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Abstract 

Organophosphorus (OP) chemical warfare agents (CWAs) are a group of deadly compounds 

which inhibit the enzyme acetyl cholinesterase and disrupt the normal functioning of the 

nervous system. Events in Damascus, Syria (2013) and Salisbury, United Kingdom (2018), have 

highlighted the dangers that these noxious agents still pose to civilian and military personnel. 

CWA degradation measures often employ an excess of stoichiometric reagents and solution 

buffers. There is therefore a demand for catalytic systems which can combat the CWA threat in 

the absence of additional reagents.  

This work reports the development of a catalytic material for the degradation of the deadly V-

series CWAs. Zirconium metal-organic frameworks (MOFs) are identified as the most promising 

material for such an application. Methyl paraoxon in a mildly alkaline buffer is found to be a 

good simulant system for mimicking the hydrolysis of VX, with both substrates showing similar 

degradation rates in the presence of zirconium MOFs. Using this simulant system, MOF-808 is 

identified as the most potent and cost-effective hydrolysis catalyst. Initial studies on OP CWAs 

showed that MOF-808 (1.25 % catalyst loading vs. substrate) was able to hydrolyse VX in just 

water and in the absence of buffer. Additionally, MOF-808 was found to be capable of slowly 

hydrolysing VX in the presence of only ambient humidity.  

Upon investigating the hydration of zirconium MOFs for enhancing hydrolysis catalysis, two 

additional studies were performed. Using solid-state photoluminescence (ssPL), two alkaline 

earth MOFs composed of the 2,4,6-tris(4-phosphonophenyl)pyridine (H6L) ligand were shown 

to exhibit reversible hydration-dependant emission. A strontium AE MOF (Sr4(H2L)2(H2O)x) 

displayed a red-shifted emission on exposure to increases in relative humidity (RH). A series of 

4,4’-[1,4-phenylene-bis(ethyne-2,1-diyl)]-dibenzoate (peb) zirconium MOFs were also studied 

using ssPL. A dimethyl functionalisation on the peb linker resulted in solvatochromism. A 

tetrafluorinated peb linker displayed no hydration-dependent emission which prompted the 

examination of its super-hydrophobic properties. Finally, a benzothiazole functionalization of 



iv 
 

the peb linker led to a RH dependent emission. These properties were all probed using ssPL, 

thus highlighting the utility of the technique. 

Moving back to catalysis, acetate-modulated MOF-808, DUT-84 and UiO-66 were activated 

through hydration using microwave irradiation. This involved the removal of acetate 

modulator thus exposing more catalytic vacancies. Enhanced DMNP hydrolysis was observed 

in the presence of the activated counterpart of each MOF. A modest enhancement in VM 

hydrolysis was also observed, with both MOF-808 and DUT-84 being capable of degrading VM 

in the absence of a buffering agent.  

MOF-808 was then incorporated into a high internal-phase emulsion polymer (pHIPE) to form 

a MOF-HIPE composite. The pHIPE polymer is capable of swelling in the presence of V-series 

agents to very high degrees (Q > 50). The MOF-HIPE composite was shown to degrade the 

simulant DMNP with no reduction in activity compared to the MOF-808 powder. The 

composite, containing a 1.25 % catalyst loading relative to substrate, is shown to rapidly 

degrade VX in a H2O:THF medium. Finally, the MOF-HIPE is able to fully degrade neat VX over a 

2 week period in the presence of only 50 RH % and a catalytic loading of just 0.15 %. A potent 

encapsulation and degradation material was developed for the effective remediating of V-

series agents.  
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Abbreviations 
  

4-VBPP 4-vinylbenzyl piperidine 

AcOH acetic acid 

AE alkaline earth 

Amine Lig 2‐aminobiphenyl‐4,4'-dicarboxylate 
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CWA Chemical Warfare Agent 

DCM dichlormethane 
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DCP diethyl chlorophosphate 
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DMF N,N,Dimethylformamide 

DMMP dimethyl methylphosphonate 

DMNP methyl paraoxon 

DMP dimethyl phosphonate 
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HBA hydrogen-bond acceptor 

HDEPA diethyl phosphoric acid 

HIPE high internal-phase emulsion 
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IR infra-red 

LCCT ligand-to-cluster charge-transfer 

LMCT ligand-to-metal charge transfer 

MAS Magic Angle Spinning 

MeCN acetonitrile 

MeOH methanol 

MLCT metal-to-ligand charge transfer 

MOF metal-organic framework 

MONPs metal oxide nanoparticles 

NEM N-ethyl morpholine 

NMR nuclear magnetic resonanace 

OP organophosphorus 

peb 4,4’-[1,4-phenylene-bis(ethyne-2,1-diyl)]-

dibenzoate 

PEI polyethyleneimine 

PL photoluminescence 

ppm parts per million 
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PSE post-synthetic exchange 

PSM post-synthetic modification 

PXRD powder X-ray diffraction 

Q swelling degree 

QY quantum yield 

RH relative humidity 

S0 ground state 

S1 excited singlet state 

SAP super-absorbent polymer 

SBU secondary building block unit 

SC-XRD single-crystal X-ray diffraction 

SEM scanning electron microscopy 

ssPL solid-state photoluminescence 

T1 excited triplet state 
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TEA  triethylamine 

TFA trifluoroacetic acid 

TGA thermal gravimetric analysis 
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Chapter 1. Introduction  

This introductory chapter explores some of the background knowledge regarding Chemical 

Warfare Agents (CWAs) and the systems which exist for contending their existence. First, an 

overview is given to establish what a CWA is and a brief outline of the various CWAs which 

have existed through time. Focusing on OP (organophosphorus) CWAs, a summary is provided 

of the OP nerve agents which have been developed and utilised in the last century. The mode 

of action of these Nerve Agents is explained along with the current preventative and 

combative methods which exist for dealing with them in a military and civilian setting. The 

limitations of the current techniques is discussed. Finally, a compilation of recent events is 

provided to highlight the danger that CWAs still pose to humans. 

The scientific literature is surveyed to identify the state of the art technologies which have 

been established for dealing with OP CWAs. An emphasis is made on the degradation of CWAs 

and three leading technologies are chosen and studied in more detail. First, metal oxide 

surfaces which possess highly intricate surface morphologies and exhibit a remarkable degree 

of surface reactivity.1–3 Secondly, hydrogen bond and metal chelate catalysts which display a 

high degree of specificity for OP CWAs.4–6 Third, Metal-Organic Frameworks (MOFs), a group of 

hybrid materials which demonstrate an almost biomimetic ability, comparable to that of a 

phosphotriesterase (PET) enzyme, to bind and degrade OP CWAs.7–9 MOFs are recognized as 

showing the most promise as potential materials for the degradation of CWAs. A focus is then 

made on MOFs and an in-depth overview is provided on their utility along with the synthetic 

strategies which exist for assembling these frameworks. Zirconium MOFs receive special 

attention due to their outstanding chemical stability10 and the numerous publications which 

discuss their application as potent hydrolysis catalysts for CWA degradation.11,12 These 

publications are then compiled to identify the most suitable Zirconium MOF catalyst. 

Due to their effectiveness at a low catalytic loading combined with fast degradation rates,9,13 

this review determined that MOFs were the most effective catalyst for the hydrolysis of OP 
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CWAs and CWA simulants. Hydrolysis was the shortlisted degradation method and so a natural 

interest was developed for the hydration of MOF catalysts. Due to the conjugated nature of 

MOF components,14,15 a vast number of photo-luminescence studies have been undertaken 

including some which deal with hydration dependent fluorescence.16,17 A general assessment 

of ligand based emission in MOFs is then undertaken along with an insight as to how functional 

properties can be derived from these emissive profiles. The focus is then shifted to hydration 

dependant fluorescence and how this can act as a probe for identifying numerous functional 

attributes.  

Finally, the information in this introductory chapter is summarised and the most appropriate 

technology for CWA degradation is identified. A thesis objective is then presented which sets 

the tone for the following chapters.   
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1.1 Chemical Warfare Agents 

CWA is a broad term which encompasses a range of chemical compounds, the primary 

function of these materials is to injure, incapacitate or kill other humans.18 CWAs should not be 

confused with biological warfare which encompasses the use of viruses, bacteria and other 

biological toxins to inflict harm on organisms. CWAs can be split into several distinct categories 

based on their mode of action. This very short section will provide a brief outline of each 

category of CWAs. 

Blistering agents, also referred to as vesicants, are a group of CWAs which severely irritate the 

skin, eyes and respiratory tract.19 A group of compounds known as the Sulfur Mustards, 

sometimes also referred to as mustard gas, are a prime example of blistering agents (Figure 

1.1). Skin exposure to sulphur mustard causes extreme chemical burns in the form of skin 

lesions which manifest themselves as large blisters. These large blisters can take a very long 

time to heal and easily become infected.20 Upon inhalation of a vesicant, blistering of the 

respiratory tract can result in severe breathing difficulties. Additionally, mustard agents are 

capable of alkylating DNA, making them highly cytoxic. The overwhelming number of physical 

ailments caused by blistering agents can easily incapacitate a person and if not immediately 

treated, can readily cause death. An enhanced group of vesicants known as the nitrogen 

mustards perform a similar function but have also found a use as chemotherapy agents.21,22 

Whilst protective clothing and respiratory equipment can be worn to minimize exposure to 

these agents, the immediate damage upon contact is irreversible. Blistering agents are 

therefore extremely dangerous compounds that are capable of incapacitating and killing 

humans. 
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Figure 1.1. a) A structural representation of some common vesicants. b) Example mechanism 

of HD induced alkylation a 2-deoxyguanosine base: one chloroethyl side-chain undergoes 

intramolecular cyclization to form ethylsulfonium ring, the intermediate reacts rapidly with a 

nucleophilic group, such as the nitrogen of 2-deoxyguanosine, this is followed by the 

cyclization of the remaining chloroethyl side-chain which either reacts with another 

nucleophilic species. Reproduced from reference 23. 

 
Blood agents are another group of CWAs which can prove fatal upon inhalation or ingestion. 

(Figure 1.2) Blood agents are known as such because they inhibit the bodily function of 

consuming oxygen from the blood stream.24 A classic example of a blood agent is hydrogen 

cyanide gas which can be readily absorbed into the blood stream upon inhalation. The cyanide 

ion is capable of binding to the ferrous heme-groups in cytochrome-c enzymes blocking the 

last steps of aerobic cellular respiration. Other examples of blood agents are cyanogen 

compounds along with phosgene and arsine.25 Whilst blood agents can be readily countered by 

the use of respiratory equipment, the faint odour of these compounds can make them difficult 

to detect thus making it all too easy to be exposed to a lethal dose.  
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Figure 1.2: A structural representation of some common blood agents. 

1.1.1 Organophosphorus Nerve Agents  

Organophosphorus chemical warfare agents (OP CWAs) are a group of organophosphorus 

compounds, which inhibit the enzyme acetylcholinesterase.26 Acetylcholinesterase is 

responsible for the breakdown of the neurotransmitter acetylcholine into acetic acid and 

choline.27 The build-up of acetylcholine results in prolonged muscle contractions, which can 

produce symptoms such as hypotension, bronchoconstriction and a slowed heart-rate.28 The 

combination of symptoms exhibited during exposure to a lethal dose of nerve agent can very 

quickly lead to respiratory failure and death due to the disruption of the normal functioning of 

the nervous system. Nerve agents can be introduced to the body dermally, by inhalation or in 

rare instances as a result of ingestion. The first series of Nerve Agents, the G-series were 

discovered serendipitously whilst surveying organophosphates, which at the time had been 

noted for their cholinergic properties,29 as potential pesticides. In order of discovery and 

increasing toxicity, the G-series (Figure 1.3), includes Tabun (GA), Sarin (GB), Soman (GD) 

and Cyclosarin (GF).27,30 

 

Figure 1.3: A structural, single enantiomer illustration of the G and V-series agents   

The next series; the V-series, were discovered just over a decade later, again whilst 

investigating organophosphates as pesticides and insecticides. The V-series (Figure 
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1.3), consists of VX, VE, VG and VM; nerve agents in the V-series have a significantly higher 

toxicity than agents of the G-series. 27,30 Agents such as GB are more volatile by nature and are 

often deployed as a vapour or aerosol mist. The V-series agents have a much lower vapour 

pressure but can be used effectively as an area denial weapon due to their resilience in the 

environment combined with their high lethality upon contact with skin. The synthesis of nerve 

agents is non-stereoselective and so they exist as a racemate, however it should be noted that 

(-)-GB, (-)GA and (-)-VX are considerably more toxic than their (+) enantiomer counterparts.31 

1.1.2 Combative measures for Organophosphorus Nerve Agents 

The methods which are currently employed for bulk CWA degradation are stoichiometric in 

nature. A large excess of a reagent such as aqueous sodium hydroxide or bleach, along with a 

surfactant, is used to oxidise the OP CWA.32,33 The diagram in Figure 1.4 illustrates the 

degradation pathway for the hydrolysis of G-series agent Sarin and the V-agent VX. G-series 

agents are typically hydrolysed by the severance of P-F bond (P-CN in the case of GA), thus 

producing HF and the isopropyl methyl phosphonic acid (IMPA) as a by-product. The P-F bond 

is relatively labile which results in Sarin having a short persistence in humid environments.34 

Fast hydrolysis can be achieved with the use of weakly acidic or basic solutions.33  

 

Figure 1.4: A schematic outlining the degradation pathways for Sarin and VX. 
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VX and other V-series agents can be degraded by the selective hydrolysis of the P-S to give the 

ethyl methyl phosphonic acid (EMPA) product.33 V-agents are highly persistent under ambient 

conditions and as a result of this, are often deployed as area-denial weapons to prohibit 

infrastructure access.35 Employing a highly alkaline reagent for V-agent can result in P-O bond 

hydrolysis occurring, this generates the EA-2192 (Figure 1.4) by-product which possesses a 

toxicity similar to that of the original V-agent.36 When degrading V-series agents, it is therefore 

imperative to employ a mild enough reagent that results in selective P-S bond hydrolysis.  

1.1.3 Recent Events and International Legislations 

A number of protocols and conventions exist to control the use, storage and manufacture of 

CWAs. The 1925 Geneva Protocol37 is an international treaty which prohibits the use of 

chemical and biological weapons in warfare, there are so far 133 member nations. In 1993, the 

Chemical Weapons Convention38 was established, this arms control treaty prohibits the 

development, production, stockpiling and use of CWAs. As of 2015, 191 nations have signed 

the treaty and have commenced/finished the destruction of their CWA stockpiles. US congress 

reports have stated that North Korea possess a significant quantity of chemical and biological 

weapons,39 Sudan and Egypt have historically stockpiled and utilised CWAs and there have 

been no reports of these weapons being decommissioned.40 Incidentally, North Korea, Sudan 

and Egypt are the only existing nations which have not yet acknowledged the treaty.  

Some of the most documented and publicised incidents involving the use of nerve agents are 

the 1995 Tokyo subway sarin attack41 and the more recent 2013 Ghouta chemical attack. In 

the Tokyo subway incident, plastic bags containing GB were pierced and abandoned on 

subway trains by domestic terrorists. The attack resulted in the death of 12 people, another 50 

civilians were left in a critical condition and nearly 1,000 more displaying cholinergic 

symptoms. The Ghouta chemical attack42 occurred in the 2013 Syrian civil war when the 

suburbs of Damascus, Syria were struck by rockets containing GB. According to several 

different sources, the death toll for this attack is estimated to be anywhere between 300 and 
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1,700 people with another 3,000 people exhibiting symptoms of exposure to the agent.43,44 

The 1980-88 Iran-Iraq war45 is however the most chilling example of the widespread use of 

chemical weapons. Tabun was readily deployed against Iranian troops resulting in an 

estimated 50,000 casualties; many thousands more troops and civilians were also afflicted by 

the long term effects of neurotoxicity.46 These events highlight just how devastatingly effective 

nerve agents can be when they are used as a weapon against other human beings.  
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1.2 Systems for the Degradation of Organophosphorus Nerve Agents 

Since the original inception of OP CWAs, there have been countless studies which have 

explored their detection, immobilization and degradation. This next section will aim to provide 

an overview of the current systems which exist for the catalytic degradation of OP CWAs. 

Several initial avenues are explored.  

Nano-structured metal oxides are well established as oxidation catalysts in the literature. 

Cerium dioxide possesses a highly reversible redox potential for the redox of Ce3+/Ce4+; this 

cycle is responsible for oxidative properties of the material.3,47 Titanium dioxide is another 

material which has been shown to function as a potent photo-oxidation catalyst with 

absorption occurring in the visible UV region.48,49 These materials have also have also been 

studied for their ability to degrade various CWA simulants along with OP CWAs. The oxidative 

properties of these metal oxides is intrinsically linked to their size and morphology. The 

following section will aim to provide a selective overview of the various metal oxides which 

have been reported as CWA degradation catalysts. Hydrogen-bonding catalysts50 also display a 

high affinity for OP CWAs, while metal chelate complexes have displayed near biomimetic 

behaviour for their ability to degrade phospho-esters.5,6 A selection of previously reported 

homogeneous catalysts will be reviewed (section 1.2.2) for their efficacy as OP CWA 

degradation catalysts. 

Finally, zirconium MOFs have shown significant promise as OP CWA hydrolysis catalysts and 

will become the focus of this introductory chapter. The catalytic properties of Zr MOFs are 

derived from empty/defective coordination sites on the Zr6O4(OH)4
12-

 (Zr6) cluster which 

function as Lewis acids (LA).51 Section 1.4 will explore the evolution of the zirconium MOF 

hydrolysis catalyst from UiO-6652 to the optimisations that have led to the enhanced MOF-8088 

and NU-1000 catalysts.11 Finally, Section 1.5 will then explore the various zirconium MOF 

composite materials which have been developed for CWA. 
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1.2.1 Metal-Oxide Surfaces 

Metal oxide nanoparticles (MONPs) are well established in the literature as potent oxidation 

and oxidative hydrolysis catalysts. 53–55 The high reactivity is owed to their high surface area 

and their surface activity; reduction and oxidation (redox) reactions occur on this surface. 

MONPs can function as heterogeneous catalysts thus giving them the advantage of being 

robust and easily recyclable for a high throughput conversion. A variety of different MONPs 

exist for oxidation catalysis. These MONPs can be transition metal oxides such as CuO and 

Al2O3,56–58 Lanthanides such as CeO2
59–61 or even composites of two metals such as Au-TiO2.62 

CeO2 provides a good model for showcasing the oxidative and reductive processes which can 

occur through a catalytic cycle. Figure 1.5 shows a scheme for the disproportionation of H2O2 

into H2O and O2. This involves both the reduction (Ce4+ to Ce3+) and oxidation (Ce3+ to Ce4+) of 

the cerium, and therefore the regeneration of the catalyst. 

 

Figure 1.5. A reaction mechanism showing the complete disproportionation of hydrogen 

peroxide on the surface of a cerium MONP. Reproduced from reference 63. 

The synthesis of MONPs can be modified to result in specific facets of the oxide structure being 

exposed on the surface, thus providing some control over the shape of the nanoparticle. 

Mesoporous MONPs of various pore shapes and sizes,2 as well as composite MONPs can be 
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synthesised;64 a degree of control can therefore be had over the bulk structure of the 

nanoparticle. The size, shape and structure of MONPs is therefore highly tunable. Bulk metal 

oxides have stable structures and surfaces that are well-defined crystallographic planes, but it 

is these properties that can limit their usefulness. MONPs can on the other hand exhibit a 

higher density of surface edge and corner sites than larger particles due to their smaller 

volume. This is because the phases associated with these planes increase in stability when the 

particle decreases in size resulting in a decrease in surface energy at these planes. Ceria 

provides a good example of this phenomenon;65,66 the most stable shape that a bulk ceria 

particle can take on is that of a truncated octahedron. In a truncated octahedron 

configuration, the (111) facets, or crystallographic planes, are the most stable and therefore 

the most abundant with the more reactive (001) facets making up a small proportion of the 

total surface area (See Figure 1.6 a)) A decrease in overall particle size will therefore increase 

the abundance of the (001) facet in relation to the (111) facet thus exposing a more reactive 

surface (Figure 1.6). This can be taken even further if the particle is synthesised to take on a 

cubic morphology where the majority of the surface consists of the (111) facet as opposed to 

the (001).67 

 

Figure 1.6. The shape control of ceria nanocrystals. a) A truncated octahedron in the case 

when no organic ligand molecules are used. b) At a low decanoic acid to ceria precursor ratio, 

the preferential interaction of the ligand molecules with the ceria (001) planes slows the 

growth of (001) faces relative to (111) faces, which leads to the formation of nanocubes. Figure 

reproduced from reference 67. 
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In terms of CWAs, there have been a significant number of publications relating to the use of 

MONPs as catalysts for the degradations of both CWAs and CWA simulants.62,68,69 Recently, a 

variety of Ceria nanoparticles, each prepared using a different synthetic route were found to 

be effective for the stoichiometric degradation of the agents VX and GD.68 Ceria samples 

prepared by a homogeneous hydrolysis method and by precipitation from a bicarbonate 

precursor were found to be the most effective. The catalytic loading was exceptionally high: a 

50-fold excess of catalyst was present relative to substrate. Complete hydrolysis was achieved, 

however, in 10 minutes for both VX and GD thus making Ceria a suitable degradation agent. 

Similar results were achieved using mesoporous manganese oxide with the same catalytic 

loading relative to the substrate.70 VX was fully hydrolysed in 8 minutes, GD was however only 

50% hydrolysed in 16 minutes and the hydrolysis did not proceed much further, even after an 

hour. 

Nano-tubular titania is yet another nanoscale catalyst which has been employed for the 

hydrolysis of VX, GD and HD.48 A very large stoichiometric excess of catalyst was used for each 

study so the catalyst loading efficiency is questionable. Despite this, an impressive degradation 

half-life of 58 minutes was observed when VX was loaded onto a large excess of the dry titania. 

This half-life was enhanced further to only 24.7 minutes when an excess of water was used. 

Metal oxides have been portrayed as effective materials for the degradation of neat nerve 

agents. Unfortunately, none of the above studies can be truly described as catalytic since a 

large stoichiometric excess of the metal oxide is used relative to the substrate, where in fact 

vacancies and defects in the metal oxide are often the site of reaction. Investigating whether 

any of these materials retain their efficacy at much lower concentrations would allow one to 

determine whether they can be employed for the neat, catalytic breakdown of CWAs.  
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1.2.2 Hydrogen Bond Donors and Metal Chelates as CWA Catalysts 

This next section will explore some previously reported hydrogen bond and metal chelate 

systems. The systems which will be discussed have all been reported for the application of 

either CWA simulant or OP CWA degradation.  

The P=O and P-O functionalities of OP CWAs can act as effective hydrogen bond acceptors 

(HBAs). Figure 1.7 below shows a proposed mechanism for the hydrolysis of the diethyl 

cyanophosphonate (DCNP) simulant using 1,3- Diindolylurea derivatives.4 1,3- Diindolylureas 

have been previously noted for their selectivity towards phosphate anions in polar solvent 

mixtures and in the solid state through HB interactions.71 The carboxylate functionality on the 

urea provide an electron withdrawing effect on the nitrogen atoms which in turn creates a 

more polarised N-H bond, this makes the N-H protons particularly strong hydrogen bond 

donors (HBDs). The example below shows the P=O: oxygen acting as a HBA and forming a 

bifurcated hydrogen bond with the N-H protons; the P-O oxygen also acts as a HBA. The 

immobilisation of the DCNP simulant through hydrogen bonds draws the P=O electron density 

towards the HBD species thus destabilising the P-CN bond, which allows H2O to substitute the 

cyano species. Whilst several H-bond catalysts exist for CWA degradation, they all function in a 

similar fashion to the mechanism shown in Figure 1.7; the P=O: acts as a HBA and the binding 

of the substrate through H-bonds destabilises the P-S, P-F or P-CN bond and activates it for 

nucleophilic substitution by H2O. Studies using the simulants DCNP and DECP with these 

catalysts show modest enhancements in the rates of hydrolysis. Up to a 44% enhancement in 

the rate of DECP hydrolysis was observed in the presence of 0.001 equivalents of catalyst. 

Interestingly enough, a lower rate of hydrolysis was observed when 0.005 equivalents of 

catalyst was used in the studies.4  
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Figure 1.7. Proposed mechanism for the hydrolysis of DCNP simulant using 1,3-Diindolylureas 

which occurs through an associative SN2 pathway. Reproduced from Reference 4. 

In terms of Lewis base mediated catalysis, a number of studies have employed nitrogenous 

bases to facilitate the hydrolysis. The most recent study describes swellable polymer 

composed of either polyallylamine or polyvinylamine monomer units.72 These polymers were 

functionalised with either 4-aminopyridine, bipyridine or a Cu2+ bipyridine complex. These 

modified polymers were able to hydrolyse the simulant DIFP as well as the agents GD and VX. 

These studies were, however, conducted in buffer and an excess of H2O and catalyst. Another 

study describes the use of a water-swelled polystyrene-based polymer where the monomers 

have been functionalised with trimethylammonium fluoride.73 This particular polymer is able 

to selectively hydrolyse VX in the presence of water and a buffer. When six equivalents of VX 

to polymer catalyst were used, 180 hours were required for the complete hydrolysis of VX into 

EMPA. From a practical perspective, the timescale and the catalyst loading for the hydrolysis is 

too high.  

All of the above studies were performed in aqueous solutions, with both of the polymer 

studies being carried out in buffer. Whilst the hydrogen-bond catalysts and the polymers are 

shown to be effective at low catalytic concentrations, their reliance on a large excess of H2O 
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makes them of questionable value. Investigating whether these materials are able to rely on 

atmospheric H2O for their degradation process would further elucidate their efficacy. 

Metal complexes of the ligand 1,4,7-triazacyclononane (TACN) have been shown to enable the 

hydrolysis of phosphodiesters. The TACN ligand is highly modifiable and can be readily 

functionalised to alter both reactivity and solubility. The main application of this is for the 

hydrolytic cleavage of the phosphodiester linkages in DNA and RNA. It should be noted that in 

RNA, this can occur through a self-cleaving process due the close proximity of two OH groups 

on the ribose sugar groups. Therefore, RNA has a higher susceptibility to base-catalysed 

hydrolysis, higher than that of DNA which is composed of deoxyribose groups.  

The example in Figure 1.8 shows a binuclear Zinc TACN complex.5 The complex consists of a 

ligand containing two TACN components bound by an alcohol, this ligand is coordinated to two 

Zn2+ metal centres. The RNA analogue, 2-hydroxypropyl-4-nitrophenyl phosphate, is the 

substrate. The complex binds a hydroxyl ion from water deprotonation as well as each 

terminal phosphoryl oxygen atom. The deprotonation of the 2-hydroxypropyl group is then 

followed by the nucleophilic attack of the of the phosphorus centre and the elimination of the 

nitrophenol group. This whole study was conducted using DFT calculations and so no data is 

available to confirm how efficient the catalyst loading would be experimentally. 

 

Figure 1.8. An illustrated example of a Binuclear Zinc TACN activating 2-hydroxypropyl-4-

nitrophenyl phosphate for hydrolysis. Reproduced from reference 5. 

Another study utilises the same substrate but a different catalyst. The catalyst this time is a 

Copper(II) complex consisting of a Cu2+ centre and a TACN ligand functionalised with a single 

alkyl guanidine chain.6 The dimerized structure can be seen in Figure 1.9. It should be noted 
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that upon exposure to H2O2, which is often produced endogenously,74 Cu2+ species are capable 

of generating reactive oxygen species which are capable of oxidatively damaging RNA.75 The 

TACN guanidine complex features a Cu2+ bound oxide which acts as the active nucleophilic 

species. However, the study employed 20 equivalents of complex to substrate. Due to the 

large excess of complex relative to the substrate, the hydrolysis of the substrate was modelled 

as a first-order process. A first order process has a reaction rate (s-1) which depends on the 

concentration of one reactant.  Whilst a large enhanced hydrolysis first-order rate constant 

was observed for the Cu2+ catalyst over a control sample, no timescale was presented. It would 

therefore be interesting to see how either of the two complexes would function as potential 

catalysts for the degradation of CWAs or the simulant DMNP. 

 

Figure 1.9. An illustration of a dimerized Copper TACN guanidine complex for the hydrolysis of 

2-hydroxypropyl-4-nitrophenyl phosphate. Reproduced from reference 6. 

Copper(II) chelates are yet another group of complexes that have been shown to hydrolyse GB 

and DIFP.76 A copper(II) 1,3 diaminopropane complex was shown to hydrolyse 2 equivalents of 

GB with a half-life of 2 minutes. A Copper(II) tetramethylethylenediamine (TMEDA) complex 

was able to hydrolyse 1 equivalent of GB with a half-life of 1 minute. 1,8-

dihydroxynaphthalene-3,6-disodiumsulfonate and 2,2'-Bipyridine were just some of the other 

ligands with reasonable half-lives. The reactions were, however, conducted in buffered 

aqueous media (pH 7-7.5), which hinders their applicability.  

All of the studies which have been outlined have utilised a combination of high catalyst loading 

and a buffering agent to degrade the OP simulants/ CWAs. This limits their practical 

applicability and so a different material was sought out.  
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1.3 Metal-Organic Frameworks 

Metal-organic Frameworks (MOFs) are a relatively new subset of highly porous materials 

which have found a number of potential applications in catalysis,8,51,77 gas storage,78–80 

separation,81–83 chemical sensing17,84,85 and drug delivery.86,87 The structure of a MOF consists 

of bridging multi-topic organic ligands coordinated to metal ions or clusters to form a high 

surface area three-dimensional network (Figure 1.10). MOFs are more commonly assembled 

using solvothermal synthetic procedures.88–90 The extensive array of ligands as well as metal 

ions and clusters that can be employed for the formation of a MOF makes them highly 

designable, functionally diverse structures.   

 

Figure 1.10. A simplified schematic illustrating the concept of a metal-organic framework. 

Reproduced from Reference 66. 

Over the last century, zeolites, a form of aluminosilicate microporous minerals, have been 

used for several purposes such as separation,91 catalysis92 and ion-exchange.93 Although a 

number of both naturally occurring and synthetic zeolitic frameworks exist, the number of 

structures is still rather limited and the potential for rational design and functionalisation is 

quite narrow. The tunability of pore shape, size and surface functionality is where MOFs excel 

over zeolites. Despite all the potential that MOFs have had for rational design, the initial 

problem is related to their stability, as the majority of structures would collapse on the 

removal of a guest molecule species. MOF-5 (Figure 1.11) was the first developed framework 
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which maintained its crystallinity upon the removal of a guest solvent.94 Brunauer-Emmett-

Teller (BET) theory,95 an assumption that gas adsorption occurs in multi-molecular layers, is 

often used when calculating the surface area of porous materials.96  The physical volume of the 

MOF-5 framework is only 20% of the total volume of the crystal; a non-interpenetrating MOF-5 

crystal has a BET surface area of around ~ 2900 m2/g.94 

  

Figure 1.11. An illustration of MOF-5, the yellow sphere highlights the high internal void space. 

Reproduced from reference 97. 

The high surface area, high degree of functionalisation and the solid nature of MOF-5 has 

inspired a whole generation of hybrid metal-organic materials. The next section will provide an 

outline of synthetic strategies for obtaining MOFs. The following sections will then focus on 

ligand-based photoluminescence in MOFs followed by the application of zirconium MOFs for 

catalysis and, subsequently, CWA degradation.  

1.3.1 Assembly Strategies  

There exist a variety of synthetic strategies for assembling metal organic frameworks. Metals 

salts act as a source of metal for forming the nodes, also known as the secondary building unit 

(SBU). Varying the metals will affect the overall geometry of the framework based upon the 

coordination environments of the metal anion/ metal cluster. Multi-topic organic ligands are 
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then used to bridge these SBUs. The majority of linkers are aromatic carboxylates such as 1,4-

benzenedicarboxylic acid94,98 or biphenyl-4,4′-dicarboxylic acid88,99 which coordinate to the 

metal nodes through this functionality. Alternatively, phosphonates100,101 and pyridines102,103 

can also be utilised as linkers. Imidazolate linkers (imidazole) and tetrahedrally coordinating 

anions form a group of materials known as zeolitic imidazolate frameworks (ZIFs).104–106 ZIFs 

are isostructural to zeolites because they contain a bond angle similar to that of the Si-O-Si 

bond found in zeolites.107 The choice of ligand is very important for influencing the pore shape 

and size. For instance, using a tritopic ligand108,109 over a ditopic ligand88,94 will produce a very 

different pore shape. Employing longer linkers over shorter linkers will increase the pore 

diameter but can also lead to interpenetration, a phenomenon where two frameworks 

become physically interconnected.110,111 By using metals and linkers which possess additional 

coordination sites / functional groups, the resulting frameworks can be further modified after 

the initial assembly. This is known as post-synthetic modification (PSM) or post synthetic 

exchange (PSE).112–114 The PSM and PSE process is useful for obtaining structures which would 

otherwise not be feasible if the MOF was grown in a single step (Figure 1.12).  

 

Figure 1.12. A schematic illustrating PSM. (Top) An illustration of ligand PSM. (Middle) An 

illustration of SBU PSM. (Bottom) An illustration of PSE of the organic linker through 

substitutiton. Figure reproduced from reference 87. 
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Solvothermal methods (Figure 1.13) encompass the majority of MOF assembly strategies.89,90 

The procedure generally involves dissolving the chosen metal source (usually a metal salt) and 

linker in a high boiling point solvent and heating the mixture in a sealed hydrothermal vessel at 

elevated temperatures (> 100 oC) for a prolonged period of time (≥  24 hours). DMF is 

commonly used as the solvent because it effectively solubilises carboxylate linkers and 

possesses a high boiling point.115,116 Other polar solvents such as dimethyl acetamide (DMA), 

diethyl formamide (DEF), MeOH and H2O can also be used. Bulkier solvents such as DEF can 

prevent framework interpenetration and mixtures of H2O/DMF can be used to solubilise 

particular metal salts.117,118 There has been significant interest in developing greener synthetic 

methods and so there a growing number of reports which deal with frameworks which have 

assembled in just H2O,119,120 by microwave irradiation,121,122 and under continuous flow.123,124  

 

Figure 1.13. A graphical illustration of solvothermal MOF synthesis followed by the activation 

of the material. Figure reproduced from reference 125. 

Molecules which form monotopic coordination interactions, such as benzoic acid or 

hydrochloric acid, are often added to MOF reaction mixtures. These molecules are known as 

modulators and they compete with the linker for metal coordination sites and effectively 

result in a controlled assembly.126–128 The additional control imparted by the presence of 

modulators is an additional step towards rational MOF design. Modulators can lead to the 

enhancement of a number of properties such as crystallinity and porosity.127,129 Varying 

modulator concentrations can also result in different topologies,130 dimensionality131 and 
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particle size.132 Some modulators can also help to introduce defects into a structure by 

occupying coordination sites in favour of the linker.133 Modulators are therefore important for 

fine-tuning structural properties in these hybrid structures. 

Upon synthesising a framework using conventional solvothermal methods, the material is 

generally isolated through centrifugation or filtration. Upon isolating a solid powder, the 

material must then be ‘activated’.134 ‘Activation’ refers to evacuation of framework pores to 

remove any residual solvent used during synthesis. This is typically achieved by soaking the 

solid in a low-boiling solvent such as chloroform or acetone to exchange with any residual high 

boiling solvent.135 The solvent-exchanged material is then subjected to a dynamic vacuum to 

purge the pores. Activation can also refer to the removal of any residual modulator or to any 

PSM/PSE which must be undertaken to achieve material functionality.136 

Whilst conventional synthetic methods are hydrothermal/solvothermal, there are a number of 

alternative strategies which exist for assembling frameworks. Microwave synthesis can be 

used for the high throughput of reactions due to much shorter reaction times.122,137,138 Some 

greener alternatives involve mechanochemical methods (Figure 1.14)139–141 including liquid-

assisted grinding142,143 which aim to minimise the use of solvents, however, there appears to 

be a distinct lack of literature reports regarding the synthesis of novel MOFs using these 

techniques.  

 

Figure 1.14. A graphical illustration of mechanochemical MOF synthesis followed by the 

activation of the material. Figure reproduced from reference 125. 
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Finally, when synthesising novel materials, it is essential to characterize them. MOFs are 

generally highly ordered structures so are structurally characterised using single crystal X-ray 

diffraction and bulk phase purity is often confirmed using powder X-ray diffraction.144,145 

Unfortunately, obtaining single crystals is not always easy and an empirical approach is often 

employed where ligand/metal concentrations, heating/cooling rates and modulators are all 

varied in the hope of obtaining large enough crystals. Aside from X-ray analysis, frameworks 

are typically analysed using porosimetry to characterise their pore size, surface area and gas 

sorption properties.146,147 TGA is also routinely employed to assess the stability of frameworks 

as well as the presence of any residual solvents and modulators.148,149 Finally, digestion of 

frameworks using strong acids yields them to analysis with solution-phase NMR spectroscopy, 

which can be useful for determining the ratios of the various substituents that compose each 

framework.136,150,151 

1.3.2 Photoluminescence in MOFs 

Photoluminescence is the emission of energy in the form of light after the initial photo-

excitation of a material. In terms of MOFs, there are four main origins of photoluminescence 

(Figure 1.15): 1) ligand-based emission derived from conjugated organic linkers;152,153 2) metal-

centred emission that typically arises from the electronic transitions in lanthanide metal based 

SBUs;154,155 3) charge-transfer luminescence involving excited state charge transfer via metal-

to-ligand charge transfer (MLCT)156,157 or ligand-to-metal charge transfer (LMCT) 

transitions;156,157 4) guest-induced emission can occur from the incorporation of a 

photoluminescent guest species into a framework capable of influencing the emission process. 

This section will focus on ligand-centred emission along with the MLCT and LMCT processes.  



23 
 

 

Figure 1.15: An illustration of the origins of emission in MOFs. Reproduced from reference 158. 

The majority of MOFs are assembled using aromatic linkers which provide rigidity to the 

framework structure.158 The π-conjugated nature of these organic linkers results in the 

framework exhibiting fluorescent / phosphorescent properties (Figure 1.16).14 Fluorescence is 

the result of an electron returning from the excited singlet state (S1) to the ground state (S0). 

Phosphorescence is several orders of magnitude slower than fluorescence and occurs when an 

electron returns from the excited triplet state (T1) back to the ground state (S0), this occurs 

through an intersystem crossing process which involves the reversion of an electron spin 

state.159 Relaxation of the electron in either state releases energy in the form of a photon. 

 

Figure 1.16. A simplified Jablonski diagram illustrating fluorescence and phosphorescence. 

In conjugated organic linkers, the majority of excitations occur through π → π* and n → π* 

electronic transitions with n → π* transitions harbouring a lower energy requirement. These 
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transitions generally occur in the near-UV and visible region of the spectrum, with absorption 

occurring in the 200-400 nm for π → π* transitions and the 400-700 nm region for n → π* 

transitions. The fluorescence of materials can be characterized by recording the emission 

spectra of materials after excitation at their optimum excitation wavelength (λex), thus 

determining the maximum wavelength of emission (λmax). The efficiency of this process can be 

elucidated by obtaining the quantum yield (ΦF).160 ΦF is a measure of the number photons 

absorbed vs. the number of photons emitted and determined using the following formula: 

 

ΦF =  
# 𝑃ℎ𝑜𝑡𝑜𝑛𝑠 𝑒𝑚𝑖𝑡𝑡𝑒𝑑

# 𝑃ℎ𝑜𝑡𝑜𝑛𝑠 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑
 

 

The incorporation of a linker into a framework structure often alters the fluorescent properties 

of the linker. The rigidity provided by the cage structure can lead to the reduction of non-

radiative relaxation processes by restricting ligands rotation and vibration, this can result in 

increased quantum yields and fluorescent intensities.14 As a result, the λmax and ΦF of the linker 

molecule will be different to the resulting framework. An example of this can be demonstrated 

with the simple 1,3,5 benzenetricarboxylate (BTC) linker for which λmax = 370 nm (λex = 334 

nm). Incorporating the linker into the Zn3(BTC)2(DMF)3(H2O)3 
. (DMF)(H2O) results in a λmax = 

410 nm (λex = 341 nm), in the case of Zr6O4(OH)4(BTC)2(AcOH)6, a λmax = 446 nm (λex = 370 nm) is 

achieved.161 This shift in λmax is derived from the mixing of ligand and metal orbitals which 

alters the emission energy. This phenomenon can be best described as metal perturbed ligand 

emission and occurs in the vast majority of frameworks. An example of ΦF increases in MOFs 

relative to their substituent linker are shown in [{Cd2(bdpb)2(H2O)} ·18 DMF]n MOF composed 

of the (S)-4,4′-bis(4-carboxyphenyl)-2,2′-bis(diphenylphosphinoyl)-1,1′-binaphthyl (bdpb) 

linker.162 The ΦF of the bdpb linker increases from 33 % to 42 % upon incorporation into the 

cadmium framework.  
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1.3.3 Ligand-Centred Emission in MOFs; Applications and Recent Examples 

MOFs can display ligand-centred emission due to the conjugated backbone of the ligands 

which are used to assemble the framework. Photoluminescent MOFs have shown a number of 

promising applications in heterogeneous solid-state sensing,85,163 biomedical imaging,15,164 drug 

delivery14,86 and white light emission.155,165  

White light emission devices are very important due to their applications in flat panel displays 

and in the field of lighting. Lanthanide MOFs are generally used for this application due to the 

intensity of the emission arising from Ln3+ metals.155,166,167 However, ideal white-light emitters 

would avoid the use of such rare-earth metals. Recently, there have been a handful of 

examples of rare-earth metal free MOFs as potential white-light emitting devices. A semi-

conducting 1,4,5,8-naphthalenetetracarboxylate (H4ntc) linker was incorporated into a 

strontium MOF ([Sr(ntc)(H2O)2].H2O).165 The MOF was then applied over a layer of inorganic 

semiconductors and then coated with graphene oxide, this resulted in an electroluminescent 

white-light which originated from the MOF. Unfortunately, a poor ΦF of only 1.2 % was 

achieved. Another recent example was the synthesis of an aluminium based MOF using the 

9,10-bis(p-benzoate)anthracene (DBA) form Al(OH)(DBA).168 Al(OH)(DBA) was then loaded with 

the Rhodamine B to yield RhB@Al-DBA. The MOF-Dye composite results in a dual blue and 

yellow emission with the framework structure preventing the aggregation induced quenching 

of the dye. A ΦF of 12.2 % was reported for the emission in this study. Finally, the most recent 

study reports on a 5-azidoisophthalic acid (N3ipa-H2) which was used to assemble a zinc MOF 

([Zn(N3ipa)(Py)2].2H2O).169 The framework showed emission in three different regions, with π 

→ π* and n → π* transitions resulting in emission at 384 and 468 nm. A charge transfer from 

the metal-bound pyridine to the N3ipa ligand resulted in a third emission at 570 nm (Figure 

1.17). This is a notable example as it involves a single-component framework capable of 

producing white light with a high ΦF of 32.5 %. Rare-earth-free MOFs for white light emitting 

devices may still be in their infancy but have shown potential for further development. 
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Figure 1.17. Solid-state photoluminescence spectra of the free N3ipa ligand (blue) and the 

[Zn(N3ipa)(Py)2].2H2O MOF (red). The MOF shows 3 broad emission profiles which cover the 

entirety of the visible light spectrum. Reproduced from reference 169. 

The application of photoluminescent MOFs in a biomedical setting is another area of 

interest.14,86,164 The combination of imaging techniques such as MRI with fluorescence has led 

to the development of multimodal imaging which can have increased sensitivity and spatial 

resolution.170 Rare-earth metals feature in the majority of MOFs which have been reported for 

use in biomedical imaging.171–173 Recently however, a zirconium MOF constructed from the 

porphyrin ligand (5, 10, 15, 20–Tetrakis (4-carboxyl)-21H, 23H-porphine), was grown on a 

Fe3O4 core.164 The resulting composite demonstrated fluorescence due to the presence of the 

porphyrin functionality but also exhibited enhanced T2-weighted MRI (magnetic resonance 

imaging) properties as a result of the iron core. The composite material was successfully used 

for the dual-modality PL / MR imaging of tumour bearing mice (Figure 1.18). A number of 

alternative imaging materials have been reported which involved the use of MOFs as carriers 

of fluorescent dyes such as Rhodamine-B86,174 and Indocyanine green175 for fluorescent 

imaging, however, the origin of this emission cannot truly be considered ligand based.  
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Figure 1.18. Fluorescent imaging (λex = 550nm, λem = 660nm) of tumor-bearing mice before and 

after intravenous injection of Fe3O4@C@PMOF (20 mg kg−1). The liver region was marked by 

red dot line and the yellow lines referred to tumor region. Reproduced from reference 164. 

In terms of photoluminescent MOFs, sensing is the most widely reported application.17,85,163,176 

MOFs offer a number of advantages as solid-state sensors due in part to their solid nature, the 

size exclusion ability of their pores, as well as the ability to concentrate analytes in the porous 

structure. A plethora of MOF sensing studies have been conducted where the emission has 

originated from the linker. An example of ion sensing can be seen in a 2,4,6-tris(4-

pyridyl)pyridine (pytpy) copper MOF (Cu(pytpy)](NO3)·(CH3OH))16 where the replacement of 

the nitrate counterion with Cl-, Br-, N3
-, SCN- or I- leads to an anion-dependent shift in emission 

maxima. The colour change was also visually detectable by then naked eye (Figure 1.19). pH 

sensing is yet another possibility, UiO-66-NH2 showed an exponential increase in emission 

intensity from pH 1 to 9 due to deprotonation of the amine linker.177 Sensing of small organic 

molecules is another widely reported application. 4,4′-(2,2-diphenylethene-1,1-diyl)dibenzoate 

(HDPEB) was used to form the zinc Zn4O(HDPEB)3
.2DEF.4H2O which was capable of red-shifted 

and blue-shifted solvent-dependent emission based on the conformation of the dangling 

phenyl rings.178 The solvatochromic detection of small liquid analytes is also made possible 

using a zirconium MOF constructed from a 4,4'-((2,5-dimethyl-1,4-phenylene)bis(ethyne-2,1-
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diyl))dibenzoic acid linker, the rotation of the central dimethyl pendant results in red-shifted 

emission maxima with increased solvent dipole moment.84  

 

Figure 1.19. Images showing the colour change in MOF Cu(pytpy)](NO3)·(CH3OH) as result of 

anion-exchange. Reproduced from reference 16. 

Gas phase sensing of vapours176 and gases179 is one of the many other possibilities with the 

help of luminescent MOFs. Finally, hydration dependent fluorescence has been reported in a 

number of frameworks where the emission originates from the organic linker. The next section 

will explore these studies in greater detail. 

1.3.4 Hydration-Dependent Emission 

The detection of water, both in the liquid and gas phase, has many important applications in 

processes which involve food processing, pharmaceutical manufacturing and environmental 

surveying. MOFs which exhibit a hydration-dependant emission at an appropriate 

concentration or relative humidity can be utilised as water sensors. This next section shall 

review a number of such MOF sensor systems which display ligand-centred emission.  

Ferrando-Soria et al. reported one of the first MOF materials capable of exhibiting a hydration 

dependant emission in the form of an increased emission intensity.85 The authors reported a 
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hybrid, manganese-copper framework composed of the N,N′ -1,3-phenylenebis(oxamate) 

(mpba) linker and a N,N′-dimethyl-4,4′-bipyridinium/methyl viologen (MV) counterion, the 

resulting framework possessed the structural formula MV[Mn2Cu3(mpba)3(H2O)3]·20H2O. The 

resulting framework exhibited selective gas sorption ability for CO2 in a CO2-CH4 mixture and a 

paramagnetic to ferromagnetic phase transition (Tc = 19.0 K). Upon dispersion in toluene, the 

dehydrated framework also exhibited luminescent behaviour arising from the MV counterion 

with two emission bands being observed: λmax = 330 nm (λex = 225 nm) and λmax = 586 nm (λex = 

400 nm); the 330 nm band resulting from the MV cation and the 586 nm band being attributed 

the interaction of the MV cation with the copper nodes (CuII-MV2+). Upon addition of known 

amounts of water to the dispersion of the anhydrous framework in toluene, the 586 nm 

emission band gradually blue shifts to 544 nm upon increased hydration (Figure 1.20). The 

hydration of the Cu nodes results in small changes in the CuII-MV2+
 interaction distance. This is 

further validated by the lack of change in the 330 nm emission band upon hydration of the 

framework. This work is demonstrative of a MOF hydration-dependent emission which occurs 

in solution. However, since the emission originates from the MV2+ counter-ion, it is not linker 

based.  

 

Figure 1.20. Emission spectra of anhydrous MV[Mn2Cu3(mpba)3(H2O)3] at different water 

loadings (λex = 400 nm). A blue shifted emission is observed upon hydration. Reproduced from 

reference 85. 
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Douvali et al. provided the first report of a MOF capable of detecting trace quantities (0.05–

5 % v/v) of water in organic solvents.163 2,5-dihydroxy-terepthalate (dhtp) was used to 

construct the alkaline earth magnesium MOF [(Mg(dhtp)(H2O)2]·DMA (AEMOF-1) . Upon 

removal of the DMA guest species from AEMOF-1·DMA to form AEMOF-1’, the framework was 

found to exhibit a weak emission at λmax of 530 nm with a smaller shoulder at 610 nm (λex = 

360 nm), both of which originate from the excited-state intramolecular proton transfer (ESIPT) 

on the bridging ligand. The ΦF of these emission bands was a modest 1.89 % and was said to be 

self-quenched due to the close proximity of the dhtp linker in the dense AEMOF-1’ structure 

(BET surface area = 11 m2 g-1). Upon hydration of AEMOF-1’, the authors noted that the 

emission profile changed to just one emission band (λmax = 536 nm) and an enhanced ΦF of 

12.6 %. This prompted the authors to investigate the utility of AEMOF-1’ as a moisture sensor 

in organic solvents (THF, MeOH, EtOH and CH3CN). The dry AEMOF-1’ was suspended in dry 

THF, fluorescence analysis revealed a λmax = 455 nm (λex = 350 nm). Subsequent additions of 

water caused a gradual shift towards a λmax of 530 nm in a 5 % v/v solution of H2O in THF. The 

smallest change was observed in H2O/THF solution of just 0.05 % v/v (Figure 1.21), this is in 

contrast to the free dhtp ligand which only produced a measureable emission change above 

1.0 % v/v H2O. A similar, yet not as drastic emission response was observed when the AEMOF-

1’ was exposed to different quantities of H2O in EtOH, this highlights the selectivity of the 

framework, even in polar-protic solvents. This work is highly notable as being the first example 

of a suitably sensitive turn-on sensor for the detection of water in organic solvents. The 

luminescence-based determination method is also considerably faster and easier than 

traditional methods such as the Karl Fischer titration, a method which relies on specialised 

equipment and training.180 
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Figure 1.21. Emission spectra of a stirred suspension of AEMOF-1’ in THF upon addition of 

aliquots of water (0.05-5 % v/v), (λex = 400 nm). Figure reproduced from reference 163. 

Following on, Yu et al. offered the first demonstration of a MOF which was capable of 

producing an emission change based on an increase in relative humidity.181 1-benzimidazolyl-

3,5-bis(4-pyridyl)benzene (bzipyb) was used in the assembly of the copper Cu2(bzipyb)2I2 

framework. When the authors allowed the Cu2(bzipyb)2I2 to stand at room temperature, a 

gradual colour change from yellow to deep red brown was observed. Single-crystal X-ray 

structure analysis of the frameworks revealed identical structures with the only difference 

being the presence of hydrogen bonding interactions between the copper cluster and guest 

H2O species (4H2O⊂Cu2(bzipyb)2I2). This prompted the authors to expose the sample to a 

range of relative humidities (5, 33, 43, 57 and 78 RH %). The solid-state fluorescence spectra of 

the MOF were then recorded at the varied RH (Figure 1.22). A quenching effect of the emission 

maximum at 607 nm (λex = 418 nm) was observed, with a greater RH resulting in a faster and 

greater degree of quenching. This work offered the first demonstration of a humidity-

dependent emission in MOFs and whilst the response was that of a turn-off sensor, the 
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hydration could be visualised colorimetrically with the naked-eye.  

 

Figure 1.22. (left) Photographs showing the color change of the bulk crystal samples of 

Cu2(bzipyb)2I2 in different atmospheres with different RH. The single crystal nature was kept 

during the color change process. (right) The corresponding solid-state emission spectra (λex = 

418 nm) of Cu2(bzipyb)2I2 in different atmospheres with different RH (33–78.5%). Reproduced 

from reference 181. 

Finally, the most recent example of MOF facilitated water sensing was reported by Chen et 

al.17 The authors synthesised a zinc framework which was composed of a 5-(2-(5-fluoro-2-

hydroxyphenyl)-4,5-bis(4-fluorophenyl)-1H-imidazol-1-yl)isophthalate) linker (hpi2cf) with the 

general formula Zn(hpi2cf)(DMF)(H2O). The hpi2cf linker exhibits a characteristic excited state 

intramolecular proton transfer (ESIPT). The overall framework displayed a highly reversible 

blue-shifted hydration-dependant emission which could be trivially reversed by gentle heating 

(70 oC) or through subjection to a stream of dry nitrogen gas (Figure 1.23). The change in 
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emission was derived from a single crystal to single crystal transformation which, upon 

dehydration, facilitated keto-enol tautomerism in the hpi2cf linker, thus inducing a higher 

energy enol emission through ESIPT. The framework could detect trace water in organic 

solvents (THF) at concentrations as low as a 0.05 % v/v solution of H2O in THF, the blue-shifted 

emission could also be induced by a 1 RH %. This makes the material the most sensitive MOF 

hydration sensor to date.  

 

Figure 1.23. Structural illustration of: (a) hpi2cf ligand, (b) hydrated Zn(hpi2cf)(DMF)(H2O) 

(blue) and (c) dehydrated Zn(hpi2cf)(DMF) (cyan), showing coordination environmental 

change around Zn centres. Figure reproduced from reference 17. 

Hydration-dependent emission in MOFs remains a widely under-reported phenomenon. Due 

to the conjugated nature of substituent MOF linkers and the propensity for metal 

nodes/clusters to become hydrated, there are likely many previously reported frameworks 

that exhibit some form of structural perturbation upon exposure to water. These subtle 

structural changes upon hydration could very well display hydration-dependant luminescence.  
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1.4 Zirconium Metal-Organic Frameworks 

Although many existing MOFs remain intact upon the evacuation of their pores, stability 

remains an issue. The stability of MOFs relies heavily upon the ligand-metal interactions. 

Nucleophilic species such as H2O and conjugate base pairs can readily displace coordinated 

ligands; a slightly humid environment can be enough to result in the collapse of a framework. 

Recently, zirconium-based MOFs originating from zirconium salts (ZrCl4 and ZrOCl2) have 

attracted attention due in part to their robustness. This stability is derived from the high 

oxidation state (+4) of the zirconium metal which increases the electrostatic interaction 

between the metal nodes and the linkers.10 General synthetic strategies for assembling 

zirconium MOFs are very similar to the methods outlined in the previous section with the 

majority of these frameworks being synthesised solvothermally.88,182 There are some reports of 

alternative methods such as microwave synthesis121 and mechanochemical grinding.139 

At the heart of a zirconium-based MOF is the zirconium-oxo cluster, often denoted as the Zr6 

node (Figure 1.24). The Zr6 cluster has the general formula Zr6O4(OH)4
12+. This cluster is 

extremely stable towards temperature and hydration and remains intact upon amorphization 

of a zirconium framework.98 This cluster possesses a maximum coordination environment of 

12. This generally means that ideal zirconate MOFs are 12-connected; each node forms 12 

coordination interactions with the chosen linkers. Zirconate MOFs that are not composed of 

the Zr6 cluster, such as the MIL-140 series,183 will not feature in this section.  

 

Figure 1.24. A structural representation of the Zr6O4(OH)4 node featuring four node-bound 

carboxylates. Reproduced from reference 184. 
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The archetypal zirconium MOF is UiO-66 (Figure 1.25), first synthesised at the University of 

Oslo in 2008.98 UiO-66 includes 1,4 benzenedicarboxylate (BDC) linkers, with each Zr6 node 

forming 12 carboxylate linkages and taking on the general formula Zr6O4(OH)4(BDC)6 and 

possessing a pore diameter of 6 Å. UiO-66 is synthesised from ZrCl4 and BDC in DMF using 

solvothermal conditions; HCl, acetic acid or benzoic acid are often used as modulators.88 

Varying the modulators and their concentration can be used to induce both missing linker and 

cluster defects which affect the porosity and stability of the material.127,185,186 UiO-66 is also 

highly stable in aqueous medium. Previous investigations into green chemistry have shown 

that the framework can be synthesised hydrothermally187 and using liquid water-assisted 

grinding.139 The thin film deposition of this framework is also possible through gas phase 

synthesis, thus realising applications in sensing and electronics.188 

 

Figure 1.25. A structural representation of a) UiO-66 and b) UiO-67. From left to right: a 

comparison of the linker dimensions, structure and cage dimensions. Reproduced from 

reference 189. 

Isostructural variants of UiO-66 exist which possess alternative functionalities on the BDC 

pendant such as 2-aminoterephthalate acid, 2-hydroxyterephthalate and 2,3,5,6-tetrafluoro-

1,4-benzenedicarboxylate. Utilising the longer biphenyl-4,4′-dicarboxylate (BPDC) linker results 

in the framework known as UiO-67 (Figure 1.25). This framework is iso-reticular to UiO-66 and 
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differs only in pore diameter.98 Again, substituting the BPDC linker for the likes of 2,2′-

bipyridine-5,5′-dicarboxylate (BiPy) and 2‐aminobiphenyl‐4,4'-dicarboxylate results in a 

topology which is iso-structural to that of UiO-67.88 

Carefully pairing a suitable linker with an appropriate modulator concentration can be used to 

synthesise zirconium MOFs with a variety of connectivities which differ from the ideal of 12. 

For example, employing a tritopic ligand such as 1,3,5 benzene tricarboxylate, 1,3,5-tris(4-

carboxyphenyl)benzene or even 4,4′,4″-s-triazine-2,4,6-triyl-tribenzoate, will result in a 6-

connected framework (MOF-808).190 The remaining six vacancies on the Zr6 cluster are 

occupied by the monotopic modulators. A more notable example is with the tetrakis(4-

carboxyphenyl)porphyrin (TCPP) linker, using dichloroacetic acid modulator which results in 

the eight-connected PCN-222/MOF-545 framework. Modulating the synthesis with acetic acid 

leads to the 12-connected PCN-223 framework. Finally changing the modulator to benzoic acid 

will lead to PCN-224, a 6-connected zirconate MOF.182 PCN-222, 223 and 224 could also be 

accessed simply through varying the concentration of triethylamine (TEA) modulator (Figure 

1.26).130 

 

Figure 1.26. A graphical outline of the strategies employed to access PCN-222 (8-connected), 

PCN-223 (12-connected) and PCN-224 (6-connected) from the TCPP. The outline illustrates 

how varying the synthetic modulator can be used to achieve different node connectivity. 

Figure reproduced from reference 130. 
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Zirconium MOFs can undergo a number of post-synthetic modifications and this can be broken 

down into a variety of strategies. Covalent modifications of linker functionalities is a popular 

approach. For instance the amine functionality in UiO-66-NH2 can be modified to form imines, 

amides and aziridines using a range of reagents.191 Direct functionalization of the linker 

backbone is also possible through hydroxylation192 and halogenation193 of the ligand. Both 

processes have been previously reported for zirconium frameworks. Frameworks such as UiO-

67-BiPy possess a bipyridyl functionality and can be modified through post-synthetic 

metalation using metal salts such as CuCl2, PtCl2 and even PdCl2 to yield immobilized 

heterogeneous catalysts.194 Alternatively, the Zr6 cluster can be metalated, with previous work 

showing the incorporation of AuMe(PMe3)195
 and LiOtBu196 onto the node. Finally, post-

synthetic surface functionalization can be achieved by functionalizing frameworks with 

moieties and reagents which are too large to pass into the MOF pores.197 

Due to their robustness and due to the Lewis acidity of uncoordinated Zr6 nodes, zirconium 

MOFs have found a number of applications as heterogeneous catalysts.51 The following section 

will explore their general utility as catalysts followed by their application as lewis acid catalysts 

for the hydrolysis of CWAs.   

1.4.1 Zirconium MOFs as Catalysts 

Due to their robustness and stability in a vast array of chemical media, zirconium MOFs have 

shown great promise as heterogeneous catalysts. Predominant reports of catalysis have 

usually involved zirconium MOFs in which the catalytically active components are 

functionalised linkers,198,199 metal-ligated linkers200 or metal clusters.201 The schematic below 

(Figure 1.27) illustrates the design strategies that exist for functionalizing zirconium 

frameworks for applications in catalysis. This section will focus on catalysis which is derived 

from the Lewis acidic zirconium-oxo cluster. 
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Figure 1.27. An illustration of the locations of catalytically active sites on Zr6 based MOFs. 

Reproduced from reference 202. 

One of the earliest examples of Zr6 node-facilitated catalysis was reported by Vermoortele et. 

al128 and features UiO-66. The synthesis of UiO-66-10 was modulated with 10 equivalents of 

trifluoroacetic acid (TFA) relative to ZrCl4, this yielded a number of linker defects. The 

modulator was removed through thermal activation resulting in an average of two 

coordination vacancies per Zr6 cluster (Figure 1.28). A 15 mol % catalyst loading was then used 

for the cyclization of citronellal to isopulegol in toluene. This was followed by the Meerwein–

Ponndorf–Verley reduction of 4-tert-butylcyclohexanone with isopropyl alcohol for which a 10 

mol % catalyst loading was used. It should be noted that modulating the synthesis of UiO-66-

10HCl with 1 equivalent of HCl alongside 10 equivalents of TFA doubled the amount of 

citronellal which was converted over 10 hours when compared to a UiO-66-10 framework 

which was modulated with only TFA. HCl partially inhibits the hydrolysis of the ZrCl4 salt and 

mildly supresses the deprotonation of the 1,4-benzene dicarboxylic acid linker. This facilitates 

a slower and more controlled growth which leads to a more crystalline framework. It should 

also be noted that UiO-66 which was synthesised without the presence of TFA modulator and 
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activated, showed a fraction of the catalytic activity compared to UiO-66-10HCl. This highlights 

the necessity of the coordination vacancies formed by modulation with TFA.  

 

Figure 1.28: A graphical illustration of the creation of missing linker defects how they facilitate 

catalysis. Reproduced from reference 128. 

A series of zirconium MOFs were also tested for the catalytic (1 mol % catalyst loading) 

regioselective epoxide ring opening of styrene oxide in the presence of iso-propyl alcohol to 

form the primary alcohol 2-isopropoxy-2-phenylethan-1-ol. The series of MOFs consisted of 

several variants of UiO-66, the eight-connected MOF NU-1000 and the 6-connected framework 

MOF-808. The number of missing linkers in each MOF and the corresponding conversion % of 

styrene oxide is shown below.  

MOF Catalyst Number of Missing 

Linkers (per Zr6 cluster) 

Relative reaction 

rate 

Styrene oxide 

conversion (%) 

UiO-66  1.75 1 40 

UiO-67 (HCl) 1.75 0.9 34 

UiO-67 (Benzoic Acid) 0 ~0 4 

NU-1000 4 1.3 90 

MOF-808 6 2.0 100 

Table 1.1. Estimated missing linkers in UiO-type MOFs as determined by potentiometric acid-

base titration, relative initial reaction rate and conversion of styrene oxide after 24 h. 

Reproduced from reference 51. 
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As can be seen from Table 1.1, the study concluded a quantitative relation between the 

number of missing linkers and the catalytic activity of each framework for the ring opening 

reaction. It should be noted that the entry titled UiO-67 (Benzoic Acid), was modulated with 

benzoic acid, this particular synthesis results in the minimal number of defects and provides 

minimal conversion of styrene oxide over the reaction period. UiO-67 (Benzoic Acid) is 

employed as useful experimental control for showcasing the necessity of the Lewis acidic 

coordination vacancies for enabling the ring opening conversion.  

More recently, the 6-connected MOF-808 was noted for its remarkable activity towards 

peptide bond hydrolysis.77 The dipeptide Glycyl-glycine (Gly-Gly) was the substrate of choice.  

A 100 mol % loading of MOF-808 was used along with a phosphate buffer (pD 7.4) at 60 oC. 

Near full hydrolysis of Gly-Gly to Gly was observed after a 4 hour period. A mechanism is 

proposed for the peptide hydrolysis: the amine nitrogen and amide oxygen coordinate to two 

Zr4+ centers on the Zr6 node, the coordination polarizes the peptide bond which makes it more 

susceptible to nucleophilic attack from water.  

Lower/Higher pD and a lower temperature both resulted in a smaller amount of Gly-Gly 

conversion. A 20-fold increase of Gly-Gly relative to MOF-808 was then used and a substantial 

amount of hydrolysis was observed, albeit at a slower rate, this shows that MOF-808 is truly 

catalytic. The authors then repeated their Gly-Gly and MOF-808 hydrolysis procedure in the 

presence of several aliphatic mono-, di- and tri- carboxylic acids, a lower conversion was 

observed of Gly-Gly to the Gly product. Shorter aliphatic acids resulted in greater inhibition 

than their longer counterparts and a di-acid would generally result in a doubly large inhibition 

in comparison to a mono-acid. The Gly-Gly therefore competes with other moieties 

carboxylate moieties for the oxophilic coordination vacancies on the Zr6 nodes. Finally, using 

MOF-808, the authors tested a number of Gly-X dipeptides which differed in size, 

hydrophobicity index and which possessed alternative functionalities. The hydrolysis of the 
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Gly-X dipeptides generally decreased as the size of the side chain increased, the following size 

trend was observed: Gly-Gly > Gly-Ala > Gly-Asp > Gly-Asn > Gly-Lys ≈ Gly-Arg (Figure 1.29). 

  

Figure 1.29. A graph showing the conversion of 2.0 μmol Gly-X dipeptides in the presence of 2 

2.0 μmol MOF-808 at pD 7.4 and 60 oC as a function of the residual volume of amino acid X. 

Reproduced from reference 77.  

The steric bulk of the dipeptide therefore affects the access of the amide C=O group to the Zr6 

nodes. Dipeptides with more hydrophobic residues (Val, Leu, Ile) were also shown to react 

slower, which was postulated to result from less favourable inter-molecular interactions with 

the 1,3,5-benzenetricarboxylate linker in MOF-808, thus hindering the diffusion of the 

substrate through the MOF pores. The above study highlights the utility of zirconate MOFs as 

heterogeneous catalysts. The research also showcases the steric effect of substrate to node 

access along with how guest electron pair donating species can inhibit catalysis by 

competitively binding the active coordination vacancies.  

Finally, there is a significant collection of studies regarding the hydrolysis of of the nerve agent 

simulant DMNP, and consequently organophosphorus CWAs. Numerous zirconium MOFs have 

been employed for this phospho-ester hydrolysis, ranging from UiO-66, UiO-67-NMe2, MOF-
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808 and NU-1000. This work is discussed chronologically and in great detail in the following 

section.  

1.4.2 Zirconium MOFs as OP CWA Catalysts 

As discussed in the previous section, zirconate frameworks possessing coordination vacancies 

have been employed as heterogeneous Lewis acid catalysts. This section will discuss the 

development of their application for the hydrolysis of CWAs along with their simulants. All 

studies which involve the zirconium MOF facilitated hydrolysis of CWAs were initially carried 

out on the nerve agent simulant, DMNP. This procedure employs the use of N-ethylmorpholine 

(NEM) buffer. The methodology was likely developed from an initial study involving the 

hydrolytic cleavage of O,O-diethyl O-(4-nitrophenyl) phosphate (DENP) in the presence of 4-(2-

hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) buffer and the chromium MOF MIL-

101.203 It should also be noted that salts of 4-nitrophenyl phosphate are also commonly 

employed in biological settings to assess the effectiveness of phosphoesterases. The zirconium 

node facilitated hydrolysis mechanism of DMNP, as determined by electronic structure 

calculations,204 is shown in Figure 1.30. The first reported example of nerve agent simulant 

hydrolysis was reported in 2014 by Katz et al.7 The study described the hydrolysis of the DMNP 

simulant in aqueous N-ethylmorpholine solution which has now been widely adopted as a 

standard procedure for screening potential OP CWA catalysts. The authors employed UiO-66 

as a hydrolysis catalyst and they described the topology of the Zr6 oxo-cluster as being 

biomimetic of the PET enzyme which is comprised of an alkoxide bridged ZnII centre 

surrounded by nitrogen donors (Figure 1.31). For phosphoester hydrolysis, one ZnII centre 

binds and activates the P=O group, while the other ZnII centre transfers an OH- to enable the 

cleavage of an –OR group.  



43 
 

 

Figure 1.30. The catalytic cycle of DMNP on a NU-1000 node. Reproduced from reference 204. 

Figure 1.31. a) schematic drawing of the structure of the active site of phosphotriesterase. b) 

The Zr6 cluster. c) The 3D structure of UiO-66. Reproduced from 52. 
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However, zirconium MOFs offer several advantages over PET enzymes; zirconium MOFs are 

stable over a wide pH and temperature range10 and function as heterogeneous catalysts. The 

high stability and solid nature of zirconium MOF catalysts enhances their field applicability in 

the context of CWA degradation (filters/textiles/composites).7 For the catalytic testing, DMNP 

and p-nitrophenyl diphenyl phosphate (PNPDPP) were both subjected to a methanolysis 

reaction in the presence of UiO-66 (6 mol %). Near full methanolysis was observed for DMNP 

(~ 90 %) and PNPDPP (~ 85 %) after 3 hours. 

Under hydrolysis reaction conditions, UiO-66 (6 mol %) was able to fully convert DMNP to 

dimethyl phosphonate in the presence of aqueous NEM buffer over 3 hours at room 

temperature. Unsurprisingly, a faster hydrolysis was observed when the reaction temperature 

was raised to 60 oC. The authors were keen to note that an individual molecule of DMNP (11 x 

4.5 Å) is too large to access the 6 Å large pore apertures of UiO-66 and that the observed 

hydrolysis was restricted to the MOF surface (6 mol % catalyst loading, 0.045 mol % accessible 

surface sites). Finally, to demonstrate that the MOF facilitated catalysis was heterogeneous, 

the authors removed the UiO-66 from a DMNP reaction mixture mid-reaction, after which 

point no further hydrolysis was observed. This first work regarding MOF catalysed CWA 

simulant hydrolysis was highly demonstrative but there was no mention of coordination 

vacancies, nor was the work confirmed on CWAs.  

A follow up project was pursued by Katz et al.184 to investigate how alternative functionalities 

on the 1,4 benzene dicarboxylic acid linker affected the hydrolysis of the DMNP simulant. 

Using identical hydrolysis conditions (DMNP in aqueous NEM buffer) and a 6 mol % catalyst 

loading, UiO-66-(OH)2, UiO-66-NO2, UiO-66-NH2, UiO-67, UiO-67-NH2 and UiO-67-NMe2 were 

all tested as hydrolysis catalysts. No significant improvement in DMNP half-life was observed in 

the presence of UiO-66-(OH)2 and UiO-66-NO2 when compared to un-functionalised UiO-66, as 

shown in Figure 1.32. The electron-withdrawing nitro group of UiO-66-NO2 provides no 

electronic effect on the rate-limiting step and the electron-donating OH group of UiO-66-(OH)2 
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results in a slight steric inhibition of the rate limiting step. However, a 20-fold increase in initial 

rate (mM s-1) was observed for UiO-66-NH2 when compared to UiO-66 (Figure 1.32). The 

authors suggested that this remarkable enhancement was a result of the Brønsted basicity of 

the proximal 2-aminoterephthalate linker.  

 

Figure 1.32. Hydrolysis rate of UiO-66 (blue circles), UiO-66-NO2 (red triangles), UiO-66-(OH)2 

(green squares), and UiO-66-NH2 (pinkstars). Reproduced from reference 184. 

UiO-67 was also found to outperform UiO-66 due to less steric crowding between nodes 

provided by the longer biphenyl-4,4′-dicarboxylic acid linker. However, only a 1.2-fold increase 

was observed in initial rate in the presence of UiO-67-NH2 and UiO-67-NMe2 relative to UiO-67, 

which is in contrast to the 20-fold enhancement between UiO-66 and UiO-66-NH2. Decreasing 

the catalyst loading by 50 % (from 6 % to 3 %) resulted in a 3.2-fold rate increase when 

comparing UiO-67 to UiO-67-NH2 and UiO-67-NMe2. This prompted the authors to suggest that 

there was second rate-limiting step present in the catalytic cycle.  

Following on, Mondloch et al reported the use of the eight-connected NU-1000 MOF 

composed of the tetratopic 1,3,6,8(p-benzoate) (TBAPy) inker as a catalyst for DMNP 

hydrolysis.11 Identical reaction conditions were used along with a 6 mol % catalyst loading.  A 

significant reduction in half-life was observed for NU-1000 in comparison to UiO-66 (15 mins vs 
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45 mins). This enhancement was the result of two factors. One, NU-1000 possesses a 

maximum pore diameter of 31 Å which allows the DMNP substrate to permeate the entirety of 

the internal framework. Two, the tetratopic nature of the TBAPy linker results in the formation 

of an eight-connected framework vs. that of the 12-connected UiO-66. The lower connectivity 

results in improved access to the Lewis acidic ZrIV sites due to a less than maximal occupancy of 

the 12 coordination sites on the Zr6 node. A tenfold enhancement in DMNP hydrolysis half-life 

was then achieved by thermally activating the NU-1000 framework Zr6(µ3-O)4(µ3-

OH)4(H2O)4(OH)4(TBAPy)2 and removing the terminal aqua ligands. Using density functional 

theory (DFT) quantum chemical calculations, DMNP was found to interact directly with the 

Lewis acidic ZrIV sites in dehydrated NU-1000 (Figure 1.33). 

  

Figure 1.33. Association and reaction energies predicted by DFT. a–f, Key ΔG◦
assoc (a,d) and 

ΔG◦
rxn (b,c,e,f) values for the interaction of DMNP and GD analogue with the node of NU-1000. 

a, DMNP binding. b, DMNP replacing a H2O molecule. c, Hydrolysis of DMNP. d, GD analogue 

binding. e, GD analogue replacing a H2O molecule. f, Hydrolysis of GD. Colour code: Zr (blue); 

O (red); C (black); H (white); P (orange); N (light blue); F (green); S (yellow). Reproduced from 

reference 11. 
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With regular NU-1000, DMNP formed hydrogen bonding interactions with Zr6 node-ligated 

water along with the hydroxyl moieties which composed the nodes.  In additional to hydrogen 

bonding interactions, DMNP also formed π–π stacking interactions with the TBAPy4- linker. The 

direct interaction of DMNP with the ZrIV sites in dehydrated NU-1000 is a more favourable 

interaction with the hydrolysed product being 48 kJ mol−1 downhill in free energy relative to 

the separated reactants. Finally, the authors reported the hydrolysis of the nerve agent GD. 

Using a buffered solution of NEM and NU-1000 (6 mol % catalyst loading), GD was hydrolysed 

with a half-life of just 3 minutes. This was the first example in a series of studies where the 

hydrolysis of DMNP was shown to correspond with the hydrolysis of an OP CWA.  

Based on observations that a lower connectivity in Zr-MOFs results in more accessible catalytic 

sites Moon et al184 reported their findings on the use of 6-connected MOF-808 as a hydrolysis 

catalyst. Using MOF-808 (6 mol %) along with an aqueous NEM buffer, DMNP was hydrolysed 

with a half-life of less than 0.5 minutes. Reducing the catalyst concentration further to a 1.25 

mol % loading also resulted in a half of 0.5 minutes. This was the fastest reported half-life to 

date and thus highlighted how an increase in the number of coordination vacancies resulted in 

significantly enhanced catalysis. It should be noted that the synthesis of MOF-808 was 

modulated with formic acid thus resulting in an as-synthesised Zr6(µ3-O)4(µ3-

OH)4(HCOO)6(BTC)2 framework. The framework was then activated by heating in fresh solvent 

to substitute the formate ions with six labile water ligands, thus resulting in Zr6(µ3-O)4(µ3-

OH)4(H2O)6(OH)6(BTC)2. 

Moon et al then went on to report the first example of the zirconium MOF facilitated 

hydrolysis of the V series agent, VX.12 UiO-67-NH2 and UiO-67-NMe2 were both used (6 mol %)  

as degradation catalysts for the hydrolysis of VX in NEM buffer. Remarkably, a VX half-life of 6 

minutes was achieved in the presence of UiO-67-NH2 and a half-life of 1.5 minutes was 

achieved with UiO-67-NMe2. The superior activity of UiO-67-NMe2 was derived from the 

greater Brønsted basicity of the dimethyl-amine functionalised linker. The same degradation 
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procedure was repeated, but this time in the absence of NEM buffer, a VX half-life of 7 

minutes was observed in the presence of UiO-67-NMe2 (Figure 1.34). It is also worth noting 

that in all cases the hydrolysis of VX was selective. The ethyl-methyl phosphoric acid (EMPA) 

product was always formed instead of the harmful EA-2192 (Figure 1.4). The zirconate nodes 

therefore displayed selectivity for P-S bond cleavage over that of the P-O bond in VX.  

 

Figure 1.34. 31P NMR spectra in the absence of buffer indicating (a) the progress of hydrolysis 

of 14.7 μmol of VX (62.5 ppm) to EMPA (27.5 ppm) with 1.1 μmol of UiO-67-NMe2 at room 

temperature and (b) the percent conversion of VX to EMPA in the presence of UiO-67- NMe2 in 

water. Reproduced from reference 12. 

All of the studies outlined so far in this section were conducted by members of the Farha and 

the Hupp groups.8,11,12,52,184 Due to the consistency of their methodology, a direct comparison 

may be drawn between all of the OP hydrolysis tests conducted by these groups (Table 1.2). 

MOF-808 resulted in the shortest half-life for DMNP hydrolysis, even at a much smaller 

catalytic loading. Atthe time, UiO-67-NMe2 was the only zirconium framework that had been 

tested on VX in the absence of buffer. Due to the lower formula weight of MOF-808, cheaper 

linker (1,3,5-benzene tricarboxylate vs. 2-(dimethylamino)-[1,1'-biphenyl]-4,4'-dicarboxylate) 

and improved DMNP hydrolysis, it was of great interest to see whether MOF-808 could show 

the same affinity for degrading VX in the absence of buffer.  
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MOF (6 mol % loading) Substrate T1/2 (min) Reference 
UiO-66 DMNP 35 52 
UiO-66-(OH)2 DMNP 60 184 
UiO-66-NO2 DMNP 45 184 
UiO-66-NH2 DMNP 1 184 
UiO-67 DMNP 4.5 184 
UiO-67-NH2 DMNP 2 184 
UiO-67-NMe2 DMNP 2 184 
NU-1000 DMNP 15 11 
NU-1000 dehydrated DMNP 1.5 11 
MOF-808  DMNP <0.5 8 
MOF-808 (1.25 mol % loading) DMNP 0.5 8 
NU-1000  GD 3 11 
UiO-67-NH2 VX 6 12 
UiO-67-NMe2 VX 1.8 12 
UiO-67-NMe2 VX (no buffer) 7 12 

Table 1.2. A table summarising the half-lives of various OP CWA substrates in the presence of a 

range zirconium MOF catalysts. 

Finally, de Koning et al.9 report on a highly comprehensive study which allows for a direct 

comparison between a several MOF hydrolysis systems (Table 1.3). UiO-66-NH2, MOF-808, NU-

1000 and PCN-777 were all tested for their ability to degrade the DMNP simulant along with 

the CWAs tabun, soman and VX, in buffer and without. The study confirmed that VX was self-

buffering due to the fact that hydrolysis occurred in the presence of all of the MOFs which 

were tested when no NEM buffer was used. UiO-66-NH2 resulted in the shortest VX non-

buffered half-life (UiO-66-NH2 t1/2 5 mins vs. MOF-808 t1/2 6.3 mins), which is likely due to the 

proximal amine linker of UiO-66-NH2 aiding the initial hydrolysis when no DESH by-product is 

yet present. Interestingly, when N-alkylated VX (VX-Me+) was employed, no catalytic hydrolysis 

was observed due to the lack of basicity present on the amine. Partial hydrolysis of tabun was 

observed during non-buffered hydrolysis experiments in the presence of all frameworks, this 

can be ascribed to the assistance by the basic dimethyl-amine group of tabun. Finally, when 

looking at the non-buffered hydrolysis of soman, no hydrolysis was observed in the presence 

of any frameworks, this is quite simply explained by the lack of any basic functionalities being 

present in the reaction mixture.  
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conditions 
 

NEM 
  

MQ 
  

agent MOF k, min-1 t1/2, min conva, % k, min-1 t1/2, min conva, % 

POX NU-1000 0.27 2.6 100 n.d. n.d. n.d. 
 

MOF-808 0.19 3.6 100 n.d. n.d. n.d. 
 

PCN-777 0.19 3.6 100 n.d. n.d. n.d. 
 

UiO-66-NH2 0.02 35 75a 0.007 99 21 

GD NU-1000 n.d. <1 100 n.d. n.d. <2 
 

MOF-808 n.d. <1 100 n.d. n.d. <2 
 

PCN-777 n.d. <1 100 n.d. n.d. <2 
 

UiO-66-NH2 n.d. <1 100 n.d. n.d. <2 

VX NU-1000 0.13 5.3 100 0.081 8.7 77 
 

MOF-808 n.d. <0.5 100 0.11 6.3 73 
 

PCN-777 n.d. <0.5 100 0.04 17.3 34 
 

UiO-66-NH2 0.32 2.2 100 0.14 5 85 

GA NU-1000 n.d. <1 100 0.0072 97 23 
 

MOF-808 n.d. <1 100 0.0074 94 24 
 

PCN-777 n.d. <1 100 0.019 37 37 
 

UiO-66-NH2 n.d. <1 100 0.018 39 33 

aConversion within the experimental time frame. 

Table 1.3. Summary of Kinetic Data and Maximum Conversions (after 40 min) Obtained in the 

Degradation Reactions of POX (paraoxon), GD, VX, and GA in NEM Buffer (pH 10) and Water, 

by the MOFs NU-1000, MOF-808, PCN-777, and UiO-66-NH2 (pH 2.8− 4.4). Reproduced from 

reference 9. 

To summarise, this section has explored the evolution of the zirconium MOF for the 

enhancement of its application for OP hydrolysis. The findings have determined that pore 

diameter, proximal basicity, and most importantly, the abundance of coordination 

vacancies/defects, all play a role in facilitating a more effective hydrolysis. Upon evaluating the 

results, it would appear that MOF-808 has proven to be the most effective catalyst for OP CWA 

hydrolysis. This is because it possesses the most enhanced t1/2 for DMNP hydrolysis along with 



51 
 

NU-1000. MOF-808 also rivals UiO-67-NMe2 for the unbuffered hydrolysis of VX. MOF-808 does 

offer several advantages over rival zirconium MOFs. First, it is composed of a very simple 1,3,5 

benzene tricarboxylate linker, which is cheaper and easier to synthesise than the linker 

composing UiO-67-NMe2 and NU-1000. Second, due to the simplicity of the linker and the 6-

connected nature of MOF-808, the framework possesses a significantly lower molecular 

weight, thus making it more efficient for practical applications. MOF-808 has therefore been 

identified as the most desirable catalyst for any future applications in OP CWA applications.   

1.4.3 Dehydration of Zr6 Nodes for Enhancing Hydrolysis 

There have been a number of reports regarding the dehydration of Zr6 nodes for the 

enhancement of OP hydrolysis. The first study was reported by Mondloch et al.11 and involved 

the thermal dehydration of the NU-1000 framework to form NU-1000-dehyd (Figure 1.35). The 

dehydrated framework was found to exhibit a 10-fold increase in activity for the hydrolysis of 

the DMNP simulant. This study was further backed by DFT studies conducted by the authors 

which show that the DMNP simulant binds more favourably with the vacant, dehydrated node 

of NU-1000-dehyd, as opposed to forming hydrogen bonding interactions with node ligated 

H2O and OH in regular NU-1000. These results are further confirmed by additional DFT studies 

performed by Chen et al.204 regarding the transition states of DMNP on NU-1000 and NU-1000-

dehyd during the catalytic cycle. There is therefore good agreement between simulation and 

experimental data. However, when the authors chose to assess the ability of NU-1000 for the 

degradation of GD, they opted to test regular NU-1000 and not NU-1000-dehyd, thus leaving 

this optimisation unconfirmed on a live OP CWA.  
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Figure 1.35. Molecular representation of the dehydration of the NU-1000 node. Reproduced 

from reference 11. 

Katz et al.205 then performed an extensive study to investigate the positive effect of decreasing 

[OH-] on increasing the rate of DMNP hydrolysis in the presence of UiO-66 and NEM buffer. 

Different pH NEM buffers were used (10.2-8.3) and a pH of 8.6 resulted in the fastest initial 

rate for DMNP hydrolysis, with a drastic drop in initial rate being observed above pH 9.0. The 

authors suggest that at a higher pH, node ligated water molecules are converted to hydroxyl 

ligands which are less readily displaced by the DMNP (Figure 1.36). The displacement of 

coordinated OH- becomes the rate limiting step at higher pH. To reinforce this, UiO-66 was 

thermally activated to yield UiO-66-dehyd. A tenfold rate enhancement was then observed for 

UiO-66-dehyd over that of regular UiO-66 for the hydrolysis of DMNP in NEM buffer. This 

observation supports the study performed by Mondloch et al., but both of these studies were 

only performed on DMNP. 

 

 

 

 



53 
 

 

Figure 1.36. (left) presumed composition of a defective UiO-66 cluster in the absence of one 

BDC linker. The open ZrIV sites are occupied by terminal hydroxide and aqua ligands. (right) at 

high pH values, the aqua ligand converts to a substitution resistant hydroxide. Reproduced 

from reference 205. 

In contrast, Moon et al.8 reported the use of a ‘hydrated’ MOF-808 for the hydrolysis of DMNP. 

The preparation of this framework involved the aqueous activation of Zr6(µ3-O)4(µ3-

OH)4(HCOO)6(BTC)2 to remove the formate modulator occupying the ZrIV vacancies, thus 

yielding Zr6(µ3-O)4(µ3-OH)4(H2O)6(OH)6(BTC)2. Unfortunately, no hydrolytic comparison was 

made between the as-synthesised and activated framework. MOF-808 remains one of the 

most active degradation materials to date for the hydrolysis of CWAs but there have been no 

reports of any further enhancements through dehydration.  

Taking the above studies into consideration, ‘hydration’ of zirconate MOFs under 

hydrothermal conditions can be useful for removing synthetic modulator, thus making 

coordination vacancies available. Furthermore, thermal activation can then be used to 

‘dehydrate’ a hydrated, modulator free node. The dehydration further enhances the catalytic 

ability of the framework by allowing DMNP to interact directly with the coordinatively un-

saturated metal.  However, for the ultimate confirmation of the dehydration facilitated 

enhancement, a future study needs to be conducted on live OP CWAs, and not just the DMNP 

simulant.  
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1.5 Zirconium MOF Composites for CWA degradation 

Due to the reported success of zirconium frameworks as potent hydrolysis catalysts for the 

degradation of OP CWAs and their simulants, their functional utility has been highlighted for 

the combating of the treat CWAs still pose. There is a growing need for sorbents, filters and 

textiles with self-detoxifying properties which can be deployed for clean ups and in protective 

equipment. As a result of this, a number of composite materials have been reported which 

have incorporated well reported CWA degradation catalysts for this very purpose. This next 

section will review a number of composite materials which have utilised zirconate MOFs as 

active degradation catalysts for protection against CWAs.  

The earliest example of a MOF composite was described by Lýpez-Maya et al.206 UiO-66 was 

first activated at 300 oC and then treated with LiOtBu to yield UiO-66@LiOtBu ([Zr6O6(bdc)6] . 

(LiOtBu)0.3). The MOF was then heterogeneously sprayed onto the surface of a silk fibroin 

fabric (Figure 1.37). Diisopropylfluorophosphate (DIFP), a structural simulant of sarin was then 

used to probe the effectiveness of the composite material. A stoichiometric catalyst loading 

was employed for this hydrolysis, but it should be noted that the DIFP simulant was 

administered neat on to the fabric. 

 

Figure 1.37. a) VP-SEM (VP = variable pressure) images of silk@[UiO-66@LiOtBu] composite. 

Hydrolytic degradation profile of b) DIFP catalyzed by silk@[UiO-66@LiOtBu] composite at 

room temperature. The dotted lines indicate the effect of removing the [UiO66@LiOtBu] by 

filtration to demonstrate the heterogeneity of the catalytic process. Reproduced from 

reference 206. 
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Near-full hydrolysis of DIFP into diisopropyl phosphonate (> 95 %) was observed after 6 hours 

(Figure 1.37). It should be noted that when the reaction was repeated but the MOF-textile was 

removed after a short period of time, very little hydrolysis was observed after this point, 

confirming the heterogeneity of the process. Unfortunately, the authors did not perform any 

studies with DMNP so no comparisons can be made to previously reported experiments which 

utilised this simulant. Also, the results were not confirmed on live CWAs, but the similarity 

between the structures of the DIFP simulant and Sarin make it quite a compelling example, at 

least for G-series agents. It is also heavily implied that the hydrolytic properties of the material 

are derived from stoichiometric loading of alkoxide moieties onto the Zr6 nodes. Whether the 

material is truly catalytic is therefore questionable.  

Following on from this study, Zhao et al. reported the growth of UiO-66, UiO-66-NH2 and UiO-

67 on the surface of electrospun polymeric nanofibers of polyamide-6 (PA-6).207 This was 

achieved by coating the PA-6 with a thin layer (5nm) of TiO2 using atomic layer deposition. The 

frameworks were then grown on the TiO2 surface which functioned as a nucleation point for 

the MOF films. HCl was used as modulator for more growth and an incubation temperature of 

85oC was used (Figure 1.38). The hydrolysis of DMNP in aqueous NEM buffer was then probed 

in the presence of the three MOF-fiber composites. The powdered form of UiO-66, UiO-66-NH2 

and UiO-67 were also tested alongside the composites. The fiber-composites of UiO-66 and 

UiO-66-NH2 both exhibited a significantly poorer performance than their powdered 

counterparts, likely due to the catalysis being restricted to the surface of these smaller 

frameworks. However, the performance of the UiO-67-fiber composite was near identical to 

powdered UiO-67 with a DMNP half-life of 9 minutes being observed. The composites were 

then tested for their ability to degrade the nerve agent Soman. A composite loading containing 

a catalyst loading of approximately 20 % (relative to substrate) was used in the presence of 

aqueous NEM buffer. A very short Soman half-life (< 5 mins) was recorded in the presence of 

all of the composites with the UiO-67-fiber exhibiting the largest degree of hydrolysis over the 



56 
 

course of the reaction. This study was showing the first example of a MOF composite able to 

degrade live OP CWAs. However, the degradation still relied on the presence of a liquid 

buffering agent to facilitate the hydrolysis which is not ideal for practical applications. 

 

Figure 1.38. Synthetic procedure for Zr-based MOF–nanofiber kebab structures on polyamide-

6 nanofibers. Reproduced from reference 207. 

Soon after, Moon et al. reported the synthesis of a composite material featuring the MOF NU-

1000 embedded in a polyethyleneimine (PEI) membrane (NU-1000/PEI).208 The PEI functions as 

a heterogeneous buffer for OP hydrolysis. The authors synthesised three NU-1000/PEI 

composites, each containing a different MW of PEI, NU-1000/PEI MW2500, NU-1000/PEI 

MW25000 and NU-1000/PEI MW250000. Using standard DMNP hydrolysis conditions, NU-

1000/PEI MW2500, powdered NU-1000 and PEI MW2500 were all tested for their ability to 

degrade DMNP in aqueous NEM buffer. Both the NU-1000/PEI MW2500 composite and 

powdered NU-1000 performed very well with DMNP half-lives of < 7.5 mins, negligible 

hydrolysis was observed in the presence of just PEI MW2500. Moving on, PEI, NU-1000/PEI 

MW2500, NU-1000/PEI MW25000 and NU-1000/PEI MW250000 were then tested as 

degradation materials for the hydrolysis of DMNP, but this time in the absence of a solution 
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buffer, the number of moles of amine were kept consistent in each material. Full DMNP 

hydrolysis was observed with NU-1000/PEI MW2500, NU-1000/PEI MW25000 but not NU-

1000/PEI MW250000. This can be attributed to the relatively lower pH of the polymer solution 

with high molecular weight PEI in water; NU-1000/PEI MW2500 (pH 9.2), NU-1000/PEI 

MW25000 (pH 8.8) and NU-1000/PEI MW250000 (pH 7.7). NU-1000/PEI MW2500 and NU-

1000/PEI MW25000 were then screened for their ability to degrade Soman and VX in water 

and in the absence of a buffer. Interestingly, NU-1000/PEI MW25000 outperformed NU-

1000/PEI MW2500 for the hydrolysis of VX due to a lower pH of 8.8 vs 9.2 (Figure 1.39). The 

hydrolysis of VX entails the protonation of a tertiary amine (pKa 8.6) which is more 

thermodynamically favourable at a lower pH. This was in contrast to the hydrolysis of Tabun 

which occurred faster in the presence of the more basic NU-1000/PEI MW2500. This study was 

highly demonstrative as it was the first example of MOF composite material which was able to 

function in the absence of a solution buffer, however a large stoichiometric excess of water 

was still required. 

 

Figure 1.39. Hydrolysis profiles of VX in the presence of catalyst and/or different molecular 

weight PEI. Solid lines are used as a guide reproduced from reference 208. 

Finally, the most recent example of a zirconium MOF composite for OP degradation was 

reported by Liang et al. The authors reported flexible, free-stranding ZrO2 nanofiber mats 
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which were obtained via sol-gel electrospinning followed by calcination.209 UiO-66, UiO-67 and 

UiO-66-NH2 were then all individually grown on the nanofiber surface at 150oC, in the solution 

state (Figure 1.40). The hydrolysis of DMNP was then monitored in the presence of MOF-fiber-

composites, the performance was compared to the corresponding UiO-66, UiO-67 and UiO-66-

NH2 powders. The hydrolysis of DMNP was performed in the presence of NEM buffer.  

 

Figure 1.40. Synthetic procedure for the flexible ZrO2 MOF filters. Reproduced from reference 

209. 

A notable reduction in DMNP half-life was observed in the presence of the MOF composites 

when compared to their corresponding MOF powders: t1/2 13.3 mins vs. 22.7 mins for UiO-66, 

t1/2 6.7 mins vs. 9.7 mins for UiO-67 and t1/2 2.4 mins vs. 6.5 mins for UiO-66-NH2. A negligible 

amount of hydrolysis occurred in the presence of just the nanofiber. The enhancement in 

hydrolysis is derived from the superior dispersion of the MOF catalysts provided by the 

nanofiber framework. Whilst a novel approach was taken towards synthesising a composite for 

CWA hydrolysis, the hydrolysis was still conducted in the solution state and relied on the 

presence of an aqueous buffer. The reliance upon additional solvent and buffer limits the 

practical applicability of the MOF-fiber composite as a filter.  
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1.6 Summary and Reflection 

To summarise, this introductory review chapter has provided an outline of several areas 

regarding the remediation of OP CWAs, along with an in-depth introduction to MOFs and 

ligand-based emission in such materials A number of G and V-series agents were summarised 

along with common methods which exist for decontaminating them. An outline was also 

provided of previous events which highlight the threat that CWAs still pose on humankind. 

Moving on, several previously reported catalytic degradation systems were explored for the 

degradation of OP CWAs. First, the review looked at nano-structured metal oxides such as 

CeO2 and TiO2 which had been reported for combating OP CWAs, it was found that the entirety 

of studies described the use of a large stoichiometric excess of metal oxide relative to the 

substrates which were tested. The review then explored hydrogen bond/ metal chelate 

complexes, these materials have also been reported as degradation materials of OP 

simulants/CWA. However, they were also hindered by high catalyst loading and the 

necessitated an aqueous buffer.  

The subject of the introduction was then shifted to MOFs. The review looked at some of the 

applications and strategies which exist for assembling MOFs. The review then explored some 

of the applications of photoluminescent MOFs which exhibit ligand-based emission with a 

focus on hydration-dependant emission for water sensing. Ligand-based emission was chosen 

to draw attention away from rare earth/lanthanide metal frameworks which are commonly 

reported for the majority of photoluminescent applications. Following on, the review focused 

on zirconium MOFs and the numerous of reports of their utility as heterogeneous catalysts. A 

plethora of studies were reviewed which involved the catalytic zirconium MOF facilitated 

hydrolysis of the OP CWA simulant DMNP along with G and V-series agents. For the hydrolysis 

of DMNP, the studies all employed buffer, however the catalyst loading was kept low (1.25 – 5 

%). The hydrolysis of V-series agents was also found to occur in the absence of buffer, in the 

presence of only water and a catalytic quantity of zirconate MOF, thus making it the most 
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effective catalytic OP CWA degradation material available. MOF-808, a zirconium MOF with a 

six-connected structure, was found to be the most effective catalyst for both CWA simulant 

and OP CWA hydrolysis. The effectiveness was due to a higher abundance of catalytic sites on 

the Zr6 nodes of MOF-808.  

Finally, the introduction explored some of the previously reported composite materials which 

have incorporated zirconium MOFs for the hydrolysis of CWAs. The leading material was found 

to be a composite composed of PEI/NU-1000, with the PEI polymer matrix facilitating the 

buffer-free hydrolysis of the DMNP simulant along with VX. The incorporation of a 

heterogeneous amine was noted as an effective method for enhancing the hydrolytic 

performance of a composite material.  

Zirconium MOFs possessing coordination vacancies/defects, MOF-808 in particular, are potent 

heterogeneous catalysts for the hydrolysis of OP CWAs. MOF-808 is capable of hydrolysing the 

nerve agent VX in the absence of a buffering reagent. MOF-808 is therefore a suitable 

candidate for incorporation into composite materials such as filters, textiles or encapsulation 

agents, for combatting CWAs. In these composites, MOF-808 could function as an effective 

catalyst whilst negating the necessity for any additional reagents, this would enhance the 

practical applicability of the material to real life scenarios.  
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1.7 Thesis Objective  

The thesis objective is to develop a material capable of swelling/encapsulating and degrading 

neat V-series agent. The degradation should be scalable to the Litre scale. The material will 

likely exist as a composite and will be composed of two parts. First, a super-absorbent polymer 

(SAP) sponge capable of swelling to high degrees (Q < 40) with neat CWA. Secondly, the 

composite will house a catalyst which will be embedded in the polymer matrix which should be 

capable of degrading neat CWA. The degradation should be catalytic and should take place in 

the absence of any solvent or buffer. For hydrolysis, the degradation fuel should be H2O that 

should be exclusively facilitated by the presence of atmospheric humidity. The research and 

development of the SAP shall be conducted by Alexander J Wright.  

The research and development of the OP CWA degradation catalyst shall be conducted by the 

author of this thesis. This will involve screening several catalyst systems on OP CWA simulants. 

Once several catalytic candidates have been identified, the materials will be tested on live OP 

CWAs such as VX and VM. Any successful materials will be nominated for testing on neat 

CWAs. Further modifications will be explored in an attempt to optimise the degradation 

capacity of the catalytic material. The aim is not necessarily fast degradation. In the end, the 

material should be able to facilitate the complete breakdown of the OP CWAs and at a 

significantly enhanced rate compared to the ambient degradation of the material and in the 

absence of any excess reagents.  
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Chapter 2. Screening of potential CWA simulants and catalysts 

All hydrolysis experiments involving the agents GB and VX were completed by N. Cooper and 

M. Main at DSTL. Single-crystal X-ray analysis of Boron MOF was performed by H. Shepherd at 

the University of Kent. All other work described in this chapter was carried out by the author of 

this thesis.  

2.1 Introduction 

Chemical warfare agents (CWAs) are inherently highly toxic. Consequently, the possession, 

processing and manufacture of CWAs and their precursors is highly regulated. Due to highly 

strict regulations and the super-toxicity of CWAs,1,2 it is not safe nor legal to handle these 

compounds in a standard laboratory environment. This presents an obvious problem when it 

comes to studying their properties. The solution is to use simulant compounds,3 molecules 

which mimic a desired aspect of the CWA such as their reactivity or their solubility without the 

toxicity. It is important to select the correct simulant for the correct study but to also be aware 

of the certain limitations which exist for each simulant. Whilst some simulants are able to 

accurately mimic a selected property, it is vital that a study which begins with simulants should 

be concluded on live CWAs to truly confirm an effect. Tests on live CWAs are of course 

dangerous, costly and can only be carried out in specialised licensed laboratories. Simulants 

are therefore a safer, quicker and cheaper method for screening, identifying and nominating 

materials for testing on live CWAs.4–7 

This chapter shall describe the search for a simulant system to mimic the hydrolysis of V-series 

agents. For hydrolysis, the degradation fuel should be H2O which should be exclusively 

facilitated by the presence of atmospheric humidity. For oxidation the degradation should be 

able to rely entirely on atmospheric oxygen. For enhanced efficiency, the catalyst should have 

a high turn-over frequency (TOF) with a catalytic loading not exceeding 5 mol %. The catalyst 

should also be compatible with the SAP and should not be hindered by being immobilised in 

the polymer membrane. Two initial avenues were explored for degradation, oxidative 
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hydrolysis and hydrolysis. First, the oxidation of phosphines and phosphites was studied. For 

oxidative hydrolysis, a number of commercial metal-oxide nanoparticles (MONPs) were 

selected to test as potential phosphine oxidation catalysts. A number of Cu(II) species were 

also screened for the oxidative hydrolysis of phosphites.8,9 For hydrolysis, methyl-paraoxon 

(DMNP) was chosen based on results reported in the literature.6,10,11 DMNP is a pesticide which 

in the presence of a basic aqueous buffer, undergoes hydrolysis that mimicks the hydrolysis of 

V-series agent VX. Whilst the use of a buffer was not ideal from the perspective of catalytic 

hydrolysis, DMNP would still serve as an effective simulant system for identifying catalytic 

candidates. Inspired by Farha’s work on the hydrolysis of DMNP using the zirconium metal-

organic framework (MOF) UiO-66,4 a range of novel and previously reported zirconium MOF 

catalysts were screened as potential degradants. MOF-808,12,13,14 a zirconium MOF with a Zr6 

node connectivity of 6 instead of the maximum of 12, proved to be the most effective catalyst. 

MOF-808 was then selected for testing on VX in aqueous solution and in the absence of any 

buffer. Finally, MOF-808 was screened for the hydrolysis of neat VX in the presence of only 

ambient humidity (40 RH %) to showcase the effectiveness of the catalyst. 

2.1.1 Simulant selection 

A variety of simulants have been covered in the literature as replacements to model the CWAs. 

The natural problem with simulants is that they do not fully replicate the chemistry of the real 

CWAs.15,16 Degradation is not the only activity studied which relates to CWAs. Alternative 

features such as the detection,17 adsorption18 and encapsulation19 of these compounds has 

also been investigated. Therein lies the problem that because of the number of different 

features that are often explored, different chemical and physical aspects15,16 of these toxins 

need to be examined. It is therefore difficult to find and use a ‘one fits all’ type simulant and so 

different properties of the CWAs need to be modelled by different simulants. Consequently, 

very careful consideration has to be given as to the choice of simulant for each particular study 

to ensure that the most realistic results are obtained. However, to ultimately obtain the most 
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accurate results, studies involving CWAs will inevitably have to be carried out on live agents. A 

number of compounds have been employed in the literature as simulants for various CWAs. 

Scheme 2.1 shows some of the more common simulants encountered in the literature. 

 

Scheme 2.1: A scheme showing the structures of the various simulants discussed in this 

section. 

DCNP is a mimic of the nerve agent Tabun.20 It is used to simulate the hydrolysis of the P-C≡N 

bond in Tabun,21 it is also used to develop sensors for the detection of Tabun. DCNP remains 

stable in the absence of a degradation reagent, allowing screening reactions to be conducted 

under a variety of conditions. Sadly, the hydrolysis product of DCNP is hydrogen cyanide and 

DCNP itself is cholinergic thus making it a dangerous simulant to work with. DCP is another 

CWA simulant.22 The P-Cl bond in its structure is meant to partially mimic the P-F bond found 

in Sarin, Soman and Cyclosarin. However, as shown later in this chapter, near full hydrolysis of 

DCP is observed after 24 hours under ambient humidity, pressure and temperature. The fast, 

ambient degradation makes it difficult to properly screen catalysts which do not rapidly 

degrade the substrate. Depending on the nature of the investigation, this can become a 

nuisance, especially when instantaneous hydrolysis is not the aim. The instability of DCP 

combined with its toxicity can therefore make it troublesome simulant to work with.23–25 
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DMMP is mainly used to simulate the detection26,27 and encapsulation22 of Sarin. In terms of 

degradation, it has been previously used to simulate the cleavage of the P-S bond in VX which 

yields the hydrolysis product ethyl methyl phosphonate (EMPA), the P-O bond hydrolysis in 

DMMP is supposed to mimic this degradation. The hydrolysis of DMMP has, however, proven 

to be more difficult. Harsher, more alkaline, conditions are required to sever the P-O bond in 

DMMP than that of the P-S bond in VX.28 Whilst a catalyst that is capable of hydrolysing DMMP 

is a promising candidate for the degradation of VX, milder catalysts which may only be 

effective against VX may be overlooked. 

DIMP is another simulant, which finds its main use as a detection analogue,23–25 it primarily 

mimics Sarin due to the similarity of the P-O-isopropyl functionality although it has also been 

used to model the recognition of other G-agents. DIMP appears to be of little value as a 

degradation simulant with only one publication relating to its use as a degradation simulant29; 

the lability of the P-O bonds make DIMP unsuitable for modelling the P-F bonds in the G-series. 

DIFP is a simulant for investigating both the capture30,31 and degradation of the G-agents; the 

hydrolysis product of both DIFP and Sarin is HF. Unfortunately, the structural similarity 

between DIFP and the G-agents results in DIFP possessing a similar, yet relatively milder 

toxicity. DIFP also produces HF which presents a significant safety risk. This high toxicity makes 

DIFP a dangerous compound to work with yet it remains one of the most precise simulants for 

investigating CWA hydrolysis and sensing. 

DMNP15,32,33 is probably the most versatile degradation simulant. It has been used in a lot of 

studies mimicking the hydrolysis of the G and V-series. The hydrolysis of the P-O bond in 

DMNP to yield 4-nitrophenol emulates the hydrolysis of the P-F and P-S bonds in the G and V-

series. In fact, direct kinetic comparisons exist in the literature between the degradation of OP 

CWAs and DMNP11,33 in the presence of certain catalysts.  
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2.1.2 Oxidative Hydrolysis 

Oxidative hydrolysis is one of the viable degradation pathways for degrading OP CWAs. 

Stoichiometric oxidation procedures for the degradation of nerve agents consist of utilising 

aqueous solutions of sodium hypochlorite (bleach).34 For VX, this occurs through the oxidative 

chlorination of the sulfur atom for which, in the presence of water, results in the hydrolytic 

cleavage of the P-S bond. A 20-fold stoichiometric excess of hydrogen peroxide at slightly 

alkaline pH is another previously reported procedure for the degradation of VX.35 For the P-F 

bond containing G-series agents, the hypochlorite ion in bleach is able to directly displace the 

fluoride of the P-F bond, this is followed by the cleavage of the O-Cl bond in the presence of 

water to yield the corresponding phosphonate.36 A an example degradation scheme is shown 

for GB in Scheme 2.2. 

 

Scheme 2.2: A schematic outlining the degradation pathway for GB in the presence of a 

hypochlorite ion to form the non-toxic IMPA product. 

Whilst these procedures may be effective at degrading the OP CWAs, the use of excessive 

reagent is undesirable for bulk decontamination. However, there were numerous reports of 

various metal oxide surface materials being utilised for the degradation of V and G series 

agents. Ceria (CeO2) nanoparticles were reported to fully degrade VX and GB in 10 minutes,37 

although, a large excess of the catalyst (50 weight equivalents) was used when performing this 

study. Nano-tubular titania (TiO2) is yet another metal oxide material which has been 

previously utilised for the degradation of VX and GD.38 A half-life of 58 minutes was observed 
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for when the agents were subjected to a large excess of nano-tubular titania. All of the studies 

involving metal oxides involved a large excess of catalyst. It was therefore of great interest to 

see whether employing catalytic quantities of metal oxides would still result in efficient 

degradation. Upon initially surveying the literature, no nerve agent ‘oxidation’ simulants were 

identified. Triphenyl phosphine and diethyl phosphite, both phosphorus species in the +3 

oxidation state, were chosen as potential oxidation simulants. It should be noted that the 

phosphorus atom in all OP CWAs is in the +5 oxidation state. As a starting point, commercial 

metal oxide nano-particles (MONPs) were chosen for initial screening as potential oxidative 

hydrolysis catalysts. CeO2
37

 and TiO2 MONPs38 were chosen due to previous reports of their 

ability to degrade OP nerve agents. CuO39,40 and ZnO41,42 have been previously noted as 

oxidation catalysts in the literature, nanoparticles of these metal oxides were therefore also 

nominated for screening as OP degradation catalysts. 

2.1.3 Hydrolysis 

Hydrolysis is another attractive degradation pathway which is applicable to the neutralization 

of CWAs. Stoichiometric hydrolysis procedures for live CWAs involve the deployment of 

concentrated basic solutions such as conc. aqueous NaOH along with a surfactant to miscibilise 

and hydrolyse the CWA.35 This procedure works to sever the P-F bond in Sarin and the P-S 

bond in VX, however, utilising a strong base can also hydrolyse the P-O bond which results in a 

degradation product (EA-2192) of similar toxicity (Scheme 2.3) as opposed to the non-toxic 

diisopropylaminoethanethiol (DESH) and ethyl methylphosphonic acid (EMPA) by-products. 

 

Scheme 2.3: A schematic outlining the hydrolysis degradation pathways for VX. 
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The ideal catalyst would therefore be milder to avoid the formation of this by-product. The 

hydrolysis of DMNP requires the presence of a buffering agent to counteract the pH change 

caused by the accumulation of the p-nitrophenol by-product. Despite the necessity of using a 

buffer, direct comparisons have been drawn between the hydrolysis of V-series agents in 

aqueous medium and the hydrolysis of DMNP in buffer.11 For this reason, a system was chosen 

where DMNP in N-ethyl morpholine (NEM) buffer is employed to screen for potential 

hydrolysis catalysts. 

As discussed in Chapter 1, zirconium MOFs have shown a lot of promise as phosphoester 

hydrolysis catalysts.43–45 The catalytic properties are derived from Lewis acidic Zr4+ sites located 

in the Zr6 cluster secondary building unit (SBU) of Zr MOFs.33 Zirconium MOFs with missing 

linker defects or with a connectivity less than the maximum of 12, have been shown to possess 

enhanced catalytic properties due to the higher prevalence of uncoordinated Zr4+ sites.43 It was 

therefore decided that a number of previously reported Zr MOF hydrolysis catalysts would be 

synthesised, along with Zr MOFs which were believed to possess all the qualities of an effective 

catalyst. 
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2.2 Experimental 

The following list is a compilation of all the reactants and starting materials utilised in this 

chapter. Biphenyl-4,4’-dicarboxylic acid 97% Sigma Aldrich, dimethyl biphenyl-4,4’-

dicarboxylate 99% purity Sigma Aldrich, 5,5 dimethyl-,2,2’ bipyridyl 98% Sigma Aldrich, 1, 2, 4, 

5 tetramethylbenzene 98% Sigma Aldrich, 1.6M n-BuLi in hexane Sigma Aldrich, boron 

trifluoride diethyl ethereate 48% BF3 Acros Organics, ZrCl4 99.5% Sigma Aldrich, Cu(II)Cl2 98% 

Riedel-de Haen, 2,6 napthalenedicarboxylic acid 99% Fluorochem, 1,3,5 benzenetricarboxylic 

acid 95% Sigma Aldrich, methyl paraoxon pestanal grade Sigma Aldrich, diethyl phosphite 98% 

Acros Organics, triphenyl phosphine 98% Sigma Aldrich, diethyl chlorophosphate 95% Fisher, 

tetramethylethylenediamine 99% Sigma Aldrich, benzoic acid 99.5% Sigma Aldrich, Cu(II)O 

(>50 nm particle size) Sigma Aldrich, Ce(IV)O2 (>25 nm particle size) Sigma Aldrich, Zn(II)O (>50 

nm particle size) Sigma Aldrich and Ti(IV)O2 (1:1 Anatase/Rutile mix <100 nm particle size)  

Sigma Aldrich. 

Instrumentation 

1H, 13C and 31P NMR spectroscopy was conducted at 298 K using a JEOL 400 MHz spectrometer 

with an auto-sampler. PXRD patterns were collected on a silicon zero-background sample 

holder (a sample holder which presents no diffraction peaks) on a Rigaku Miniflex 600 desktop 

XRD using a Copper K-α (1.5406 Å) source. Measurements were taken in the 3 – 45 o 2θ range 

with a step size of 0.02 o 2θ and a scan speed of 1 o 2θ min-1.  

Synthesis of dimethyl-2‐aminobiphenyl‐4,4'-dicarboxylate (Amine Lig) 

Dimethyl-2-nitrobiphenyl-4,4'-dicarboxylate was synthesised using a previously reported 

procedure.46 Dimethyl biphenyl-4,4’-dicarboxylate (12 g, 44.4 mmol) was added to conc. 

H2SO4, the mixture was allowed to stir until all of the solid had dissolved, a thick yellow 

solution formed. The solution was then cooled to below 10 oC. HNO3 68 % (2.73 ml, 4.10 

g, 44.4 mmol) was then mixed with H2SO4, this mixture was then added dropwise to the 

stirring solution which was continuously cooled to ensure that the temperature 
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remained below 10 oC. After all of the HNO3/H2SO4 mixture was added, the solution was 

left stirring for one hour ensuring that the temperature did not rise above 20 oC. The 

reaction mixture was then poured onto crushed ice which caused a white solid to 

precipitate out, this white solid was filtered and washed with water and then 

recrystallized from hot IPA to yield off white crystals of 2-nitrobiphenyl-4,4'-

dicarboxylate (9.10 g, 28.9 mmol).Yield 9.10 g (65 %) 1H NMR (399.78 MHz, DMSO): δ 

3.89 (s, 3H, CH3), δ 3.94 (s, 3H, CH3), δ 7.54 (d, 2H, ArH), δ 7.74 (d, 1H, ArH), δ 8.05 (d, 

2H, ArH), δ 8.28 (d, 1H, ArH), δ 8.49 (d, 1H, ArH). 

Dimethyl 2-aminobiphenyl‐4,4'‐dicarboxylate was synthesised using a previously 

reported procedure.47 To a 1 litre round bottom flask was added dimethyl-2‐

nitrobiphenyl‐4,4'‐dicarboxylate (9.10 g, 28.9 mmol) which was dissolved in THF (400 

ml), Pd/C 5% (3.03 g) was then added to the solution which was left stirring. The vessel 

was sealed, degassed and flushed with nitrogen several times. A 10-inch balloon was 

then filled with H2 and then fed into the vessel and allowed to deflate. A total of 5 H2 

balloons were deflated into the reaction vessel over the course of 72 hours. The reaction 

mixture was then filtered through celite to remove Pd/C to give a pale yellow solution. 

The THF was then evaporated under reduced pressure to give a yellow solid which was 

recrystallized from hot ethanol to yield pale yellow crystals of dimethyl 2-

aminobiphenyl‐4,4'‐dicarboxylate (6.64 g, 23.3 mmol). 

Yield 6.64 g (80.6 %) 1H NMR (399.78 MHz, DMSO): δ 3.83 (s, 3H, CH3), δ 3.88 (s, 3H, CH3), δ 

5.25 (br s, 2H, NH2), 7.14 (d, 1H, ArH), δ 7.22 (d, 1H, ArH), δ 7.43 (s, 1H, ArH), δ 7.61 (d, 2H, 

ArH), δ 8.03 (d, 2H, ArH). 

Dimethyl 2-aminobiphenyl‐4,4'‐dicarboxylate (1.00 g, 3.5 mmol) was dissolved in THF. KOH 

(0.59 g, 10.5 mmol) in H2O (5 ml) was then added to the solution. The solution was refluxed at 

90 oC for 48 hours. After 24 hours, the THF was evaporated in vacuo. A solution of HCl (12 ml, 2 

M) was then added to the resulting solid. The solid was then filtered, washed with water and 
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methanol and then vacuum dried to yield the product 2‐aminobiphenyl‐4,4'-dicarboxylate 

(0.79 g, 3.1mmol). 

Yield 0.79 g (88.5 %) 1H NMR (399.78 MHz, DMSO): δ 5.23 (br s, 2H, NH2), 7.11 (d, 1H, ArH), δ 

7.21 (d, 1H, ArH), δ 7.41 (s, 1H, ArH), δ 7.58 (d, 2H, ArH), δ 8.02 (d, 2H, ArH). 

13C NMR (100.53 MHz, DMSO): δ 116.4 (s, 1C), δ 117.5 (s, 1C), δ 128.5 (s, 1C), δ 128.8 (s, 2C), δ 

129.5 (s, 1C), δ 129.9 (s, 2C), δ 130.3 (s, 1C), δ 131.0 (s, 1C), δ 143.4 (s, 1C), δ 145.4 (s, 1C), δ 

167.2 (s, 1C), δ 167.6 (s, 1C). 

Synthesis of 2,2′-Bipyridine-5,5′-dicarboxylic acid (BiPy Lig) 

5,5 dimethyl-,2,2’ bipyridyl (0.5 g, 2.7 mmol) was dissolved in conc. H2SO4 (12.5 ml, 18 M). 

Potassium dichromate (2.4 g, 8.2 mmol) was then added slowly to the stirring solution over the 

course of 30 minutes. The temperature rose to 60 oC and was monitored to ensure that it did 

not rise above 80 oC. The reaction was then allowed to ambiently cool to 30 oC. The reaction 

mixture was poured over 100 ml of ice at which point a green precipitate was observed. The 

mixture was filtered, washed with water and acetone and then vacuum dried to yield the 

product 2,2′-Bipyridine-5,5′-dicarboxylic acid (0.602 g, 2.46 mmol). 

Yield 0.602 g (91.0 % yield) 1H NMR (399.78 MHz, DMSO + D2SO4): δ 8.59 (d, 2H, ArH), 8.63 (d, 

2H, ArH), 9.14 (s, 2H, ArH). 

13C NMR (100.53 MHz, DMSO + D2SO4): δ 123.8 (s, 2C), δ 129.3 (s, 2C), δ 141.7 (s, 2C), δ 149.6 

(s, 2C), δ 154.2 (s, 2C), δ 166.0 (s, 2C), 

Multi-step synthesis of tris(2’,3’,5’,6’-tetramethylbiphenyl-4-carboxylic acid) (Boron Lig) 

Synthesis of 1,4-Dibromodurene  

1,4-Dibromodurene was synthesised using a previously reported method.48 1,2,4,5-

Tetramethylbenzene (10 g, 74.6 mmol) was dissolved in DCM (400 ml), iodine (0.394 g, 1.56 

mmol) was then added to the solution. The solution was degassed. A degassed solution of 

bromine (9 ml, 175.6 mmol) in DCM (20 ml) was then added dropwise whilst keeping the 
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reaction in the dark and under an atmosphere of N2. The reaction was left stirring overnight 

and then quenched with 5 M NaOH (20 ml). The organic phase was extracted with DCM and 

washed with water followed by drying over anhydrous MgSO4. The solution was concentrated 

under reduced pressure and recrystallized from DCM to obtain the product 1,4-

dibromodurene (9.8 g. 33.5 mmol) 

Yield 9.80 g (44.9 %) 1H NMR (399.78 MHz, DMSO): δ 2.49 (s, 12H, CH3).  

Synthesis of tris-(4- bromoduryl)borane 

Tris-(4-bromoduryl)borane was synthesised following a published porcedure.49 1,4 

Dibromodurene (5 g, 17.15 mmol) was dissolved in dry diethyl ether (150 ml). The solution was 

cooled to -78 oC and a solution of 1.6 M n-BuLi in hexane (10.63 ml, 17 mmol) was then added 

dropwise to the reaction. After full addition, the solution was allowed to slowly warm to room 

temperature at which point it was left stirring for 30 minutes. The mixture was then again 

cooled to -78 oC and a solution of Boron trifluoride diethyl ethereate (0.7 ml, 5.6 mmol) was 

then added dropwise. After full addition, the solution was allowed to slowly warm to room 

temperature and then left stirring for 24 hours. Water was then added to the reaction and the 

resulting mixture was extracted with Et2O. The organic extract was then washed with brine 

followed by drying over anhydrous MgSO4. The solution was concentrated under reduced 

pressure and the resulting off white solid was partitioned in a 50:50 Et2O/MeOH solution. The 

resulting mixture was shaken vigorously, the insoluble solid was then filtered and washed with 

MeOH followed by vacuum drying to yield the white powder of tris-(4-bromoduryl)borane 

(2.84 g, 4.38 mmol) 

Yield 2.84 g (78.2 % yield) 1H NMR (399.78 MHz, DMSO): δ 2.00 (s, 18H, CH3), δ 2.34 (s, 18H, 

CH3). 

Synthesis of tris(2’,3’,5’,6’-tetramethylbiphenyl-4-methoxycarbonyl)borane. 

Tris(2’,3’,5’,6’-tetramethylbiphenyl-4-methoxycarbonyl)borane was synthesised following a 

published procedure.50 Tris-(4- bromoduryl)borane (200 mg, 0.3 mmol), 4-
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methoxycarbonylphenylboronic acid (278 mg, 1.54 mmol) and Pd(PPh3)4 (18 mg, 0.015 mmol) 

were disolved in 5 ml THF and sealed  in a 35 ml microwave reaction vessel. This was followed 

by the addition of a 1 M solution of NaCO3 (2 ml) to the solution, the contents of the 

microwave vessel were then degassed. Vessel was placed in a microwave reactor and heated 

at 150 oC using dynamic power cycling for 30 minutes. The resulting solution was cooled to 

room temperature and 15 ml ethyl acetate was added. The reaction mixture was washed with 

H2O, the organic layer was dried with MgSO4 and concentrated under reduced pressure. The 

concentrate was then purified using a silica column and DCM as the eluent to yield 

tris(2’,3’,5’,6’-tetramethylbiphenyl-4-methoxycarbonyl)borane (0.172 g, 0.2 mmol). 

Yield 0.172 g (67.2 % yield) 1H NMR (399.78 MHz, DMSO): δ 1.84 (s, 18H, CH3), δ 2.07 (s, 18H, 

CH3), δ 3.96 (s, 9H, CH3), δ 7.24 (d, 6H, ArH), δ 8.11 (d, 6H, ArH). 

Synthesis of tris(2’,3’,5’,6’-tetramethylbiphenyl-4-carboxylic acid) borane. 

Tris(2’,3’,5’,6’-tetramethylbiphenyl-4-methoxycarbonyl)borane (150 mg, 0.17 mmol), LiOH (15 

mg, 6 mmol) dissolved in a 10 ml 50:50 mixture of THF and Water. The solution was left stirring 

at room temperature for 48 hours. The solution was reduced under reduced pressure to 

remove THF and acidified with 2 M HCl resulting in a white precipitate, the white precipitate 

was then filtered and washed with water to yield tris(2’,3’,5’,6’-tetramethylbiphenyl-4-

carboxylic acid) borane (112 mg, 0.145 mmol). 

Yield 0.112 g (85.3 % yield) 1H NMR (399.78 MHz, DMSO): δ 1.72 (s, 18H, CH3), δ 1.98 (s, 18H, 

CH3), δ 7.16 (d, 6H, ArH), 7.97 (d, 6H, ArH). 

13C NMR (100.53 MHz, DMSO): δ 18.2 (s, 6C), δ 20.4 (s, 6C), δ 129.4 (s, 3C), δ 129.9 (s, 3C), δ 

130.1 (s, 3C), δ 131.1 (s, 6C), δ 135.8 (s, 6C), δ 142.6 (s, 3C), δ 147.7 (s, 3C), δ 149.1 (s, 3C), δ 

167.7 (s, 3C). 
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Synthesis of Cu(TMEDA)Cl2 

Cu(TMEDA)Cl2 was synthesised using a previously reported procedure.51 Cu(II)Cl2 (2.00g, 14.8 

mmol) was added to a stirring solution of acetonitrile (60 ml): tetramethylethylenediamine 

(1.72 g, 2.2 ml, 14.8 mmol) was then added to the solution which was left stirring at room 

temperature for 20 hours. The resulting turquoise solid was filtered, washed with cold 

acetonitrile and vacuum dried to yield the product, Cu(TMEDA)Cl2 (2.36 g, 5.08 mmol). The 

PXRD of the bulk product was then compared to the simulated pattern for Cu(TMEDA)Cl2  

(Figure 2.1). 
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Figure 2.1: A PXRD overlay showing a simulated pattern for Cu(TMEDA)Cl2 obtained from 

reference 51 and a PXRD of the as-synthesised material. 

Synthesis of DUT-52 

DUT-52 was synthesised using a previously reported procedure.52 2,6 napthalenedicarboxylic 

acid (216 mg, 1 mmol) and ZrCl4 (230 mg, 1.03 mmol) were added to DMF (20 ml) and the 

mixture was sonicated for 5 minutes. Acetic acid (3ml, 47 mmol) was then added as a 

modulator. The solution was sonicated for a further 10 minutes. The reaction mixture was 

sealed in a 100 ml screw cap vial and heated in an oven at 120 oC for 24 hours. After 24 hours, 

a white precipitate was visible at the bottom of the vial. The vial was allowed to cool to room 
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temperature over a period of 1 hour and the white solid was washed with DMF 3 times. The 

DMF was then decanted and the solid was washed 3 times with ethanol, the solid was then 

filtered and vacuum dried to yield a fine white crystalline powder. The bulk phase of the as-

synthesised DUT-52 was confirmed by PXRD by comparing against a simulated pattern. (Figure 

2.2). 
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Figure 2.2: A PXRD overlay showing a simulated pattern for DUT-52 obtained from reference 

52 and a PXRD of the as-synthesised material. 

Synthesis of DUT-84 

DUT-84 was synthesised using a previously reported procedure.52 2,6-napthalenedicarboxylic 

acid (500 mg, 2.78 mmol) and ZrCl4 (570 mg, 3.05 mmol) were added to DMF (120 ml). The 

mixture was sonicated for 10 minutes. Acetic acid (50 ml, 794 mmol) was then added to the 

solution which was sonicated for a further 10 minutes. The solution was sealed in a 250 ml 

screw top vial and heated in an oven at 120 oC for 24 hours. After 24 hours, a white precipitate 

was visible at the bottom of the vial. The vial was allowed to cool to room temperature over 

the course of an hour and the white solid was washed with DMF 3 times. The DMF was then 

decanted and the solid was washed 3 times with ethanol, the solid was then filtered and 

vacuum dried to yield a fine white crystalline powder. The bulk phase of the as-synthesised 
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DUT-84 was confirmed by PXRD by comparing against a simulated pattern of DUT-84 (Figure 

2.3). 
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Figure 2.3: A PXRD overlay showing a simulated pattern for DUT-84 obtained from reference 

52 and a PXRD of the as-synthesised material. 

Synthesis of UiO-67-BiPy-ML (Approximate Formula ZrO4(OH)4(BiPy Lig)4.5(BPDC)1.5) 

UiO-67-BiPy-ML was synthesised using a previously reported procedure.53  ZrCl4 (329 mg, 1.41 

mmol) was dissolved in 50 ml DMF and sonicated for 10 minutes. 2,2′-Bipyridine-4,4′-

dicarboxylic acid (256 mg, 1.05 mmol), Biphenyl-4,4′-dicarboxylic acid (85 mg, 0.35 mmol) and 

glacial acetic acid (2.7 ml, 42.5 mmol) were then added to the solution which was sonicated for 

a further 10 minutes. The suspension was then sealed in a 100 ml screw top vial and heated at 

120 oC for 24 hours. The vessel was then allowed to ambiently cool to room temperature over 

the course of 1 hour.  The resulting white solid was filtered from the supernatant, washed with 

DMF and acetone and then vacuum dried to yield a solid white powder. The bulk phase of the 

as-synthesised UiO-67-BiPy-ML was confirmed by PXRD by comparing against a simulated 

pattern of iso-structural UiO-67 (Figure 2.4). 
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Figure 2.4: A PXRD overlay showing a simulated pattern for UiO-67 (iso-structural to UiO-67-

BiPy-ML) obtained from reference 54 and a PXRD of the as-synthesised UiO-67-BiPy-ML. 

Synthesis of UiO-67-NH2-ML (Approximate Formula ZrO4(OH)4(Amine Lig)3(BPDC)3) 

UiO-67-NH2-ML was synthesised using a modified procedure to the one outlined by S. M 

Chavan et al.55 ZrCl4 (250 mg, 1.07 mmol) was dissolved in 50 ml DMF and sonicated for 10 

minutes. Biphenyl-4,4′-dicarboxylic acid (129 mg, 0.53 mmol), dimethyl-2‐aminobiphenyl‐4,4'-

dicarboxylate (137 mg, 0.53 mmol), conc. HCl (0.1 ml) and Benzoic acid (1.3 g, 10.7 mmol) 

were all added to the resulting solution and sonicated for a further 10 minutes. The suspension 

was sealed in a 250 ml screw top vial and heated at 100 oC for 48 hours. The vessel was then 

allowed to ambiently cool to room temperature over the course of 1 hour.  The resulting white 

solid was filtered from the supernatant, washed with DMF and acetone and then vacuum dried 

to yield a solid white powder. The bulk phase of the as-synthesised UiO-67-NH2-ML was 

confirmed by PXRD by comparing against a simulated pattern of iso-structural UiO-67 (Figure 

2.5). 
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Figure 2.5: A PXRD overlay showing a simulated pattern for UiO-67 (iso-structural to UiO-67-

NH2-ML) obtained from reference 54 and a PXRD of the as-synthesised UiO-67-NH2-ML. 

Synthesis of MOF-808 

MOF-808 was synthesised using a previously reported procedure.14 ZrCl4, (1281 mg, 5.5 mmol) 

was dissolved in DMF (60 ml) and sonicated for 10 minutes. 1,3,5 benzenetricarboxylic acid 

(1115 mg 5.5 mol) was then added and the solution was sonicated for a further 10 minutes. 

Finally, acetic acid (31 ml, 54 mmol) was added to the solution which was sonicated for 

another 10 minutes. The solution was sealed in a 250 ml screw top vessel and placed in a 

preheated oven where it was heated at 130 oC for 24 hours. The vial was removed from the 

oven and allowed to ambiently cool to room temperature over the course of an hour. A white 

solid was observed. The resulting white solid was filtered from the supernatant, washed with 

DMF and acetone and then vacuum dried to yield a solid white powder. The bulk phase of the 

as-synthesised MOF-808 was confirmed by PXRD by comparing against a simulated pattern of 

MOF-808 (Figure 2.6). 
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Figure 2.6: A PXRD overlay showing a simulated pattern for MOF-808 obtained from reference 

14 and a PXRD of the as-synthesised material. 

Synthesis and Characterization of Zr-Boron MOF 

Tris(2’,3’,5’,6’-tetramethylbiphenyl-4-methoxycarbonyl)borane (137 mg, 0.155 mmol) and 

ZrCl4 (116 mg, 1 mmol) were added to acetic acid (2.8 ml, 49 mmol) and dissolved in 5ml DMF. 

The solution was sonicated for 10 minutes and then sealed in a 50 ml hydrothermal reaction 

vessel and heated at 135 oC for 24 hours. The vessel was then allowed to ambiently cool to 

room temperature over the course of an hour.  The resulting white solid was filtered from the 

supernatant, washed with DMF and acetone and then vacuum dried to yield the bulk material 

as a solid white powder. The bulk crystalline phase of the material was analysed using PXRD 

(Figure 2.7). 

Single crystals were obtained by using an incubation time of 24 hours at 135 oC, this was 

followed by cooling to 80 oC at a rate of 0.5 oC per hour, after 80 oC a cooling sequence of 1.0 

oC per hour was used until 25 oC was reached. The solvothermal reaction vessel was also 

treated with a hydrophobic siliconizing reagent (Sigmacote®) before commencing the reaction. 

Single-crystal analysis was then performed by Dr. Helena Shepherd. A suitable crystal of Zr-

Boron MOF was selected and mounted on a glass fiber with inert oil on a 'Bruker APEX-II CCD' 
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diffractometer at the ALS station 11.3.1. The crystal was kept at 100 K during data collection. 

Using Olex2, the structure was solved with the XS structure solution program using Direct 

Methods (Appendix Section 7.1).  

The bulk phase of Zr-Boron MOF was then confirmed using PXRD by comparing against 

simulated data obtained from single-crystal X-ray analysis (Figure 2.7). 
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Figure 2.7: A PXRD overlay showing a simulated pattern for Zr-Boron MOF and a PXRD of the 

as-synthesised material. 

Procedure for the Oxidation of triphenyl phosphine with MONPs 

TPP (0.4 g, 1.59 mmol) was dissolved in MeOH (15 ml), MONPs (0.159 mmol) were then added 

to the solution. The reaction was left to stir for 48 hours at room temperature and 

atmospheric pressure. The reaction mixture was then analysed using proton coupled 31P NMR 

(161.83 MHz) in CDCl3. 

Procedure for the Oxidation of Diethyl phosphite with MONPs 

DEP (0.5 ml, 3.9 mmol) was added to THF (0.32 ml, 3.9 mmol). MONPs (0.39 mmol) were then 

added to the solution. The reaction mixture was left stirring for 48 hours at room temperature 
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under atmospheric pressure. The reaction mixture was then analysed using proton coupled 31P 

NMR (161.83 MHz) in CDCl3. 

Procedure for the Degradation of Diethyl chlorophosphate with MONPs 

MONPs (0.35 mmol) were added to DCP (0.5 ml, 3.5 mmol). The reaction mixture was left 

stirring for 24 hours at room temperature under atmospheric pressure. The reaction mixture 

was then analysed using proton coupled 31P NMR (161.83 MHz) in CDCl3. 

Procedure for the Oxidation of Diethyl phosphite with Cu2+  

Cu(II)Cl2 or Cu(TMEDA)Cl2 (0.39 mmol) was added to DEP (0.5 ml, 3.9 mmol) The reaction 

mixture was left stirring for 24 hours at room temperature under atmospheric pressure. The 

reaction mixture was then analysed using proton coupled 31P NMR (161.83 MHz) in CDCl3. 

Procedure for the Reaction condition assessment of Diethyl phosphite with Cu2+  

 Several conditions were altered for the condition assessment with Cu(II)Cl2. For the air and 

moisture free measurements, glassware was oven dried and degassed and the reaction was 

carried out under a N2 atmosphere.  

For the air-free measurements, the reaction was degassed and carried out under a N2 

atmosphere, a stoichiometric quantity of water was also added to the reaction mixture. 

For the O2 measurements, the glassware was oven dried and degassed and the reaction was 

carried out under an O2 atmosphere with the help of a balloon. 

All condition assessment reactions were carried out for 24 hours. For the kinetic 

measurements, aliquots were collected as the reaction progressed, the aliquots were then 

analysed using proton coupled 31P NMR (161.83 MHz) in CDCl3. 
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Procedure for the Non-buffered hydrolysis of DMNP  

DMNP (13 uL, 0.06 mmol) and Zr-MOF Catalyst (1mg) were added to an NMR tube, along with 

0.6 ml of 50:50 D2O/H2O. The tubes were then analysed using 31P NMR (161.83 MHz) after 2 

days and 7 days. 

Procedure for the Buffered hydrolysis of DMNP  

An NMR tube was charged with DMNP, 20 µL (0.09 mmol). The MOF catalyst (0.11 µmol, 1.25 

mol %) was then added to the tube. 0.1 ml of D2O along with 0.5 ml of 0.15 M N-ethyl 

morpholine aqueous buffer was then added to the tube. The contents of the tube were then 

analysed using 31P NMR (161.83 MHz) after 3 hours.  

Procedure for the Humidity Water Absorption assessment of MOF-808 

Samples of MOF-808 were vacuum dried at 70 oC for 72 hours and their weight was then 

recorded. The samples were then immediately exposed to two different environments, one 

with a relative humidity (RH) of 30 % and another of 65 %. The weight change of each sample 

was then closely monitored using a 4 d.p scale with the help of a time lapse camera.  

Procedure for the Neat Hydrolysis of GB (performed by DSTL) 

A vial was charged with with GB (0.5 ml, 3.6 mmol) and either TiO2 or Cu(TMEDA)Cl2 (0.36 

mmol, 10 mol%). The reaction was then left for 24 hours at room temperature under 

atmospheric pressure. After 24 hours, an aliquot was taken from each reaction mixture and 

analysed using 31P NMR (161.83 MHz). 

Procedure for the Aqueous Hydrolysis of VX (performed by DSTL) 

An NMR tube was charged with VX (40 mg, 0.15 mmol), MOF-808 (0.18 µmol, 1.25 mol %) was 

then added along with 0.7 ml D2O. The NMR tube was then cycled in an autosampler and 

analysed using using 31P NMR (161.83 MHz), the first data point was obtained within 10 

minutes. For the blank, a similar tube was prepared but no MOF-808 was used.  

 



93 
 

Procedure for the Hydrolysis of VX with stoichiometric H2O (performed by DSTL) 

A vial was charged with VX (110 mg, 0.41 mmol), MOF-808 (0.49 µmol, 1.25 mol %) was then 

added along with H2O (8 µL, 0.41 mmol). The reaction was then left to react at room 

temperature and ambient humidity. Aliquots were taken after 5 minutes, 30 minutes, 2.5 

hours, 24 hours and 7 days. The aliquots were analysed using LC-MS.  

Procedure for the Neat Hydrolysis of VX (Performed by DSTL) 

A vial was charged with VX (110 mg, 0.41 mmol), MOF-808 (0.49 µmol, 1.25 mol %) was then 

added. The reaction was then left to react at room temperature and ambient humidity. 

Aliquots were taken after 24 hours, 48 hours and 7 days. The aliquots were analysed using LC-

MS.  
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2.3 Oxidative Hydrolysis 

2.3.1 Phosphine Oxidation 

This next section will look at initial attempts to identify a suitable oxidation catalyst for the 

oxidation of phosphines and phosphites. Oxidation was chosen as the most ideal reaction 

pathway to degrade the simulants. Specifically, the ideal catalyst would function as an aerobic 

oxidation catalyst, able to rely solely on atmospheric O2 to fuel the oxidation. No suitable 

oxidation simulants were found in the literature.  Simple phosphines and phosphites were 

therefore selected and an attempt was made to oxidise them using some high surface metal-

oxide nano particles (MONPs). The first phosphorus species to be tested was triphenyl 

phosphine (TPP). TPP is a relatively stable compound with the phosphorus in the +3 oxidation 

state and a lone pair of electrons on the phosphorus. The initial aim was to convert TPP into 

triphenyl phosphine oxide (TPPO) using a range of commercial MONPs. These MONPs were 

chosen based on previous reports of metal-oxide facilitated oxidation catalysis.39,42,56,57 The 

MONPs were used as purchased. TPP was dissolved in MeOH and MONPs were added to the 

reaction mixture, the reaction was left stirring at room temperature and open to air, an aliquot 

was taken after 24 hours from the reaction mixture and analysed using 31P [H] NMR. Scheme 

2.4 illustrates the conditions employed for the oxidation. 

 

Scheme 2.4: A reaction scheme outlining the conditions employed for the aerobic oxidation of 

TPP to TPPO in the presence of various MONPs catalysts. 

TiO2 MONPs proved to be most effective with around 55 % oxidation occurring over 24 hours 

(Figure 2.8). This study was repeated in the absence of light and no oxidation was observed 

thus suggesting photo-activated oxidation in the presence of the anatase and rutile phases 
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which exist in the TiO2 MONPs. CuO MONPs resulted in 20 % oxidation after 24 hours. CeO2 

and ZnO showed very little activity (Table 2.1). Both the CuO and TiO2 MONP facilitated 

oxidation of TPP to TPPO likely occurs through an intramolecular singlet oxygen oxidation 

mechanism which was previously reported for TPP.58 TiO2
59 and CuO60 MONPs have also been 

previously noted for their ability to generate singlet oxygen from molecular O2, the suggested 

reactive oxygen species in this reaction. Employing TiO2 as a catalyst to fulfil the ultimate aim 

of this project would likely not be feasible. This is because TiO2 is a photo-oxidation catalyst 

which requires UV light near 387 nm.61 Whilst this range may lie in the visible light spectrum, 

embedding a photocatalyst in a polymer composite would possibly restrict the photo-oxidation 

to just the catalysts embedded on the polymer surface.   

 

Figure 2.8: A 31P [H] NMR overlay in CDCl3. Top spectrum shows TPP after 24 hours in the 

presence of TiO2. Bottom spectrum is pure TPPO.  
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Catalyst Time % TPP oxidized to TPPO 

Blank 24 hrs 0 % 
Ti(IV)O2  24 hrs 55 % 
Ce(IV)O2 24 hrs 0 % 
Cu(II)O 24 hrs 20 % 
Zn(II)O 24 hrs 0 % 
Ti(IV)O2 (no light) 24 hrs 0 % 

 

Table 2.1: A table showing the various MONPs catalysts which were screened as oxidation 

catalysts for the degradation of TPP to TPPO. The % of TPP which was oxidised to TPPO is 

shown alongside each catalyst. 

2.3.2 Autodegradation of Diethyl Chlorophosphate 

 
Due to numerous reports in the literature of DCP being employed as an OP CWA simulant,22,23 

it was the next simulant to feature in this study. The hydrolysis of the P-Cl bond functions to 

mimic the hydrolysis of the P-F bond in the nerve agent Sarin. DCP readily decomposes to 

diethyl phosphoric acid (DEPA) and diethyl pyrophosphoric acid (DEPPA) under atmospheric 

pressure and temperature. Zn(II)O, Ce(IV)O2, Cu(II)O and Ti(IV)O2 were all screened as 

potential oxidative hydrolysis catalysts for the degradation of DCP. The MONPs were 

suspended in mixture of DCP and MeOH and left stirring at room temperature and open to air, 

an aliquot was taken after 24 hours from the reaction mixture and analysed using 31P [H] NMR. 

Scheme 2.5 illustrates the reaction conditions employed for the oxidative hydrolysis. 

 

Scheme 2.5: A reaction scheme outlining the conditions employed for the degradation of DCP 

to DEPA and DEPPA in the presence of various MONPs catalysts. 
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 Zn(II)O, Ce(IV)O2, Cu(II)O and Ti(IV)O2 all proved ineffective at accelerating the degradation. 

After 24 hours, no net increase in degradation was observed in the presence of the MONPs 

when compared to the background hydrolysis. The kinetic plot below (Figure 2.9) shows the 

zeroth order decomposition of DCP in the presence of ambient humidity and pressure. 70% 

Hydrolysis is achieved after 24 hours in the absence of any catalyst, this is in contrast to G and 

V-series agents which remain prevalent in the environment. The difference in ambient 

degradation between DCP and OP CWAs makes it a poor choice of degradation simulant. It was 

decided that a simulant which possessed a higher ambient stability would be required.  
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Figure 2.9: A degradation plot showing the ambient hydrolysis of DCP over time at room 

temperature and ambient humidity. 

2.3.3 Oxidative Hydrolysis of Diethyl phosphite 

Diethyl phosphite (DEP) is a P(III) phosphorus species containing a labile P-H bond, it is 

however still stable under prolonged exposure to air and ambient humidity and thus an 

improvement over DCP. The previous selection of 4 commercial MONPs; Zn(II)O, Ce(IV)O2, 

Cu(II)O and Ti(IV)O2, were all screened for the degradation of DEP. The MONPs were 

suspended in mixture of DEP and MeOH and left stirring at room temperature and open to air, 

an aliquot was taken after 24 hours from the reaction mixture and analysed using 31P [H] NMR.  
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No degradation was observed over the course of 24 hours in the presence of any of the 

MONPs. A shift was made from MONPs to look at some simple homogeneous oxidation 

catalysts. A previously reported study utilised a variety of Cu(II) chelate complexes for the 

oxidative hydrolysis of G-series agents.9 Cu(TMEDA)Cl2 proved to be the most effective 

material at hydrolysing Sarin in buffered aqueous media with a t1/2 of 0.5 mins.  Inspired by 

these results, Cu(TMEDA)Cl2 was synthesised. A number of degradation tests were conducted 

using Cu(II)Cl2 and Cu(TMEDA)Cl2 as potential homogeneous catalysts for the oxidation of DEP. 

The Cu(II) catalyst was dissolved in mixture of DEP and MeOH and left stirring at room 

temperature and open to air, an aliquot was taken after 24 hours from the reaction mixture 

and analysed using 31P [H] NMR.  The conditions employed for this screening are outlined in 

Scheme 2.6. 

 

Scheme 2.6: A reaction scheme outlining the conditions employed for the oxidative hydrolysis 

of DEP to DEPA and DEPPA in the presence of various Cu2+ catalysts. 

 Remarkably, near full degradation was observed over the course of 24 hours in the presence 

of Cu(II)Cl2 (Figure 2.10).  Diethyl phosphoric acid (DEPA) (δ 0.8262) was formed as a 

degradation product along with a small quantity of diethyl pyrophosphoric acid (DEPPA) (δ -

13.128). Full degradation was also achieved in the presence of Cu(TMEDA)Cl2. Interestingly, 

only the DEPPA product was observed at the end of the reaction period. This observation is in 

keeping with a previously reported study8 where the use of a Cu(II) catalyst with a bulky amine 

resulted in the oxidation of phosphites to their pyrophosphate counterpart. A kinetic analysis 

of DEP degradation was performed in the presence of Cu(II)Cl2 using the same conditions. 

Figure 2.11 shows the zeroth order decomposition of DEP with a t1/2 of 8 hours and with almost 

90 % hydrolysis occurring after 20 hours. Due to the zeroth order nature of the oxidation, it is 
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likely that the rate limiting step of the reaction is the saturation of the Cu(II)Cl2 catalyst, or the 

diffusion of atmospheric oxygen to the catalytic sites. This prompted an investigation into the 

conditions which were facilitating the degradation.  

 

Figure 2.10: A 31P NMR overlay in CDCl3. a) a spectrum of fresh DEP, two peaks are present due 

to P-H coupling. b) a spectrum of DEP after 24 hours in the presence Cu(II)Cl2 b) a spectrum of 

DEP after 24 hours in the presence of Cu(TMEDA)Cl2. (*) is believed to be tetraethyl 

hypophosphate.

  

Figure 2.11: (left) A plot showing the oxidation of DEP over time in the presence of Cu(II)Cl2. 

(right) A 31P NMR overlay in CDCl3 of DEP in the presence Cu(II)Cl2 at different times throughout 

the reaction period. (“) represents unknown peaks. 

 

 

 

“ “ 
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An assessment of reaction conditions was performed on Cu(II)Cl2 to verify its function as a 

catalyst. Table 2.2 and Figure 2.12 highlight the different distribution of products generated 

based on the various reaction conditions employed with the same Cu(II)Cl2 catalyst. The 

reaction that was free of air and H2O did not proceed very far, the above spectrum shows that 

the majority of the DEP has remained unreacted. The reaction that contained H2O but no O2, 

proceeded slightly but again, a large quantity of the DEP remained unreacted, it should be 

noted that no DEPPA was formed in the presence of water. Finally, the reaction that contained 

no H2O but an O2 atmosphere proceeded almost to completion in 24 hours with the secondary 

product, DEPPA, being formed. This condition assessment highlights the Cu(II)Cl2 mediated 

breakdown of DEP into diethyl phosphoric acid is an aerobic process, in this respect, Cu(II)Cl2 

functions as an oxidation catalyst for the oxidation of DEP to DEPA and DEPPA. Different ratios 

of DEPA and DEPPA are achieved depending based on the water content of the reaction. The 

DEPPA likely exists in equilibrium with DEPA, the absence of H2O partially drives this 

equilibrium to the formation of the pyrophosphate through the condensation of two DEPA 

molecules. 

Catalyst Conditions Time % DEP oxidised to 

DEPA/DEPPA 

% DEPPA 

Blank Air, Water, MeOH 24 hrs 0 % 0 % 
Cu(II)Cl2 Air, Water, MeOH 24 hrs 95.5 % 0 %  
Cu(TMEDA)Cl2  Air, Water. MeOH 24 hrs 62.2 % 62.2 % 
Cu(II)Cl2 No Air, No Water 24 hrs 10 % 1.6 % 
Cu(II)Cl2 No Air, Water 24 hrs 17.8 % 0 % 
Cu(II)Cl2 O2, No Water 24 hrs 76.0 % 20.0% 

 

Table 2.2: A table showing the Cu(II) catalysts which were screened as oxidative hydrolysis 

catalysts for the degradation of DEP under various conditions which are listed alongside each 

catalyst. The % of DEP which was degraded to DEPA/DEPPA is shown alongside each catalyst. 
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Figure 2.12: A 31P NMR overlay in CDCl3. Peaks labelled a are DEP, peaks labelled b are DEPA 

and peaks labelled c are DEPPA a) spectrum shows fresh DEP, two peaks are present due to P-

H coupling. b) a spectrum of DEP after 24 hours in the presence Cu(II)Cl2  and in the absence of 

air and water. c) a spectrum of DEP after 24 hours in the presence Cu(II)Cl2 and water but no 

air. d) a spectrum of DEP after 24 hours in the presence Cu(II)Cl2 and O2 but no water. (“) 

represents unknown peaks. 

Based on the limited number of oxidation studies that were performed, the oxidative 

hydrolysis simulant systems did not appear to mimic the degradation of OP CWAs due to the 

phosphorus atoms being in the 3+ oxidation states. Also, oxidation using a photo-catalyst such 

as TiO2 would reduce the degradation efficiency significantly, because the catalysis would be 

restricted to just the catalyst embedded on the surface of the polymer.  Based on the huge 

quantity of publications relating to CeO2 as an oxidation catalyst,63–65 the oxidative prowess of 

CeO2 cannot be questioned. Unfortunately, the vast majority of catalysis is conducted at 

elevated temperatures to facilitate the Ce3+/Ce4+
 redox cycle. Elevated temperatures are 

beyond the scope of the composite encapsulation and degradation material that is the 

ultimate aim of this thesis. However, the performance of the Cu2+ species as oxidative 

hydrolysis catalysts for the degradation of neat G-series agents, was of some interest. Some 

preliminary GB degradation tests are shown in section 2.5.1.  
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2.4 Hydrolysis 

2.4.1 Choice and Synthesis of Zirconium MOF catalysts 
 

UiO-66 is probably the most well-known zirconium MOF and has been previously used in 

hydrolysis studies,4,5 however the small pore apertures (6 Å)66 created by the short 1,4 

benzene dicarboxylates restrict the reactivity to the catalyst surface. UiO-67, a larger 

framework containing biphenyl‐4,4'-dicarboxylate (BDPC) and iso-reticular to the smaller UiO-

66, possesses a marginally wider pore size, ranging from 8 to 10.5 Å.67 UiO-67-NH2, a MOF 

consisting of the 2‐aminobiphenyl‐4,4'-dicarboxylate (Amine Lig) linker, was previously shown 

to effectively hydrolyse DMNP and VX. The amine functionality is believed to act as a Bronsted 

base and regulate the pH proximal to the active nodes and thus increases the effective basicity 

around the node. Two iso-structural mixed ligand (ML) derivatives of the UiO-67 series were 

nominated for testing (Figure 2.13), UiO-67-NH2-ML and UiO-67-BiPy-ML. 

 

Figure 2.13: A formula unit representation of UiO-67-NH2 and UiO-67-BiPy, along with an 

illustration of the structural linkers. 

UiO-67-NH2-ML is composed of the 2‐aminobiphenyl‐4,4'-dicarboxylate and BDPC and was 

synthesised solvothermally in DMF using benzoic acid as a modulator. UiO-67-BiPy-ML, a 

framework composed of a 2,2′-Bipyridine-5,5′-dicarboxylate and BDPC ligand was also 

synthesised solvothermally in DMF but was modulated with acetic acid. Both of these 

syntheses were conducted using previously reported methodologies.53,55 Mixed ligand variants 

of UiO-67-NH2 have been shown to possess increased ambient stability over time when 

compared to a counterpart composed of only the single amine linker.55,68  
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MOF-808 (Figure 2.14) is a Zr MOF composed of the tritopic 1,3,5-benzene tricarboxylate (BTC) 

linker.12 MOF-808 was synthesised using a previously reported procedure which involved 

solvothermal synthesis in DMF and modulation with acetic acid.14 MOF-808 possesses a linker 

connectivity of 6 as opposed to the ideal number of 12. This means that each Zr6 SBU 

possesses 6 sites which are not occupied by the linker thus vastly increasing the number of 

catalytic sites present in the material.69 

 

 
 

Figure 2.14: Top, a formula unit representation of MOF-808 and Boron MOF, along with an 

illustration of the structural linkers. Bottom, a graphical representation of the Boron MOF 

structure, the size of the two different types of pore apertures is shown (as calculated using 

Mercury). 
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An issue with MOF-808 was thought to be its rather small pore diameter of 10.5 Å, this 

potentially leaves very little space for DMNP (11 x 4.5 Å) to access the internal catalytic sites 

and therefore restricts the majority of the hydrolysis to the surface. An additional 6-connected 

Zr MOF was synthesised, one which would possess a larger pore diameter yet is still be 

composed of a tritopic ligand. The previously reported Tris(2’,3’,5’,6’-tetramethylbiphenyl-4-

carboxylic acid)borane linker precursor was synthesised.50 The ligand contains a boron centre. 

The increased electron-withdrawing effect provided by this linker on the Zr6 SBU would act to 

increase the Lewis acidity of the uncoordinated Zr4+ nodes. After synthesising the borane 

linker, a novel 6-connected Zr MOF was assembled using the same procedure that was 

employed for the formation of MOF-808. Single crystals were also obtained using a slightly 

modified procedure with slower heating and cooling sequences. Figure 2.14 shows an 

illustration of the obtained crystal structure which reveals a maximum pore diameter of 19.02 

Å (as calculated using Mercury), significantly larger than that of MOF-808 (10.5 Å).  

Finally, the less studied DUT series of Zr MOFs were investigated.52 The DUT series are 

composed of the ditopic 2,6-naphtalenedicarboxylate linker (Figure 2.15). The DUT variants 

differ in their connectivity based on the quantity of modulator employed during the synthesis. 

 

Figure 2.15: A formula unit representation of DUT-52 and DUT-84, along with an illustration of 

the structural linker. 

DUT-52 and DUT-84 were both synthesised using the original author’s methodology. In brief, 

this involved a solvothermal reaction in DMF which was modulated with acetic acid. The DUT-

52 variant possesses a ligand connectivity close to the ideal value of 12 and was modulated 

with 47 equivalents of acetic acid. The lack of empty coordination sites and the small aperture 
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size provided by the naphthalene linker was thought to make this a poor catalyst. However, 

DUT-84 utilises 273 equivalents of acetic acid modulator relative to the naphthalene linker, 

this large excess results in a 6-connected network with a 2-D structure composed of double 

layers. It was hypothesised that the large prevalence of Zr4+ coordination vacancies would 

increase the catalyst density, the 2D structure would also allow easier access to the nodes.  

2.4.2 Zirconium MOFs as hydrolysis catalysts for DMNP hydrolysis 

Having synthesised a range of potential Zr MOF catalysts, a number of hydrolysis screening 

studies were performed on the CWA simulant DMNP. The majority of studies to date involving 

MOF facilitated hydrolysis of DMNP have utilised NEM buffer to maintain a higher pH.4,11,33 A 

higher-than-neutral pH, more specifically 8.3 – 8.8 pH,70 reportedly increases the exchange 

rate between zirconium node bound water molecules and the OP substrate, this exchange is 

necessary for facilitating hydrolysis.71 As the ultimate aim is to degrade neat VX in the absence 

of any stoichiometric reagents, the study was initiated by conducting the experiments in the 

absence of any buffering agent to see if any catalysts would persevere under less ideal 

circumstances. Scheme 2.7 illustrates the conditions that were employed for testing the 

catalysts. 

 

Scheme 2.7: A reaction scheme outlining the conditions employed for the non-buffered 

hydrolysis of DMNP to DMP in the presence of a range of Zr MOF catalysts over 7 days. 

Each reaction was conducted at room temperature (298 K) in an NMR tube, in a mixture of 

H2O/D2O and in the presence of 7.5 wt % MOF catalyst. The MOFs were not activated prior to 
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catalysis. The reaction mixtures were analysed using 31P {H} NMR spectroscopy. No hydrolysis 

was observed within the first 2 days of the study. This is unsurprising considering that no 

buffer was employed. The 31P {H} NMR overlay in Figure 2.16 shows the reaction after 7 days in 

the presence of the MOF-808 catalyst. No degradation of the DMNP control was observed 

after 7 days (DMNP – 7d). Unfortunately, no hydrolysis was observed for Boron MOF, DUT-52, 

DUT-84, UiO-67-NH2-ML and UiO-67-BiPy-ML after 7 days (Table 2.3). However, partial 

hydrolysis was obtained using MOF-808, 30% of the substrate was converted to the dimethyl 

phosphonate hydrolysis product after 7 days. This is remarkable considering that no buffering 

agent was present. A possible explanation for this is the much higher prevalence of Zr4+ sites in 

MOF-808 that are unoccupied by the BTC linker, a direct result of MOF-808’s 6-connected 

topology.69 However, this does not explain why no hydrolysis was observed for Boron MOF or 

DUT-84, both of which also possess a 6-connected structure. 

 

Figure 2.16: A 31P {H} NMR overlay. a) The top spectrum shows fresh DMNP in D2O. b) A 

spectrum of DMNP in D2O after 7 days. c) A spectrum of DMNP in D2O and in the presence of 

MOF-808, after 7 days under the conditions outlined in Scheme 2.7. 
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Catalyst Conditions % DMNP 
Hydrolysed 
to DMP 

Blank No buffer, 7 days 0 % 
UiO-67-NH2-ML No buffer, 7 days 0 % 
UiO-67-BiPy-ML No buffer, 7 days 0 % 
Boron MOF No buffer, 7 days 0 % 
MOF-808 No buffer, 7 days 30 % 
DUT-52 No buffer, 7 days 0 % 
DUT-84 No buffer, 7 days 0 % 

 

Table 2.3: A table showing the MOF catalysts which were screened as hydrolysis catalysts for 

the degradation of DMNP in the absence of buffer over the course of 7 days. The % of DMNP 

which was hydrolysed to DMP is shown alongside each catalyst. Each measurement was 

performed once. 

To further probe the hydrolysis of DMNP in the presence of our MOF catalysts, an aqueous N-

ethyl morpholine (NEM) buffer was employed. Scheme 2.8 outlines the conditions which were 

employed for our buffered hydrolysis screening procedure. DMNP was added to a mixture 

containing 1.25 mol % MOF catalyst in 0.15 M NEM buffer. Each reaction was allowed to 

proceed at room temperature (298 K) for 3 hours before being analysed using 31P {H} NMR 

spectroscopy.  

 

Scheme 2.8: A reaction scheme outlining the conditions employed for the buffered aqueous 

hydrolysis of DMNP to DMP in the presence of a range of Zr MOF catalysts over 3 hours. 

DUT-52, UiO-67-NH2-ML and UiO-67-BiPy-ML all performed at a similar level with only ~10% 

hydrolysis being observed over the course of 3 hours (Table 2.4). The common factor amongst 
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these 3 MOFs is that they all possess a near ideal 12-connected structure, this means that 

there is a significantly lower frequency of catalytic nodes which are accessible to the substrate. 

It would also appear that the presence of a weakly basic linker in UiO-67-NH2-ML and UiO-67-

BiPy-ML makes little difference in improving hydrolysis when a basic amine buffer is employed. 

There is of course disparity between the UiO-67-NH2-ML results obtained in this study and 

between previously published results for UiO-67-NH2. Literature studies involving the use of 

UiO-67-NH2 to degrade DMNP in aqueous NEM buffer produced a DMNP t1/2 of just 2 

minutes.11 For the study in this chapter, a mixed ligand approach was used to synthesise the 

UiO-67-NH2-ML along with acetic acid and benzoic acid as a modulator. This approach was 

used to increase the ambient stability of UiO-67-NH2-ML over time.68 Literature studies that 

have utilised UiO-67-NH2 as a hydrolysis catalyst for DMNP degradation have used an 

alternative approach to form their catalyst. A single linker approach was used and HCl was 

employed as a modulator, HCl modulated Zr MOFs generally exhibit a more defective structure 

(i.e more catalytic vacancies) and a larger surface area. These properties would enhance the 

catalytic properties of UiO-67-NH2 by improving access to uncoordinated nodes, at the expense 

of long-term storage stability.  

The largest degree of hydrolysis is observed in the presence of MOF-808 with 78% of the total 

DMNP being converted to DMP over the course of 3 hours (Figure 2.17). This can be ascribed 

to the significantly higher population of Zr4+ sites which are unoccupied by the linker.69  

However, just as before, DUT-84 and Boron MOF significantly underperformed when 

compared to MOF-808 as well as the other 12-connected MOFs. For the case of DUT-84, the 

2D structure can potentially decrease specificity for the substrate. However, in chapter 4 a 

facile activation method is presented for enhancing the catalytic capability of DUT-84. In 

chapter 4, a likely explanation is also offered for the surprising underperformance of Boron 

MOF. After screening the above 6 MOFs as potential degradants for DMNP hydrolysis, MOF-

808 unanimously outperformed the other Zr MOFs in all tests. Satisfied with the ease of 
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obtaining the trimesic acid linker combined with the trivial synthetic conditions required for 

the formation of MOF-808, the framework was promoted for testing on live OP CWAs. 

Figure 2.17: A 31P {H} NMR in D2O overlay. a) The top spectrum shows fresh DMNP in D2O. b) a 

spectrum of DMNP in D2O after 3 hours in the presence of 0.15 M NEM buffer c) A spectrum of 

DMNP in D2O after 3 hours and in the presence of MOF-808 and 0.15 M NEM buffer. The 

reaction conditions are illustrated in Scheme 2.8. (“) represents an unknown peak.  

Catalyst Conditions  % DMNP 
Hydrolysed to 
DMP 

Blank 0.15 M NEM Buffer, 3 hours 0 % 
UiO-67-NH2-ML 0.15 M NEM Buffer, 3 hours 10 % 
UiO-67-BiPy-ML 0.15 M NEM Buffer, 3 hours 12 % 
Boron MOF 0.15 M NEM Buffer, 3 hours 4 % 
MOF-808 0.15 M NEM Buffer, 3 hours 78 % 
DUT-52 0.15 M NEM Buffer, 3 hours 10 % 
DUT-84 0.15 M NEM Buffer, 3 hours 3 % 

 

Table 2.4: A table showing the MOF catalysts which were screened as hydrolysis catalysts for 

the degradation of DMNP in the presence of aqueous 0.15 M NEM buffer over 3 hours. The % 

of DMNP which was hydrolysed to DMP is shown alongside each catalyst. Each measurement 

was performed once. 

“ 
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2.5 Preliminary OP CWA degradation using Nominated Catalysts 

When obtaining results using simulants, it is vital to follow through with a study and validate 

any positive results using real CWAs. After performing numerous studies with a range of 

simulants and potential catalysts, a few of the more successful catalysts were nominated for 

further testing on live CWAs. All CWA testing was performed by DSTL in their Porton Down 

laboratories. 

2.5.1 Preliminary GB Degradation using Oxidation Catalysts 

For oxidation, Cu(TMEDA)Cl2 and TiO2 were nominated as potential oxidation catalysts for the 

degradation of Sarin (GB). Previously reported GB degradation studies involving Cu(TMEDA)Cl2 

were conducted in buffered aqueous solution, with a remarkable half-life (t1/2 0.5 mins) being 

achieved through an oxidative hydrolysis pathway.9 It was therefore of interest to see whether 

the same catalyst would thrive under a neat degradation procedure, i.e no water. A catalyst 

loading of 10 mol % was selected for both Cu(TMEDA)Cl2 and TiO2, the reaction conditions are 

outlined in Scheme 2.9 below. 

 

Scheme 2.9: A reaction scheme outlining the conditions employed for the neat oxidative 

hydrolysis of GB into IMPA in the presence of TiO2 and Cu(TMEDA)Cl2. 

The 31P [H] NMR overlay in Figure 2.18 shows the degree of GB conversion observed over the 

course of 24 hours in the presence of Cu(TMEDA)Cl2 and TiO2. In 31P [H] NMR, GB exists as a 

doublet centred around ~ 28.5 ppm, the doublet is the result of P-F bond coupling. Isopropyl 

methylphosphonic acid (IMPA), the GB degradation product, exists as a singlet around 33 ppm 

on the spectrum. Looking at the Cu(TMEDA)Cl2 spectrum, two peaks are observed in a similar 

position to where one would expect to see un-degraded GB, there is however paramagnetic 



111 
 

signal broadening resulting from the Cu2+ species. No other peaks are present and so this is 

indicative of no degradation occurring over the course of the 24 hours. This is likely due to a 

much lower quantity of catalyst being used in this study compared to the literature study (10 

mol % as opposed to 500 mol %). The reaction is also unbuffered and is conducted neat, as 

opposed to in aqueous medium. As for TiO2, 18.4% conversion to IMPA is observed over 24 

hours. The reaction was exposed to ambient light for the full 24 hours and so it is likely photo-

oxidation is observed. Unfortunately no blank was supplied and GB is reported to slowly 

hydrolyse upon exposure to ambient humidity.72 This makes the slow and partial TiO2 

facilitated photo-oxidation quite unremarkable, it also negates the need for a catalyst unless 

rapid degradation is required.  

 

Figure 2.18: A 31P NMR overlay. The top spectrum shows GB in the presence of Cu(TMEDA)Cl2, 

no degradation is observed after 24 hours. The bottom spectrum shows GB in the presence of 

TiO2, a small amount of degradation to IMPA is shown after 24 hours. The conditions employed 

are outlined in Scheme 2.9.  

2.5.2 Preliminary VX Degradation using Hydrolysis Catalysts 

MOF-808, the most successful simulant hydrolysis catalyst, was then tested as a degradant for 

the decomposition of VX. At the time of screening, there existed only one previous example of 

MOF-facilitated VX degradation in unbuffered aqueous solution.11 The MOF employed for this 
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was UiO-67-NMe2, a Zr MOF containing the basic 2-(dimethylamino)-[1,1'-biphenyl]-4,4'-

dicarboxylate linker. Similar to DMNP, a basic buffer increases the exchange rate between 

zirconium node bound water molecules and the VX substrate, as well as functioning as a 

proximal base.71 MOF-808 lacks a basic linker functionality, it was interesting to see if it would 

still degrade VX in unbuffered aqueous solution. The reaction scheme below outlines the 

conditions which were employed for the testing (Scheme 2.10). 

 

Scheme 2.10: A reaction scheme outlining the conditions employed for the buffer-free 

aqueous hydrolysis of VX to EMPA in the presence of MOF-808.  

Remarkably, 80% hydrolysis was observed after just 10 minutes (Figure 2.19). This 

unfortunately made it difficult to calculate the reaction order as over half of the substrate had 

been consumed by the time the first data point had been acquired. This was an unfortunate 

consequence of safety precautions which have to be followed when handling these toxic nerve 

agents. No repeat measurements were made. A total of 94% hydrolysis was then observed 

over 24 hours. It should be noted that only the EMPA degradation product was present as only 

P-S bond hydrolysis was occurring. This is highly beneficial as harsher catalysts/bases are 

capable of P-O bond cleavage which produces an equally harmful hydrolysis product. The 

reason that VX hydrolysis still occurs in the absence of a buffer is because the 

diisopropylaminoethanethiol (DESH) product is generated as one of the degradation 

products.71 DESH contains a basic diisopropylamine moiety which buffers the remainder of the 

hydrolysis process. It has also been previously suggested that the diisopropylamine group in 

unhydrolysed VX is capable of producing a similar buffering effect.71 Fortunately, this self-

buffering effect carries over to the rest of the V-series, all of which produce a similar amine 

hydrolysis product. 
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Figure 2.19. A degradation plot showing the hydrolysis of VX to EMPA over time in the 

presence of MOF-808 and a blank. The results are derived from a single measurement. The 

conditions employed are outlined in Scheme 2.10. 

Pleased with the ease with which VX was hydrolysed with the aid of MOF-808, further studies 

were performed by limiting the quantity of water present in the reaction mixture. The ultimate 

aim would be to completely negate the need for added water and for the process to be 

facilitated by ambient humidity. The hydrolysis of VX was screened in the presence of MOF-

808 and a stoichiometric quantity of H2O relative to VX. The reaction scheme below outlines 

the conditions which were employed for the hydrolysis (Scheme 2.11). 

Scheme 2.11: A reaction scheme outlining the conditions employed for the buffer-free 

hydrolysis of VX to EMPA in the presence of MOF-808 and a stoichiometric quantity of water.  

Several data points were obtained during the first 3 hours of the reaction commencing (Figure 

2.20), but unfortunately no hydrolysis was observed during this period. A small amount of 

hydrolysis was observed after 24 hours (~ 9 %). Due to the slow rate of hydrolysis, the next 

data point was obtained after 7 days at which point complete hydrolysis was observed. In 



114 
 

contrast, the blank remained completely unreacted, this highlights how persistent VX remains 

in an ambient environment after deployment. Despite the hydrolysis being rather slow, the 

low catalyst loading combined with the high ambient stability of VX adds value to the efficacy 

of the process. 
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Figure 2.20. A degradation plot showing the hydrolysis of VX to EMPA over time in the 

presence of stoichiometric quantities of water along with MOF-808 and a blank. The conditions 

employed are outlined in Scheme 2.11. 

Although using a stoichiometric quantity of water was slow, full hydrolysis was still observed 

therefore decided to conduct one final study with MOF-808 and VX. Neat reaction conditions 

were employed, no water was added and so the degradation was completely limited to 

ambient humidity. Reaction Scheme 2.12 outlines the exact conditions which were employed. 

 

Scheme 2.12: A reaction scheme outlining the conditions employed for the buffer-free 

hydrolysis of VX to EMPA in the presence of MOF-808 and ambient humidity and pressure. 

The first data point was collected after 24 hours at which point 8% hydrolysis was observed, 

roughly no slower than when a stoichiometric quantity of water was present. Full hydrolysis 
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was observed after 7 days (Figure 2.21). There is therefore little difference between adding 

stoichiometric H2O to the reaction mixture and simply leaving it to ambient humidity, this is in 

contrast to when a large excess of H2O is present. VX is sparingly soluble in water and so when 

small quantities of H2O are introduced to neat VX, there is likely very slow diffusion of the H2O 

to the catalytic Zr6 nodes through the VX medium. Ambient hydration of the Zr6 nodes is 

therefore the rate limiting step for neat hydrolysis to occur. For a more effective process, 

improved compatibility is required between H2O and VX. This can be achieved by embedding 

MOF-808 in an appropriate polymer membrane, this is discussed in detail throughout chapter 

5. Despite the challenges that lay ahead, a catalyst has been identified, capable of fully 

degrading VX under neat conditions and in the absence of any buffer or reagent.  

 

 

 

 

 

Figure 2.21. A degradation plot showing the hydrolysis of VX to EMPA over time in the 

presence of MOF-808 and a blank. The conditions employed are outlined in Scheme 2.12. 

In an attempt to quantity the hydration of the MOF-808 nodes, a short study was conducted to 

determine the maximum quantity of H2O that MOF-808 could ‘ambiently’ adsorb. Samples of 

MOF-808 was vacuum dried at 70 oC for 72 hours and then immediately exposed to two 

different environments, one with a relative humidity (RH) of 30 % and another of 65 %. The 

weight change of each sample was then closely monitored. The plot below (Figure 2.22) shows 

the weight gain of each sample as a percentage of the dry mass of the MOF-808. 
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Figure 2.22. A plot showing the % weight gain of MOF-808 over time in the presence of two 

different humidities. 

At the lower humidity of 30 %, a 10 weight % gain by mass is observed over the course of 24 

hours. At the higher humidity of 65 %, a 32 weight % gain by mass is observed over 24 hours. 

This can be expressed as an efficiency of 0.32 ml per gram of MOF-808 over 24 hours. This 

demonstrates that MOF-808 has a high affinity for ambient H2O and therefore reinforces our 

decision to use this framework as a degradant for neat V-series agent. In the following chapter, 

an attempt is made to elucidate any subtle structural changes which may be occurring upon 

hydration of the MOF-808 nodes through the use of solid-state photoluminescence 

spectroscopy.  
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2.6 Summary and Conclusion 

The ultimate aim of this chapter was to identify a degradation catalyst capable of degrading OP 

CWAs under neat conditions, i.e no solvent, no additional reagent. A range of materials were 

explored as potential catalysts for the degradation of OP CWAs. First, a number of commercial 

MONPs were screened as potential oxidation catalysts, under ambient conditions, only TiO2 

was found to be effective at oxidising TPP to TPPO. TiO2 was also able to slightly speed up the 

photo-oxidative hydrolysis of GB under neat conditions. As the final aim of this project would 

be to embed a degradation catalyst in a 3D swellable polymer matrix, varying degrees of 

polymer opacity would make the use of a photocatalysts obsolete.  P-H bond oxidation in DEP 

using Cu2+ species was also explored. There was, however, little carryover to live CWAs. 

Simulant selection was also an important aspect of this study, and the literature was surveyed 

for a number of simulants which have been used to mimic the degradation of OP CWAs. Tests 

were conducted with DCP but it was found that the lability of the P-Cl bond under ambient 

conditions made it a poor compound for simulating neat degradation. Finally, DMNP was 

tested as a hydrolysis simulant. In the presence of NEM buffer, hydrolysis of DMNP closely 

mimicked the aqueous hydrolysis of V-series agents. A variety of Zr MOFs were synthesised 

and screened, some of which had been previously reported as hydrolysis catalysts and some of 

which were believed to exhibit similar properties. These Zr MOFs were then tested on the 

DMNP simulant. It was found that MOF-808, a 6-connected Zr MOF containing 6 coordination 

vacancies per Zr6 SBU, to be the most effective hydrolysis catalyst. Building on the principles 

that made MOF-808 an effective catalyst, a novel zirconium MOF (Zr-Boron MOF) was 

synthesised. Unfortunately, Zr-Boron MOF proved ineffective and a potential explanation is 

offered in chapter 4 as to why this framework makes an unsuitable catalyst.  

Following on from the successful simulant tests in the presence of MOF-808, MOF-808 was 

tested on the V-series agent VX. Remarkably, MOF-808 was able to rapidly degrade VX in 

aqueous medium (t1/2 
 < 5 minutes) in the absence of a buffer. Following on, a neat screening 
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procedure was utilised and showed that MOF-808 was capable of fully degrading VX under 

neat conditions, relying solely on ambient humidity. This degradation was significantly slower 

with full hydrolysis being observed after 7 full days. A hydrolysis catalyst capable of hydrolysing 

V-series agents under neat conditions has therefore been identified and the ultimate aim of 

this chapter has been fulfilled. To further enhance this hydrolysis process, the effect of 

hydration upon the Zr6 cluster is explored. In chapter 3, solid state photoluminescence 

spectroscopy is utilised in an attempt to differentiate between any potential hydration states. 

In chapter 4, a novel activation procedure is reported where microwave irradiation is used to 

remove bound modulator from the Zr6 cluster and replace it with H2O.  
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Chapter 3. Photoluminescence as a Probe for Screening the 

Functional Properties of MOFs 

The work described in this chapter was previously published in the following journals: 

Z. H. Fard, Y. Kalinovskyy, D. M. Spasyuk, B. A. Blight and G. K. H. Shimizu, Chem. Commun., 

2016, 52, 12865–12868. 

R. J. Marshall, Y. Kalinovskyy, S. L. Griffin, C. Wilson, B. A. Blight and R. S. Forgan, J. Am. Chem. 

Soc., 2017, 139, 6253–6260. 

The synthesis and characterization of H6L, MOF-1 (Ba) and MOF-2 (Ba) were all performed by Z. 

Fard, D. Spasyuk and G. Shimizu at the University of Calgary. The synthesis and 

characterization of L1, L2, L5, L6, and L7 along with Zr-L1, Zr-L2, Zr-L5, Zr-L6 and Zr-L7, were all 

performed by R. Marshall, S. Grififn, C. Wilson and and R. Forgan at the University of Glasgow. 

All solid-state fluorometry analysis of the aforementioned materials was conducted by the 

author of this thesis, as were some PXRD and contact angle measurments. 

3.1 Introduction 

MOFs are a group of chemically diverse, porous and crystalline hybrid materials. There exist a 

number of techniques for evaluating the functional properties of MOFs. Porosimetry1–3 is a 

widely accepted method for determining the porosity of MOFs and assessing their suitability 

for applications in gas sorption and carbon sequestration. PXRD4–7 and TGA8–10 can be used to 

confirm the stability and structural integrity of frameworks. Single-crystal X-ray diffraction 

(SCXRD)11–13 analysis is another technique which is commonly used to probe subtle host-guest 

interactions in single-crystalline frameworks. Another common feature of the majority of 

frameworks is that they are composed of organic linkers.14 The conjugated nature of these 

bridging ligands lends them chromophoric properties and as a result, there are numerous 

reports of ligand based emission in the MOF literature.15–18 The coordination of these linkers to 

various metal/cluster centres perturbs the solid-state emissive profile of these linkers by 
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providing alternative relaxation pathways. Additionally, interactions between guest molecules 

and the nodes and/or linkers can further alter the emission profiles of these materials.19–21 All 

of these intricate changes can be monitored using solid-state photoluminescence (ssPL) 

spectroscopy.22–24 This chapter shows that ssPL is a quick and efficient technique for the rapid 

screening a wide array of materials upon exposure to a range of liquid and gaseous analytes. 

This is demonstrated by the use of ssPL as a probe for screening the functional properties of a 

number of novel MOF materials.  

Water sensing has a number of important applications in processes that include environmental 

surveying, food processing and pharmaceutical manufacturing.15,25 These applications include 

the detection of water in both the liquid and gaseous phase. MOFs that exhibit a hydration-

dependent emission upon exposure to liquid water/water vapour can be employed as 

potential water sensors. When designing MOF sensors, the vast array of building blocks and 

synthetic strategies present a seemingly endless amount of possibilities for assembling 

chemically versatile structures. Stability can often be a compromising factor when designing 

new frameworks; there are numerous reports of MOFs with poor ambient and aqueous 

stability.26–28 

Alkaline earth (AE) MOFs are an emergent group of materials which have attracted 

considerable interest over the last few years. AE MOFs possess a malleable coordination 

environment due largely in part to their highly ionic character.29–31 The unpredictability of their 

coordination environments makes it difficult to rationally control their structure and 

dimensionality but their ionic character still offers a number of advantages. The higher charge 

density of the AE ions allows for the formation of very strong interactions between the metal 

and the linker, which significantly increases the stability of these materials.32,33 The ionic 

nature of these frameworks also enables these frameworks to be used in proton-conducting 

applications.33,34 The vast majority of MOFs are assembled using carboxylate linkers, but 

phosphonate ligands are an alternative building block strategy for the formation of MOFs.35–37 
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Phosphonates linkers possess several ligation modes and thus form less predictable structures. 

However, they form stronger interactions than carboxylate and thus enhanced thermal 

stability can be achieved.38 The low solubility of phosphonate linkers also improves the 

chemical stability of phosphonate-based MOFs.34 Additionally, Zirconium MOFs have received 

significant coverage due in part to their robustness.10,13,39 The high valence nature of the Zr 

metal increases the electrostatic attraction between metal and ligand and results in a highly 

stable coordination bond.3 This stability makes Zr MOFs another ideal candidate for application 

as a functional solid-state sensor. 

In the previous chapter, hydrolysis was chosen as the desired technique for CWA hydrolysis. A 

range of Zr MOFs were screened as potential catalysts and MOF-808 was identified as the 

most effective zirconium-MOF catalyst. Additionally, it was interesting to learn whether the 

propensity of a framework towards hydration would affect its effectiveness as a hydrolysis 

catalyst.  It was postulated that understanding the different states of hydration and the 

interactions between water and the Zr6 node could provide further insight into the hydrolysis 

mechanism. A brief study was conducted to look at how hydration would affect the solid state 

PL properties of these MOFs.  

There has been some interest in the photoluminescent properties of AE MOFs upon exposure 

to water. MJ Manos et al.15 reported a Mg2+ AE MOF capable of red-shifted emission in the 

presence of trace quantities of water (0.05 - 5 % v/v) in various organic solvents. A partnership 

was established in conjunction with the Shimizu group, at the University of Calgary, Canada, 

who had synthesised two novel, isostructural, phosphonate ligand-based AE MOFs.40 The 

frameworks were assembled using a 2,4,6-tris(4-phosphonophenyl)pyridine linker (H6L) and 

either BaBr2 or SrBr2 to yield Ba4(H2L)2(H2O)x (MOF-1 (Ba)) and Sr4(H2L)2(H2O)x (MOF-2 (Sr)). The 

illustration on the next page shows the unit formulae of the AE MOFs along with a structural 

representation of the MOF-1 (Ba) unit cell. Subsequently, the hydration-dependent emission 
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profiles of MOF-1 (Ba) and MOF-2 (Sr) are studied, as is the sensitivity and reversibility of these 

emission processes.  

 

The strong fluorescence (ΦF = 91 %) and absorption of 4,4’-[1,4-phenylene-bis(ethyne-2,1-

diyl)]-dibenzoate (peb2-) in the UV region has been previously documented.41 A zirconium MOF 

composed of the peb2- linker, Zr6O4(OH)4(peb2-)6, has also been noted for the ability to 

photocatalytically degrade organic dyes in solution.42 A second collaboration was opened with 

the Forgan Group at the University of Glasgow, Scotland, who had synthesised a range of novel 

interpenetrated, 12-connected Zr MOFs. The frameworks were composed of various modified 

peb2- ligands. Due to the inherent fluorescence of the peb2- linker, the frameworks were 

analysed and their potential was gauged for possible applications as solid-state sensors.43 The 

illustration on the next page shows the range of MOFs which were synthesised in this study. 

LX-Me2 denotes the dimethyl ester of the corresponding peb2- linker, LX-H2 refers to the 
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carboxylic acid and Zr-LX refers to the resulting zirconate framework. The numerous 

modifications of the peb2- ligand with napthyl, dimethyl, fluoro and benzothiadiazolyl 

functionalities, did not affect the topology of the frameworks. The PL properties of the Zr 

MOFs is screened using ssPL in a wide array of environments including water, various solvents 

and several gasses.  

 

ssPL is shown to be an effective analytical technique for rapidly screening novel materials 

under a variety of conditions. Additionally, ssPL is shown to act as a useful tool for probing 

potential functional properties in these solid materials.   
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3.2 Experimental Methods 

Emission Measurements 

The fluorescence emission measurements were carried out using an Edinburgh Instruments 

FS5 Fluorescence Spectrometer. An SC-10 Front Face Sample Holder was used along with a 

solid-state cuvette. Solid-state quantum yield (QY) and lifetime measurements were also 

performed with the FS5 instrument, equipped with a standard xenon lamp (150W) and a 

standard PMT detector (R928P, Hamamatsu). Spectral and lifetime measurements were 

performed using SC-10 Front Face holder for Powders. QY measurements were performed 

using SC-30 Integrating Sphere module. An example of a QY measurement for MOF-1 (Ba) is 

shown below (Figure 3.1). 

 
Figure 3.1. Example measurement of QY evaluation for the initially dry MOF-1 (Ba). The blue 

spectrum corresponds to data obtained during a blank measurement. The red spectrum 

corresponds to the data obtained during a measurement in the presence of MOF-1 (Ba). The 

green rectangle represents the scatter range and the yellow rectangle shows the emission 

range.  

The humidity exposure experiments were performed using a custom-made humidity chamber. 

Beakers containing saturated salt solutions were used to vary the humidity in the chamber. 

The chamber was equilibrated to the appropriate humidity for 24 hours prior to sample 
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exposure. Samples were exposed to the respective humidity for an additional 24 hours prior to 

analysis. It should be noted that temperature fluctuations between 22 oC and 24 oC were 

observed during each 24 hour humidity chamber cycle. All samples were excited at their 

respective dry excitation wavelength. Unless otherwise stated, dry samples of MOF-1 (Ba), 

MOF-2 (Sr), Zr-L1, Zr-L2, Zr-L5, Zr-L6 and Zr-L7 were prepared by drying in a vacuum oven at 

reduced pressure at 80 oC for 1 hour. This procedure was established based upon the 

conditions which were required to reverse MOF-1 (Ba) and MOF-2 (Sr) from a wet (fluorescent 

yellow) colour to a dry (light yellow) colour. The 100 % humidity samples were prepared by 

wetting the samples directly with deionised water. For the wet/dry cycling of MOF-1 (Ba) and 

MOF-2 (Sr), the dry emission of each MOF was first analysed, this was followed by the liquid 

wetting of the dry sample and further emission analysis. The wet samples were then dried in a 

vacuum oven at 80 oC for 24 hours, the consecutive wet/dry cycle was conducted a total of 

three times. For solid state emission measurements in the presence of solvent analytes, dry 

MOF powders were directly wetted with the liquid solvent and their emission profiles were 

immediately recorded using their respective dry excitation wavelength. Solid powders of 

dimethyl esters of MOF linkers were analysed using the same procedures described above. 

UiO-67-NH2, UiO-67 BiPy, DUT-52, DUT-84, MOF-808 and Boron MOF were all vacuum dried 

for 24 hours at 80 oC before recording any fluorescence spectra. 

PXRD Measurements 

PXRD patterns were collected on a silicon zero-background sample holder using a Rigaku 

Miniflex 600 desktop XRD and a Copper K-α (1.5406 Å) source. Measurements were taken in 

the 3 – 45 o 2θ range with a step size of 0.02 o 2θ and a scan speed of 1 o 2θ min-1. 

Contact Angle Measurements 

Contact angle measurements were performed using an Attension-Theta optical tensiometer 

(Biolin Scientific), at room temperature. Using a glass microscope slide with a thin recess, 
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powdered sample was loaded into the recess and packed flat until level with the slide. Analysis 

was performed using the One-Attension software package.  

PL Measurements under N2 and CO2 environments 

N2 or CO2 gas was fed into a sealed quartz tube containing the MOF analyte. The gas feed was 

then removed and the quartz tube was immediately placed in a fluorometer and analysed as 

usual. 

PL Measurements under H2S environment 

Hydrogen sulfide measurements were conducted by dropping 4M HCl onto Na2S to generate 

H2S gas. This gas was fed into a sealed quartz tube containing the MOF analyte. The gas feed 

was then removed and the quartz tube was immediately placed in a fluorometer and analysed 

as usual. The outlet from this system was fed into a closed bubbler containing concentrated 

bleach solution to neutralize any excess H2S, the outlet from the bleach bubbler fed into a 

saturated solution of CuSO4. 

Wet/Dry Cycling of MOF-1 (Ba) and MOF-2 (Sr) 

For the wet/dry cycling of MOF-1 (Ba) and MOF-2 (Sr), each MOF powder was wetted directly 

with liquid water, analysed using ssPL, dried at 80 oC for 1 hour, and then analysed using ssPL 

and PXRD. This process was repeated twice more to yield ssPL and PXRD data for 3 sub-

sequent cycles. 

Synthesis of UiO-67-NH2-ML, UiO-67 BiPy-ML, DUT-52, DUT-84, MOF-808 and Boron MOF 

UiO-67-NH2-ML, UiO-67 BiPy-ML, DUT-52, DUT-84, MOF-808 and Boron MOF were all 

synthesised using a solvothermal reaction procedure. The exact method and characterization 

is shown in the experimental section of chapter 2. The frameworks were all vacuum dried for 

24 hours at 80 oC before recording any fluorescence spectra. No further characterization was 

conducted. 



131 
 

Synthesis of 2,3,6-tris(4-phosphonophenyl)pyridine ligand (H6L) (Performed by Z. H. Fard) 

2,4,6-tris(4-bromophenyl)pyridine was synthesised and characterised by Zoreh H. Fard at the 

University of  Calgary. The linker was synthesised via phosphorylation of 2,4,6-tris(4-

bromophenyl)pyridine via the Michaelis-Arbuzov reaction. The exact procedure, along with 1H, 

13C, 31P NMR and mass spectrometry characterization data may be found in reference 40. 

Synthesis and characterization of MOF-1 (Ba) and MOF-2 (Sr) (Performed by Z. H. Fard) 

MOF-1 (Ba) and MOF-2 (Sr) were both synthesised and characterised by Zoreh H. Fard at the 

University of Calgary, the exact procedure may be found in reference 40. MOF-1 (Ba) was 

synthesised via the solvothermal reaction of H6L with BaBr2 in DMF/H2O, single crystals were 

obtained using this methodology. MOF-2 (Sr) was synthesised using a similar procedure via the 

solvothermal reaction of H6L with Sr(OH)2 in DMF/H2O. No single crystals were obtained using 

this methodology but PXRD patterns of bulk MOF-1 (Ba) and MOF-2 (Sr) matched the 

simulated PXRD pattern obtained from the single crystal data of MOF-1 (Ba). Both MOFs were 

additionally characterized using thermal analysis, elemental analysis and gas adsorption 

analysis, this characterization data can be found in reference 40. 

Synthesis of L1, L2, L5, L6 and L7 ligands (Performed by R. J. Marshall) 

L1, L2, L5, L6 and L7 were all synthesised and characterized by Ross J Marshall of the Forgan 

Group at the University of Glasgow using the procedure outlined in reference 43. In brief the 

ligands were synthesised through the palladium cross-coupling of commercially available aryl 

bis-halides and methyl 4-ethylbenzoate to form the corresponding dimethyl ester. The 

dimethyl esters were than saponified to yield the corresponding dicarboxylic acid ligand. The 

exact procedure, along with 1H, 13C, and mass spectrometry characterization data may be 

found in reference 43.  
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Synthesis and characterization of Zr-L1, Zr-L2, Zr-L5, Zr-L6 and Zr-L7 (Performed by R. J. 

Marshall) 

The iso-structural Zr-L1, Zr-L2, Zr-L5, Zr-L6 and Zr-L7 were all synthesised and characterized by 

Ross J Marshall of the Forgan Group at the University of Glasgow using a procedure outlined in 

reference 43. In brief, each MOF was synthesised in DMF using solvothermal reaction 

conditions, L-proline was used to modulate all bulk syntheses with the exception of Zr-L5 for 

which benzoic acid was used. The bulk crystalline phase of the material was analysed using 

PXRD (Figure 3.2). Single crystals were obtained using slightly modified procedures for each 

corresponding MOF. Each MOF was subsequently characterized using single crystal XRD, good 

agreement was shown between simulated PXRD data and the PXRD data for the bulk material 

(Figure 3.3). All of the MOFs were additionally characterized using thermal analysis and gas 

adsorption analysis, this characterization data can be found in reference 43. 

 

Figure 3.2. PXRD comparison of the Zr MOFs synthesised during this study. The inset is an 

expanded region of the high angle data. 
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Figure 3.3. Comparison of the calculated and experimental PXRD patterns of Zr-L1. The inset is 

an expanded region of the high angle data. 
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3.3 Solid State Photoluminescence of Zirconium MOF CWA Catalyst Candidates 

The hydrolysis of CWAs relies on H2O to facilitate the degradation. The previous chapter 

looked at a number of Zirconium MOFs as potential hydrolysis catalysts for CWA degradation. 

The availability of uncoordinated Zr4+ sites is the key to effectively catalysing phosphoester 

hydrolysis. MOF-808, a 6-connected framework, was found to be the most potent catalyst for 

hydrolysing both the simulant DMNP and the nerve agent VX. MOFs are generally composed of 

linkers which possess some degree of conjugation thus bestowing upon them a 

photoluminescent profile. The water absorption properties of zirconium MOFs13 has been 

previously noted and there have also been several reports of hydration dependant 

fluorescence in MOFs.15,25,44 It was therefore of interest to see if the propensity of a zirconium 

MOF to become hydrated could be monitored using ssPL spectroscopy, and if such a change 

could be correlated to the frameworks effectiveness as a hydrolysis catalyst.  

UiO-67-NH2-ML, UiO-67 BiPy-ML, DUT-52, DUT-84, MOF-808 and Boron MOF were all 

synthesised using a solvothermal reaction procedure described in the experimental section of 

chapter 2. These frameworks were then all vacuum dried for 24 hours at 80 oC. ssPL emission 

spectra were then recorded for each dry MOF. The normalised ssPL emission spectra are 

shown in Figure 3.4. The frameworks all showed a λmax emission profile in the purple-blue 

region. Upon wetting with liquid water, the emission spectrum of each framework was 

recorded using their corresponding dry ex wavelength. No measureable change was observed 

in the emission λmax upon wetting. It can therefore be assumed that hydration of the Zr6 cluster 

produces no effect sufficient enough to perturb the relaxation pathway of the frameworks. 

MOF-808, DUT-52, and DUT-84 are all assembled from rigid organic linkers and so there is no 

possible ligand rotation which can arise from the presence of H2O in the framework pores. 

However, the large borane linker composing Boron MOF possesses some rotational freedom, 

the distance between the alternating linkers is however too great for any π-stacking 

interactions to occur. Any ligand rotation in Boron MOF is therefore insufficient enough to 
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offer any alternative relaxation pathways. UiO-67-NH2-ML possesses an amine functionality 

and UiO-67 BiPy-ML contains imine groups, both can form hydrogen-bonding interactions with 

water, it is therefore surprising that no measureable change in emission λmax is observed upon 

wetting.  

No measureable hydration-dependant fluorescence response was detected for the zirconium 

MOFs which were tested. The final part of this chapter explores an alternative series of 

Alkaline Earth MOFs and interpenetrated zirconium MOFs composed of flexible ditopic linkers.  

 

Figure 3.4. Normalised solid-state fluorescence emission spectra of a) UiO-67 NH2-ML (ex = 361 

nm), b) UiO-67 BiPy-ML (ex = 372 nm), c) DUT-52 (ex = 345 nm), d) DUT-84 (ex = 378 nm), e) 

MOF-808 (ex = 370 nm) and f) Boron MOF (ex = 345 nm) under wet and dry conditions. 
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3.4 Solid-State Photoluminescence in Alkaline Earth MOFs 

Two novel AE MOFs were synthesised by Zoreh H. Ford of the George K. H. Shimizu Group at 

the University of Calgary. Both MOFs were synthesised from 2,4,6-tris(4-

phosphonophenyl)pyridine ligand (H6L) and either BaBr2 or Sr(OH)2 via solvothermal reaction. 

MOF-1 (Ba) contained Barium, MOF-2 (Sr) contained Strontium. Despite containing two 

different AE metal centres, both frameworks were iso-structural and can be described by the 

general formula M4(H2L)2(H2O)x where M = Ba2+ or Sr2+. Upon synthesis of these materials, it 

was noted that they possessed obvious emissive properties. There has been some interest in 

the photoluminescent properties of AE MOFs upon exposure to water. MJ Manos et al.15 

reported a Mg2+ AE MOF capable of red-shifted emission in the presence of trace quantities of 

water (0.05-5 % v/v) in various organic solvents. At the time of writing, only a single report 

existed of a MOF which demonstrates a gradual emissive shift upon exposure to increasing 

degrees of relative humidity.12 Towards the end of this chapter, another example of such an 

effect is presented. Drawing upon the interesting AE MOF photoluminescent properties 

described in previous studies, MOF-1 (Ba) and MOF-2 (Sr) were thoroughly probed over a 

series of studies. 

3.4.1 Hydration 

The study was inititated by examining the solid-state emission of MOF-1 (Ba), MOF-2 (Sr) and 

H6L under dry conditions. Figure 3.5 shows the respective overlapped excitation and emission 

spectra of MOF-1 (Ba), MOF-2 (Sr) and H6L. The dry linker exhibited a fluorescent emission 

centred on λem = 421 nm (λex = 371 nm). The emission of the H6L ligand falls within the typical 

range observed for π → π* (λ = 200 – 400 nm) and n → π* (λ = 400 – 700 nm) transitions and 

so it is highly likely that the emission is derived from these electronic transitions. Dry, as 

synthesised MOF-1 (Ba) (λex = 330 nm, λem = 446 nm) and MOF-2 (Sr) (λex = 330 nm, λem = 500 

nm) both exhibited a red shifted emission when compared to the H6L linker (Figure 3.5), along 

with a slightly increased quantum yield (ΦF) (Table 3.1). The red-shifted emission of the AE 



137 
 

MOFs in relation to the dry H6L can be attributed to the electron withdrawing effects of the AE 

metals upon the linker. The greater red-shift of MOF-2 over that of MOF-1 can be attributed to 

the higher charge density of the Sr2+ ion.15 For π-stacking to occur, the distance between the 

conjugated systems layers must be no larger than 4.2 Å. The distance between the H6L is 

greater than this physical limit and this therefore rules out inter-ligand charge transfer. For 

metal-ligand charge (MLCT) transfer to occur, transient oxidation of the AE metal would have 

to occur due to the partial transfer of electrons from metal to ligand. In MOF-1 and MOF-2, the 

respective Ba and Sr are already in the maximum oxidation state of +2, this precludes MLCT as 

no further oxidation is possible. Reduction of an AE metal from the +2 to +1 oxidation is also 

not feasible due to their extremely negative reduction potential; this excludes ligand-metal 

charge transfer (LMCT) as an electronic transition.45 It can therefore be assumed that the red-

shifted emission of both MOF-1 and MOF-2 can be attributed to metal perturbed intra-ligand 

charge transfer. This is confirmed through a number of conditional assessments that were 

performed throughout the study. 

Table 3.1. Solid-state QY measurements of both MOF-1 (Ba) and MOF-2 (Sr) in representative 

states of hydration (λex = 330 nm). Reported values are based on triple independent 

measurements with all values showing less than 0.7% variance (σ2). 

 

   
MOF-1 

(Ba)     
MOF-2 

(Sr)   Ligand 

 Dry Wet Redried Dry Wet Redried   

Mean 
QY % 9.9 16.1 7.1 8.7 14.3 6.4 7.2 
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Figure 3.5. Normalized excitation (blue) and emission (red) spectra of a) powdered dry H6L (λex 

= 371 nm, λem = 421 nm), b) powdered dry (prior to treatment with H2O) MOF-1 (Ba) (λex = 330 

nm, λem = 446 nm), c) powdered wet (with H2O) MOF-1 (Ba) (λex = 330 nm, λem = 500 nm), d) 

powdered re-dried  MOF-1 (Ba) (λex = 330 nm, λem = 500 nm), e) powdered dry (prior to 

treatment with H2O) MOF-2 (Sr) (λex = 330 nm, λem = 500 nm), f) powdered wet (with H2O) 

MOF-2 (Sr) (λex = 330 nm, λem = 500 nm), g) powdered re-dried (H2O removed in vacuum oven) 

MOF-2 (Sr) (λex = 330 nm, λem = 500 nm). 

Upon wetting with liquid water, both MOFs exhibited a visible colour change from pale-yellow 

to bright-yellow. The solid state emissive properties of these materials were then investigated 

in their ‘hydrated’ states. Figure 3.6 shows the difference in emission between dry and 
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hydrated MOF-1 and MOF-2. Both materials exhibited sharp excitation peaks at 408 nm during 

excitation measurements. To allow for a more direct comparison between samples under 

various conditions, a mutual excitation wavelength (λex = 408 nm) was chosen. Upon direct 

wetting with liquid water, both frameworks experience a red-shift in emission into the green 

region with a  λmax of 522 nm and 504 nm for MOF-1 and MOF-2 respectively. The change in 

λmax upon hydration is significantly more drastic in MOF-1 in comparison to MOF-2. It should 

also be noted that the quantum yields were recorded for the dry and hydrated materials 

(Table 3.1) both materials exhibited a significant increase in quantum yield upon hydration, 

thus reinforcing their utility as sensors for the detection of water.  Interestingly enough, it was 

also noted that upon drying both hydrated MOFs at 80 oC under reduced pressure, they 

exhibited a near full reversion in emission to that of the dry state.  

 

Figure 3.6. Normalized solid state emission spectra (λex = 408 nm) of dry MOF-1 (Sr) and MOF-2 

(Sr) along with their hydrated counterparts after exposure to liquid water. 
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3.4.2 Detection Limit – A Humidity Study 

To further demonstrate the utility of the AE MOFs as functional hydration sensors, the 

sensitivity of their response was investigated. First, a variety of gasses were trialled to see if 

they would elicit a change in emission. The materials were subjected to environments of CO2, 

N2 and H2S but no change in λmax was observed. Both MOFs were also subjected to a polar 

protic solvent and a polar aprotic solvent in the form of MeOH and DMSO. Again, no change in 

λmax was observed. The hydration detection limit was then measured for each framework. With 

the help of a range of saturated salt solutions, the MOFs were subjected to varying degrees of 

relative humidity (% RH). The RH values were chosen based upon the availability of the salts 

which could be used to achieve them. A temperature variation from 22 oC to 24 oC was 

observed throughout the study. Before a measurement was taken, each MOF was subjected to 

the chosen humidity for 24 hours. A remarkable observation was made in the case of MOF-2; 

the incremental increases in RH (from 29 % RH onwards) exhibited a gradual red shift in the 

emission λmax (Figure 3.7). At the time that the study was performed, there existed only one 

other example of a MOF which exhibited a spectral change upon exposure to increasing 

degrees of RH.12 

Figure 3.7. Normalized emission of powdered MOF-2 (Sr) exposed to different degrees of 

humidity showing a gradual red shift in λmax with increasing humidity (λex = 408 nm). 
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For the case of MOF-1, no change in emission λmax was observed upon increasing the RH. A 

small change was observed at 85 % RH. However, upon reaching 100 % RH, a drastic red-shift 

in emission is observed (Figure 3.8). Given more time, it would be interesting to investigate 

just how sensitive the hydration-dependant emissive response is between 85 – 100 % RH. 

Consequently, two materials have been investigated which both function as water sensors but 

which differ drastically in the emissive response that they elicit. MOF-1 acts as a binary sensor 

with a high detection (85 % RH) threshold whereas MOF-2 possesses a lower detection limit 

(29 % RH) and provokes an analogue response to varying degrees of hydration stimuli.  

Figure 3.8. Normalized emission of powdered MOF-1 (Ba) exposed to different degrees of 

humidity showing a sharp red shift in λmax during complete hydration (λex = 408 nm).  

3.4.2 Reversibility of Hydration 

Figure 3.9 shows a visual representation of both MOF-1 and MOF-2 upon liquid wetting and 

dehydration, a change in colour is observed for both frameworks which can clearly be 

distinguished by eye. Three wet/dry cycles were performed to investigate the reversibility of 

the emission along with the reusability of the material. The λmax was noted during each wet and 

dry state and can be seen in Figure 3.10. There appeared to be little change in the emission 

λmax for MOF-1 with a slight change in the λmax in MOF-2 after the 3rd drying cycle. Three cycles 
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were deemed sufficient to demonstrate the reversibility of the hydration-dependent emission 

process. 

 

Figure 3.9. a) The colour change of MOF-1 in response to hydration. b) The colour change of 

MOF-2 in response to hydration. 

 

Figure 3.10. A graph demonstrating the reversible emission response upon hydration and 

dehydration of MOF-1 and MOF-2. 

It should be noted that during the cycling studies, the λmax dry of MOF-1 (Ba) does not match the 

earlier λmax dry of MOF-1 (Ba) when wet/dry (Section 3.4.1) and humidity studies (Section 3.4.2) 

were performed. The cycling studies were performed more than 6 months after the wet/dry 

and humidity studies described earlier in this chapter. It is therefore possible that some 

structural change may have occurred over this time period. Unfortunately, this discrepancy 

was not noted at the time and was not investigated further. The long-term storage stability of 

both materials requires further examination.  
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During each wet/dry cycle of MOF-1 and MOF-2, PXRD analysis was performed to more closely 

examine any changes in crystallinity upon wetting and drying of the materials. With each cycle, 

both MOF-1 and MOF-2 showed a gradual shift towards amorphization (Figure 3.11), evident 

by the increased broadening present on the diffractograms after each subsequent cycle. If a 

simultaneous inference is to be made from the PXRD and emission data after each cycle, it can 

be assumed that long range order has little impact on the emissive properties of both 

materials as there is little change in the λmax despite a loss in crystallinity. It is however 

interesting that these frameworks degrade after exposure to H2O despite the fact that they’re 

synthesised in a mixture of H2O/DMF. This is likely the result of the malleability of the AE metal 

coordination spheres.29–31 After a wetting cycle, the fast dehydration of these frameworks at a 

temperature of 80 oC and reduced pressure leads to the rapid desolvation of the AE 

coordination sphere. This subsequently leads to the formation of a less ordered dehydrated 

phase. An additional tentative explanation is that upon hydration, the increased pliability of 

the AE coordination arc allows the H6L linker to engage in disordered π-stacking interactions. 

This would explain the prominent colour change of both materials along with the red-shift in 

the emission λmax upon hydration. This is also supported by the greater difference between the 

λmax wet and λmax dry in MOF-1; the larger coordination sphere of Ba2+ results in a more flexible 

ligand configuration which is able to form stronger and more proximal π-stacking interactions. 

For completion, it was also noted that the solid-state emission of H6L was unaffected by 

wetting with liquid water. The sensing response of these materials is therefore facilitated by 

the hydration of the AE coordination sphere and due to the loss of crystallinity, relies solely on 

the short range structure of the frameworks. This is a notable example in MOF research which 

often places significant emphasis on the retention of structural order when evaluating the 

value of a functional property.  
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Figure 3.11. PXRD pattern overlay of MOF-1 (Ba) and MOF-2 (Sr) after subsequent Wet/Dry 

cycles showing a decrease in crystallinity after each hydration. The broadening/loss of 

intensities of the lower angle (3 – 15 o 2θ) diffraction peaks indicates a deterioration of long 

range order. The black diffractograms represent the as-synthesised materials. 
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In summary, two new AE MOFs have been synthesised and their functional properties were 

characterized. Their interesting hydration-dependent emissive properties were noted and 

probed further with solid-state fluorescence. Based on the MOFs different emissive response 

to varying degrees of hydration, the difference in their utility as potential water sensors was 

highlighted. Finally, the origin of the emission was de-convoluted further by examining the 

decline in crystallinity upon exposure to subsequent wet/dry cycles despite the hydration-

dependent fluorescence being reversible. Due to discrepancies in later emission 

measurements, the long term storage stability of these materials need to be further 

investigated. 
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3.5 Solid State Photoluminescence in a series of Iso-Structural Zirconium MOFs 

When designing MOF sensors, the vast array of building blocks and synthetic strategies present 

a seemingly endless amount of possibilities for assembling chemically versatile structures. 

Stability can often be a compromising factor when designing new frameworks; there are 

numerous reports of MOFs with poor ambient and aqueous stability.26–28 Fortunately, 

Zirconium MOFs have received significant coverage due in part to their robustness.10,13,39 The 

high valence nature of the Zr metal increases the electrostatic attraction between metal and 

ligand and results in a highly stable coordination bond.3 This stability makes Zr MOFs ideal 

candidates for application as functional solid-state sensors.  

In this next section, a range of iso-structural Zr MOFs are investigated and ssPL is shown to be 

a very simple yet powerful tool for examining their functional properties. A series of studies 

were conducted on a novel series of Zr MOFs which were synthesised and characterized by 

Ross J. Marshall of the Forgan Group at the University of Glasgow. The aforementioned Zr 

MOFs are composed of the chromophoric peb2- linker41 with various substitutions present on 

the central aromatic ring. Due to the length and dimensionality of the linker, all the resulting 

frameworks were 12-connected and interpenetrated. Based on a previously reported 

procedure, single crystals of each framework were obtained by modulating the MOF syntheses 

with L-proline.11  

3.5.1 Hydration 

The excitation pathway of Zr MOFs composed of conjugated linkers has been studied and has 

been shown to best follow a Ligand-Cluster Charge-Transfer (LCCT) transition mechanism with 

photo-absorption occurring on the linker followed by charge transfer onto the Zr6 cluster.46 The 

optical properties of Zr-L1 were previously reported by Kordova et al.42 The high aqueous 

stability of the MOF, coupled with the strong light absorption in the visible region, led to an 

enhanced application of Zr-L1 as a photo-catalyst for the photodegradation of waste organic 

dyes in aqueous medium. Studies have also been performed to determine the origin of the 
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emissive properties of the L1-H2 ligand which are derived from the high degree of π-conjugation 

present in the ligand. This conclusion is based on DFT calculations which have confirmed that 

increasing the number of aromatic and alkyne units in a chromophore would naturally enrich 

the photo-absorption properties by enhancing the degree of conjugation.42 It was postulated 

that the introduction of various functionalities to the central aromatic unit of the peb backbone 

could result in some slightly altered photo-properties.  

Earlier in this chapter, the hydration-dependent emission profiles of some AE MOFs were 

studied, it was therefore of interest to see how the emissive profiles of each Zr-LX MOF differed 

upon wetting with liquid water. To have a better insight into the origin of these 

photoluminescent properties, the study of the peb Zr MOFs was initiated by examining the wet 

and dry solid-state emissive properties of the LX-Me2 molecules and Zr-LX MOFs. A direct 

comparison was made between and the wet and dry ssPL properties of each Zr-MOF and the 

corresponding dimethyl-ester (Figure 3.12). L1-Me2 (ex = 367 nm) exhibited an emission λmax of 

450 nm, in contrast to Zr-L1 (ex = 367 nm) which exhibited a similar emission profile with a blue 

shifted λmax of 407 nm. Similar emission profiles were also observed for L2, L6 and L7 methyl 

esters and the corresponding MOFs. The MOFs all exhibited a blue shifted λmax when compared 

to their LX-Me2 counterparts. This is to be expected as the incorporation of the ligands into a 

framework acts to separate them and removes their ability to form π-stacking interactions and 

eliminates inter-ligand charge transfer in favour of the LCCT transition. The only exception was 

L5, a tetra-fluorinated analogue of -L1. This could be tentatively explained by the opposing 

quadrupole moment of a C-F substituted ring compared to a C-H, which would form arene-

perfluoroarene π-stacking interactions in the solid-state of the methyl ester linker.47  However, 

there were no changes in the solid state emission λmax dry and λmax wet of the LX-Me2 linkers, which 

is unsurprising as the ligands are insoluble in water. This is in contrast to the Zr-LX MOFs (with 

the exception of Zr-L5) which all exhibited a hydration-dependent emission, this implied that the 

substituents involved in the LCCT transition were sensitive towards hydration. 
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Figure 3.12. Normalised solid-state and solution state fluorescence emission spectra of:  

a) Zr-L1 Solid State As synthesised and Wet (ex = 367 nm), L1-Me2 Solid State Dry and Wet (ex 

= 367 nm), L1-Me2 dissolved in DMF (10-5 M; ex = 367 nm); b) Zr-L2 Solid State As synthesised 

and Wet (ex = 396 nm), L2-Me2 Solid State Dry and Wet (ex = 380 nm), L2-Me2 dissolved in DMF 

(10-5 M; ex = 376 nm); c) Zr-L5 Solid State As synthesised and Wet (ex = 384 nm), L5-Me2 Solid 

State Dry and Wet (ex = 370 nm), L5-Me2 dissolved in DMF (10-5 M; ex = 365 nm); d) Zr-L6 Solid 

State As synthesised and Wet (ex = 403 nm), L6-Me2 Solid State Dry and Wet (ex = 397 nm), L6-

Me2 dissolved in DMF (10-5 M; ex = 408 nm); e) Zr-L7 Solid State As synthesised and Wet (ex = 

468 nm), L7-Me2 Solid State Dry and Wet (ex = 450 nm), L7-Me2 dissolved in DMF (10-5 M; ex = 

443 nm) 
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For Zr-L1, a small red-shift in λmax from 407 nm to 423 nm was observed upon wetting with liquid 

water. Also, a drop in quantum yield was observed from 17.3 down to 12.3 % ΦF (Table 3.2). 

Table 3.2. Values of solid-state fluorescence quantum efficiencies collected for wet and dry 

samples of the listed MOFs. 

    Dry     Wet   

MOF λex (nm) λmax (nm) ΦF (%) λex (nm) λmax (nm) ΦF (%) 

Zr-L1 367 409 17.3 367 421 12.3 

Zr-L2 396 482 16.4 396 486 21.2 

Zr-L5 384 491 9.1 384 492 9.0 

Zr-L6 403 501 1.9 403 534 1.7 

Zr-L7 468 500 1.6 468 586 1.7 

 

As there is no change in emission upon wetting of the L1-Me2 linker, the red-shift in emission of 

Zr-L1 is likely derived from the hydration of the Zr6 cluster. This is further supported by a previous 

report of water forming hydrogen-bonding interactions with the –OH moieties of the 

Zr6O4(OH)4
12- cluster in UiO-67 type MOFs.48  A similar trend of red-shifted emission λmax was 

observed for Zr-L2, Zr-L6 and Zr-L7 upon liquid wetting. Zr-L6 (ex = 403 nm) displayed a red-

shifted emission from a λmax dry of 501 nm to a λmax wet 534 nm.  Zr-L7 (ex = 468 nm) exhibited an 

ever greater red-shift of 86 nm from a λmax dry of 500 nm to a λmax wet 586 nm. It is believed that 

the hydration of the nodes, particularly for the highly conjugated Zr-L6 and Zr-L7, raises the 

HOMO levels for the LCCT transition. This change in band gap results in a red-shifted emission 

upon hydration. Figure 3.13 shows a visual representation of the more drastic colour change 

observed for Zr-L6 and Zr-L7  upon wetting. The decrease in the visual brightness of Zr-L1 should 

also be noted as this correllates with a drop in quantum yield (Table 3.2) upon wetting of the 

material. Both Zr-L6 and Zr-L7 posses a more conjugated linker backbone, the additional 

conjugation combined with the LCCT transitions produces a larger red-shift upon hydration of 

the Zr6 node. The greater hydration dependant bathochromic shift of Zr-L7 over that of Zr-L6 can 

potentially be attributed to additional cooperative hydrogen bonding occuring on the L7 linker 

in the presence of water. This is further supported in section 3.5.2 when a red-shifted emission 

is observed in Zr-L7, but not Zr-L6, upon exposure to a polar-protic solvent. 
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Figure 3.13. Dry (top images) and Wet (bottom images) Zr-L1 to Zr-L7 on exposure to a long 

wave UV lamp (365 nm).  

In addition to water, ssPL measurements were also performed on the Zr-LX MOFs in the 

presence of CO2, N2 and H2S. Small changes were observed in the emission λmax but none of the 

responses were large enough to be commendable (Figure 3.14). 
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Figure 3.14. Normalised solid-state fluorescence emission spectra of a) Zr-L1 (ex = 367 nm), b) 

Zr-L2 (ex = 396 nm), c) Zr-L5 (ex = 384 nm), d) Zr-L6 (ex = 403 nm) and e) Zr-L7 (ex = 468 nm) 

under a variety of conditions including gas phase reagents. 

However, seeing as several of the MOFs produced a large enough shift in λmax on addition of 

water, a series of humidity experiments were conducted to probe their effectiveness as water 

sensors. For the AE MOFs, different saturated salt solutions were used to produce various 

relative humidities. The same methodology was used to probe the emission response of the Zr-

LX MOFs. A temperature variation from 22 oC to 24 oC was observed throughout the study. Zr-

L5 showed no change in emission over the gradual humidity increases. Fluorinated 

hydrocarbons have been documented for their hydrophobicity,49,50 the lack of hydration-

dependent emission in Zr-L5 is likely derived from the hydrophobicity of the L5 

tetrafluorinated linker which repels water from accessing the MOF pores and hydrating the 
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zirconium cluster. For the case of Zr-L2, the emission shift upon wetting with liquid water was 

too small to make any discernible observations in the presence of increased RH. Zr-L1, Zr-L6 

and Zr-L7 all showed varying degrees of change, as shown in Figure 3.15. 

 

 

Figure 3.15. Normalised solid-state fluorescence emission spectra of a) Zr-L1 (ex = 367 nm), b) 

Zr-L2 (ex = 396 nm), c) Zr-L5 (ex = 384 nm), d) Zr-L6 (ex = 403 nm) and e) Zr-L7 (ex = 468 nm) 

after subjection to varying relative humidities. 

Zr-L1 showed little change in λmax until 78 % RH, at which point a red-shifted emission was 

observed. The shift was however not gradual.  Given more time, it would have been interesting 

to have recorded the ΦF to see if a gradual decrease was observed upon increasing the RH. 

With Zr-L6, there was a gradual decrease in intensity of the emission bands centred on 425 and 

470 nm. There was also a relative increase and red-shift (~ 10 nm) in the band centred around 

490 nm up to 78 % RH. Given more time, investigating additional increments between 78 and 
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97 % RH could show whether a more gradual hydration-dependent emission is observed in this 

humidity range. Upon full hydration (97 % RH), there was a sharp red-shifted emission to 534 

nm. The emissive response upon full hydration was significant, but the change upon exposure 

to lower degrees of RH was not large enough to be accurately distinguishable. The most 

encouraging humidity-dependant change was observed for the case of Zr-L7 (Figure 3.16). An 

immediate humidity-dependent red-shift was observed at just 11 % RH with an increase in the 

emission intensity at the band centred around 520 nm compared to the 500 nm band. 

Between 11 – 56 % RH, there is a progressive disappearance of the 500 nm emission band. A 

further sharp change in λmax was observed at 77 % RH followed by the maximum shift to 586 

nm upon full hydration. The gradual humidity-dependent colour change can be summarised by 

the chromaticity diagram shown in Figure 3.16, there is a steady change in the emission from 

the deep green region to the yellow/orange. Upon full hydration, Zr-L7 was vacuum dried at 

120oC, the emission was fully reversed and there was no deterioration in crystallinity, as shown 

by PXRD (Figure 3.17). Based on the sensitivity of the hydration-dependent emission, the 

reversibility of the process and the stability of the material, Zr-L7 shows great promise for 

potential applications in water sensing.  

Varying degrees of hydration all elicited some form of emission response in the Zr-LX MOFs. 

The only exception was Zr-L5 which showed absolutely no hydration-dependent emission. This 

was of particular interest as there have been numerous reports of hydrophobicity upon 

fluorination of organic compounds. The hydrophobicity of Zr-L5 was investigated through the 

use of tensiometry.  
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Figure 3.16. Normalised solid-state fluorescence emission spectra of Zr-L7 (ex = 468 nm) in the 

presence of increasing relative humidity. Inset shows the chromaticity diagram of Zr-L7 in the 

presence of different relative humidities.  

 

Figure 3.17. A PXRD overlay showing as-synthesised Zr-L7 and Zr-L7 after wetting with liquid 

water followed by drying under vacuum at 120 oC for 1 hour. 

Tensiometry allows one to measure the surface tension of a liquid on a solid surface by 

recording the contact angle of the liquid on the surface.51 With water as the liquid, a low 

contact angle demonstrates a propensity for ‘wetting’ and is indicative of a hydrophilic 
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material. A high contact angle suggests that there is a degree of ‘repulsion’ between the liquid 

and the surface and so indicates that the material is hydrophobic. Zr-L1 possesses the un-

functionalised (non-fluorinated) peb2-
 linker and was therefore used for the first measurement 

to provide a point of comparison. 

A contact angle of 73.8o was obtained (Figure 3.18), this falls within the range of a hydrophilic 

material.52 This hydrophilicity likely permits the hydration of the zirconium node and explains 

why the Zr-L1 framework is able to produce a red-shifted LCCT emission upon liquid wetting. 

The same measurement was performed using Zr-L5, a contact angle of 166.7o
 was obtained. 

Figure 3.19 shows the water droplet on the surface of Zr-L5, the droplet appears to be almost 

spherical. The strong repulsion between the Zr-L5 surface and H2O highlights just how 

hydrophobic the framework is. The hydrophobicity also explains why the emission λmax of the 

framework remains completely unaffected upon wetting with water. It was also shown that 

using ssPL is a fast and cheap method for identifying the functional properties in a range of 

materials.  

 

Figure 3.18. Contact angle measurements of water on a surface of packed Zr-L1, demonstrating 

a strong propensity for surface wetting. 
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Figure 3.19. Contact angle measurements of water on a surface of packed Zr-L5, demonstrating 

little propensity for surface wetting. 

3.5.2 Solvatochromism  

Solvatochromism is the capacity of a material to change colour as a result of increasing or 

decreasing solvent polarity.53 Upon completing a variety of humidity studies, the Zr-LX series of 

MOFs were also tested for their capacity to respond to a number of solvent environments. This 

study was again conducted using solid-state fluorometry by measuring any changes in the 

emission λmax. For completion, a wide range of polar-protic, polar aprotic and non-polar 

solvents were utilised (Figure 3.20).  A variety of responses were observed for all of the 

frameworks, with the exception of Zr-L5 for which the emission λmax remained constant in the 

presence of all of the liquid analytes. Zr-L6 exhibited very little change also, with only EtOH 

perturbing the system enough to cause a blue-shift in emission λmax by increasing the intensity 

of a lower wavelength emission band.  When Zr-L1 was tested, the most interesting change 

was in the presence of toluene which resulted in a red-shifted emission in λmax. This can 

potentially be attributed to toluene forming π-stacking interactions with the aromatic 
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backbone of the L1 linker in the Zr-L1 framework, this would permit a charge transfer 

transition between the L1 linker and the toluene. Utilising additional aromatic solvents in these 

studies, such as benzene, could be a useful way to confirm this effect. Whilst a number of 

other small solvent-dependent changes were noted for Zr-L1, there appeared to be very little 

order and so no overall trend was observed.  

 

Figure 3.20. Normalised solid-state fluorescence emission spectra of a) Zr-L1 (ex = 367 nm), b) 

Zr-L2 (ex = 396 nm), c) Zr-L5 (ex = 384 nm), d) Zr-L6 (ex = 403 nm) and e) Zr-L7 (ex = 468 nm) 

in the presence of different solvents.  

Zr-L7 produced a distinct and measurable change in emission λmax in the presence of each 

solvent that was tested. The chromaticity diagram for Zr-L7 (Figure 3.21) illustrates the range 

of colours which were observed. The unique changes in λmax highlight the sensitivity of the 

relaxation pathways in Zr-L7. It should also be noted that the solid-state emission profiles of 

L7-Me2 were also measured and no change in λmax was observed (Appendix Section 7.2). This 
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goes on to show the necessity of the LCCT transition which requires the framework topology to 

produce the observed solvent-dependent emission change. The most significant changes were 

witnessed when Zr-L2 was subjected to a range of solvents. A solvatochromic trend was 

observed where an increase in the solvent dipole moment resulted in a blue-shifted emission 

λmax. The chromaticity diagram for Zr-L2 (Figure 3.22) illustrates the various colours which were 

observed. 

 

Figure 3.21. Chromaticity diagram of Zr-L7 (ex = 468 nm) in the presence of various solvents. 

 

 

Figure 3.22. Chromaticity diagram of Zr-L2 (ex = 396 nm) in the presence of various solvents. 
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To further probe this effect, Zr-L2 was additionally exposed to IPA, methanol and acetone 

(Figure 3.23). The emission λmax of Zr-L2 was still in good agreement with the dipole moment of 

these additional solvents. A moderate trend was therefore established between the emission 

λmax and the dipole moment of the liquid analytes with an R2 = 0.78. Toluene participates in π-

stacking interactions with the linker L2 linker and H2O engages in node hydration, these two 

solvents were therefore treated as outliers and omitted from the trend. The subtle changes in 

emission are believed to derive from the rotational conformations of the bridging 

dimethylphenylene unit on the L2 ligand backbone. In fact, there appear to be two separate 

emission bands (468 nm and 482 nm) which are assumed to originate from the twisting of this 

ligand. It should again be noted that in the solid state, L2-Me2 exhibited no change in emission 

λmax upon wetting with various solvents (Appendix Section 7.2), thus inferring the necessity of 

the hybrid MOF structure.  

 

Figure 3.23. Normalised solid-state fluorescence emission spectra of Zr-L2 (ex = 396 nm) in the 

presence of a wide range of solvents. Inset is a plot of solvent Dipole Moment versus the 

corresponding Zr-L2 emission max achieved by solvent wetting. H2O and Toluene are shown as 

outliers. 
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3.6 Summary and Conclusion 

Using solid-state photoluminescence, a number of interesting properties have been 

investigated. Initial analysis of a number of Zirconium MOF catalyst candidates did not yield 

any information and no hydration dependant fluorescence was observed. Fortunately, upon 

analysing two novel AE MOFs, hydration-dependant fluorescence was observed. MOF-1 (Ba) 

exhibiting a sharp red-shifted emission upon liquid wetting/above 84 % RH. MOF-2 (Sr) 

displaying a gradual and more sensitive response to increases in relative humidity, up to 85 % 

RH. This was the first example of an AE MOF which was able to produce a gradual humidity-

dependent emissive response. The hydration-dependent emissive shift is thought to be 

derived from the malleability of the AE metal coordination arc upon hydration of the 

framework which results in the formation of π-stacking in the hydrated state. These changes in 

emission were found to be reversible over a number of cycles, but each framework became 

increasingly amorphous after subsequent cycles. This was notable because of the emphasis 

that is often placed upon crystallinity when assessing a MOFs function. However, the long term 

storage stability of both materials requires further examination. All of these changes were 

probed using ssPL spectroscopy.  

A series of novel interpenetrated Zr peb2- based MOFs were also examined. The frameworks 

were iso-structural but possessed different functionalities on the central aromatic ring of the 

peb2- linker. The functional properties of these frameworks were analysed using solid state 

photoluminescence spectroscopy and a variety of notable features were observed based on 

the different functionalities of the peb2- linker. The dimethyl functionality in Zr-L2 resulted in a 

range of solvatochromic emission shifts based upon the dipole moment of different guest 

solvent molecules. Zr-L7 exhibited hydration dependant fluorescence which was sensitive to 

small varations in relative humidity. Finally, Zr-L5 which is composed of a tetrafluorinated 

linker was found to have no change in emission upon hydration. This prompted for the 

tensiometric analysis of Zr-L5. The framework was found to have the contact angle of a super 
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hydrophobic material. The study shows how small variations in linker functionality can lead to 

vastly different functional properties in MOFs. 

This chapter has brought attention to the effectiveness of ssPL as an analytical tool for the 

characterization of MOFs. ssPL is a relatively cheap, fast and effective way for screening subtle 

changes in MOFs in the presence of various guest molecules, be they solvents or gasses.  Using 

photoluminescence as a first point of protocol, to screen for various changes, further coupled 

with more in depth, application/property specific analysis is an effective way to probe the 

different functional properties which MOFs may exhibit. Photoluminescence is therefore an 

effective technique for probing functional properties in MOFs.  
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Chapter 4. Activation through Hydration of Zirconium MOF 

Nodes 

The work described in this chapter was previously published in the following journal: 

Y. Kalinovskyy, N. J. Cooper, M. J. Main, S. J. Holder and B. A. Blight, Dalton Trans., 2017, 46, 

15704–15709. 

MOF synthesis and characterization was all performed by the author of this thesis, as were all 

the hydrolysis studies involving DMNP. VM hydrolysis experiments were conducted at DSTL by 

N. Cooper and M. Main. 

4.1 Introduction 

In Zirconium MOFs, missing linker defects/coordination vacancies facilitate lewis acid catalysed 

reactions.1 These empty coordination sites should have an affinity for water. In the previous 

chapter, an unsuccessful attempt was made to measure the hydration of a series of zirconium 

MOF catalyst candidates using solid-state photoluminescence spectroscopy. An alternative 

approach to verifying hydration is taken in this chapter, one which ultimate leads to a modest 

enhancement in CWA simulant hydrolysis. This chapter describes a novel procedure for post-

synthetic activation, achieved through the hydration of zirconium MOFs which were 

synthesised by modulation with acetic acid.2  

A number of solvent free and mechanochemical routes have been reported for zirconium MOF 

assembly3,4; however, the vast majority of methods rely on solvothermal synthesis. 5,6 These 

hydrothermal techniques often employ high boiling point solvents such as dimethyl formamide 

(DMF) or dimethyl acetamide (DMA)7 along with a monotopic acid modulator.8,9 Benzoic acid, 

formic acid and acetic acid are some common examples of modulators. The modulator is 

essential for controlling the assembly of the structure and can readily influence the pore size, 

dimensionality and even the concentration of defects in the framework.8,10 An interesting 

example is the PCN-222/MOF-545, PCN-223 and PCN-224 series of zirconium MOFs which are 
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composed of the tetrakis(4-carboxyphenyl)porphyrin (TCPP) linker. Utilising dichloroacetic acid 

modulator results in the 8-connected PCN-222/MOF-545 framework, modulating the synthesis 

with acetic acid leads to the 12-connected PCN-223 framework, finally changing the modulator 

to benzoic acid will lead to PCN-224, a 6-connected zirconate MOF. Post synthesis, additional 

steps are required to ‘activate’ the MOF. Activation can simply refer to the desolvation of the 

MOF pores (i.e. removal of organic reaction solvent), it can also be used to describe the 

extraction of any free or bound modulator used during synthesis to create vacancies.10,11 For 

clarity, in this chapter the meaning of activation will be taken to be both of these. Zirconium 

MOFs are typically desolvated by the use of solvent exchange techniques where the MOF is 

soaked in a low boiling point organic solvent, this solvent is then exchanged a number of times 

before subjecting the material to vacuum drying at high temperatures (200 – 300 oC). 

Supercritical CO2 drying can also be employed for less structurally stable frameworks. 

Modulators can be removed either by high temperatures, which can compromise the 

structural integrity,12,13 or by post-synthetic exchange (PSE) for an alternative moiety. 14,15 

Herein, a novel, facile method is presented for the activation of three known zirconium MOFs; 

DUT-84 (6-connected),16 MOF-808 (6-connected),17 and defective UiO-66.10 The structures of 

the 3 activated MOFs involved in this study are shown in Figure 4.1. The protocol utilises 

microwave irradiation and water to facilitate the removal of the acetic acid modulator from 

the Zr6 SBU.   

Zirconium MOFs with missing linker defects/coordination vacancies1, such as MOF-808,17,18 Nu-

100019 and UiO-67-NH2
20 have been shown to effectively catalyse the degradation of 

organophosphorus chemical warfare agents (CWAs). In the presence of N-ethylmorpholine 

(NEM) buffer, dimethyl 4-nitrophenyl phosphate (DMNP; a well-established hydrolysis 

simulant)21,22 closely mimics the hydrolytic breakdown of V-series nerve agents such as VX and 

VM.20 In a reaction medium containing UiO-67-NMe2 and NEM buffer, a DMNP half-life (t1/2) of 

2 minutes is observed, a VX t1/2 of 1.8 minutes is witnessed using the same system.23 It should 

be noted that the defect content of UiO-67-NMe2 was not reported. 
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Figure 4.1: The structures of the 3 Zirconium MOFs involved in this study, µ-OH denotes a 

bridging hydroxyl species in the Zr6 cluster.  



168 
 

The hydrolysis of the P-O bond in DMNP to form dimethylphosphate (DMP) simulates the 

severance of the P-S bond of VX to form ethyl methylphosphonate (EMPA) (Figure 4.2), thus 

both compounds exhibit similar degradation kinetics.  

 

Figure 4.2: Stoichiometric hydrolysis reactions of: (Top) DMNP Simulant. (Bottom) VX Agent. 

In this chapter, as-synthesised and activated MOF-808, DUT-84 and UiO-66 are employed for 

the hydrolysis of selected organophosphorus contaminants. An attempt is also made to 

activate Boron MOF (Chapter 2), which offers some insight into its underperformance as a 

hydrolysis catalyst. The NEM buffered DMNP hydrolysis system is used to probe the 

degradation rates of the activated catalysts and compare them to the degradation rates of 

their as-synthesised counterparts. The MOFs are also tested for their ability to degrade the V-

series agent VM. When degrading V-series agents, P-S bond hydrolysis is highly desirable over 

that of P-O bond cleavage. P-O bond cleavage in V-series agents results in a degradation 

product of similar toxicity.24 Unlike DMNP, the screening of VM was conducted in the absence 

of buffer as the minimisation of additional reagents is essential for enhancing the practical 

application of these catalysts.  
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4.2 Experimental methods 

Instrumentation 

1H and 31P NMR spectroscopy was conducted at 298 K using a JEOL 400 MHz spectrometer with 

an auto-sampler. PXRD patterns were collected at 298 K on a silicon zero-background sample 

holder (a sample holder which presents no diffraction peaks) using a Rigaku Miniflex 600 

desktop XRD and a Copper K-α (1.5406 Å) source. Measurements were taken in the 3 – 45 o 2θ 

range with a step size of 0.02 o 2θ and a scan speed of 1 o 2θ min-1. A Netzsch STA 409 PC25 

instrument and an aluminium crucible was employed for all thermogravimetric analyses, 

heating rate: 5 °C min-1 in N2, 30 min isotherm at 150°C. A CEM Explorer Microwave Reactor 

with dynamic power cycling was used for all MOF activation steps.  

MOF-808 Synthesis and Characterization 

MOF-808 was synthesised using a slightly modified procedure reported by Liang et al.18 In a 

250 ml vessel, ZrCl4, (1281 mg, 5.5 mmol) was dissolved in 60 ml of N,N dimethylformamide 

and sonicated for 10 minutes. 1,3,5 benzenetricarboxylic acid (H3BTC), (1115 mg, 5.5 mol) was 

then added and the solution was sonicated for a further 10 minutes. Finally, (31 ml, 54mmol) 

acetic acid was added to the solution which was sonicated for another 10 minutes. The 

solution was sealed in a 250 ml glass vial and placed in a preheated oven where it was heated 

at 130 oC for 24 hours. The vial was removed from the oven and allowed to cool to room 

temperature over the course of an hour. A white solid was observed. The solid was vacuum 

filtered, washed with DMF (3 x 20 ml) and acetone (3 x 20 ml). The filtrate was dried under 

vacuum for 24 hours to yield a white microcrystalline powder of nMOF-808. The bulk phase of 

the as-synthesised MOF-808 was confirmed by PXRD by comparing against a simulated pattern 

of MOF-808 (Figure 4.3). 
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Figure 4.3: A PXRD overlay showing a simulated pattern for MOF-808 obtained from reference 

18 and a PXRD of the as-synthesised material (nMOF-808). 

200 mg of as synthesised nMOF-808 was suspended in 7 ml of distilled water in an 11 ml 

microwave vessel. The vessel was placed in a microwave reactor where it was activated at 

150oC for 20 minutes with heavy stirring. After cooling to room temperature, the MOF was 

vacuum filtered, washed with H2O (3 x 10 ml) and acetone (3 x 10 ml) and dried under vacuum 

for 24 hours to yield the white microcrystalline powder of aMOF-808.  

Assumed Formula: Zr6O4(µ-OH)4(BTC)2(CH3COO)0.5(OH)5.5(H2O)5.5 · xH2O, x(CH3)2CO 

CHN analysis Calculated: C, 17.34; H, 2.15 N, 0.00 Found: C, 18.75; H, 2.03; N, 0.00. 

nMOF-808 and aMOF-808 were digested in a mixture of D2SO4/DMSO. A 1H NMR spectrum 

was obtained of both materials to investigate the ratio of acetic acid that remained after the 

activation procedure. This is shown in Section 4.3.2. 

For TGA analysis, each sample was annealed at 100 oC for 24 hours before analysis. 

DUT-84 Synthesis and Characterization 

DUT-84 was synthesised using a slightly modified procedure reported by Bon et al.16 In a 250 

ml vessel, ZrCl4, (570 mg, 3.05 mmol) was dissolved in 120 ml of N,N dimethylformamide and 

sonicated for 10 minutes. 2,6 napthalenedicarboxylic acid (H2NDC), (500 mg, 2.78 mmol) was 
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then added and the solution was sonicated for a further 10 minutes. Finally, acetic acid, (50 ml, 

794 mmol) was added to the solution which was sonicated for another 10 minutes. The 

solution was sealed in a 250 ml glass vial and placed in a preheated oven where it was heated 

at 120 oC for 24 hours. The vial was removed from the oven and allowed to cool to room 

temperature over 1 hour. A white solid was observed. The solid was vacuum filtered, washed 

with DMF (3 x 20 ml) and acetone (3 x 20 ml). The filtrate was dried under vacuum for 24 hours 

to yield a white microcrystalline powder of nDUT-84. The bulk phase of the as-synthesised 

DUT-84 was confirmed by PXRD by comparing against a simulated pattern of DUT-84 (Figure 

4.4). 
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Figure 4.4: A PXRD overlay showing a simulated pattern for DUT-84 obtained from reference 

16 and a PXRD of the as-synthesised material (nDUT-84). 

200 mg of nDUT-84 was suspended in 7 ml of distilled water in an 11 ml microwave vessel. The 

vessel was placed in a microwave reactor where it was activated at 150 oC for 20 minutes with 

heavy stirring. After cooling to room temperature, the MOF was vacuum filtered, washed with 

H2O (3 x 10 ml) and acetone (3 x 10 ml) and dried under vacuum for 24 hour to yield the white 

microcrystalline powder of aDUT-84. 

Assumed Formula: Zr6O4(µ-OH)4(NDC)3(CH3COO)1(OH)5(H2O)5 · xH2O, x(CH3)2CO  
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CHN analysis: Calculated C, 31.11; H, 2.13; N, 0.00 Found C, 35.49; H, 2.87; N 0.00. The error in 

calculated CHN composition is possibly derived from the unknown quantity of adsorbed H2O 

and acetone in the aDUT-84 pores. 

nDUT-84 and aDUT-84 were digested in a mixture of D2SO4/DMSO. A 1H NMR spectrum was 

obtained of both materials to investigate the ratio of acetic acid that remained after the 

activation procedure. This is shown in Section 4.3.3. 

For TGA analysis, each sample was annealed at 100 oC for 24 hours before analysis.  

UiO-66 Synthesis and Characterization  

Defective UiO-66 was synthesised using a slightly modified procedure reported by Shearer et 

al.10 In a 250 ml vessel, ZrCl4, (862 mg, 4.62mmol) was dissolved in 100 ml of N,N 

dimethylformamide and sonicated for 10 minutes. 1,4 benzenedicarboxylic acid (H2BDC), 

(615mg, 3.70 mmol) was then added and the solution was sonicated for a further 10 minutes. 

Finally, acetic acid, (22 ml, 349.4 mmol) and conc. HCl, (0.2 ml, 2.3 mmol) was added to the 

solution which was sonicated for another 10 minutes. The solution was sealed in a 250 ml glass 

vial and placed in a preheated oven where it was heated at 120 oC for 24 hours. The vial was 

removed from the oven and allowed to cool to room temperature over 1 hour. A white solid 

was observed. The solid was vacuum filtered, washed with DMF (3 x 20 ml) and acetone (3 x 20 

ml). The filtrate was dried under vacuum for 24 hours to yield a white microcrystalline powder 

of nUiO-66. The bulk phase of the as-synthesised UiO-66 was confirmed by PXRD by comparing 

against a simulated pattern of UiO-66 (Figure 4.5). 
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Figure 4.5: A PXRD overlay showing a simulated pattern for UiO-66 obtained from reference 10 

and a PXRD of the as-synthesised material (nUiO-66). 

200 mg of nUiO-66 was suspended in 7 ml of distilled water in an 11 ml microwave vessel. The 

vessel was placed in a microwave reactor where it was activated at 150 oC for 20 minutes with 

heavy stirring. After cooling to room temperature, the MOF was vacuum filtered, washed with 

H2O (3 x 10 ml) and acetone (3 x 10 ml) and dried under vacuum for 24 hour to yield the white 

microcrystalline powder of aUiO-66.  

Assumed Formula: Zr6O4(µ-OH)4(BDC)5(CH3COO)0.6(OH)1.4(H2O)1.4 · xH2O, x(CH3)2CO 

CHN analysis: Calculated C, 31.23; H, 1.91; N, 0.00 Found C, 24.68; H 3.13; N 0.00. The error in 

calculated CHN composition is possibly derived from the unknown quantity of adsorbed H2O 

and acetone in the aUiO-66 pores. 

nUiO-66 and aUiO-66 were digested in a mixture of D2SO4/DMSO. A 1H NMR spectrum was 

obtained of both materials to investigate the ratio of acetic acid that remained after the 

activation procedure. This is shown in Section 4.3.3. 

For TGA analysis, each sample was annealed at 100 oC for 24 hours before analysis.  
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Benzoic acid modulated UiO-66 (Benzoic acid) Synthesis and Characterization 

Benzoic acid modulated UiO-66, termed UiO-66 (Benzoic acid) was synthesised using the 

following procedure. In a 250 ml vessel, ZrCl4, (1165 mg, 6.24 mmol) was dissolved in 90 ml of 

N,N dimethylformamide and sonicated for 10 minutes. 1,4 benzenedicarboxylic acid (H2BDC), 

(830 mg, 5.0 mmol) was then added and the solution was sonicated for a further 10 minutes. 

Finally, benzoic acid, (2.44 g, 19.9 mmol) and conc. HCl, (0.8 ml, 9.2 mmol) was added to the 

solution which was sonicated for another 10 minutes. The solution was sealed in a 250 ml glass 

vial and placed in a preheated oven where it was heated at 120 oC for 48 hours. The vial was 

removed from the oven and allowed to cool to room temperature over 1 hour. A white solid 

was observed. The solid was vacuum filtered, washed with DMF (3 x 20 ml) and acetone (3 x 20 

ml). The filtrate was dried under vacuum for 24 hours to yield a white microcrystalline powder 

of UiO-66 (Benz). The bulk phase of the as-synthesised UiO-66 (Benz) was confirmed by PXRD 

by comparing against a simulated pattern of UiO-66 (Figure 4.6) 
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Figure 4.6: A PXRD overlay showing a simulated pattern for UiO-66 obtained from reference 10 

and a PXRD of the as-synthesised benzoic acid modulated UiO-66 (Benzoic acid). 

UiO-66 (Benzoic acid) was digested in a mixture of D2SO4/DMSO. A 1H NMR spectrum was 

obtained to investigate the ratio of benzoic acid that remained after the activation procedure. 

This is discussed in Section 4.3.3. 
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Boron MOF Synthesis and Characterization 

Boron MOF was synthesised and characterised using the procedure outlined in chapter 2. 

Boron MOF was digested in a mixture of D2SO4/DMSO. A 1H NMR spectrum was obtained to 

investigate the ratio of acetic acid that remained after the activation procedure. This is 

discussed in Section 4.3.3. 

DMNP and VM hydrolysis procedure 

The following procedure was used to probe the hydrolysis rates of the as-synthesised MOFs 

and their activated counterparts. An NMR tube was charged with DMNP, (20 µL, 0.09 mmol). 

The MOF catalyst (0.11 µmol, 1.25 mol % relative to DMNP) was then added to the tube. 0.1 

ml of D2O along with 0.6 ml of 0.1 M N-ethyl morpholine (NEM) buffer was then added to the 

tube. The tube was inverted 3 times and immediately loaded into an NMR auto-sampler and 

the first 31P NMR (161.83 MHz) spectrum was obtained within 3 minutes of the reaction 

commencing. The instrument temperature was set to 298 K throughout. The sample was then 

cycled on the auto-sampler for 3 hours, subsequent data points were collected every 6.5 

minutes for the first hour and every half an hour after the first hour. VM testing was carried 

out at Porton Down (DSTL) by Marcus J. Cooper. For VM, the same procedure and the same 

ratios were used, the only difference was that the testing was conducted in the absence of any 

buffer.  
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4.3 Results and Discussion 

4.3.1 Synthesis of nMOFs 

The as-synthesised MOFs (henceforth termed non-activated (n); i.e. nMOF-808) nMOF-808, 

nDUT-84, nUiO-66 and nBoron MOF were all synthesised solvothermally in DMF, their 

assembly was modulated with acetic acid. A control, nUiO-66 (Benzoic acid), was synthesised 

solvothermally but the synthesis was modulated using benzoic acid. Bulk phase properties 

were then confirmed using PXRD analysis (Figure 4.3, 4.4, 4.5, and 4.6).  

4.3.2 Microwave activation of MOF-808 and Optimisation 

Upon exploring alternative methods for activating modulator bound Zr MOFs, the utility of 

microwave irradiation for this application was discovered. nMOF-808 was suspended in 

distilled water and sealed in a glass microwave reaction vessel. The vessel was then placed in a 

microwave reactor and subjected to microwave irradiation for 20 minutes at a temperature of 

150 oC. The MOF powder was then filtered from solution, washed with acetone and vacuum 

dried to yield aMOF-808. To ensure that crystallinity had been retained, aMOF-808 was 

analysed using PXRD and the pattern was compared to that of nMOF-808. (Figure 4.7) 
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Figure 4.7. A PXRD overlay showing nMOF-808 (black), aMOF-808 (red), and aMOF-808 @ 

200oC (blue).  



177 
 

Upon confirming the retention of crystallinity, a procedure was required to analyse the 

composition of aMOF-808 and thus determine the ratio of acetate modulator to 1,3,5-benzene 

tricarboxylate linker in the framework. Digesting/chemically degrading MOFs with strong acids 

can yield their ligand composition to analysis. Using a strong acid, such as H2SO4, will strip away 

any linkers which are bound to the Zr6O4(OH)4
12- node, thus effectively degrading and 

solubilising the heterogeneous material and allowing the ligand ratio to be determined 

through NMR. Acid digestion was therefore chosen as a suitable technique for analysing the 

ligand composition of the frameworks. aMOF-808 was suspended in deuterated DMSO and 

several drops of D2SO4 were added, the mixture was then heated with the aid of a heat gun 

until the MOF was fully dissolved. The resulting solution was then analysed using proton NMR. 

For a point of comparison, the same digestion procedure was utilised for nMOF-808, the 

composition of which was also analysed using proton NMR (Figure 4.8). 

 

Figure 4.8. A proton NMR (in DMSO/D2SO4) overlay showing acetic acid (green), as-synthesised 

(washed with H2O) digested nMOF 808 (black), free H3BTC ligand (red) and the digested 

activated aMOF-808 (blue).  

Figure 4.8 shows the digested 1H spectra of nMOF-808 and aMOF-808. By integrating the 

peaks representative of the H3BTC linker and acetic acid, their ratio can be determined. MOF-

808 posseses a 6-connected structure, this means that each Zr6 node has a linker connectivity 

DMF 
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of 6. Each node therefore forms 6 linkages with 6 individual BTC3- linkers, this makes the 

average formula unit of pristine MOF-808 to be Zr6O4(OH)4(BTC)2(CH3COO)6.
18

 For charge 

balance to occur, it is assumed that each vacancy which is not occupied by linker or modulator 

molecules, is instead occupied by a hydroxyl and a water molecule. This has been previously 

reported for zirconium MOFs with missing linker/modulator vacancies.25–27 The formula of 

nMOF-808 was determined to be Zr6O4(µ-OH)4(BTC)2(CH3COO)3.25(OH)2.75(H2O)2.75, thus 

inferring that there are on average, 2.75 acetate free sites per formula unit. The formula of 

aMOF-808 was determined to be Zr6O4(µ-OH)4(BTC)2(CH3COO)0.5(OH)5.5(H2O)5.5 with 5.5 

acetate-free sites/coordination vacancies which are occupied by water from the activation 

procedure.  

 

Scheme 4.1. A scheme showing the difference in acetate composition between nMOF-808 and 

aMOF-808, as determined by NMR (Figure 4.8). 

The optimum microwave temperature for the activation to occur was found to be 150 °C, 

reinforced by the observation of PXRD data which showed that there was no loss of 

crystallinity after the activation procedure. When MOF-808 was subjected to an activation 

temperature of 200 °C, mild amorphization was observed by PXRD (aMOF-808 @ 200oC Figure 

4.7). At a lower activation temperature of 120 and 140 °C, a higher ratio of acetate:linker was 

present post activation, as determined by NMR digestion. The same was found to be true for 

decreasing the duration of the activation, when MOF-808 was activated for 5 minutes at 150 

°C there was a reduction in the acetate:linker ratio, as shown by NMR digestion (Figure 4.9). It 

should also be noted that activating at 150 °C and above results in the removal of residual DMF 

solvent from the MOF pores, this roughly coincides with the boiling point of DMF which is 153 

oC. As a result of these observations, all future activations were performed at 150 °C for 20 

minutes.  
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Figure 4.9. A proton NMR (in DMSO/D2SO4) overlay showing from (from top to bottom), as-

synthesised (washed with H2O) digested nMOF-808, the digested activated aMOF-808 [120 oC 

for 20 minutes], the digested activated aMOF-808 [140 oC for 20 minutes], the digested 

activated aMOF-808 [150 oC for 5 minutes], the digested activated aMOF-808 [150 oC for 20 

minutes] and the digested activated aMOF-808 [200 oC for 20 minutes]. 

4.3.3 Microwave activation of Acetate-Modulated MOFs 

Upon realising a successful activation procedure for modifying nMOF-808 to form aMOF-808, 

the same activation technique was used to modify nDUT-84 and nUiO-66. nDUT-84 was 

subjected to the same activation procedure which involved microwave irradiation in H2O for 

20 minutes at a temperature of 150 oC to yield aDUT-84. aDUT-84 was analysed using PXRD 

and compared to nDUT-84 (Figure 4.10).  
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Figure 4.10. A PXRD overlay showing nDUT-84 (black) and aDUT-84 (red). 

The activation of DUT-84 resulted in a transition to a ‘desolvated’ phase which was observed 

by the original authors upon utilising their own activation procedure.16 However, this phase 

has not been formally characterized and so it is not possible to say whether the structure has 

changed considerably. Upon activation, aDUT-84 and nDUT-84 were both digested using 

deuterated DMSO/D2SO4 and the resulting solutions were analysed using proton NMR to 

elucidate their ligand compositions.  

 

Figure 4.11. A proton NMR (in DMSO/D2SO4) overlay showing acetic acid (green), as-

synthesised (washed with H2O) digested nDUT-84 (black), free H2NDC (red) and the digested 

activated aDUT-84 (blue). 

DMF 
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Figure 4.11 shows the digested 1H spectra of nDUT-84 and aDUT-84. By integrating the peaks 

representative of the NDC linker and acetic acid, their ratio can be determined, DUT-84 has a 

ligand connectivity of 6.16 The formula of nDUT-84 was therefore determined to be Zr6O4(µ-

OH)4(NDC)3(CH3COO)1.9(OH)4.1(H2O)4.1, thus inferring that there are on average, 4.1 acetate free 

sites per formula unit. The formula of aDUT-84 was assumed to be Zr6O4(µ-

OH)4(NDC)3(CH3COO)1(OH)5(H2O)5 with 5 acetate-free sites/coordination vacancies which are 

occupied by water from the activation procedure. It should be noted that the formula for 

aDUT-84 is an approximation due to the fact that the phase change which occurs upon 

activation (Figure 4.10) is not structurally characterized.  

 

Scheme 4.2. A scheme showing the difference in acetate composition between nDUT-84 and 

aDUT-84, as determined by NMR (Figure 4.11). 

After the activation of DUT-84, nUiO-66 was activated using the same procedure which 

involved suspending the framework in water and subjecting it to microwave irradiation at 150 

oC for 20 minutes. This yielded aUiO-66. aUiO-66 was then analysed using PXRD and compared 

to that of nUiO-66 (Figure 4.12), the activated framework retained its crystallinity.  
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Figure 4.12. A PXRD overlay showing nUiO-66 (black) and aUiO-66 (red). 
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Upon activation, aUiO-66 and nUiO-66 were both digested using a mixture of deuterated 

DMSO/D2SO4, the resulting solutions were analysed using proton NMR.  

 

Figure 4.13. A proton NMR (in DMSO/D2SO4) overlay showing acetic acid (green), as-

synthesised (washed with H2O) digested nUiO-66 (black), free H2BDC (red) and the digested 

activated aUiO-66 (blue).  

Figure 4.13 shows the digested 1H spectra of aUiO-66 and nUiO-66. By integrating the peaks 

representative of the BDC linker and acetic acid, their ratio can be determined, defective UiO-

66 has ligand connectivity of 10.10 The formula of nUiO-66 was therefore determined to be 

Zr6O4(µ-OH)4(BDC)5(CH3COO)1.4(OH)0.6(H2O)0.6, thus inferring that there are on average, 0.6 

acetate free sites per formula unit. The formula of aUiO-66 was determined to be Zr6O4(µ-

OH)4(BDC)5(CH3COO)0.6(OH)1.4(H2O)1.4 with 1.4 acetate-free sites/coordination vacancies which 

are occupied by water from the activation procedure. 

 

Scheme 4.3. A scheme showing the difference in acetate composition between nUiO-66 and 

aUiO-66, as determined by NMR (Figure 4.13). 

DMF 
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In summary, partial removal of the acetate modulator was achieved for all activated MOFs. 

The complete extraction of residual DMF used in synthesis was also observed for all activated 

samples, showing that the activation procedure was also effective for DMF solvent evacuation. 

Each Zr6 SBU can coordinate a total maximum of 12 carboxylate moieties. Table 4.1 

summarises the degree of activation which was observed for each MOF. The most efficient 

exchange was achieved for MOF-80817 (Figure 4.8) which has a linker connectivity of 6, with 

2.75 acetate ligands removed per unit, leaving 5.5 free coordination sites. DUT-84 also has a 

linker connectivity of 6,16 but only 0.9 acetates per formula unit were removed (Figure 4.11) 

resulting in 5 unmodulated sites. This is because the non-activated material possesses just 2 

acetate modulated sites. aUiO-66 had the lowest quantity of acetate removed (Figure 4.13) 

per unit owing to its higher strut connectivity requiring 10 coordination sites,10 this meant that 

there were fewer modulated vacancies. In summary, this activation method offers a quicker 

alternative for activation when compared to thermally activating at 200-300 oC under dynamic 

vacuum, a commonly reported activation method.4,13,28 

Table 4.1. A comparison of the degree of activation achieved for each MOF based on the ratio 

of acetate to ligand, as calculated from 1H NMR integrals.  

 
uMOF-808 aMOF-808 uDUT-84 aDUT-84 uUiO-66 aUiO-66 

Acetate:Ligand ratio 1.62 0.26 0.6 0.33 0.22 0.07 

Acetate per unit 3.25 0.5 1.9 1 1.4 0.6 

Exchange Efficiency - 84.60% - 47.30% - 57.10% 

Acetate removed - 2.75 - 0.9 - 0.8 

Acetate-free sitesa  - 5.5 - 5 - 1.4 

aThe number of coordination sites per formula unit that are free of modulator This only applies to the 

activated counterpart of each MOF. 

SEM micrographs were also obtained for each MOF before and after activation as shown in 

Figure 4.14. No visual change in particle size or morphology was observed post activation. 

Interestingly, the DUT-84 particles appear to be significantly larger than the particles of UiO-66 
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and MOF-808. The original reported procedure for the synthesis of DUT-8416 requires 243 

equivalents of acetic acid modulator relative to ZrCl4. The large excess of modulator results in a 

slower, more controlled nucleation of DUT-84 crystals, thus leading to a larger particle size.  

 

Figure 4.14. Scanning electron microscope (SEM) images of MOF-808, DUT-84 and UiO-66 

before and after activation. 

It should be noted that there were several MOFs which were not susceptible to activation 

using the microwave activation procedure. As a control, nUiO-66 (Benzoic acid) was 

synthesised using benzoic acid (pKa = 4.20) as a modulator. Upon subjecting this variant of UiO-

66 to the microwave activation procedure, no change in ligand composition was observed 
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upon digestion of the framework. (Figure 4.15). This could be the result of a number of factors, 

acetic acid (pKa = 4.76) has a higher pKa than benzoic acid and thus forms weaker coordination 

interaction with the the Zr4+ nodes.29 Compared to acetic acid, benzoic acid also possesses a 

significantly lower solubility in H2O at room temperature, thus making the exchange process 

less thermodynamically viable.  

 

Figure 4.15. A proton NMR (in DMSO/D2SO4) overlay showing as-synthesised (washed with 

H2O) digested nUiO-66 (Benzoic acid) (black) and the digested activated aUiO-66 (Benzoic acid) 

(blue). 

In chapter 2, a 6-connected Zr-MOF was synthesised which was composed of a tritopic borane 

centred linker (Boron MOF). For the synthesis of Boron MOF, acetic acid was used to modulate 

the assembly, in a similar fashion to that of MOF-808. An attempt was made to activate this 

framework using the microwave procedure but upon digestion, there appeared to be minimal 

change in the ratio of acetic present (Figure 4.16). The increased electron-withdrawing effect 

provided by the borane linker on the Zr6 SBU would act to increase the lewis acidity of the 

uncoordinated Zr4+ nodes. This could potentially increase the stability of the bound acetate 

and therefore make it unsusceptible to activation using the procedure in this study. In chapter 

2, NEM buffered hydrolysis experiments were conducted on the DMNP simulant in the 

presence of Boron MOF.  A 6-connected Zr MOF would be expected to function as a potent 
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hydrolysis catalyst. It is possible that because Boron MOF is not prone to activation using the 

microwave procedure, the coordination strength of the bound acetate modulator is too great 

to be displaced by the DMNP substrate. This enhanced modulated node stability is therefore 

believed to make the catalytic Zr4+ inaccessible to the substrate. It would be of interest to see 

whether other MOF modulators, such as formic acid, propionic acid or L-proline could be 

removed using the microwave activation procedure described in this chapter. 

Figure 4.16. A proton NMR (in DMSO/D2SO4) overlay showing as-synthesised (washed with 

H2O) digested nBoron MOF (black) and the digested activated aBoron MOF (blue). 

4.3.4 Thermal Analysis of Activated MOFs 

Upon activating MOF-808, DUT-84, UiO-66 and characterising the degree of acetate removed 

using NMR, thermal data was then obtained for the as-synthesised and activated counterpart 

of each framework. Each activated and non-activated framework was annealed at 100 oC for 

24 hours before analysis. For the TGA analysis, a heating rate of 5 °C min-1 in N2 was used. Each 

sample was also subjected to a 30 minute isotherm at 150 °C, this was to ensure the complete 

removal of any residual DMF/H2O species which were not coordinated to the Zr6 nodes. The 

mass % remaining was noted for each sample at the end of the isotherm, this mass % was 

assumed to represent a guest-free MOF with empty pores. Post-isotherm, a second heating 
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ramp was employed and each sample was heated to 500 °C. The % mass loss was then 

determined between weight % at the start of the second ramp and at the end of the ramp. 

This was termed the ‘Mass % Loss after 2nd ramp’. The mass % loss after 2nd ramp was meant 

to function as an indicator of linker and modulator loss upon heating. The TGA trace for nMOF-

808 and aMOF-808 is shown in Figure 4.17. The TGA trace for nDUT-84 and aDUT-84 is shown 

in Figure 4.18. The TGA trace for nUiO-66 and aUiO-66 is shown in Figure 4.19. 
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Figure 4.17. TGA trace for nMOF-808 and aMOF-808. Heating rate: 5 °C min-1 in N2, 30 min 

isotherm at 150 °C followed by a ramp to 500 oC. A value for the Mass % Loss post isotherm 

until end of the final ramp is shown on the TGA trace for each material. 
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Figure 4.18. TGA trace for nDUT-84 and aDUT-84. Heating rate: 5 °C min-1 in N2, 30 min 

isotherm at 150 °C followed by a ramp to 500 oC. A value for the Mass % Loss post isotherm 

until end of the final ramp is shown on the TGA trace for each material. 
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Figure 4.19. TGA trace for nUiO-66 and aUiO-66. Heating rate: 5 °C min-1 in N2, 30 min isotherm 

at 150 °C followed by a ramp to 500 oC. A value for the Mass % Loss post isotherm until end of 

the final ramp is shown on the TGA trace for each material. 

The mass % loss after 2nd ramp for each framework is summarised in Table 4.2. nMOF-808 and 

aMOF-808 showed the greatest mass % Loss after 2nd ramp. The large mass % loss for nMOF-

808 can be attributed to the framework having the largest amount of bound acetate (Table 

4.1). The second largest mass loss was observed for the DUT-84 variants. The UiO-66 variants 

showed the smallest reduction in mass % loss after 2nd ramp, this is likely due to the 

framework having the smallest number of bound acetate per unit cell. Particularly interesting 

was the greater thermal stability of all activated MOFs after the second ramp (Figure 4.17, 

4.18, 4.19) which corresponded with each activated framework having less bound acetate. A 

‘Rel. Mass % Loss’ was then calculated for each MOF (Table 4.2), this was to discount any mass 

% loss which occurred before the second ramp. The difference in rel. mass % loss between 

each activated and as-synthesised material was then calculated, this was denoted as ‘Mass % 

Loss difference’. The mass % loss difference was used to highlight that a smaller mass % loss 

was observed for each activated MOF over that of the as-synthesised counterpart, as each 

activated MOF would contain less structurally-bound acetate. MOF-808 showed the greatest 

Mass % Loss difference (Table 4.2). This value can be ascribed to the activation process 
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removing approximately 2.75 equivalents of acetate from each formula unit of the MOF (Table 

4.1), and the largest quantity of the three MOFs. This was followed by DUT-84 and then UiO-

66, respectively. The thermal Mass % Loss difference for each of the analysed MOFs was in 

agreement with the quantity of acetate removed, as determined by NMR. Each activated MOF 

also displayed enhancement thermal stability post activation. It was not possible to determine 

any information regarding the composition of each MOF from the thermal data. This is 

because BTC, NDC and BDC linker decomposition all occur at different temperatures and so a 

specific thermal ramp sequence would be required for each MOF.  

Table 4.2. A comparison of the weight loss observed during TGA analysis for the non-activated 

and activated MOFs. 

  nMOF-

808 

aMOF-

808 

nDUT-

84  

aDUT-

84 

nUiO-

66 

aUiO-

66 

Mass % Remaining 

after 150 oC isotherm a  

88.30% 89.30% 93.00% 93.50% 92.90% 92.10% 

Mass % Loss after 2nd 

rampb  

25.00% 16.20% 18.90% 12.30% 14.80% 9.30% 

Rel. Mass % Lossc   28.30% 18.10% 20.30% 13.20% 15.90% 10.10% 

Mass % Loss differenced 
 

- 10.20% 
 

- 7.10% 
 

- 5.80% 

 

aMass % Remaining after maintaining a 150 oC isotherm. bMass % Loss after second ramp. cRelative Mass 

% Loss observed (b/a)*100. dDifference in relative Mass % Loss between the activated and non-activated 

materials. 
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4.4 DMNP Hydrolysis Enhancement 

After determining the degree of activation using NMR, and inferring the loss of modulator 

using TGA, the hydrolytic capabilities of the activated MOFs were investigated and compared 

to their non-activated counterparts. Zirconium MOFs, particularly those with coordination 

defects, have been shown as highly effective hydrolysis catalysts for the degradation of 

organophosphate V- and G-series nerve agents along with the CWA simulant, DMNP.19,22 A 

zirconium node-facilitated degradation mechanism has been previously proposed and is 

illustrated in Figure 4.20. First, a molecule of DMNP replaces a substitutionally labile water 

ligand on a Lewis acidic Zr site. The phosphoryl oxygen atom (P=O) then forms a strong 

interaction with a Zr atom. Upon this interaction forming, a hydroxyl anion from solution is 

able to attack the phosphorus atom which leads to the p-nitrophenoxide anion being released 

from the phosphorus species. The product is then desorbed from the Zr atom, thus 

regenerating the catalytic site.  

 

Figure 4.20: A reaction scheme illustrating the catalytic cycle of a DMNP molecule on the 

surface of a Zr6 node.   
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In previous studies, DMNP, buffered with an aqueous solution of NEM, was established as 

good simulant system for mimicking the hydrolysis of VX (diisopropylaminoethyl O-ethyl 

methylphosphonothioate) in solution, with good agreement in the degradation rates. In a 

previously reported study, MOF-808, modulated with formic acid and with a catalytic loading 

of 5 mol % (relative to DMNP) was found to degrade DMNP in 0.4 M NEM buffer with a half-

life of just 0.5 mins. A higher dilution buffer solution than convention (0.1 M vs 0.4 M) was 

therefore used in these studies along with a lower catalytic loading (1.25 mol % vs 5 mol %). 

Scheme 4.4 illustrates the DMNP hydrolysis conditions which were employed in this study. 

 

Scheme 4.4: An illustration of the DMNP hydrolysis conditions which were employed in this 

study.  

To summarise the hydrolysis procedure, an NMR tube was charged with DMNP followed by the 

addition of 1.25 mol % (relative to DMNP) of a corresponding as-synthesised or activated MOF 

catalyst. 0.1 M NEM buffer was then added to the tube along with a small amount of D2O, the 

tube was inverted 3 times and immediately placed in an NMR auto-sampler and analysed using 

31P NMR spectroscopy. The MOF-reaction suspension remained undisturbed for the remainder 

of the reaction. The probe temperature was set to 298 K throughout each experiment. The 

first measurement was obtained within 3 minutes of the reaction commencing. Subsequent 

measurements were obtained for a total of 3 hours.31P NMR spectroscopy was used to 

monitor the presence of peaks corresponding to DMNP and DMP. An example spectral overlay 

is shown in Figure 4.21. The peaks corresponding to DMNP and DMP were integrated, the 
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integrals were used to determine the % of DMNP which had been hydrolysed to DMP at each 

time interval. The reaction was followed by 31P NMR spectroscopy instead of fluorescence 

spectroscopy because later hydrolysis experiments involving V-series agents were monitored 

using NMR also. 

 

Figure 4.21. A 31P NMR overlay showing the different stages of DMNP hydrolysis that were 

observed before catalyst addition (green), 30 mins after the addition of 1.25 mol % aMOF-808 

relative to substrate in 0.1 M NEM buffer (red), 24 hours after the addition of 1.25 mol % 

aMOF-808 relative to substrate in 0.1 M NEM buffer (blue).  

The hydrolysis procedure was repeated in triplicate in the presence of the activated and non-

activated counterpart of each MOF. All of the frameworks were able to hydrolyse DMNP to 

DMP to some degree over the course of the 3 hour reaction period. Unsurprisingly, nMOF-808 

and aMOF-808 showed the greatest performance, this was followed by the DUT-84 

counterparts and then the UiO-66 counterparts. Figure 4.22 summarises the results and shows 

the percent conversion of DMNP to DMP in the presence of the activated and non-activated 

catalysts in NEM buffer. It should also be noted that when the reaction was conducted using 

the same procedure but in the absence of a MOF catalyst, the background reaction rate was 

found to be negligible.  
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Figure 4.22: a plot showing the hydrolysis of DMNP over time in the presence of the various 

MOF catalysts. Each set of data was obtained in triplicate and is shown with standard deviation 

error bars. 

The reaction rate of each reaction, k, was then calculated for each data set. This was 

performed by plotting the natural logarithm of DMNP concentration over time (Figure 4.23). 

Throughout the reaction, the concentration of MOF catalyst (regenerated as shown in Figure 

4.20) and H2O (present in excess) and the pH (buffered using NEM buffer) are assumed to 

remain constant. As the reaction progresses, only the concentration of DMNP changes, the 

degradation of DMNP would therefore be expected to follow pseudo first order kinetics with 

respect to the concentration of the DMNP substrate.  For a first order/pseudo first order 

process, the slope of a line (m), corresponds to k such that m = -k.  A linear fit was obtained 

through the initial (15 – 63 minutes) data points of each MOF catalyst. The gradient of each 

linear fit therefore corresponded to the reaction rate k (s-1) of each MOF catalysed 

degradation.  
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Figure 4.23. Natural logarithms of concentrations corresponding to DMNP residues in the 

presence of the as-synthesised and activated MOF catalysts. The first order rate constants 

were calculated using a linear fit (in Microsoft Excel) through the initial 8 data points for each 

catalyst to give a line with the equation y = mx + c where the slope, m, is the rate constant. The 

formulae for calculating m and c are shown below. 

𝑚 =
𝑛∑(𝑥𝑦) − ∑𝑥∑𝑦

𝑛∑𝑥2 − (∑𝑥)2
                               𝑐 =

∑𝑦 −  𝑚∑𝑥

𝑛
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Table 4.3 shows the calculated degradation rates (s-1) of DMNP in the presence of each MOF 

catalyst. The table also states literature values for the limiting pore diameter (Å) and BET 

surface area (m2 g-1) of each as-synthesised MOF. aMOF-808 was the most effective 

degradation catalyst (k = 9.5 x 10-3 s-1), closely followed by nMOF-808 (k = 8.8 x 10-3 s-1). This 

can be explained by the 6-connected nature of aMOF-808 along with the 5.5 acetate-free 

coordination sites (Table 4.1). These catalytic sites are Lewis acidic and are able to facilitate the 

hydrolysis of the substrate in the presence of H2O. nMOF-808 performed slower in the initial 

stage of the reaction but still performed relatively well compared to the other tested 

materials. This performance can be attributed to nMOF-808 framework possessing, on 

average, 2.75 vacancies per Zr6 SBU. Both MOF-808 variants have a pore limiting diameter of 

ca. 10 Å which is the largest of all the MOFs investigated here, and large enough to facilitate 

some access of DMNP (11 x 4.5 Å).  

Table 4.3. A table showing the first order rate constants with respect to DMNP in the presence 

of the MOF catalysts. Literature values for the limiting pore diameter and BET surface area are 

also shown for comparison. 

 
k (s-1) k standard error Limiting pore diameter (Å) BET (m2 g-1) 

nMOF-808 0.0088 3.8 x 10-4 10a 1606a 

aMOF-808 0.0095 5.7 x 10-4   

nDUT-84 0.0003 2 x 10-5 7.57b 637b 

aDUT-84 0.0018 1.5 x 10-4   

nUiO-66 0.0004 1 x 10-5 5c 1525c 

aUiO-66 0.0012 4 x 10-5   
aValues obtained from reference 18. bValues obtained from reference 16. cValues obtained from 

reference 10.  

DUT-84 is a 6-connected framework and so the hydrolysis rate was expected to be somewhat 

similar to that of MOF-808. The degradation was however significantly slower. A possible 

explanation for this is the difference in particle size as shown by SEM in Figure 4.14. The 

superior surface area/volume ratio of MOF-808 enhances the population of active surface 

sites. This diminishes the amount of catalysis occurring in the MOF voids which is less 



196 
 

kinetically favourable. This could suggest that the catalysis occurs primarily on the surface of 

the MOF. Despite the degradation being rather slow, the degradation rate for aDUT-84 was 

significantly enhanced (k = 1.8 x 10-3 s-1) over that of nDUT-84 (k = 3 x 10-4 s-1), simply through 

the activation protocol. UiO-66 was the worst performer of the group. This was expected as 

aUiO-66 (k = 1.2 x 10-3 s-1) has the smallest amount of acetate free sites compared to the other 

MOFs. The average pore limiting diameter in UiO-66 is ca. 5 Å,30 which is smaller than the 

molecular size of DMNP. The catalytic activity is therefore restricted to just the surface of the 

framework, significantly reducing the number of accessible active sites.31 Among the 3 MOFs 

tested, a general trend was observed where a higher pore limiting diameter correlated with a 

higher rate constant k for DMNP hydrolysis (Table 4.3). The MOF-808 and DUT-84 variants 

were selected for further testing on the V-series agent VM.  
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4.5 Zirconium MOFs as Hydrolysis Catalysts for live CWA Hydrolysis 

After screening the three MOF catalysts with the DMNP simulant, MOF-808 and DUT-84 were 

selected for testing on the V-series agent VM, a diethyl analogue of VX, which was readily 

available at the time of testing. To further showcase the true applicability of the zirconium 

MOF-808 as a degradation catalyst, it was decided that the studies would be conducted in the 

absence of buffer (Scheme 4.5).  

 

Scheme 4.5: An illustration of the VM hydrolysis conditions which were employed in this study.  

Testing and data processing was conducted at Porton Down (DSTL) by Nicholas J. Cooper and 

James T. Jones. In brief, an NMR tube was charged with VM followed by the addition of 1.25 

mol % (relative to DMNP) of a corresponding as-synthesised or activated MOF-808/DUT-84 

variant. H2O then added to the tube along with a small amount of D2O, the tube was inverted 3 

times and immediately placed in an NMR auto-sampler and analysed using 31P NMR 

spectroscopy. The probe temperature was set to 298 K throughout each experiment. The first 

measurement was obtained within 12 minutes of the reaction commencing. Subsequent 

measurements were obtained for a total of 12 hours. 31P NMR spectroscopy was used to 

monitor the presence of peaks corresponding to VM and EMPA. Diethyl 

dimethyldisphosphonate (DEMDP) was also formed during the reaction, presumably by the 

condensation of EMPA.  An example spectral overlay is shown in Figure 4.24.  This was used to 

determine the % of VX which had been hydrolysed to EMPA and DEMDP at each time interval.  
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Figure 4.24. A 31P NMR overlay showing the different stages of VM hydrolysis in H2O that were 

observed over 24 hours in the presence of 1.25 mol % nMOF-808 relative to VM. 

Excellent results were obtained for both nMOF-808 and aMOF-808 (Figure 4.25). There was 

little discernible difference between the two catalysts because the first measurement could 

only be acquired 12 minutes after the reaction had commenced, at which point most of the 

VM had been hydrolysed. This was an unfortunate safety limitation of the experimental 

procedure. The first DUT-84 was also successful at hydrolysing VM, albeit, at a slower rate. As 

postulated, aDUT-84 significantly outperformed nDUT-84, and parallels with the simulant 

hydrolysis study. It should be noted that when the zirconium MOFs were used, only P–S bond 

cleavage of the VM occurred. A small amount of S-(2-(diethylamino)ethyl) O-hydrogen 

methylphosphonothioate (δ - 42 ppm29) was present in the VM as a synthetic impurity, a small 

peak can be observed in Figure 4.24. However, this peak does not evolve throughout the 

course of the experiment which indicates that no P-O bond cleavage is occurring.  The selective 

hydrolysis is highly desirable as the hydrolysis product formed from P–O bond cleavage of a V-

series agent results in a product which maintains its toxicity.24 For instance, hydrolysis with a 
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strong base such as NaOH which results in the competitive cleavage of both P–O and P–S 

bonds.32 The above experiment further highlights the utility of these Zirconium MOFs for rapid 

and selective hydrolysis of V-series agents in the presence of only water (i.e. no buffer). 

 

Figure 4.25. A degradation plot showing the hydrolysis of VM over time in the presence of the 

MOF catalysts. Inset: highlight of the slight difference between nMOF-808 and aMOF-808.  
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4.6 Conclusion 

Three acetic acid modulated zirconium MOFs were activated using a novel, highly facile 

technique which relied on the use of microwave irradiation. Microwave irradiation enables 

instant and evenly distributed heating above boiling temperature, something which is difficult 

to achieve with an autoclave vessel. This method offers a quicker alternative for activation 

when compared to thermally activating at 200 - 300 oC under dynamic vacuum, a commonly 

reported method. The extent of activation was determined using NMR with MOF-808 showing 

the greatest degree of activation. The activation was reinforced by thermal analysis, a lesser 

Mass % Loss was observed for the activated counterpart of each MOF due to the structures 

possessing less bound acetate. The activated MOFs, which possessed a higher proportion of 

hydrated nodes (as opposed to acetate bound nodes), were then employed in the catalytic 

hydrolysis of the CWA simulant DMNP. An enhancement in hydrolysis rates was observed in 

comparison to each MOFs non-activated counterpart. It is hypothesised that replacing the Zr6 

node bound acetate with H2O resulted in a more labile coordination interaction which could be 

readily displaced by the DMNP substrate. Finally, the degradation ability of nMOF-808, aMOF-

808, nDUT-84 and aDUT-84 was tested for the ability to degrade the V-series agent, VM, in the 

absence of buffer. The rate of hydrolysis was too fast to discern a rate difference between 

nMOF-808 and aMOF-808, however, a significant enhancement was observed for the slower 

aDUT-84 over that of nDUT-84. The non-buffered hydrolysis highlighted the utility of Zirconium 

MOFs for CWA hydrolysis using minimal reagents.  Combining the CWA hydrolysis results of 

this chapter along with that of chapter 2, MOF-808 has been shown as a potent and selective 

degradant for 2 V-series agents, VX and VM, in the absence of a buffering agent. Since all V-

agents are structurally similar and possess a P-S functionality, it can be assumed that MOF-808 

would be active for the remaining V-agents also. MOF-808 would therefore be a good choice 

of catalyst in the development of future materials for V-agent hydrolysis.  
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Chapter 5. MOF/HIPE Composites for the Encapsulation and 

Degradation of VX 

The work described in this chapter was part of an on-going collaboration with A. Wright, at the 

University of Kent. All polymer synthesis was conducted by A. Wright. Additionally, swelling 

studies, IR analysis, MAS NMR analysis and SEM analysis were all undertaken by A. Wright. All 

hydrolysis studies involving DMNP, along with MOF synthesis and PXRD analysis were 

conducted by the author of this thesis. All hydrolysis experiments involving the agent VX were 

completed by N. Cooper at DSTL.  

5.1 Introduction 

This penultimate chapter shall explore the marriage of two works. The end objective of this 

research is to develop a composite material able to both encapsulate and degrade 

organophosphorus nerve agents in the absence of excessive chemical reagents. In chapter 4, 

MOF-808 was identified as the most suitable zirconium MOF catalyst for the buffered 

hydrolysis of the OP CWA simulant DMNP. Additionally, MOF-808 was able to rapidly degrade 

the V-series agent VM in water without any buffering agents being present.1 Over a longer 

timeframe, MOF-808 is also able to hydrolyse VX with sole reliance on atmospheric humidity 

(see chapter 2). MOF-808 was shown to be the most suitable candidate for incorporation into 

a composite material. This chapter describes a novel composite material for the encapsulation 

and degradation of neat VX in the absence of any excess chemical reagents. 

A number of MOF-polymer composites have been reported for the degradation of OP CWAs. 

Zhao et al. reported the growth of UiO-66, UiO-66-NH2 and UiO-67 on the surface of 

electrospun polymeric nanofibers of polyamide-6 (PA-6).2 This study reported the first example 

of a MOF-polymer composite that was able to degrade OP CWAs. However, the degradation 

relied on the presence of a liquid buffering agent. Liang et al.3 reported flexible, free-stranding 

ZrO2 nanofiber mats functionalised with either UiO-66, UiO-67 or UiO-66-NH2. These 



205 
 

functionalised nanofiber mats exhibited enhanced DMNP hydrolysis performance when 

compared to the corresponding UiO-66, UiO-67 and UiO-66-NH2 powders. However, the study 

was again conducted in the presence of a liquid buffering agent and no hydrolysis studies were 

performed on OP CWAs. The most compelling composite was documented by Moon et al. 4 

who reported on the synthesis of a composite material featuring the MOF NU-1000 embedded 

in a polyethyleneimine (PEI) membrane (NU-1000/PEI). This composite could degrade DMNP 

without a solution buffer present, this was due to the presence of heterogeneous basic amine 

in the PEI framework. This composite was also able to facilitate the degradation of VX with a 

calculated TOF of 19.4 h-1. None of the above described composites have been shown to 

additionally swell OP CWAs, degrade CWAs in the absence of a stoichiometric buffering agent 

nor degrade neat OP CWAs.   

PolyHIPEs are a category of porous polymers possessing a large internal volume.5 A HIPE is 

defined as an emulsion with an internal phase greater than 74 % of the total volume.6 For HIPE 

formation to occur, two immiscible liquid phases are required. For a water-in-oil HIPE, the 

internal phase is always water and the external phase is composed of an oil/organic liquid 

containing the monomers and initiators.7 The emulsion is stabilised by the use of a surfactant 

and the polyHIPE is then formed through the polymerization of the external phase. Removal of 

the internal phase results in a highly porous and interconnected polymer structure 

characterized by a low bulk density (< 0.1 g cm-3).8–10 PolyHIPEs have found a number of 

applications as solid supports and membranes for chemical reactions,11–13 absorptions8,14,15 and 

separations.8,16,17 The absorption properties of polyHIPEs make them ideal candidates as 

immobilization agents for the encapsulation of CWAs. 

In parallel to the work carried out in this thesis, research performed by Alexander Wright has 

been focussed on identifying a suitable encapsulation agent. Previously reported styrenyl-

monomer based ionic polymers were explored due to their high affinities and swelling 

capacities for a range of organic solvents.18 Wright et al.19 then reported on a styrenyl-HIPE, 
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crosslinked with divinyl benzene and possessing an internal phase greater than 95 % by 

volume, has shown remarkable swelling capacities (Q) for the uptake of CWAs. Swelling 

capacity (Q) can be defined as the following Q = (weight of swollen polymer – weight of dry 

polymer)/weight of dry polymer). Initial swelling experiments were conducted with the 

absorption simulant, methyl benzoate. Record high swelling values were then reported for VX 

(Q > 50) and HD (Q > 40), moderate swelling was reported for GB (Q > 20), although this 

swelling was still in line with other leading materials reported in the literature.20 The initial 

uptake of the agent is facilitated through capillary forces which draw the liquid in. The 

compatibility between the agent and the internal phase results in further swelling of the 

polymer matrix, enabled by a low crosslinking-density. 

Numerous reports have also been made of polyHIPEs that were assembled in the presence of 

nano-particulate sized heterogeneous materials, thus resulting in a composite structure.21–23 

Conveniently, nanoparticles can increase the stability of a HIPE emulsion thus making the 

synthesis of composite materials a highly facile procedure.24,25 We can therefore surmise that 

it is possible to alternatively incorporate a heterogeneous catalyst into the HIPE polymer 

membrane. The resulting composite would function as a reactive, super-absorbent sponge 

capable of absorbing and reacting with the absorbate.  

Two separate materials have been identified; the catalyst MOF-808 which is effective at 1.25 

mol % for the degradation of V-series agents and a Polystyrene HIPE with VX swelling 

capacities exceeding 4000 weight % relative to the weight of the unswollen polymer. For a 

styrenyl pHIPE in VX, Q > 40 was achieved with methyl benzoate.19 Both of the aforementioned 

materials fulfil the criteria of being effective at their respective application in low quantities. 

The focus of this chapter shall be the synthesis of a composite material which contains a dual 

functionality for the absorption and degradation of V-series agents. 

In this chapter, the facile synthesis and characterization of a working, and readily scalable, 

MOF-HIPE prototype is reported. Preliminary NEM buffered hydrolysis tests are performed on 



207 
 

the simulant methyl-paraoxon (DMNP) and are shown to be successful. An improved rate of 

hydrolysis is observed with the composite material when compared to just MOF-808 alone. 

Swelling experiments were also conducted on methyl benzoate and no loss in swelling capacity 

was observed. The hydrolysis of phosphonate esters relies on H2O, and it is therefore 

imperative that water be able to enter the polymer matrix in which the MOF-808 catalyst is 

contained. It is demonstrated that by not removing the surfactant utilised during HIPE 

formation (MOF-HIPE-S; the S suffix indicates the surfactant), greatly improved water 

absorption properties are observed. Inspired by the previously reported NU-1000/PEI 

composite which houses a heterogeneous amine,4 the tertiary amine, 4-vinylbenzyl 

piperidine26 (4-VBPP) was selected as a suitable monomer for incorporation into a composite. 

The synthesis of a MOF-HIPE composite containing the 4-VBPP monomer (MOF-HIPE-VBPP-S) 

is then reported. When MOF-HIPE-VBPP-S was screened using a non-buffered DMNP 

hydrolysis system, a stoichiometric hydrolysis of DMNP relative to the quantity of 4-VBPP 

monomer is observed.  

A number of hydrolysis tests were then conducted on the V-series agent VX. Degradation 

studies were performed on VX in the presence of the composites under neat conditions 

(ambient humidity, no buffer, no solvent) and alternatively in an aqueous mixture of H2O/THF. 

The collaborative effort was then concluded by reflecting on the strengths of the new 

composite material for the desired application when compared to existing technologies. The 

limitations of the work are also explored as are proposed improvements for enhancing the 

practical applicability of future composite materials. 
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5.2 Experimental Methods 

Instrumentation 

1H and 31P NMR spectroscopy was conducted using a Bruker NEO 400 MHz spectrometer with 

an auto-sampler at 298 K and 16 scans per measurement. 

PXRD patterns were collected on a silicon zero-background sample holder (a sample holder 

which presents no diffraction peaks) on a Rigaku Miniflex 600 desktop XRD using a Copper K-α 

(1.5406 Å) source. Measurements were taken in the 3 – 45 o 2θ range with a step size of 0.02 o 

2θ and a scan speed of 1 o 2θ min-1.  

Electron micrographs were gathered using a Hitachi S-3400 scanning electron microscope. The 

polymer samples were prepared for SEM by drying thoroughly and then cutting into thin slices 

with care taken to not disrupt or damage the surface of the sample. 

Infra-red spectroscopy was carried out on a Shimadzu IRAffinity-1S, with an ATR gate, a sweep 

of 500 - 4000 cm-1, a resolution of 0.5 cm-1 and 64 scans.    

1H MAS NMR Analysis 

In solution-phase NMR, anisotropic effects are time-averaged by the random motion of the 

liquid analytes. However, in solid-state NMR, solid analytes exhibit anisotropic interactions 

which result in very broad spectra. MAS NMR is used for the analysis of solid or gel materials. 

27 The anisotropy of solid analytes can be negated by spinning an anisotropic sample at the 

magic angle (54.736 o) with respect to the magnetic field and at a high rotational frequency (5 

to 35 kHz). 1H MAS NMR were acquired using a Bruker NEO 400 MHz spectrometer at 295 K. 

The samples were analysed using an HR-MAS semi-solids probe which utilised magic-angle 

spinning (54.736 o) at a frequency of 5000 Hz. The relaxation delay was set to 60 seconds. 

Synthesis of DUT-52 

DUT-52 was synthesised and characterised using the same procedure as outlined in chapter 2. 
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Synthesis of MOF-808 

MOF-808 was synthesised and characterised using the same procedure as outlined in chapter 

2. 

Synthesis of 4-vinylbenzyl piperidine 

Piperidine (5.8 ml, 5 g, 85.15 g/mol, 0.06 mol) was dissolved in 50 ml MeCN. 4-vinylbenzyl 

chloride (8.5 ml, 9.15 g, 152.62 g/mol, 0.06 mol) was then added dropwise to the solution 

along with a flake of 4-tert-butylcatechol inhibitor. 4-tert-butylcatechol acts as a proton-donor, 

this effectively stabilises any free radicals and prevents the reaction of these radicals with the 

vinyl group. This was followed by the addition of potassium carbonate (16 g, 138.205 g/mol, 

0.12 mmol). The mixture was refluxed at 120 oC for 2 hours. The mixture was subsequently 

allowed to ambiently cool to room temperature over half an hour and then chilled using an ice 

bowl and the resulting white precipitate was filtered off and washed with MeCN. Another flake 

of 4-tert-butylcatechol inhibitor was added to the filtrate. The filtrate was concentrated under 

reduced pressure to yield a pale-yellow oil which was filtered through an alumina column 

before use. (8.167 g, 201.30 g/mol, 39 mmol, 65 % yield) 

1H NMR (400 MHz, CDCl3): δ 1.37-1.41 (m, 2H), 1.50-1.56 (m, 4H), 2.33 (m, 4H) 3.42 (s, 2H), 

5.18 (d, 1H, J = 10.6 Hz), 5.69 (d, 1H, J = 17.4 Hz), 6.67 (dd, 1H, J = 10.9 Hz, 17.4 Hz), 7.21-7.33 

(m, 4H). 13C NMR (100.52 MHz, CDCl3): δ 24.4, 26.0, 54.5, 63.6, 113.3, 125.9, 129.4, 136.2, 

136.7, 138.3. 

General procedure for HIPE Formation (Performed by Alexander J. Wright) 

The following procedure outlines the general synthesis of a HIPE, the specific quantities for 

each formulation can be found in Table 5.1. The monomers, initiator (AIBN) and surfactant 

(span-80 (sorbitan monooleate)), were added into a 100 ml conical flask. The flask was stirred 

at 200 rpm with a 4 cm hemispherical PTFE overhead stirred paddle for 5 minutes to 

homogenize the oil phase. The aqueous phase was then prepared. Potassium sulfate was 

dissolved into deionized water. In the cases where a MOF was present, this was added into the 
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aqueous solution at a loading of 0.535 g (25 wt % [monomers]), after having been ground by 

hand to a fine powder. The aqueous phase was then vigorously mixed to suspend the MOF, 

but not sonicated. This agitation was continued throughout the addition of the aqueous phase 

to the organic to ensure good homogeneity of the MOF. The stirring speed of the organic 

mixture was increased to 750 rpm and the aqueous solution was dropped in at rate of around 

1 drop per second. After all the aqueous phase was added, the stirring speed was increased 

further to 1000 rpm and left to homogenize for 5 minutes. The HIPE foam was transferred into 

a glass container, sealed and cured in an oven at 65 °C for 24 hours. After curing, the pHIPE 

monoliths were cooled and the vials destroyed to leave two samples of pHIPE. They were then 

dried under vacuum at 65 °C for 48 hours minimum. For HIPE and MOF-HIPE, surfactant was 

removed by soaking in ethanol for 24 hours followed by filtration and vacuum drying. 

Table 5.1: A table outlining the masses of reagents used for the synthesis of each pHIPE 

discussed in this study. 

Sample Styrene VBCl VBPP DVB AIBN SMO 
Water/ 
K2SO4 

MOF 

HIPE 7.509g 0.579g n/a 0.099 0.015g 1.65g 155ml/0.5g n/a 

DUT-

HIPE 
0.751g 0.058g n/a 0.01 0.003g 0.17g 9.2ml/0.05g 0.205g 

MOF-

HIPE 1.344g 0.347g n/a 0.020 0.006g 0.34g 32.5ml/0.1g 0.425g 

MOF-

HIPE-S 1.877g 0.145g n/a 0.025g 0.004g 0.626g 38.9ml/0.13g 0.535g 

HIPE-

VBPP-S 1.778g 0.145g 0.191g 0.025g 0.004g 0.626g 39.8ml/0.13g 0.535g 

MOF-

HIPE-

VBPP-S 
1.778g 0.145g 0.191g 0.025g 0.004g 0.626g 39.8ml/0.13g 0.535g 

VBCl – 4-vinylbenzyl chloride, VBPP - 4-vinylbenzyl piperidine, DVB – divinylbenzene, AIBN – 

azobisisobutyronitrile, SMO – sorbitan monooleate  
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Swelling with methyl benzoate procedure (performed by Alexander J Wright) 

A cube of chosen pHIPE composite of mass c. 150 mg submerged in methyl benzoate for 24 

hours. The cube was then removed from the methyl benzoate, dabbed onto filter paper and 

re-weighed. The difference in weight was used to determine the degree of swelling.19 

Buffered DMNP hydrolysis procedure 

The following procedure was used to probe the hydrolysis rates of the various MOF and 

polymer composite materials using a buffered simulant screening system. The HIPE containing 

MOF-808 (3.2 mg, 0.11 µmol, 1.25 mol %) was sliced up into small pieces (1-2 mm3), the pieces 

were then added to a single NMR tube along with DMNP, 20 µL (0.09 mmol). A 0.6 ml mixture 

containing: 0.2 ml of D2O, 0.2 THF and 0.2 ml of 1.45 M N-ethyl morpholine (NEM) aqueous 

buffer (effective concentration 0.45 M) was then added to the tube. The tube was inverted 

once and immediately loaded into an NMR auto-sampler and the first 31P NMR (161.83 MHz) 

spectrum was obtained within 8 minutes of the reaction commencing. The sample was then 

cycled on the auto-sampler to collect subsequent data points. Each measurement was 

performed in triplicate.  

For the THF-free experiments, the same procedure was followed with the exception of the 0.2 

ml of THF being replaced with an additional 0.2 ml of H2O.  

DMNP hydrolysis throughout sections of MOF-HIPE  

The following procedure was used to observe the difference in hydrolysis between different 

sections of MOF-HIPE. DMNP 120 µL (0.54 mmol) was dissolved in a solution of 2.4 ml of D2O, 

2.4 ml THF and 2.4ml of 1.45 M NEM aqueous buffer (effective concentration 0.45 M), the 

solution was transferred to a petri dish. A single circular chunk of MOF-HIPE 200 mg (40 mg, 

1.37 µmol, 2.5 mol %) was placed in the centre of the dish with roughly half of the polymer 

being above the solution level. The reaction was covered with a watch glass and left for 3 

hours. After 3 hours, the polymer was removed from the dish, a circular segment was then cut 

from the central half (half by radius) of the HIPE thus also leaving a circular outer half. The 



212 
 

contents of the central half were vacuum filtered and analysed using 31P NMR (161.83 MHz) 

spectroscopy. The contents of the outer half were also vacuum filtered and analysed using 31P 

NMR spectroscopy. Finally, an aliquot was taken from the remaining reaction mixture and 

analysed using 31P NMR spectroscopy. 

MOF-HIPE-S Hydrolysis Cycling 

The following procedure was used to test the hydrolytic effectiveness of MOF-HIPE-S over 3 

cycles. The HIPE containing MOF-808 (3.2 mg, 0.11 µmol, 1.25 mol %) was sliced up into small 

chunks (1-2 mm3) then added to the tube along with 0.6 ml mixture containing: 0.2 ml of D2O, 

0.2 THF and  0.2 ml of 1.45 M N-ethyl morpholine (NEM) aqueous buffer (effective 

concentration 0.45M). The tube was inverted once and left to stand for 24 hours. After 24 

hours, the tube was analysed using 31P NMR (161.83 MHz) spectroscopy. The HIPE was then 

removed from the tube, washed 5 times with THF and re-used in the same manner as 

described above. This was repeated two more times to give a total of 3 cycles.  

Non-Buffered DMNP hydrolysis procedure 

The following procedure was used to probe the hydrolysis rates of the MOF-HIPE-VBPP-S 

polymer composite material using a non-buffered simulant screening system. 5 NMR tubes 

were each charged with DMNP, 5 µL (0.02 mmol). HIPEs were all sliced up into small chunks (1-

2 mm3). Various quantities of MOF-HIPE-VBPP-S were used (32.5mg, 16.5 mg and 8 mg) along 

with MOF-HIPE-S (32.5 mg) and MOF-808 (5.2 mg). MOF-HIPE-VBPP-S (32.5 mg) contained 

MOF-808 (5.2 mg, 0.18 µmol, 14.5 mol %) and 4-vinylbenzyl piperidine. MOF-HIPE-VBPP-S 

(16.5 mg) contained MOF-808 (2.7 mg, 0.09 µmol, 7.3 %) and 4-vinylbenzyl piperidine. MOF-

HIPE-VBPP-S (8 mg) contained MOF-808 (1.3 mg, 0.04 µmol, 3.6 mol %) and 4-vinylbenzyl 

piperidine. For controls, MOF-HIPE-S (32.5 mg) was used, which contained MOF-808 (5.2 mg, 

0.18 µmol, 14.5 mol %), and powdered MOF-808 (5.2 mg, 0.18 µmol, 14.5 mol %). Each 

quantity of HIPE was sliced up into small chunks (1-2 mm3) s then added to the corresponding 

tube along with 0.2 ml of D2O, 0.2 THF and 0.2 ml of H2O. The tubes were inverted once and 
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left to react for 20 hours. After 20 hours, the content of each tube was analysed using solution 

phase 31P NMR (161.83 MHz) spectroscopy, the solids were not filtered before spectral 

acquisition.  

VX hydrolysis procedure in the presence of Water/THF (performed by Nicholas J. Cooper) 

The following procedure was used to probe the hydrolysis rates of the various MOF and 

polymer composite materials for the degradation of VX in a mixture of THF and water. The 

HIPE containing MOF-808 (3.2 mg, 0.11 µmol, 1.25 mol %) was sliced up into small chunks (1-2 

mm3) then added to an NMR tube along with VX, 24 µL (0.09 mmol). A 0.6 ml mixture 

containing: 0.15 ml of D2O, 0.3 ml of THF and 0.15 ml of H2 was then added. The tube was 

inverted once and immediately loaded into an NMR auto-sampler and the first 31P NMR 

(161.83 MHz) spectrum was obtained within 8 minutes of the reaction commencing. The 

sample was then cycled on the auto-sampler to collect subsequent data points. Each 

measurement was performed once. 

Neat VX hydrolysis procedure (performed by Nicholas J. Cooper) 

The following procedure was used to probe the hydrolysis rates of the various MOF and 

polymer composite materials for the degradation of neat VX in absence of solvent and buffer. 

A vial was charged with VX (267.37 g/mol, 250 uL, 1.14 mmol) and the HIPE (10mg) containing 

MOF-808 (2 mg, 0.15 mol %), the ambient humidity was recorded (50 RH %). A small aliquot 

was taken after 4d, 7d, 11d and 14d and analysed using 31P NMR (161.83 MHz) spectroscopy. 

Each measurement was performed in duplicate. 
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5.3 Results and Discussion 

5.3.1 Swelling studies 

Swelling studies were performed by Alexander Joseph Wright, and conducted with methyl 

benzoate (ρ = 1.084 g/cm3) which was previously identified as a V-agent (VX, ρ = 1 ±0.1 g/cm3  

swelling simulant.19 For each HIPE, the studies were conducted in triplicate. The following 

equation was used for calculating Q, the swelling capacity: 

𝑄 =  
(𝑀𝑎𝑠𝑠 𝑜𝑓 𝑠𝑤𝑜𝑙𝑙𝑒𝑛 𝑝𝑜𝑙𝑦𝑚𝑒𝑟 − 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑦 𝑝𝑜𝑙𝑦𝑚𝑒𝑟)

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑦 𝑝𝑜𝑙𝑦𝑚𝑒𝑟
 

Where the HIPE contained additional material such as MOF or surfactant, a modified equation 

was used for calculating the Q value. This was to offset the additional weight which did not 

contribute to the swelling. The following modified equation was used. 

𝑄𝑚𝑜𝑑 = (
𝑄

𝑀𝑝 
) ∗ (𝑀𝑝 + 𝑀𝑒) 

Mp represents the total % mass of the polymer and surfactant, and Me represents the % mass 

of the extra components. For example, in MOF-HIPE-VBPP-S Me is 35 (25 % MOF and 10 % 

extra surfactant). 
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5.3.2 Prototyping 

The initial aim of this chapter was to successfully create a prototype composite material which 

would be composed of a zirconium MOF embedded in a styrenyl-HIPE polymer. The composite 

material would need to retain the functionality of the individual materials. The styrene HIPE is 

responsible for swelling in the presence of the substrate; the swelling is reliant on the 

maintenance of a consistent and high volume internal phase throughout the polymer matrix. 

The role of the zirconium MOF is to degrade the substrate. For the hydrolysis to occur, the Zr6 

nodes must be maintained and so crystallinity is a useful indicator of this structural integrity. 

Last of all, it is imperative that water, is able to access the polymer matrix within which the 

catalyst is housed.  

5.3.2.1 DUT/HIPE 

As an initial proof of concept, a readily available zirconium MOF, DUT-52, was taken and an 

attempt was made to embed it in a styrene HIPE polymer. As a starting point, a previously 

reported method was utilised for making a styrene HIPE polymer (92 % Internal Phase) and the 

zirconium MOF was simply added to the reaction mixture. Fortunately, this initial attempt was 

successful as the addition of a MOF did nothing to interfere with the formation of an emulsion 

during the synthesis. The standard procedure was followed through and DUT/HIPE was 

synthesised by Alexander J Wright. After synthesising this first composite prototype, it was 

important to ensure that it retained both functional properties. To confirm that the high 

volume internal phase was still intact, the swelling of the prototype was investigated and 

compared to that of a HIPE polymer (92 % Internal Phase). When synthesising the composite, 

the loading of DUT-52 was 20 % wt of the total polymer weight. 20 % of the polymers weight 

was therefore omitted when calculating the degree of swelling, Q, this was to account for the 

fractional weight of DUT-52 in the polymer which does not contribute to the swelling. 

Unsurprisingly, the Q value achieved with the DUT-HIPE prototype was comparable to that of 

the unfuctionalised HIPE polymer, with Q values of 32 and 37 being observed for each 
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respective polymer in the presence of methyl benzoate. The similar Q values were a good 

indicator that the high internal phase remained unperturbed by the presence of DUT-52. An 

attempt was then made to investigate the crystallinity of the embedded DUT-52, PXRD 

patterns were obtained of DUT-52 (Figure 5.1), the un-functionalised HIPE polymer and the 

DUT-HIPE composite. The diffraction pattern for the unfunctionalised HIPE shows the broad 

diffraction of the non-crystalline polymer. The diffraction pattern of the DUT-HIPE suggests 

that the DUT-52 MOF is still present due to the match with the more dominant DUT-52 

diffraction peaks. 

 

 

Figure 5.1. (Top) A PXRD overlay showing HIPE (black), DUT-52 (red) and DUT-HIPE (blue) 

(Bottom) SEM images showing the porous structure of the HIPE membrane and DUT-52 

particles embedded in the membrane. 
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Finally, SEM analysis was conducted to investigate the porosity of the internal phase and to 

visually inspect the dispersion of the MOF throughout the matrix. Two slices were taken at 

different cross-sections of DUT-HIPE. Visually (Figure 5.1), a high internal phase was observed 

along with a good dispersion of the zirconium MOF throughout the polymer without excessive 

clumping. 

To summarise, a proof of concept model material was synthesised. The material retained a 

high internal phase which is essential for the function of swelling. The zirconium MOF housed 

in the polymer maintained its crystallinity and was evenly dispersed through the polymer 

matrix. It was hypothesised that the catalytic activity of a zirconium MOF catalyst would 

therefore remain intact and the good dispersion would result in equal hydrolysis throughout 

the material. 
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5.4 Working Prototypes 

5.4.1 MOF-HIPE, a working prototype 

Inspired by the above successes, the same methodology was utilised to incorporate MOF-808, 

a catalyst which was previously shown to be catalytically active for OP hydrolysis, into a HIPE 

polymer (95 % Internal Phase). Following the same procedure, an emulsion was readily formed 

and MOF-808/HIPE was synthesised by Alexander J Wright. It should be noted that the MOF-

808 which features in this chapter was not activated post-synthesis. The swelling was then 

investigated in the presence of methyl benzoate, whilst accounting for 20 % wt of MOF-808 

which does not contribute to the swelling. The obtained Q values were again comparable to 

that of the unfunctionalised HIPE with Q values of 55 and 52 being observed for each 

respective polymer. PXRD and SEM were also conducted (Figure 5.2). 

 

 

Figure 5.2. (Top) A PXRD overlay showing HIPE (black), MOF-808 (red) and MOF-HIPE (blue); 

(Bottom) SEM images showing the porous structure of the HIPE membrane and MOF-808 

particles embedded in the membrane. 
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PXRD analysis (Figure 5.2) confirmed that the phases of MOF-808 were present in the bulk of 

the composite material therefore establishing that the crystallinity of MOF-808 remained 

intact along with catalytic activity. It should be noted that 2 additional diffraction peaks (28 o 

2θ and 40 o 2θ)  are present in the diffractogram of MOF-HIPE. These are postulated to arise 

from a synthetic salt impurity derived from the K2SO4 salt used during HIPE synthesis.  

A number of experiments were then performed to probe the hydrolytic capabilities of the new 

composite. A previously reported literature hydrolysis procedure was utilised, involving the 

hydrolysis of DMNP in water and in the presence of 0.45 M NEM Buffer.28,29 The main 

difference being that a 50:50 mixture of H2O:THF was used as the reaction medium as opposed 

to just H2O. The polystyrene HIPE membrane readily swells in THF but not in H2O and so this 

adjustment was made to improve the compatibility between the reaction mixture and the HIPE 

membrane in which MOF-808 was embedded.  

The DMNP hydrolysis procedure utilised in this study is discussed in greater detail in Section 

5.6, as are the derivations of the rate constants. As a starting point, the hydrolysis of DMNP 

was screened in the presence of MOF/HIPE and MOF-808 using the modified screening 

procedure. In brief, the procedure involved charging an NMR tube with DMNP followed by the 

addition of a diced HIPE polymer containing 1.25 mol % (relative to DMNP) of MOF-808. A 

solution containing THF, H2O, D2O and NEM buffer was then added and immediately placed in 

an NMR auto-sampler and analysed using 31P NMR spectroscopy. More details are provided in 

Section 5.6. The unfunctionalised HIPE served as a blank. The hydrolysis rate of MOF-HIPE (k = 

0.0267 s-1) was significantly enhanced over that of MOF-808 (k = 0.0034 s-1) with minimal 

hydrolysis occurring in the presence of the HIPE blank (Figure 5.3). 95 % hydrolysis was 

achieved by MOF-HIPE after 6 hours when compared to 80% which was achieved by MOF-808 

after 24 hours. This enhancement can be attributed to the superior dispersion of the MOF-808 

catalyst which is provided by the HIPE (Figure 5.4). It should be noted that previous literature 

examples of DMNP hydrolysis in the presence of MOF-808 involved the formation of MOF-808 
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suspension in the reaction medium.30 In this study, the powdered MOF was left undisturbed 

throughout the reaction period.  
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Figure 5.3. a) A plot showing the hydrolysis of DMNP over time in the presence of MOF-808 

and MOF-HIPE in 0.45 M NEM buffer, THF and H2O, as determined by 31P NMR. Each set of 

data was obtained in triplicate and an exponential fit was calculated for each set in a triplicate, 

each sample is represented as an average of the 3 exponential fits in a triplicate. Original data 

points are shown in the appendix (section 7.3). 

 

 

 

Figure 5.4. An image highlighting the difference in dispersion of MOF-808. Both tube a) and c) 

contain the same quantity of MOF. Tube b) contains no MOF-808.Tube a) shows the superior 

dispersion provided by the HIPE polymer matrix.  
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A small study was performed to validate that the hydrolysis of DMNP was occurring 

throughout the polymer matrix and not simply being restricted to MOF-808 embedded in the 

surface of the HIPE. First, a qualitative swelling study was performed on MOF-HIPE using a 

25:75 mixture of DMNP:THF. The MOF-HIPE readily swelled the total volume of the mixture of 

the two components. The swelling was conclusive enough to show that methyl-paraoxon is 

compatible with the internal phase of the HIPE. Second, an experiment was performed to 

determine the degree of hydrolysis occurring throughout different sections of the material 

after a period of 3 hours. This involved placing a chunk of MOF-HIPE into a H2O:THF solution 

containing NEM buffer and DMNP. Figure 5.5 highlights the different sections of the HIPE that 

were sampled. After 3 hours, the sections were physically separated by cutting and their 

contents were vacuum filtered, the filtrate was then analysed using 31P NMR and the % of the 

dimethyl phosphate (DMP) product was determined.  

 

Figure 5.5: An image showing a DMNP degradation mixture containing MOF-HIPE, 2 different 

sections of the composite were analysed for their degradant composition after 3 hours, both 

sections exhibited 100 % hydrolysis. Only 18 % hydrolysis was observed in the supernatant. 

There was no difference in the amount of hydrolysis observed between the inner and the 

outer section with full degradation occurring and only the DMP product being present. There 

was however only 18 % hydrolysis occurring in the supernatant. The lack of a difference in 
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hydrolysis between the two sections suggests that the hydrolysis takes place evenly 

throughout the polymer matrix and is not simply restricted to the surface of the polymer. This 

also validates that H2O and NEM buffer are able to access the catalytic Zr6 nodes throughout 

the whole material.  

5.4.2 MOF-HIPE-S, Enhancing Aqueous Compatibility 

If the composite material is to degrade neat V-series agent in the presence of only ambient 

humidity, water would need to be compatible with the HIPE membrane. A new HIPE, MOF-

HIPE-S was synthesised by Alexander Wright using the same procedure as MOF-HIPE, the only 

exception being that the surfactant content was increased from 20 to 30 wt % to be consistent 

with MOF-HIPE-VBPP-S (Section 5.4.3). Swelling studies were performed with methyl benzoate 

and an adjusted Q value of 63 was observed. MOF cystallinity and HIPE porosity were also 

confirmed using PXRD and SEM (Figure 5.6). Contact angle measurements (Figure 5.7) were 

then performed by Alexander Joseph Wright which visually confirmed the water absorption 

properties of HIPE before and after removal of surfactant. A hydrolysis study was conducted 

on DMNP in the presence of a surfactant free MOF-HIPE (removed by soaking in EtOH 

overnight) with a slight alteration to the previous procedure. The composition of the reaction 

mixture was altered so that THF was replaced with H2O. This was to more accurately mimic a 

hydrolysis environment where only water and agent are present. For MOF-HIPE, a slow 

degradation of DMNP was achieved (k = 0.0038 s-1). MOF-HIPE-S (30 % surfactant) was then 

screened for the hydrolysis of DMNP using the same buffered, THF free procedure described 

above. MOF-HIPE-S (k = 0.0093 s-1)  exhibited a notable hydrolysis enhancement over that of 

the surfactant free MOF-HIPE (k = 0.0038 s-1), this is shown in more detail in Section 5.6 of this 

chapter. We posit that the hydrophilic head of the sorbitan monooleate surfactant was 

therefore facilitating enhanced absorption of H2O into the polymer matrix of the HIPE.  
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Figure 5.6.  (Top) A PXRD overlay showing HIPE (black), MOF-808 (red) and MOF-HIPE-S (blue) 

(Bottom) SEM images showing the porous structure of the HIPE membrane and MOF-808 

particles embedded in the membrane. 

 

Figure 5.7. A composite image showing contact angle measurements recorded at 14 frames 

per second. A, B and C show a water droplet falling onto the surface of HIPE-S, there is a 

difference of 2 frames between each image. Image D shows a water droplet on a surfactant 

free HIPE, no absorption is observed and a hydrophobic contact angle31 is recorded.  
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This result established that not removing surfactant from the HIPEs post synthesis is beneficial 

for enhancing the compatibility between the composite and H2O. All future composites were 

therefore not purged of their remaining surfactant post-synthesis.  

To summarise, in synthesising MOF-HIPE, the utility of a working prototype was demonstrated. 

It was shown that the MOF-HIPE internal phase is compatible with DMNP, the simulant of 

choice. Hydrolysis testing revealed a dispersion-aided enhanced rate of hydrolysis in the 

presence of the composite when compared to just MOF-808. It was also confirmed that the 

hydrolysis of DMNP occurs uniformly throughout the polymer matrix and not just the on 

surface of the composite. Finally, after learning of the beneficial role of the surfactant in our 

material, the synthesis was optimised to maximise the compatibility of the polymer membrane 

with water; the fuel for hydrolysis.  

5.4.3 MOF-HIPE-VBPP-S; Heterogeneous Amine 

MOF-HIPE-S shows great promise as an encapsulation and degradation agent for 

organophosphorus contaminants. It has a high swelling capacity for V-series agents. The 

catalyst housed in the HIPE polymer, MOF-808 is able to slowly degrade neat V-series and the 

polymer membrane is compatible with water, the hydrolytic fuel. The remaining issue is that 

the hydrolysis of methyl-paraoxon requires buffer. Inspired by a PEI polymer housing MOF NU-

1000 which degrades methyl-paraoxon without a solution buffer,4 it was decided that a 

heterogeneous buffer would be incorporated into the HIPE polymer backbone. The 

heterogeneous buffer would come in the form of a basic, tertiary amine monomer. To degrade 

DMNP, a stoichiometric quantity of buffer would be required; altering the polymer 

composition with a large proportion of basic amine would have a drastic effect on the internal 

phase and would thus impact the swelling. However, it was hypothesized that having a small 

proportion of basic amine would be enough to buffer the initial hydrolysis of a pure V-series 

agent. The initial hydrolysis would generate diisopropylaminoethanethiol (DESH), a tertiary 

amine degradation product which would buffer further degradation. The continuous 
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generation of the tertiary amine by-product makes the hydrolytic degradation of V-series 

agents a self-buffering system.32  

A previously reported amine monomer,33 vinyl-benzyl-piperidine (vinyl-benzyl-piperidinium, 

pKa = 10.08), was selected for incorporation into the composite material. After synthesising 

the monomer, several attempts were made to incorporate it into a HIPE polymer. A 

composition of 5 wt % VBPP relative to styrene was selected. Initial attempts followed the 

previous synthetic procedure used for the formation of MOF-HIPE. This proved unsuccessful. 

Having a basic amine moiety in the reaction mixture alters the pH and thus interferes with the 

formation and stabilisation of the HIPE. Several other attempts were made with differing 

concentrations of ammonium chloride but the quality of the emulsions formed were low. 

Fortunately upon consulting the work of Joel M. Williams,34,35 simply changing the quantity of 

the surfactant sorbitan monooleate, from 20 wt % to 30 wt % (relative to the total weight of 

monomer), was enough to stabilise the emulsion and yield the amine functionalised HIPE 

polymer (MOF-HIPE-VBPP-S). This synthesis was conducted by Alexander J Wright. The new 

composite was then routinely examined for its swelling capacity and crystallinity. The swelling 

of MOF-HIPE-VBPP-S in methyl benzoate produced a Q of 33, this was significantly less than 

the Q of HIPE (95 % Internal Phase, Q of 55). PXRD analysis of the composite verified the 

presence of MOF-808 phases in the material, as shown in Figure 5.8.  SEM analysis of several 

cross sections verified the dispersion of the MOF catalyst throughout the material although the 

porosity of the HIPE appeared less regular (Figure 5.8). 
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Figure 5.8. (Top) A PXRD overlay showing HIPE (black), MOF-808 (red) and MOF-HIPE –VBPP-S 

(blue) (Bottom) SEM images showing the porous structure of the HIPE membrane and MOF-

808 particles embedded in the membrane. 

Several attempts were also made to verify the presence of the VBPP amine in the composite 

structure. IR analysis was conducted on HIPE-VBPP-S to check for a C-N absorption band (1200 

cm-1), the MOF free HIPE-VBPP-S was chosen to negate any additional IR absorptions arising 

from MOF-808. No such C-N band was observed (Figure 5.9). Ammonium HCl salts possess 

unique absorption bands in the 2400-2700 cm-1 region with a piperidolate group showing a 

characteristic absorption at 2560 cm-1.36 HIPE-VBPP-S was soaked in 2M HCl to protonate the 

piperidine groups and subsequently analysed again using IR spectroscopy but no new 

absorption bands were observed in the 2400-2700 cm-1 region. 
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Figure 5.9. An overlay of the infrared spectra of VBPP-HIPE-S and HIPE. 

A second attempt was made to characterise the presence of the VBPP monomer using magic 

angle spinning (MAS) NMR.27 In solution-phase NMR, anisotropic effects are time-averaged by 

the random motion of the liquid analytes. However, in solid-state NMR, solid analytes exhibit 

anisotropic interactions which result in very broad spectra. MAS NMR is used for the analysis of 

solid or gel materials. The anisotropy of solid analytes can be negated by spinning an anisotropic 

sample at the magic angle (54.74°) with respect to the magnetic field and at a high rotational 

frequency (5 to 35 kHz).This was conducted by Alexander J. Wright. Figure 5.10 shows a 1H NMR 

overlay of the VBPP monomer, the sorbitan monooleate surfactant, as well as the 1H MAS NMR 

overlays of MOF-HIPE-VBPP-S and HIPE-S. Unfortunately, the piperidine ring protons were 

obstructed by the peaks arising from the polymer matrix. The N-CH2 protons of the VBPP 

monomer were hidden beneath the surfactant peaks. Sadly, due to time constraints, it was not 

possible to perform any additional experiments/analyse additional nuclei (15N and 13C MAS 

NMR) with the surfactant removed from the MOF-HIPE-VBPP-S and HIPE-S polymers. 

H2O 
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Figure 5.10. 1H NMR overlay (top to bottom) of VBPP monomer, MOF-HIPE-VBPP-S, MOF-HIPE-

S and Sorbitan monooleate. 1H spectra of MOF-HIPE-VBPP-S and MOF-HIPE-S were acquired 

using MAS NMR. 

After partially characterizing the newest composite, a number of hydrolysis studies were 

performed. To begin, the previous NEM buffered DMNP hydrolysis procedure was employed. A 

fast rate of hydrolysis was observed (k = 0.0261 s-1) which was comparable to that of MOF-HIPE 

(k = 0.0267 s-1). The new HIPE polymer was therefore hydrolytically active and the presence of 

the tertiary amine 4-VBPP monomer during the HIPE synthesis did not damage the MOF-808 

catalyst. Next, a non-buffered degradation procedure was used to probe the effectiveness of 

the heterogeneous amine for the hydrolysis of DMNP. Since the loading of VBPP in MOF-HIPE-

VBPP-S is only 5 %, a large excess of the composite was used in relation to the substrate. 3 
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different amounts of MOF-HIPE-VBPP-S were employed, each containing a different sub-

equimolar quantity of VBPP relative to DMNP. The ratios of VBPP:DMNP that were achieved 

were 1:4, 1:8 and 1:16. The reactions were allowed to proceed for 24 hours in water, after which 

they were analysed using 31P NMR spectroscopy to determine the quantity of DMNP which had 

been degraded. Due to the lack of an excess of amine relative to the substrate, full hydrolysis 

was not achieved in any of the 3 reactions. Table 5.2 shows the different degrees of hydrolysis 

which were observed for each of the 3 reactions.  

Sample + Quantity MOF-808 
quantity 

4-VBPP : DMNP Ratio % Paraoxon Hydrolysed 
after 24 hours 

MOF-HIPE-VBPP-S 

32.5 mg 

4.9 mg 1:4 48.2 % 

MOF-HIPE-VBPP-S 

16 mg 

2.4 mg 1:8 30.1 % 

MOF-HIPE-VBPP-S 

8 mg 

1.2 mg 1:16 19.2 % 

MOF-HIPE-S 

32.5 mg 

4.9 mg No 4-VBPP 20.6 % 

MOF-808 

4.9 mg 

4.9 mg No 4-VBPP 24.0 % 

Table 5.2. A table showing the various quantities of MOF-HIPE-VBPP-S that were screened on 

DMNP in the absence of any NEM buffer and the degree of hydrolysis that was observed. 

MOF-HIPE-S and MOF-808 were included as blanks. 5 µL of DMNP was used in all 5 studies. 

Unsurprisingly, using more MOF-HIPE-VBPP-S relative to DMNP resulted in more hydrolysis 

occurring over the course of the reaction period. Partial buffer-free hydrolysis of DMNP had 

been achieved. It was therefore postulated that employing a catalytic quantity of MOF-HIPE-

VBPP-S against neat VX would trigger a small quantity of sub-equimolar hydrolysis which 

would generate enough amine by product to make the remainder of the process self-buffering.   
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5.5 HIPE Swelling Summary 

The swelling results are summarized in Figure 5.11. For DUT-HIPE, a Q value of 33 was 

achieved, whilst this may seem low in comparison to the other HIPEs, it is important to note 

that DUT-HIPE possessed a 92 % internal phase. When compared to previously reported Q 

values for a 92 % internal phase HIPE (Q = 37),19 the swelling value can be considered relatively 

comparable. MOF-HIPE consisted of a 95 % internal phase and an adjusted Q value of 52 was 

observed, this is comparable to the swelling of the 95 % internal phase HIPE which produced a 

Q value of 55. MOF-HIPE-S contained additional surfactant and produced the highest adjusted 

Q value of 63. For the case of DUT-HIPE, MOF-HIPE and MOF-HIPE-S, it can be safely said that 

the incorporation of a MOF into the composite structure had a negligible negative impact on 

the swelling. The addition of the VBPP monomer reduced swelling capacity by roughly 50 % for 

both HIPE-VBPP-S (Q = 26) and MOF-HIPE-VBPP-S (Q = 32). This reduced performance is likely 

caused by the basic amine linker which inhibits the emulsion stability during HIPE formation. 

The perturbation of the emulsion leads to a less ordered internal phase, as seen by SEM 

(Figure 5.8), and therefore drastically affects the swelling. It should however be noted that the 

swelling MOF-HIPE-VBPP-S is higher than that of HIPE-VBPP-S, it can therefore be assumed 

that the presence of MOF-808 particles can partially stabilize the emulsion. A more effective 

synthetic method is therefore required to achieve a more stable and uniform internal phase 

during HIPE formation. 



231 
 

 

Figure 5.11. Graph showing the swelling degrees (Q) alongside the Qmod for each of the 

samples presented in this work. HIPE does not have a Qmod value associated for it as it does not 

contain any extra components outside of the basic synthesis. 

 

 

 

 

 

 

 

 

 



232 
 

5.6 Simulant Hydrolysis Summary 

A number of HIPE polymers were synthesised to aid the development of the ultimate 

composite material for neat VX encapsulation and degradation. This next section will aim to 

draw a more direct comparison between all the simulant hydrolysis studies previously 

discussed in this chapter. All of these studies were conducted under standardised conditions in 

the presence of THF and 0.45 M aqueous NEM buffer and each material was studied in 

triplicate. The hydrolysis conditions are illustrated in Scheme 5.1. 

 

Scheme 5.1: An illustration of the DMNP hydrolysis conditions which were employed in this 

study.  

In brief, the procedure involved charging an NMR tube with DMNP followed by the addition of 

diced HIPE polymer containing a 1.25 % catalyst loading of MOF-808 (relative to DMNP). A 

solution containing THF, H2O, D2O and NEM buffer was then added and immediately placed in 

an NMR auto-sampler and analysed using 31P NMR spectroscopy. The probe temperature was 

set to 298 K throughout each experiment. The first measurement was obtained within 8-9 

minutes of the reaction commencing. Subsequent measurements were obtained for a total of 

5 hours. 31P NMR spectroscopy was used to monitor the presence of peaks corresponding to 

DMNP and DMP. An example spectral overlay is shown in Figure 5.12. This was used to 

determine the % of DMNP which had been hydrolysed to DMP at each time interval. An 

exponential fit was then derived for each data set in a triplicate and then an average curve was 

obtained from all 3 fits, the R2 values for the derivations can be found in the Table 5.3. 
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Figure 5.12. A 31P NMR in D2O overlay showing the different stages of DMNP hydrolysis that 

were observed (green) fresh DMNP (red) DMNP 2 hours after the addition of MOF-HIPE 

containing 1.25 mol % MOF-808 relative to substrate in 0.45 M NEM buffer (blue) DMNP 20 

hours after the additon MOF-HIPE containing 1.25 mol % MOF-808 relative to substrate in 0.45 

M NEM. 

 

Table 5.3: A summary of the exponential fitting which was applied to the NMR kinetic data of 

each composite material. Each report shows the standard error which was derived from the 

exponential fit of each individual data set in a triplicate (generated using Origin 9.0). 
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Figure 5.13 shows the observed hydrolysis of DMNP in the presence of all the materials 

discussed in this chapter. Using the first hour of data for each sample, the reaction rate of each 

reaction, k, was then calculated for each data set. This was performed by plotting the natural 

logarithm of DMNP concentration over time and applying a linear fit through this data. The 

slope of the line (m), corresponds to k such that m = -k. The first order residue plots are shown 

in Figure 5.14. Unsurprisingly, no DMNP hydrolysis was observed in the presence of HIPE-S and 

HIPE-VBPP-S due to the lack of any MOF-808, these materials therefore served as blank control 

samples. MOF-HIPE (k = 0.0267 s-1), MOF-HIPE-S (k = 0.0192 s-1) and MOF-HIPE-VBPP-S (k = 

0.0261 s-1) all performed faster than powdered MOF-808 consistent with the superior 

dispersion provided by the high volume HIPE scaffold. When comparing the composites, there 

was little discernible difference between the initial rate constants of MOF-HIPE and MOF-HIPE-

VBPP-S. The initial rate of MOF-HIPE-S was somewhat slower but all 3 materials reached the 

same reaction end-point after 3 hours. 
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Figure 5.13. A plot showing the hydrolysis of DMNP over time in the presence of the various 

MOF/HIPE composites in of 0.45 M NEM buffer, THF and H2O. Each set of data was obtained in 

triplicate and an exponential fit was calculated for each set, each sample is represented as an 

average of the 3 exponential fits. Original data points are shown in the appendix (section 7.3). 
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Figure 5.14. Natural logarithms of concentrations corresponding to DMNP residues in the 

presence of the various MOF/HIPE composites. The first order rate constants were calculated 

from a linear fit through the initial data points (first 60 minutes) for each composite. 

Due to the similarity of the degradation rates amongst the composites, different reaction 

conditions were used to probe the effect of the subtle differences in composition of the 

various MOF HIPE composites. To demonstrate the effectiveness and the utility of the 

surfactant, the original degradation conditions were modified by replacing THF with H2O. 

Figure 5.15 shows a comparison of the hydrolysis of DMNP in the presence of the surfactant 

free MOF-HIPE (k = 0.0038 s-1) and MOF-HIPE-S (k = 0.0093 s-1) and in the absence of THF. The 

first order residue plots are also shown. MOF-HIPE-S contains the surfactant Sorbitan 

monooleate (30 wt %) which enhances the uptake of H2O into the polymer composite. The 

enhanced absorption provides superior transport of H2O to the MOF-808 catalyst housed 

within the HIPE. It should however be noted that for MOF-HIPE-S, k = 0.0093 s-1 in just H2O 

whereas k = 0.0192 s-1 in H2O/THF (as shown in previous study). The reaction is therefore 

slower in the absence of a THF medium which aids with the swelling of the polymer.  

k = 0.0267 s-1 k = 0.0192 s-1 

k = 0.0034 s-1 k = 0.0261 s-1 
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Figure 5.15. (top) A plot showing the hydrolysis of DMNP over time in the presence of MOF-

HIPE and MOF-HIPE-S composites in 0.45 M NEM buffer and H2O. Each set of data was 

obtained in triplicate and an exponential fit was calculated for each set, each sample is 

represented as an average of the 3 exponential fits. Original data points are shown in the 

appendix (section 7.4). (bottom) Natural logarithms of concentrations corresponding to DMNP 

residues in the presence of MOF-HIPE and MOF-HIPE-S. The first order rate constants were 

calculated from a linear fit through the initial data points (first 60 minutes) for each composite. 

 

 

 

 

k = 0.0038 s-1 k = 0.0093 s-1 
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5.7 Encapsulation and Degradation of V-series Agent 

After synthesising, characterising and testing a number of HIPE composites as degradation 

materials for the hydrolysis of the simulant DMNP, the HIPE composites were sent to DSTL for 

testing. MOF-HIPE-S and MOF-HIPE-VBPP-S were the composites which were selected for 

further analysis, along with HIPE-VBPP-S, which would function as a blank. Testing was 

conducted on the Nerve Agent VX. Two different degradation studies were employed. The first 

VX degradation study was conducted in a very similar fashion to the THF/D2O experiments 

which were conducted with DMNP. The VX hydrolysis conditions are illustrated in Scheme 5.2. 

 

Scheme 5.2: An illustration of the VX hydrolysis conditions which were employed in this study.  

In brief, an NMR tube was charged with VX followed by the addition of a diced HIPE containing 

1.25 mol % (relative to VX) MOF-808. A solution of H2O and THF was then then added to the 

tube along with a small amount of D2O, the tube was immediately placed in an NMR auto-

sampler and analysed using 31P NMR spectroscopy. The probe temperature was set to 298 K 

throughout each experiment. The first measurement was obtained within 15 minutes of the 

reaction commencing. Subsequent measurements were obtained for a total of 24 hours. 31P 

NMR spectroscopy was used to monitor the presence of peaks corresponding to VX and EMPA. 

An example spectral overlay is shown in Figure 5.16. This was used to determine the % of VX 

which had been hydrolysed to EMPA at each time interval. It should be noted that no toxic EA-

2192 by-product was formed, This is shown in Figure 5.16 where there is a distinct lack of a 

peak at approximately 40 ppm; the shift of EA-2192.37 
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Figure 5.16. A 31P NMR in D2O overlay showing the different stages of VX hydrolysis that were 

observed; (green) fresh VX; (red) VX 1.5 hours after the addition of MOF-HIPE-VBPP-S 

containing 1.25 mol % MOF-808 relative to substrate in THF/Water; (blue) VX 24 hours after 

the addition of MOF-HIPE-VBPP-S containing 1.25 mol % MOF-808 relative to substrate in 

THF/Water. 

Figure 5.17 shows the degradation plots which were obtained for this particular experiment. 

Using the first hour of data for each sample, the reaction rate of each reaction, k, was then 

calculated for each material. This was performed by plotting the natural logarithm of VX 

concentration over time and applying a linear fit through this data. The slope of the line (m), 

corresponds to k such that m = -k. The first order residue plots are shown in Figure 5.17. 

Unsurprisingly, minimal VX hydrolysis was observed in the presence of HIPE-VBPP-S due to the 

lack of any MOF-808, this material therefore served as blank control sample. VX hydrolysis was 

observed in the presence of MOF-HIPE-S (k = 0.0044 s-1) and MOF-HIPE-VBPP-S (k = 0.0059 s-1), 

with only the EMPA product being formed. This was consistent with previous studies which 
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have been conducted regarding the aqueous, buffer-free hydrolysis of V-series agents in the 

presence of MOF-808.1,38  
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Figure 5.17. (top) A plot showing the hydrolysis of VX over time in the presence of MOF-HIPE-

VBPP-S and MOF-HIPE-S composites in THF/H2O. Each set of data was obtained once (bottom) 

Natural logarithms of concentrations corresponding to VX residues in the presence of MOF-

HIPE-VBPP-S and MOF-HIPE-S. The first order rate constants were calculated assuming a linear 

fit through the initial data points (first 120 minutes) for each composite. 

 

k = 0.0044 s-1 k = 0.0059 s-1 
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These results were in agreement with the buffered hydrolysis testing that was conducted 

earlier on DMNP, where MOF-HIPE-VBPP-S slightly outperformed MOF-HIPE-S. These results 

also highlight how effective the MOF-containing composites are at degrading VX with an 

excess of one of the most readily available and abundant reagents, water. In fact, MOF-HIPE-

VBPP-S results in a VX half-life of 1 hour with a catalytic loading of 1.25 %, which yields a 

calculated turn-over frequency (TOF) of 40 h-1. The leading literature composite, NU-1000/PEI 

MW 2500,4 results in a VX half-life of 15 mins but with a catalytic loading of 10.3%, this yields a 

calculated TOF of 19.4 h-1. This makes MOF-HIPE-VBPP-S the leading material for the aqueous 

hydrolysis of VX, with the added benefit of being able to swell in VX (Q > 32).  

Moving on, the three HIPEs were then tested for their capacity to degrade neat VX in the 

presence of only ambient humidity (50 RH %). A catalyst loading of 1.25 mol % was used. After 

7 days, it was not possible to extract an aliquot from any of the HIPEs due to the amount of VX 

used being well below the maximum swelling capacity of the HIPEs. No quantitative data was 

obtained but this case exemplifies that the HIPE membrane can retain absorbed nerve agent. 

A second attempt was made at analysing the ability of HIPEs to degrade neat VX in the 

presence of ambient humidity (50 RH %). This time, the proportion of VX was adjusted to drive 

the HIPE swelling to Q > 25, this equated to a MOF-808 (2 mg, 1.71 µmol) catalyst loading of 

just 0.15 % relative to VX (250 µL, 1.14 mmol). This ensured that there would be enough 

substrate to be extracted for analysis. Aliquots were taken at an interval of 4, 7, 11 and 14 days 

and analysed using 31P NMR in CDCl3. The same peaks were monitored as shown in Figure 5.16. 

Figure 5.18 shows the results which were obtained over the course of 2 weeks. Minimal 

hydrolysis was observed after 4 days but after a week, 50 % hydrolysis was observed in the 

presence of MOF-HIPE-S with near full hydrolysis being achieved after 2 weeks in the presence 

of all the HIPEs, including HIPE-VBPP-S. There are several possible interpretations of these 

results. MOF-HIPE-S possesses far more consistent pore morphology than MOF-HIPE-VBPP-S, 

as demonstrated by the superior swelling values achieved. The superior swelling of MOF-HIPE-
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S could therefore have enhanced the access of VX to the MOF catalyst housed within. As for 

HIPE-VBPP-S, there are two possibilities; the HIPE membrane facilitates the ambient 

uncatalysed hydrolysis of VX or the small quantity of VBPP is able to initiate the ambient 

hydrolysis of the agent. Unfortunately, neither of these possibilities can be verified due to the 

fact that HIPE-S did not feature in this study. This was due to a limited amount of V-agent 

available for testing. However, when comparing HIPE-VBPP-S to MOF-HIPE-VBPP-S, after 7 

days, 22 % VX hydrolysis was observed in the presence of MOF-HIPE-VBPP-S compared to 8 % 

in the presence of HIPE-VBPP-S. This may only seem like a modest enhancement but the 

catalyst loading is 0.15 mol %, which makes it rather significant at such a low concentration. 
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Figure 5.18. A graph showing the % degradation of VX over 14 days in the presence of HIPE-

VBPP-S, MOF-HIPE-VBPP-S and MOF-HIPE-S. The error bars show the degree of error observed 

for the duplicate results.  
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5.8 Summary and Conclusion 

A novel MOF-HIPE composite was synthesised from two materials; a pHIPE capable of swelling 

VX to Q > 50 and a MOF which can facilitate the catalytic breakdown of V-series agents in the 

absence of a buffering agent. The composite, MOF-HIPE-S, retained both the swelling capacity 

and the degradation ability of the two counterparts, as shown through swelling studies and 

DMNP hydrolysis studies. The retention of surfactant in the HIPE structure was found to 

enable the absorption of water into the polymer matrix and a modest enhancement in 

hydrolysis was observed for MOF-HIPE-S over that of MOF-HIPE when an aqueous, THF-free, 

degradation procedure was used to probe DMNP hydrolysis. An additional HIPE, MOF-HIPE-

VBPP-S, was then synthesised with a 5 % VBPP monomer loading. The characterization of the 

VBPP monomer in the MOF-HIPE-VBPP-S structure proved difficult and a lower Q value of 30 

was achieved for the swelling of the methyl benzoate simulant due to a less regular internal 

phase. However, MOF-HIPE-VBPP-S proved just as potent a degradation material for the 

hydrolysis of the DMNP simulant. MOF-HIPE-VBPP-S was also able to facilitate the buffer-free 

hydrolysis of DMNP, with the quantity of hydrolysis being stoichiometrically linked to the 

quantity of VBPP present in the reaction mixture. Finally, MOF-HIPE-VBPP-S, MOF-HIPE-S and 

HIPE-VBPP-S were examined for their ability to degrade the nerve agent VX. MOF-HIPE-VBPP-S 

and MOF-HIPE-S were able to effectively hydrolyse the nerve agent VX in mixture of H2O/THF 

and in the absence of NEM buffer. The three composites were then employed for the 

degradation of neat VX (i.e, no solvent, no buffer, 50 RH %). MOF-HIPE-S proved to be the 

most successful degradation material for VX hydrolysis, followed by MOF-HIPE-VBPP-S and 

HIPE-VBPP-S. The presence of the VBPP units in MOF-HIPE-VBPP-S did not enhance the 

hydrolysis of VX, which is hypothesised to be the result of less regular polymer membrane 

when compared to that of MOF-HIPE-S. A possible future improvement would involve an 

alternative synthetic procedure which could enable the incorporation of the VBPP monomer 

into a HIPE without compromising the regularity of the polymer internal phase. However, the 

MOF-HIPE composite is still highly demonstrative. The composite is able to rapidly degrade VX 
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in the absence of buffer and in the presence of excess water, and rivals previously published 

work regarding aqueous VX hydrolysis in the presence of MOF composites (NU-1000/PEI 2500 

MW). The MOF-HIPE composite also has the advantage of being able to swell in the presence 

of agent, something no other reported hydrolytic composite is capable of doing. The contents 

of this report is therefore highly novel and should facilitate the future development of 

degradation towards the catalytic breakdown of OP CWAs whilst negating the need for excess 

reagents. 
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Chapter 6. Thesis Summary and Conclusion 

This thesis has covered a number of topics regarding Chemical Warfare Agent (CWA) hydrolysis 

and ligand-based photoluminescence in MOFs. The primary goal of the project described in 

this thesis was to develop a composite material capable of encapsulating and degrading 

organophosphorus (OP) CWAs; bulk degradation on the litre scale was the ultimate aim of the 

study. This thesis aimed to deal with the degradation aspect of the final composite material. A 

catalytic material was therefore required, one that would be capable of degrading neat V-

series agents at low catalytic loading (< 5 % loading), in the absence of a buffer and any 

additional reagents.   

6.1 Thesis Summary  

Initially, the literature was surveyed to identify a number of systems that deal with the 

degradation of CWAs. Simulant systems were reviewed to identify and select simulant 

compounds which would mimic the degradation of OP CWAs. Phosphodiester compounds such 

as diethyl chlorophosphate, dimethyl methylphosphonate and methyl paraoxon (DMNP) were 

some of the commonly reported simulants. Metal oxide nanoparticles (MONPs) and Zirconium 

MOFs were then screened as catalysts for the oxidation/hydrolysis of a range of simulants. 

Compared to MONPs, Zirconium MOFs were found to function at lower catalytic loadings 

relative to their substrate. The DMNP simulant in aqueous buffer was also identified as the 

most appropriate OP CWA hydrolysis simulant. A selection of potential Zirconium MOF 

catalysts were then synthesised and tested for their ability to degrade the DMNP simulant. 

Frameworks lacking defects/empty coordination vacancies performed poorly as hydrolysis 

catalysts for the degradation of the DMNP simulant. MOF-808, a Zirconium MOF with a linker 

connectivity of six instead of the maximum of 12, was found to be the most effective material 

for degrading DMNP. The ability for the DMNP substrate to access linker-free coordination 

sites was therefore considered essential for facilitating phospho-ester hydrolysis. Following on, 

MOF-808 was selected for testing on the V-series agent VX. At a catalyst loading of 1.25 %, 
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MOF-808 was able to rapidly degrade VX in the presence of only water and in the absence of 

buffer. 80 % VX hydrolysis was observed after just 10 minutes in the presence of MOF-808.  

Buffer-free VX hydrolysis was thought to occur due to the stoichiometric generation of the 

basic diisopropylaminoethanethiol (DESH) by-product, thus making a VX hydrolysis reaction a 

self-buffering process. A follow-up MOF-808 degradation study was conducted on neat VX in 

the presence only 40 % Relative Humidity (RH %). However, this hydrolysis took 7 days and was 

therefore significantly slower. A natural interest was developed in how the propensity of 

zirconium MOFs to undergo hydration affected their function as a hydrolysis catalyst.  

The hydration of a selection of Zirconium MOF catalyst candidates was analysed using solid-

state photoluminescence spectroscopy (ssPL) but no interesting changes were noted upon 

hydration. However, through a collaborative effort, two novel alkaline earth (AE) MOFs, MOF-1 

(Ba) and MOF-2 (Sr) were analysed for their hydration-dependent emission. Both frameworks 

exhibited reversible emissive profiles upon hydration and dehydration. MOF-2 (Sr) was found 

to exhibit a sensitive and gradual humidity-dependent emission from 29 % RH onwards. In 

contrast, MOF-1 (Ba) displayed a sharp red-shifted emission upon direct liquid wetting with no 

humidity-dependent emission until RH 84 %. Interestingly, both frameworks tended towards 

amorphization upon hydration and so the retention of long-range order was not essential to 

their function. Through a second collaboration, a series of novel Zirconium MOFs, composed of 

functionalised 4,4′-[1,4-phenylene-bis(ethyne-2,1-diyl)]-dibenzoate (peb) linkers, were 

analysed using ssPL for any hydration-dependant changes. Small changes in emission were 

observed for all of the frameworks, Zr-L7, a benzothiadiazolyl functionalised MOF was found to 

exhibit a humidity-dependent emission. Zr-L5, a MOF composed of a tetrafluorinated linker, 

did not display any hydration-dependent emission and contact angle measurements were used 

to highlight its super-hydrophobic properties. Finally, upon exposing the Zr MOFs to solvents 

with different dipole moment, Zr-L2, a MOF composed of a dimethyl functionalised peb linker, 

was found to exhibit solvatochromism. ssPL proved very valuable for screening solid materials 

under a variety of conditions, thus acting as a useful probe of functional properties in MOFs. 
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Also, hydration-dependent emission for water sensing applications remains an under-reported 

feature in photoluminescent MOFs. It is highly likely that there are many previously reported 

MOFs that exhibit hydration-dependent emission and simply have not yet been investigated. 

Focusing on catalysis, three acetate modulated MOFs, MOF-808, DUT-84, and UiO-66, were 

activated using a novel microwave irradiation procedure in H2O. This activation procedure 

worked to remove excess acetate modulator which was bound to the Zr6 node of each 

framework, thus exposing more catalytic coordination sites. The highest degree of acetate-

removal was achieved in MOF-808. The activation procedure was also attempted on a benzoic 

acid modulated UiO-66 but no benzoic acid removal was observed. Further microwave 

activation and optimization tests are required with MOFs containing common carboxylate 

modulators such as formic acid, propionic acid and amino acids. As for the acetate-modulated 

MOFs, a modest enhancement in the buffered DMNP hydrolysis was observed in the presence 

of the activated frameworks when compared to their as-synthesised counterparts. DUT-84 and 

MOF-808 were then tested for their ability to degrade the V-series agent VM. A negligible 

difference was observed between the activated and non-activated MOF-808. However, a 

notable enhancement was noted in the presence of activated DUT-84 when compared to the 

as-synthesised counterpart. With both MOFs, VX hydrolysis occurred and in the absence of 

buffer, MOF-808 showed significantly enhanced activity over that of DUT-84. MOF-808 had 

therefore been shown to degrade VX and VM in aqueous medium in the absence of a buffering 

agent. MOF-808 was also shown to degrade neat VX in the presence of only ambient humidity. 

The effectiveness of MOF-808 as an OP hydrolysis catalyst, the low price and high availability 

of the constituent 1,3,5-benzene tricarboxylic acid (btc) linker precursor, along with the low 

formula weight of MOF-808 (in relation to other Zirconium frameworks), makes it the best 

candidate as a MOF hydrolysis catalyst.  

MOF-808 was therefore selected for incorporation into a VX swelling HIPE polymer which had 

been developed by A. J. Wright. A MOF-HIPE composite was then formed which was capable of 
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swelling in methyl benzoate (a CWA swelling simulant) to Q > 50 and hydrolysing DMNP in the 

presence of buffer. A vinyl benzyl piperidine functionalised MOF-HIPE (MOF-HIPE-VBPP-S) was 

then synthesised, and shown to be capable of partially hydrolysing DMNP in the absence of a 

buffering agent. The hydrolysis of DMNP occurred stoichiometrically in relation to the quantity 

of VBPP present. Upon conducting tests on VX, MOF-HIPE-VBPP-S and MOF-HIPE-S were 

capable of effectively hydrolysing VX in a solution of THF/H2O at a catalyst loading of 1.25 %. 

The performance of the MOF-HIPE composites for VX hydrolysis rivalled that of the leading 

reported composite material (NU-1000/PEI MW 2500). Additionally, the MOF-HIPE composites 

possessed the added advantage of being able to swell on adsorbing the VX agent. For the 

penultimate test, the composites were tested for the encapsulation and degradation of neat 

VX in the presence of only ambient humidity. To achieve a swelling degree of Q > 25 the MOF-

808 catalyst loading was taken to be 0.15 % relative to VX. MOF-HIPE-S was found to be the 

most effective degradation material for the neat hydrolysis of VX with a VX t1/2 of 7 days being 

observed. Slower degradation was achieved in the presence of MOF-HIPE-VBPP-S, but full 

degradation was observed after 2 weeks with both composites. The presence of the VBPP 

monomer during HIPE synthesis was believed to have affected the consistency of the polymer 

membrane, thus hindering the absorption of VX throughout the HIPE matrix. 

6.2. Thesis Conclusion  

The aim of this thesis was to develop a composite material for the bulk encapsulation and 

catalytic degradation of neat OP CWAs. MOF-808 was identified as the most promising OP 

CWA catalyst and was found to be very effective for the hydrolysis of V-series agents in 

aqueous medium. MOF-808 is also superior to other Zirconium MOF hydrolysis catalysts in 

terms of cost, scalability and weight factor, whilst rivalling their performance. However, the 

MOF-808 facilitated hydrolysis of VX was significantly slower in the presence of only ambient 

humidity. A time of 7 days was required for complete neutralization which was not ideal. The 
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diffusion of ambient water appeared to be the rate limiting determinant for enabling 

hydrolysis. There appeared to be no way around this, apart from simply adding water. 

Upon incorporating MOF-808 into a polyHIPE to form the MOF-HIPE composite, the hydrolytic 

capability of the resulting material was not diminished. The incorporation of a VBPP monomer 

into the MOF-HIPE composite was then attempted. It was hoped that the basic VBPP units 

would help to kick-start the initial hydrolysis of VX and lead to a faster hydrolysis overall. No 

net increase in DMNP simulant hydrolysis was noted for MOF-HIPE-VBPP-S vs. MOF-HIPE-S, 

however an equivalent quantity of MOF-HIPE-VBPP-S was able to hydrolyse a greater quantity 

of DMNP in the absence of buffer. MOF-HIPE-VBPP-S was also able to hydrolyse VX in a 

THF/H2O mixture at a slightly faster rate than MOF-HIPE-S, this enhancement could very well 

have been due to the presence of the basic amine monomer unit. In terms of TOF, both HIPE 

composites rival the most effective literature composites for the aqueous, buffer-free 

hydrolysis of VX, with the added advantage of possessing a high swelling capacity for VX. 

Despite this advantage, the aim of the thesis was to hydrolyse neat agent. 

Upon testing both composites for the neat hydrolysis of VX, MOF-HIPE-S significantly 

outperformed MOF-HIPE-VBPP-S. Without further improvements and optimizations, MOF-

HIPE-S would appear to be the superior material for V-agent encapsulation and degradation. 

Further alterations to the synthesis of MOF-HIPE-VBPP-S could still potentially yield an 

enhanced material. The VX hydrolysis in the presence of MOF-HIPE-S was still rather slow, 

taking ~ 11 days, however, the catalyst loading of MOF-808 was a mere 0.15 %. A slow 

hydrolysis can still be considered significant at such a low loading. Furthermore, the HIPE 

scaffold adds the benefit of agent retention; once the V-agent has been absorbed into the HIPE 

membrane, it becomes very difficult and unsafe to extract it again. Slow hydrolysis of neat 

agent under ambient conditions is therefore not an issue because once the agent has been 

absorbed, it is rendered inaccessible and can therefore be allowed to degrade slowly.  
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Reflecting on the ultimate goal of this thesis, the objective was met. A composite material has 

been developed which possesses a swelling functionality along with a degradation ability. The 

material is able to rapidly swell neat VX followed by a steady, selective breakdown of VX to the 

non-toxic EMPA product. With an effective MOF-808 catalyst loading of only 0.15 %, the 

hydrolysis proceeds slowly. A timeframe of just under 2 weeks is required for full hydrolysis, 

but the HIPE sponge effectively immobilizes the agent, thus making speed less of a concern. 

The whole process also occurs in the complete absence of any additional/excess reagents, only 

ambient humidity is required to fuel the hydrolysis. 

6.3 Future Work 

For future work, a few possible strategies exist for enhancing or further demonstrating the 

utility of the MOF-HIPE composite. MOF-HIPE-VBPP-S synthesis can be optimised to ensure the 

retention of a more ordered internal phase in the presence of the VBPP monomer. This could 

potentially allow for a higher VBPP monomer loading (i.e 10 % vs 5 %), thus increasing the 

abundance of heterogeneous amine to kickstart VX hydrolysis. Second, the hydrolysis of VX 

proceeds rapidly in the presence of the MOF-HIPE composites and an excess of water, 

regardless of whether VBPP monomer is present. The transport of water into the HIPE 

membrane containing MOF-808 catalyst is therefore the rate limiting step for facilitating V-

agent hydrolysis. Thus, any alterations to the composite or the components that lead to an 

increase in the hygroscopicity of the material would likely positively affect the hydrolytic 

properties for V-series agent hydrolysis. This could be achieved by partially incorporating a 

more hygroscopic monomer unit into the HIPE scaffold but this would have to be carefully 

balanced with internal phase stability and swelling ability. Finally, it would be interesting to 

determine just how selectively the HIPE composites are capable of swelling the V-series 

agents. This could be achieved by attempting to swell with multi-component solutions 

containing methyl benzoate along with a less swelling liquid component, such as ethanol or 
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water. This would demonstrate whether the composite would be able to absorb and degrade 

V-agents in more dilute concentrations, such as contaminated water sources.  

To conclude this project, the work described in this thesis is highly applied. Through a 

collaborative effort with Alex Wright and DSTL, a novel composite material has been 

developed. The composite material can swell to a high degree (Q > 50) in the presence of V-

series agents. The composite, containing a MOF-808 catalyst loading of just 1.25 % relative to 

substrate, is also able to facilitate the hydrolysis of VX in the presence of an excess of water. 

Additionally, the composite (with a MOF-808 catalyst loading of 0.15 %) is able to facilitate the 

encapsulation and complete degradation of neat VX over 2 weeks, and in the presence of only 

ambient humidity. If faster hydrolysis is required, all that is necessary is the addition of water, 

one of the most readily available reagents. The studies described in this work should therefore 

aid in the future development of composite materials for the bulk degradation and 

encapsulation of highly toxic OP CWAs. This work should also help to advance the field of 

reactive polymer composites which possess both a substrate-swellable membrane and a 

reactive heterogeneous catalyst.  

 

 

 

 

 

 

 

 

 

 

 

 



253 
 

Chapter 7. Appendix 

7.1 Boron MOF Single Crystal Data (performed by Helena J. Shepherd) 

A suitable crystal of Boron MOF was selected and mounted on a glass fiber with inert oil on a 

'Bruker APEX-II CCD' diffractometer at the ALS station 11.3.1. The crystal was kept at 100 K 

during data collection. Using Olex2, the structure was solved with the XS structure solution 

program using Direct Methods and refined with the ShelXL refinement package using Least 

Squares minimisation. The structure requires further refinement. The crystal data and 

structural refinement details are shown below: 

Empirical formula C60H60B2O10Zr 

Formula weight 1053.92 

Temperature/K 100 

Crystal system monoclinic 

Space group P21/m 

a/Å 13.4322(18) 

b/Å 45.670(6) 

c/Å 13.956(2) 

α/° 90 

β/° 116.443(4) 

γ/° 90 

Volume/Å3 7665.8(18) 

Z 6 

ρcalcg/cm3 1.370 

μ/mm-1 0.277 

F(000) 3300.0 

Crystal size/mm3 0.01 × 0.01 × 0.005 

Radiation/ Å CuKα (λ = 0.71073) 

2Θ range for data collection/° 3.38 to 41.63 

Index ranges -13 ≤ h ≤ 13, -45 ≤ k ≤ 45, -13 ≤ l ≤ 13 

Reflections collected 37968 

Independent reflections 8144 [Rint = 0.0895, Rsigma = 0.0681] 

Data/restraints/parameters 8144/1/711 

Goodness-of-fit on F2 2.566 

Final R indexes [I>=2σ (I)] R1 = 0.1474, wR2 = 0.3783 

Final R indexes [all data] R1 = 0.1841, wR2 = 0.3921 

Largest diff. peak/hole / e Å-3 2.94/-4.05 
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7.2 ssPL Emission Spectra of L2-Me2 and L7-Me2 in the Presence of Various 

Solvents 

 

a) 

 

b) 

 

Figure 7.1. Normalised solid-state fluorescence emission spectra of a) L2-Me2 (ex = 380 nm), 

and b) L7-Me2 (ex = 450 nm) in the presence of a wide array solvents. 
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7.3 Buffered DMNP hydrolysis in the presence of MOF-HIPE composites and 

THF/H2O 
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Figure 7.2. A plot showing the hydrolysis of DMNP over time in the presence of MOF-HIPE in of 

0.45 M NEM buffer, THF and H2O. The individual data points for each data set in a triplicate are 

shown, along with the exponential fit that was derived from each data set.  
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Figure 7.3. A plot showing the hydrolysis of DMNP over time in the presence of MOF-HIPE-S in 

of 0.45 M NEM buffer, THF and H2O. The individual data points for each data set in a triplicate 

are shown, along with the exponential fit that was derived from each data set.  
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Figure 7.4. A plot showing the hydrolysis of DMNP over time in the presence of MOF-HIPE-

VBPP-S in of 0.45 M NEM buffer, THF and H2O. The individual data points for each data set in a 

triplicate are shown, along with the exponential fit that was derived from each data set.  
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Figure 7.5. A plot showing the hydrolysis of DMNP over time in the presence of MOF-808 in of 

0.45 M NEM buffer, THF and H2O. The individual data points for each data set in a triplicate are 

shown, along with the exponential fit that was derived from each data set.  
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Figure 7.6. A plot showing the hydrolysis of DMNP over time in the presence of HIPE in of 0.45 

M NEM buffer, THF and H2O. The individual data points for each data set in a triplicate are 

shown, along with the exponential fit that was derived from each data set.  
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Figure 7.7. A plot showing the hydrolysis of DMNP over time in the presence of MOF-HIPE-

VBPP-S in of 0.45 M NEM buffer, THF and H2O. The individual data points for each data set in a 

triplicate are shown, along with the exponential fit that was derived from each data set.  
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7.4 Buffered DMNP hydrolysis in the presence of MOF-HIPE composites and 

H2O  
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Figure 7.8. A plot showing the hydrolysis of DMNP over time in the presence of MOF-HIPE (no 

surfactant) in of 0.45 M NEM buffer H2O. The individual data points for each data set in a 

triplicate are shown, along with the exponential fit that was derived from each data set.  
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Figure 7.9. A plot showing the hydrolysis of DMNP over time in the presence of MOF-HIPE-S in 

of 0.45 M NEM buffer H2O. The individual data points for each data set in a triplicate are 

shown, along with the exponential fit that was derived from each data set.  
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7.5 MOF-HIPE-S Hydrolysis Cycling 

The following procedure was used to test the hydrolytic effectiveness of MOF-HIPE-S over 3 

cycles. The HIPE containing MOF-808 (3.2 mg, 0.11 µmol, 1.25 mol %) was sliced up into small 

chunks (1-2 mm3) then added to the tube along with 0.6 ml mixture containing: 0.2 ml of D2O, 

0.2 THF and  0.2 ml of 1.45 M N-ethyl morpholine (NEM) aqueous buffer (effective 

concentration 0.45M). The tube was inverted once and left to stand for 24 hours at room 

temperature (298 K). After 24 hours, the tube was analysed using 31P NMR (161.83 MHz) 

spectroscopy. The HIPE was then removed from the tube, washed 5 times with THF and re-

used in the same manner as described above. This was repeated two more times to give a total 

of 3 cycles.  

 

Figure 7.10. A 31P NMR in D2O overlay showing (black) fresh DMNP (red) DMNP 24 hours after 

the addition of MOF-HIPE-S containing 1.25 mol % MOF-808 relative to substrate in 0.45 M 

NEM buffer (green) DMNP 24 hours after the addition of the same MOF-HIPE-S containing 1.25 

mol % MOF-808 relative to substrate in 0.45 M NEM buffer (red) DMNP 24 hours after the 

addition of the same MOF-HIPE-S containing 1.25 mol % MOF-808 relative to substrate in 0.45 

M NEM buffer. 


