimuli have been shown to affect perception of effort [37] and the activity of the cingulate 

cortex [38], prefrontal and premotor cortical areas [39] related to perception of effort [40, 41]. So it is plausible 

that a similar psychobiological mechanism may explain the effects of heat stress and mental fatigue on perception 

of effort and why the effects of the two stressors do not summate. In other words, in conditions of thermal 

discomfort, the negative effects of mild mental fatigue on mood may not lead to further increase in negative valence 

and perception of effort. EEG data support this hypothesis; Nybo & Nielsen [14] observed that perception of effort 

during prolonged exercise in hot environments is associated with changes in cerebral electrical activity rather than 

changes in the electromyogram of the exercising muscles. They reported a higher α/β-activity ratio in the heat, 

mainly due to a ~50% lower β-activity in the heat [14]. Mental fatigue has been repeatedly associated with elevated 

frontal θ and frontal, central and parietal α-power [6, 42], an association that also is supported by the results in the 

present study. Consequently mental fatigue might also increase perception of effort via the same mechanism 

proposed by Nybo & Nielsen [14], raising α/β-activity ratio during an endurance task. This makes a floor effect 

neurobiologically plausible. 

3.1.6 Conclusion 

The subjective workload scale and the higher salivary cortisol levels after the Stroop task substantiated 

perceptually and biologically that the Stroop task was more mentally demanding and stressful than the control 

task. The demanding nature of the Stroop task eventually caused increases in θ-, α1-, α2-activity and P3b-latency 

and a decrease in P3b-amplitude. These results and the higher M-VAS support that at least a ‘mild form’ of mental 

fatigue was induced. The mild mental fatigue did however not influence participants’ psychological or 

physiological responses during the endurance task, nor their performance. Possible explanations are: 1) the mild 

form of mental fatigue was insufficient to alter performance on a subsequent endurance task or 2) endurance trained 

athletes are resistant to the negative effects of mild mental fatigue on subsequent endurance performance or 3) 
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mild mental fatigue does not reduce endurance performance when the brain is already stressed by a relatively hot 

environment (30 °C).  
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3.2.1 Abstract 

Purpose: The aim of this study was to test the hypothesis that subjective thermal strain can reduce endurance 

performance independently from the general physiological strain normally associated with impaired endurance 

performance in the heat. Methods: In 20°C and 44% relative humidity, 12 endurance-trained athletes (1♀ 11♂; 

mean ± SD; age:27 ± 6 y; VO2max:61 ± 6 ml/kg/min) performed a time to exhaustion (TTE) test in two different 

experimental conditions: with an electric heat pad applied to the subjects’ upper back (HP) and control (CON: 

without heat pad). In both conditions, subjects cycled to volitional exhaustion at 70% of their VO2max. 

Cardiorespiratory, metabolic, thermoregulatory and perceptual responses were measured throughout the TTE test 

and compared at 0%, 50% and 100% isotime and at exhaustion. Results: TTE was reduced by 9% in HP (2092 ± 

305s) compared to CON (2292 ± 344s; p=0.023). The main effect of condition on thermal discomfort at isotime 

(p=0.002), the effect of condition on thermal sensation at 0%-isotime (p=0.004) and the condition by isotime 

interaction on rating of perceived exertion (p=0.036) indicated higher subjective thermal strain in HP compared to 

CON. None of the measured cardiorespiratory, metabolic and thermoregulatory variables differed significantly 

between conditions. Conclusion: Our novel experimental manipulation (HP) was able to induce significant 

subjective thermal strain and reduce endurance performance in a temperate environment without inducing the 

general physiological strain normally associated with impaired endurance performance in the heat. These results 

suggest that subjective thermal strain is an important and independent mediator of the heat-induced impairment in 

endurance performance. 

 

 

Key words: Time to exhaustion: Local heat; Thermal discomfort; Thermal sensation; Perception of effort 
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3.2.2 Introduction 

Endurance performance during whole-body exercise (e.g. running, cycling, and rowing) is known to be impaired 

in the heat [1-3]. The aetiology of this impairment is multifaceted and physiologically encompasses a higher 

cardiovascular strain, a decrease in maximal aerobic capacity , a higher internal body temperature (Tcore), 

hypohydration, neuromuscular changes within the central nervous system and an altered metabolism in the active 

muscles [4]. A review by Nybo et al. [4] provides a clear overview on the general physiological strain normally 

associated with impaired endurance performance in the heat. 

In addition to physiological strain, performing endurance exercise in the heat is associated with significant 

subjective thermal strain [4]. This strain is indicated by ratings of heat sensation, thermal discomfort and higher 

perceived exertion. It is generally accepted that subjective thermal strain plays a role in the deterioration of 

endurance performance observed in the heat [4-7]. Nonetheless, the exact extent to which it causes this 

deterioration is unknown as it is difficult to dissociate subjective thermal strain from the general physiological 

strain normally associated with impaired endurance performance in the heat (e.g. increased Tcore and decreased 

stroke volume, SV). 

A line of research that provides some insight on the role of subjective thermal strain in the heat-induced impairment 

in endurance performance is the research on the effects of cooling interventions. Research on the effects of cooling 

interventions on endurance performance is available in abundance [6, 8-10]. Cooling vests, collars, 

sprays/gels/solutions are some of the interventions that have been explored and often found to reduce subjective 

thermal strain and improve endurance performance. Most of these studies, however, have not controlled for the 

physiological changes associated with endurance exercise in the heat, as the main aim was often to assess whether 

the intervention improves endurance performance, rather than to dissociate subjective thermal strain from 

physiological strain [8, 9]. For example Kenny et al. [8] observed that wearing an ice cooling vest during walking 

under uncompensable heat stress lowered Tcore and HR responses as well as ratings of heat sensation and 

perceived exertion and that this led to an increased time to exhaustion (TTE). Cuttell et al. [11] also found an 

improved cycling TTE in the heat when wearing an ice cooling vest and attributed this mainly to the improved 

heat sensation, however the ice cooling vest also consistently decreased HR during the TTE test. Nonetheless, 

some of the research on cooling interventions succeeded in dissociating subjective thermal strain from the 

physiological strain that is traditionally associated with the heat-induced impairment in endurance performance. 

Tyler and Sunderland [12] reported a reduced heat sensation by applying a cooling collar during the entire timespan 

of a TTE test in the heat (~32°C) without affecting the physiological strain at any isotime point during the TTE 

test. The result was an improvement in TTE of 13.5% [12]. Flood et al. [13] observed that serial L-menthol mouth 

rinsing extended exercise time in the heat at a fixed RPE (i.e. 16) by 7%, without affecting Tcore, Tskin, body 

mass loss, oxygen uptake (VO2), minute ventilation (VE), HR or thermal discomfort. Serial L-menthol mouth 

rinsing only decreased heat sensation. The results of the studies of Tyler and Sunderland [12] and Flood et al. [13] 

demonstrate that subjective thermal strain may play a role in the heat-induced reduction in endurance performance, 

independently from the heat-induced physiological strain.  

Besides a lack of studies that explicitly attempted to evaluate the independent role of subjective thermal strain in 

the heat-induced reduction in endurance performance, subjective thermal strain has been almost exclusively 

investigated with interventions that reduce it during endurance exercise (i.e. cooling interventions). This is possibly 
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due to the difficulty in increasing subjective thermal strain without increasing the ambient temperature. Only 

Schlader et al. [6] and Lee et al. [14] made an attempt to negatively affect subjective thermal strain during exercise. 

Lee et al. [14] succeeded to increase heat sensation by serially feeding 50°C drinks during a 90-min low-intensity 

cycling task, however, it also increased HR. In addition, they found no difference in performance in the subsequent 

TTE test [14]. Schlader et al. [6] applied capsaicin cream (i.e. a substance that increased heat sensation and thermal 

discomfort  independent of changes in local (skin) temperature, but probably did affect local skin blood flow [15]) 

to the face of the subjects prior to a fixed RPE 16 cycling task in a temperate condition. Schlader et al. [6] did 

however not find any decrease in performance compared to a control condition. It was hypothesized that this could 

be due to capsaicin likely eliciting thermal pain, but not necessarily thermal discomfort [6]. Therefore it was 

suggested that, given the nociceptive nature of capsaicin, Schlader et al. [6] simply were not able to adequately 

test their hypotheses. 

The purpose of the present study was to further test the hypothesis that subjective thermal strain can reduce 

endurance performance independently from the general physiological strain normally associated with impaired 

endurance performance in the heat (e.g. increased Tcore and decreased SV). This hypothesis was tested by 

aggravating heat sensation and thermal discomfort (rather than ameliorating them) by locally applying an electric 

heat pad on the upper back during endurance exercise in a temperate environment. Endurance performance was 

measured using a TTE test on a cycle ergometer at 70% VO2max in a group of endurance-trained subjects. This 

TTE test has been shown to be sensitive to changes in endurance performance due to a warm ambient temperature 

(30°C → 10°C ) with TTE dropping by 36% in a study of Galloway and Maughan [16]. We hypothesized that 

the sensation of heat and the thermal discomfort induced by the heat pad would be associated with a higher 

perception of effort and premature exhaustion despite no negative effects of the heat pad on the cardiorespiratory, 

metabolic and thermoregulatory responses to endurance exercise in a temperate environment. 

3.2.3 Methods 

3.2.3.1 Subjects and ethical approval 

Fourteen trained cyclists or triathletes, of which two participants dropped out (due to sickness and incompatible 

training schedule), volunteered to participate in the present study. Eventually twelve trained cyclists or triathletes 

(1♀ 11♂; mean ± SD; age: 27 ± 6 y, height: 177.0 ± 7.9 cm, body mass: 69.8 ± 9.8 kg, VO2max: 61 ± 6 ml/kg/min, 

peak power output (Wpeak): 399 ± 54 W) were included in this study. None of the subjects had any known mental 

or somatic disorder. Subjects were also non acclimatized to heat (thus also not to the subjective experience of 

performing in the heat). Our subjects can be included in performance level 3 in the classification of subject groups 

in sports science research [17, 18]. Each subject gave written informed consent prior to the study. Experimental 

protocol and procedures were approved by the local ethics committee. All subjects were given written instructions 

describing all procedures related to the study but were naive of its main aims and hypotheses. In other words, 

individuals were unaware that we strove towards creating a higher subjective thermal strain with the heat pad and 

that we expected that this increased subjective thermal strain would impair their endurance performance. 

Participants were informed that the purpose of the study was to investigate the influence of locally applied heat on 

cardiorespiratory, metabolic and thermoregulatory responses during endurance exercise. 
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3.2.3.2 Experimental protocol 

On the first visit to the lab subjects underwent a medical examination by a physician. Subjects were excluded if 

they presented with any medical history, family history or medication or drug use that would prevent them from 

safely completing the experiment. Subjects then completed an incremental exercise test to determine their VO2max 

(MetaLyzer 3B, Cortex Biophysik, Leipzig, Germany). This incremental exercise test was conducted on a cycle 

ergometer (Lode Excalibur Sport, Groningen, the Netherlands) in order to determine VO2max similarly to the 

protocol used by Galloway and Maughan [16]: the test started at 50 W for 1 min, thereafter the resistance was 

increased by 25 W each min until exhaustion [operationally defined as a pedal frequency of less than 60 

revolutions/min (RPM) for more than 5 s despite strong verbal encouragement]. The 40% (24 ± 3 ml/kg/min) and 

70% (43 ± 4 ml/kg/min) VO2max was calculated and the associated wattage [134 ± 22 W; 261 ± 42 W (=65 ± 4 

% of peak power output) respectively] selected. Before the incremental exercise test the position on the cycle 

ergometer was adjusted for each subject, and settings were recorded and reproduced at each subsequent visit. 

Subjects were also given standard instructions for overall rating of perceived exertion (RPE) using the 15-point 

scale (6-20) developed by Borg [19]. In order to acquaint participants with the feelings of exertion that should be 

rated 7, they were asked to cycle unloaded at 50 rpm for 3 min before the start of the incremental exercise test. To 

establish the high anchor point participants were asked to assign a rating of 19 to the conscious sensation of how 

hard, heavy, and strenuous exercise felt at the end of the incremental exercise test. 

The subjects were asked to report to the lab for 3 consecutive testing sessions at the same time of day (i.e. within-

participants trials were performed at the same time of day), which were separated by at least 3 days to ensure full 

recovery. The first testing session was a familiarization session (to get to know the routine, the equipment and to 

avoid learning effects), followed by an intervention session (with heat pad; HP) and a control session (without heat 

pad; CON) in a randomized and quasi counterbalanced (due to 2 drop outs: 7 participants performed first CON, 5 

performed first HP) order (www.randomization.com). All testing sessions were conducted in 20 ± 0.3 °C and in a 

relative air humidity of 44 ± 3.5 %. Preceding the beginning of the TTE test, the subjects’ body mass was measured 

wearing only cycling shorts and a mood and motivation questionnaire (see Psychological measurements section) 

was filled in. After completion of the questionnaires (~3min), the heat pad (see Heat pad section) as well as all 

physiological measurement instruments were applied, and blood glucose was assessed (see Physiological 

measurements section). Subsequently the TTE test was started (see Time to exhaustion test). Physiological and 

perceptual responses were measured throughout the TTE test (at 5-min intervals and at minute 1; see Physiological 

and Psychological measurements section). Immediately after completing the TTE test, all physiological variables 

were measured (see Physiological and Psychological measurements for details) and subjects were asked to fill in 

the same mood-questionnaire as in the beginning of the protocol (see Psychological measurements). All subjects 

were given written instructions to drink 35 ml of water per kilogram of body mass in the 24 h before each visit, 

sleep for at least 7 h, refrain from the consumption of alcohol and avoid any vigorous exercise 24 h before each 

visit. Also the use of caffeine 3 h before each visit was prohibited. Finally, subjects were instructed, depending on 

the hour their session took place, to consume 200 ml of orange juice (Capri-Sun orange, 352 kJ) and a cereal bar 

(Asda, 555 kJ) two hours prior the beginning of the TTE test if their session took place in the morning; if their 

session took place in the afternoon subjects were asked to record their fluid and food intake during the day of the 

familiarization session and to replicate this the following two sessions. At each visit to the lab, subjects were asked 
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to complete a pretest checklist to ascertain that they had complied with the instructions. Participants were also 

asked to declare if they had taken any medication/drug or had any acute illness, injury, or infection. 

Time to exhaustion test 

Despite the tendency nowadays to prefer time trials to measure endurance performance in sports science due to 

lower variability and more ecological validity, a TTE test was chosen in the present study in order to control for 

physiological changes induced by differences in power output (e.g. increased metabolic heat production). 

Moreover, TTE tests have been shown to have an adequate sensitivity to quantify changes in endurance 

performance and the effects of arterial oxygenation and presumably other factors affecting endurance performance 

[20]. The TTE test consisted of a 5-min warm-up (WU) at 40% of VO2max followed by a rectangular workload 

corresponding to the wattage analogue with 70% VO2max. Pedal frequency was freely chosen between 70 and 120 

RPM. Time to exhaustion was measured from the start of the rectangular workload until the pedal frequency 

became less than 70 RPM for more than 20 s. To promote a similar motivation towards the TTE test in each 

condition, a £100-Amazon voucher was offered for the best overall endurance performance (= the best total time 

over both TTE tests: one in HP and in CON). During the TTE test, subjects were not informed regarding time 

lapsed, also no feedback was provided regarding power output, HR or any other cardiovascular, respiratory or 

thermoregulatory measure and no verbal encouragement was given. Subjects were only alerted when they dropped 

below 70 RPM. Once alerted they had 20 s to increase RPM above 70 or the TTE test was terminated. Every 15 

min subjects were required to drink 2 ml/kg of body mass of water kept at room temperature in 1 min (via a straw 

so that the oro-(mouth) mask could stay in position [21]).  

Heat pad 

In both conditions participants wore a specifically designed t-shirt with a pocket for the heat pad, but only in HP 

the 40 x 30 cm electric heat pad (Beurer - heating pad - HK 35; CE-certified) was inserted in the pocket and turned 

on at a heat level 3 equivalent to a pad temperature of  ~40 °C. This intervention was chosen based on pilot data 

suggesting its ability to induce subjective thermal strain without inducing the physiological strain normally 

associated with endurance exercise in the heat (e.g. increased Tcore and decreased SV). The heat pad covered 

zones 13 and 14 (upper medial back and both scapulae) described in the study of Gerrett et al. [22]. This specific 

localization of the heat pad was chosen based on thermal sensitivity to warmth [22]. The participants had time 

(~10 min) to acclimatize to the heat pad applied to their back and to the ambient temperature in the climate chamber 

during the instrumentation of the equipment to measure all physiological variables. 

Physiological measurements 

Blood glucose concentration (mg/dl; ACCU-CHECK Aviva Blood Glucose Meter System, Roche Diagnostics, 

Mannheim, Germany) and body mass were assessed before and after the TTE test. Blood glucose was assessed in 

a 0.6-µl sample of whole blood from the tip of the right index finger. Body mass loss, taking into account the water 

intake during the TTE, was calculated in kg and divided by the TTE test in hours in order to calculate sweat rate.  

Blood lactate concentration ([Bla]), Tcore, Tskin, HR, SV, cardiac output (CO), VO2 and VE were measured 

throughout the TTE test at fixed 5-min intervals and additionally at minute 1 and at exhaustion. [Bla] (mmol/l) 

was assessed in a 5-µl sample of whole blood taken from the right earlobe (determined enzymatically; EKF; 

BIOSEN 5030, Magdeburg, Germany). To monitor Tcore subjects inserted a rectal thermistor 10 cm beyond the 
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anal sphincter (Gram Corporation LT-8A, Saitama, Japan), and skin temperature probes (Gram Corporation LT-

8A, Saitama, Japan) were attached to four sites (chest, upper arm, thigh, and calf) to monitor Tskin. Mean weighted 

skin temperature was measured according to the method described by Ramanathan [23]. A transthoracic 

bioimpedance device (Physioflow PF05L1, Manatec, Petit-Ebersviller, France) was used to measure HR, stroke 

volume (SV) and CO during exercise. Two sets of two electrodes (Ambu Blue Sensor VL, Ambu A/S, Ballerup, 

Denmark), one transmitting and the other one receiving a low amperage alternating electrical current, were applied 

on the supraclavicular fossa at the left base of the neck and along the xiphoid. Another set of two electrodes was 

used to monitor a single ECG lead in the V1/V6 position. All electrode placement areas were shaved if necessary, 

cleaned with an alcohol pad, and dried with a paper towel. All procedures and calculation of SV and CO were 

according to the methods described in the study of  Marcora et al. [24]. These data were averaged over 1-min 

periods before statistical analysis. VO2 (ml/min/kg) and VE (l/min) during exercise were measured breath-by-

breath using a computerized metabolic gas analysis system (MetaLyzer 3B, Cortex Biophysik, Leipzig, Germany) 

connected to an oro-(mouth) mask (7600 series, Hans Rudolph, Kansas City, MO). This automated device was 

calibrated before each test using certified gases of known concentration (11.5% O2 and 5.1% CO2) and a 3.0-liter 

calibration syringe (series 5530, Hans Rudolph). All respiratory gas exchange data were averaged over 1-min 

periods before statistical analysis. 

Psychological measurements 

The Brunel Mood Scale (BRUMS) developed by Terry et al. [25] was used to assess mood before and after the 

TTE test. This questionnaire, which is based on the Profile of Mood States, contains 24 items (e.g. angry, uncertain, 

miserable, tired, nervous, energetic) divided into six respective subscales: anger, confusion, depression, fatigue, 

tension, and vigor. The items were answered on a 5-point Likert scale (0 = not at all, 1 = a little, 2 = moderately, 

3 = quite a bit, 4 = extremely), and each subscale, with four relevant items, can achieve a raw score in the range 

of 0 to 16. The BRUMS has been widely used to measure mood in athletes and changes in mood in response to 

both physical and mental exertion [25, 26]. Motivation related to the TTE test was measured using the success 

motivation and intrinsic motivation scales developed and validated by Matthews et al. [27]. This scale has been 

used previously to measure task-related motivation in exercise studies [24, 28, 29] and it is sensitive to motivational 

changes induced by a monetary reward [30]. Each scale consists of 7 items (e.g. “I want to succeed on the task” 

and “I am concerned about not doing as well as I can”) scored on a 5-point Likert scale (0 = not at all, 1 = a little 

bit, 2 = somewhat, 3 = very much, 4 = extremely). Therefore, total scores for these motivation scales range between 

0 and 28. Ratings of perceived exertion, thermal discomfort (Tdcomf) and thermal sensation (Tsens) were obtained 

from the subject during the final 15 s of the first minute, of each 5 min of exercise and at exhaustion. Perception 

of effort was rated using the Borg RPE scale displayed in front of the subject throughout the TTE test. Participants 

were asked to rate how heavy and strenuous the exercise feels, the RPE scale ranges from 6 (no exertion at all) 

through 13 (somewhat hard) to 20 (maximal exertion). The scales to asses Tdcomf and Tsens were the ones used 

in the study of Filingeri et al. [31]. A 13-point thermal sensation scale (i.e. −6, very cold; −4, cold; −2, slightly 

cool; 0, neutral; +2, slightly warm; +4, hot; +6, very hot) and a 13-point thermal comfort scale (i.e. −6, very 

uncomfortable; −4, uncomfortable; −2, slightly uncomfortable; 0, neutral; +2, slightly comfortable; +4, 

comfortable; +6, very comfortable) were used [31]. No descriptors were applied to intermediate scores (i.e. −5; 

−3; −1; +1; +3; +5). The participants familiarized with the scales during the familiarization. 
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3.2.3.3 Statistical analysis 

All data are presented as means ± standard error (SE) unless stated otherwise. The Shapiro-Wilk test was used to 

test the normality of the data. Sphericity was verified by the Mauchly's test. When the assumption of sphericity 

was not met, the significance of F-ratios was adjusted with the Greenhouse-Geisser procedure.  

Wilcoxon Signed Ranks Tests were used to assess the effect of condition (HP vs CON) on TTE, and on each 

subscale of the BRUMS pre and post the TTE test.  

Paired t-tests (2-tailed) were used to assess the effect of condition (HP vs CON) on motivation, body mass loss, 

sweat rate and on the physiological ([Bla], Tcore, Tskin, SV, VO2 and VE) measures at exhaustion. Non-normally 

distributed physiological (HR, SV and CO) and perceptual (Tsens, Tdcomf and RPE) measures at exhaustion were 

analysed with a Wilcoxon Signed Ranks Test. 

A 2 x 2 (Condition x Time) fully repeated measures ANOVA was used to assess the effect of condition on glucose. 

A 2 x 3 (Condition x Isotime) fully repeated measures ANOVA was used to assess the effect of condition on the 

continuously measured physiological ([Bla], Tcore, Tskin, HR, CO and VO2) and perceptual (Tdcomf and RPE) 

measures at 0% (60 ± 0 s), 50% (1050 ± 154 s) and 100% (1925 ± 306 s) of isotime during the TTE test. In non-

normally distributed physiological (VE and SV) and perceptual (Tsens) measures the effect of condition in each 

isotime interval was analysed with a Wilcoxon Signed Ranks Test. To assess the effect of isotime (0%, 50% and 

100%) on these measures, Friedman tests were used. To obtain these isotime data, the value of each parameter at 

100% isotime was established by identifying the shortest TTE test accomplished by each individual over their two 

tests. The value for each variable attained during the final full 5 minutes of the shortest TTE test were then 

compared to the value attained during the equivalent minute of the longer TTE test. The minute identified as 100% 

isotime was subsequently different from the point of exhaustion (i.e. all physiological and perceptual measures 

were taken one last time at exhaustion). This minute identified as 100% isotime (1925 ± 306 s) was multiplied by 

0.5 and rounded to the nearest time of rating where necessary to attain the value corresponding to 50% isotime 

(1050 ± 154 s). Isotime values for 0% (60 ± 0 s) were attained by comparing values for the first full minute of each 

TTE test. 

If a significant interaction effect (Condition x Isotime) in the fully repeated measures ANOVAs was observed, 

paired t-tests were performed in order to interpret the effect of the heat pad in each time interval and one-way 

repeated measures ANOVAs were performed in order to interpret the effect of isotime in each condition. If no 

significant interaction effect in the fully repeated-measures ANOVAs was observed, the main effect of the heat 

pad and isotime was immediately interpreted. Significance was set at 0.05 for all analyses, which were conducted 

using the Statistical Package for the Social Sciences, version 22 (SPSS Inc., Chicago, IL, USA). 
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3.2.4 Results 

3.2.4.1 Endurance performance 

TTE was significantly lower in HP (2092 ± 305 s) compared with CON (2292 ± 344 s; p=0.023). Individual TTE 

was lower in HP compared to CON in 10 of 12 subjects (Fig. 1). 

Fig. 1 Effect of heat pad on time to exhaustion (TTE; n = 12). Scatterplot of TTE in HP (heat pad condition) and 

TTE in CON (control condition). The points below the identity line represent a decreased endurance performance 

in HP compared with CON in individual participants. 

 

3.2.4.2 Psychological measures 

Subjective thermal strain 

Tsens was significantly higher in HP (2.8 ± 0.3) compared to CON (1.4 ± 0.3) at 0% isotime (p=0.004), while at 

50% (p=0.088) and 100% (p=0.167) isotime no difference between conditions was observed (Fig. 2). In addition 

subjects rated Tdcomf consistently higher in HP during the TTE test at all isotimes (HP: -3.6 ± 0.3; CON: -2.4 ± 

0.4; F(1,11)=15.4; p=0.002; partial η2=0.58; Fig. 3). For RPE an interaction between condition and isotime was 

observed (F(2,22)=3.9; p=0.036; partial η2=0.26). Visual inspection of this significant interaction effect suggests 

a quicker increase in RPE in the latter stages of the TTE test in the HP condition compared to CON (Fig. 4). 

However, follow-up tests did not demonstrate any significant difference between conditions at any isotime point 

(all p≥0.132). Regarding the effect of isotime, all perceptual variables (Tsens, Tdcomf and RPE) changed 

significantly over time during the TTE test (p<0.001; see Fig. 2, 3 & 4). At exhaustion, neither Tdcomf (p=0.104) 

nor RPE (p=0.358) were significantly different between conditions (Fig. 3 & 4). Only Tsens was significantly 

higher in HP (5.3 ± 0.3) than in CON (4.5 ± 0.4) at the point of exhaustion (p=0.031, Fig. 2).  
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Fig. 2 Effect of heat pad on thermal sensation during the time to exhaustion (TTE) test. # Significant main effect 

of time (p < 0.05). * Significant effect of condition (p < 0.05). Data are presented as means ± standard error. 

Minute 0 represents start of TTE test. HP heat pad condition, CON control condition. 

 

 

Fig. 3 Effect of heat pad on thermal discomfort during the time to exhaustion (TTE) test. # Significant main effect 

of time (p < 0.05). † Significant main effect of condition (p < 0.05). Data are presented as means ± standard error. 

Minute 0 represents start of TTE test. HP heat pad condition, CON control condition. 
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Fig. 4 Effect of heat pad on rating of perceived exertion during the time to exhaustion (TTE) test. # Significant 

main effect of time (p < 0.05). ‡ Significant interaction effect between condition and time (p < 0.05). Data are 

presented as means ± standard error. Minute 0 represents start of TTE test. HP heat pad condition, CON control 

condition. 

 

 

Motivation and mood   

No significant differences in success (p=0.870) or intrinsic motivation (p=0.111) regarding the TTE test were 

observed between conditions. The fatigue-subscale of the BRUMS indicated participants experienced the TTE test 

as fatiguing in both conditions (p≤0.005). No effects of condition or time were found for mood in any other 

subscale of the BRUMS measured pre and post the TTE test (p≥0.107). 

3.2.4.3 Physiological measures 

At isotime, all physiological variables ([Bla], Tcore, Tskin, HR, SV, CO, VO2 and VE) changed significantly over 

time (all main effects of time, p<0.017; see Table 1), but none of them (including the non-normally distributed SV 

and VE variables) was significantly affected by the heat pad (p≥0.219; Table 1). At exhaustion, none of the 

physiological variables were affected by the heat pad (p≥0.284; Table 1), only for [Bla] a trend towards a 

significantly higher concentration in CON was observed (t(11)=-2.2; p=0.051). Body mass loss due to the TTE 

test (p=0.795; HP: 0.878 ± 0.171 kg; CON: 0.850 ± 0.159 kg) and sweat rate (p=0.189; HP: 1.66 ± 0.29 l/hr; CON: 

1.35 ± 0.16 l/hr) did not differ between conditions, and also the glucose concentration did not differ between 

conditions (p=0.682) nor in time (p=0.188).  
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Table 1. Physiological responses during the time to exhaustion test at all isotimes (0%, 50% and 

100%) and exhaustion in HP and CON (Mean ± SE). 

Physiological measure  0% (60 ± 

0s) 
50% (1050 ± 

154 s) 
100% (1925 

± 306 s) 
Exhaustion 

HR (beats/min) # HP 138 ± 4 172 ± 3 181 ± 2  182 ± 3 

CON 137 ± 4 168 ± 4  180 ± 2  181 ± 2 

SV (ml) # HP 119 ± 7 144 ± 9 141 ± 7 146 ± 8 

CON 129 ± 11 152 ± 11 141 ± 8 144 ± 7 

CO (l/min) # HP 16.5 ± 1.1 24.5 ± 1.3 25.3 ± 1.0 26.4 ± 1.4 

CON 17.7 ± 1.4 25.4 ± 1.6 25.3 ± 1.2 26.0 ± 1.1 

VO
2 

(l/min) # HP 2.4 ± 0.1  3.5 ± 0.2 3.7 ± 0.2 3.5 ± 0.2 

CON 2.4 ± 0.1 3.7 ± 0.2 3.6 ± 0.2 3.6 ± 0.2 

VE (l/min) # HP 56.2 ± 2.5 99.2 ± 4.8 109.6 ± 6.5 113.7 ± 7.4 

CON 56.9 ± 2.2 98.5 ± 4.5 105.3 ± 5.8 112.2 ± 6.3 

Tcore (°C) # HP 37.0 ± 0.2 38.1 ± 0.1 38.8 ± 0.2 39.0 ± 0.2 

CON 37.2 ± 0.1 38.0 ± 0.1 38.6 ± 0.2 38.9 ± 0.2 

Tskin (°C) # HP 31.7 ± 0.3 34.2 ± 0.2 34.4 ± 0.3 34.4 ± 0.2 

CON 31.8 ± 0.2 34.0 ± 0.3 34.2 ± 0.3 34.3 ± 0.3 

Bla (mmol/l) # HP 1.7 ± 0.2 3.9 ± 0.5 4.7 ± 0.6 5.0 ± 0.7  

CON 1.7 ± 0.2 4.2 ± 0.5 5.0 ± 0.6 5.7 ± 0.7 

# indicates a significant main effect of time (p<0.05); s seconds, HR heart rate, HP heat pad 

condition, CON control condition, SV stroke volume, CO cardiac output, VO
2
 oxygen consumption, 

VE minute ventilation, Tcore core temperature, Tskin skin temperature, Bla blood lactate.  

3.2.5 Discussion  

This study aimed to test the hypothesis that subjective thermal strain is an important determinant of endurance 

performance, rather than just an epiphenomenon of the physiological strain normally associated with the endurance 

exercise impairment in the heat. This hypothesis was tested by aggravating heat sensation and thermal discomfort 

rather than ameliorating them. This effect was achieved by locally applying a heat pad to the upper back of 

endurance-trained subjects performing a TTE test on a cycle ergometer in temperate conditions. This novel 

experimental manipulation was successful in inducing higher ratings of heat sensation and thermal discomfort, 

and a quicker increase in RPE during the TTE test compared to the control condition (no heat pad). Despite no 

negative effects of the heat pad application on the measured cardiorespiratory, metabolic and thermoregulatory 

responses to endurance exercise in a temperate environment, TTE was impaired by 9%. The size of this negative 

effect on TTE is comparable to the effect (-13%) of a 10°C ambient temperature difference (31°C vs 21°C, Tcore 

at exhaustion was respectively 40.1°C and 39.4°C) observed in the study of Galloway & Maughan [16], and 
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substantiates that subjective thermal strain is  an important mediator of the heat-induced reduction in endurance 

performance. As clearly shown in Fig. 1 there was a group of three participants whose TTE (3957 ± 449 s) was 

significantly longer than the rest (n=9; mean-TTE=1603 ± 354 s). The most likely explanation for this difference 

in endurance performance is that the group with the longer TTE was cycling below the anaerobic threshold (n=3; 

Fig. 1; mean [Bla]=2.91 ± 1.36 mmol/l) whilst the other group was cycling closer to it (n=9; Fig. 1; mean 

[Bla]=4.36 ± 1.44 mmol/l).  

The present study is not the first study to put forward that subjective thermal strain is an important mediator of 

thermoregulatory behaviour [4-6] and an important determinant of  endurance performance [4-6, 10]. However, 

the only way to provide evidence in favour of its causal role in endurance performance is to dissociate subjective 

thermal strain from physiological strain. Previously, this has been done by reducing subjective thermal strain in a 

hot environment [12, 13], but not yet by aggravating heat sensation and thermal discomfort. The present study 

provides further evidence that subjective thermal strain is an important determinant of endurance performance. As 

discussed earlier, local application of the heat pad to the upper back of the subjects did not affect the general 

cardiorespiratory, metabolic and thermoregulatory responses to endurance exercise in a temperate environment. 

Therefore, changes in [Bla], Tcore, Tskin, HR, SV, CO, VE and VO2 cannot explain the negative effect that this 

experimental manipulation had on endurance performance. Although we followed up the general physiological 

measures, these give no indication of the locally induced changes by the heat pad. The heat pad will of course have 

increased the number of thermosensors that reached their activation threshold (i.e. local Tskin will have been 

increased). Subsequently the afferent feedback of the peripheral thermosensors located at the upper back to the 

central effector cells (e.g. preoptic anterior hypothalamus) will have been higher in HP compared to CON [32]. 

Possible thermoeffector responses in the heat are for example various aspects of thermoregulatory skin 

vasodilation, increased sweat rate and thermoregulatory behaviour [32]. And although some of these 

thermoeffector responses might have been present locally (e.g. increased local sweat rate and/or blood flow), they 

did not occur generally. The fact that they did not occur generally does however not exclude completely that local 

thermoeffector responses could have had impaired endurance performance. Specifically concerning CO, despite 

no difference in absolute CO was observed during the TTE test in both conditions, we can however not exclude 

that a redistribution of CO occurred. If present, this redistribution most logically would have resulted in a larger 

amount of blood flowing to the skin in the HP-condition, (1) due to the heat pad-induced vasodilation at the upper 

back and (2) to dissipate the added heat to the body by the local heat pad. If present, this redistribution may reduce 

convective oxygen delivery to the working muscles and exacerbates muscle fatigue [33]. However, the lack of a 

difference in [Bla] during the TTE test does not corroborate the presence of exacerbated muscle fatigue due to this 

potential redistribution of CO. It seems the body was physiologically able to cope with this added stress factor and 

no general physiological thermoeffector response was triggered by the increased afferent feedback of the 

peripheral thermosensors located at the upper back. 

Besides physiological variables that could have possibly explained the observed reduction in TTE, multiple 

psychological variables could have as well. One possibility is a nocebo effect of the heat pad which may decrease 

motivation, self-efficacy, drive or self-esteem. To avoid as much as possible this confounding variable, we used 

naïve participants and informed them that the study was on the physiological effects of local heat with no 

suggestion of any potentially negative effect on endurance performance (see Methods). Although we did not 
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measure all the psychological constructs potentially affected by a nocebo (see Limitations & future suggestions), 

success motivation and intrinsic motivation towards the TTE test were not found to be affected by the heat pad, 

and also mood before and after the TTE test did not differ between both conditions either. These psychological 

findings argue against a nocebo effect. 

Besides triggering a nocebo-effect, the heat pad could also have worked as a distractor (i.e. diverting attention 

away from other task-relevant thoughts), and although such distractive strategies tend to reduce perception of effort 

[34] this may be at the expense of a slower-than-optimum pace during self-paced endurance tasks [35]. This 

explanation does however seem to be unlikely, as RPE is not decreased in HP and no pacing was demanded in the 

TTE test employed in the present study. Therefore, the most likely explanation for the impairment in endurance 

performance observed in the HP condition was the higher subjective thermal strain induced by the heat pad. 

Despite the increased afferent feedback of the peripheral thermosensors located at the upper back did not trigger a 

general thermoeffector response, it did trigger a psychological response (i.e. increased subjective thermal strain). 

Among the three factors that subjective thermal strain encompasses during endurance exercise (i.e. heat sensation, 

thermal discomfort and perceived exertion), heat sensation was significantly different between conditions only at 

the beginning of the TTE test. Moreover, significantly different heat sensation levels were reached at exhaustion 

in both conditions, indicating that heat sensation was probably not the cardinal “exercise stopper” [36]. Thermal 

discomfort on the contrary was significantly worse throughout the TTE test and its levels at exhaustion did not 

differ significantly between conditions. This could be interpreted as evidence that people stopped exercising when 

they reached the highest level of thermal discomfort that they were willing (or believed to be able) to tolerate, i.e. 

a sensory tolerance limit [36]. However, visual inspection of the data questions this interpretation (Fig. 3). The 

level of thermal discomfort at exhaustion in CON (-4.4 ± 0.4) is lower than that in HP (-5.1 ± 0.3) and almost 

identical to the level at 50% isotime in HP (-4.2 ± 0.4). This observation suggest that participants did not stop 

exercising when an individual sensory tolerance limit was reached, or they should have stopped earlier in the HP 

condition. The most likely psychological explanation for the shorter TTE in the HP condition is the higher 

perception of effort induced by the heat pad. An interaction between condition and time was observed for RPE, 

and although follow up tests were not conclusive, visual inspection of the data suggests that RPE in HP was higher 

in the later stages of the TTE test compared to CON. As a result, in the HP condition, participants reached the 

maximum level of effort they were willing to exert (potential motivation) and decided to stop exercise earlier than 

in the control condition [37]. In accordance with the above outlined reasoning, Roussey et al. [38] recently stated 

that within the three components of subjective thermal strain, the perception of effort appears to be the key 

regulator of intensity when exercising in the heat while the contribution of thermal sensation/discomfort probably 

fluctuates according to the hyperthermia level, but also to training experience. The interpretation of our data as 

evidence that heat sensation and thermal discomfort did not play a role in the earlier exercise cessation in HP in 

the concept of a sensory tolerance limit, does however not mean that these two components of subjective thermal 

strain were not thought to play a role. Rather than a limit, heat sensation and especially thermal discomfort are 

proposed to act as determinants of endurance performance by interacting with perceived exertion (i.e. increasing 

the inclination rate of RPE during the later stages of the TTE), subsequently leading to the earlier termination of 

exercise in HP. 
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In the interpretation that perception of effort is the key variable in the present study, caution is warranted. The 

authors acknowledge that this interpretation is only supported by an interaction effect and not by significant follow-

up tests. Nonetheless it is an important mechanism to consider and it gives rise to the question: ‘why was perception 

of effort higher in HP compared to CON?’. General physiological strain did not differ between conditions and the 

cerebral changes associated with heat stress [39] are not plausible explanations. One possibility is that the late 

increase in RPE observed in the HP condition compared to CON may be due to a higher attentional focus on 

thermal sensation/discomfort. Excessively focusing on internal bodily sensations has already been shown to 

exacerbate perception of effort and negatively impact pacing and TTE [34, 40]. The observed higher subjective 

thermal strain in HP compared to CON does however not automatically indicate a higher attentional focus on 

thermal sensation/discomfort was present in HP. Participants were asked equally often in both trials to reflect on 

the subjective thermal strain. As such, despite no measures of attentional focus were included in the present study 

(see Limitations & future suggestions), attentional focus is hypothesized to have been similar in both HP and CON. 

Therefore we suggest that the late increase in RPE observed in HP might be explained by a higher activity of the 

premotor cortex when exercising in an unpleasant condition like when enduring very high thermal discomfort. 

This suggestion is supported by a neuroimaging study showing higher premotor cortex activity when unpleasant 

stimuli are provided during exercise [41] and increasing evidence that the activity of premotor and/or motor areas 

of the cortex is associated with RPE during exercise [42-44] as predicted by the corollary discharge model of 

perceived effort [45]. Furthermore, the continuation of exercise in the face of very high thermal discomfort most 

likely requires inhibitory control. This is an effortful mental process that involves many cortical areas [46] also 

associated with perception of effort during physical tasks [47].  

Limitations & future suggestions 

The authors are aware that the present study has, inevitably, its limitations. For example, the heat pad was not 

applied to the back in the control condition. Consequently thermal discomfort might be induced not only by the 

increased heat sensation of the heat pad, but also by increased pressure and sweat production on the application-

site of the heat pad (i.e. upper back). Filingeri et al. [48] already pointed out that sensing temperature is not the 

only factor to contribute to thermoregulatory responses in humans. Perceiving cutaneous wetness is also critical. 

Therefore, the increased pressure and sweat production at the upper back in HP compared to CON was beneficial 

in order to maximize the difference in thermal discomfort between HP and CON. Subsequently the present study 

provides evidence that thermal discomfort can be affected by skin heat sensations/receptors without altering core 

temperature. In future studies, evaluating whether the heat pad-induced performance decrease is also present in 

self-paced endurance tasks and including specific measures of self-efficacy, self-esteem and attentional focus 

could provide additional valuable insights on the psychological mechanism behind the heat pad-induced decrease 

in endurance performance. 
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3.2.6 Conclusion 

This study assessed the effect of a heat pad applied to the upper back on endurance performance in temperate 

conditions. This novel experimental manipulation was successful in inducing significant subjective thermal strain 

during cycling exercise and reduced the TTE of the endurance-trained subjects by 9% on average. We measured 

the main cardiorespiratory, metabolic and thermoregulatory parameters normally associated with heat-induced 

impairment in endurance performance and found that they were not significantly affected by HP. Success and 

intrinsic motivation and mood prior to or after the cycling task also did not differ between conditions. Therefore, 

the mediator of the heat pad-induced decrease in endurance performance is, most likely, the increase in subjective 

thermal strain and more specifically the increased thermal discomfort and its effect on perceived exertion. These 

results provide additional evidence that subjective thermal strain is an important determinant of endurance 

performance in the heat rather than an epiphenomenon and justifies the use of specific techniques aiming to reduce 

subjective thermal strain (e.g. menthol spray).  

 

 

Acknowledgments 

The authors declare that the results of the study are presented clearly, honestly, and without fabrication, 

falsification, or inappropriate data manipulation.  

Funding 

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit 

sectors. 

Conflict of interests 

The results of the present study do not constitute endorsement by the American College of Sports Medicine. No 

conflict of interest is declared by the authors. 

  



Chapter 3: Mental fatigue and the heat-induced decrease in endurance performance                                      Part 2 

 

95 

 

3.2.7 References 

1. Periard, J.D., et al., Cardiovascular strain impairs prolonged self-paced exercise in the heat. Exp Physiol, 

2011. 96(2): p. 134-44. 

2. Racinais, S., et al., Effect of heat and heat acclimatization on cycling time trial performance and pacing. 

Med Sci Sports Exerc, 2015. 47(3): p. 601-6. 

3. Van Cutsem, J., et al., The influence of a mild thermal challenge and severe hypoxia on exercise 

performance and serum BDNF. Eur J Appl Physiol, 2015. 115(10): p. 2135-48. 

4. Nybo, L., P. Rasmussen, and M.N. Sawka, Performance in the heat-physiological factors of importance 

for hyperthermia-induced fatigue. Compr Physiol, 2014. 4(2): p. 657-89. 

5. Schlader, Z.J., et al., Characteristics of the control of human thermoregulatory behavior. Physiol Behav, 

2009. 98(5): p. 557-62. 

6. Schlader, Z.J., et al., The independent roles of temperature and thermal perception in the control of 

human thermoregulatory behavior. Physiol Behav, 2011. 103(2): p. 217-24. 

7. Sawka, M.N., et al., Integrated physiological mechanisms of exercise performance, adaptation, and 

maladaptation to heat stress. Compr Physiol, 2011. 1(4): p. 1883-928. 

8. Kenny, G.P., et al., Ice cooling vest on tolerance for exercise under uncompensable heat stress. J Occup 

Environ Hyg, 2011. 8(8): p. 484-91. 

9. Luomala, M.J., et al., Adding a cooling vest during cycling improves performance in warm and humid 

conditions. Journal of Thermal Biology, 2012. 37: p. 47-55. 

10. Stevens, C.J. and R. Best, Menthol: A Fresh Ergogenic Aid for Athletic Performance. Sports Med, 2017. 

47(6): p. 1035-1042. 

11. Cuttell, S.A., V. Kiri, and C. Tyler, A Comparison of 2 Practical Cooling Methods on Cycling Capacity 

in the Heat. J Athl Train, 2016. 51(7): p. 525-32. 

12. Tyler, C.J. and C. Sunderland, Cooling the neck region during exercise in the heat. J Athl Train, 2011. 

46(1): p. 61-8. 

13. Flood, T.R., M. Waldron, and O. Jeffries, Oral L-menthol reduces thermal sensation, increases work-

rate and extends time to exhaustion, in the heat at a fixed rating of perceived exertion. Eur J Appl Physiol, 

2017. 117(7): p. 1501-1512. 

14. Lee, J.K., R.J. Maughan, and S.M. Shirreffs, The influence of serial feeding of drinks at different 

temperatures on thermoregulatory responses during cycling. J Sports Sci, 2008. 26(6): p. 583-90. 

15. Stephens, D.P., et al., The influence of topical capsaicin on the local thermal control of skin blood flow 

in humans. Am J Physiol Regul Integr Comp Physiol, 2001. 281(3): p. R894-901. 

16. Galloway, S.D. and R.J. Maughan, Effects of ambient temperature on the capacity to perform prolonged 

cycle exercise in man. Med Sci Sports Exerc, 1997. 29(9): p. 1240-9. 

17. De Pauw, K., et al., Guidelines to classify subject groups in sport-science research. Int J Sports Physiol 

Perform, 2013. 8(2): p. 111-22. 

18. Decroix, L., et al., Guidelines to Classify Female Subject Groups in Sport-Science Research. Int J Sports 

Physiol Perform, 2016. 11(2): p. 204-13. 

19. Borg, G.A., Borg’s Perceived Exertion and Pain Scales. 1998, Champaign, IL: Human Kinetics. 

20. Amann, M., W.G. Hopkins, and S.M. Marcora, Similar sensitivity of time to exhaustion and time-trial 

time to changes in endurance. Med Sci Sports Exerc, 2008. 40(3): p. 574-8. 

21. Schlader, Z.J., et al., Skin temperature as a thermal controller of exercise intensity. Eur J Appl Physiol, 

2011. 111(8): p. 1631-9. 

22. Gerrett, N., et al., Thermal sensitivity to warmth during rest and exercise: a sex comparison. Eur J Appl 

Physiol, 2014. 114(7): p. 1451-62. 

23. Ramanathan, N.L., A New Weighting System for Mean Surface Temperature of the Human Body. J Appl 

Physiol, 1964. 19: p. 531-3. 

24. Marcora, S.M., W. Staiano, and V. Manning, Mental fatigue impairs physical performance in humans. J 

Appl Physiol (1985), 2009. 106(3): p. 857-64. 

25. Terry, P.C., A.M. Lane, and G.J. Fogarty, Construct validity of the Profile of Mood States-Adolescents 

for use with adults. Psychol Sport Exerc, 2003. 4: p. 125-139. 

26. Loy, B.D., P.J. O'Connor, and R.K. Dishman, The effect of a single bout of exercise on energy and fatigue 

states: a systematic review and meta-analysis. Fatigue: Biomedicine, Health & Behavior, 2013. 1 (4): p. 

223-242. 

27. Matthews, G., S. Campbell, and S. Falconer, Assessment of motivational states in performance 

environments. . Proc Annu Meeting Human Factors Ergonomics Soc, 2001. 45: p. 906-910. 

28. Flood, A., et al., The effects of elevated pain inhibition on endurance exercise performance. PeerJ, 2017. 

5: p. e3028. 

29. Williams, E.L., et al., Competitor presence reduces internal attentional focus and improves 16.1km 

cycling time trial performance. J Sci Med Sport, 2015. 18(4): p. 486-91. 



Chapter 3: Mental fatigue and the heat-induced decrease in endurance performance                                      Part 2 

 

96 

 

30. Skorski, S., et al., A Monetary Reward Alters Pacing but Not Performance in Competitive Cyclists. Front 

Physiol, 2017. 8: p. 741. 

31. Filingeri, D., et al., Mild evaporative cooling applied to the torso provides thermoregulatory benefits 

during running in the heat. Scand J Med Sci Sports, 2015. 25 Suppl 1: p. 200-10. 

32. Romanovsky, A.A., Thermoregulation: some concepts have changed. Functional architecture of the 

thermoregulatory system. Am J Physiol Regul Integr Comp Physiol, 2007. 292(1): p. R37-46. 

33. Amann, M. and J.A. Calbet, Convective oxygen transport and fatigue. J Appl Physiol (1985), 2008. 

104(3): p. 861-70. 

34. Stanley, C.T., D. Pargman, and G. Tenenbaum, The Effect of Attentional Coping Strategies on Perceived 

Exertion in a Cycling Task. Journal of Applied Sport Psychology, 2007. 19: p. 352-363. 

35. Connolly, C. and C. Janelle, Attentional strategies in rowing: performance, perceived exertion, and 

gender considerations. Journal of Applied Sport Psychology, 2003. 15: p. 195-212. 

36. Gandevia, S.C., Spinal and supraspinal factors in human muscle fatigue. Physiol Rev, 2001. 81(4): p. 

1725-89. 

37. Marcora, S.M., Do we really need a central governor to explain brain regulation of exercise 

performance? Eur J Appl Physiol, 2008. 104(5): p. 929-31; author reply 933-5. 

38. Roussey, G., et al., Interactions between perceived exertion and thermal perception in the heat in 

endurance athletes. J Therm Biol, 2018. 76: p. 68-76. 

39. Nielsen, B. and L. Nybo, Cerebral changes during exercise in the heat. Sports Med, 2003. 33(1): p. 1-

11. 

40. Bertollo, M., et al., To Focus or Not to Focus: Is Attention on the Core Components of Action Beneficial 

for Cycling Performance? The Sport Psychologist, 2015. 29: p. 110-119. 

41. Coombes, S.A., et al., Maintaining force control despite changes in emotional context engages 

dorsomedial prefrontal and premotor cortex. Cereb Cortex, 2012. 22(3): p. 616-27. 

42. de Morree, H.M., C. Klein, and S.M. Marcora, Perception of effort reflects central motor command 

during movement execution. Psychophysiology, 2012. 49(9): p. 1242-53. 

43. de Morree, H.M., C. Klein, and S.M. Marcora, Cortical substrates of the effects of caffeine and time-on-

task on perception of effort. J Appl Physiol (1985), 2014. 117(12): p. 1514-23. 

44. Zenon, A., M. Sidibe, and E. Olivier, Disrupting the supplementary motor area makes physical effort 

appear less effortful. J Neurosci, 2015. 35(23): p. 8737-44. 

45. Marcora, S., Perception of effort during exercise is independent of afferent feedback from skeletal 

muscles, heart, and lungs. J Appl Physiol (1985), 2009. 106(6): p. 2060-2. 

46. Shenhav, A., et al., Toward a Rational and Mechanistic Account of Mental Effort. Annu Rev Neurosci, 

2017. 40: p. 99-124. 

47. de Morree, H.M. and S.M. Marcora, Psychobiology of Perceived Effort During Physical Tasks, in 

Handbook of Biobehavioral Approaches to Self-Regulation. 2015, Springer New York: New York. p. 

255-270. 

48. Filingeri, D., Neurophysiology of Skin Thermal Sensations. Compr Physiol, 2016. 6(3): p. 1429. 

 



 

97 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4: Mental fatigue and sport-specific psychomotor 

performance 

 

 

Mental fatigue impairs visuomotor response time in badminton players and controls 

 

Jeroen Van Cutsem1,2, Kevin De Pauw1, Cloé Vandervaeren1, Samuele Marcora2, Romain Meeusen1, Bart 

Roelands1. 

 

1 Human Physiology research group, Vrije Universiteit Brussel, Brussels, Belgium 

2 Endurance research group, School of Sport and Exercise Sciences, University of Kent at Medway, Chatham 

Maritime, Kent ME4 4Ag, UK 

 

Psychology of Sport and Exercise, Submitted 

SCI(2017) = 2.878 – Q1 in Sport Sciences (16/81), Q2 in Psychology (20/78) 



Chapter 4: Mental fatigue and sport-specific psychomotor performance 

 

98 

 

4.1 Abstract 

Purpose: It has recently been reported that professional road cyclists have superior inhibitory control and 

resistance to mental fatigue compared to recreational cyclists. We sought to assess whether badminton players also 

have superior executive functions and whether they are more resistant to mental fatigue than controls on a 

visuomotor task. Methods: Eleven healthy controls (mean±SD; age: 25±4y; 6 females, 5 males) and nine healthy 

badminton players (age: 23±3y; 4 females, 5 males) performed two experimental trials in a randomized crossover 

order. Participants completed a baseline visuomotor task, followed by a Flanker task. Next, they performed either 

a 90-min Stroop task (MF) or watched a 90-min documentary (CON). Immediately thereafter, the Flanker task and 

the visuomotor task were completed again. Multiple physiological and psychological measures were assessed 

during the protocol. Results: Badminton players’ and controls’ accuracy during the Stroop task decreased over 

time (p=0.023). Subjectively, both groups perceived the Stroop task as more mentally demanding than the 

documentary (p<0.001). In addition, higher mental fatigue was perceived in MF compared to CON, independently 

from group (p=0.029). In the visuomotor task, controls as well as badminton players reacted significantly slower 

on the complex stimuli when mentally fatigued (~7%; p<0.001). Badminton players (1109 ± 251 ms) outperformed 

controls (1299 ± 227 ms; p=0.022) in the visuomotor task.  Conclusion: Mental fatigue negatively affects open 

skill-visuomotor performance in both badminton players and controls. Badminton players did not exhibit a superior 

executive function compared to controls.  

 

Key words: mental exertion; response inhibition; task switching; inhibitory control; executive function  
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4.2 Introduction 

Mental fatigue has been shown to impair multiple visuomotor related skills in sport-specific [1-4] and non-sport-

specific settings [5, 6]. In addition, Smith et al. [4], Le Mansec et al. [2] and Veness et al. [3] observed that also 

within trained (ranging from moderately trained to elite) athletes mental fatigue has a negative effect on sport-

specific visuomotor related skills. For example, Smith et al. [4] used the Loughborough Soccer Passing and 

Shooting Test with experienced soccer players and found that their shot speed and accuracy decreased when 

mentally fatigued. Similarly, Le Mansec et al. [2] found that ball speed decreased and number of faults increased 

in mentally fatigued table tennis players who play at regional-national level in France. 

These findings are in accordance with the effect of mental fatigue on endurance performance in endurance trained 

athletes [7]. Based on these results, one would conclude trained/elite athletes are not immune to mental fatigue-

induced impairments in sport performance. However, given the cross-over nature of all these studies, we should 

be careful in drawing conclusions. Trained/elite athletes might still be more resistant to mental fatigue than 

untrained individuals. In literature it has already been suggested that genetic and/or environmental (i.e. training 

effects) factors could underlie an athlete’s greater resistance to mental fatigue-associated physical performance 

impairments [8]. Evaluating whether athletic status mediates the resistance to mental fatigue is of importance. On 

the one hand, it allows to determine the factors that may contribute to successful sport performance, while on the 

other hand it provides further insights in the mechanisms behind the detrimental effect of mental fatigue on sport 

performance.  

In endurance sport, Martin et al. [8] was the first to design a study to specifically assess whether level of training 

had any influence on the effect of mental fatigue. Interestingly, they found that professional cyclists exhibited 

superior performance during a 30-min Stroop task compared to recreational cyclists, which is indicative of stronger 

inhibitory control. Moreover, professional cyclists displayed a greater resistance to the negative effects of mental 

fatigue on a 20-min cycling time trial than recreational cyclists [8]. Following on this first study, Clark et al. [9] 

also attempted to determine whether athletic status influences the effect of mental fatigue on cycling performance. 

Clark et al. [9] found that a 6-min cycling time trial performance in both untrained men and non-professional 

highly trained individuals with a history of competition in a variety of sports was unaffected by mental fatigue. 

Unfortunately, as in the study of Martin et al. [8], also in this study a 30-min prolonged cognitive task was 

employed to induce mental fatigue. Clark et al. [9] were not able to observe any decline in performance during the 

prolonged cognitive task, or an increase in subjective mental fatigue post the cognitive task. In addition, also the 

mental fatigue-associated drop in frontal cortex oxygenation (i.e. a drop in ∆[HbO2] [10, 11]) was not observed. 

As such, Clark and colleagues themselves express their uncertainty whether they were successful in inducing 

mental fatigue in the first place [9], a limitation that is also put forward in the study of Martin et al. [8], and that 

might be caused by the relatively short period of increased mental load.  

To directly assess whether open skill-athletes (i.e. required to react in a dynamically changing, unpredictable and 

externally-paced environment) might, like cyclists, be more resistant to mental fatigue than untrained individuals 

(i.e. controls), the effect of a 90-min mentally fatiguing task on an open skill-visuomotor task (visuomotor task; 

i.e. a test where a lunge movement combined with an arm extension is required) was examined in both badminton 

players and controls. Several studies demonstrated that sport-specific visuomotor related skills are impaired in 

trained athletes when mentally fatigued [2-4]. However, based on the genetic and/or environmental factors that are 
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put forward by Martin et al. [8] as possible mediators of the mental fatigue-associated decrease in physical 

performance, it is still plausible visuomotor performance in trained athletes is less affected by mental fatigue. We 

hypothesized that mental fatigue would negatively affect performance on the visuomotor task in controls, while 

badminton players would demonstrate greater resistance and be less/not affected by mental fatigue [8]. In addition 

it was expected badminton players would outperform controls on the visuomotor task as well as on the Stroop task 

[8]. 

4.3 Methods 

4.3.1 Participants and ethical approval 

An a priori sample size calculation based on the results reported in the study of Martin et al. [8] (reported effect 

size of the interaction between condition and group was ηp
2=0.293) revealed – with α set at 0.05 and an actual 

power of 0.85 – that a total of 8 participants were needed in each group to observe a similar interaction effect. 

Twelve healthy controls and ten healthy badminton players volunteered to participate in this study, and eventually, 

eleven healthy controls (mean ± SD; age: 25 ± 4y, stature: 1.69 ± 0.07m, body mass: 70.2 ± 13.8kg, 6 females, 5 

males) and nine healthy badminton players (mean ± SD; age: 23 ± 3y, stature: 1.73 ± 0.11m, body mass: 67.0 ± 

12.8kg;  4 females, 5 males) were included in the data analyses (see Results for reason of dropout). Each participant 

gave written informed consent prior to the study and were naive of its aims and hypotheses. Controls were not 

engaged in any kind of regular physical activity during the last 5 years, badminton players competed at national 

and/or international level and performed ≥2/3 badminton training sessions per week and had ≥8 years badminton 

experience. The experimental protocol and procedures were approved by the Research Council of the Vrije 

Universiteit Brussel, Belgium. The participants were given instructions to sleep a similar amount of time before 

each trial (at least 7 hours), refrain from the consumption of caffeine and alcohol and not to practice vigorous 

physical activity the day before and from each visit. In addition, participants were asked to have the same meal the 

morning of each trial and the use of any kind of medicinal products during and between the trials was prohibited. 

If participants could not meet these standards they were excluded from the study. 

4.3.2 Experimental protocol 

Participants were asked to report to the lab for 3 consecutive trials, which were all conducted at the same time of 

day (in the morning) and were separated by at least 3 days to ensure full recovery. The first trial was a 

familiarization trial, followed by an experimental trial (MF) and a control trial (CON). All trials were conducted 

in thermoneutral conditions (23.5°C, humidity 35%) and took ~2h to complete. MF and CON were completed in 

a randomized, crossover manner. See Fig.1 for a complete overview and timeline of the protocol. Participants had 

to perform a baseline visuomotor task (see visuomotor task), followed by a Flanker task (see Flanker task). Next, 

they performed either a 90-min Stroop task (MF; see mental fatigue task) or watched a 90-min documentary (CON; 

see control task). Immediately thereafter, the Flanker task and the visuomotor task were completed again. In the 

familiarization trial participants completed all procedures as if it was an experimental trial (see Fig. 1), except for 

the 90-min cognitive task. Instead of the 90-min cognitive task, participants performed a 30-min version of the 

Stroop task to familiarize with all instructions. 

 

 



Chapter 4: Mental fatigue and sport-specific psychomotor performance 

 

101 

 

Fig. 1 Protocol timeline (min). Participants had to perform a first visuomotor task. After completing the baseline 

visuomotor task, participants sat down and completed a 90-min mentally fatiguing task or a 90-min control task, 

that was preceded and immediately followed by a 3-min Flanker task. Immediately (~2min) after the second 

Flanker task a second visuomotor task was performed.  T = ambient temperature; RH = relative humidity; MFS = 

self-reported mental fatigue; Motivation = success motivation and intrinsic motivation scales developed and 

validated by Matthews et al. [18]; NASA-TLX = the National Aeronautics and Space Administration Task Load 

Index; GLUC = blood glucose;       = heart rate;          = visuomotor task;     = 3-min Flanker task  

  

 

Visuomotor task To develop a visuomotor task, Fitlight-hardware and software was used 

(http://www.fitlighttraining.com/). Seven lights were set up against a wall (see Fig.2) and illuminated for 2s, one 

after the other in a set sequence. These lights colored, similar to the Stroop-stimuli, red, blue, green or yellow. If 

a light turned red, green or yellow (i.e. simple stimuli) participants had to put out the light as fast as possible by 

passing before the light with the left or right hand within a range of 5cm. However, if a light turned blue (i.e. 

complex stimulus), participants were instructed not to respond to the stimulus on the wall. Instead they had to turn 

around and put out another light lying behind them on the floor (1m50; see Fig.2). After each stimulus, participants 

were instructed to return to their starting position (perpendicular to light no.1, 1m20 away from the wall and with 

both feet ~30cm apart and on the same line), which was indicated on the floor, and focus again on the fixation 

cross (see Fig. 2). Each color was presented 16 times, yielding a total of 64 stimuli. The sequence in which the 

colors appeared was programmed randomly (www.randomization.com), as was the location of the light in which 

the color appeared. The inter-stimulus time varied between 3, 4, 5 or 6s and each inter-stimulus time was randomly 

used 16 times. Total task duration was approximately 6min30s. To avoid learning effects each visuomotor task 

was different as the pre-programmed sequence would always start randomly somewhere within the sequence. 

Accuracy and response time (RT) were collected to assess performance.  

 

http://www.fitlighttraining.com/
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Fig. 2 Overview of the visuomotor task.  

 

Flanker task In the Flanker task participants were instructed to respond as quickly and accurately as possible to 

the direction of a target arrow while ignoring two flankers on each side. See Van Cutsem et al. [12] for a detailed 

description. The task used in the present study only differed from the task used in the study of Van Cutsem et al. 

[12] in that sense that all trials presented in the present task were incongruent (e.g., < < > < <), requiring a great 

level of inhibitory control. The second Flanker task was performed 20s after completion of the 90-min mentally 

fatiguing task or control task. To assess performance on the Flanker task accuracy and RT were collected. 

Participants were, based on the assumption that they were already fatigued or not adequately familiarized [13], 

excluded from the analysis if they were not able to reach a minimum accuracy level of 90% in the first Flanker 

task (i.e. the baseline performance).  

Mental fatigue task A modified Stroop task of 90min, partitioned in 8 blocks of 252 stimuli, was used as the 

mentally fatiguing task. This 90-min task was continuous with no rest breaks (i.e. participants had no knowledge 

of the existence of the 8 task blocks). The inclusion of the 8 task blocks/epochs allows the researcher to examine 

performance impairment (i.e. accuracy and RT) as a function of time-on-task which is a behavioral indicator of 

cognitive fatigue [7, 14]. In this task, four colored words (“red”, “blue”, “green” and “yellow”) were presented 

one at a time on a computer screen. If the ink color of the word was yellow, green or blue the participants were 

required to indicate the color of the word, ignoring the meaning of the word itself (i.e. ‘color’ stimuli). If however, 

the ink color was red, the button to be pressed was the button linked to the real meaning of the word (i.e. ‘meaning’ 

stimuli), not the ink color (see Van Cutsem et al. [15] for a detailed description). The word presented and its ink 

color were randomly selected by the computer (100% incongruent), with all incongruent word-color combinations 

being equally common (meaning, in each block 63 words were presented in the color red, yellow, green and blue). 

Prior to each 90-min Stroop task time-keeping devices such as watches and cell phones were surrendered and 

during the task participants did not receive any feedback on performance or time lapsed. Participants were, based 
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on the assumption that they were already fatigued or not adequately familiarized [13], excluded from the analysis 

if they were not able to reach a minimum accuracy level of 70% in the first or second time interval of the task. 

Control task In the control task participants had to watch a documentary ((A) “Planet earth” (BBC Worldwide, 

2006), (B) “When we left earth – the NASA missions” (Discovery entertainment, 2008), and (C) “ooggetuigen”: 

(Ca)“Honden”, (Cb) “Haaien”, or (Cc) “Vulkanen” (BBC Worldwide, 2007)). In order to promote engagement 

and avoid boredom participants were given the choice: 1 chapter from (A) and 1 disc “ooggetuigen” or 1 disc from 

(B), for a total of 90min. These documentaries were chosen based on their emotionally neutral, yet engaging 

content. 

Physiological and subjective measurements During the entire protocol a researcher was sitting behind the 

participant to ensure compliance with the intervention. Participants were equipped with a heart rate monitor to 

continuously record heart rate (HR). Blood glucose was measured before the 90-min task and immediately after 

finishing the second visuomotor task by extracting 0.6-µl of blood from the right earlobe (CONTOUR LINK 

Medtronic Blood Glucose Meter System, Bayer, Basel, Switzerland). Subjective psychological assessment took 

place with a mental fatigue-visual analogue scale (MFS) [16], the National Aeronautics and Space Administration 

Task Load Index (NASA-TLX; [17]) and the success motivation and intrinsic motivation scales developed and 

validated by Matthews [18]. The validity and reliability of a visual analogue scale (0-10cm) to assess fatigue was 

demonstrated by Lee et al. [16], MFS posed the question ‘How mentally fatigued do you feel?’, and ranged from 

‘not at all’ to ‘completely exhausted’ [16]. The NASA-TLX scale assesses subjective workload and was taken 

after finishing the 90-min task. Motivation related to the visuomotor task was measured by the scales of Matthews 

[18] and was assessed before both visuomotor tasks (see Fig.1).  

4.3.3 Statistical analysis 

All data are presented as means ± standard deviation (SD) unless stated otherwise. The Shapiro-Wilk test was used 

to test the normality of the data, sphericity was verified by the Mauchly's test. When the assumption of sphericity 

was not met, the significance of F-ratios was adjusted with the Greenhouse-Geisser procedure.  

A two-way mixed (2x2) ANOVA was used to assess the effects of group and condition on each NASA-TLX 

subscale and on square root transformed mean HR. A three-way mixed (2x2x2) ANOVA was used to assess the 

effects of group, condition and time on intrinsic and success motivation towards both visuomotor tasks. Blood 

glucose (2x2x2) and MFS (2x2x4) responses were analyzed with three-way mixed ANOVAs, with factors group, 

condition and time. A three-way mixed (2x8x2) ANOVA was used to test the effect of group (badminton players 

vs controls), time (first to eighth block) and stimuli (meaning vs color) on RT and square root transformed accuracy 

during the mental fatigue task. Three-way mixed (2x2x2) ANOVA was used to test the effects of group, condition 

and time on RT and square root transformed accuracy during the Flanker tasks. A four-way mixed (2x2x2x2) 

ANOVA was used to test the effects of group, condition, time and stimuli (simple vs. complex) on RT during the 

visuomotor tasks. Wilcoxon signed ranks tests were employed to assess the effect of condition and time on 

visuomotor task accuracy in each group and each stimulus type.  

If significant interaction effects including the factors condition and time in the four-way, three-way or two-way 

mixed ANOVAs were observed, subsequent three-way or two-way mixed ANOVAs or paired t-tests were 

performed to elucidate the main effect of condition and time. If no significant interaction effects, including the 
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factors condition and time, in the four-way, three-way or two-way mixed ANOVAs were observed, main effects 

of condition and time were immediately studied and further interpreted through pairwise comparisons with 

Bonferroni correction.  

In order to assess whether badminton players possess superior inhibitory control and task switching-ability 

compared to controls, and to control for the potential confounding effect of differences in resistance to mental 

fatigue, planned comparisons were executed in the first time interval of the Flanker task, Stroop task and 

visuomotor task. 

Significance was set at <0.05 for all analyses, which were conducted using the Statistical Package for the Social 

Sciences, version 23 (SPSS Inc., Chicago, IL, USA). 

4.4 Results 

4.4.1 Manipulation checks 

All participants except two (1 control and 1 badminton player) reached the required minimum performance level 

of 70% in one of the two first time intervals during the Stroop task and were included in the data-analysis.  

Behavioural  

The effect of time on the transformed accuracy-data differed in both types of stimuli (time x stimuli; F(7,126)=2.1; 

p=0.050), group did however not affect the effect of time. Within the color stimuli accuracy was similar over time 

(F(4.2,79.3)=0.5; p=0.753; see Fig. 3). Within the meaning stimuli a decrease in accuracy over time (F(7,133)=2.4; 

p=0.023; η2=0.11; See Fig. 3) was found. In terms of RT it was shown that participants performed faster in time 

independent of group in both the color stimuli (F(7,133)=3.5; p=0.002; ηp
2=0.16; see Fig. 4) and the meaning 

stimuli (F(3.9,74.2)=12.7; p<0.001; ηp
2=0.4; see Fig. 4). Regarding transformed accuracy on the Flanker task, no 

effect of condition, time or group was observed. RT on the Flanker task was observed to increase in time 

independent of group and condition (PRE: 362 ± 36 ms → POST: 371 ± 35 ms; F(1,18)=7.2; p=0.015; ηp
2=0.29). 

In addition, the planned comparison in the first time interval of the Stroop task and the first Flanker task 

demonstrated that there was no difference in accuracy or RT between badminton players and controls in both tasks. 
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Fig. 3 Square root transformed accuracy during the 8 blocks of the Stroop task. * denotes a significant main effect 

of time on the meaning stimuli in both badminton players and controls (p<0.05). Data are presented as means ± 

SE.  

  

Fig. 4 Response time (RT) during the 8 blocks of the Stroop task. * denotes a significant main effect of time in 

both badminton players and controls (p<0.05). Data are presented as means ± SE. 
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Subjective 

Overall subjective mental fatigue was higher (F(1,18)=5.6; p=0.029; ηp
2=0.24) in MF (44 ± 17) compared to CON 

(38 ± 12), independently from group. Subjective mental fatigue was higher after both the Stroop and control task 

compared to before the respective tasks (F(3,54)=34.7; p<0.001; ηp
2=0.66; pre control and Stroop task = 30 ± 18; 

post control and Stroop task = 63 ± 17). In both badminton players and controls, the mental demand, physical 

demand, temporal demand, effort and frustration subscale of the NASA-TLX were perceived as higher after the 

Stroop task compared to the control task (F(1,18)≥8.1; p≤0.011; ηp
2≥0.41). Only the performance subscale of the 

NASA-TLX was not perceived as different between both conditions. No difference was observed in intrinsic and 

success motivation towards both visuomotor tasks.  

Physiological  

Transformed mean HR was significantly (F(1,18)=8.9; p=0.008; ηp
2=0.33) higher during the Stroop task (8.8 ± 

0.6; absolute value=77 ± 9 bpm) compared to during the control task (8.5 ± 0.5; 72 ± 9 bpm) independently from 

group. Blood glucose levels decreased (F(1,17)=10.5; p=0.005; ηp
2=0.38) from the beginning of the protocol (93.8 

± 6.7 mg/dl) to the end (86.6 ± 7.6 mg/dl). 

4.4.2 Performance on the visuomotor task 

Accuracy 

Non-parametric testing showed that there was no effect of condition or time on accuracy.  

Response time 

The effect of the mentally fatiguing task on RT during the visuomotor task was independent of group. In contrast, 

type of stimulus did affect the effect of the mentally fatiguing task (condition x time x stimuli; F(1,18)=8.0; 

p=0.011). Within the complex stimuli an interaction between the effects of condition and time was present 

(condition x time; F(1,19)=10.0; p=0.005). Participants got significantly slower in time only in MF (t(19)=-4.4; 

p<0.001; d=0.98; PRE: 1282 ± 242 ms; POST: 1372 ± 249 ms; see Fig. 5), while the effect of condition (t(19)=2.2; 

p=0.040; d=0.49; 1372 ± 249 ms; CON: 1322 ± 253 ms; see Fig. 5) was only present in the second visuomotor 

task. Within the simple stimuli only a main effect of time (F(1,19)=25.9; p<0.001; ηp
2=0.58) was observed, 

independent of condition. The planned comparison in the first visuomotor task demonstrated that the controls 

(1299 ± 227 ms) performed slower than the badminton players (1109 ± 251 ms), independently from stimuli and 

condition (F(1,18)=6.3; p=0.022; ηp
2=0.26). 
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Fig. 5 Response time (RT) on the complex stimuli (independent of group; n=20) during the visuomotor task (pre 

and post). ‡ denotes a significant condition x time interaction (p<0.05). * denotes a significant main effect of time 

in MF (p<0.05). ^ denotes a significant difference between MF and CON in the post visuomotor task. Data are 

presented as means ± SE. 

 

4.5 Discussion 

To our knowledge this is the first study that assessed the effect of mental fatigue on open skill-visuomotor 

performance in badminton players and controls. The most important findings were: (I) Badminton players 

demonstrated a superior visuomotor performance compared to controls; (II) Mental fatigue decreased open skill-

visuomotor performance in controls as well as badminton players.  

4.5.1 Manipulation checks 

The behavioral, subjective and physiological measures confirmed higher mental exertion in the Stroop task, 

indicating a greater state of mental fatigue was successfully induced in MF compared to CON. Both subjective 

(higher perceived mental demand) and physiological (higher mean HR; [19]) measures confirmed that the Stroop 

task was more mentally demanding than watching the documentary. Moreover, in the Stroop task the often found 

decrease in accuracy in time was observed in the meaning stimuli in both the badminton players and controls [20, 

21]. Performance on the Flanker task confirmed that cognitive capacity decreased in MF. Participants performed 

slower on the second Flanker task compared to the first. However, also in CON a similar deterioration in RT during 

the second Flanker task was observed. This indicates that the induced mental fatigue did not affect Flanker 

performance in the present study, or, that 90min watching a documentary might also have induced a certain degree 

of mental fatigue. Subjectively a higher feeling of mental fatigue was reported in MF compared to CON in both 

badminton players and controls.  
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4.5.2 Visuomotor task performance 

On average, participants responded 7% slower on the complex stimuli (i.e. blue stimuli) compared to baseline in 

MF, while in CON no significant impairment was found. These results show that mental fatigue particularly 

impaired the RT to the complex stimuli, rather than the simpler stimuli (i.e. green, red and yellow stimuli), in both 

the badminton players and the controls. This is in accordance with previous studies on the effect of mental fatigue 

on cognitive performance [22-24], showing that executive control (i.e. the control to overrule an automatic 

response) is compromised by mental fatigue, but more automatic cognitive processing is relatively insensitive to 

this state.  

According to the proposed models attempting to explain the link between mental fatigue and human performance 

[25], similarities across the cognitive and the physical task should account for the observed mental fatigue-induced 

decrease in sport-specific psychomotor performance. In both the 90-min Stroop task and the 7-min visuomotor 

response task response inhibition was an important executive function determining task performance. In the Stroop 

task response inhibition was necessary for 100% of stimuli, while in the visuomotor task this function was 

employed for 25% of the stimuli. Both tasks also worked with a general response rule and an exceptional response 

rule, meaning that participants had to switch rules depending on specific color features of the stimuli. This task 

switching ability was necessary in 25% of the stimuli, as 25% of the stimuli presented in the Stroop task and in 

the visuomotor task contained the specific feature (i.e. in the Stroop when the letters of the word were colored in 

red; in the visuomotor task when the pad lighted op in the color blue) that indicated that participants had to switch 

to the exceptional rule in order to respond correctly. These two executive functions, response inhibition and task 

switching ability, represent two important similarities across the cognitive and the visuomotor task that might 

explain why carry-over effects were observed. 

In the present study mental fatigue did not affect Flanker performance or performance on the color stimuli in the 

Stroop task (i.e. both response inhibition-measures). As such, the effect of mental fatigue on response inhibition 

appears to be ambiguous. In contrast, task-switching ability was specifically assessed by accuracy and RT on the 

meaning stimuli in the Stroop task and RT on the blue stimuli in the visuomotor task. These measures specifically 

assessed task-switching ability due to their low appearance probability in comparison with the other stimuli in both 

tasks (i.e. the low appearance probability of both stimuli leads to a high relative rate of switch trials; [26]), and 

performance on both these measures was impaired by mental fatigue. This reasoning puts forward task-switching 

as the main executive function that was deteriorated by mental fatigue and confirms the previously reported 

findings of a mental fatigue-induced impairment in task-switching ability [26-28]. Moreover the present findings 

add that this impairment also persists in a more sport-specific setting.  

4.5.3 Badminton players vs controls 

Badminton players only outperformed the controls on the visuomotor task. These findings lead to the conclusion 

that badminton players did not have a superior inhibitory control or task switching-ability compared to controls, 

rather badminton players demonstrated a superior visuomotor RT. This contrasts the observed superior inhibitory 

control in elite cyclists in the study of Martin et al. [8]. In addition, unlike in the study of Martin et al. [8], the 

badminton players in the present study did not demonstrate a greater resistance to mental fatigue than controls. 

Martin et al. [8], and also other studies [2-4], however already indicated that although superior inhibitory control 

might be a psychobiological characteristic of athletes, this does not mean they are immune to mental fatigue. It 
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seems this statement is substantiated in the present study, as unlike the 30-min Stroop task used in the studies of 

Martin et al. [8] and Clark et al. [9] to induce moderate mental fatigue, a 90-min Stroop task was employed to 

induce more severe mental fatigue. This might explain why, in our study, mental fatigue impaired visuomotor 

performance not only in controls but also in badminton players. Another factor that could explain why we cannot 

substantiate the results of Martin et al. [8] is the fact that the badminton players included in the present study were 

trained (see participants characteristics), but not elite. Therefore, caution is warranted in concluding that level of 

training does not improve the resistance to mental fatigue.   

Badminton players thus did not demonstrate superior inhibitory control or task switching-ability compared to 

controls. They did however demonstrate a superior visuomotor RT, hereby substantiating the statement of 

Hülsdünker et al. [29] that open skill-athletes typically outperform non-athletes on visuomotor RT-tasks. 

Hülsdünker et al. [29] assessed why this is the case and concluded that the superior visuomotor performance 

originates from faster visuomotor transformation in the premotor and supplementary motor cortical regions rather 

than from earlier perception of visual signals in the visual cortex.  

4.5.4 Practical applications 

The present study shows that mental fatigue impairs open skill-visuomotor performance in athletes and should 

thus be taken into account by trainers and coaches to optimize sport performance (e.g. avoid long tactical talks 

prior to competition). This stresses the need for future research to develop interventions (e.g. cognitive training, 

mouth rinsing, …) that might be suitable to increase resistance to mental fatigue [15]. In addition the newly 

developed open skill-visuomotor task is shown to be a sensitive tool to assess the performance-impairing effect of 

mental fatigue and subsequently provides a perhaps more suitable alternative, besides the traditional psychological 

cognitive tests (e.g. Flanker task), for trainers and coaches who want to evaluate the individual mental fatigue-

resistance of their athletes.  
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4.6 Conclusion  

Mental fatigue manifested in both badminton players and controls after a 90-min Stroop task and impaired open 

skill-visuomotor performance in both groups. More specifically participants responded on average 7% slower on 

the complex stimuli in the visuomotor task compared to baseline in MF. Firstly, this shows that athletes are indeed 

not immune to mental fatigue. Secondly the present results substantiate mental fatigue does not only impair 

endurance sports, but also impairs open skill-visuomotor performance.  
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5.1 Abstract 

Introduction: Mental fatigue is a psychobiological state caused by prolonged periods of demanding cognitive 

activity that has negative implications on many aspects in daily life. Caffeine and carbohydrate ingestion have 

been shown to be able to reduce these negative effects of mental fatigue. Intake of these substances might however 

be less desirable in some situations (e.g. restricted caloric intake, Ramadan, … ). Rinsing caffeine or glucose within 

the mouth has already been shown to improve exercise performance. Therefore we sought to evaluate the effect of 

frequent caffeine-maltodextrin (CAF-MALT) mouth rinsing on mental fatigue induced by a prolonged cognitive 

task.  

Methods: Ten males (age:23±2y, physical activity:7.3±4.3h/week, low CAF-users) performed two trials. 

Participants first completed a Flanker task (3 min), then performed a 90-min mentally fatiguing task (Stroop task), 

followed by another Flanker task. Before the start and after each 12.5% of the Stroop task (8 blocks) subjects 

received a CAF-MALT mouth rinse (MR;0.3g/25ml CAF;1.6g/25ml MALT) or placebo (PLAC;25ml artificial 

saliva).  

Results: Self-reported mental fatigue was lower in MR (p=0.017) compared to PLAC. Normalized accuracy 

(accuracy first block=100%) was higher in the last block of the Stroop in MR (100.4 ± 1.6%; p=0.032) compared 

to PLAC (91.0 ± 3.5%). P2-amplitude in the dorsolateral prefrontal cortex (DLPFC) decreased over time only in 

PLAC (p=0.017).  

Conclusion: Frequent mouth rinsing during a prolonged and demanding cognitive task reduces mental fatigue 

compared to mouth rinsing with artificial saliva.  

 

 

Keywords: Cognitive fatigue, Mouth Rinse, Electroencephalography, Cognitive performance 
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5.2 Introduction 

Mental fatigue is a psychobiological state caused by prolonged periods of demanding cognitive activity [1, 2] with 

subjective and objective manifestations [for an extensive definition see Van Cutsem et al. [3]]. Subjectively, 

increased feelings of tiredness and lack of energy are reported [4], as well as a decrease in alertness [5]. 

Objectively, mental fatigue can also result in a decline in cognitive performance [6] and alterations in brain activity 

[7, 8]. Multiple studies have shown a negative effect of mental fatigue on many aspects of daily life [3, 9, 10]. In 

the workplace for example, mental fatigue has been found to predict an increased risk of error of surgeons [9], 

while during military operations it has been found to impair physical and cognitive ability [11]. In daily life, fatigue 

can ensue after only 60 min of driving and is associated with a difficulty in maintaining skilled driving behaviour 

[12]. In addition it is also one of the most common symptoms experienced by individuals with neurological 

disorders [10] and recognized as one of the most common and distressing side effects of cancer and its treatment 

[13]. 

Therefore, an interest in how to reduce mental fatigue has emerged. Caffeine (1,3,7-trimethylxanthine) is the most 

commonly consumed psychoactive stimulant in the world, and is often found to enhance human vigilance and 

mental alertness [14]. Consequently the intake of caffeine, with its ability to cross the blood-brain barrier and block 

the adenosine receptors in the brain [15, 16], was the first mental fatigue countermeasure to be tested and found to 

be successful [16, 17]. Furthermore carbohydrate ingestion has also been found to positively affect mental fatigue 

[18]. There is even some evidence that, when administered together, interactions between glucose and caffeine 

counteract mental fatigue even more successful [18]. A combination of caffeine and carbohydrates (e.g. glucose) 

is the main ingredient of the energy drinks that have become so popular in recent years to enhance alertness and 

both physical and cognitive performance [18, 19].  

Caffeine, as well as carbohydrate intake, might however come with some unwanted side-effects. Caffeine-intake 

for example, can cause tremors, nausea, nervousness, increased levels of anxiety or gastrointestinal distress [17]. 

In addition it may also adversely affect sleep patterns [17]. Ingesting carbohydrates might also be forbidden (e.g. 

during Ramadan) or unwanted for health reasons (e.g. diabetes and obesity), especially in the form of energy drinks 

[20]. Therefore, an alternative to caffeine and/or carbohydrate ingestion may be useful to people who want to 

reduce their mental fatigue without the potential negative effects of caffeine and carbohydrate ingestion. 

One of the alternatives to caffeine and/or carbohydrate ingestion is mouth rinsing. Mouth rinsing is a nutritional 

strategy that involves rinsing of substrates within the mouth for several seconds (5–20 s) without ingesting the 

solution, and thus avoids the negative side-effects of intake of the substance. The rinsing of a solution containing 

carbohydrates, caffeine or both, has been shown to reduce fatigue and performance during exercise [21-23].  The 

combination of both carbohydrates and caffeine has even been observed to have an additive positive effect 

compared to the separate use of both substances [22]. However, to the best of our knowledge, the use of mouth 

rinsing with both carbohydrates and caffeine as a mental fatigue countermeasure has never been tested. Therefore, 

we sought to assess the effects of frequent mouth rinsing with a caffeine-maltodextrin (CAF-MALT) solution 

during a prolonged and demanding cognitive task (serial mouth rinsing) on various markers of mental fatigue. We 

hypothesized that the subjective markers (i.e. self-reported mental fatigue), objective markers (decline in cognitive 

performance) and brain activity alterations typically associated with mental fatigue (i.e. a decrease in P2- and P3-
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amplitude and an increase in θ and α activity) would be positively counteracted by the serial CAF-MALT mouth 

rinsing. 

5.3 Methods 

5.3.1 Subjects and ethical approval 

Ten active healthy male students volunteered to participate in this study (mean ± SD; age: 23 ± 2 y, physical 

activity hours(h)/week: 7.3 ± 4.3 h/week). They were all low caffeine users (caffeine usage/day: 101 ± 97 mg/day; 

assessed with a caffeine consumption questionnaire) and none had any known mental or somatic disorder. Each 

subject gave written informed consent prior to the study. Experimental protocol and procedures were approved by 

the Research Council of the Vrije Universiteit Brussel, Belgium. 

5.3.2 Experimental protocol 

Subjects were asked to return to the lab for 3 consecutive trials. The first trial was a familiarization trial (to get to 

know the routine, the equipment and to avoid learning effects), followed by two experimental trials [i.e. a mouth 

rinse-trial (MR) and a placebo-trial (PLAC)] , all separated by at least 6 days (mean: 8 days, SD: 3days) to ensure 

full recovery. All trials were conducted in thermoneutral conditions (20°C, humidity 45%) and took approximately 

2 h (Fig. 1). Preceding the beginning of the familiarization trial subjects were asked about their health status, were 

given written instructions describing all procedures related to the study and got the opportunity to ask questions. 

Subjects were excluded if they presented with any medical history, family history or medication or drug use that 

would prevent them from safely completing the experiment. 

After an overnight fast, subjects entered a sound-insulated and dim lit laboratory at the same time of day. Subjects 

were seated in a comfortable chair, wore earplugs, and kept the same body posture during the entire experiment. 

The MR- and PLAC-trial were completed in a double-blinded, randomized, crossover protocol. To determine the 

effect of the mouth rinse solutions on brain activity, 32 active Ag/AgCl electrodes were attached on the subjects’ 

head preceding each trial (Acticap, Brain Products, Munich, Germany), according to the “10–20 International 

System” [24]. EEG was continuously measured during all cognitive tasks (see EEG recordings for more 

information). All trials began with one baseline Flanker task (duration 3 min), followed by a 90-min mentally 

fatiguing task (in the familiarization trial this task was performed for 30 min) and ended with the same 3-min 

Flanker task as in the beginning (Fig. 1). 
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Fig. 1 Protocol timeline (min). T = ambient temperature; RH = relative humidity; POMS = profile of mood 

states; SIMS = situational & intrinsic motivation scale; GLUC = blood glucose; MFS = self-reported mental 

fatigue;       = mouth rinse;           = Electroencephalography;          = heart rate 

 

 

 

 

 

 

 

 

 

 

Flanker task In the Flanker task all cues were incongruent, meaning the flanking arrows pointed in the opposite 

direction as the target arrow (e.g. < < > < <), requiring a great level of inhibitory control over the flanker arrows 

in order to execute an accurate response. Each array of arrows was focally presented in white text for 200 ms on a 

black background with a variable inter-stimulus interval of 1000, 1200, 1400, or 1600 ms. One hundred and twenty 

trials were presented randomly with right and left target arrows occurring with equal probability. Total Flanker 

task duration was approximately 3 min. Participants were instructed to respond as quickly and accurately as 

possible to the direction of a target arrow while ignoring two flankers on each side. The second Flanker task was 

performed exactly 20 s after completion of the 90-min mentally fatiguing task to avoid a rest break influencing the 

effect of the mentally fatiguing task on the Flanker task performance. To assess performance on the Flanker task 

accuracy and response times (RT) were collected.  

Mentally fatiguing task A modified Stroop task [25, 26] of 90 min, partitioned in 8 blocks of 252 stimuli, was used 

as mentally fatiguing task. Between each block a small intersection of 20 stimuli was implemented (participants 

perceived no stop in the Stroop task) that, without the participants’ knowing, was not accounted for in the accuracy-

, RT- and EEG-analysis (see MR protocol for the purpose). The Stroop task is a task that requires inhibition and 

selective attention on controlled processes [27]. In this task, four coloured words (“red”, “blue”, “green” and 

“yellow”) were presented one at a time on a computer screen. The participants were required to indicate the colour 

of the word (i.e. ‘colour’ stimuli), ignoring the meaning of the word itself. If however, the ink colour was red, the 

button to be pressed was the button linked to the real meaning of the word, not the ink colour (i.e. ‘meaning’ 

stimuli). The word presented and its ink colour were randomly selected by the computer (100% incongruent), with 

all incongruent word-colour combinations being equally common (meaning, in each block 63 words were 

presented in the colour red, yellow, green and blue). Each word was presented on screen in 34 point font for 1000 

ms with a variable inter-stimulus interval of 1100, 1500 or 1900 ms, with each inter-stimulus interval being equally 
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common. Subjects were instructed to respond as quickly and accurately as possible. Performance was assessed 

similarly to the Flanker task and a €50-reward for the best mean performance on the mentally fatiguing task in 

both conditions was offered. This should minimize the negative effects of poor motivation and disengagement on 

Stroop-performance.  

MR solutions The MR solutions were bottled (volume 25 ml) and flavoured with an amount of sodium salt of 

saccharin (0.03 g PLAC MR, 0.45 g CAF-MALT MR) by an independent pharmacy to blind the caffeine-taste, 

and stored in the dark at room temperature. PLAC MR consisted of the main ionic components of saliva, meaning 

distilled water containing 25 mmol KCl (0.047 g) and 2.5 mmol NaHCO3 (0.005 g) [28], which is tasteless and 

odour-free. This ‘artificial saliva’ solution was employed, instead of pure water, to minimize the activation of 

cortical taste areas which are sensitive to water in the mouth [29]. The same solution was used for CAF-MALT 

MR with the addition of 1.2% w/v CAF powder (0.3 g) and 6.4% w/v MALT powder (1.6 g).  

MR protocol Before the start of the Stroop and every 12.5% completion of the 90 min [30] participants had to rinse 

their mouth with a given solution. A block of 20 stimuli was presented during and immediately after the mouth 

rinse. At this time the accuracy and RT data were collected, but not included in any analysis. This created the urge 

to keep on performing and avoided the subjects regaining motivation due to a rest-break. The subjects had to rinse 

the MR solution for 10 s before expectorating it into a waste container. The MR-solution was provided in a 30 ml 

cup, the researcher poured the drink in the mouth of the participant so the participant did not have to detach his 

hands from the keyboard to be able to rinse the solution in the mouth and expectorate it afterwards in another cup. 

The subjects’ subjective rating of the pleasantness of the bitterness/sweetness of the taste stimuli was also assessed 

after each trial using a rating scale [28] (+2= very (pleasant), 0= neutral, and -2= very (unpleasant)).  

During the entire protocol subjects were equipped with a heart rate monitor (HR; Polar RS400, Polar Electro Oy, 

Kempele, Finland). Before and after the entire protocol blood glucose concentration was assessed (Bayer, Contour 

Next Link, Medtronic, Vienna, Austria) by collecting capillary blood at the ear lobe. Subjective psychological 

assessment took place before the start of the cognitive tasks with the Situational Motivation Scale (SIMS) to assess 

participants’ motivation towards the upcoming 90-min Stroop task [31], during the cognitive tasks with a mental 

fatigue- and motivation-scale (0-100) and after the cognitive tasks with the National Aeronautics and Space 

Administration Task Load Index [NASA-TLX; [32]] and the Profile Of Mood States (POMS). The SIMS was 

filled in before the start of the first Flanker task and is a 16-item self-report inventory, which is designed to measure 

intrinsic motivation, identified regulation, external regulation and amotivation. Both a mental fatigue and 

motivation-scale (0-100) were taken before and after both Flanker tasks and within each timeframe of the 20 

unrecorded stimuli during the mentally fatiguing task. These scales assessed respectively how mentally fatigued 

the subject was feeling (MFS; ‘0 = not at all’ to ‘100 = completely exhausted’) and how motivated the subject was 

feeling towards the next block in the Stroop task [‘0 = not at all’ to ‘100 = extremely motivated’ [7]]. For the 

subjects to be able to keep their hands in place on the keyboard they indicated their level of mental fatigue and 

motivation vocally by announcing a number between 0 and 100. The NASA-TLX scale was taken after the 

completion of the second Flanker task and is composed of six subscales assessing subjective workload. The 32-

item POMS scale was also assessed after completion of the second Flanker task and consists of five subscales; 

tension, depression, anger, fatigue and vigor. All items had to be scored from 0 (not at all) until 4 (extremely). The 
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higher the score on a category, the more participants felt this mood state was present. The questionnaire was 

translated into the native language of the participants [Dutch [33]].  

The subjects were given instructions to sleep for at least 7 h, refrain from the consumption of caffeine, alcohol and 

not to practice vigorous physical activity the day before each visit. In addition, to intra-individually standardize 

calorie- and macronutrient-intake, subjects were asked to have the same meal (in terms of content and quantity) 

the evening before each trial and not to have any food/drink intake but water after 22:00 the night before each trial. 

The use of any kind of medicinal products during and between the trials was prohibited. If subjects could not meet 

these standards they were excluded from the study. To facilitate the contact between the EEG-electrodes and the 

subjects’ head, they were also asked to wash their hair (with neutral shampoo) the evening before the experiment. 

5.3.3 EEG recordings and analysis  

During the two Flanker tasks and the modified Stroop task, brain activity was continuously measured. Thirty two 

active Ag/AgCl electrodes were attached on the subjects’ head (Acticap, Brain Products, Munich, Germany), 

according to the “10–20 International System” [24]. The sampling rate was set at 500 Hz (Brain Vision Recorder, 

Brain Products, Munich, Germany). Electrode impedance was kept <10 kΩ throughout the recording. Baseline 

measurements were taken 2 min with eyes open, 2 min with eyes closed. During EEG recordings, subjects were 

seated in a dim lit room, inserted earplugs and had been instructed to minimize movement of the head and eye 

blinking, to avoid frowning, to maintain the same posture and not to touch their head with their hands in order to 

minimize movement, sound and muscle artefacts. 

Event-related potential (ERP) analysis The program Brain Vision Analyzer (version 2.1) was used to pre-process 

and process the data sets. Raw data were down-sampled to 256 Hz, filtered (high pass 0.1 Hz, low pass 45 Hz and 

Notch, Slope 48 dB/oct) with a Butterworth filter design and re-referenced to an average reference. For each data 

set of interest [i.e. ERP during the first, fourth and eighth block in the Stroop task] artefacts were semi-

automatically removed. Then the different stimuli (Flanker task: incongruent; Stroop task: colour / meaning) were 

extracted from the EEG data sets. For stimulus locked ERP analysis, a data window was set at -200 to 800 ms 

relative to stimulus onset. Trials in which performance errors occurred were excluded. For each ERP epoch, 

independent component analysis (ICA) and inverse ICA further reduced artefacts. Furthermore, a baseline 

correction was applied (period -200 to 0 ms). Epochs were then averaged and the visually evoked potentials, P2, 

N2, P3b were assessed. Peak amplitudes and onset latencies were measured for the P2, N2 and P3b components 

in their specific region of interest (ROI; Table 1). The P2 is known to be frontally distributed [34] and was therefore 

analysed in the orbitofrontal cortex (OFC) and dorsolateral prefrontal cortex (DLPFC). It has been related to 

attentive stimulus evaluation or the recall of task rules [35]. The P2 was defined as the largest positive-going peak 

occurring within the time window between 80 and 260 ms and was visually confirmed. The N2 is usually 

interpreted as an index of conflict monitoring [36] and emerges fronto-centrally after the P2 [34], thus also for the 

N2 the OFC and DLPFC was analysed. The N2 was defined as the largest negative-going peak occurring within 

the time window between 180 and 440 ms and was visually confirmed. The P3b is linked to salience processing 

and appears to occur when subsequent attentional resource activations promote memory operations in temporal-

parietal areas [37]. Therefore the fusiform gyrus (FFG), the angular gyrus (AG) and the somatosensory association 

cortex (SAC) were analysed to observe any effects on the P3b. The P3b was defined as the largest positive-going 
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peak occurring within the time window between 180 and 415 ms and was visually confirmed. Thereafter, we 

exported the data from Brain Vision Analyzer to SPSS (version 22.0; SPSS, Chicago, IL) for further analysis. 

Table 1. Regions Of Interest (ROI) defined by Brodmann Areas (BAs) and electrode sites according to the “10–

20 International System”. V denotes the ROI checked for that particular electroencephalography-measure. 

Table 1. Regions Of Interest (ROI) 

ROI Brain region BAs Electrode sites P2 & N2 P3b EEG 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Inferior/Orbitofrontal cortex 

Broca’s area 

Dorsolateral prefrontal cortex 

Anterior prefrontal cortex 

Premotor cortex 

Primary motor cortex 

Somatosensory Association Cortex 

Angular Gyrus 

Fusiform Gyrus 

11, 47 

44, 45 

8, 9, 46 

10 

6 

4 

7 

39 

37 

F7 

FC6, F8 

F3, Fz, F4 

FP1, FP2 

FC1, FC2 

C3, Cz, C4 

Pz 

P3, P4 

P7, P8, PO9, PO10 

V 

- 

V 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

V 

V 

V 

V 

V 

V 

V 

V 

V 

V 

V 

V 

 

Spectral power analysis Similar to the ERP analysis, the program Brain Vision Analyzer (version 2.1) was used 

to pre-process and process the data sets for the analysis of the total power. Raw data were down-sampled to 256 

Hz, filtered (high pass 0.1 Hz, low pass 45 Hz and Notch, Slope 48 dB/oct) with a Butterworth filter design and 

re-referenced to an average reference. For each data set of interest [i.e. Continuous EEG measurements from the 

fifth to the eighth minute in the first (5-8 min), fourth (38 min 45 sec-41 min 45 sec) and eighth (83 min 45 sec-

86 min 45 sec) block in the Stroop task] artefacts were semi-automatically removed. For each continuous EEG 

data set of interest segments with a length of 4 s and with an overlap of 2 s were extracted [38]. Subsequently ICA 

and inverse ICA further reduced artefacts. The resulting data segments were tapered with a Hanning window with 

10% of the total segment length. Fast Fourier transform (FFT) power spectra with a spectral resolution of 0.25 Hz 

were calculated for both sides of the spectrum, resulting in FFT segments containing the full spectral information. 

The resulting FFT segments were averaged to stabilize the spectral content. The power in the FFT was extracted 

for theta (θ, 3.5–7.5 Hz), alpha (α1, 7.5–10 Hz; α2, 10–12.5 Hz) and beta (β1, 12.5–18 Hz; β2, 18–35 Hz) in each 

ROI. 

5.3.4 Statistical analysis 

All data are presented as means ± standard error (SE) unless stated otherwise. The Shapiro-Wilk test was used to 

test the normality of the data, sphericity was verified by the Mauchly's test. When the assumption of sphericity 

was not met, the significance of F-ratios were adjusted with the Greenhouse-Geisser procedure. Subjective data. 
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NASA-TLX-, SIMS- and POMS-data were not normally distributed and therefore Wilcoxon signed ranked tests 

were used to test the effect of condition (MR vs. PLAC) in each subscale. Paired sample t-tests were employed to 

assess the effect of condition on the pleasantness-rating of the taste stimuli. Two-way repeated measure ANOVAs 

were used to test for the effect of condition and time on motivation (2 x 10) and MFS (2 x 11). Behavioural data. 

Stroop accuracy-data had to be normalized to a baseline performance (i.e. performance on the first block = 100%) 

within each condition and subject (see Results) in order to be normally distributed. The effect of condition, time 

(second to eighth block in the Stroop) and stimuli (colour vs. meaning) on normalized Stroop accuracy-data was 

tested with a three-way repeated measures ANOVA (2 x 7 x 2). The same three-way repeated measures ANOVA 

with an extra level in the time variable (the first block; 2 x 8 x 2) was used to analyse Stroop RT-data. A two-way 

repeated measure ANOVA (2 x 2) was used to assess the effect of condition and time on Flanker-accuracy and -

RT.  (Neuro)Physiological data. The effect of condition and time on blood glucose concentration (2 x 2) and HR 

(2 x 11) was tested with a two-way repeated measure ANOVA. Four-way repeated measure ANOVAs were used 

to assess the effect of condition, time (first to eighth block in the Stroop), stimuli (colour vs. meaning) and ROI 

(see Table 1) on multiple ERP (P2-, N2- and P3b-amplitude and -latency). Square root transformed normalized 

(spectral power during baseline eyes open condition = 100%) spectral power (α1, α2 and θ) variables associated 

with mental fatigue were analysed with a three-way repeated measures ANOVA (condition, time and ROI; 2 x 3 

x 9; see Table 1). If significant interaction effects in the repeated measure ANOVAs were observed, subsequent 

repeated measure ANOVAs or paired sample t-tests (depending on the amount of interacting factors) were 

performed in order to elucidate the main effect of the interacting factors. If no significant interaction effects were 

observed, main effects were immediately observed and further interpreted through pairwise comparisons with 

Bonferroni correction. Within-subjects correlation coefficients (r) were computed for the correlations between 

MFS/P2-amplitude in DLPFC and Stroop accuracy on ‘meaning’ stimuli/P2-amplitude in DLPFC using the 

method described by Bland and Altman [39]. This method adjusts for repeated observations within participants by 

using multiple regression with “participant” treated as a categorical factor using dummy variables. Significance 

was set at 0.05 for all analyses. All statistical tests were conducted using the Statistical Package for the Social 

Sciences, version 24 (SPSS Inc. Chicago, IL, USA). 

5.4 Results 

5.4.1 Subjective data 

No significant condition x time interaction was found for self-reported mental fatigue. Self-reported mental fatigue 

significantly increased in time from 10.1 ± 2.5 before the first Flanker task to 42.7 ± 7.4 after the second Flanker 

task (F(1.2, 9.3)=12.7; p=0.005) and was, on average, significantly lower in MR (23.2 ± 4.4) compared to PLAC 

(30.4 ± 4.6; F(1, 8)=9.0; p=0.017; main effect of condition; Fig. 2). The POMS however showed no difference 

between conditions in fatigue or any other subscale (depression, tension, anger and vigor). No difference between 

conditions was observed in terms of general motivation towards the Stroop (assessed with the oral 0-100 scale) or 

intrinsic motivation, identified regulation, external regulation and amotivation (assessed with the SIMS). General 

motivation (assessed with the oral 0-100 scale) did decrease in time from 86.5 ± 2.9 at the start of the protocol to 

69.9 ± 5.6 at the end of the Stroop task (F(1.6, 14.8)=9.9; p=0.003). The NASA-TLX data revealed that there was 

no effect of condition on any subscale (mental demand, physical demand, temporal demand, performance, effort, 

frustration). Although efforts were made to mask the differing taste between both mouth rinse solutions, 
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participants scored the pleasantness of the bitter/sweet taste in MR (-0.9) significantly lower than in PLAC (0.7; 

p=0.008). 

Fig. 2 Self-reported mental fatigue throughout the protocol; before and after the first Flanker task (Pre F1, S0), 

after each block during the Stroop task (S1, …, S8) and after the last Flanker task (Post F2). ‡ Significant effect 

of time (p<0,05). * Significant effect of condition (p<0,05). Data are presented as means ± SE. 

 

5.4.2 Behavioural data 

Stroop performance 

A triple condition x time x stimulus-type interaction (F(6, 54)=2.7; p=0.022) for the normalized Stroop accuracy 

was found. A post hoc condition x time ANOVA in each stimulus-type revealed a condition x time interaction 

within the ‘meaning’ stimuli (F(6, 54)=3.3; p=0.008) and a main effect of time within the ‘colour’ stimuli (F(6, 

54)=2.4; p=0.039; see Table 2). Concerning the ‘meaning’ stimuli, follow-up paired sample-t-tests within each 

time interval revealed that accuracy was higher in the eighth and last block of the Stroop in MR (100.4 ± 1.6%) 

compared to PLAC (91.0 ± 3.5%; p=0.032; see Table 2). Regarding Stroop RT, a time x stimulus-type interaction 

was observed in the three-way-ANOVA (F(7, 63)=8.1; p<0.001). The post-hoc condition x time ANOVA in each 

stimulus-type revealed that for the ‘meaning’ stimuli participants reacted faster in time (F(1.9, 17.1)=4.9; p=0.023; 

see Table 2) independent of condition. For the ‘colour’ stimuli no interaction or main effects were found. 
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Flanker performance 

No interaction effect or time effect was observed for accuracy, participants performed worse in PLAC (0.89 ± 

0.02) than in MR (0.91 ± 0.01; F(1, 9)=6.6; p=0.031; see Table 3). Regarding RT no interaction effect or main 

effect of condition or time was observed (see Table 3).  

Table 3. Flanker performance; Accuracy and RT in pre and post Flanker task. Data are presented as means ± SE; 

* indicates a significant difference compared to PLAC. 

Table 3. Flanker performance; Accuracy and RT in pre and post Flanker task 

  Pre Post 

MR (accuracy ± SE)* 0.91 ± 0.02 0.91 ± 0.01 

PLAC (accuracy ± SE) 0.92 ± 0.01 0.86 ± 0.03 

MR (RT ± SE; ms) 350 ± 13 342 ± 11 
PLAC (RT ± SE; ms) 360 ± 8 365 ± 11 

 

5.4.3 (Neuro)Physiological data 

Heart rate and blood glucose 

For HR no interaction effect or main effect of condition was observed. HR did however decrease in time in both 

conditions (F(4.1, 37.0)=5.0; p=0.002) from 71 ± 3 bpm before the pre-Flanker to 63 ± 3 bpm after the post-

Flanker. For blood glucose no interaction effect or main effect of time was found. There was however a main 

effect of condition (F(1, 8)=21.6; p=0.002). Blood glucose was higher in MR (95.9 ± 3.9 mg/dl) than in PLAC 

(88.4 ± 3.2 mg/dl).  

Event related potentials  

P2. For P2-amplitude a condition x stimulus-type x ROI (F(1, 9)=5.3; p=0.046) and time x stimulus-type x ROI 

(F(2, 18)=4.3; p=0.03) interaction effect in the four-way ANOVA led towards the implementation of a post hoc 

condition x time x ROI ANOVA in each stimulus type. This revealed a condition x ROI interaction (F(1, 9)=5.8; 

p=0.039) for the ‘meaning’ stimuli and a condition x time interaction (F(2, 18)=5.0; p=0.018) for the ‘colour’ 

stimuli. Subsequently, for the ‘meaning’ stimuli, follow-up condition x time ANOVAs in both ROIs were 

performed. For the ‘colour’ stimuli condition x ROI and time x ROI ANOVAs were performed. Within the 

‘meaning’ stimuli, the P2-amplitude in the OFC was larger in MR (2.6 ± 0.5 µV) than in PLAC (1.9 ± 0.4 µV; 

F(1, 9)=9.9; p=0.012) independently from time. In the DLPFC a condition x time interaction was present (F(2, 

18)=4.2; p=0.032). Amplitude decreased in time in PLAC (F(2, 18)=5.1; p=0.017; see Fig. 3a), whilst in MR time 

did not have an effect (Fig. 3b). Paired sample-t-tests indicated that P2-amplitude was larger in PLAC in the first 

time-interval (p=0.049; see Fig. 3a & b), while in the third and last time-interval it was larger in MR (p=0.034; see 

Fig. 3a & b). Within the ‘colour’ stimuli, P2-amplitude decreased over time in PLAC (F(2, 18)=11.1; p=0.001) 

independently from ROI. In MR P2-amplitude did not differ over time (no time x ROI interaction or main effect 
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of time) in the ‘colour’ stimuli. No interaction effects or main effect of time or condition were observed for latency. 

N2. For N2-amplitude no interaction effects or main effect of time or condition were observed. For N2-latency a 

time x stimulus-type interaction was present (F(2, 18)=6.4; p=0.008). N2-latency on the ‘meaning’ stimuli became 

longer in time (304.2 ± 12.0 ms → 330.8 ± 19.9 ms) independent of condition (F(2, 18)=4.3; p=0.029). On the 

‘colour’ stimuli, N2-latency did not differ between conditions or in time. P3b. No interaction effects or main effect 

of time or condition were observed for P3b-amplitude. A time x ROI interaction was present in the four-way 

ANOVA for P3b-latency. Subsequent follow up condition x time x stimulus-type ANOVAs in all three ROIs 

revealed that only in the FFG, P3b-latency became longer in time (261.9 ± 11.8 ms → 293.0 ± 8.5 ms; F(2, 

18)=11.6; p=0.001) independent of condition.  

Fig. 3 a. Grand-average ERPs at Fz elicited by the ‘meaning’ stimuli (i.e. indicate the meaning of the word) in the 

first block (solid black line), fourth block (large dashed line) and eighth block (small dashed line) during the Stroop 

task in PLAC. ‡ Significant main effect of time (p<0.05). b. Grand-average ERPs at Fz elicited by the ‘meaning’ 

stimuli in the first block (solid black line), fourth block (large dashed line) and eighth block (small dashed line) 

during the Stroop task in MR. 

 

Spectral power 

In all spectral power frequencies (θ, α1, α2, β1 and β2) no interaction or main effect of condition and time was 

observed. Only β1-power was found to decrease in time during the Stroop task (F(2, 18)=5.6; p=0.013).  

5.4.4 Correlations 

Within-subjects correlation coefficients were computed for those parameters that, similar to the markers of mental 

fatigue, were affected by the intervention (i.e. an increase in self-reported mental fatigue and a decrease in 

accuracy). No significant correlations were however observed between P2-amplitude and MFS or Stroop accuracy 

on the ‘meaning’ stimuli.  
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5.5 Discussion 

This study is the first to assess the ability of serial CAF-MALT mouth rinsing to counteract mental fatigue. It was 

observed that a serial CAF-MALT mouth rinse-intervention counteracts subjective, behavioural and 

electrophysiological (i.e. decreased P2-amplitude was counteracted in MR) mental fatigue.  

In both conditions, MR as well as PLAC, the 90-min Stroop task elicited mental fatigue. This was measured as an 

increase in self-reported mental fatigue and a decrease in accuracy. However, small but important differences were 

observed between both conditions. Despite that self-reported mental fatigue significantly increased in both 

conditions, significantly less mental fatigue was perceived in MR. Participants commenced the protocol in both 

conditions with a similar degree of self-reported mental fatigue (MR: 11.2 ± 2.7; PLAC: 8.9 ± 3.2), whilst at the 

end this differed substantially (MR: 34.7 ± 7.8; PLAC: 50.7 ± 8.3). POMS measures however showed no difference 

in fatigue between conditions. It was suggested by Van Cutsem et al. [3] that the POMS may be less capable of 

detecting small but relevant short-term changes in mental fatigue and this seems to be confirmed in the present 

study.  

Behaviourally, performance on the ‘meaning’ stimuli (which represent the stimuli in which subjects had to respond 

to the meaning of the word, and not the colour), also indicated a difference was present between conditions. This 

became specifically apparent in the eighth and last block of the Stroop task. Accuracy on the ‘meaning’ stimuli in 

this block was higher in MR compared to PLAC. This means that participants were able to keep up their cognitive 

performance for longer. Furthermore participants reacted faster on the ‘meaning’ stimuli in time, independent from 

the condition. This indicates participants adopted the higher risk strategy with increasing time-on-task with more 

success in MR than in PLAC, as participants were only able to keep up accuracy in MR condition. The lower 

occurrence rate (25% of all stimuli) of these ‘meaning’ stimuli brings along a higher mental demand, which could 

explain why performance on these stimuli was more sensitive to the intervention-effect. In order to be able to 

observe the effect of mental fatigue on cognitive performance independently from time-on-task, a Flanker task 

was completed before and after the mentally fatiguing task. Performance on this task confirmed that cognitive 

performance was better in MR, mainly due to a higher accuracy on the Flanker task completed after the mentally 

fatiguing task (see Table 3). Consequently also this measure indicates that participants were more resistant to 

mental fatigue in MR.  

Multiple functional magnetic resonance imaging- [30, 40, 41] and EEG-studies [42] have demonstrated that rinsing 

a solution containing glucose and/or caffeine activates certain brain regions (e.g. anterior cingulate cortex, 

orbitofrontal cortex, striatum, …). An objective effect of CAF-MALT mouth rinsing on the brain was confirmed 

by our data. Specifically, serial CAF-MALT mouth rinsing prevented the decrease in P2-amplitude in time. The 

P2 is a component of an ERP that appears around 200 ms after the onset of a stimulus [34] and its amplitude is 

suggested to serve as an electrophysiological marker of the process in which cue information is associated to the 

functional properties of this information (i.e. the recall of task rules) [34, 43]. In other words, serial CAF-MALT 

mouth rinsing prevented a decrease in the ability to select relevant cue information. Nonetheless, the change in 

P2-amplitude was not significantly correlated with the other markers of mental fatigue. In contrast, the frequently 

reported shift of EEG power towards low-frequency bands (δ, θ, α) in mentally fatigued subjects [38, 44-48] was 

not observed in the present study. It is possible this shift in spectral distribution was prevented in both MR and 

PLAC by the brain activating properties of both substances. In the study of Chambers et al. [30] it is shown that 
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caloric (e.g. the solution used in MR in the present study) as well as non-caloric sweetened (e.g. the solution used 

in PLAC in the present study) solutions activate multiple brain areas (i.e. right insula, frontal operculum, left 

dorsolateral prefrontal cortex). The present results suggest that a prevention of this shift in spectral distribution 

[i.e. a decrease in arousal [49]] is however not sufficient to postpone the occurrence of mental fatigue, subjectively 

and behaviourally. Unfortunately we did not include a control trial (i.e. without mouth rinse) to confirm whether 

the spectral distribution-shift occurred in the first place in the present study. Therefore we can also not further 

substantiate this suggestion.   

A potential mechanism for the serial CAF-MALT mouth rinsing positively affecting mental fatigue might be the 

absorption through the oral mucosa, especially for a lipophilic agent like caffeine [50]. Caffeine, rapidly taken up 

in the bloodstream through the buccal mucosa, may arrive in the brain via the systemic circulation and exert its’ 

known effects (i.e. antagonist of adenosine). Doering et al. [51] investigated however the effects of serial caffeine 

mouth rinsing on endurance cycling time-trial performance and found no significant increase in plasma caffeine 

concentration after repeated oral exposure. Similarly, Rollo et al. [52] assessed whether peripheral blood glucose 

concentration is affected by serial carbohydrate mouth rinsing (i.e. Lucozade Sport, Brentford, England) and did 

not observe any increase. This is confirmed by our results, although blood glucose was higher in MR, it was not 

altered differently in time in both conditions. In addition, the time dynamics of the changes in other parameters 

like P2-amplitude and accuracy during the Stroop task cannot be explained by the higher blood glucose in MR. 

Therefore this difference in glucose between MR and PLAC, most probably, does not explain our results. Although 

both caffeine and maltodextrin were probably not taken up systemically during the serial CAF-MALT mouth 

rinsing, it could still be that minimal amounts of both substances were absorbed through the oral mucosa and 

exerted their effect in the brain without showing up in the blood. A placebo effect [53] could also explain the 

observed results and could have been triggered by the participants’ awareness that they were expected to perform 

better in one trial compared to the other. Participants were however informed in a way that they were naïve of the 

study’s real aims and hypotheses. This also anticipated the fact that pleasantness of taste was rated lower in MR 

than in PLAC. A possible role of motivation in the observed results was also accounted for. A monetary incentive 

was provided in an attempt to prevent task disengagement and to restrict possible alterations in motivation 

throughout the task performance [3, 54]. In addition the level of motivation was monitored before the start of the 

task (SIMS) and during the task (oral 0-100 scale). In none of the two methods an effect of the intervention was 

found. A final potential mechanism by which the serial CAF-MALT mouth rinsing attenuated mental fatigue is 

the activation of specific brain regions (i.e. the anterior cingulate cortex and the right caudate, that forms part of 

the striatum) known to produce dopamine [30, 55]. A mechanism that has already been suggested in the self-

control literature, where a carbohydrate-mouth rinse has been shown to successfully counter on self-control 

impairments [56]. Moreover mental fatigue has already been associated multiple times with alterations in the 

anterior cingulate cortex [4, 6, 57, 58]. This way a mouth rinse containing caffeine and maltodextrin might be able 

to (partly) restore dopaminergic transmission in the striatum and anterior cingulate cortex and postpone mental 

fatigue by activating sensory neurons in the mouth and initiating a signal transduction cascade towards the brain. 

Future research 

In the present study caffeine and maltodextrin were combined in one mouth rinse in order to increase the chances 

to successfully counter the electrophysiological changes associated with mental fatigue. This assumption was 
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based on a study conducted by Beaven et al. [22], who found that there was an additive effect of combining caffeine 

and carbohydrates on power production during repeated sprints on a cycle ergometer. The additive positive effect 

suggested that distinct mechanisms are involved in the performance enhancement [22]. This indicates that it would 

be interesting to look at the separate effects of a maltodextrin mouth rinse and a caffeine mouth rinse on the 

occurrence of mental fatigue. Looking at the separate effects of both mouth rinses might further increase our 

knowledge on the electrophysiological measures laying at the base of the occurrence of mental fatigue. The present 

study was completed with low caffeine users in a fasted state, meaning that it is still to be confirmed whether these 

effects would still occur in another population at another time of day and when switching between tasks. Another 

important aspect that needs further investigation is whether serial mouth rinsing is also capable of postponing 

mental fatigue in a less demanding way. The mouth rinse intervention in the present study was based on a study 

of Carter et al. [59], were participants also had to rinse their mouth every 12.5% task completion. A less demanding 

mouth rinse-protocol, that is still able to postpone mental fatigue, would greatly improve its applicability. Caution 

is however warranted as a recent study of Kumar et al. [60] reported that a single carbohydrate mouth rinse 

preceding a 20-min cognitive task, was unable to prevent a decrease in cognitive performance in time.   

5.6 Conclusion  

A 90-min Stroop task induced mental fatigue in both MR and PLAC. However in the MR condition mental fatigue 

was induced to a lesser extent, indicated by a slower increase in self-reported mental fatigue, the ability to keep 

up cognitive performance and by preventing a mental fatigue-associated electrophysiological change (i.e. 

decreasing P2-amplitude) occurring with increasing time-on-task. Two potential mechanisms to account for the 

ability of serial CAF-MALT mouth rinsing to counter mental fatigue are: 1) absorption of caffeine and 

maltodextrin via the brain that does not show up systemically; 2) restored dopaminergic brain transmission via 

sensory neurons initiating a signal transduction cascade towards the brain. In addition, for individuals that do not 

want to or cannot ingest caffeine and/or carbohydrates but need to reduce mental fatigue, these findings provide a 

possible practical solution. 
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6.1 Main findings 

• Mental fatigue and physical performance; literature review (Chapter 2) 

o Research Question 1: Does mental fatigue affect physical performance, and if yes, what are the 

underlying factors? 

Mental fatigue impairs endurance performance (decreased time to exhaustion and self-selected power 

output/velocity or increased completion time), and this impairment appears to be associated with a higher 

than normal perceived exertion. Physiological variables traditionally associated with endurance performance 

(heart rate (HR), blood lactate ([Bla]), oxygen uptake (VO2), cardiac output (CO)) were not directly affected by 

mental fatigue during and after endurance performance. Maximal strength, power, and anaerobic work were not 

affected by mental fatigue. This led to the conclusion that duration, intensity and a cognitive component in the 

physical task appear to be important factors in the decrease in physical performance due to mental fatigue. 

 

• Mental fatigue and the heat-induced decrease in endurance performance (Chapter 3) 

o Research Question 2: Does mental fatigue affect endurance performance in the heat? 

Mental fatigue does not impair endurance performance in the heat. Although a ‘mild form’ of mental fatigue 

was successfully induced in the heat (30°C) with a 45-min Stroop task, this mild mental fatigue did not influence 

participants’ psychological or physiological responses during the endurance task or their endurance performance 

in the heat. These findings could indicate that heat is a moderating factor of the mental fatigue-induced endurance 

impairment. It is plausible the higher perception of effort experienced during endurance exercise in a hot 

environment or when mentally fatigued may share a common psychobiological mechanisms: negative valence. 

Exercising in the heat is associated with subjective thermal strain (e.g. thermal discomfort), whereas mental fatigue 

is known to induce a more negative mood. The valence of emotional stimuli has been shown to affect perception 

of effort [1] and the activity of the cingulate cortex [2] and prefrontal and premotor cortical areas [3] related to 

perception of effort [4, 5]. Thus, it is plausible that a similar psychobiological mechanism may explain the effects 

of heat stress and mental fatigue on perception of effort and why the effects of the two stressors do not summate. 

In other words, in conditions of thermal discomfort, mild mental fatigue may not lead to a further increase in 

negative valence and perception of effort. 

 

o Research Question 3: Does a heat pad, locally applied to the upper back, impair endurance 

performance?  

Subjective thermal strain impairs endurance performance in a temperate environment. This finding 

substantiates that subjective thermal strain is a mediator of the heat-induced performance impairment, 

independently from the physiological strain that is associated with it. Furthermore, it substantiates the hypothesis 

that heat stress and mental fatigue may share a common psychobiological mechanism, i.e. the negative valence of 

emotions associated with both heat stress and mental fatigue increases perception of effort and subsequently impair 

physical performance. Neurophysiologically, this might be explained by a higher activity of the premotor cortex 

when exercising in an unpleasant condition like when enduring very high thermal discomfort. This suggestion is 

supported by a neuroimaging study showing higher premotor cortex activity when unpleasant stimuli are provided 

during exercise [3]. Furthermore the activity of premotor and/or motor areas of the cortex is associated with RPE 

during exercise [5-7] as predicted by the corollary discharge model of perceived effort [8]. From a more applied 
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point of view these results justify the use of specific techniques aiming to reduce subjective thermal strain (e.g. 

menthol spray). 

 

• Mental fatigue and sport-specific psychomotor performance (Chapter 4) 

o Research Question 4: Does mental fatigue impair sport-specific psychomotor performance? 

o Research Question 5: Does level of training affect the impact of mental fatigue on sport-specific 

psychomotor performance? 

Mental fatigue decreased open skill-visuomotor performance in controls as well as badminton players. 

These results substantiate that mental fatigue does not only impair endurance sports, but also impairs sport-specific 

psychomotor performance (e.g. open skill-visuomotor performance). Mental fatigue particularly impaired the 

response time to the complex stimuli, rather than the simpler stimuli in both the badminton players and the controls. 

This is in accordance with previous studies on the effect of mental fatigue on cognitive performance [9-11], 

showing that executive control (i.e. the control to overrule an automatic response) is compromised by mental 

fatigue, but more automatic cognitive processing is relatively insensitive to this state. In addition, these results also 

demonstrate that, although Martin et al. [12] indicated that superior inhibitory control might be a psychobiological 

characteristic of athletes, this does not mean they are immune to mental fatigue.  

 

• Counteracting mental fatigue (Chapter 5) 

o Research Question 6: Does serial caffeine-maltodextrin (CAF-MALT) mouth rinsing counteract 

mental fatigue? 

Serial CAF-MALT mouth rinsing counteracts subjective, behavioural, and electrophysiological mental 

fatigue. Practically this intervention provides the opportunity to avoid the, sometimes, unwanted side effects of 

caffeine and/or maltodextrin intake. Caffeine intake, for example, can cause tremors, nausea, nervousness, 

increased levels of anxiety, or gastrointestinal distress [13]. In addition, it may also adversely affect sleep patterns 

[13]. Ingesting carbohydrates might also be forbidden (e.g. during Ramadan) or unwanted for health reasons (e.g. 

diabetes and obesity), especially in the form of energy drinks [14]. Mechanistically two potential pathways can be 

put forward to account for the ability of serial CAF-MALT mouth rinsing to counter mental fatigue: (1) absorption 

of caffeine and maltodextrin via the oral mucosa that does not show up systemically and (2) restored dopaminergic 

brain transmission via sensory neurons initiating a signal transduction cascade towards the brain.  

6.2 State of the art of mental fatigue-research in sports science 

To situate the results obtained in the present PhD within the existing body of research on mental fatigue in sports 

science and to provide an overview of the advances made in the mental fatigue-research in sports science we 

decided to replicate the search-strategy defined in our published systematic review on mental fatigue and physical 

performance. This replication resulted in an oversight of the published studies on mental fatigue and physical 

performance between April 2016 and December 2018. The search in Pubmed and Web of Science indicated that 

within this period, besides the studies included in the present PhD, seven more articles were published on the topic 

[15-21]. Screening the reference lists of these seven articles resulted in 12 more articles on the topic of mental 

fatigue and physical performance [22-33].  
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6.2.1 Methodology to induce mental fatigue 

In our systematic review the importance of the length of the cognitive task used to induce mental fatigue was 

already indicated and substantiated [34]. A cut-off point at 30-min was set based on the reasoning that shorter tasks 

may be sufficiently arduous, yet they may not be of sufficient duration or intensity to result in mental fatigue. 

Despite that we still support the reasoning behind this cut-off point at 30-min, we are aware that applying this cut-

off results in the exclusion of multiple high quality studies. These studies would otherwise have provided valuable 

additional knowledge and as such conducting a meta-analyses that includes all studies that assessed the effect of a 

preceding cognitive task on physical performance is of great importance. Such a meta-analyses could result in 

bringing together both the line of research on self-control depletion and on mental fatigue. However, in the 

following discussion on the 19 articles that were published in the last 2.5 years on mental fatigue and physical 

performance, it was decided, similarly as in Chapter 2, to apply the cut-off of 30-min. This resulted in the exclusion 

of five articles [15, 21, 22, 26, 27]. Despite relevant attempts in inducing mental fatigue in a more ecological valid 

way [27], assessing the effects of prior cognitive exertion on applied open-skill sports performance [21] and 

assessing the role of self-efficacy in the negative effects of mental fatigue on physical performance [22], the results 

of these studies will not be further included in the provided state of the art of the mental fatigue-research in sports 

science. This results in 14 new studies on the topic. When these 14 new studies are compared with the studies 

included in the systematic review [34], it is clear that there is a tendency towards the use of a 30-min Stroop task 

to induce mental fatigue. Six out of 14 used such a 30-min Stroop task [16, 17, 19, 24, 28, 32]. In contrast, Pires 

et al. [23] chose for a 30-min rapid visual information processing test, in the two studies of Head et al. [29, 30] a 

50-min Go/No-Go task was employed, while Vrijkotte et al. [25] went for a 90-min Stroop task, Silva-Cavalcante 

et al. [18], Azevedo et al. [31] and Le Mansec et al. [20] for a 90-min AX-CPT and Otani et al. [33] for a 90-min 

test battery consisting of the Stroop task, Sternberg paradigm and Rapid visual information processing test. Within 

this PhD the choice was made to employ the Stroop task to induce mental fatigue, however unlike the majority of 

the other recently published studies, a 45-min (see Chapter 3) and a 90-min Stroop task was used (see Chapter 4 

& 5). As previously indicated the length of the task used to induce mental fatigue is important as it is assumed that 

the longer the task lasts the more mental fatigue is induced [35]. Looking at our own studies that induced mental 

fatigue and assessed its effect on physical performance it seems this statement is substantiated. In Chapter 3 (part 

1) subjective mental fatigue was scored ~56/100 after a 45-min Stroop task, while in Chapter 4 this was scored 

~68/100 after a 90-min Stroop task. The tendency towards using 30-min versions of cognitive tasks to induce 

mental fatigue is probably triggered by such designs being less time-demanding, but caution is warranted due to 

the uncertainty of being able to induce sufficient mental fatigue with such shorter tasks. Another point of attention 

is the control task, the majority of the studies published before and after April 2016, including our own studies, 

used a documentary, reading magazines or seated rest as a control condition. Despite the obvious assumption that 

these tasks are less/not mentally fatiguing, this might not be the case. Both in Chapter 3 and 4, watching 

documentaries was observed to induce a significant amount of subjective mental fatigue. This subjective mental 

fatigue induced by the documentaries was still lower than the fatigue induced by the Stroop task, but calls for 

attention in the design of future studies on the topic. Mental fatigue arising from watching documentaries might 

result from the false assumption that the chosen documentaries are engaging, consequently the self-control needed 

to stick with watching aversive documentaries enlarges the probability of these documentaries inducing mental 
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fatigue. Attention is thus required in future studies to select appropriate control tasks that maximize the ability to 

observe the effects of mental fatigue on physical performance.  

In our systematic review (see Chapter 2) we indicated that to confirm whether mental fatigue was induced requires 

subjective, behavioural, and physiological measures, and the interactions between all three manifestation areas of 

mental fatigue should be interpreted. In the systematic review, most studies that were included assessed at least 

two of these manifestation areas in order to control whether mental fatigue was induced [36-39]. In the recently 

published research on mental fatigue and physical performance (i.e. after April 2016), this suggestion is mostly 

not taken into account. Eight out of the 14 new studies solely included a subjective measure as manipulation check 

[16-20, 31-33], despite all of them had the opportunity to assess and report performance (in function of time-on-

task) on the mentally fatiguing task. Even better than reporting the time-on-task evolution of performance on the 

mentally fatiguing task would have been to include an independent measure of cognitive performance (i.e. the 

indirect method [34]), however only one study did this [24]. Slimani et al. [24] used the d2-test as independent 

measure of cognitive performance and observed performance on this test was impaired after the mentally fatiguing 

task compared to after the control task. Besides subjective and behavioural markers of mental fatigue, 

neurophysiological manipulation checks were also suggested in our review [34]. However, only the two studies of 

Head et al. [29, 30] and the study of Pires et al. [23] attempted to substantiate (neuro)physiologically whether 

mental fatigue was successfully induced. In their first study Head et al. [29] found that VO2 did not differ while 

completing the mentally fatiguing task and the control task. In their second [30] they reported that heart rate 

variability was lower during the mentally fatiguing task than the control task. Pires et al. [23] monitored prefrontal 

brain activity and observed that, similarly like our own results in Chapter 3, θ-power at the FP1-position was higher 

during the mentally fatiguing task compared to the control task and more importantly that θ-power increased as 

the rapid visual information processing-task progressed. This analysis of the employed manipulation checks 

exposes the need for future studies to adopt a more thorough strategy. In our own studies (see Chapter 3 and 4) we 

attempted to apply such a strategy and monitored different subjective, behavioural and (neuro)physiological 

markers of mental fatigue, which resulted in a more nuanced view on the mental fatigue that was induced.  

6.2.2 Behavioural effects of mental fatigue 

On a behavioural level, it was concluded in our systematic review that particularly endurance performance 

appeared to be impaired by mental fatigue [36, 38, 40-42]. In Chapter 3 (part 1) however, we did not succeed in 

replicating this negative effect of mental fatigue on endurance performance in a different environment (i.e. the 

heat). Multiple reasons are put forward that could possibly account for this observation, yet further research is 

necessary in order to pinpoint the actual reason. In the meantime, other studies also attempted to substantiate the 

statement that mental fatigue impairs endurance performance [16-18, 23-25, 29, 31-33]. Seven of the 10 studies 

were able to confirm this, some examples are: (1) Salam et al. [17] found that time-to-exhaustion (TTE) was 

reduced by an average of ~15% across exercise intensities equivalent to Δ40, Δ60, Δ80, and 100% VO2peak, (2) 

Penna et al. [16] observed a ∼1.2% increase in time to complete a 1500-m swim time trial (TT), (3) Pires et al. 

[23] reported that the time to complete a 20-km time trial was ∼2.7% slower when mentally fatigued, and (4) 

Slimani et al. [24] observed a decreased performance (i.e. a lower attained maximal running speed; ∼8.2%) on the 

20-m multistage fitness test (i.e. an incremental shuttle run test) due to mental fatigue. In contrast, Silva-Cavalcante 

et al. [18] found no effect of mental fatigue on time to complete a 4-km cycling TT, Vrijkotte et al. [25] did not 



Chapter 6: General discussion & conclusion 

138 

 

observe any difference in the maximal wattage reached in two consecutive incremental cycling tests due to mental 

fatigue and Head et al. [29] showed that the amount of muscle resistance exercise repetitions was also not altered 

by mental fatigue. Taking all behavioural findings into account, the effect of mental fatigue on endurance 

performance is thus mostly replicated, yet not consistently. Possible moderating factors of the effects of mental 

fatigue on endurance performance could be cognitive load of the physical performance (e.g. little/no pacing 

required [18, 25]) and preceding physical activity prior physical performance (e.g. preloaded TT in the study of 

Van Cutsem et al. [43]). Another moderating factor could be heat, in our own mental fatigue-study in the heat [43] 

it appeared to overrule the mental fatigue-induced performance-impairment. However, others demonstrated that 

the negative effect of heat might also work synergistically with mental fatigue to further decrease endurance 

performance [33]. This is not the first fatigue-related line of research where heat has been found to act as a 

moderating variable [44] and calls for further research to explore the role of heat in the effects of mental fatigue.  

Besides an endurance component, a cognitive component also seemed to play a role in observing a negative effect 

of mental fatigue on physical performance (See Chapter 1). In sports, a cognitive component can be recognized in 

team sport players making an immeasurable amount of high-risk and high-pressure decisions within a game, or in 

the particular stimulus-response situation (i.e. anticipating the opponent) in one-on-one games (e.g. fencing, 

badminton). In the published systematic review two studies were cited that already gave a first impression on the 

effect of mental fatigue on sport-specific psychomotor performance [42, 45]. Smith et al. [42] used the 

Loughborough Soccer Passing and Shooting Test with experienced soccer players and found that their shot speed 

and accuracy decreased when mentally fatigued. Badin et al. [45] observed that mental fatigue impaired most 

technical variables (e.g. pass accuracy and tackle success) in soccer players during a Small-Sided-Game (SSG). In 

a follow-up study Smith et al. [46] also assessed soccer-specific decision-making skills and reported that accuracy 

and response time were impaired by mental fatigue and that this was not mediated by altered visual search 

behaviour. The results in the present PhD substantiate that mental fatigue, in addition to endurance performance, 

negatively affects sport-specific psychomotor performance. In Chapter 4 it was observed that mental fatigue 

deteriorates badminton-specific psychomotor performance in trained athletes and untrained controls. From the 14 

articles that were gathered by replicating our search from the systematic review, five studies [19, 20, 28, 30, 32] 

also provide some further insight in the effect of mental fatigue on psychomotor skills. Coutinho et al. [19] and 

Moreira et al. [28] both assessed the effect of mental fatigue on tactical/technical behaviour in a SSG in 

respectively a soccer and a basketball setting, while Le Mansec et al. [20], Head et al. [30] and Veness et al. [32] 

evaluated respectively the possible impairments in table tennis, marksmanship and cricket performance when 

mentally fatigued. All five studies reported reductions in performance due to mental fatigue. For example, in the 

study of Coutinho et al. [19] mental fatigue resulted in a likely ∼8% decrease in the time that players spent 

synchronized in the longitudinal displacements, while in the study of Moreira et al. [28] mental fatigue was 

associated with an increased total number of turnovers (i.e. when a team loses possession of the ball to the opposing 

team before a player takes a shot at their team's basket) and Le Mansec et al. [20] found that ball speed decreased 

and number of faults increased in mentally fatigued participants, resulting in a lower overall table tennis 

performance. Together with our results from Chapter 4 this demonstrates mental fatigue negatively impacts sport-

specific psychomotor performance and substantiates the necessity to further investigate this phenomenon.  
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6.2.3 Physiological effects of mental fatigue 

Except for the study of Pires et al. [23], the seven studies that successfully replicated the impairment in endurance 

performance due to mental fatigue all monitored rather basic physiological measures during physical performance 

(e.g. HR, heart rate variability (HRV), [Bla], VO2, electromyography (EMG), sweat rate). It appears that the focus 

was to provide further insight on the behavioural/performance effects of mental fatigue rather than to specifically 

design a study to increase our knowledge on the possible mechanisms behind these behavioural/performance 

effects. As such, besides confirming the statement that mental fatigue does not reduce endurance performance by 

altering physiological, cardiorespiratory, and neuromuscular responses to the subsequent exercise [34], extra 

information on the possible mechanisms mediating the mental fatigue-induced impairment in endurance 

performance is scarce. Slimani et al. [24] did not follow up any physiological measure during endurance 

performance, Salam et al. [17] found no effect of mental fatigue on HR but did find an effect on [Bla], Penna et 

al. [16] did not observe any change in HRV due to mental fatigue and Azevedo et al. [31] confirmed the results of 

Pageaux et al. [47] that mental fatigue does not affect EMG during physical performance. Pires et al. [23] is the 

only study that went one step further and measured a less straightforward physiological measure during endurance 

performance. They assessed prefrontal brain activity during the 20-km TT and observed that θ-activity was 

increased when mentally fatigued. Brain activity in this study [23] is however only measured at the FP1 position, 

this inevitably limits artefact-rejection possibilities and does not provide a window on the entire brains’ activity. 

Despite this disadvantage it is only the second study - after the study of Brownsberger et al. [40] - to provide 

further insight in the prefrontal cortex activation during an endurance performance in a mentally fatigued state. 

Pires et al. [23] correctly point out that the increased θ-activity in mentally fatigued cyclists could reflect their 

lower ability to preserve adequate inhibitory control and attentional location during exercise.  

Our own study (see Chapter 4), as well as all other five studies that assessed the effect of mental fatigue on sport-

specific psychomotor performance, unanimously point out that mental fatigue negatively affects this type of 

performance. Consequently, these studies provide excellent insights on the behavioural level. In contrast, still a lot 

must be elucidated mechanistically. Only the studies of Badin et al. [45] and Moreira et al. [28] attempted to 

provide some further insight in possible physiological mediators of the mental fatigue-induced impairment in 

sport-specific psychomotor performance. Badin et al. [45] measured HR but did not find any conclusive evidence 

on a possible effect of mental fatigue. Moreira et al. [28] measured HR and salivary parameters in response to the 

physical performance, but subsequently employed a magnitude-based inferential statistical approach resulting in 

a difficult interpretation of the gathered data. One possible explanation for the current scarcity of studies assessing 

physiological mediators of the mental fatigue-induced decrease in sport-specific psychomotor performance is the 

complexity in objectively measuring sport-specific psychomotor performance. The challenge of measuring 

performance is relatively straightforward in situations where there is a clear and measurable performance outcome 

(e.g. cycling, swimming). However, effectively capturing performance in sport-specific psychomotor tasks is far 

more complex since it is based on several inter-related component skills (e.g. perceptual, cognitive and motor). 

These skills may be harder to isolate under controlled and reproducible settings, and performance decrements in 

these skills may even be harder to associate with (neuro)physiological alterations. Nonetheless, in order to advance 

this field of research, future studies should consider monitoring possible (neuro)physiological mediators. 
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6.2.4 Psychological effects of mental fatigue 

Based on the psychobiological model [48] motivation and perceived exertion or the two most often monitored 

psychological constructs in this line of research. Five of the 10 new studies (i.e. after April 2016) on mental fatigue 

and endurance performance assessed motivation to perform on the physical task. Only in the study of Pires et al. 

[23] an effect of mental fatigue on motivation was reported, motivation was lower at 2km in the 20-km TT. 

However, despite it was not significant, motivation appeared to be higher in the later stages of the TT in the mental 

fatigue condition compared to the control condition. In terms of perceived exertion, multiple studies [16, 17, 31, 

33] were not able to explain their observed reduction in performance through an increased perceived exertion. In 

contrast, and substantiating the previously observed increase in perceived exertion when mentally fatigued [36, 

41, 42], Pires et al. [23], Slimani et al. [24] and Veness et al. [32] did observe higher RPE when physically 

performing in a mentally fatigued state. In the study of Pires et al. [23] absolute RPE throughout the TT was not 

higher when mentally fatigued, but relative to power output they were. Added up to the results of the studies 

included in our systematic review it can be concluded that motivation does not play a role in the mental fatigue-

induced decrease in endurance performance, whilst RPE does certainly seem to be a mediator of this effect. 

In terms of sport-specific psychomotor performance, the first three studies on mental fatigue [42, 45, 46], that were 

already cited in our published systematic review (see Chapter 2), all indicated the mental fatigue-induced 

performance impairment was not mediated by an altered motivation. In addition to motivation, Badin et al. [45] 

also assessed RPE and suggested mental fatigue might increase RPE related to a soccer-specific SSG. From the 

studies published after April 2016, only our own study (see Chapter 4) and Veness et al. [32] assessed motivation 

towards the upcoming physical task. In both it was found that motivation was unaffected by mental fatigue. In 

addition only in the studies of Le Mansec et al. [20] and Moreira et al. [28] perceived exertion was assessed. Le 

Mansec et al. [20] reported that RPE tended to be increased when mentally fatigued. Future studies looking into 

the possible role of other possible psychological determinants of psychomotor performance (e.g. self-efficacy, 

self-esteem, attentional focus [49]) could provide additional valuable insights on the possible psychological 

mechanisms behind the mental fatigue-induced psychomotor performance decrease. 

6.3 Potential mechanisms 

Based on the obtained results in the present PhD and section 6.2.2 it is clear mental fatigue impairs multiple aspects 

of physical performance. This apparent link between mental fatigue and physical performance opens up the 

discussion on the possible underlying mechanisms. In section 6.2.3 and 6.2.4 the physiological and psychological 

alterations associated with the mental fatigue-induced impairments in performance have been listed and discussed, 

question is however still how a preceding cognitive task can induce such alterations during a subsequent physical 

task.  

Broadening our point of view and looking at the effects of mental fatigue on human performance (i.e. physical and 

cognitive performance in a wide variety of tasks) teaches us that multiple models have already been proposed to 

account for the mental fatigue-induced impairments in human performance [35]. Within these models, two major 

hypotheses, around which all models are structured, can be recognized: 1) a depletable physiological resource and 

2) an effort-based decision. These two hypotheses represent the ever-returning dichotomy between a purely 

physiological model to explain a certain phenomenon – in the present case the link between mental fatigue and 

physical performance – and a purely psychological model. Despite their differences, both models have the similar 
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assumption that the effects of mental fatigue on human performance occur due to similarity across two tasks that 

follow up on each other (e.g. similar executive function systems that are engaged). This similarity will eventually 

lead to decrements in performance on the second task. The difference is that the physiological model assumes that 

these carry-over effects from task 1 to task 2 are explained by a depleted physiological resource, while the 

psychological model postulates that cost-benefit computations underlie these carry-over effects. Both models are 

able to provide compelling evidence in their favour, however it will most probably be a combination of both 

models that succeeds in accounting for all observed findings concerning mental fatigue and human performance.  

6.3.1 Endurance performance 

Marcora et al. [36] made a first attempt to explain the link between mental fatigue and endurance performance by 

integrating both the physiological and the psychological point of view. This attempt was based on the results 

obtained in their first study on the topic [36], in which a 90-min cognitive task was followed by a physical 

endurance task. Performance on task 2 (i.e. the physical endurance task) was found to be impaired. This was 

associated with an increased perceived exertion. Both the employed 90-min cognitive task and the exertion 

perceived during physical tasks have already been associated with anterior cingulate cortex-activity and as such a 

similar brain region is employed in the cognitive task and the subsequent physical task. Psychologically, Marcora 

et al. [36] indicated that these carry-over effects were translated in an increased perceived exertion. 

Neurophysiologically these carry-over effects might be understood as changes in tonic neurotransmitter and/or 

neuromodulator levels in the executive function system that is employed in both the cognitive and the physical 

task (i.e. anterior cingulate cortex). This possible psychobiological explanation of the carry-over effects from 

mental fatigue to endurance performance can be substantiated by research that demonstrates that alterations in 

brain neurotransmitters affects perceived exertion and endurance performance.  

The importance of brain neurotransmitters in endurance performance has already been underlined by Roelands et 

al. [50]. They showed that reboxetine (a noradrenaline re-uptake inhibitor) decreased whole-body endurance 

performance in normal and high ambient temperature. Interestingly, despite a decreased power output during the 

TT in this study there was no change in absolute RPE values, consequently increasing the perceived exertion to 

power output ratio (meaning less power output is generated for a same RPE value). The intake of methylphenidate 

[51] [a dopamine (DA) reuptake inhibitor] in contrast allowed subjects to maintain a higher power output and 

improve time trial performance in the heat, again without influencing absolute RPE values. This demonstrates that 

altered brain neurotransmission is able to affect whole-body endurance performance and that this effect is 

associated with an altered perceived exertion to power output ratio (in the case of DA, a decreased ratio). Klass et 

al. [52] showed that muscle endurance performance is affected in a similar way. A noradrenaline reuptake inhibitor 

reduced endurance time by 15.6%. This was associated with a greater rate of supraspinal impairment and an 

increase in perceived exertion. Participants experienced the same intensity of intermittent contractions as harder 

to perform after administration of a noradrenaline reuptake inhibitor, without affecting the fatigue-related 

intramuscular impairments [52].  

Within the line of research on mental fatigue and endurance performance, Pageaux et al. [39, 41, 47] hypothesized 

that neural activity increases the extracellular concentration of adenosine (an inhibitory neurotransmitter; [53]) 

and that brain adenosine accumulation reduces endurance performance [54]. Subsequently they speculated that 

adenosine accumulation in the pre-supplementary motor area and anterior cingulate cortex (due to a mentally 
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fatiguing task) could also explain in part the higher than normal perceived exertion during an endurance exercise 

in a mentally fatigued state. This hypothesis was recently supported and extended in a theoretical review of Martin 

and colleagues [55]. Unfortunately, there is no study that demonstrates that mentally fatigued individuals have 

increased adenosine in specific areas and that this is associated with the mental fatigue-induced endurance 

impairment. Nonetheless, the above points out that mental fatigue-induced neurotransmitter-alterations might 

partly mediate the negative effect of mental fatigue on endurance performance. And, rather than only focussing on 

adenosine, mental fatigue will probably affect neurotransmitter systems in multiple brain regions and the 

summation of these alterations might explain the increased perceived effort during an endurance performance in a 

mentally fatigued state. 

6.3.2 Sport-specific psychomotor performance 

In Chapter 4 it becomes clear mental fatigue not only impairs endurance performance, but also sport-specific 

psychomotor performance. More specifically mental fatigue impaired the response time to complex stimuli in both 

the badminton players and the controls. This is in accordance with previous studies on the effect of mental fatigue 

on cognitive performance [9-11], showing that executive control is compromised by mental fatigue, but more 

automatic cognitive processing is relatively insensitive to this state. Moreover it is also in accordance with other 

research on the effect of mental fatigue and sport-specific psychomotor performance (see section 6.2.2). 

In an attempt to explain the link between mental fatigue and sport-specific psychomotor performance, according 

to the proposed models on mental fatigue and human performance, similarities across the cognitive and the 

physical task must be distinguished. In both the 90-min Stroop task and the 7-min visuomotor response task 

response inhibition was an important executive function determining task performance. In the Stroop task response 

inhibition was necessary for 100% of stimuli, while in the visuomotor task this function was employed for 25% of 

the stimuli. Both tasks also worked with a general response rule and an exceptional response rule, meaning that 

participants had to switch rules depending on specific colour features of the stimuli. This task switching ability 

was necessary in 25% of the stimuli, as 25% of the stimuli presented in the Stroop task and in the visuomotor task 

contained the specific feature (i.e. in the Stroop when the letters of the word were coloured in red; in the visuomotor 

task when the pad lighted op in the colour blue) that indicated that participants had to switch to the exceptional 

rule in order to respond correctly. These two executive functions, response inhibition and task switching ability, 

represent two important similarities across the cognitive and the physical task that might explain why carry-over 

effects from the cognitive task to the physical task were observed in Chapter 4. A similar mechanism might 

underlie the carry-over effects observed in the psychomotor performance-studies included in section 6.2.2 . The 

SSG employed in the basketball-study of Moreira et al. [28] and in the soccer-study of Coutinho et al. [19] 

continuously drew upon response inhibition (e.g. giving a pass or not) and task-switching ability (e.g. defending 

vs attacking), while in the study of Le Mansec et al. [20] response inhibition and anticipation can be recognized 

as similarities between the 90-min AX-CPT and the table tennis performance test.  

Neurophysiologically these carry-over effects might again be understood as changes in tonic neurotransmitter 

and/or neuromodulator levels in the executive function system that is employed in both the cognitive and the 

physical task. Performance on such short, fixed duration visuomotor tasks is less determined by perceived exertion 

and as such the subjective signature of the mental fatigue-effects on physical performance (i.e. increased perceived 

exertion) is less visible. This however does not mean the neurophysiological alterations associated with mental 
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fatigue are not present. The present visuomotor task can be termed a perceptual switching task (i.e. attention must 

be actively switched between perceptual features (e.g. colour) in order to select the appropriate, task-relevant 

response), the same holds true for the Stroop task [56]. Specifically for this type of switching the dorsal premotor 

cortex is preferentially recruited [56]. A brain region that, in addition to motor planning and motor execution, is 

involved in learning and applying rule-based associations between perceptual features of stimuli and responses 

[57]. As such this region, and neurophysiological alterations within this region, is a key candidate to play a role in 

the mental fatigue-induced impairment in task-switching ability during a psychomotor task. 

6.4 Countermeasures 

All the above points out that mental fatigue has to be avoided, certainly in situations where optimum performance 

is required, e.g. work setting, military operation, Olympic games, … . Therefore, an interest arose in possible 

countermeasures of mental fatigue. Multiple types of interventions have been put forward: pre-game/competition 

guidelines to avoid mental fatigue, strategies to counteract mental fatigue during games/competitions and training 

resistance to mental fatigue. 

The most important pre-game/competition guideline that currently has been suggested to avoid the occurrence of 

mental fatigue is that mentally demanding tasks should be avoided before games/competitions. Tasks that regularly 

preceed a game/competition and could possibly trigger mental fatigue are for example interviews, emotion control 

and tactical meetings. Despite the general plausibility of counteracting mental fatigue by avoiding/limiting pre-

game cognitive load (e.g. interviews, tactical meetings), this guideline has yet to be substantiated by experimental 

research. Surveys/interviews to chart the mental demands of high-level sport participation will allow researchers 

to understand which tasks, if any, players find mentally fatiguing [58], and if avoidance/restriction of these tasks 

would result in a reduction of mental fatigue. In terms of strategies to counteract the negative effects of mental 

fatigue during games/competitions, both psychological and nutritional interventions have been proposed. 

Psychologically, a cognitive load-reducing strategy appears to be promising. Brick et al. [59] demonstrated that 

external control over pacing (e.g. drafting in a race) may facilitate performance, possibly mediated through 

reducing the cognitive load and promoting appropriate attentional strategies that optimize performance. In light of 

the psychobiological model [48], increasing motivation also seems to be a valid way to counteract mental fatigue 

and its negative effects. Although motivational changes were concluded not to play a role in the mental fatigue-

induced impairments in physical performance in multiple chapters included in this PhD, this does not rule out that 

increasing motivation could successfully counteract mental fatigue and its negative effects. In terms of cognitive 

performance, Hopstaken et al. [60] demonstrated that increasing motivation, by providing a monetary incentive 

near the end of a prolonged cognitively demanding task, reversed cognitive performance declines despite previous 

signs of mental fatigue. A study by Brown et al. [15] further substantiated this ability of motivation to counteract 

mental fatigue in a physical performance-setting. Increased motivation by a monetary incentive reversed the 

mental fatigue-induced decrease in performance in an endurance handgrip task. Caution is however warranted as 

Gergelyfi et al. [61] also altered the motivational state through monetary incentives during a 120-min Sudoku task 

and failed to compensate the effects of mental fatigue. Moreover, in two studies included in this PhD [43, 62] 

monetary incentives were provided to promote task engagement, and in both studies mental fatigue was still 

induced after a prolonged cognitive task. Motivation thus seems to possess the ability to counteract mental fatigue, 

yet only to a limited extend. Nutritionally, caffeine has been put forward as a promising intervention to counteract 
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mental fatigue and its effects on physical performance [41]. The mental fatigue-counteracting properties of 

caffeine are attributed to its ability to easily cross the blood-brain barrier and bind to cell membrane receptors for 

adenosine, thus blocking the inhibitory effects of adenosine on neuro-excitability, neurotransmitter release and 

arousal [55]. Azevedo et al. [31] showed this experimentally, caffeine ingestion successfully reversed the mental 

fatigue-induced impairment in cycling time to exhaustion at 80% of the maximal power output. This positive effect 

of caffeine ingestion was accompanied by a tendency to an improvement in mood state (i.e. vigour). In addition, 

McLellan et al. [63] concluded that caffeine is an effective strategy to maintain physical performance during an 

overnight period of sleep loss at levels comparable to the rested state. A last option to counteract mental fatigue 

and the subsequent impaired physical performance is by training resistance to mental fatigue. A first insight on 

this matter was given by a study of Martin et al. [12], who designed a study to specifically assess whether level of 

training in endurance sport had any influence on the resistance to mental fatigue. Interestingly, they found that 

professional cyclists exhibited superior performance during a 30-min Stroop task compared to recreational cyclists, 

which is indicative of stronger inhibitory control. Moreover, professional cyclists displayed a greater resistance to 

the negative effects of mental fatigue on a 20-min cycling time trial than recreational cyclists [12]. In our own 

attempt to replicate these findings with badminton-athletes we could however not confirm these results (see 

Chapter 4). Multiple reasons could account for failing to confirm the results of Martin et al. [12], the two most 

prominent are: (1) more severe mental fatigue was induced in our study and (2) badminton-athletes were not of 

the same elite-level as the cyclists in the study of Martin et al. [12]. To explain the superior resistance to mental 

fatigue of elite athletes, Martin et al. [12] pointed to genetic and environmental factors (i.e. aerobic training 

required by professional road cycling may induce morphological and functional adaptations in the anterior 

cingulate cortex that increase resistance to mental fatigue). Further research is however necessary to determine 

what might explain the possible superior resistance to mental fatigue present in elite athletes.  

In Chapter 5 of the present PhD a new possible countermeasure of mental fatigue was evaluated (i.e. serial mouth 

rinsing of a solution containing caffeine and maltodextrin) and found to be effective. Serially rinsing a caffeine 

and maltodextrin solution offers a suitable ‘nutritional’ countermeasure for those that want to restrict caloric intake 

or participate in the Ramadan. Perhaps more importantly, this specific study also resulted in further insights in the 

mediating mechanisms of mental fatigue. Multiple possible mechanisms for the effectiveness of serial CAF-MALT 

mouth rinsing are proposed in our mouth rinse-study. The mechanism that seems the most important is the brain 

activating properties of mouth rinsing. Mouth rinsing is known to activate multiple brain areas [64], e.g. the 

activation of specific brain regions (i.e. the anterior cingulate cortex and the right caudate that forms part of the 

striatum) known to produce DA [64, 65], and has also been shown to do so in the study performed in Chapter 5. 

Mental fatigue on the other hand has already been associated with alterations in the anterior cingulate cortex [36, 

66-68]. This way, a mouth rinse containing caffeine and maltodextrin might be able to (partly) restore 

dopaminergic transmission in the striatum and anterior cingulate cortex and postpone mental fatigue by activating 

sensory neurons in the mouth and initiating a signal transduction cascade towards the brain. The sensory neurons 

that triggered this transduction cascade could be the neurons that caused the participants to score the CAF-MALT 

mouth rinse less pleasant (i.e. more bitter) than the placebo mouth rinse (see Chapter 5). At the end of each trial 

participants had to rate the pleasantness of the sweet/bitterness taste of the mouth rinse, and participants scored 

the CAF-MALT mouth rinse as significantly less pleasant/more bitter (-0,9 on a 5-point scale) than the placebo 

mouth rinse. This clearly indicates a taste-difference was present between both mouth rinses and could explain 
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why a specific transduction cascade was triggered in the CAF-MALT mouth rinse-trial and not in the placebo 

mouth rinse trial. Kishi et al. [69] reported that tasting bitter is associated with activation of the anterior cingulate 

cortex and as such substantiate that the CAF-MALT mouth rinse might have triggered a specific transduction 

cascade. 

6.5 Strengths and weaknesses  

The main research findings in this thesis provide valuable insights on the link between mental fatigue and physical 

performance and opens doors towards further research on the mechanisms underlying this link. Meaningful 

advances in the field of mental fatigue and physical performance were made in the present PhD due to the focus 

on 1) diverse aspects of physical performance (i.e. endurance and psychomotor skills), 2) diverse environmental 

conditions (i.e. normal and heat), 3) possible applicable countermeasures of mental fatigue and 4) diverse levels 

of training-status (i.e. novice, recreational and competitive). However, like everything, also this thesis has its 

strengths and weaknesses. A first point of criticism could be that the sample sizes used in the studies embedded in 

this thesis are fairly small. A small sample size has two important implications, 1) a reduced chance of detecting 

a true effect, and 2) a reduced likelihood that a statistically significant result reflects a true effect [70]. Although 

sample sizes were fairly small, these were based on a priori sample size calculations in which a power of at least 

80% was always set. Moreover, all conducted studies included in the present PhD were designed as crossover 

studies, meaning that each participant in every study was included in every condition and thus functioned as its 

own control, thereby reducing variability. These precautionary measures make us confident that the observed 

effects in the present PhD are true effects. In addition, the multiple recently published studies confirming our 

observed effects seem to justify this confidence, as false effects are generally difficult to reproduce. Despite the 

confidence in the observed effects being true effects, we acknowledge that caution is warranted in the interpretation 

of three- and four-way ANOVA’s that were used in multiple chapters. 

Electroencephalography (EEG) is a brain measuring technique that was used in multiple studies in the present 

PhD. This technique can be considered a real strength as it provided an objective window on the brain’s functioning 

and enabled us to objectify the psychobiological changes associated with mental fatigue. A disadvantage of this 

technique is however its poor spatial resolution, which makes it less useful than magnetic resonance imaging to 

pinpoint the exact source of the recorded brain activity. Moreover, EEG-electrodes are applied to the scalp and are 

thus particularly equipped to measure brain activity originating from the cortex, while measuring subcortical brain 

activity with EEG is more challenging. That said, there are up to date advanced techniques to adequately analyse 

electroencephalographical signals and counteract these known downsides. In the present PhD brain activity was 

recorded with thirty-two active Ag/AgCl electrodes, enabling us to reduce artefacts in the recorded brain activity 

by applying an independent component analysis, which resulted in the removal of recurrent artefacts throughout 

each electrode-recording. Future research might make use of other specific analytical techniques such as 

standardized low-resolution brain electromagnetic tomography [71] to analyse and quantify mental fatigue in 

further detail. To further increase our knowledge on the link between mental fatigue and physical performance, 

electroencephalography might prove to be extremely valuable in future studies. Although it has its downsides, it 

offers excellent temporal resolution and with advances in wireless hardware and equipment portability, allows a 

freedom of movement almost impossible to achieve with other neuroimaging technologies [72].  
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A last important point to discuss in this section is the transferability of the observed results in the present PhD. 

Specifically in order to translate the results of research on mental fatigue and physical performance to the fatigue 

often associated with aging and/or disease. It is important to make the distinction between an acute form of mental 

fatigue induced by mental exertion and the more chronic mental fatigue and cognitive impairment associated with 

aging or disease (e.g. cancer, chronic fatigue syndrome and depression). Despite some similarities between both 

phenomena (e.g. impaired cognitive performance, increased feeling of fatigue), chronic fatigue is not necessarily 

related to mental exertion (e.g. aging, disease) and therefore is not completely the same as acute mental fatigue 

induced by prolonged cognitive activity. Nevertheless, hypotheses have been suggested that repeated acute mental 

fatigue may lead to chronic fatigue [73] and as such it seems important to promote communication between 

research on mental fatigue and physical performance and research on mental fatigue and other aspects of daily life.  

6.6 Future research avenues 

Undoubtedly the line of research on mental fatigue and physical performance will give rise to the development of 

a number of relevant research avenues. Based on the results obtained in the present PhD important research 

questions that should be addressed in the future are: 

Which are the (neuro)physiological mechanisms of the mental fatigue-induced physical performance 

impairment? 

Despite the expanding knowledge on the behavioural effects of mental fatigue in sports science, the 

neurophysiological mechanisms of the impairment in physical performance have yet to be elucidated. To provide 

applicable countermeasures for the mental fatigue-induced decrease in physical performance, it is of great 

importance to keep on progressing in the search for the (neuro)physiological mechanisms of this phenomenon. 

Not only from a scientific point of view this is of importance, also from an athlete’s/coach’s point of view it is. At 

the very top level perceptual-cognitive skills might provide the edge in a competitive field where physical qualities 

are somewhat levelled between different athletes [74]. Progress in this search for neurophysiological mechanisms 

can be attained in different ways, use of advanced measuring equipment is one way. Substantial progress has been 

made in developing state-of-the-art neuroscience methods (i.e. functional magnetic resonance imaging (fMRI), 

functional near-infrared spectroscopy (fNIRS) and EEG) that can be used during local exercise and even outside 

a laboratory environment [75]. EEG is one of the two main non-invasive functional neuroimaging methods 

(besides NIRS) suitable for use during exercise. The equipment becomes portable, it has a relatively low cost, is 

easy to handle and data acquisition is fast. EEG has already been shown to provide valuable information on mental 

fatigue in the field of cognitive neuroscience [60, 62, 66], applied during physical performance it might do the 

same in sports science.  

Another way to increase our understanding of the mental fatigue-induced impairment in physical performance is 

the use of specific designs to assess whether the resistance to mental fatigue is trainable. A few steps have already 

been taken in this direction ([12] and Chapter 4), with conflicting evidence as a result. Martin et al. [12] reported 

that professional cyclists have superior resistance to mental fatigue compared to recreational cyclists, while we 

ourselves observed that psychomotor skills were similarly impaired in athletes and controls. The importance of 

this research question (i.e. are top-level athletes more resistant to mental fatigue than others) and the presented 

conflicting evidence calls for further attention in future studies.  
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Ecological validity of mentally fatiguing tasks? 

The demands of real life physical events/competitions are physically but also cognitively high, as is shown by the 

metacognitive framework of Brick et al. [76]. Therefore, such real life physical events/competitions are probably 

not only physically fatiguing, but also mentally fatiguing. Up to date, the role of mental fatigue in physical 

performance has been evaluated by isolating the executive function processes that are employed during physically 

performing (e.g. response inhibition, task switching, …) and thought to be mentally fatiguing. The most 

straightforward way to do so is by selecting a task that stresses specifically these executive function processes (i.e. 

a cognitive task: e.g. Stroop task) and evaluate its effect on physical performance. However, like many others in 

the field [27, 46], we have already pointed out the necessity for future research to be conducted in a more applied 

way. One way could be by making the cognitive task more sport-specific. The outcome measure used in the study 

of Smith et al. [46] to evaluate soccer-specific decision-making skill could for example also be used as a sport-

specific mentally fatiguing task. Another way to increase applicability of the results in this line of research was 

demonstrated by Coutinho et al. [27]. They [27] attempted to induce mental fatigue in an ecologically valid way, 

by employing a 20-min whole-body coordination task, requiring motor coordination, sustained attention, cognitive 

processing and perceptual skills. To increase the tasks’ attentional and cognitive demands, players were also 

required to perform the coordination movements while juggling a tennis ball. On top of that, as soon as the 

participant’s performance increased, a new exercise was introduced. For the control condition, players were 

required to perform light general aerobic exercises such as skipping, jogging, running backwards, and side stepping 

(i.e. exercises with low cognitive demand and a similar physical pattern as the mental fatigue task) [27]. This 

method resulted in a greater increase in subjective mental fatigue (measured with a VAS) after the mental fatigue 

task (PRE: ~10 → POST: ~55) compared to the control task (POST: ~10 → POST: ~15) and was thus demonstrated 

to be successful. Nonetheless, methodological considerations such as the differences in physical (heart rate) 

response between conditions, sport specificity and response bias must be considered [58]. Specifically for football, 

Thompson et al. [58] suggested a few valid recommendations for future research: develop tasks with a high level 

of contextual interference, replicate match-play scenarios in terms of audio and/or visual distractions and develop 

tasks with an intermittent character. Besides progressing to a more applied way of evaluating the role of acute 

mental fatigue in physical performance, evaluating the chronic effects of mental exertion is also an important 

progression in this field of research. The chronic psychological load that elite athletes are exposed to and its 

possible role in risk of illness and injury have been considered and emphasized by two International Olympic 

Committee consensus statements [77, 78]. This psychological load encompasses negative life-event stress, daily 

hassle and sports-related stress (e.g. feeling of insufficient breaks and rest, stiff and tense muscles, and feeling 

vulnerable to injuries), but also personality variables such as trait anxiety, state anxiety, stress susceptibility, type 

A behaviours, trait irritability and mistrust, as well as maladaptive coping strategies [77]. In the consensus 

statement on load and risk of injury, fatigue is one of the proposed mechanisms by which psychological stress 

responses is thought to increase injury risk [77]. The importance of chronically monitoring psychological load is 

demonstrated by Ivarsson et al. [79] who evidenced that trait anxiety, negative-life-event stress and daily hassle 

are significant predictors of injury. This highlights the need for athletes, coaches and medical practitioners to 

attempt to monitor and reduce mental fatigue. Future studies should aim to adopt this more ecological way of 

studying mental fatigue, as it will greatly improve the transferability of the observed results in mental fatigue-
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research. In addition it will also provide important insights in the mentally fatiguing properties of physical activity 

on its own. 
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6.7 Conclusion 

The main research findings from this PhD were: 

• Mental fatigue impairs endurance performance and the underlying mechanism of this impairment appears to 

be a higher than normal perceived exertion.  

• Mild mental fatigue does not affect endurance performance in the heat. 

• Subjective thermal strain impairs endurance performance in a temperate environment.  

• Mental fatigue decreases open skill-visuomotor performance in controls as well as badminton players.  

• Serial caffeine-maltodextrin mouth rinsing counteracts subjective, behavioural, and electrophysiological 

measures of mental fatigue. 

Overall these results point out mental fatigue has important implications in physical performance, and that these 

are mediated by a strong neurophysiological and psychobiological component. The present PhD forms an excellent 

basis for future studies exploring the impact of mental fatigue on physical performance. Continuation of this 

research is of extreme importance as mental fatigue - and other neurophysiological and psychobiological mediators 

of physical performance - have only recently gained attention in sports science. Besides being an important topic 

in sports science, mental fatigue is an issue that is encountered in a multitude of settings that are encountered in 

daily life (work, driving a car, disease, …) and as such this research also forms an excellent basis for translational 

research. 
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The ubiquitous presence of fatigue in our everyday life has caused the topic of fatigue to sprout in many specific 

research fields such as exercise physiology, cognitive psychology, medicine and engineering. Fatigue is associated 

with the urge to sleep at the end of a busy day, the need for coffee in the morning, the burning sensation in our 

legs and lungs at the end of an intensive physical workout, the feeling of a much-needed break in the afternoon 

during a work-day, the problems with staying attentive during a prolonged drive, … . Fatigue can cause substantial 

limitations in mental, physical and/or social functioning, resulting in considerable social and economic impacts 

(e.g. loss of contact with friends, increased medical costs, absenteeism from work).  

Fatigue has a vast amount of definitions, with a different focus in each area of expertise. This omnipresence of 

fatigue has its advantages and disadvantages, one of the main disadvantages is probably that different research 

lines of fatigue co-exist without any interaction. Subsequently the possible breakthroughs this interaction could 

trigger are missed. Within sports science the urge to explain why and how people fatigue has intrigued scientist 

for decades, and also within this area different lines of research on fatigue (e.g. exercise physiology and 

psychology) could benefit from increased interaction with one another. Recent advances have been made however 

to converge both. A research topic that has played an important role in this convergence is mental fatigue. Mental 

fatigue is a research topic that contains aspects of both exercise physiology and psychology and as such might 

prove to be a valuable asset in the search for mechanisms of fatigue in sports science. This line of mental fatigue 

attempts to provide some further insights in the mechanisms behind the underperformance on physical tasks 

following the execution of a prolonged demanding cognitive task. In attempting to do so, the role of physiological 

and psychological factors in physical performance is assessed.   

The research topic mental fatigue has only recently gained attention and as such the present PhD dissertation aimed 

to further explore the link between mental fatigue and physical performance. In order to do so, it consists of one 

systematic review of the literature and four randomized controlled trials. All five manuscripts were written as 

stand-alone papers of which four have been accepted and one is submitted in relevant international exercise 

physiology, psychology and behavioural neuroscience journals.   

In order to provide a clear overview on the current body of knowledge on the effect of mental fatigue and physical 

performance, a first aim in this PhD was to conduct a systematic review of the available literature on the topic (see 

Chapter 2). This review pointed out that mental fatigue impairs endurance performance, and the underlying 

mechanism of this impairment appears to be a higher than normal perceived exertion. Physiological variables 

traditionally associated with endurance performance (heart rate, blood lactate concentration, oxygen uptake, 

cardiac output) were not directly affected by mental fatigue during and after endurance performance. Maximal 

strength, power, and anaerobic work were not affected by mental fatigue. This led to the conclusion that duration, 

intensity and a cognitive component in the physical task appear to be important moderating factors in the effect of 

mental fatigue on physical performance. In our search to further explore the link between mental fatigue and 

physical performance we aimed: (1) to assess in further detail the possible moderating role of heat in the effect of 

mental fatigue on endurance performance (see Chapter 3), (2) to observe the impact of mental fatigue on sport-

specific psychomotor skills (see Chapter 4) and (3) to evaluate a possible countermeasure of mental fatigue (see 

Chapter 5). These aims resulted in the following research questions: 

• Research Question 1: Does mental fatigue affect physical performance, and if yes, what are the underlying 

factors? (Chapter 2) 
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• Research Question 2: Does mental fatigue affect endurance performance in the heat? (Chapter 3) 

• Research Question 3: Does a heat pad, locally applied to the upper back, impair endurance performance? 

(Chapter 3) 

• Research Question 4: Does mental fatigue impair sport-specific psychomotor performance? (Chapter 4) 

• Research Question 5: Does level of training affect the impact of mental fatigue on sport-specific 

psychomotor performance? (Chapter 4) 

• Research Question 6: Does serial caffeine-maltodextrin mouth rinsing counteract mental fatigue? (Chapter 

5) 

In Chapter 3 a 45-min Stroop task induced a ‘mild form’ of mental fatigue in the heat (30°C). This mild mental 

fatigue did not influence participants’ psychological or physiological responses during the endurance task or their 

endurance performance in the heat. These findings could indicate that heat is a moderating factor of the mental 

fatigue-induced endurance impairment. It is plausible that a similar psychobiological mechanism may explain the 

effects of heat stress and mental fatigue on perception of effort and why the effects of the two stressors do not 

summate. In other words, in conditions of thermal discomfort, mild mental fatigue may not lead to a further 

increase in negative valence and perception of effort. In the follow-up study in Chapter 3, subjective thermal strain 

was demonstrated to be a mediator of the heat-induced performance impairment, independently from the 

physiological strain that is associated with it. This substantiates that at least a part of the heat-induced performance 

impairment is mediated by a psychobiological mechanism and enlarges the probability that heat stress and mental 

fatigue may share a common psychobiological mechanism, i.e. the negative valence of emotions associated with 

both heat stress and mental fatigue increases perception of effort and subsequently impairs physical performance. 

From a more applied point of view these results justify the use of specific techniques aiming to reduce subjective 

thermal strain (e.g. menthol spray). 

 

From the results observed in Chapter 4 it could be concluded that mental fatigue decreased open skill-visuomotor 

performance in controls as well as badminton players. These results substantiate that mental fatigue does not only 

impair endurance sports, but also impairs sport-specific psychomotor performance (e.g. open skill-visuomotor 

performance). Specifically executive control (i.e. the control to overrule an automatic response) was compromised 

by mental fatigue during the sport-specific psychomotor task, more automatic cognitive processing was relatively 

insensitive to this state. In addition, these results also demonstrate that high level athletes are not immune to mental 

fatigue. 

 

In Chapter 5 the mental fatigue-counteracting properties of serially rinsing the mouth with a caffeine-maltodextrin 

solution were evaluated. It was demonstrated that a serial caffeine-maltodextrin mouth rinse counteracts 

subjective, behavioural, and electrophysiological mental fatigue. Practically this intervention provides the 

opportunity to avoid the, sometimes, unwanted side effects of caffeine and/or maltodextrin intake. Caffeine intake, 

for example, can cause tremors, nausea, nervousness, increased levels of anxiety, or gastrointestinal distress. In 

addition, it may also adversely affect sleep patterns. Ingesting carbohydrates might also be forbidden (e.g. during 

Ramadan) or unwanted for health reasons (e.g. diabetes and obesity), especially in the form of energy drinks. 

Mechanistically these counteracting properties might be explained via the mouth rinse activating sensory neurons 
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in the oral cavity, initiating a signal transduction cascade towards the brain and subsequently restoring 

dopaminergic brain transmission. 

 

Overall these results point out that mental fatigue has important implications in physical performance, and that 

these are mediated by a strong neurophysiological and psychobiological component. The present PhD forms an 

excellent basis for future studies exploring the impact of mental fatigue on physical performance. Continuation of 

this research is of extreme importance as mental fatigue - and other neurophysiological and psychobiological 

mediators of physical performance - have only recently gained attention in sports science. Besides being an 

important topic in sports science, mental fatigue is an issue that is encountered in a multitude of settings that are 

encountered in daily life (work, driving a car, disease, …) and as such this research also forms an excellent basis 

for translational research. 
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De alomtegenwoordige aanwezigheid van vermoeidheid in ons dagelijks leven heeft ertoe geleid dat het 

onderzocht wordt in veel specifieke onderzoeksgebieden zoals: inspanningsfysiologie, cognitieve psychologie, 

geneeskunde en technologie. Vermoeidheid wordt geassocieerd met de drang om te slapen aan het einde van een 

drukke dag, de behoefte aan koffie in de ochtend, het brandende gevoel in onze benen en longen aan het einde van 

een intensieve fysieke training, het gevoel van een broodnodige pauze tijdens een werkdag, de problemen om 

aandachtig te blijven tijdens een langere rit met de auto, … . Vermoeidheid kan aanzienlijke beperkingen in het 

mentale, fysieke en/of sociale functioneren veroorzaken, welke kunnen resulteren in aanzienlijke sociale en 

economische gevolgen (vb. verliezen van contact met vrienden, ziekteverzuim op het werk, kosten 

medische/psychologische begeleiding, …). 

Vermoeidheid kent vele definities, met een andere focus in elk expertisegebied. Dit heeft zijn voor- en nadelen, 

een van de belangrijkste nadelen is waarschijnlijk dat verschillende onderzoekslijnen van vermoeidheid naast 

elkaar bestaan, zonder enige interactie. Het gevolg is dat de mogelijke doorbraken die deze interactie zou kunnen 

veroorzaken gemist worden. Ook binnen de sportwetenschap bestaat de drang om uit te leggen waarom en hoe 

mensen moe worden, en ook binnen dit gebied bestaan verschillende lijnen van onderzoek naar vermoeidheid 

(bijvoorbeeld inspanningsfysiologie en psychologie) die zouden kunnen profiteren van een toegenomen interactie 

met elkaar. Recente vooruitgang is echter geboekt om deze beide onderzoekslijnen samen te brengen, een 

onderzoeksthema dat een rol heeft gespeeld en dat hoogstwaarschijnlijk nog een belangrijke rol zal spelen in deze 

convergentie is mentale vermoeidheid. Mentale vermoeidheid is een onderzoeksonderwerp dat aspecten van zowel 

inspanningsfysiologie als psychologie bevat en als zodanig een waardevolle aanwinst blijkt bij het zoeken naar 

mechanismen van vermoeidheid in de sportwetenschap. Deze onderzoekslijn naar mentale vermoeidheid probeert 

inzichten te verschaffen in de mechanismen achter de mindere fysieke prestatie na de uitvoering van een langdurig 

veeleisende cognitieve taak. In een poging om dit te doen, wordt de rol van fysiologische en psychologische 

factoren in fysieke prestaties beoordeeld. 

Het onderzoeksthema mentale vermoeidheid is pas onlangs op de voorgrond getreden en als zodanig was het doel 

om in dit proefschrift het verband tussen mentale vermoeidheid en fysieke prestaties verder te onderzoeken. Om 

dit te doen is dit proefschrift opgebouwd uit een systematische review van de literatuur en vier gerandomiseerde 

gecontroleerde studies. Alle vijf manuscripten werden geschreven als op zichzelf staande papers waarvan er vier 

zijn geaccepteerd en één is ingediend in relevante internationale fysiologische, psychologische, 

neurowetenschappelijke wetenschapstijdschriften. 

Om een duidelijk overzicht te geven van de huidige kennis over het effect van mentale vermoeidheid op fysieke 

prestaties, was een eerste doel van dit doctoraat om een systematische review van de beschikbare literatuur over 

dit onderwerp uit te voeren (zie hoofdstuk 2). Deze review maakte duidelijk dat mentale vermoeidheid de 

uithoudingsprestatie doet dalen, en het onderliggende mechanisme van deze daling lijkt een hoger dan normaal 

gevoel van inspanning te zijn. Fysiologische variabelen die traditioneel geassocieerd worden met 

uithoudingsvermogen (hartslag, bloed lactaat, zuurstofopname, cardiale output) werden niet direct beïnvloed door 

mentale vermoeidheid tijdens en na de uithoudingsprestatie. Maximale kracht, kracht en anaerobe arbeid werden 

niet beïnvloed door mentale vermoeidheid. Dit leidde tot de conclusie dat duur, intensiteit en een cognitieve 

component van de fysieke taak belangrijke modererende factoren lijken te zijn in het effect van mentale 

vermoeidheid op de fysieke prestaties. In onze zoektocht om het verband tussen mentale vermoeidheid en fysieke 
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prestaties verder te ontrafelen hebben we geprobeerd: (1) om de mogelijke modererende rol van warmte in het 

effect van mentale vermoeidheid op de uithoudingsprestaties te achterhalen (zie hoofdstuk 3), (2) de impact van 

mentale vermoeidheid op sport-specifieke psychomotorische vaardigheden nader te beoordelen (zie hoofdstuk 4) 

en (3) om een mogelijke tegenmaatregel voor de negatieve effecten van mentale vermoeidheid te evalueren (zie 

hoofdstuk 5). Deze doelen resulteerden in de volgende onderzoeksvragen: 

• Onderzoeksvraag 1: Beïnvloedt mentale vermoeidheid fysieke prestaties en, zo ja, wat zijn de onderliggende 

factoren die dit veroorzaken? (Hoofdstuk 2) 

• Onderzoeksvraag 2: Beïnvloedt mentale vermoeidheid het uithoudingsvermogen in de hitte? (Hoofdstuk 3) 

• Onderzoeksvraag 3: Beïnvloedt een warmte-kussen, lokaal aangebracht op de bovenrug, het 

uithoudingsvermogen? (Hoofdstuk 3) 

• Onderzoeksvraag 4: Vermindert mentale vermoeidheid de sport-specifieke psychomotorische prestatie? 

(Hoofdstuk 4) 

• Onderzoeksvraag 5: Heeft het trainingsniveau invloed op de impact van mentale vermoeidheid op sport-

specifieke psychomotorische prestatie? (Hoofdstuk 4) 

• Onderzoeksvraag 6: Countert herhaalt de mond spoelen met een cafeïne-maltodextrine solutie mentale 

vermoeidheid? (Hoofdstuk 5) 

In Hoofdstuk 3 werd door een Stroop-taak van 45 minuten een 'milde vorm' van mentale vermoeidheid met succes 

opgewekt in de hitte (30°C). Deze had echter geen invloed op de psychologische of fysiologische variabelen tijdens 

de uithoudingstaak, noch op de uithoudingsprestatie zelf. Deze bevinding bevestigt dat hitte een mogelijke 

moderator zou kunnen zijn van het effect van mentale vermoeidheid op het uithoudingsvermogen. Het is 

aannemelijk dat een vergelijkbaar psychobiologisch mechanisme de effecten van hitte en mentale vermoeidheid 

op de perceptie van inspanning kan verklaren. Indien dit klopt, kan dit ook verklaren waarom de effecten van de 

twee stressoren niet optellen. Met andere woorden, bij condities van thermisch ongemak kan het zijn dat het effect 

van lichte mentale vermoeidheid op de perceptie van inspanning vervaagt. In de vervolgstudie in hoofdstuk 3 werd 

aangetoond dat subjectieve thermische stress een moderator is van de hitte-geassocieerde beperking in 

uithoudingsprestatie, en dit onafhankelijk van de fysiologische variabelen die meestal geassocieerd worden met 

het verminderen van prestatie in de hitte. Dit bevestigt dat ten minste een deel van de hitte-geassocieerde 

prestatiebeperking wordt gemedieerd door een psychobiologisch mechanisme en vergroot de waarschijnlijkheid 

dat hitte en mentale vermoeidheid een gemeenschappelijk psychobiologisch mechanisme hebben. Met andere 

woorden, de negatieve valentie van emoties geassocieerd met zowel hitte als mentale vermoeidheid verhoogt de 

perceptie van inspanning en verslechtert vervolgens de fysieke prestatie. Vanuit een meer toegepast gezichtspunt 

rechtvaardigen deze resultaten het gebruik van specifieke technieken die gericht zijn op het verminderen van 

subjectieve thermische stress (bijvoorbeeld mentholspray). 

Uit de resultaten die in hoofdstuk 4 zijn waargenomen, kan worden geconcludeerd dat mentale vermoeidheid 

visuomotorische prestaties verminderd bij zowel niet-atleten als badmintonspelers. Deze resultaten bevestigen dat 

mentale vermoeidheid niet alleen de duursporten schaadt, maar ook sport-specifieke psychomotorische prestaties. 

In dit hoofdstuk kwam naar voor dat specifiek de executieve controle (d.w.z. iemands controle om een 

automatische reactie te negeren) werd aangetast door mentale vermoeidheid tijdens de sport-specifieke 
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psychomotorische taak. Meer automatische cognitieve verwerking was echter relatief ongevoelig voor deze 

toestand. Bovendien laten deze resultaten ook zien dat topsporters niet immuun zijn voor mentale vermoeidheid. 

In Hoofdstuk 5 werd nagegaan of  het herhaaldelijk spoelen van de mond met een cafeïne-maltodextrine-oplossing 

een tegenmaatregel kan zijn voor de negatieve effecten van mentale vermoeidheid. Er werd aangetoond dat een 

seriële cafeïne-maltodextrine mondspoeling subjectieve, gedragsmatige en elektrofysiologische effecten van 

mentale vermoeidheid tegengaat. Praktisch gezien biedt deze interventie de mogelijkheid om de, soms ongewenste, 

bijwerkingen van cafeïne en/of maltodextrine-inname te voorkomen. Cafeïne-inname kan bijvoorbeeld 

misselijkheid, nervositeit, verhoogde angstniveaus of gastro-intestinale klachten veroorzaken. Bovendien kan het 

ook het slaappatroon negatief beïnvloeden. Het innemen van koolhydraten kan ook verboden (bijvoorbeeld tijdens 

Ramadan) of ongewenst zijn om gezondheidsredenen (bijvoorbeeld diabetes en obesitas), in het bijzonder in de 

vorm van energiedranken. Mechanistisch gezien kunnen deze tegenwerkende eigenschappen worden verklaard via 

de mondspoeling die sensorische neuronen in de mond activeert, waardoor een signaaltransductiecascade naar de 

hersenen wordt geïnitieerd en vervolgens dopaminerge hersentransmissie wordt hersteld. 

De resultaten van dit proefschrift wijzen erop dat mentale vermoeidheid belangrijke implicaties heeft voor de 

fysieke prestaties en dat deze worden gemedieerd door een sterke neurofysiologische en psychobiologische 

component. Het huidige doctoraat vormt een uitstekende basis voor toekomstige onderzoeken naar de impact van 

mentale vermoeidheid op de fysieke prestaties. Voortzetting van dit onderzoek is van extreem belang omdat 

mentale vermoeidheid - en andere neurofysiologische en psychobiologische bemiddelaars van fysieke prestaties - 

pas onlangs aandacht hebben gekregen in de sportwetenschap. Behalve dat het een belangrijk onderwerp is in de 

sportwetenschap, is mentale vermoeidheid een probleem dat wordt aangetroffen in een veelheid aan situaties die 

we dagelijks tegenkomen (werk, autorijden, ziekte, ...). Net daarom vormt dit onderzoek ook een uitstekende basis 

om de resultaten te proberen vertalen naar andere onderzoeksgebieden.
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De officieuze start van mijn PhD bevindt zich eigenlijk aan het begin van mijn masterproef. Als 3de-jaars 

kinesitherapie-student aan de VUB komt de deadline voor het kiezen van een masterproefonderwerp steeds 
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Roelands en Eric Gerets in Qatar. Na dit avontuur in Qatar groeit de zin om verder te gaan in de onderzoekswereld 

alleen maar en in september 2014 krijg ik de mogelijkheid om dat ook daadwerkelijk te doen. Een joint-PhD tussen 

de Brusselse onderzoeksgroep van Prof. Meeusen en de onderzoeksgroep van Prof. Marcora gelegen in Kent 
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nu ben. Ik heb jou steeds ervaren als een streng maar rechtvaardig iemand, iemand met een sterke mening en een 

enorm wetenschappelijk inzicht en dat kan ik tot op de dag van vandaag alleen maar weten te appreciëren!  

Bart (= Prof. Roelands), van de drie promotoren die me hebben begeleid tijdens de afgelopen 4 jaar heb ik met 

redelijk veel voorsprong het dichtst samen gewerkt met jou. Per dag enkele malen binnen vallen in jouw kantoor 

was eerder regelmaat dan uitzondering. Meermaals heb ik van jou te horen gekregen: ‘Zijt ge nu weer daar?’, maar 

toch bleef je steeds klaar staan met een luisterend oor, kritische blik of andere mening. Ontzettend bedankt om me 

de afgelopen 4 jaar (en zelfs reeds tijdens mijn masterproef) zoveel bij te leren op wetenschappelijk vlak, maar 

zeker ook daarbuiten! Jouw bijdrage in dit doctoraat en in de persoon die ik geworden ben kan niet onderschat 
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met raad en daad, maar even goed ook daar om eens samen uit eten te gaan, op vakantie te gaan, naar de voetbal 
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