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Abstract: This paper investigates the multiperiod asset-liability management problem with

quadratic transaction costs. Under the mean-variance criteria, we construct tractability models

with/without the riskless asset and obtain the pre-commitment and time-consistent investment

strategies through the application of embedding scheme and backward induction approach,

respectively. In addition, some conclusions in the existing literatures can be regarded as the

degenerated cases under our setting. Finally, the numerical simulations are given to show the

difference of frontiers derived by different strategies. Also, some interesting findings on the

impact of quadratic transaction cost parameters on efficient frontiers are discussed.

Keywords: Asset-liability management; Multiperiod portfolio optimization; Quadratic

transaction costs; Pre-commitment strategies; Time-consistent strategies

1 Introduction

Asset-liability management (ALM) is a general risk management problem for financial

services companies, such as pension funds and insurance companies. Typically, ALM

involves the management of assets in such a way as to earn adequate returns while

maintaining a comfortable surplus of assets over existing and future liabilities. Since the

seminal work of Sharpe (1990), many attempts have been made to solve the ALM problem,

among which the mean-variance criteria presented by Markowitz (1952) is of great

importance. Actually, the mean-variance asset-liability management (MVALM) problem is a

portfolio optimization problem, so as to realize the trade-off between the expectation of the

terminal surplus maximization and minimum risk measured by the variance of the terminal

surplus. Keel and Müller (1995) studied the asset-liability management problem in a single

period setting, and validated the significant effect of liability on efficient frontier. However,

the multiperiod MVALM problem faces with the difficulties in solving the analytical solution
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due to non-separability of variance. In this sense, the multiperiod mean-variance ALM

problem cannot be directly solved by the dynamic programming approach.

Up to now, there are two mainstream approaches are applied to deal with this

time-inconsistent problem. One is the embedding method initiated by Li and Ng (2000) and

Zhou and Li (2000) in multiperiod and continuous-time portfolio optimization respectively,

and the corresponding optimal investment strategy is called the pre-commitment strategy.

Leippold et al. (2004) firstly applied the embedding method in multiperiod asset-liability

management to acquire the closed form of efficient frontier. Subsequently, Xie et al. (2008)

modeled the uncontrollable liability under the framework of Zhou and Li (2000) in

continuous-time setting. Chang (2015) considered the issue of asset-liability management and

derived effective strategy through the dynamic programming and Lagrangian duality theory.

And he further validated the impact of liability on investment strategies. More studies can be

found in Chen et al. (2008), Chen and Yang (2011) and Bensoussan et al. (2013). The other is

the game approach, which is firstly developed by Bjork and Murgoci (2010). In this case, this

optimization problem is treated as a non-cooperative game, in which the strategies at different

period are determined by different players aiming at optimizing their own target functions.

Nash equilibrium of these strategies was then utilized to define as the time-consistent strategy

for the agent of the original problem. Wei et al. (2013) provided the first study in the

time-consistent solution of the mean-variance asset-liability management. And the

time-consistent strategy is derived in continuous-time setting. For more researches regarding

the time-consistent strategy of asset-liability management, readers may refer to Li et al.

(2012), Chen et al. (2013) and Long and Zeng (2016). Besides, some scholars have applied

genetic algorithms to portfolio optimization for numerical solutions, such as Guo (2016), Li

(2015), Yu et al. (2012, 2009, 2008).

However, these studies do not take into account market frictions, such as transaction

costs. It is generated by investors to aggressively adjust their portfolio for the goal of the

maximum profit and risk minimization. For the institutional investors engaged in bulk trading,

transaction costs are particularly high. Thus, how to effectively allocate financial assets in the

presence of transaction costs is a key problem to be solved. Further, Arnott (1990) found that

ignorance of transaction costs would lead to invalid portfolios through empirical study.
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Yoshimoto (1996) once again proved this judgment. Nevertheless, portfolio optimization with

transaction costs has been an insurmountable problem. In order to obtain analytical solutions,

Fu et al. (2015) represented a two-stage portfolio including a risky asset and a riskless asset,

and deduced an analytical expression of the investment strategy when considering the

proportional transaction cost. However, this approach is limited to one or two investment

stages, and also the investor can only invest one riskless asset and one risky asset. To deal

with this dilemma, Gârleanu and Pedersen (2013) promoted the optimal feedback solution for

dynamic portfolios with a quadratic transaction cost which was followed by some researchers,

such as Boyd et al. (2014), DeMiguel et al. (2015) and Zhang et al. (2017). As far as we know,

there is very little research focus on ALM problem with transaction costs. Papi et al. (2006)

considered the proportional transaction cost in ALM problem and proposed an approximation

method based on the classical dynamic programming algorithm. Though the method reduces

the computational and storage requirement of algorithm, it fails to acquire the analytical

solutions.

Motivated by the difficulties for multiperiod asset-liability management problem with

transaction costs, we provide the tractability framework to obtain the analytic solutions,

which considers the quadratic transaction costs adopted by Gârleanu and Pedersen (2013).

Since investors tend to pursue the goal of maximizing ultimate surplus, not the wealth of a

particular period. We take the ultimate surplus of investment as the optimization target and

cover the wealth accumulation of investment process, which is different from Gârleanu and

Pedersen (2013). We then derive the pre-commitment and time-consistent investment

strategies by applying the embedding scheme and backward induction approach, respectively.

Also, we obtain the analytical expressions for the optimal investment strategies, the

corresponding expectation and variance of surplus and the expected transaction costs. What is

more, we study two cases, namely, the market containing a riskless asset and the investment

without riskless assets. Finally, some numerical simulations are presented to compare the

frontiers from different strategies and further verify the formulations derived in this paper.

The rest of this paper is organized as follows. In Section 2, we formulate the multiperiod

MVALM problem containing a riskless asset with quadratic transaction costs. The

pre-commitment strategy and time-consistent strategy are solved in Section 3. In Section 4,
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we consider the portfolio without riskless assets and derive the pre-commitment and

time-consistent strategies. In Section 5, some numerical simulations are presented to show our

findings for different strategies. Section 6 concludes this whole paper.

2 Problem formulation

Consider a capital market with 1n assets and an investment process for T periods.

Here, asset 0 is a riskless asset with a constant return rate 0
tr while asset i is a risky asset

with a random return rate i
te at period t for ni ,...,2,1 and 1,...,1,0  Tt . It is

assumed that the vector ],,,[ 21  n
tttt eeee  , are statistically independent and return te has

a known mean ])(,),(),([)( 21  n
tttt eEeEeEeE  and a known covariance matrix
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, (2.1)

which is supposed to be positive definite. The investor allocates his initial wealth 0W

among all the securities in the market at initial time, along with the accumulation of wealth,

and then adjust the amount of investment for each asset at period t . In order to better

describe the investment process, we define i
tv , ni ,...,2,1 , as the investment amount on

risky asset i which is allowed short selling and },..., ,{ 21 n
tttt vvvv  as the

adjustment amount on risky asset i at period t . Therefore, the investment amount on

riskless asset is ttt vIWv  1
0 , and the adjustment amount on riskless asset 0

tv is equal

to tv1 based on the self-financing assumption.

In addition, suppose that the investor has an exogenous liability. The initial liability is

0L . Let tq be the return of liability at the t -th investment period, where ),(  tt qe is

statistically independent. We diagonalize the co-variance vector about the liability and risky

assets, denoted as )),(,),,(( 10 n
ttttt eqCoveqCovdiag  . Therefore, we have

ttt LqL .1  , for 1,...,1,0  Tt (2.2)
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and the surplus at period t can be expressed as ttt LWS  .

We follow the quadratic transaction costs adopted in Gârleanu and Pedersen (2013).

Under this setting, the transaction cost (TC) associated with trading volumes tv is given

by











1

0

1

0

T

t
tt

T

t
tT vvCTC . (2.3)

where  is a symmetric positive-definite matrix measuring the level of total trading costs.

Note that the transaction cost tC depicts the expense arising from changes on

investment amounts at period t rather than trading shares shown in Gârleanu and Pedersen

(2013). Trading volume tv moves the average price by tv , and it leads to a total

transaction costs according to T period, which can be denote as TTC . More importantly,

we assume that the transaction cost is paid beyond the amount of investment wealth tW , that

is, the transaction cost is independent of tW . Obviously, the transaction cost is regarded as an

undesirable payment, and it should be minimized in the objective function.

Let },...,,{)( 11   Ttt vvvtv be the strategy at period t , and then the multiperiod

asset-liability management problem with quadratic transaction costs can be expressed as:

)()()(max))(,( )()()(
t

tv
Tt

tv
Tt

tv
Ttt JTCEJSVarJSEtvJF    , (2.4)

where )(tv
TS
 and )(tv

TTC  denote the terminal surplus and the total transaction cost

corresponding to the investment strategy )(tv , respectively. In addition, tJ denotes the

information at period, and ),0(  is risk-aversion coefficient, ),0(  is

cost-aversion coefficient.

The difficulty in solving the problem ))(,( tvJF tt  is cause by the non-separability

of variance. That is, it does not satisfy the Bellman optimality principle. Therefore it can not

be directly solved by dynamic programming approach. In the following, we will adopt

embedding scheme and backward induction to solve this problem. According to the idea of Li
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and Ng (2000), for the pre-commitment strategy, we embed it into a separable auxiliary

problem which can be solved by dynamic programming. Then the solution of the original

problem can be obtained by the following theorem.

Theorem 2.1. If },...,,{)( *
1

*
1

**
  Ttt vvvtv is the optimal strategy for the auxiliary

problem

)())(()(max))(,(~ )(2)()(
t

tv
Tt

tv
Tt

tv
Ttt JTCEJSEJSEtvJF    , (2.5)

then )(* tv is also the optimal strategy for the problem ))(,( tvJF tt  for

)(21 *
Tt SE  . )( *

Tt SE denotes the expectation of the investors’ final surplus when he

invests according to the optimal strategy )(* tv . The proof of theorem 2.1 is detailed in

Appendix A.

According to Theorem 2.1, the pre-commitment strategy can be obtained by the

following steps:

1) We first construct the auxiliary problem

)())(()(max )(2)()(
t

tv
Tt

tv
Tt

tv
T JTCEJSEJSE    , (2.6)

which is a separable structure in the sense of dynamic programming.

2) Through the idea of dynamic programming, we obtain the solution )(ˆ tv of the auxiliary

problem, and )(ˆ tv is a function of  .

3) By iterating each period of the strategy )(ˆ tv with the state transition equation of surplus,

it is easy to find the expected final surplus )( Tt SE , which is a function of  . Then, by

using equation )(21 Tt SE  and the expression of )( Tt SE for  , the

pre-commitment strategy )(* tv for the problem ))(,( tvJF tt  is solved.

Also, the problem ))(,( tvJF tt  can be solved by the time-consistent strategy. Bjork

and Murgoci (2010), from a mathematical point of view, proves the application of Nash

equilibrium strategy to solving time-inconsistent problems. Then Wu (2013) investigates the
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time-consistent Nash equilibrium strategies for a multiperiod mean-variance portfolio

selection problem. Mathematically, the time-consistent strategy can be defined as follows.

Definition 2.1. Let v~ be a fixed control law. For an arbitrary point  ( 1,...,1,0  T ),

one selects an arbitrary control value v and define the strategy

}~,...,~ ,{)( 11   Tvvvv  . Then v~ is call as the time-consistent strategy if for all

T , it satisfies

))(~;())(;(max
)(

 
vJFvJF

v



(2.7)

Let )(~ tv be the time-consistent strategy at period t , Definition 2.1 makes it possible

to solve the problem by the following procedures:

1)
)]()(

)([maxarg~)1(~
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)1(

1
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v1
1-T
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
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


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Tv

T

T
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TT

JTCEJSVar

JSEvTv


(2.8)

2) Given that the decision maker 1T will use 1
~

 Tv , 2
~

 Tv is the optimal strategy

by optimizing objective function ))~,(;( 1-2-22 TTTT vvJF  ;

3) Generally, given that the forthcoming decision makers 1,...,1  Tt choose the

strategy )~,...,~()1(~
11   Tt vvtv , tv~ is obtained by letting decision maker t choose

tv to maximize tF . That is

))~,...,~,(;(maxarg~
11 

 Tttttvt vvvJFv
t

(2.9)

For a mean-variance investor, the pre-commitment as well as time-consistent strategies

are available. We will show them in the following sections.

3 Analytical solutions of multiperiod MVALM problem with a riskless asset

In this section, we consider the market with a riskless asset and derive the analytical

solutions which contain pre-commitment strategy and time-consistent strategy. The

corresponding investment strategies, the expectation and variance of surplus and the expected

transaction costs are showed in this section.

To sum up, the formulation for the market with a riskless asset can be expressed by the

following model:
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where ),0(  is the risk-aversion coefficient, ),0(  is the cost-aversion

coefficient. For a specific investor,  and  are constant.

3.1 Pre-commitment strategy for problem )),(( P

As the non-separability of variance in problem )),(( P , the objective function does

not meet the requirement of dynamic programming approach. Thus, according to the Theorem

2.1, we first construct the auxiliary problem )),,(( A and solve the problem )),(( P

based on solutions of problem )),,(( A .
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Obviously, )),,(( A is a separable structure in the sense of dynamic programming.

According to Theorem 2.1, we can obtain the optimal asset allocation and the optimal value

of objective function by solving the analytical solution of auxiliary problem )),,(( A .

For convenience, we list the notations of this section as following.

Define:
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i
tt

i
t CICCICCN  

t
i
tt

i
ttt

i
tt

i
ttt

i
tt

i
tt

i
t BIBBIBqEOBIIBBBO ~'~'~'~')(~~''~~'~~ 2

1   

i
ttttttt

i
tt

i
tt

i
tt

i
t CIDDCIIDCICCDP  ]'~'~)'~)(~'1[('~)~'1(2~2~'~2~



IDDBIDDIBBIIDBBDQ t
i
t

i
tt

i
ttttttt

i
tt

i
tt

i
tt

i
t '~)'~(]~'~)'~('~[~''~2~2~'~2~  

)~'1(~']~'~)~'1(~[']~'~)~'1('~~[2~ 0
1 t

i
tt

i
ttttt

i
tt

i
ttttt

i
t

i
t CICBICCIBCBCIIBrNR   

}]'~'~)'~('~[]~'~~~'~[2{~ i
ttttttt

i
tt

i
tt

i
tt

i
t AIDDIAAIIDAADX  

]}~'~)~'1(~[')~'1('~2~'~2{~
tttt

i
ttt

i
tt

i
tt

i
t AICCIACIIACAY  

}~'~']~'~~'~['~)'('~2{~
t

i
tt

i
ttttt

i
tt

i
t

i
tt

i
t AIAAIBBIABIIAZ  

]~)'''('~[~~ 2
1 t

i
tt

i
tt

i
t

i
t AIIIAKK    .

where I is the n-dimensional column vector of element 1, and  is a unit matrix.

By using the procedure on the pre-commitment strategy in Section 2, the corresponding

investment strategy for problem )),,(( A can be given in the following Theorem 3.1.

Theorem 3.1. The optimal strategy tv and optimal value function ),,( 0
tttt Lvvf at the

period t for problem )),,(( A , respectively, is

tttttttt vDvCLBAv ~~~~ 0   ， 1,...,2,1,0  Tt (3.3)

00220
1

0 ~'~'~~)(~~'),,( tttttttttttttttttttt vLRLvQvvPLOvNvMvLvvf  

1,...,2,1,0,~~~'~ 0  TtKLZvYvX ttttttt . (3.4)

Proof. See Appendix B.
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And then, in accordance with Theorem 2.1, we can obtain

3
0

3
0

3
0

3
0* ~21

)~~~(21~
K

ZYX






 . (3.5)

Theorem 3.2. The optimal investment strategy of problem )),(( P , the corresponding

expectation and variance of surplus and expected transaction cost for 1,...,2,1,0  Tt is,

respectively, as follows

tttttttt vDvCLBAv ~~~~ 0**   , (3.6)

3333** ~~~~)( ttttTt ZYXKSE   (3.7)

01101212011* ~'~'~~)(~~')( ttttttttttttttttTt vLRLvQvvPLOvNvMvSVar 

2*11*01*1* )]([~~~~
Ttttttttt SEKLzvyvx   (3.8)

tttttttttttttTt LvQvvPLOvNvMvTCE '~'~~)(~~')( 202222022* 

2202202 ~~~'~~
tttttttttt KLZvYvXvLR  . (3.9)

Remark 3.1. When the investor has no liability, that is 0tL , then the pre-commitment

strategy reduces to

tttttt vDvCAv ~~~ 0**   (3.10)

and the expectation and variance of surplus and the expected transaction costs for

Tt ,...,2,1,0 , respectively, is：

333** ~~~)( tttTt YXKSE   (3.11)
2*101*1*012011* )]([~~'~'~)(~~')( TttttttttttttttTt SEKvyvxvvPvNvMvSVar   (3.12)

2022022022* ~~'~'~)(~~')( tttttttttttttTt KvYvXvvPvNvMvTCE  . (3.13)

Remark 3.2. When ignoring the transaction cost, that is 1,...,1,0,0  TtCt , the

pre-commitment strategy can be acquired by setting 0 in equations (3.10). In addition,

if the liability 0tL ( 1,...,1,0  Tt ) at the same time, the pre-commitment optimal

strategy and the frontier is equivalent to those in Li and Ng (2000).

In summary, Theorem 3.1 generally includes a portfolio optimization strategy and the

corresponding frontier that does not contain transaction costs or liabilities, or both.
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3.2 Time-consistent strategy for problem )),(( P

Here, we show the time-consistent strategy for multiperiod MVALM problem with
quadratic transaction cost. The backwards induction is applied to solve the time-consistent
strategy containing a riskless asset.

For 1,...,1,0  Tt and 0 if 1 Tt , 1 if 1 Tt , we define:

1~ Tx , 1~ Ty , 1~ Tz

ttttttt xxGMGE   111 '~~)~(~ 
















2,...,1,0,~~'~)'(

1,2~

11
0

1

0
10

TtyxoqGE
TtI

tttttt

T
t

)~(~
1 tttt GdGE  

1]~2~2[~  ttt 

))~(2~2(~~
tttttt GdGEa  

)]~~)((~~)([~~
11

0
11   ttttttttt kpGEIrzxGEc 

1
0 ~)(~(~~

 tttttt jqGEb 

ttttttt aIrzxGEax ~'~~)()'~(~ 0
11   

ttttttttt bIrzqEybGExy ~'~)(~~)('~~ 0
111  

0
1

~~
ttt rzz 

ttttttt cIrzGEx ~]'~)(~[~~ 0
111   

)(~)'(~
tttt aam  

)(~~'~~~'~~ 2
1

0
ttttttttt qEnbbbn  

)~~'~2()'~(~ 0
ttttt bao  

]~)(~'~2[)'~(~
11   ttttTt pGEcap 

]~)('~~)([~'~~~'~2~
11

0
ttttttttttt bGEpqEccb   

]~~)('~[~ˆ'~~
1t1t    tttttt cGEpcc
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)~)(~()'~(~'~~
1 tttttttt aGdGEaaad   

]~)('~)(~[~'~~
1

2
1 ttttttttt bqGEjqEhbbh   

)]~)(~)~(2)'~[(~'~2~
11   ttttttttttt jqGEbGdGEabaj （

]~)(~)~(2)'~[('2~
11   ttttttttttt kqGEcGdGEacak 

)](~~)('~~)('~[~~'~2~
111 ttttttttttttt qEubGEkcqGEjcbu   

]~)('~~[~~'~~
11 tttttttt cGEkcc    .

By applying Bellman's principle of optimality, the time-consistent investment strategy of

problem )),(( P is given in the following theorem.

Theorem 3.2. The time-consistent investment strategy of problem )),(( P for

1,...,1,0  Tt is given by

tttttt cLbvav ~~~  , (3.14)

and the expectation of surplus is

tttttttTt vzLyvxSE ~~~'~)( 0  (3.15)

the variance of surplus is

tttttttttttttTt LvpLvoLnvmvSVar  ~~'~'~~~')( 2  (3.16)

the expected transaction costs is

tttttttttttttTt LuvkLvjLhvdvTCE ~~'~'~~~')( 2  . (3.17)

Proof. See Appendix C.

Remark 3.3. If the investor have no liability, that is 0tL for 1,...,1,0  Tt , then the

time-consistent strategy reduces to

tttt cvav ~~  (3.18)

and the expectation and variance of surplus and the expected transaction costs, respectively,

is：

tttttTt vzvxSE ~~'~)( 0  (3.19)

ttttttTt vpvmvSVar ~'~~')(  (3.20)

ttttttTt vkvdvTCE ~'~~')(  . (3.21)
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Furthermore, the Theorem 3.2 still generalizes the situation without transaction cost when

0 , and the situation without liability and transaction cost.

Remark 3.4. When ignoring the transaction cost, that is 1,...,1,0,0  TtCt , then the

time-consistent strategy can be acquired by setting 0 in the equations (3.18). And the

expectation and variance of surplus and the expected transaction costs at period t can be

obtained in the same way.

Similarly, Theorem 3.2 generally includes a portfolio optimization strategy and the

corresponding frontier that does not contain transaction costs or liabilities, or both.

4 Analytical optimal solutions of multiperiod MVALM problem without riskless assets

To our best knowledge, most existing literatures about portfolio selection only concern

the market with a riskless asset and risky assets. However, Yao et al. (2014) pointed out that,

in some real investments, the riskless asset does not exist due to the stochastic nature of real

interest rates and the inflation risk. In addition, Viceira (2012) held that the expected return on

riskless asset is time-varying especially in multiperiod investment. Ma et al. (2013), Gülpınar

et al. (2016) and Chiu et al. (2017) also studied the market without riskless assets. Therefore,

it is necessary to take an economy with only risky assets into account for the multiperiod asset

allocation.
Here, we consider a market consisting of only n risky assets presented in Section 2. In

this setting, this portfolio optimization problem can be written as follows:



























































1,...,1,0,'

,...,1,0,
1,...,1,0,

1,...,1,0,0
1,...,1,0),(
1,...,1,0),(

  ..

)()(ar)(max

)),(ˆ(

1

0

1

1

1

)(

TtvvTC

TtLWS
TtLqL
TtvI

TtvvGv
TtvveW

ts

TCESVSE

P

T

t
ttT

ttt

ttt

t

tttt

tttt

TtTtTttv


 (4.1)

Obviously, the solving of multiperiod portfolio model without riskless assets is similar

to that of the model with a riskless asset. Thus, we omit the proving process and only show

the results in this section.

http://www.sciencedirect.com/science/article/pii/S026499931300401X
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4.1 Pre-commitment strategy for problem )),(ˆ( P

From a mathematical point of view, the nature of the problem )),(ˆ( P is similar to

)),(( P . And the difference between problem )),(ˆ( P and problem )),(( P is only

the wealth equation. Therefore, it essentially has the same non-separable structure in the sense

dynamic programming. Thus, we solve it by the Theorem 2.1. Similarly, we first construct

auxiliary problem )),,(ˆ( A and then solve problem )),(ˆ( P through the relationship

between them. The auxiliary problem is showed below:





























































1,...,1,0,'

,...,1,0,
1,...,1,0,

1,...,1,0,0 
1,...,1,0),(
1,...,1,0,)( 

  ..

)()()(max

)),,(ˆ(

1

0

1

1

1

2

)(

TtvvTC

TtLWS
TtLqL
TtvI

TtvvGv
TtvveW

ts

TCESESE

A

T

t
ttT

ttt

ttt

t

tttt

tttt

TtTtTttv


 (4.2)

The analytical solution and the optimal value of objective function to problem

)),,(ˆ( A are derived by dynamic programming approach.

Define:

  TTTTT RQIPINIIM ,,2,,

tttttttt GMGEGMGE    )(,)( 11 , 1,...,2,1,0  Tt

11

1
1 )()

'
'(

2
1




  tt

t

t
tt nGE

II
IIA

 , 1,...,2,1,0  Tt

11

1
1 )()

'
'(

2
1




  ttt

t

t
tt PGqE

II
IIB

 , 1,...,2,1,0  Tt

t
t

t
tt II

IIC 

 )

'
'( 1

1
1




  , 1,...,2,1,0  Tt

 /,, 32121
ttttttttt NnNNNNMMM  , 1,...,2,1,0  Tt

2121 , tttttt QQQPPP   , 1,...,2,1,0  Tt
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321321 , tttttttt OOOORRRR   , 1,...,2,1,0  Tt

0,1, 333  TTT ORIN

3
1

3 )()(  tttt NGECN  , 1,...,2,1,0  Tt

)()( 3
1

3
1

3
1 tttttt qERBGENR   , 1,...,2,1,0  Tt

ttttt AGENOO )(3
1

3
1

3
  , 1,...,2,1,0  Tt .

0,,0,2,0, 111111  TTTTTT OQRIPNIIM 

11
2

111
2

111
2

1 2,2,   TTTTTTTTT BCPACNCCM

11
2

111
2

111
2

1 ,2,   TTTTTTTTT AAOBARBBQ .

The following notations are defined for iTt  ,...,2,1,0 and 2,1i :

ttt
i
tt

i
t CCiCCM  ')1()()'(  , )( 1 t

i
tt

i
t GMGE 

]')1()'[(2 ttt
i
tt

i
t ACiACN  

tt
i
ttttt

i
tt

i
t BCiPGqECBCP  

'
1 )1(2)()'()(2 

)()(])1([' 2
11 t

i
tttt

i
tt

i
tt

i
t qEQBGqEPBiBQ   

ttt
i
tt

i
tt

i
t AGqEPBiAR )(])1(['2 1 

t
i
tt

i
t

i
t AiAOO ])1(['2

1    .

where I is the n-dimensional column vector of element 1, and  is a unit matrix.

Theorem 4.1. The optimal strategy tv of problem )),(ˆ( P for 1,...,1,0  Tt is

specified by:

tttttt vCLBAv  **  . (4.3)

And the expectation and variance of surplus and the expected transaction costs, respectively,

is：

333**)( tttTt RNOSE   (4.4)

2*1121111* )]([''')( TttttttttttttttTt SEOLRLQvLPvNvMvSVar  (4.5)
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2222222* ')( tttttttttttttTt OLRLQvLPvNvMvTCE  , (4.6)

where 3
0

3
0

3
0*

21
)(21

O
RN






 and Tt ,...,2,1,0 .

Remark 4.1. When the investor has no liability, that is 0tL for 1,...,1,0  Tt , the

above optimal strategy remains valid. Under this situation, the optimal strategy tv is

specified by

tttt vCAv  **  ， 1,...,2,1,0  Tt . (4.7)

And the expressions of expectation and variance of surplus and the expected transaction costs

for Tt ,...,1,0 , respectively, is

33**)( ttTt NOSE   (4.8)

2*111* )](['')( TtttttttTt SEOvNvMvSVar  (4.9)

222* '')( ttttttTt OvNvMvTCE  . (4.10)

This implies that the Theorem 4.1 can generalize the situation without liability.

Remark 4.2. When ignoring the transaction cost, that is 1,...,1,0,0  TtCt , the

pre-commitment strategy can be acquired by setting 0 in equations (4.7). If the liability

0tL ( 1,...,1,0  Tt ) and cost-aversion coefficient 0 that ignores the transaction cost,

the pre-commitment optimal strategy is equivalent to that in Li and Ng (2000). Therefore,

Theorem 4.1 generally includes three situations just like Theorem 3.1.

4.2 Time-consistent strategy for problem )),(ˆ( P

It is not difficult to find the problem )),(ˆ( P can be solved by the time consistent

strategy. By using backwards induction, we derive the time-consistency strategy for

multiperiod MVALM problem without riskless assets by using the procedures presented in

Section 2.

Define:

For 0 if 1 Tt and 1 if 1 Tt , we define:

file:///C:/Users/Administrator/AppData/Local/youdao/dict/Application/6.3.69.8341/resultui/frame/javascript:void(0);
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1Tx , 1Ty , 1Tz

ttttttt xxGMGE   ')(ˆ
111
















2,...,1,0,)(

1,2ˆ
11

0
1

0
10

TtyxoqGE
TtI

tttttt

T
t

)GME(Gˆ
1 tttt  


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
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1),(
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TtpxGE
TteE

ttt
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




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


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II
II

tt

tt
ttt 1

1
1

]ˆ2ˆ2['
]ˆ2ˆ2[]ˆ2ˆ2[




ttta  ˆ2 , 0ˆ
tttb  , tttc 













2,...,1,0,)()'(
1),()'(

1

11

TtxGEA
TteEA

x
ttt

TT
t 



)()(' 11 tttttt qEybGExy  

ttttt cGExzz )(' 11  

)(ˆ)'( tttt aam  

)('ˆˆ' 2
1

0
ttttttttt qEnbbbn  

)ˆ'ˆ2()'( 0
ttttt bao  

])('ˆ2[)'( 11   ttttTt pGEcap 

])(')(['ˆˆ'2 11
0

ttttttttttt bGEpqEccb   

tttttt cGEpcc )('ˆ' 11tt   

))(()'(' 1 tttttttt aGdGEaaad   

])(')([' 1
2

1 ttttttttt bqGEjqEhbbh   

)])()(2)'[('2 11   ttttttttttt jqGEbGdGEabaj （

)])()(2)'[('2 11   ttttttttttt kqGEcGdGEacak （
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)]()(')('['2 111 ttttttttttttt qEubGEkcqGEjcbu   

])('[ˆ' 11 tttttttt cGEkcc    .

Subsequently, by applying the procedures of time consistent strategy, we have the

following conclusions.

Theorem 4.2. For 1,...,2,1,0  Tt , the time-consistent investment strategy of problem

)),(ˆ( P is given by

tttttt cLbvav  , (4.11)

the corresponding expectation and variance of surplus and the expected transaction costs,

respectively, is：

tttttTt zLyvxSE  ')( (4.12)

tttttttttttttTt LvpLvoLnvmvSVar   ''')( 2 (4.13)

tttttttttttttTt LuvkLvjLhvdvTCE  ''')( 2 . (4.14)

Remark 4.3. Similarly, if the investor does not have any liability, that is 0tL for

1,...,1,0  Tt , then the time-consistent strategy reduces to

tttt cvav  (4.15)

and the expectation and variance of surplus and the expected transaction costs, respectively,

is：

tttTt zvxSE  ')( (4.16)

ttttttTt vpvmvSVar  '')( (4.17)

ttttttTt vkvdvTCE  '')( (4.18)

Thus the same to Theorem 3.2, the Theorem 4.2 generalizes three situations as well.

5 Numerical simulations

In this section, some numerical simulations are given, which provide twofold

contributions. Firstly, we compare the results of application of quadratic transaction

costs and no costs in Example 5.1. Further, in the present of quadratic cost, we

compare the frontiers under different strategies and different settings in Example 5.2,

including strategies with/without riskless assets. Secondly, to disclose the impact of quadratic

transaction costs on frontiers, we discuss the transaction cost parameters  and  in
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Example 5.3 and 5.4, respectively.

Consider a riskless asset with a constant return rate of 1.04 and three risky assets whose

corresponding expected return vector and the covariance matrix are given as

]228.1,246.1,162.1[)( teE and


















0289.00104.00145.0
0104.00854.00187.0
0145.00187.00146.0

t for 1,...,1,0  Tt

respectively. The expected return of liability is 1.136 and the corresponding variance is 0.01.

])0050.0,0149.0,0006.0([0 diagt  is the diagonal matrix of covariance vectors of

liability and risky assets.

The investor has 1 unit of wealth and 0.3 unit of liability at the beginning of the planning

horizon, and conducts a multiperiod investment process with 4T . The parameter 

ranges from 0.4 to 1.2 and  varies from different examples. Due to the importance of the

investor's terminal net surplus, all simulated results are demonstrated by the frontiers that take

)( TT TCSE  as ordinate and )( TT TCSVar  as abscissa, referred to as M-V frontier.

According to the conclusions shown in previous sections, we can find that )( TT TCSVar 

is equivalent to )( TSVar .

Example 5.1 Comparison of strategies with/without cost

Although the empirical evidence shows that the transaction cost affects the strategy, it

fails to quantify the extent of the change intuitively. Thus, we compare the strategies of

considering the transaction cost and that of ignoring it.

file:///C:/Users/Administrator/AppData/Local/youdao/dict/Application/6.3.69.8341/resultui/frame/javascript:void(0);
file:///C:/Users/Administrator/AppData/Local/youdao/dict/Application/6.3.69.8341/resultui/frame/javascript:void(0);
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Fig. 5.1 The M-V frontiers under different strategies with/without cost

From Fig.5.1, we can know that the existence of transaction costs does affect the

pre-commitment strategies greatly. And the time-consistent strategies have been affected to

some extent, but not seriously. Ignoring transaction costs can lead to invalid pre-commitment

strategies. At the same time, the investors who has high transaction cost aversion could be

inclined to consider time-consistent strategies.

Example 5.2 Comparison of the frontiers under different strategies

In order to better understand the difference among different investment strategies, we

will discuss the frontiers under the following two situations:

(a) =0.5,  =0.001* , where  is a unit matrix;

(b) =10,  =0.001* , where  is a unit matrix.

When other parameters remain unchanged, different cost aversion coefficients will

produce different frontiers. The detailed simulation results are shown in Fig 5.2.
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Fig. 5.2 The M-V frontiers under different strategies

From Fig.5.2, we can draw two conclusions. One is, for the given risk level, the expected

net surplus of pre-commitment strategy is better than that of time-consistent strategy no

matter that there is a riskless asset or not in the asset pool. In other words, we can obtain

higher income by following the pre-commitment strategy. This can be explained by that the

pre-commitment strategy is the global optimal investment strategy for the initial period, while

the time-consistent strategy only considers local incentives and ignores global objectives. The

existence of the quadratic transaction cost does not affect the superiority of the

pre-commitment strategy. The other interesting conclusion is that when the value of  is

particularly large, the gap between the frontier of pre-commitment strategy and that of

time-consistent strategy have been reduced. Comparatively speaking, the cost constraint is

more punitive to the pre-commitment strategy. If the investor adopts the pre-commitment

strategy without considering the transaction cost, then it will lead to ineffective investment

strategy, especially for the individual investor with higher cost aversion.

Example 5.3 Impact of cost-aversion coefficient on different frontiers

To explore the impact of cost-aversion coefficient on frontiers, we set  is, in turn,

equivalent to 0,0.8,1.6 and 2.4. Fig. 5.3 shows the sensitivity of the corresponding frontier
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under different strategies to the cost coefficients.
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Fig. 5.3The efficient frontiers of strategies under different cost-aversion coefficient

As shown in Fig. 5.3, we can find that the frontiers move downward with the increase of

 for all strategies. The existence of transaction costs has a significant effect on investment

strategies and the efficient frontier. Comparatively speaking, with the increase of  , it

causes a smaller change on the frontier of time-consistent strategy. This indicates that the

frontier of time-consistent strategy is less sensitive to cost-aversion coefficient than that of

pre-commitment strategy, regardless of whether there exist riskless assets in the asset pool.

More importantly, no matter how large the cost aversion coefficient is, the produced cost is

relatively small for the time-consistent strategy.

Example 5.4 Impact of parameter  on different frontiers

The positive definite matrix  in the quadratic transaction cost function can be

diagonalized into a matrix consisting of eigenvalues, which dominate the corresponding unit

cost of risky assets. In this example, we will discuss the impact of these eigenvalues on

different frontiers.

Here, we set the matrix  as Table 5.1 and  equals to 0.5. Fig. 5.4 shows the

frontiers of different strategies when  takes different value.
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Table 5.1 The parameter-set.
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Fig. 5.4 The efficient frontiers of strategies under different parameter 

It is easy to find that both the pre-commitment and time-consistent strategies follow the

same law. That is, the frontiers drop in the same order with the change of parameter  , and

they are all below the frontier where  remains unchanged. The changes of the elements on

the parameter  also affect the frontiers, whether it is a pre-commitment strategy or a

time-consistent strategy. More importantly, the increase of unit cost has less impact on the

frontier of time-consistent strategy. For the change of parameter, the time consistent strategy

might be more stable which is coincident with the conclusion of Example 5.3. Comparatively

speaking, for the instability of the market environment and the aversion of the investors to the

cost, the time consistent strategy might be the better choice in the complex market.

6. Conclusion

This paper provides the highly tractable multiperiod asset-liability management

frameworks for the study of optimal trading strategies in presence of quadratic transaction

costs. For different investment setting (with/without riskless assets), the pre-commitment and
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time-consistent investment strategies are derived by applying the embedding scheme and

backward induction approach, respectively. The derived strategies cover several optimal

strategies in existing literatures. This provides investors with a sensible investment strategy

when transaction costs or liabilities are not considered, or neither is considered. Finally, some

numerical simulations are carried out. The results indicate that the transaction costs play an

important role in investment markets. Furthermore, when considering transaction costs, the

time-consistent strategy is more robust than the pre-commitment strategy in asset-liability

management.
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Appendix A

Proof of Theorem 2.1

Define  ),( F to be the set of the optional solution * of

problem ))(,( tvJF tt  for given  and  . Similarly, for problem ))(,(~ tvJF tt  ,

F~
),,(  is the set of the optional solution for given  ,  and  . And denote


 )(21),( Tt SEd  . (1)

We firstly proof that for any  F
),(*  ,  F

d~
** ),),,((  .

Assume that  F
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SE
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U

SE
U

SE
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(4)

Combine (2) and (3), we can obtain
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*)](),(),([)](),(),([ 22

 TtTtTtTtTtTt TCESESEUTCESESEU  . (5)

Apparently, it is conflict with the assumption  F
),(*  , so that is proved.

Then, for given ),(  , the optimal solution of problem )),,(~( F can be expressed

by parameter  , and then the corresponding wealth and transaction costs can be expressed at

the same way, marked ),( TS and ),( TTC , respectively. Because of




  
FF ~ ),,(),( , the problem ),( F can be degenerated into equivalent

problem as follows:

)]),([),,([)],,([(max 2 
 TtTtTt TCESESEU

)],([)]},([),([{)],([max 22 
 TtTtTtTt TCESESESE  . (6)

On the other hand, due to  F~
** ),,(  ,according to the discussion of Reidand Citron,

there is

0)()],([)],([ *2*
* 




















 TtTtTt TCESESE

(7)

And because of *)(21)],([21 **


 TtTt SESE  ,

then the first order necessary condition of optimal solution about * is 0
*






U

, namely

0)()],([)]),([21()],([ *2
*

*






















 TtTt
Tt

Tt TCESESESE
(8)

So * is also the optimal control of the problem ),( F for

*)(21),(


 Tt SEd  .

Q.E.D

Appendix B

Proof of Theorem 3.1 We adopt the dynamic programming of reverse solving method

to solve the problem )),,(( A beginning from period 1T .
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Denoting ),,( 0
TTTT Lvvf as the optimal function of problem )),,(( A at the

period T , then we have

TTTTTT

TTTTTTTTTTTTTTTTTTTT

LZvYvX

vLRLvQvvPLOvNvMvLvvf
~~'~

~'~'~~)(~~'),,(
0

002200




(A.1)

So ),,( 0
TTTT Lvvf also meets Theorem 3.1.

When 1Tt , applying dynamic programming principles gives rise to

]')(~
)'(~))(('~

)')((~))(('~
)')()(('~))(~

)'()(~))(~()'([max

)'),,((max

),,(

1111

1
0

1
0

1111

11
0

11
0

111111

1
0

1111
0

1
2

1
2

1

2
1

0
1

20
1111111

11
0
1

0
111

1

1





































TTTTT

TTTTTTTT

TTTTTTTTTTTT

TTTTTTTTTT

TTTTTTTTTTT

TTTTTT

TTTT

vvLqEZ

vIvrYvvGEX

LvIvqErRLvvGqEQ

vIvvvGErPLqEO

vIvrNvvGMGEvv
v

vvLvvfE
v

Lvvf

T

T





(A.2)

Applying the first order condition about 1 Tv yields the following optimal strategy

11
0

111111
* ~~~~

  TTTTTTTT vDvCLBAv  . (A.3)

Substituting (A.3) into (A.2) and simplifying the resulting equation yield
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(A.4)

Next, for every 2,...,2,1,0  Tt , by using mathematical induction we can suppose
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(A.5)

According to the state transition equations, there is
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Applying the first order condition about tv yields the following optimal strategy

tttttttt vDvCLBAv ~~~~ 0*   . (A.7)

Substituting (A.7) into (A.6) and simplifying the resulting equation yields
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(A.8)

According to above elaborating, we can obtain the optimal strategy and value function

for 1,...,2,1,0  Tt , as follows:

tttttttt vDvCLBAv ~~~~ 0   (A.9)
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(A.10)

Q.E.D

Appendix C

Proof of Theorem 3.2 According to the procedures for the solution of time consistent

strategy, the proof process is as follows.

Denoting ),,( 0
tttt Lvvg as the optimal function of problem )),(( P at the period t .

When 1 Tt , there is the objective function
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 (B.1)

Applying the first order condition about 1-Tv yields the following optimal strategy

111111
~~~

  TTTTTT cLbvav . (B.2)

And the condition expectation and variance of final wealth and condition expected cost,

respectively, is
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It is easy to find that Theorem 3.2 holds for period 1T .
Assume that Theorem 3.2 also holds for 1t , then for t , we can obtain that
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})'~~)( 11 tttttt vvLuqE    (B.6)

Applying the first order condition about tv yields the following optimal strategy

tttttt cLbvav ~~~  . (B.7)

And the condition expectation and variance of final wealth and condition expected cost

for period t , respectively, is

tttttttTt vzLyvxSE ~~~'~)( 0  (B.8)

tttttttttttttTt LvpLvoLnvmvSVar  ~~'~'~~~')( 2  (B.9)

tttttttttttttTt LuvkLvjLhvdvTCE ~~'~'~~~')( 2  . (B.10)

It is easy to find that Theorem 3.2 also holds at period t for 1,...,1,0  Tt . By

mathematical induction, we complete the proof of Theorem 3.2.

Q.E.D
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